[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017099183A1 - 樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法 - Google Patents

樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法 Download PDF

Info

Publication number
WO2017099183A1
WO2017099183A1 PCT/JP2016/086593 JP2016086593W WO2017099183A1 WO 2017099183 A1 WO2017099183 A1 WO 2017099183A1 JP 2016086593 W JP2016086593 W JP 2016086593W WO 2017099183 A1 WO2017099183 A1 WO 2017099183A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical formula
carbon atoms
resin
group
represented
Prior art date
Application number
PCT/JP2016/086593
Other languages
English (en)
French (fr)
Inventor
大地 宮崎
潤史 脇田
貴士 徳田
立花 康子
耕司 上岡
友樹 芦部
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016573149A priority Critical patent/JP6241557B2/ja
Priority to US15/781,886 priority patent/US20180362763A1/en
Priority to KR1020187017304A priority patent/KR101916647B1/ko
Priority to CN201680072204.3A priority patent/CN108431135B/zh
Publication of WO2017099183A1 publication Critical patent/WO2017099183A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/405Thioureas; Derivatives thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to a resin composition, a resin production method, a resin film production method, and an electronic device production method.
  • Polyimide is used as a material for various electronic devices such as semiconductors and displays due to its excellent electrical insulation, heat resistance, and mechanical properties. Recently, by using a heat-resistant resin film for a substrate of an image display device such as an organic EL display, electronic paper, and a color filter, a flexible image display device that is resistant to impact can be manufactured.
  • an image display device such as an organic EL display, electronic paper, and a color filter
  • a solution containing a polyamic acid that is a polyimide precursor is usually used.
  • a polyimide is obtained by applying a solution containing polyamic acid to a support and baking the coating to imidize it.
  • JP 2009-109589 A Japanese Unexamined Patent Publication No. 2000-234023
  • Patent Document 1 has a problem that particles increase during storage of a solution containing polyamic acid. Furthermore, the methods described in Patent Documents 1 and 2 have a problem that the viscosity changes greatly during storage of a solution containing polyamic acid.
  • an object of the present invention is to provide a resin composition, a method for producing a resin, a method for producing a resin film, and a method for producing an electronic device, in which a polyimide film having a high mechanical property is obtained after firing with less generation of particles.
  • the present invention provides a resin composition, a method for producing a resin, a method for producing a resin film, and a method for producing an electronic device, which can provide a polyimide film having extremely high viscosity when used as a varnish and having high mechanical properties after firing. For the purpose.
  • the present inventor has found that the generation of particles is caused by a low-molecular compound generated as a by-product in the process of producing a polyamic acid in which an amino group is protected. As a means for solving this problem, the present invention has been achieved.
  • the first aspect of the present invention is (A) a resin having a structure represented by the chemical formula (1);
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms
  • Z is represented by the chemical formula (2).
  • N represents a positive integer
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal ion, ammonium An ion, an imidazolium ion, or a pyridinium ion. * Indicates that it is bonded to another atom.
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms, ⁇ and ⁇ each independently represents an oxygen atom or a sulfur atom. * Represents a bond of Z in the chemical formula (1). Indicates a point.
  • B a resin composition comprising a solvent, wherein the amount of the compound represented by the chemical formula (3) contained in the resin composition is 0.1 mass ppm or more and 40 mass ppm or less. is there.
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • Z represents a structure represented by chemical formula (2).
  • a resin composition comprising (a ′) a resin mainly composed of a repeating unit represented by the chemical formula (4), and (b) a solvent.
  • a resin composition comprising one or more resins selected from the group consisting of A) and (B).
  • Resin (A) Resin (A-1) containing two or more partial structures represented by chemical formula (5) in the molecule, and Resin (A-1) containing two or more partial structures represented by chemical formula (6) in the molecule
  • Resin mixture containing at least one partial structure represented by chemical formula (5) and one partial structure represented by chemical formula (6) in the molecule
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • W represents a structure represented by the chemical formula (7)
  • Z represents a structure represented by the chemical formula (2)
  • R 3 and R 4 are each independently a hydrogen atom.
  • the resin composition containing the polyamic acid according to the second embodiment of the present invention has high viscosity stability during storage as a varnish. Unprotected acid anhydride groups can react with moisture in the resin composition, and unprotected amino groups can react with oxygen in the atmosphere, respectively, but they are suppressed in the polyamic acid resin composition of the present invention. Because.
  • a resin composition that generates a polyimide film with less mechanical particles and high mechanical properties after firing. Furthermore, a resin composition is obtained that has a high viscosity stability during storage when used as a varnish, and that can provide a polyimide film having high mechanical properties after firing.
  • a first aspect of the resin composition according to the present invention includes (a) a resin having a structure represented by the chemical formula (1);
  • chemical formula (1) X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms, and Y represents a divalent diamine residue having 2 or more carbon atoms.
  • Z represents a structure represented by the chemical formula (2).
  • n represents a positive integer.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal ion, an ammonium ion, an imidazolium ion, or a pyridinium ion. * Indicates that it is bonded to another atom.
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms, and ⁇ and ⁇ each independently represent an oxygen atom or a sulfur atom. * Indicates a bonding point of Z in the chemical formula (1).
  • B A resin composition containing a solvent, wherein the amount of the compound represented by the chemical formula (3) contained in the resin composition is 0.1 mass ppm or more and 40 mass ppm or less.
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • Z represents a structure represented by the chemical formula (2).
  • a second embodiment of the resin composition according to the present invention is a resin composition
  • a resin composition comprising (a ′) a resin mainly composed of a repeating unit represented by the chemical formula (4), and (b) a solvent.
  • the resin composition contains one or more resins selected from the group consisting of the following (A) and (B).
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • W represents a structure represented by the chemical formula (7).
  • Z represents a structure represented by the chemical formula (2).
  • R 3 and R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal ion, an ammonium ion, an imidazolium ion or a pyridinium ion. * In chemical formulas (5) and (6) indicates that they are bonded to other atoms.
  • ⁇ in the chemical formula (7) and ⁇ in the chemical formula (2) each independently represent a monovalent hydrocarbon group having 2 or more carbon atoms.
  • ⁇ in the chemical formula (7) and ⁇ and ⁇ in the chemical formula (2) each independently represent an oxygen atom or a sulfur atom.
  • * In the chemical formula (7) represents a bonding point of W in the chemical formula (5).
  • * In chemical formula (2) indicates the point of attachment of Z in chemical formula (6).
  • Chemical formula (1) represents the structure of polyamic acid.
  • the polyamic acid is obtained by reacting a tetracarboxylic acid and a diamine compound as described later. Furthermore, polyamic acid can be converted to polyimide, which is a heat-resistant resin, by heating or chemical treatment.
  • X is preferably a tetravalent hydrocarbon group having 2 to 80 carbon atoms.
  • X is a tetravalent organic compound having 2 to 80 carbon atoms, which contains a hydrogen atom and a carbon atom as essential components and contains at least one atom selected from the group consisting of boron, oxygen, sulfur, nitrogen, phosphorus, silicon and halogen. It may be a group.
  • Each atom of boron, oxygen, sulfur, nitrogen, phosphorus, silicon and halogen is preferably independently in a range of 20 or less, more preferably in a range of 10 or less.
  • Examples of tetracarboxylic acids that give X include the following.
  • Examples of the aromatic tetracarboxylic acid include monocyclic aromatic tetracarboxylic acid compounds such as pyromellitic acid and 2,3,5,6-pyridinetetracarboxylic acid, and various isomers of biphenyltetracarboxylic acid such as 3, 3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, 3,3 ′, 4 4′-benzophenone tetracarboxylic acid, 2,2 ′, 3,3′-benzophenone tetracarboxylic acid, etc .;
  • Bis (dicarboxyphenyl) compounds such as 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane, 2,2- Bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 1,1-bis (3,4-dicarboxyphenyl) ethane, 1,1-bis ( 2,3-dicarboxyphenyl) ethane, bis (3,4-dicarboxyphenyl) methane, bis (2,3-dicarboxyphenyl) methane, bis (3,4-dicarboxyphenyl) sulfone, bis (3 4-dicarboxyphenyl) ether and the like;
  • Bis (dicarboxyphenoxyphenyl) compounds such as 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (2,3-dicarboxyphenoxy) ) Phenyl] hexafluoropropane, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane, , 2-bis [4- (3,4-dicarboxyphenoxy) phenyl] sulfone, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] ether and the like;
  • naphthalene or condensed polycyclic aromatic tetracarboxylic acid such as 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7- Naphthalenetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, etc .;
  • Bis (trimellitic acid monoester) compounds such as p-phenylenebis (trimellitic acid monoester), p-biphenylenebis (trimellitic acid monoester), ethylene bis (trimellitic acid monoester), bisphenol A bis (trimetic acid monoester) Merit acid monoester), etc .; Is mentioned.
  • aliphatic tetracarboxylic acid examples include a chain aliphatic tetracarboxylic acid compound such as butanetetracarboxylic acid; Alicyclic tetracarboxylic acid compounds such as cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, bicyclo [2.2.1. ] Heptanetetracarboxylic acid, bicyclo [3.3.1. ] Tetracarboxylic acid, bicyclo [3.1.1. ] Hept-2-enetetracarboxylic acid, bicyclo [2.2.2. ] Octane tetracarboxylic acid, adamantane tetracarboxylic acid, etc .; Is mentioned.
  • a chain aliphatic tetracarboxylic acid compound such as butanetetracarboxylic acid
  • tetracarboxylic acids can be used as they are or in the form of acid anhydrides, active esters, and active amides.
  • acid anhydrides are preferably used because no by-products are produced during polymerization. Two or more of these may be used.
  • X has as a main component a tetravalent tetracarboxylic acid residue represented by the chemical formula (11) or (12).
  • silicon-containing tetra- silanes such as dimethylsilanediphthalic acid and 1,3-bis (phthalic acid) tetramethyldisiloxane are also available.
  • Carboxylic acid may be used. When these silicon-containing tetracarboxylic acids are used, it is preferable to use 1 to 30 mol% of the total tetracarboxylic acid.
  • part of the hydrogen atoms contained in the tetracarboxylic acid residue is a hydrocarbon group having 1 to 10 carbon atoms such as a methyl group or an ethyl group, or a carbon number of 1 such as a trifluoromethyl group. May be substituted with ⁇ 10 fluoroalkyl groups, groups such as F, Cl, Br, I and the like. Furthermore, when substituted with an acidic group such as OH, COOH, SO 3 H, CONH 2 , or SO 2 NH 2 , the solubility of the resin in an aqueous alkali solution is improved, so that it is used as a photosensitive resin composition described later. Preferred in some cases.
  • Y is preferably a divalent hydrocarbon group having 2 to 80 carbon atoms.
  • Y is a divalent organic compound having 2 to 80 carbon atoms, which contains a hydrogen atom and a carbon atom as essential components, and contains one or more atoms selected from the group consisting of boron, oxygen, sulfur, nitrogen, phosphorus, silicon and halogen. It may be a group.
  • Each atom of boron, oxygen, sulfur, nitrogen, phosphorus, silicon and halogen is preferably independently in a range of 20 or less, more preferably in a range of 10 or less.
  • Examples of diamines that give Y include the following.
  • Examples of the diamine compound containing an aromatic ring include monocyclic aromatic diamine compounds such as m-phenylenediamine, p-phenylenediamine, and 3,5-diaminobenzoic acid; Naphthalene or condensed polycyclic aromatic diamine compounds such as 1,5-naphthalenediamine, 2,6-naphthalenediamine, 9,10-anthracenediamine, 2,7-diaminofluorene, etc .;
  • Bis (diaminophenyl) compounds or various derivatives thereof such as 4,4′-diaminobenzanilide, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3-carboxy-4,4′-diaminodiphenyl ether 3-sulfonic acid-4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3, 4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 4-aminobenzoic acid 4-aminophenyl ester, 9,9-bis (4-aminophenyl) fluorene, 1,3
  • 4,4'-diaminobiphenyl or various derivatives thereof such as 4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-diamino Biphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2 ′, 3,3′-tetramethyl-4,4′- Diaminobiphenyl, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-di (trifluoromethyl) -4,4′-diaminobiphenyl, etc .;
  • Bis (aminophenoxy) compounds such as bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] Ether, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-aminophenoxy) ) Benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, etc .;
  • Bis (3-amino-4-hydroxyphenyl) compounds such as bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (3-amino-4) -Hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, 9,9-bis ( 3-amino-4-hydroxyphenyl) fluorene and the like;
  • Bis (aminobenzoyl) compounds such as 2,2′-bis [N- (3-aminobenzoyl) -3-amino-4-hydroxyphenyl] hexafluoropropane, 2,2′-bis [N- (4- Aminobenzoyl) -3-amino-4-hydroxyphenyl] hexafluoropropane, 2,2'-bis [N- (3-aminobenzoyl) -3-amino-4-hydroxyphenyl] propane, 2,2'-bis [N- (4-aminobenzoyl) -3-amino-4-hydroxyphenyl] propane, bis [N- (3-aminobenzoyl) -3-amino-4-hydroxyphenyl] sulfone, bis [N- (4-amino Benzoyl) -3-amino-4-hydroxyphenyl] sulfone, 9,9-bis [N- (3-aminobenzoyl) -3-amino-4
  • Heterocycle-containing diamine compounds such as 2- (4-aminophenyl) -5-aminobenzoxazole, 2- (3-aminophenyl) -5-aminobenzoxazole, 2- (4-aminophenyl) -6-amino Benzoxazole, 2- (3-aminophenyl) -6-aminobenzoxazole, 1,4-bis (5-amino-2-benzoxazolyl) benzene, 1,4-bis (6-amino-2-benzo Oxazolyl) benzene, 1,3-bis (5-amino-2-benzoxazolyl) benzene, 1,3-bis (6-amino-2-benzoxazolyl) benzene, 2,6-bis ( 4-aminophenyl) benzobisoxazole, 2,6-bis (3-aminophenyl) benzobisoxazole, 2,2′-bis [(3-aminophenyl) -5
  • Examples of the aliphatic diamine compound include linear diamine compounds such as ethylenediamine, propylenediamine, butanediamine, pentanediamine, hexanediamine, octanediamine, nonanediamine, decanediamine, undecanediamine, dodecanediamine, tetramethylhexanediamine, 1, 12- (4,9-dioxa) dodecanediamine, 1,8- (3,6-dioxa) octanediamine, 1,3-bis (3-aminopropyl) tetramethyldisiloxane and the like;
  • linear diamine compounds such as ethylenediamine, propylenediamine, butanediamine, pentanediamine, hexanediamine, octanediamine, nonanediamine, decanediamine, undecanediamine, dodecanediamine, tetramethylhexanediamine, 1, 12- (4,9-dioxa) dodecanediamine, 1,8
  • Alicyclic diamine compounds such as cyclohexanediamine, 4,4′-methylenebis (cyclohexylamine), isophoronediamine and the like; Polyoxyethyleneamine, polyoxypropyleneamine, and their copolymerized compounds known as Jeffamine (trade name, manufactured by Huntsman Corporation); Is mentioned.
  • diamines can be used as they are or in the corresponding trimethylsilylated diamine state. Two or more of these may be used.
  • Y is mainly composed of a divalent diamine residue represented by the chemical formula (13).
  • chemical formula (13) represents the point of attachment of Y in chemical formula (1). That is, it is preferable to use p-phenylenediamine as a main component.
  • the main component here means to occupy 50 mol% or more of the entire diamine compound. More preferably, it occupies 80 mol% or more.
  • a resin film containing p-phenylenediamine as a main component can be used as a substrate for a display because the resin film obtained by curing has a low coefficient of thermal linear expansion.
  • X in the chemical formula (1) has a tetravalent tetracarboxylic acid residue as a main component represented by the chemical formula (11) or (12), and Y represents a divalent compound represented by the chemical formula (13).
  • the main component is a diamine residue.
  • 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4 -Anilino) silicon-containing diamines such as tetramethyldisiloxane may be used.
  • silicon-containing diamine compounds it is preferably used in an amount of 1 to 30 mol% of the entire diamine compound.
  • a part of the hydrogen atoms contained in the diamine compound is a hydrocarbon group having 1 to 10 carbon atoms such as a methyl group or an ethyl group, or a fluoroalkyl having 1 to 10 carbon atoms such as a trifluoromethyl group. It may be substituted with a group such as F, Cl, Br, or I. Furthermore, when substituted with an acidic group such as OH, COOH, SO 3 H, CONH 2 , or SO 2 NH 2 , the solubility of the resin in an aqueous alkali solution is improved, so that it is used as a photosensitive resin composition described later. Preferred in some cases.
  • Z represents the terminal structure of the resin and represents the structure represented by chemical formula (2).
  • is preferably a monovalent hydrocarbon group having 2 to 10 carbon atoms. Preferred is an aliphatic hydrocarbon group, which may be linear, branched or cyclic.
  • hydrocarbon groups examples include ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n -Linear hydrocarbon group such as decyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, sec-pentyl group, tert-pentyl group, isohexyl group, sec-hexyl group, etc.
  • Examples thereof include cyclic hydrocarbon groups such as branched hydrocarbon groups, cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, cyclooctyl groups, norbornyl groups, and adamantyl groups.
  • cyclic hydrocarbon groups such as branched hydrocarbon groups, cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, cyclooctyl groups, norbornyl groups, and adamantyl groups.
  • hydrocarbon groups a monovalent branched hydrocarbon group having 2 to 10 carbon atoms and a cyclic hydrocarbon group are preferable, and an isopropyl group, a cyclohexyl group, a tert-butyl group, and a tert-pentyl group are more preferable.
  • a tert-butyl group is most preferred.
  • ⁇ and ⁇ each independently represent an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • the concentration of the resin having the structure represented by the chemical formula (1) in the resin composition is preferably 3% by mass or more and more preferably 5% by mass or more with respect to 100% by mass of the resin composition. Moreover, 40 mass% or less is preferable, and 30 mass% or less is more preferable. If the resin concentration is 3% by mass or more, it is easy to increase the thickness of the resin film, and if it is 40% by mass or less, the resin is sufficiently dissolved in the resin composition, so that a homogeneous resin film is easily obtained.
  • the weight average molecular weight of the resin having the structure represented by the chemical formula (1) is preferably 200,000 or less, more preferably 150,000 or less, and still more preferably 100,000 in terms of polystyrene using gel permeation chromatography. The following is preferable. If it is this range, even if it is a high concentration resin composition, it can suppress more that a viscosity increases.
  • the weight average molecular weight is preferably 2,000 or more, more preferably 3,000 or more, and further preferably 5,000 or more. If the weight average molecular weight is 2,000 or more, the viscosity of the resin composition will not be excessively lowered, and better coatability can be maintained.
  • n represents the number of repeating structural units of the resin and may be in a range satisfying the above-described weight average molecular weight. n is preferably 5 or more, more preferably 10 or more. Moreover, it is preferably 1000 or less, more preferably 500 or less.
  • the compound represented by the chemical formula (3) is a compound in which one hydrogen atom is substituted with Z, that is, a structure represented by the chemical formula (2) for both of two amino groups contained in the diamine compound.
  • the compound represented by the chemical formula (3) is generated as a by-product in the process of producing the resin having the structure represented by the chemical formula (1).
  • the inventors have found that the compound represented by the chemical formula (3) has low solubility in a solvent and precipitates in the resin composition with time to form particles.
  • the generated particles remain in the heat resistant resin film obtained from the resin composition, and lower the tensile elongation and the maximum tensile stress of the heat resistant resin film.
  • irregularities occur on the surface of the heat resistant resin film due to the particles, there is a risk that the performance may be lowered when an electronic device is formed on the heat resistant resin film.
  • the amount of the compound represented by the chemical formula (3) contained in the resin composition is 40 ppm by mass or less, more preferably 20 ppm by mass or less, and further preferably 10 ppm by mass or less. When it exceeds 40 mass ppm, the generation of the particles described above is observed.
  • the amount of the compound represented by the chemical formula (3) contained in the resin composition is preferably 0.1 mass ppm or more, more preferably 0.5 mass ppm or more, and further preferably 1 mass ppm or more. If it is 0.1 mass ppm or more, workability
  • the structure represented by the chemical formula (2) is decomposed by acid.
  • chemical formula (2) may be decomposed by an acid mixed from the environment during the production process of the resin composition of the present invention. That is, Z in chemical formula (1) decomposes and the viscosity of the resin composition changes.
  • the presence of the compound represented by the chemical formula (3) in the resin composition serves to trap the acid. Therefore, if the amount of the compound represented by the chemical formula (3) contained in the resin composition is 4 mass ppm or more, the stability of the polyamic acid during storage is increased.
  • the content of the compound represented by the chemical formula (3) can be measured by a liquid chromatograph mass spectrometer.
  • Y and Z in the chemical formula (3) are the same as Y and Z in the chemical formula (1).
  • (a ′) which is a second embodiment of the resin composition according to the present invention, a resin mainly composed of a repeating unit represented by the chemical formula (4), the group consisting of (A) and (B) One or more selected resins will be described.
  • Chemical formula (4) represents a repeating unit of polyamic acid.
  • the polyamic acid is obtained by reacting a tetracarboxylic acid and a diamine compound as described later. Furthermore, polyamic acid can be converted to polyimide, which is a heat-resistant resin, by heating or chemical treatment.
  • X is preferably a tetravalent hydrocarbon group having 2 to 80 carbon atoms.
  • X is a tetravalent organic compound having 2 to 80 carbon atoms, which contains a hydrogen atom and a carbon atom as essential components and contains at least one atom selected from the group consisting of boron, oxygen, sulfur, nitrogen, phosphorus, silicon and halogen. It may be a group. Each atom of boron, oxygen, sulfur, nitrogen, phosphorus, silicon and halogen is preferably independently in a range of 20 or less, more preferably in a range of 10 or less.
  • Examples of the tetracarboxylic acid that gives X include the same examples as those of the tetracarboxylic acid of the resin having the structure represented by the chemical formula (1) of the first embodiment of the present invention (a).
  • Examples of the diamine that gives Y include the same as those of the diamine of the resin having the structure represented by (a) chemical formula (1) of the first embodiment of the present invention.
  • the partial structure represented by the chemical formula (5) and the partial structure represented by the chemical formula (6) are a partial structure at the end of the main chain of the resin whose main component is the repeating unit represented by the chemical formula (4).
  • X, Y, R 3 and R 4 in chemical formulas (5) and (6) are the same as those in chemical formula (4).
  • W in chemical formula (5) and Z in chemical formula (6) represent the terminal structure of the resin, and represent the structures represented by chemical formulas (7) and (2), respectively.
  • ⁇ in chemical formula (7) and ⁇ in chemical formula (2) each independently represent a monovalent hydrocarbon group having 2 or more carbon atoms.
  • it is a monovalent hydrocarbon group having 2 to 10 carbon atoms.
  • More preferred is an aliphatic hydrocarbon group, which may be linear, branched or cyclic.
  • hydrocarbon groups examples include ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n -Linear hydrocarbon group such as decyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, sec-pentyl group, tert-pentyl group, isohexyl group, sec-hexyl group, etc.
  • Examples thereof include cyclic hydrocarbon groups such as branched hydrocarbon groups, cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, cyclooctyl groups, norbornyl groups, and adamantyl groups.
  • cyclic hydrocarbon groups such as branched hydrocarbon groups, cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, cyclooctyl groups, norbornyl groups, and adamantyl groups.
  • hydrocarbon groups a monovalent branched hydrocarbon group having 2 to 10 carbon atoms and a cyclic hydrocarbon group are preferable, and an isopropyl group, a cyclohexyl group, a tert-butyl group, and a tert-pentyl group are more preferable.
  • a tert-butyl group is most preferred.
  • ⁇ in the chemical formula (7) and ⁇ and ⁇ in the chemical formula (2) each independently represent an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • Resin (A) is a mixture of a resin (A-1) that generates an acid anhydride group at two or more ends by heating and a resin (A-2) that generates an amino group at two or more ends by heating. It is. Accordingly, since the acid anhydride group generated at the terminal and the amino group are reacted by heating, the resin (A-1) and the resin (A-2) are alternately bonded to give a polyimide resin having a high degree of polymerization.
  • the resin (B) generates an acid anhydride group and an amino group at different ends in the molecule by heating, so that the resin (B) is bonded to each other to give a polyimide resin having a high degree of polymerization.
  • the resin (A) contains only the resin (A-1) or the resin (A-2), only an acid anhydride group or an amino group is generated even when heated, so that the degree of polymerization is high. This polyimide resin cannot be obtained.
  • the resin (B) contains only either the partial structure represented by the chemical formula (5) or the partial structure represented by the chemical formula (6) in the molecule, Since only one of the groups is generated, a polyimide resin having a high degree of polymerization cannot be obtained.
  • the resin composition containing one or more resins selected from the group consisting of (A) and (B) has no or no unprotected acid anhydride group or amino group at the end of the resin. But the amount is small. Therefore, the resin composition containing the polyamic acid of the present invention has high viscosity stability during storage as a varnish. Unprotected acid anhydride groups can react with moisture in the resin composition, and unprotected amino groups can react with oxygen in the atmosphere, respectively, but these are suppressed in the resin composition of the present invention. is there.
  • the weight average molecular weight of the resin having the repeating unit represented by the chemical formula (4) as a main component is preferably 200,000 or less, more preferably 150,000 or less, more preferably in terms of polystyrene using gel permeation chromatography. Is preferably 100,000 or less. If it is this range, even if it is a high concentration resin composition, it can suppress more that a viscosity increases.
  • the weight average molecular weight is preferably 2,000 or more, more preferably 3,000 or more, and further preferably 5,000 or more. If the weight average molecular weight is 2,000 or more, the viscosity of the resin composition will not be excessively lowered, and better coatability can be maintained.
  • the number of repetitions of the chemical formula (4) may be in a range satisfying the above-described weight average molecular weight. Preferably it is 5 or more, More preferably, it is 10 or more. Moreover, it is preferably 1000 or less, more preferably 500 or less.
  • the resin composition in the present invention is (a) a resin having a structure represented by the chemical formula (1), or (a ′) a resin mainly composed of a repeating unit represented by the chemical formula (4).
  • it since it contains (b) a solvent, it can be used as a varnish.
  • a coating film containing a resin having a structure represented by the chemical formula (1) can be formed on the support.
  • the obtained coating film can be used as a heat-resistant resin film by heat treatment and curing.
  • solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropionamide, 3-butoxy -N, N-dimethylpropionamide, N-methyl-2-dimethylpropanamide, N-ethyl-2-methylpropanamide, N-methyl-2,2-dimethylpropanamide, N-methyl-2-methylbutanamide N, N-dimethylisobutyramide, N, N-dimethyl-2-methylbutanamide, N, N-dimethyl-2,2-dimethylpropanamide, N-ethyl-N-methyl-2-methylpropanamide, N , N-dimethyl-2-methylpentanamide, N, N-dimethyl-2,3-dimethylbutanamide, N, N Dimethyl-2-ethylbutanamide, N, N-diethyl-2-methylpropanamide
  • the preferable content of the solvent is 100 parts by mass of the resin having a structure represented by the chemical formula (1) or 100 parts by mass of the resin having (a ′) the repeating unit represented by the chemical formula (4) as a main component.
  • the amount is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, preferably 2000 parts by mass or less, more preferably 1500 parts by mass or less. If it is the range which satisfy
  • the viscosity of the resin composition in the present invention is preferably 20 to 10,000 mPa ⁇ s, more preferably 50 to 8,000 mPa ⁇ s. If the viscosity is less than 20 mPa ⁇ s, a resin film having a sufficient thickness cannot be obtained, and if it is greater than 10,000 mPa ⁇ s, it becomes difficult to apply the resin composition.
  • the resin composition of the present invention comprises (c) a thermal acid generator, (d) a photoacid generator, (e) a thermal crosslinking agent, (f) a compound containing a phenolic hydroxyl group, (g) an adhesion improver, (h It may contain at least one additive selected from a) inorganic particles and (i) a surfactant. Among these, it is preferable that (c) a thermal acid generator is included.
  • the thermal acid generator is a compound that decomposes with heat to generate an acid.
  • the resin composition of the present invention preferably contains a thermal acid generator.
  • terminal structure Z and / or terminal structure W Pyrolyzes.
  • the thermal decomposition of the terminal structure Z and / or the terminal structure W proceeds at a temperature of 220 ° C. or higher. Therefore, in order to obtain a polyimide resin having a high degree of polymerization from (a) a resin having a structure represented by chemical formula (1) or (a ′) a resin having a repeating unit represented by chemical formula (4) as a main component.
  • a temperature of 220 ° C. or higher is necessary.
  • the acid acts as a catalyst to promote thermal decomposition of the terminal structure Z and / or the terminal structure W, so that a polyimide resin having a high degree of polymerization can be obtained even when heated at a temperature of less than 220 ° C. It is done.
  • hydrolysis of the polyamic acid is promoted and the molecular weight is lowered. That is, (a) a resin having a structure represented by the chemical formula (1), or (a ′) a resin having a repeating unit represented by the chemical formula (4) as a main component and an acid-containing resin composition are stored. Low stability.
  • the resin composition of the present invention can generate an acid only in the step of heat imidizing polyamic acid by including (c) a thermal acid generator.
  • a thermal acid generator for example, a thermal acid generator.
  • thermal acid generator those having a thermal decomposition starting temperature in the range of 100 ° C. or higher and lower than 220 ° C. are preferable.
  • the lower limit of the thermal decomposition starting temperature is more preferably 110 ° C. or higher, further preferably 120 ° C. or higher.
  • the upper limit of the more preferable thermal decomposition start temperature is 200 degrees C or less, More preferably, it is 150 degrees C or less.
  • thermo decomposition start temperature of the thermal acid generator is less than 220 ° C.
  • a polyimide film having higher mechanical strength can be obtained from the resin composition of the present invention.
  • the thermal decomposition starting temperature of the thermal acid generator is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, the mechanical properties of the polyimide film are further improved.
  • the thermal decomposition starting temperature of the thermal acid generator can be measured by differential scanning calorimetry (DSC). Generally, the pyrolysis reaction is an endothermic reaction. For this reason, when the thermal acid generator is thermally decomposed, it is observed as an endothermic peak by DSC.
  • the thermal decomposition start temperature can be defined by the temperature at the peak top.
  • Examples of the acid generated from the thermal acid generator (c) by heating include low nucleophilic acids such as sulfonic acid, carboxylic acid, disulfonylimide, and trisulfonylmethane.
  • a thermal acid generator that generates an acid having a pKa of 2 or less is preferred.
  • those that generate an acid such as sulfonic acid, alkylcarboxylic acid or arylcarboxylic acid substituted with an electron withdrawing group, disulfonylimide substituted with an electron withdrawing group, or trisulfonylmethane are preferable.
  • the electron withdrawing group include a halogen atom such as a fluorine atom, a haloalkyl group such as a trifluoromethyl group, a nitro group, and a cyano group.
  • the thermal acid generator used in the present invention may be one that decomposes not only with heat but also with light to generate an acid. However, in order to facilitate the handling of the resin composition of the present invention, it is preferable that the (c) thermal acid generator is not decomposed by light. There is no need to handle it in a light-shielded environment, and it can be handled as a non-photosensitive resin composition.
  • Thermal acid generators that are not decomposed by light include sulfonium salts and sulfonic acid esters as described below.
  • Preferred examples of the sulfonium salt include a compound represented by the chemical formula (21).
  • R 21 represents an aryl group
  • R 22 and R 23 represent an alkyl group.
  • X - is a non-nucleophilic anion, preferably a sulfonate anion, carboxylate anion, bis (alkylsulfonyl) amide anion, tris (alkylsulfonyl) methide anion, and the like.
  • Examples of the sulfonic acid ester that can be used as the thermal acid generator (c) of the present invention include a sulfonic acid ester represented by the chemical formula (22).
  • R ′ and R ′′ are each independently an optionally substituted linear or branched or cyclic alkyl group having 1 to 10 carbon atoms or an optionally substituted carbon number. Represents an aryl group of 6 to 20.
  • Examples of the substituent include a hydroxyl group, a halogen atom, a cyano group, a vinyl group, an acetylene group, and a linear or cyclic alkyl group having 1 to 10 carbon atoms.
  • sulfonic acid ester represented by the chemical formula (22) include the following, but are not limited thereto.
  • the molecular weight of the sulfonic acid ester is preferably 230 to 1000, and more preferably 230 to 800.
  • a compound represented by the chemical formula (23) is more preferable in terms of heat resistance.
  • A represents an h-valent linking group.
  • R 0 represents an alkyl group, an aryl group, an aralkyl group, or a cyclic alkyl group.
  • R 0 ′ represents a hydrogen atom, an alkyl group, or an aralkyl group.
  • h represents an integer of 2 to 8.
  • A can include, for example, an alkylene group, a cycloalkylene group, an arylene group, an ether group, a carbonyl group, an ester group, an amide group, and an h-valent group obtained by combining these groups.
  • Examples of the alkylene group include a methylene group, an ethylene group, and a propylene group.
  • Examples of the cycloalkylene group include a cyclohexylene group and a cyclopentylene group.
  • Examples of the arylene group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, and naphthylene group.
  • the carbon number of A is generally 1-15, preferably 1-10, and more preferably 1-6.
  • A may further have a substituent, and examples of the substituent include an alkyl group, an aralkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an acyloxy group, and an alkoxycarbonyl group. Can do.
  • Examples of the alkyl group that is a substituent of A include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and an octyl group.
  • Examples of the aralkyl group as the substituent for A include a benzyl group, a toluylmethyl group, a mesitylmethyl group, and a phenethyl group.
  • Examples of the aryl group as the substituent for A include a phenyl group, a toluyl group, a xylyl group, a mesityl group, and a naphthyl group.
  • Examples of the alkoxy group as the substituent for A include a methoxy group, an ethoxy group, a linear or branched propoxy group, a linear or branched butoxy group, a linear or branched pentoxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
  • Examples of the aryloxy group as a substituent for A include a phenoxy group, a toluyloxy group, and a 1-naphthoxy group.
  • Examples of the alkylthio group that is a substituent of A include a methylthio group, an ethylthio group, a linear or branched propylthio group, a cyclopentylthio group, and a cyclohexylthio group.
  • Examples of the arylthio group as the substituent for A include a phenylthio group, a toluoylthio group, and a 1-naphthylthio group.
  • Examples of the acyloxy group include an acetoxy group, a propanoyloxy group, and a benzoyloxy group.
  • Examples of the alkoxycarbonyl group as the substituent for A include a methoxycarbonyl group, an ethoxycarbonyl group, a linear or branched propoxycarbonyl group, a cyclopentyloxycarbonyl group, and a cyclohexyloxycarbonyl group.
  • the alkyl group for R 0 and R 0 ′ is generally an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms. is there. Specific examples include methyl, ethyl, propyl, butyl, hexyl, octyl and the like.
  • the aralkyl group for R 0 and R 0 ′ is generally an aralkyl group having 7 to 25 carbon atoms, preferably an aralkyl group having 7 to 20 carbon atoms, more preferably an aralkyl group having 7 to 15 carbon atoms. is there. Specific examples include benzyl, toluylmethyl, mesitylmethyl, phenethyl and the like.
  • the cyclic alkyl group for R 0 is generally a cyclic alkyl group having 3 to 20 carbon atoms, preferably a cyclic alkyl group having 4 to 20 carbon atoms, more preferably a cyclic alkyl group having 5 to 15 carbon atoms. is there. Specific examples include cyclopentyl, cyclohexyl, norbornyl, camphor group and the like.
  • R 0 is preferably an alkyl group or an aryl group.
  • R 0 ′ is preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group, and most preferably a hydrogen atom.
  • h is preferably 2.
  • the h R 0 and R 0 ′ may be the same or different.
  • sulfonic acid ester represented by the chemical formula (23) include the following, but are not limited thereto.
  • sulfonic acid ester a commercially available one may be used, or one synthesized by a known method may be used.
  • the sulfonic acid ester of the present invention can be synthesized, for example, by reacting sulfonyl chloride or sulfonic acid anhydride with a corresponding polyhydric alcohol under basic conditions.
  • the preferable content of (c) the thermal acid generator is mainly 100 parts by mass of the resin having the structure represented by the chemical formula (1), or (a ′) the repeating unit represented by the chemical formula (4).
  • it is 0.1 mass part or more with respect to 100 mass parts of resin used as a component, More preferably, it is 1 mass part or more, Preferably it is 20 mass parts or less, More preferably, it is 10 mass parts or less. If it is 0.1 mass part or more, the polyimide film which has high mechanical strength after a heating will be obtained from a resin composition. Moreover, if it is 20 mass parts or less, the thermal decomposition product of a thermal acid generator hardly remains in the obtained polyimide film, and the outgas from a polyimide film can be suppressed.
  • the resin composition of this invention can be made into the photosensitive resin composition by containing the (d) photoacid generator.
  • a photoacid generator By containing a photoacid generator, acid is generated in the light irradiation part, the solubility of the light irradiation part in the alkaline aqueous solution is increased, and a positive relief pattern in which the light irradiation part dissolves can be obtained. it can.
  • the resin composition of the present invention contains (d) a photoacid generator and an epoxy compound or (e) a thermal cross-linking agent described later, so that the acid generated in the light-irradiated part is an epoxy compound or (e) heat. A negative relief pattern in which the crosslinking reaction of the crosslinking agent is promoted and the light irradiation part is insolubilized can be obtained.
  • Examples of the photoacid generator include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts, and the like. Two or more of these may be contained, and a highly sensitive photosensitive resin composition can be obtained.
  • the quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, and a sulfonic acid of quinonediazide in an ester bond and / or sulfone.
  • Examples include amide-bonded ones. It is preferable that 50 mol% or more of the total functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide.
  • quinonediazide is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a naphthoquinone diazide sulfonyl ester compound containing a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule may be contained, and the 4-naphthoquinone diazide sulfonyl ester compound and 5 may be contained in the same resin composition.
  • -It may contain a naphthoquinonediazide sulfonyl ester compound.
  • sulfonium salts Of the photoacid generators, sulfonium salts, phosphonium salts, and diazonium salts are preferable because they moderately stabilize the acid component generated by exposure. Of these, sulfonium salts are preferred. Furthermore, it can also contain a sensitizer etc. as needed.
  • the content of (d) the photoacid generator is represented by 100 parts by mass of a resin having a structure represented by chemical formula (1) or (a ′) chemical formula (4) from the viewpoint of increasing sensitivity.
  • the amount is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the resin mainly composed of the repeating unit.
  • the quinonediazide compound is preferably 3 to 40 parts by mass.
  • the total amount of sulfonium salt, phosphonium salt and diazonium salt is preferably 0.5 to 20 parts by mass.
  • the resin composition in the present invention comprises a thermal crosslinker (e-1) represented by the following chemical formula (31) or a thermal crosslinker containing a structure represented by the following chemical formula (32) (e- 2) (hereinafter also referred to as (e) a thermal crosslinking agent).
  • thermal cross-linking agents can cross-link the heat-resistant resin or its precursor and other additive components, and can increase the chemical resistance and hardness of the resulting heat-resistant resin film.
  • the thermal crosslinking agent (e-1) includes a structure represented by the following chemical formula (31).
  • R 31 represents a divalent to tetravalent linking group.
  • R 32 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, Cl, Br, I or F.
  • R 33 and R 34 each independently represents CH 2 OR 36 (R 36 is hydrogen or a monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • R 35 represents a hydrogen atom, a methyl group or an ethyl group.
  • s represents an integer of 0 to 2
  • t represents an integer of 2 to 4. If R 32 there are a plurality, it may be different from the plurality of R 32 are the same respectively.
  • R 33 and R 34 there are a plurality a plurality of R 33 and R 34 may be the same or different. If R 35 there are a plurality, it may be different from the plurality of R 35, the same, respectively. Examples of the linking group R 31 shown below.
  • R 41 to R 60 are hydrogen atoms, monovalent hydrocarbon groups having 1 to 20 carbon atoms, or carbon atoms in which some hydrogen atoms of these hydrocarbon groups are substituted with Cl, Br, I or F. Indicates a hydrogen group. * Indicates the point of attachment of R 31 in the chemical formula (31).
  • R 33 and R 34 represent CH 2 OR 36 which is a thermally crosslinkable group.
  • R 36 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group, because the thermal crosslinking agent represented by the chemical formula (31) leaves moderate reactivity and is excellent in storage stability. preferable.
  • thermal crosslinking agent containing the structure represented by Chemical formula (31) is shown below.
  • the thermal crosslinking agent (e-2) includes a structure represented by the following chemical formula (32).
  • R 37 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • u represents 1 or 2
  • v represents 0 or 1.
  • u + v is 1 or 2. * Indicates that the nitrogen atom in the chemical formula (32) is bonded to another atom.
  • R 37 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms. From the viewpoint of stability of the compound and storage stability in the photosensitive resin composition, R 37 is preferably a methyl group or an ethyl group, and the number of (CH 2 OR 37 ) groups contained in the compound is 8 or less. It is preferable.
  • thermal crosslinking agent containing group represented by Chemical formula (32) is shown below.
  • the content of the thermal crosslinking agent is mainly composed of (a) 100 parts by mass of a resin having a structure represented by chemical formula (1), or (a ′) a repeating unit represented by chemical formula (4). 10 mass parts or more and 100 mass parts or less are preferable with respect to 100 mass parts of resin. (E) If content of a thermal crosslinking agent is 10 mass parts or more and 100 mass parts or less, the intensity
  • a compound containing a phenolic hydroxyl group may be contained for the purpose of supplementing the alkali developability of the photosensitive resin composition.
  • the compound containing a phenolic hydroxyl group include those having the following trade names (Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, manufactured by Honshu Chemical Industry Co., Ltd.) BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ, Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP- 4HBPA (Tetrakis P-DO-BPA), TrisP-HAP, TrisP-PA, TrisP-PHBA, TrisP-SA, TrisOCR-PA, BisOFP-Z
  • BIR-OC BIP-PC, BIR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A
  • 1,4-dihydroxy Naphthalene 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,4-dihydroxyquinoline 2,6-dihydroxy Phosphorus, 2,3-dihydroxy quinoxaline, anthracene -1,2,10- triol, anthracene -1,8,9- triols, such as 8-quinolinol, and the like.
  • the resulting photosensitive resin composition hardly dissolves in an alkali developer before exposure, and easily dissolves in an alkali developer upon exposure. There is little film loss and development can be easily performed in a short time. Therefore, the sensitivity is easily improved.
  • the content of such a compound containing a phenolic hydroxyl group is mainly composed of 100 parts by mass of a resin having a structure represented by the chemical formula (1), or (a ′) a repeating unit represented by the chemical formula (4). Preferably it is 3 to 40 mass parts with respect to 100 mass parts of resin.
  • the resin composition concerning this invention may contain the (g) adhesion improving agent.
  • adhesion improvers vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltri Examples include silane coupling agents such as methoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, and aluminum chelating agents.
  • alkoxysilane-containing aromatic amine compounds, alkoxysilane-containing aromatic amide compounds and the like as shown below can be mentioned.
  • a compound obtained by reacting an aromatic amine compound and an alkoxy group-containing silicon compound can also be used.
  • examples of such compounds include compounds obtained by reacting an aromatic amine compound with an alkoxysilane compound containing a group that reacts with an amino group such as an epoxy group or a chloromethyl group.
  • the content of the adhesion improving agent is based on 100 parts by mass of the resin having a structure represented by the chemical formula (1) or 100 parts by mass of the resin whose main component is the repeating unit represented by the chemical formula (4). 0.01 to 10 parts by mass is preferable.
  • the resin composition of the present invention can contain inorganic particles for the purpose of improving heat resistance.
  • Inorganic particles used for such purposes include inorganic metal particles such as platinum, gold, palladium, silver, copper, nickel, zinc, aluminum, iron, cobalt, rhodium, ruthenium, tin, lead, bismuth, tungsten, and silicon oxide.
  • Silica titanium oxide, aluminum oxide, zinc oxide, tin oxide, tungsten oxide, zirconium oxide, calcium carbonate, barium sulfate, and other metal oxide inorganic particles.
  • the shape of the inorganic particles is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a lot shape, and a fiber shape.
  • the average particle size of the inorganic particles is preferably 1 nm to 100 nm, and more preferably 1 nm to 50 nm. More preferably, it is 1 nm or more and 30 nm or less.
  • the content of the inorganic particles is (a) 100 parts by mass of a resin having a structure represented by the chemical formula (1), or (a ′) 100 parts by mass of a resin mainly composed of a repeating unit represented by the chemical formula (4).
  • the content of the inorganic particles is 3 parts by mass or more, the heat resistance is sufficiently improved, and when the content is 100 parts by mass or less, the toughness of the heat-resistant resin film is hardly lowered.
  • the resin composition of the present invention preferably contains (i) a surfactant in order to improve applicability.
  • a surfactant As surfactants, “FLORARD” (registered trademark) manufactured by Sumitomo 3M Co., Ltd., “MEGAFACK” (registered trademark) manufactured by DIC Corporation, and “sulfuron” manufactured by Asahi Glass Co., Ltd. (registered) (Trademark) and other fluorosurfactants, KP341 manufactured by Shin-Etsu Chemical Co., Ltd., DBE manufactured by Chisso Corporation, “Polyflow” (registered trademark), “Granol” (registered trademark) manufactured by Kyoeisha Chemical Co., Ltd.
  • An organic siloxane surfactant such as BYK manufactured by BYK Chemie Co., Ltd., and an acrylic polymer surfactant such as polyflow manufactured by Kyoeisha Chemical Co., Ltd. may be used.
  • the surfactant is added in an amount of 0.1% to 100 parts by mass of the resin having a structure represented by the chemical formula (1) or 100 parts by mass of the resin having (a ′) the repeating unit represented by the chemical formula (4) as a main component. It is preferably contained in an amount of 01 to 10 parts by mass.
  • a varnish which is one of the embodiments of the resin composition of the present invention is prepared by dissolving a compound containing (g) an adhesion improver, (h) inorganic particles, (i) a surfactant, and the like in (b) a solvent.
  • the dissolution method include stirring and heating.
  • the heating temperature is preferably set in a range that does not impair the performance as the photosensitive resin composition, and is usually room temperature to 80 ° C.
  • the dissolution order of each component is not particularly limited, and for example, there is a method of sequentially dissolving compounds having low solubility.
  • components that easily generate bubbles when stirring and dissolving such as a surfactant, are added last after dissolving other components to prevent poor dissolution of other components due to the generation of bubbles. it can.
  • the resin having the structure represented by the chemical formula (1) is manufactured by two methods described below.
  • the first manufacturing method is (A) A solution in which a terminal amino group blocking agent that reacts with an amino group of a diamine compound is dissolved in a reaction solvent at 20% by mass or less is gradually added to the diamine compound over a period of 10 minutes or more to obtain a chemical formula (41 A step of producing a compound represented by:
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • Z represents a structure represented by the chemical formula (2).
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms, and ⁇ and ⁇ each independently represent an oxygen atom or a sulfur atom.
  • * represents a bonding point of Z in the chemical formula (41).
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms
  • Z represents a structure represented by the chemical formula (2).
  • n represents a positive integer.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal ion, an ammonium ion, an imidazolium ion, or a pyridinium ion. * Indicates that it is bonded to another atom.
  • the terminal amino group capping agent is reacted with only one amino group out of the two amino groups of the diamine compound. For this reason, it is preferable to perform the following three operations in the first step (A).
  • the first operation is to make the number of moles of the diamine compound equal to or more than the number of moles of the terminal amino group blocking agent.
  • the number of moles of the preferred diamine compound is 2 times or more the number of moles of the terminal amino group blocking agent, more preferably 5 times or more, and even more preferably 10 times or more.
  • the excess diamine compound with respect to the terminal amino group blocking agent remains unreacted in the first step (A), and reacts with tetracarboxylic acid in the second step (B).
  • the second operation is to gradually add the terminal amino group blocking agent over a period of 10 minutes or more in a state where the diamine compound is dissolved in an appropriate reaction solvent. 20 minutes or more is more preferable, and 30 minutes or more is more preferable.
  • the method of adding may be continuous or intermittent. That is, a method of adding to a reaction system at a constant rate using a dropping funnel or the like, and a method of adding by dividing at an appropriate interval are preferably used.
  • the third operation is to use the terminal amino group capping agent dissolved in the reaction solvent in advance in the second operation.
  • concentration of the terminal amino group capping agent when dissolved is 5 to 20% by mass. More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the content of the compound represented by the chemical formula (3) in the resin composition of the present invention can be kept within the scope of the present invention.
  • the second manufacturing method is (C) reacting a diamine compound and tetracarboxylic acid to produce a resin having a structure represented by chemical formula (42);
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • n represents a positive integer.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal ion, an ammonium ion, an imidazolium ion, or a pyridinium ion. * Indicates that it is bonded to another atom.
  • a resin having a structure represented by the chemical formula (42) is reacted with a terminal amino group capping agent that reacts with a terminal amino group of the resin having a structure represented by the chemical formula (42). And a step of generating a resin having a structure represented by 1).
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms
  • Z represents a structure represented by the chemical formula (2).
  • n represents a positive integer.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal ion, an ammonium ion, an imidazolium ion, or a pyridinium ion. * Indicates that it is bonded to another atom.
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms, and ⁇ and ⁇ each independently represent an oxygen atom or a sulfur atom. * Indicates a bonding point of Z in the chemical formula (1).
  • the number of moles of the diamine compound should be 1.01 or more of the number of moles of tetracarboxylic acid. Is preferably 1.05 times or more, more preferably 1.1 times or more, and even more preferably 1.2 times or more. If the ratio is less than 1.01, the probability that the diamine compound is located at the end of the resin is decreased, so that it is difficult to obtain a resin having a structure represented by the chemical formula (42).
  • the number of moles of the diamine compound is preferably 2.0 times or less, more preferably 1.8 times or less, and even more preferably 1.5 times or less the number of moles of tetracarboxylic acid. If it is larger than 2.0 times, an unreacted diamine compound remains after the completion of the first stage reaction, and the compound represented by the chemical formula (3) may be formed in the second stage (C) step.
  • the method described in the first production method may be used as an operation for adding the terminal amino group blocking agent. That is, the terminal amino group blocking agent may be added over time, or the terminal amino group blocking agent may be dissolved in an appropriate reaction solvent and added.
  • the content of the compound represented by the compound (3) in the resin composition can be within the scope of the present invention by these methods.
  • the number of moles of the diamine compound to be used is equal to the number of moles of the tetracarboxylic acid. Therefore, it is preferable that tetracarboxylic acid is added after the second step (D) to equalize the number of moles of the diamine compound and the number of moles of the tetracarboxylic acid.
  • the resin having the structure represented by the chemical formula (1) may be manufactured by using both the first manufacturing method and the second manufacturing method.
  • dicarbonate or dithiocarbonate is preferably used.
  • dialkyl dicarbonate and dithiocarbonate dialkyl ester are preferred. More preferred is a dialkyl dicarbonate. Specific examples include diethyl dicarbonate, diisopropyl dicarbonate, dicyclohexyl dicarbonate, ditert-butyl dicarbonate, ditert-pentyl dicarbonate, etc. Among them, ditert-butyl dicarbonate is most preferable.
  • the corresponding acid dianhydride, active ester, active amide and the like can also be used as the tetracarboxylic acid.
  • the corresponding trimethylsilylated diamine etc. can also be used for a diamine compound.
  • the carboxy group of the obtained resin is esterified with a hydrocarbon group having 1 to 10 carbon atoms or an alkylsilyl group having 1 to 10 carbon atoms, even if it forms a salt with an alkali metal ion, ammonium ion or imidazolium ion. It may be.
  • the number of moles of the diamine compound to be used and the number of moles of the tetracarboxylic acid are preferably equal. If they are equal, a resin film having high mechanical properties can be easily obtained from the resin composition.
  • examples of the reaction solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide. 3-methoxy-N, N-dimethylpropionamide, 3-butoxy-N, N-dimethylpropionamide, N-methyl-2-dimethylpropanamide, N-ethyl-2-methylpropanamide, N-methyl-2 , 2-dimethylpropanamide, N-methyl-2-methylbutanamide, N, N-dimethylisobutyramide, N, N-dimethyl-2-methylbutanamide, N, N-dimethyl-2,2-dimethylpropanamide N-ethyl-N-methyl-2-methylpropanamide, N, N-dimethyl-2-methylpentanamide, , N-dimethyl-2,3-dimethylbutanamide, N, N-dimethyl-2-ethylbutanamide, N
  • the desired resin composition can be obtained without isolating the resin. Obtainable.
  • the obtained resin composition is preferably filtered using a filtration filter to remove particles.
  • the filter pore diameter include, but are not limited to, 10 ⁇ m, 3 ⁇ m, 1 ⁇ m, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, 0.07 ⁇ m, and 0.05 ⁇ m.
  • the material for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferable.
  • the number of particles (particle size of 1 ⁇ m or more) in the resin composition is preferably 100 particles / mL or less. When it exceeds 100 pieces / mL, the mechanical properties of the heat resistant resin film obtained from the resin composition are lowered.
  • the resin composition of the present invention is prepared by dissolving a thermal crosslinking agent, (f) a compound containing a phenolic hydroxyl group, (g) an adhesion improving agent, (h) inorganic particles and (i) a surfactant in (b) a solvent.
  • a varnish that is one of the embodiments of the object can be obtained.
  • the dissolution method include stirring and heating.
  • the heating temperature is preferably set in a range that does not impair the performance as the photosensitive resin composition, and is usually room temperature to 80 ° C.
  • the dissolution order of each component is not particularly limited, and for example, there is a method of sequentially dissolving compounds having low solubility.
  • surfactants and other components that easily generate bubbles during stirring and dissolution can be prevented by dissolving other components and then adding them last, thereby preventing poor dissolution of other components due to the generation of bubbles. .
  • Resin mainly composed of the repeating unit represented by the chemical formula (4A) is produced by two methods described below.
  • the first manufacturing method is (E) a step of reacting a diamine compound with a terminal amino group blocking agent that reacts with an amino group of the diamine compound to produce a compound represented by the chemical formula (41);
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • Z represents a structure represented by the chemical formula (2).
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms, and ⁇ and ⁇ each independently represent an oxygen atom or a sulfur atom. * Represents a bonding point of Z in the chemical formula (41).
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms
  • Z represents a structure represented by the chemical formula (2).
  • * indicates that they are bonded to other atoms.
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms.
  • W represents a structure represented by the chemical formula (7).
  • * indicates that it is bonded to another atom.
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms.
  • represents an oxygen atom or a sulfur atom. *
  • * In the chemical formula (7) represents a bonding point of W in the chemical formula (5A).
  • the terminal amino group capping agent is reacted with only one amino group of the two amino groups of the diamine compound. Therefore, in the first step (E), the number of moles of the diamine compound is preferably equal to or more than the number of moles of the terminal amino group blocking agent.
  • the number of moles of the preferred diamine compound is 2 times or more the number of moles of the terminal amino group blocking agent, more preferably 5 times or more, and even more preferably 10 times or more.
  • the excess diamine compound relative to the terminal amino group blocking agent remains unreacted in the first step (E) and reacts with tetracarboxylic acid in the second step (F).
  • the number of moles of the terminal carbonyl group blocking agent is preferably 1 to 2 times the number of moles of the terminal amino group blocking agent used in the first step (E). If it is 1 time or more, an unprotected acid anhydride group is hardly generated at the end of the resin. If it is 2 times or less, it can prevent that an unreacted terminal carbonyl group sealing agent increases.
  • the second production method comprises (H) a step of reacting a tetracarboxylic dianhydride and a terminal carbonyl group blocking agent to produce a compound represented by the chemical formula (53);
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms.
  • W represents a structure represented by the chemical formula (7).
  • represents a monovalent hydrocarbon group having 2 or more carbon atoms, and ⁇ represents an oxygen atom or a sulfur atom. * In the chemical formula (7) represents a bonding point of W in the chemical formula (53).
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms
  • W represents the structure represented by the chemical formula (7).
  • * indicates that they are bonded to other atoms.
  • X represents a tetravalent tetracarboxylic acid residue having 2 or more carbon atoms
  • Y represents a divalent diamine residue having 2 or more carbon atoms
  • Z represents a structure represented by the chemical formula (2).
  • ⁇ in the chemical formula (2) represents a monovalent hydrocarbon group having 2 or more carbon atoms.
  • ⁇ and ⁇ in the chemical formula (2) each independently represent an oxygen atom or a sulfur atom.
  • * In chemical formula (2) represents the point of attachment of Z in chemical formula (6A).
  • the terminal carbonyl group blocking agent is reacted with only one acid anhydride group among the two acid anhydride groups possessed by the tetracarboxylic dianhydride.
  • the number of moles of tetracarboxylic dianhydride is preferably equal to or more than the number of moles of the terminal carbonyl group blocking agent.
  • the number of moles of the tetracarboxylic dianhydride is preferably twice or more the number of moles of the terminal carbonyl group blocking agent, more preferably 5 times or more, and even more preferably 10 times or more.
  • the number of moles of the terminal amino group capping agent is preferably 1 to 2 times the number of moles of the terminal carbonyl group capping agent used in the first step (H). If it is 1 time or more, an unprotected amino group is hardly generated at the end of the resin. If it is 2 times or less, it can prevent that an unreacted terminal amino group sealing agent increases.
  • 1st manufacturing method 1 and 2nd manufacturing method of resin which has as a main component the repeating unit represented by Chemical formula (4A)
  • the number of moles of the diamine compound to be used and the number of moles of tetracarboxylic acid are equal. Is preferred. If they are equal, the resin obtained by this method contains the partial structure represented by the chemical formula (5A) and the partial structure represented by the chemical formula (6A) in approximately equimolar amounts. When this resin is heated, the number of moles of acid anhydride groups generated at the terminal tends to be equal to the number of moles of amino groups. As a result, the degree of polymerization of the resulting polyimide resin is likely to improve.
  • the terminal amino group blocking agent used in the method for producing a resin having a structure represented by the chemical formula (1) can be used.
  • alcohol having 2 to 10 carbon atoms or thiol is preferably used. Of these, alcohol is preferred. Specifically, ethyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, n-hexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol, isopropyl alcohol , Isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isopentyl alcohol, sec-pentyl alcohol, tert-pentyl alcohol, isohexyl alcohol, sec-hexyl alcohol, cyclopropyl alcohol, cyclobutyl alcohol, cyclopentyl alcohol, cyclohexyl alcohol , Cycloheptyl alcohol, cyclooctyl alcohol, norbornyl alcohol, adamanty
  • isopropyl alcohol, cyclohexyl alcohol, tert-butyl alcohol, tert-pentyl alcohol, etc. among these, isopropyl alcohol, cyclohexyl alcohol, tert-butyl alcohol, tert-pentyl alcohol are more preferable, and tert- Butyl alcohol is most preferred.
  • a catalyst in order to promote the reaction of alcohol or thiol. If a catalyst is added, it is not necessary to use excessive alcohol or thiol.
  • a catalyst include imidazoles and pyridines. Of these catalysts, 1-methylimidazole and N, N-dimethyl-4-aminopyridine are preferred.
  • the carboxy group of the obtained resin is esterified with a hydrocarbon group having 1 to 10 carbon atoms or an alkylsilyl group having 1 to 10 carbon atoms, even if it forms a salt with an alkali metal ion, ammonium ion or imidazolium ion. It may be.
  • reaction solvent a reaction solvent used in the method for producing a resin having a structure represented by the chemical formula (1) can be used.
  • the resin composition according to the second embodiment obtained by the above production method is preferably filtered using a filtration filter to remove foreign matters such as dust.
  • a filtration filter to remove foreign matters such as dust.
  • the same filter pore diameter and material as those of the resin composition according to the first embodiment can be used.
  • the method includes a step of applying the resin composition of the present invention and a step of heating the obtained coating film at a temperature of 220 ° C. or higher.
  • varnish which is one of the embodiments of the resin composition of the present invention is coated on a support.
  • the support include a wafer substrate such as silicon and gallium arsenide, a glass substrate such as sapphire glass, soda-lime glass, and non-alkali glass, a metal substrate such as stainless steel and copper, a metal foil, and a ceramic substrate.
  • varnish coating methods include spin coating, slit coating, dip coating, spray coating, and printing, and these may be combined.
  • a slit coating method is particularly preferably used.
  • the coating properties change when the viscosity of the resin composition changes, so it is necessary to retune the slit coating device. Therefore, it is preferable that the viscosity change of the resin composition is as small as possible.
  • the range of preferable viscosity change is ⁇ 10% or less. More preferably, it is ⁇ 5% or less, and further preferably ⁇ 3% or less. If the range of the viscosity change is 10% or less, the uniformity of the film thickness of the resulting heat-resistant resin film can be suppressed to 5% or less.
  • the support Prior to coating, the support may be pretreated.
  • a solution in which 0.5 to 20% by mass of a pretreatment agent is dissolved in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, or diethyl adipate is used.
  • a method of treating the surface of the support by a method such as spin coating, slit die coating, bar coating, dip coating, spray coating, or steam treatment. If necessary, it can be dried under reduced pressure, and then the reaction between the support and the pretreatment agent can proceed by heat treatment at 50 ° C. to 300 ° C.
  • drying vacuum drying, heat drying, or a combination thereof can be used.
  • a method for drying under reduced pressure for example, a support having a coating film formed thereon is placed in a vacuum chamber, and the inside of the vacuum chamber is decompressed.
  • Heat drying is performed using a hot plate, oven, infrared rays or the like.
  • the coating film is held directly on the plate or on a jig such as a proxy pin installed on the plate and dried by heating.
  • the material of the proxy pin there is a metal material such as aluminum or stainless steel, or a synthetic resin such as polyimide resin or “Teflon (registered trademark)”. Any material can be used as long as it has heat resistance. .
  • the height of the proxy pin can be selected variously depending on the size of the support, the type of the solvent (b) used in the resin composition, the drying method, etc., but is preferably about 0.1 to 10 mm.
  • the heating temperature varies depending on the type and purpose of the solvent (b) used in the resin composition, and it is preferably performed in the range of room temperature to 180 ° C. for 1 minute to several hours.
  • the resin composition contains (c) a thermal acid generator, it is preferably carried out in the range of room temperature to 150 ° C. for 1 minute to several hours. When heated at a temperature higher than 150 ° C., (c) the thermal acid generator is decomposed to generate an acid, and the storage stability of the resulting coating film is lowered.
  • a pattern can be formed from the dried coating film by the method described below.
  • Actinic radiation is irradiated on the coating film through a mask having a desired pattern, and exposure is performed.
  • the actinic radiation used for exposure there are ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • the exposed portion is dissolved in the developer.
  • the exposed area is cured and insolubilized in the developer.
  • a desired pattern is formed using a developer by removing an exposed portion in the case of a positive type and a non-exposed portion in the case of a negative type.
  • An aqueous solution of an alkaline compound such as ethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, and hexamethylenediamine is preferred.
  • these alkaline aqueous solutions may contain amides such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylacrylamide, N, N-dimethylisobutyramide, and ⁇ -butyrolactone.
  • Esters such as ethyl lactate and propylene glycol monomethyl ether acetate, sulfoxides such as dimethyl sulfoxide, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone, alcohols such as methanol, ethanol and isopropanol alone Or you may add what combined several types.
  • the above amides, esters, sulfoxides, ketones, alcohols and the like which do not contain an alkaline aqueous solution may be used alone or in combination. After development, it is common to rinse with water. In this case, rinsing treatment may be performed by adding esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol and isopropyl alcohol to water.
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • alcohols such as ethanol and isopropyl alcohol
  • a heat resistant resin film can be produced by heat treatment in the range of 180 ° C. or more and 600 ° C. or less and baking the coating film.
  • heating is preferably performed at a temperature of 220 ° C. or higher in order to promote thermal decomposition of the structure represented by Z in the chemical formula (1) or (6), that is, the chemical formula (2).
  • the resin composition contains (c) a thermal acid generator
  • the heating temperature is more preferably equal to or higher than the thermal decomposition start temperature of (c) the thermal acid generator.
  • the acid generated from the thermal acid generator accelerates the thermal decomposition of the terminal structure Z in the chemical formula (1) or (6). Is done. For this reason, a polyimide film excellent in tensile elongation and tensile maximum stress can be obtained.
  • the obtained heat-resistant resin film includes a surface protective film and an interlayer insulating film of a semiconductor element, an insulating layer and a spacer layer of an organic electroluminescence element (organic EL element), a planarization film of a thin film transistor substrate, an insulating layer of an organic transistor, lithium It is suitably used for binders for electrodes of ion secondary batteries, adhesives for semiconductors, and the like.
  • the heat-resistant resin film of the present invention is suitably used as a substrate for electronic devices such as a flexible printed circuit board, a flexible display substrate, a flexible electronic paper substrate, a flexible solar cell substrate, and a flexible color filter substrate.
  • electronic devices such as a flexible printed circuit board, a flexible display substrate, a flexible electronic paper substrate, a flexible solar cell substrate, and a flexible color filter substrate.
  • the preferred tensile elongation and maximum tensile stress of the heat resistant resin film are 15% or more and 150 MPa or more, respectively.
  • the film thickness of the heat-resistant resin film in the present invention is not particularly limited.
  • the film thickness when used as a substrate for an electronic device, is preferably 5 ⁇ m or more. More preferably, it is 7 micrometers or more, More preferably, it is 10 micrometers or more. If the film thickness is 5 ⁇ m or more, sufficient mechanical properties as a flexible display substrate can be obtained.
  • the in-plane uniformity of the film thickness of the heat resistant resin film is preferably 5% or less. More preferably, it is 4% or less, More preferably, it is 3% or less. If the in-plane uniformity of the film thickness of the heat resistant resin film is 5% or less, the reliability of the electronic device formed on the heat resistant resin film is improved.
  • the method includes a step of forming a resin film by the above-described method and a step of forming an electronic device on the resin film.
  • a heat-resistant resin film is produced on a support such as a glass substrate by the production method of the present invention.
  • an electronic device is formed by forming a drive element or an electrode on the heat resistant resin film.
  • the electronic device is formed by forming a pixel driving element or a colored pixel.
  • a TFT which is an image driving element
  • a first electrode an organic EL light emitting element
  • a second electrode an organic EL light emitting element
  • a sealing film are sequentially formed.
  • colored pixels such as red, green, and blue are formed.
  • a gas barrier film may be provided between the heat resistant resin film and the pixel driving element or the colored pixel.
  • the gas barrier film By providing the gas barrier film, it is possible to prevent moisture and oxygen from passing through the heat resistant resin film from the outside of the image display device and causing deterioration of the pixel driving element and the colored pixel.
  • a single film of inorganic films such as a silicon oxide film (SiOx), a silicon nitrogen film (SiNy), a silicon oxynitride film (SiOxNy), or a laminate of a plurality of types of inorganic films is used.
  • the gas barrier film is formed by using a method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a film in which these inorganic films and organic films such as polyvinyl alcohol are alternately laminated can be used.
  • the heat resistant resin film is peeled from the support to obtain an electronic device including the heat resistant resin film.
  • Examples of the method of peeling at the interface between the support and the heat-resistant resin film include a method using a laser, a mechanical peeling method, and a method of etching the support. In the method using a laser, peeling can be performed without damaging the image display element by irradiating the support such as a glass substrate from the side where the image display element is not formed. Moreover, you may provide the primer layer for making it easy to peel between a support body and a heat resistant resin film.
  • Viscosity Using a viscometer (manufactured by Toki Sangyo Co., Ltd., TVE-22H), the viscosity of the varnish was measured at 25 ° C.
  • Viscosity change rate (%) (viscosity after storage ⁇ viscosity before storage) / viscosity before storage ⁇ 100
  • TAG-1 (pyrolysis start temperature: 213 ° C.):
  • TAG-2 (thermal decomposition start temperature: 203 ° C.):
  • TAG-3 (pyrolysis start temperature: 167 ° C.):
  • TAG-4 (thermal decomposition start temperature: 160 ° C.):
  • TAG-5 (pyrolysis start temperature: 149 ° C.):
  • TAG-6 (pyrolysis start temperature: 145 ° C.):
  • TAG-7 (pyrolysis start temperature: 129 ° C):
  • Synthesis example A A thermometer and a stirring rod with stirring blades were set in a 200 mL four-necked flask. Next, 30 g of THF was added under a dry nitrogen stream and cooled to 0 ° C. While stirring, 5.407 g (50.00 mmol) of PDA was added and washed with 10 g of THF. Subsequently, DIBOC 22.92 g (105.0 mmol) diluted with 40 g of THF was added dropwise over 1 hour. After completion of the dropwise addition, the temperature was raised to room temperature. After a while, a precipitate appeared in the reaction solution. After 12 hours, the reaction solution was filtered to collect the precipitate and dried at 50 ° C. The 1 H-NMR spectrum of the precipitate was measured to confirm that it was a compound represented by the chemical formula (51), and used as a standard sample.
  • Synthesis example B A thermometer and a stirring rod with stirring blades were set in a 200 mL four-necked flask. Next, 30 g of THF was added under a dry nitrogen stream and cooled to 0 ° C. While stirring, 10.01 g (50.00 mmol) of DAE was added and washed with 10 g of THF. Subsequently, DIBOC 22.92 g (105.0 mmol) diluted with 40 g of THF was added dropwise over 1 hour. After completion of the dropwise addition, the temperature was raised to room temperature. After a while, a precipitate appeared in the reaction solution. After 12 hours, the reaction solution was filtered to collect the precipitate and dried at 50 ° C. The 1 H-NMR spectrum of the precipitate was measured to confirm that it was a compound represented by the chemical formula (52), and used as a standard sample.
  • Synthesis example 1 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that PDA was dissolved, 26.48 g (90.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, 3.274 g (15.00 mmol) of DIBOC was added and washed with 10 g of NMP.
  • Synthesis example 2 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 3.274 g (15.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 10 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 3 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 3.274 g (15.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 20 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 4 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 3.274 g (15.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 30 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 5 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 3.274 g (15.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 60 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 6 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 3.274 g (15.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 120 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 7 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 80 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 20.02 g (100.0 mmol) of DAE was added while stirring, and washed with 10 g of NMP. After confirming that DAE was dissolved, 19.63 g (90.00 mmol) of PMDA was added and washed with 10 g of NMP. Two hours later, 3.274 g (15.00 mmol) of DIBOC was added and washed with 10 g of NMP.
  • Synthesis Example 8 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 20.02 g (100.0 mmol) of DAE was added while stirring, and washed with 10 g of NMP. After confirming that DAE was dissolved, DIBOC (3.274 g, 15.00 mmol) diluted with NMP (20 g) was added dropwise over 20 minutes. One hour after the completion of the dropping, 21.81 g (100.00 mmol) of PMDA was added, and the mixture was washed with 10 g of NMP. After 2 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 9 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, 3.274 g (15.00 mmol) of DIBOC was added dropwise over 30 minutes, followed by washing with 20 g of NMP. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 10 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, 3.274 g (15.00 mmol) of DIBOC was added over 1 minute and washed with 20 g of NMP. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 11 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 20.02 g (100.0 mmol) of DAE was added while stirring, and washed with 10 g of NMP. After confirming that DAE was dissolved, a solution obtained by diluting 3.274 g (15.00 mmol) of DIBOC with 20 g of NMP was added over 1 minute. After 1 hour, 21.81 g (100.00 mmol) of PMDA was added and the mixture was washed with 10 g of NMP. After 2 hours, it was cooled. The reaction solution was filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Example 1 A Using the varnish obtained in Synthesis Example 1, the particles in the liquid were measured, and a polyimide film was prepared by the method (1) described above, and the tensile elongation, the maximum tensile stress, and the Young's modulus were measured. went.
  • B The varnish obtained in Synthesis Example 1 was stored at 23 ° C. for 30 days in a clean bottle (manufactured by Aicello Co., Ltd.). Then, while measuring the particle
  • Examples 2-8, Comparative Examples 1-3 As described in Tables 1 and 2, the same evaluation as in Example 1 was performed using the varnishes obtained in Synthesis Examples 2 to 11. The evaluation results of Examples 1 to 8 and Comparative Examples 1 to 3 are shown in Tables 1 and 2.
  • Example 11 C Viscosity was measured using the varnish obtained in Synthesis Example 1. Using the same varnish, a slit coating device (manufactured by Toray Engineering Co., Ltd.) was tuned. Subsequently, coating was performed on a non-alkali glass substrate (AN-100, manufactured by Asahi Glass Co., Ltd.) having a length of 350 mm, a width of 300 mm, and a thickness of 0.5 mm using the same slit coating apparatus. Next, after drying with a VCD and a hot plate, using a gas oven (INH-21CD Koyo Thermo System Co., Ltd.) and heating in a nitrogen atmosphere (oxygen concentration 20 ppm or less) at 500 ° C. for 30 minutes on a glass substrate A heat resistant resin film was formed. In-plane uniformity of the film thickness of the formed heat resistant resin film was measured.
  • AN-100 manufactured by Asahi Glass Co., Ltd.
  • Examples 12 to 16 As described in Table 3, the same evaluation as in Example 11 was performed using the varnishes obtained in Synthesis Examples 2 to 6. The evaluation results of Examples 11 to 16 are shown in Table 3.
  • Example 21 On the heat resistant resin film obtained in B of Example 1, a gas barrier film made of a laminate of SiO 2 and Si 3 N 4 was formed by CVD. Subsequently, a TFT was formed, and an insulating film made of Si 3 N 4 was formed so as to cover the TFT. Next, after forming a contact hole in the insulating film, a wiring connected to the TFT through the contact hole was formed. Further, a planarization film was formed in order to planarize the unevenness due to the formation of the wiring. Next, a first electrode made of ITO was formed on the obtained flattened film by being connected to the wiring. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether). The substrate after peeling was washed with water and dehydrated by heating to obtain an electrode substrate with a planarizing film. Next, an insulating film having a shape covering the periphery of the first electrode was formed.
  • a resist stripping solution mixtureed solution of monoethanolamine and diethylene glycol monobutyl ether
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus.
  • a second electrode made of Al / Mg was formed on the entire surface above the substrate.
  • a sealing film made of a laminate of SiO 2 and Si 3 N 4 was formed by CVD.
  • the glass substrate was irradiated with a laser (wavelength: 308 nm) from the side where the heat resistant resin film was not formed, and peeling was performed at the interface with the heat resistant resin film.
  • a laser wavelength: 308 nm
  • Comparative Example 22 On the heat resistant resin film obtained in B of Comparative Example 1, an organic EL display device was formed in the same manner as in Example 21. However, when a voltage was applied via the drive circuit, dark spots were generated due to the irregularities on the surface of the heat-resistant resin film derived from the particles in the varnish, and the light emission characteristics were poor.
  • Synthesis example 101 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 2.183 g (10.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 30 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP.
  • Synthesis example 102 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 10.81 g (100.0 mmol) of PDA was added while stirring and washed with 10 g of NMP. After confirming that the PDA was dissolved, a solution obtained by diluting 2.183 g (10.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 30 minutes. One hour after the completion of the dropwise addition, 29.42 g (100.00 mmol) of BPDA was added and washed with 10 g of NMP.
  • Synthesis Example 103 A varnish was prepared in the same manner as in Synthesis Example 102, except that 0.6010 g (10.00 mmol) of isopropyl alcohol was used instead of ethanol.
  • Synthesis example 104 A varnish was prepared in the same manner as in Synthesis Example 101 except that 0.7412 g (10.00 mmol) of tert-butyl alcohol was used instead of ethanol.
  • Synthesis Example 105 A varnish was prepared in the same manner as in Synthesis Example 102 except that 0.7412 g (10.00 mmol) of tert-butyl alcohol was used instead of ethanol.
  • Synthesis Example 106 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 20.02 g (100.0 mmol) of DAE was added while stirring, and washed with 10 g of NMP. After confirming that DAE was dissolved, a solution obtained by diluting 2.183 g (10.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 30 minutes. One hour after the completion of the dropping, 21.81 g (100.00 mmol) of PMDA was added, and the mixture was washed with 10 g of NMP.
  • Synthesis Example 108 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 29.42 g (100.00 mmol) of BPDA was added while stirring and washed with 10 g of NMP. Subsequently, 0.7412 g (10.00 mmol) of tert-butyl alcohol was added and washed with 10 g of NMP. After 1 hour, 10.81 g (100.0 mmol) of PDA was added and washed with 10 g of NMP. After 4 hours, it was cooled. The reaction solution was diluted with NMP so that the viscosity was about 2000 cP, and filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Synthesis Example 109 A thermometer and a stirring rod with stirring blades were set in a 300 mL four-necked flask. Next, 90 g of NMP was added under a dry nitrogen stream, and the temperature was raised to 40 ° C. After raising the temperature, 20.02 g (100.0 mmol) of DAE was added while stirring, and washed with 10 g of NMP. After confirming that DAE was dissolved, a solution obtained by diluting 2.183 g (10.00 mmol) of DIBOC with 20 g of NMP was added dropwise over 30 minutes. One hour after the completion of the dropping, 21.81 g (100.00 mmol) of PMDA was added, and the mixture was washed with 10 g of NMP. After 2 hours, it was cooled. The reaction solution was diluted with NMP so that the viscosity was about 2000 cP, and filtered through a filter having a filter pore size of 0.2 ⁇ m to obtain a varnish.
  • Example 101 E Using the varnish obtained in Synthesis Example 101, the in-plane uniformity of the viscosity and the film thickness of the heat-resistant resin film was measured in the same manner as in Example 11.
  • F Viscosity and film thickness of heat-resistant resin film in the same manner as in Example 11 for the varnish obtained in Synthesis Example 101 stored in a clean bottle (manufactured by Aicello Co., Ltd.) at 30 ° C. for 60 days. The in-plane uniformity was measured.
  • Examples 102 to 106, Reference Example 101, Comparative Example 102, Reference Example 103 As described in Tables 4 and 5, the same evaluation as in Example 11 was performed using the varnishes obtained in Synthesis Examples 102 to 109. However, in Example 105 and Comparative Example 103, the heating temperature of the gas oven was 400 ° C. The evaluation results of Examples 101 to 106, Reference Example 101, Comparative Example 102, and Reference Example 103 are shown in Tables 4 and 5.
  • Example 107 On the heat-resistant resin film obtained in F of Example 101, an organic EL display device was formed in the same manner as in Example 21. When a voltage was applied to the formed organic EL display device via a drive circuit, good light emission was exhibited.
  • Example 201 A solution obtained by dissolving 0.50 g (1.6 mmol) of TAG-1 in 1 g of NMP was added to 50 g of the varnish obtained in Synthesis Example 1, and filtered through a filter having a filter pore size of 0.2 ⁇ m. A polyimide film was prepared using the varnish after filtration. However, the heating conditions of the inert oven were as shown in Table 6. The obtained polyimide film was measured for tensile elongation, maximum tensile stress, and Young's modulus.
  • Examples 202-209 Evaluation was performed in the same manner as in Example 201 except that the type of resin, the type of thermal acid generator, and the heating conditions of the inert oven were appropriately changed according to Table 6.
  • Reference examples 201 to 203 Evaluation was performed in the same manner as in Example 201 except that the type of resin and the heating conditions of the inert oven were appropriately changed according to Table 6 except that the thermal acid generator was not added. Table 6 shows the evaluation results of Examples 201 to 209 and Reference Examples 201 to 203.
  • Example 210 An organic EL display device was formed on the heat resistant resin film obtained in Example 201 in the same manner as in Example 21. When a voltage was applied to the formed organic EL display device via a drive circuit, good light emission was exhibited.
  • Reference Example 204 An organic EL element was formed on the heat resistant resin film obtained in Reference Example 201 in the same manner as in Example 21. However, in the process of peeling from the glass substrate, the mechanical strength of the heat-resistant resin film was low and fractured, so that it was not possible to proceed to the subsequent evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

パーティクルの発生が少なく、焼成後に高い機械特性のポリイミド膜が得られる酸樹脂組成物を提供すること。 本発明は、(a)化学式(1)で表される構造を有する樹脂と、(b)溶剤と、を含み、化学式(3)で表される化合物の量が0.1質量ppm以上40質量ppm以下である樹脂組成物である。

Description

樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法
 本発明は、樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法に関するものである。
 ポリイミドは、その優れた電気絶縁性、耐熱性、機械特性により、半導体、ディスプレイ用途といった、様々な電子デバイスの材料として使用されている。最近では、有機ELディスプレイ、電子ペーパー、カラーフィルタなどの画像表示装置の基板に耐熱性樹脂膜を用いることで、衝撃に強く、フレキシブルな画像表示装置を製造することができる。
 ポリイミドを電子デバイスの材料として使用するには、通常、ポリイミド前駆体であるポリアミド酸を含む溶液を利用する。典型的には、ポリアミド酸を含む溶液を支持体に塗布し、塗膜を焼成してイミド化することによりポリイミドが得られる。
 一般に、ポリイミド膜の引っ張り最大応力や伸度などの機械特性を向上させるためには、ポリイミドの重合度を高くすることが有効である。しかし、ポリイミド前駆体であるポリアミド酸の重合度を高くすると、重合溶液の粘度が増大し、塗布に適した粘度に調整することが難しい。
 そこで、ポリアミド酸末端のアミノ基や酸無水物基を保護することで、ポリアミド酸の重合度を制御する方法が報告されている(例えば、特許文献1~2参照)。これらのポリアミド酸を加熱すると末端の保護基が脱離して、アミノ基または酸無水物基が再生する。再生したアミノ基または酸無水物基は、重合に関与することができる。その結果、ポリイミドの重合度が向上し、ポリイミドの膜の機械特性が向上する。
特開2009-109589号公報 特開2000-234023号公報
 しかし、特許文献1に記載の方法では、ポリアミド酸を含む溶液の保管中にパーティクルが増加する問題があった。さらに、特許文献1および2に記載の方法では、ポリアミド酸を含む溶液の保管中に粘度が大きく変化する問題がある。
 そこで、本発明はパーティクルの発生が少なく、焼成後に高い機械特性のポリイミド膜が得られる樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法を提供することを目的とする。さらに、ワニスとして使用した際の粘度の安定性が極めて高く、焼成後に高い機械特性のポリイミド膜が得られる樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法を提供することを目的とする。
 本発明者は、パーティクルの発生が、アミノ基が保護されたポリアミド酸の生成過程で副生成物として生じる低分子化合物に起因することを見出した。そして、これを解決する手段として、本発明に至った。
 すなわち本発明の第1の形態は、
 (a)化学式(1)で表される構造を有する樹脂と、
Figure JPOXMLDOC01-appb-C000020
(化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。)
Figure JPOXMLDOC01-appb-C000021
(化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(1)中のZの結合点を示す。)
 (b)溶剤と、を含む樹脂組成物であって、該樹脂組成物に含まれる化学式(3)で表される化合物の量が0.1質量ppm以上40質量ppm以下である樹脂組成物である。
Figure JPOXMLDOC01-appb-C000022
(化学式(3)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。)
 本発明の第2の形態は、(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂と、(b)溶剤とを含む樹脂組成物であって、前記樹脂が下記(A)および(B)からなる群より選ばれる一つ以上の樹脂を含む樹脂組成物である。
 (A)分子内に化学式(5)で表される部分構造を2つ以上含む樹脂(A-1)と、分子内に化学式(6)で表される部分構造を2つ以上含む樹脂(A-2)とを含む樹脂混合物
 (B)分子内に化学式(5)で表される部分構造と化学式(6)で表される部分構造をそれぞれ1つ以上含む樹脂
Figure JPOXMLDOC01-appb-C000023
(化学式(4)~(6)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(5)中、Wは化学式(7)で表される構造を示す。Zは化学式(2)で表される構造を示す。化学式(4)~(6)において、RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基または炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。化学式(5)および(6)中の*は他の原子と結合していることを示す。)
Figure JPOXMLDOC01-appb-C000024
(化学式(7)中のδおよび化学式(2)中のαは、それぞれ独立して炭素数2以上の1価の炭化水素基を示す。化学式(7)中のεならびに化学式(2)中のβおよびγは、それぞれ独立して酸素原子または硫黄原子を示す。化学式(7)中の*は化学式(5)中のZの結合点を示す。化学式(2)中の*は化学式(6)中のZの結合点を示す。)
 第2の形態においては、樹脂の末端に、保護されていない酸無水物基やアミノ基が存在しないか、存在してもその量が少ない。そのため、本発明の第2の形態にかかるポリアミド酸を含む樹脂組成物は、ワニスとしての保管中の粘度の安定性が高い。保護されていない酸無水物基は樹脂組成物中の水分と、保護されていないアミノ基は雰囲気中の酸素と、それぞれ反応しうるが、本発明のポリアミド酸樹脂組成物ではそれらが抑制されるからである。
 本発明によれば、パーティクルの発生が少なく、焼成後に高い機械特性のポリイミド膜を与える樹脂組成物が得られる。さらに、ワニスとして使用した際の保管中の粘度の安定性が高く、焼成後に高い機械特性のポリイミド膜が得られる樹脂組成物が得られる。
 本発明にかかる樹脂組成物の第1の態様は、(a)化学式(1)で表される構造を有する樹脂と、
Figure JPOXMLDOC01-appb-C000025
 化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。
Figure JPOXMLDOC01-appb-C000026
 化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(1)中のZの結合点を示す。
 (b)溶剤を含む樹脂組成物であって、該樹脂組成物に含まれる化学式(3)で表される化合物の量が0.1質量ppm以上40質量ppm以下である樹脂組成物である。
Figure JPOXMLDOC01-appb-C000027
 化学式(3)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。
 本発明に係る樹脂組成物の第2の形態は、(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂と、(b)溶剤と、を含む樹脂組成物であって、前記樹脂が下記(A)および(B)からなる群より選ばれる一つ以上の樹脂を含む樹脂組成物である。
 (A)分子内に化学式(5)で表される部分構造を2つ以上含む樹脂(A-1)と、分子内に化学式(6)で表される部分構造を2つ以上含む樹脂(A-2)と、を含む樹脂混合物
 (B)分子内に化学式(5)で表される部分構造と化学式(6)で表される部分構造をそれぞれ1つ以上含む樹脂
Figure JPOXMLDOC01-appb-C000028
 化学式(4)~(6)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(5)中、Wは化学式(7)で表される構造を示す。Zは化学式(2)で表される構造を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基または炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。化学式(5)および(6)中の*は他の原子と結合していることを示す。
Figure JPOXMLDOC01-appb-C000029
 化学式(7)中のδおよび化学式(2)中のαは、それぞれ独立して炭素数2以上の1価の炭化水素基を示す。化学式(7)中のεならびに化学式(2)中のβおよびγは、それぞれ独立して酸素原子または硫黄原子を示す。化学式(7)中の*は化学式(5)中のWの結合点を示す。化学式(2)中の*は化学式(6)中のZの結合点を示す。
 まず、本発明に係る樹脂組成物の第1の形態について説明する。
 (a)化学式(1)で表される構造を有する樹脂
 化学式(1)はポリアミド酸の構造を示す。ポリアミド酸は、後述の通り、テトラカルボン酸とジアミン化合物を反応させることで得られる。さらにポリアミド酸は、加熱や化学処理を行うことにより、耐熱性樹脂であるポリイミドに変換することができる。
 化学式(1)中、Xは炭素数2~80の4価の炭化水素基であることが好ましい。またXは、水素原子および炭素原子を必須成分とし、ホウ素、酸素、硫黄、窒素、リン、ケイ素およびハロゲンからなる群より選ばれる1種以上の原子を含む炭素数2~80の4価の有機基であってもよい。ホウ素、酸素、硫黄、窒素、リン、ケイ素およびハロゲンの各原子は、それぞれ独立に20以下の範囲であるものが好ましく、10以下の範囲であるものがより好ましい。
 Xを与えるテトラカルボン酸の例として、以下のものを挙げることができる。
 芳香族テトラカルボン酸としては、単環芳香族テトラカルボン酸化合物、例えば、ピロメリット酸、2,3,5,6-ピリジンテトラカルボン酸など、ビフェニルテトラカルボン酸の各種異性体、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸など;
 ビス(ジカルボキシフェニル)化合物、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテルなど;
 ビス(ジカルボキシフェノキシフェニル)化合物、例えば、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]スルホン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]エーテルなど;
 ナフタレンまたは縮合多環芳香族テトラカルボン酸の各種異性体、例えば1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸など;
 ビス(トリメリット酸モノエステル)化合物、例えばp-フェニレンビス(トリメリット酸モノエステル)、p-ビフェニレンビス(トリメリット酸モノエステル)、エチレンビス(トリメリット酸モノエステル)、ビスフェノールAビス(トリメリット酸モノエステル)など;
が挙げられる。
 脂肪族テトラカルボン酸としては、鎖状脂肪族テトラカルボン酸化合物、例えばブタンテトラカルボン酸など;
 脂環式テトラカルボン酸化合物、例えばシクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸、ビシクロ[3.3.1.]テトラカルボン酸、ビシクロ[3.1.1.]ヘプト-2-エンテトラカルボン酸、ビシクロ[2.2.2.]オクタンテトラカルボン酸、アダマタンテトラカルボン酸など;
が挙げられる。
 これらのテトラカルボン酸は、そのまま、あるいは酸無水物、活性エステル、活性アミドの状態でも使用できる。これらのうち、酸無水物は、重合時に副生成物が生じないため好ましく用いられる。また、これらを2種以上用いてもよい。
 後述の通り、化学式(1)で表される構造を有する樹脂を硬化させて得られる樹脂膜の耐熱性の観点から、芳香族テトラカルボン酸をテトラカルボン酸全体の50モル%以上使用することが好ましい。中でも、Xが化学式(11)または(12)で表される4価のテトラカルボン酸残基を主成分とすることが好ましい。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 化学式(11)および(12)中の*は、化学式(1)におけるXの結合点を示す。
 すなわち、ピロメリット酸または3,3’,4,4’-ビフェニルテトラカルボン酸を主成分として用いることが好ましい。ここでいう主成分とは、テトラカルボン酸全体の50モル%以上を占めることである。より好ましくは80モル%以上を占めることである。これらのテトラカルボン酸を主成分として用いられた樹脂であれば、硬化させて得られる樹脂膜の熱線膨張係数が小さく、ディスプレイ用の基板として使用することができる。
 また、支持体に対する塗布性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めるため、ジメチルシランジフタル酸、1,3-ビス(フタル酸)テトラメチルジシロキサンなどのケイ素含有テトラカルボン酸を用いてもよい。これらケイ素含有テトラカルボン酸を用いる場合、テトラカルボン酸全体の1~30モル%用いることが好ましい。
 上で例示したテトラカルボン酸は、テトラカルボン酸の残基に含まれる水素原子の一部がメチル基、エチル基などの炭素数1~10の炭化水素基、トリフルオロメチル基などの炭素数1~10のフルオロアルキル基、F、Cl、Br、Iなどの基で置換されていてもよい。さらにはOH、COOH、SOH、CONH、SONHなどの酸性基で置換されていると、樹脂のアルカリ水溶液に対する溶解性が向上することから、後述の感光性樹脂組成物として用いる場合に好ましい。
 化学式(1)中、Yは炭素数2~80の2価の炭化水素基であることが好ましい。またYは、水素原子および炭素原子を必須成分とし、ホウ素、酸素、硫黄、窒素、リン、ケイ素およびハロゲンからなる群より選ばれる1種以上の原子を含む炭素数2~80の2価の有機基であってもよい。ホウ素、酸素、硫黄、窒素、リン、ケイ素およびハロゲンの各原子は、それぞれ独立に20以下の範囲であるものが好ましく、10以下の範囲であるものがより好ましい。
 Yを与えるジアミンの例としては、以下のものを挙げることができる。
 芳香族環を含むジアミン化合物として、単環芳香族ジアミン化合物、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,5-ジアミノ安息香酸など;
 ナフタレンまたは縮合多環芳香族ジアミン化合物、例えば、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、9,10-アントラセンジアミン、2,7-ジアミノフルオレンなど;
 ビス(ジアミノフェニル)化合物またはそれらの各種誘導体、例えば、4,4’-ジアミノベンズアニリド、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3-カルボキシ-4,4’-ジアミノジフェニルエーテル、3-スルホン酸-4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、4-アミノ安息香酸4-アミノフェニルエステル、9,9-ビス(4-アミノフェニル)フルオレン、1,3-ビス(4-アニリノ)テトラメチルジシロキサンなど;
 4,4’-ジアミノビフェニルまたはその各種誘導体、例えば、4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニルなど; 
 ビス(アミノフェノキシ)化合物、例えば、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼンなど;
 ビス(3-アミノ-4-ヒドロキシフェニル)化合物、例えば、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなど;
 ビス(アミノベンゾイル)化合物、例えば、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン、2,2’-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]ヘキサフルオロプロパン、2,2’-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]プロパン、2,2’-ビス[N-(4-アミノベンゾイル)-3-アミノー4-ヒドロキシフェニル]プロパン、ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]スルホン、ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]スルホン、9,9-ビス[N-(3-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]フルオレン、9,9-ビス[N-(4-アミノベンゾイル)-3-アミノ-4-ヒドロキシフェニル]フルオレン、N、N’-ビス(3-アミノベンゾイル)-2,5-ジアミノ-1,4-ジヒドロキシベンゼン、N、N’-ビス(4-アミノベンゾイル)-2,5-ジアミノ-1,4-ジヒドロキシベンゼン、N、N’-ビス(3-アミノベンゾイル)-4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、N、N’-ビス(4-アミノベンゾイル)-4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、N、N’-ビス(3-アミノベンゾイル)-3,3’-ジアミノ-4,4-ジヒドロキシビフェニル、N、N’-ビス(4-アミノベンゾイル)-3,3’-ジアミノ-4,4-ジヒドロキシビフェニルなど;
 複素環含有ジアミン化合物、例えば、2-(4-アミノフェニル)-5-アミノベンゾオキサゾール、2-(3-アミノフェニル)-5-アミノベンゾオキサゾール、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、2-(3-アミノフェニル)-6-アミノベンゾオキサゾール、1,4-ビス(5-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,4-ビス(6-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,3-ビス(5-アミノ-2-ベンゾオキサゾリル)ベンゼン、1,3-ビス(6-アミノ-2-ベンゾオキサゾリル)ベンゼン、2,6-ビス(4-アミノフェニル)ベンゾビスオキサゾール、2,6-ビス(3-アミノフェニル)ベンゾビスオキサゾール、2,2’-ビス[(3-アミノフェニル)-5-ベンゾオキサゾリル]ヘキサフルオロプロパン、2,2’-ビス[(4-アミノフェニル)-5-ベンゾオキサゾリル]ヘキサフルオロプロパン、ビス[(3-アミノフェニル)-5-ベンゾオキサゾリル]、ビス[(4-アミノフェニル)-5-ベンゾオキサゾリル]、ビス[(3-アミノフェニル)-6-ベンゾオキサゾリル]、ビス[(4-アミノフェニル)-6-ベンゾオキサゾリル]など;
 あるいはこれらのジアミン化合物に含まれる芳香族環に結合する水素原子の一部を炭化水素基やハロゲンで置換した化合物など;
が挙げられる。
 脂肪族ジアミン化合物としては、直鎖状ジアミン化合物、例えば、エチレンジアミン、プロピレンジアミン、ブタンジアミン、ペンタンジアミン、ヘキサンジアミン、オクタンジアミン、ノナンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、テトラメチルヘキサンジアミン、1,12-(4,9-ジオキサ)ドデカンジアミン、1,8-(3,6-ジオキサ)オクタンジアミン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンなど;
 脂環式ジアミン化合物、例えば、シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、イソホロンジアミンなど;
 ジェファーミン(商品名、Huntsman Corporation製)として知られるポリオキシエチレンアミン、ポリオキシプロピレンアミン、およびそれらの共重合化合物など;
が挙げられる。
 これらのジアミンは、そのまま、あるいは対応するトリメチルシリル化ジアミンの状態でも使用できる。また、これらを2種以上用いてもよい。
 後述の通り、化学式(1)で表される構造を有する樹脂を硬化させて得られる樹脂膜の耐熱性の観点から、芳香族ジアミン化合物をジアミン化合物全体の50モル%以上使用することが好ましい。中でも、Yが化学式(13)で表される2価のジアミン残基を主成分とすることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 化学式(13)中の*は、化学式(1)におけるYの結合点を示す。
 すなわち、p-フェニレンジアミンを主成分として用いることが好ましい。ここでいう主成分とは、ジアミン化合物全体の50モル%以上を占めることである。より好ましくは80モル%以上を占めることである。p-フェニレンジアミンを主成分として用いられた樹脂膜であれば、硬化させて得られる樹脂膜の熱線膨張係数が小さく、ディスプレイ用の基板として使用することができる。
 特に好ましいのは、化学式(1)中のXが化学式(11)または(12)で表される4価のテトラカルボン酸残基を主成分とし、Yが化学式(13)で表される2価のジアミン残基を主成分とすることである。
 また、支持体に対する塗布性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めるために、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アニリノ)テトラメチルジシロキサンなどのケイ素含有ジアミンを用いてもよい。これらケイ素含有ジアミン化合物を用いる場合、ジアミン化合物全体の1~30モル%用いることが好ましい。
 上で例示したジアミン化合物は、ジアミン化合物に含まれる水素原子の一部がメチル基、エチル基などの炭素数1~10の炭化水素基、トリフルオロメチル基などの炭素数1~10のフルオロアルキル基、F、Cl、Br、Iなどの基で置換されていてもよい。さらにはOH、COOH、SOH、CONH、SONHなどの酸性基で置換されていると、樹脂のアルカリ水溶液に対する溶解性が向上することから、後述の感光性樹脂組成物として用いる場合に好ましい。
 化学式(1)中、Zは樹脂の末端構造を表し、化学式(2)で表される構造を示す。化学式(2)中、αは炭素数2~10の1価の炭化水素基が好ましい。好ましくは脂肪族炭化水素基であり、直鎖状、分岐鎖状、環状のいずれであってもよい。
 このような炭化水素基としては、例えば、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基などの直鎖状炭化水素基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、イソヘキシル基、sec- ヘキシル基などの分岐鎖状炭化水素基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状炭化水素基が挙げられる。
 これらの炭化水素基のうち、炭素数2~10の1価の分岐鎖状炭化水素基および環状炭化水素基が好ましく、イソプロピル基、シクロヘキシル基、tert-ブチル基、tert-ペンチル基がより好ましく、tert-ブチル基が最も好ましい。
 化学式(2)中、βおよびγはそれぞれ独立して、酸素原子または硫黄原子を示し、好ましくは酸素原子である。
 化学式(1)で表される構造を有する樹脂を加熱すると、Zが熱分解して樹脂の末端にアミノ基が発生する。末端に発生したアミノ基は、テトラカルボン酸を末端に有する他の樹脂と反応することができる。このため、化学式(1)で表される構造を有する樹脂を加熱すると、高い重合度のポリイミド樹脂が得られる。
 樹脂組成物中の化学式(1)で表される構造を有する樹脂の濃度は、樹脂組成物100質量%に対し、3質量%以上が好ましく、5質量%以上がより好ましい。また40質量%以下が好ましく、30質量%以下がより好ましい。樹脂の濃度が3質量%以上であれば樹脂膜の厚膜化が容易となり、40質量%以下であれば樹脂が樹脂組成物中で十分に溶解するため均質な樹脂膜が得られやすい。
 化学式(1)で表される構造を有する樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用い、ポリスチレン換算で好ましくは200,000以下、より好ましくは150,000以下、さらに好ましくは100,000以下であることが好ましい。この範囲であれば、高濃度の樹脂組成物であっても粘度が増大するのをより抑制することができる。また、重量平均分子量は好ましくは2,000以上、より好ましくは3,000以上、さらに好ましくは5,000以上である。重量平均分子量が2,000以上であれば、樹脂組成物としたときの粘度が低下しすぎることがなく、より良好な塗布性を保つことができる。
 化学式(1)中、nは樹脂の構成単位の繰り返し数を表し、上述の重量平均分子量を満たす範囲であればよい。nは好ましくは5以上であり、より好ましくは10以上である。また、好ましく1000以下であり、より好ましくは500以下である。
 (化学式(3)で表される化合物)
 化学式(3)で表される化合物は、ジアミン化合物に含まれる2つのアミノ基の両方について、1つの水素原子が、Zすなわち化学式(2)で表される構造に置換された化合物である。
 後述の通り、化学式(3)で表される化合物は、化学式(1)で表される構造を有する樹脂を製造する過程で副生成物として生じる。そして、化学式(3)で表される化合物は溶剤への溶解性が低く、時間が経つと樹脂組成物中で析出し、パーティクルとなることが、本発明者の検討によりわかった。発生したパーティクルは、樹脂組成物から得られる耐熱性樹脂膜にも残留し、耐熱性樹脂膜の引張り伸度および引張り最大応力を低下させる。また、パーティクルによって耐熱性樹脂膜の表面に凹凸が生じるため、耐熱性樹脂膜の上に電子デバイスを形成すると性能が低下するおそれがある。
 そこで、樹脂組成物中の化学式(3)で表される化合物の含有量を減少させることで、パーティクルの発生が少なく、焼成後に高い機械特性の耐熱性樹脂膜が得られる。さらに、表面の滑らかな耐熱性樹脂膜が得られるため、その上に電子デバイスを形成すると高い性能が得られる。
 具体的には、樹脂組成物に含まれる化学式(3)で表される化合物の量は40質量ppm以下であり、20質量ppm以下がより好ましく、10質量ppm以下がさらに好ましい。40質量ppmを上回ると、先に述べたパーティクルの発生が見られる。
 また、樹脂組成物に含まれる化学式(3)で表される化合物の量は0.1質量ppm以上が好ましく、0.5質量ppm以上がより好ましく、1質量ppm以上がさらに好ましい。0.1質量ppm以上であれば、樹脂組成物を製造する上で作業性が低下しない。
 また、化学式(2)で表される構造は、酸によって分解する。このため、本発明の樹脂組成物の製造過程において環境から混入する酸によって、化学式(2)が分解することがある。つまり、化学式(1)中のZが分解して樹脂組成物の粘度が変化する。一方、化学式(3)で表される化合物が樹脂組成物中に存在することで、これが酸をトラップする役割を果たす。よって、樹脂組成物に含まれる化学式(3)で表される化合物の量が4質量ppm以上であれば、保管中のポリアミド酸の安定性が高くなる。
 化学式(3)で表される化合物の含有量は、液体クロマトグラフ質量分析計によって測定できる。化学式(3)におけるYおよびZは、化学式(1)におけるYおよびZと同じである。
 本発明の第1の形態に係る樹脂組成物に含まれる(b)溶剤については、後述する。
 次に本発明に係る樹脂組成物の第2の形態である(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂であって、(A)および(B)からなる群より選ばれる一つ以上の樹脂について説明する。
 (a’)化学式(4)で表される繰り返し単位を主成分とする樹脂
 化学式(4)はポリアミド酸の繰り返し単位を示す。ポリアミド酸は、後述の通り、テトラカルボン酸とジアミン化合物を反応させることで得られる。さらにポリアミド酸は、加熱や化学処理を行うことにより、耐熱性樹脂であるポリイミドに変換することができる。
 化学式(4)中、Xは炭素数2~80の4価の炭化水素基であることが好ましい。またXは、水素原子および炭素原子を必須成分とし、ホウ素、酸素、硫黄、窒素、リン、ケイ素およびハロゲンからなる群より選ばれる1種以上の原子を含む炭素数2~80の4価の有機基であってもよい。ホウ素、酸素、硫黄、窒素、リン、ケイ素およびハロゲンの各原子は、それぞれ独立に20以下の範囲であるものが好ましく、10以下の範囲であるものがより好ましい。
 Xを与えるテトラカルボン酸の例としては、本発明の第1の形態の(a)化学式(1)で表される構造を有する樹脂のテトラカルボン酸の例と同様のものを挙げることができる。
 Yを与えるジアミンの例としては、本発明の第1の形態の(a)化学式(1)で表される構造を有する樹脂のジアミンの例と同様のものを挙げることができる。
 化学式(5)で表される部分構造および化学式(6)で表される部分構造は、化学式(4)で表される繰り返し単位を主成分とする樹脂の主鎖末端の部分構造である。化学式(5)および(6)中のX、Y、RおよびRはそれぞれ化学式(4)におけるものと同じである。
 化学式(5)中のWおよび化学式(6)中のZは、樹脂の末端構造を表し、それぞれ化学式(7)および(2)で表される構造を示す。
 化学式(7)中のδおよび化学式(2)のαは、それぞれ独立して炭素数2以上の1価の炭化水素基を示す。好ましくは、炭素数2~10の1価の炭化水素基である。より好ましくは脂肪族炭化水素基であり、直鎖状、分岐鎖状、環状のいずれであってもよい。
 このような炭化水素基としては、例えば、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基などの直鎖状炭化水素基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、イソヘキシル基、sec- ヘキシル基などの分岐鎖状炭化水素基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状炭化水素基が挙げられる。
 これらの炭化水素基のうち、炭素数2~10の1価の分岐鎖状炭化水素基および環状炭化水素基が好ましく、イソプロピル基、シクロヘキシル基、tert-ブチル基、tert-ペンチル基がより好ましく、tert-ブチル基が最も好ましい。
 化学式(7)中のεならびに化学式(2)中のβおよびγは、それぞれ独立して、酸素原子または硫黄原子を示し、好ましくは酸素原子である。
 化学式(5)で表される部分構造を含む樹脂を加熱すると、Wが外れて樹脂の末端に酸無水物基が発生する。また、化学式(6)で表される部分構造を含む樹脂を加熱すると、Zが外れて樹脂の末端にアミノ基が発生する。
 ここで、下記(A)および(B)からなる群より選ばれる一つ以上の樹脂を含む樹脂組成物を加熱すると高い重合度のポリイミド樹脂が得られることを説明する。
 (A)分子内に化学式(5)で表される部分構造を2つ以上含む樹脂(A-1)と、分子内に化学式(6)で表される部分構造を2つ以上含む樹脂(A-2)と、を含む樹脂混合物;
 (B)分子内に化学式(5)で表される部分構造と化学式(6)で表される部分構造をそれぞれ1つ以上含む樹脂。
 樹脂(A)は、加熱によって2つ以上の末端に酸無水物基を発生させる樹脂(A-1)と、加熱によって2つ以上の末端にアミノ基を発生させる樹脂(A-2)の混合物である。よって、加熱により末端に発生した酸無水物基とアミノ基が反応するため、樹脂(A-1)と樹脂(A-2)が交互に結合することにより、高い重合度のポリイミド樹脂を与える。
 また、樹脂(B)は、加熱により分子内で酸無水物基とアミノ基が互いに異なる末端に発生するため、樹脂(B)同士で結合し、高い重合度のポリイミド樹脂を与える。
 もし、樹脂(A)が、樹脂(A-1)または樹脂(A-2)いずれかのみを含む場合、加熱しても酸無水物基またはアミノ基のいずれかしか発生しないため、高い重合度のポリイミド樹脂は得られない。また、樹脂(B)が分子内に化学式(5)で表される部分構造または化学式(6)で表される部分構造のいずれかのみを含む場合も、加熱しても酸無水物基またはアミノ基のいずれかしか発生しないため、高い重合度のポリイミド樹脂は得られない。
 さらに、(A)および(B)からなる群より選ばれる一つ以上の樹脂を含む樹脂組成物は、樹脂の末端に、保護されていない酸無水物基やアミノ基が存在しないか、存在してもその量が少ない。そのため、本発明のポリアミド酸を含む樹脂組成物は、ワニスとしての保管中の粘度の安定性が高い。保護されていない酸無水物基は樹脂組成物中の水分と、保護されていないアミノ基は雰囲気中の酸素と、それぞれ反応しうるが、本発明の樹脂組成物ではそれらが抑制されるからである。
 化学式(4)で表される繰り返し単位を主成分とする樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用い、ポリスチレン換算で好ましくは200,000以下、より好ましくは150,000以下、さらに好ましくは100,000以下であることが好ましい。この範囲であれば、高濃度の樹脂組成物であっても粘度が増大するのをより抑制することができる。また、重量平均分子量は好ましくは2,000以上、より好ましくは3,000以上、さらに好ましくは5,000以上である。重量平均分子量が2,000以上であれば、樹脂組成物としたときの粘度が低下しすぎることがなく、より良好な塗布性を保つことができる。
 化学式(4)の繰り返し数は、上述の重量平均分子量を満たす範囲であればよい。好ましくは5以上であり、より好ましくは10以上である。また、好ましく1000以下であり、より好ましくは500以下である。
 次に、本発明の第1の形態および第2の形態で使用する(b)溶剤について説明する。
(b)溶剤
 本発明における樹脂組成物は、(a)化学式(1)で表される構造を有する樹脂、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂に加えて(b)溶剤を含むため、ワニスとして使用することができる。かかるワニスを様々な支持体上に塗布することで、化学式(1)で表される構造を有する樹脂を含む塗膜を支持体上に形成できる。さらに、得られた塗膜を加熱処理して硬化させることにより、耐熱性樹脂膜として使用できる。
 溶剤としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、N-メチル-2-ジメチルプロパンアミド、N-エチル-2-メチルプロパンアミド、N-メチル-2,2-ジメチルプロパンアミド、N-メチル-2-メチルブタンアミド、N,N-ジメチルイソブチルアミド、N,N-ジメチル-2-メチルブタンアミド、N,N-ジメチル-2,2-ジメチルプロパンアミド、N-エチル-N-メチル-2-メチルプロパンアミド、N,N-ジメチル-2-メチルペンタンアミド、N,N-ジメチル-2,3-ジメチルブタンアミド、N,N-ジメチル-2-エチルブタンアミド、N,N-ジエチル-2-メチルプロパンアミド、N,N-ジメチル-2,2-ジメチルブタンアミド、N-エチル-N-メチル-2,2-ジメチルプロパンアミド、N-メチル-N-プロピル-2-メチルプロパンアミド、N-メチル-N-(1-メチルエチル)-2-メチルプロパンアミド、N,N-ジエチル-2,2-ジメチルプロパンアミド、N,N-ジメチル-2,2-ジメチルペンタンアミド、N-エチル-N-(1-メチルエチル)-2-メチルプロパンアミド、N-メチル-N-(2-メチルプロピル)-2-メチルプロパンアミド、N-メチル-N-(1-メチルエチル)-2,2-ジメチルプロパンアミド、N-メチル-N-(1-メチルプロピル)-2-メチルプロパンアミドなどのアミド類、γ-ブチロラクトン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,1,3,3-テトラメチルウレアなどのウレア類、ジメチルスルホキシド、テトラメチレンスルホキシドなどのスルホキシド類、ジメチルスルホン、スルホランなどのスルホン類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコール、シクロヘキサノンなどのケトン類、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル類、トルエン、キシレンなどの芳香族炭化水素類、メタノール、エタノール、イソプロパノールなどのアルコール類、および水などを単独、または2種以上使用することができる。
 溶剤の好ましい含有量は、化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上であり、好ましくは2000質量部以下、より好ましくは1500質量部以下である。かかる条件を満たす範囲であれば、塗布に適した粘度となり、塗布後の膜厚を容易に調節することができる。
 本発明における樹脂組成物の粘度は20~10,000mPa・sが好ましく、50~8,000mPa・sがより好ましい。粘度が20mPa・s未満であると十分な膜厚の樹脂膜が得られなくなり、10,000mPa・sより大きいと樹脂組成物の塗布が困難となる。
 次に、本発明の第1の形態および第2の形態で使用する添加剤について説明する。
 (添加剤)
 本発明の樹脂組成物は、(c)熱酸発生剤、(d)光酸発生剤、(e)熱架橋剤、(f)フェノール性水酸基を含む化合物、(g)密着改良剤、(h)無機粒子および(i)界面活性剤から選ばれる少なくとも一つの添加剤を含んでもよい。このうち、(c)熱酸発生剤を含むと好ましい。
 (c)熱酸発生剤は、熱で分解して酸を発生させる化合物である。本発明の樹脂組成物は、熱酸発生剤を含むことが好ましい。
 (a)化学式(1)で表される構造を有する樹脂、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂を加熱すると、末端構造Zおよび/または末端構造Wが熱分解する。末端構造Zおよび/または末端構造Wの熱分解は、220℃以上の温度で進行する。よって、(a)化学式(1)で表される構造の樹脂、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂から高い重合度のポリイミド樹脂を得るためには、通常、220℃以上の温度が必要である。
 しかし、酸の存在下では、酸が触媒となって末端構造Zおよび/または末端構造Wの熱分解が促進されるため、220℃未満の温度で加熱しても高い重合度のポリイミド樹脂が得られる。一方、酸の存在下ではポリアミド酸の加水分解が促進されて、分子量が低下する。すなわち、(a)化学式(1)で表される構造の樹脂、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂と、酸を同時に含む樹脂組成物は、保管安定性が低い。
 本発明の樹脂組成物は、(c)熱酸発生剤を含むことで、ポリアミド酸を加熱イミド化させる工程でのみ酸を発生させることができる。これにより、樹脂組成物が保管安定性に優れるだけでなく、焼成温度が低くても引っ張り最大応力や伸度などの機械特性の高いポリイミド膜を得ることができる。
 このような(c)熱酸発生剤としては、熱分解開始温度が100℃以上220℃未満の範囲にあるものが好ましい。より好ましい熱分解開始温度の下限は110℃以上、さらに好ましくは120℃以上である。また、より好ましい熱分解開始温度の上限は200℃以下、さらに好ましくは150℃以下である。
 (c)熱酸発生剤の熱分解開始温度が100℃以上であれば、通常の室温環境下で(c)熱酸発生剤が熱分解することがないため、ワニスとしたときの保存安定性が向上する。
 また、(c)熱酸発生剤の熱分解開始温度が220℃未満であれば、本発明の樹脂組成物からより高い機械強度を有するポリイミド膜が得られる。特に、(c)熱酸発生剤の熱分解開始温度が好ましくは200℃以下、より好ましくは150度以下であれば、ポリイミド膜の機械特性がさらに向上する。
 (c)熱酸発生剤の熱分解開始温度は、示差走査熱量測定(DSC)によって測定できる。一般的に熱分解反応は吸熱反応である。このため、熱酸発生剤が熱分解すると、DSCで吸熱ピークとして観測される。熱分解開始温度は、そのピークトップの温度で定義することができる。
 加熱により(c)熱酸発生剤から発生する酸としては、スルホン酸、カルボン酸、ジスルホニルイミド、トリスルホニルメタンなどの低求核性の酸が挙げられる。
 pKaが2以下の酸を発生させる(c)熱酸発生剤が好ましい。具体的には、スルホン酸、電子求引性基の置換したアルキルカルボン酸またはアリールカルボン酸、電子求引性基の置換したジスルホニルイミド、トリスルホニルメタンなどの酸を発生させるものが好ましい。電子求引性基としてはフッ素原子などのハロゲン原子、トリフルオロメチル基などのハロアルキル基、ニトロ基、シアノ基を挙げることができる。
 本発明に用いられる(c)熱酸発生剤としては、熱だけでなく、光によっても分解して酸を発生させるものであってもよい。しかしながら、本発明の樹脂組成物の取り扱いを容易にするために、(c)熱酸発生剤は、光によって分解しないものが好ましい。遮光された環境で扱う必要がなく、非感光性の樹脂組成物として取り扱うことが可能となる。
 光によって分解しない(c)熱酸発生剤としては、以下に述べるようなスルホニウム塩、スルホン酸エステルなどが挙げられる。
 好ましいスルホニウム塩として化学式(21)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000033
 化学式(21)において、R21はアリール基、R22およびR23はアルキル基を表す。
 Xは非求核性アニオンを表し、好ましくはスルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオンなどが挙げられる。
 以下に、化学式(21)で表されるスルホニウム塩の具体例を挙げるがこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
 本発明の(c)熱酸発生剤として用いることのできるスルホン酸エステルは、例えば、化学式(22)で表されるスルホン酸エステルを挙げることができる。
 R’-SO-O-R”  (22)
 上記式において、R’及びR”はそれぞれ独立に、置換基を有していても良い炭素数1~10の直鎖又は分岐又は環状のアルキル基又は置換基を有していても良い炭素数6~20のアリール基を示す。置換基としては、水酸基、ハロゲン原子、シアノ基、ビニル基、アセチレン基炭素数1~10の直鎖又は環状のアルキル基が挙げられる。
 化学式(22)で表されるスルホン酸エステルの好ましい具体例として以下のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
 スルホン酸エステルの分子量は、230~1000であることが好ましく、230~800であることがより好ましい。
 スルホン酸エステルとして、化学式(23)で表される化合物が、耐熱性の点で更に好ましい。
Figure JPOXMLDOC01-appb-C000036
 Aは、h価の連結基を表す。Rは、アルキル基、アリール基、アラルキル基、又は環状アルキル基を表す。R’は、水素原子、アルキル基、又はアラルキル基を表す。hは、2~8の整数を表す。
 Aは、例えば、アルキレン基、シクロアルキレン基、アリーレン基、エーテル基、カルボニル基、エステル基、アミド基、及びこれらの基を組み合わせたh価の基を挙げることができる。
 アルキレン基としてはメチレン基、エチレン基、プロピレン基等が挙げられる。
 シクロアルキレン基としてはシクロへキシレン基、シクロペンチレン基等が挙げられる。
 アリーレン基としては1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフチレン基等が挙げられる。
 Aの炭素数は一般的に1~15であり、1~10であることが好ましく、1~6であることが更に好ましい。
 Aは、更に置換基を有していてもよく、置換基としては、アルキル基、アラルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシルオキシ基、アルコキシカルボニル基を挙げることができる。
 Aの置換基であるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等が挙げられる。
 Aの置換基であるアラルキル基としては、ベンジル基、トルイルメチル基、メシチルメチル基、フェネチル基等が挙げられる。
 Aの置換基であるアリール基としては、フェニル基、トルイル基、キシリル基、メシチル基、ナフチル基等が挙げられる。
 Aの置換基であるアルコキシ基としては、メトキシ基、エトキシ基、直鎖又は分岐プロポキシ基、直鎖又は分岐ブトキシ基、直鎖又は分岐ペントキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 Aの置換基であるアリールオキシ基としては、フェノキシ基、トルイルオキシ基、1-ナフトキシ基等が挙げられる。
 Aの置換基であるアルキルチオ基としては、メチルチオ基、エチルチオ基、直鎖又は分岐プロピルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基が挙げられる。
 Aの置換基であるアリールチオ基としては、フェニルチオ基、トルイルチオ基、1-ナフチルチオ基等が挙げられる。アシルオキシ基としてはアセトキシ基、プロパノイルオキシ基、ベンゾイルオキシ基等が挙げられる。
 Aの置換基であるアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、直鎖又は分岐プロポキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル基等が挙げられる。
 R及びR’のアルキル基としては、一般的には炭素数1~20のアルキル基であり、好ましくは炭素数1~15のアルキル基、更に好ましくは炭素数1~8のアルキル基である。具体的にはメチル、エチル、プロピル、ブチル、ヘキシル、オクチル等を挙げることができる。
 R及びR’のアラルキル基としては、一般的には炭素数7~25のアラルキル基であり、好ましくは炭素数7~20のアラルキル基、更に好ましくは炭素数7~15のアラルキル基である。具体的にはベンジル、トルイルメチル、メシチルメチル、フェネチル等を挙げることができる。
 Rの環状アルキル基としては、一般的には炭素数3~20の環状アルキル基であり、好ましくは炭素数4~20の環状アルキル基、更に好ましくは炭素数5~15の環状アルキル基である。具体的にはシクロペンチル、シクロヘキシル、ノルボルニル、樟脳基等を挙げることができる。
 化学式(23)において、Rはアルキル基及びアリール基が好ましい。R’は水素原子及び炭素数1~6のアルキル基が好ましく、水素原子、メチル基及びエチル基が好ましく、水素原子が最も好ましい。
 hは2が好ましい。h個のR及びR’はそれぞれ同じでも異なっていてもよい。
 化学式(23)で表されるスルホン酸エステルの好ましい具体例として以下のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000037
 スルホン酸エステルは、市販のものを用いてもよいし、公知の方法で合成したものを用いてもよい。本発明のスルホン酸エステルは、例えば、塩基性条件下、スルホニルクロリドまたはスルホン酸無水物を対応する多価アルコールと反応させることにより合成することができる。
 本発明において、(c)熱酸発生剤の好ましい含有量は、化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上であり、好ましくは20質量部以下、より好ましくは10質量部以下である。0.1質量部以上であれば、樹脂組成物から、加熱後に高い機械強度を有するポリイミド膜が得られる。また、20質量部以下であれば、得られるポリイミド膜中に、熱酸発生剤の熱分解物が残りにくく、ポリイミド膜からのアウトガスを抑制できる。
 (d)光酸発生剤
 本発明の樹脂組成物は、(d)光酸発生剤を含有することで感光性樹脂組成物とすることができる。(d)光酸発生剤を含有することで、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、本発明の樹脂組成物は、(d)光酸発生剤とエポキシ化合物または後述する(e)熱架橋剤を含有することで、光照射部に発生した酸がエポキシ化合物や(e)熱架橋剤の架橋反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。
 (d)光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。これらを2種以上含有してもよく、高感度な感光性樹脂組成物を得ることができる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。
 本発明において、キノンジアジドは5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を含むナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、同一の樹脂組成物中に4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を含有してもよい。
 (d)光酸発生剤のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。さらに増感剤などを必要に応じて含有することもできる。
 本発明において、(d)光酸発生剤の含有量は、高感度化の観点から、化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対して0.01~50質量部が好ましい。このうち、キノンジアジド化合物は3~40質量部が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩の総量は0.5~20質量部が好ましい。
 (e)熱架橋剤
 本発明における樹脂組成物は、下記化学式(31)で表される熱架橋剤(e-1)または下記化学式(32)で表される構造を含む熱架橋剤(e-2)(以下、あわせて(e)熱架橋剤という)を含有してもよい。これらの熱架橋剤は、耐熱性樹脂またはその前駆体、その他添加成分を架橋し、得られる耐熱性樹脂膜の耐薬品性および硬度を高めることができる。
 熱架橋剤(e-1)は下記化学式(31)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000038
 上記化学式(31)中、R31は2~4価の連結基を示す。R32は炭素数1~20の1価の炭化水素基、Cl、Br、IまたはFを示す。R33およびR34は、それぞれ独立してCHOR36(R36は水素または炭素数1~6の1価の炭化水素基)を示す。R35は水素原子、メチル基またはエチル基を示す。sは0~2の整数、tは2~4の整数を示す。R32が複数存在する場合、複数のR32はそれぞれ同じでも異なってもよい。R33およびR34が複数存在する場合、複数のR33およびR34はそれぞれ同じでも異なってもよい。R35が複数存在する場合、複数のR35はそれぞれ同じでも異なってもよい。連結基R31の例を下に示す。
Figure JPOXMLDOC01-appb-C000039
 
 上記化学式中、R41~R60は水素原子、炭素数1~20の1価の炭化水素基またはこれらの炭化水素基の一部の水素原子がCl、Br、IもしくはFで置換された炭化水素基を示す。*は化学式(31)におけるR31の結合点を示す。
 上記化学式(31)中、R33およびR34は、熱架橋性基であるCHOR36を表している。上記化学式(31)の熱架橋剤に適度な反応性を残し、保存安定性に優れることから、R36は炭素数1~4の1価の炭化水素基が好ましく、メチル基またはエチル基がより好ましい。
 化学式(31)で表される構造を含む熱架橋剤の好ましい例を下記に示す。
Figure JPOXMLDOC01-appb-C000040
 熱架橋剤(e-2)は下記化学式(32)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000041
 上記化学式(32)中、R37は水素原子または炭素数1~6の1価の炭化水素基を示す。uは1または2、vは0または1を示す。ただし、u+vは1または2である。*は、化学式(32)中の窒素原子が他の原子と結合していることを示す。
 化学式(32)中、R37は炭素数1~4の1価の炭化水素基が好ましい。また、化合物の安定性や感光性樹脂組成物における保存安定性の観点から、R37はメチル基またはエチル基が好ましく、化合物中に含まれる(CHOR37)基の数が8以下であることが好ましい。
 化学式(32)で表される基を含む熱架橋剤の好ましい例を下記に示す。
Figure JPOXMLDOC01-appb-C000042
 (e)熱架橋剤の含有量は、(a)化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対して10質量部以上100質量部以下が好ましい。(e)熱架橋剤の含有量が10質量部以上100質量部以下であれば、得られる耐熱性樹脂膜の強度が高く、樹脂組成物の保存安定性にも優れる。
 (f)フェノール性水酸基を含む化合物
 必要に応じて、感光性樹脂組成物のアルカリ現像性を補う目的で、フェノール性水酸基を含む化合物を含有してもよい。フェノール性水酸基を含む化合物としては、例えば、本州化学工業(株)製の以下の商品名のもの(Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCR-IPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisP-HAP、TrisP-PA、TrisP-PHBA、TrisP-SA、TrisOCR-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPC-OCHP、Bis25X-OCHP、Bis26X-OCHP、BisOCHP-OC、Bis236T-OCHP、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP)、旭有機材工業(株)製の以下の商品名のもの(BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A)、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオール、8-キノリノールなどが挙げられる。これらのフェノール性水酸基を含む化合物を含有することで、得られる感光性樹脂組成物は、露光前はアルカリ現像液にほとんど溶解せず、露光すると容易にアルカリ現像液に溶解するために、現像による膜減りが少なく、かつ短時間で、容易に現像が行えるようになる。そのため、感度が向上しやすくなる。
 このようなフェノール性水酸基を含む化合物の含有量は、化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対して、好ましくは3質量部以上40質量部以下である。
 (g)密着改良剤
 本発明にかかる樹脂組成物は、(g)密着改良剤を含有してもよい。(g)密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤などが挙げられる。これらの他に下記に示すようなアルコキシシラン含有芳香族アミン化合物、アルコキシシラン含有芳香族アミド化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000043
 また、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物を用いることもできる。そのような化合物として、例えば、芳香族アミン化合物と、エポキシ基、クロロメチル基などのアミノ基と反応する基を含むアルコキシシラン化合物を反応させて得られる化合物などが挙げられる。以上に挙げた密着改良剤を2種以上含有してもよい。これらの密着改良剤を含有することにより、感光性樹脂膜を現像する場合などに、シリコンウェハ、ITO、SiO、窒化ケイ素などの下地基材との密着性を高めることができる。また、耐熱性樹脂膜と下地の基材との密着性を高めることにより洗浄などに用いられる酸素プラズマやUVオゾン処理に対する耐性を高めることもできる。密着改良剤の含有量は、化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対して、0.01~10質量部が好ましい。
 (h)無機粒子
 本発明の樹脂組成物は、耐熱性向上を目的として無機粒子を含有することができる。かかる目的に用いられる無機粒子としては、白金、金、パラジウム、銀、銅、ニッケル、亜鉛、アルミニウム、鉄、コバルト、ロジウム、ルテニウム、スズ、鉛、ビスマス、タングステンなどの金属無機粒子や、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化タングステン、酸化ジルコニウム、炭酸カルシウム、硫酸バリウムなどの金属酸化物無機粒子などが挙げられる。無機粒子の形状は特に限定されず、球状、楕円形状、偏平状、ロット状、繊維状などが挙げられる。また、無機粒子を含有した耐熱性樹脂膜の表面粗さが増大するのを抑制するため、無機粒子の平均粒径は1nm以上100nm以下であることが好ましく、1nm以上50nm以下であればより好ましく、1nm以上30nm以下であればさらに好ましい。
 無機粒子の含有量は、(a)化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対し、3質量部以上が好ましく、より好ましくは5質量部以上、さらに好ましくは10質量部以上であり、100質量部以下が好ましく、より好ましくは80質量部以下、さらに好ましくは50質量部以下である。無機粒子の含有量が3質量部以上であれば耐熱性が十分向上し、100質量部以下であれば耐熱性樹脂膜の靭性が低下しにくくなる。
 (i)界面活性剤
 本発明の樹脂組成物は、塗布性を向上させるために(i)界面活性剤を含有することが好ましい。(i)界面活性剤としては、住友3M(株)製の“フロラード”(登録商標)、DIC(株)製の“メガファック”(登録商標)、旭硝子(株)製の“スルフロン”(登録商標)などのフッ素系界面活性剤、信越化学工業(株)製のKP341、チッソ(株)製のDBE、共栄社化学(株)製の“ポリフロー”(登録商標)、“グラノール”(登録商標)、ビック・ケミー(株)製のBYKなどの有機シロキサン界面活性剤、共栄社化学(株)製のポリフローなどのアクリル重合物界面活性剤が挙げられる。界面活性剤は、化学式(1)で表される構造を有する樹脂100質量部、または(a’)化学式(4)で表される繰り返し単位を主成分とする樹脂100質量部に対し、0.01~10質量部含有することが好ましい。
 (樹脂組成物の製造方法)
 次に、本発明の第1の形態にかかる樹脂組成物を製造する方法について説明する。
 例えば、(a)化学式(1)で表される構造を有する樹脂、必要により(c)熱酸発生剤、(d)光酸発生剤、(e)熱架橋剤、(f)フェノール性水酸基を含む化合物、(g)密着改良剤、(h)無機粒子および(i)界面活性剤などを(b)溶剤に溶解させることにより、本発明の樹脂組成物の実施形態の一つであるワニスを得ることができる。溶解方法としては、撹拌や加熱が挙げられる。(d)光酸発生剤を含む場合、加熱温度は感光性樹脂組成物としての性能を損なわない範囲で設定することが好ましく、通常、室温~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法がある。また、(i)界面活性剤などの撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。
 化学式(1)で表される構造を有する樹脂は、以下に説明する2つの方法によって製造される。
 第1の製造方法は、
 (A)ジアミン化合物のアミノ基と反応する末端アミノ基封止剤を反応溶媒に20質量%以下で溶解した溶液を、ジアミン化合物に10分以上の時間をかけて徐々に加えて、化学式(41)で表される化合物を生成させる工程と、
Figure JPOXMLDOC01-appb-C000044
 化学式(41)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。
Figure JPOXMLDOC01-appb-C000045
 化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(41)中のZの結合点を示す。
 (B)化学式(41)で表される化合物、テトラカルボン酸、および(A)工程で末端アミノ基封止剤と反応せずに残存するジアミン化合物を反応させる工程と、を含む。
Figure JPOXMLDOC01-appb-C000046
 化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。
 第1の製造方法では、1段階目の(A)工程において、ジアミン化合物の有する2つのアミノ基のうち、1つのアミノ基だけに末端アミノ基封止剤を反応させる。このため、1段階目の(A)工程においては以下に挙げる3つの操作を行うことが好ましい。
 1つめの操作は、ジアミン化合物のモル数を、末端アミノ基封止剤のモル数と同等かそれ以上とすることである。好ましいジアミン化合物のモル数は、末端アミノ基封止剤のモル数の2倍以上であり、5倍以上のモル数がより好ましく、さらに好ましくは10倍以上である。なお、末端アミノ基封止剤に対して過剰のジアミン化合物は、1段階目の(A)工程で未反応のまま残留し、2段階目の(B)工程でテトラカルボン酸と反応する。
 2つ目の操作は、適切な反応溶媒にジアミン化合物を溶解させた状態で、末端アミノ基封止剤を10分以上の時間をかけて徐々に加えることである。20分以上がより好ましく、30分以上がさらに好ましい。なお、加える方法は、連続的であっても断続的であってもよい。すなわち、滴下ロートなどを用いて一定の速度で反応系に加える方法でも、適切な間隔で分割して加える方法でも好ましく用いられる。
 3つ目の操作は、2つ目の操作において、末端アミノ基封止剤をあらかじめ反応溶媒に溶解して使用することである。溶解させたときの末端アミノ基封止剤の濃度は、5~20質量%である。より好ましくは15質量%以下であり、さらに好ましくは10質量%以下である。
 樹脂の製造に際し、以上の操作を行うことによって、本発明の樹脂組成物中の化学式(3)で表される化合物の含有量を本発明の範囲に収めることができる。
 第2の製造方法は、
 (C)ジアミン化合物とテトラカルボン酸を反応させて化学式(42)で表される構造を有する樹脂を生成させる工程と、
Figure JPOXMLDOC01-appb-C000047
 
 化学式(42)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。
 (D)化学式(42)で表される構造を有する樹脂と、化学式(42)で表される構造を有する樹脂の末端アミノ基と反応する末端アミノ基封止剤とを反応させて、化学式(1)で表される構造を有する樹脂を生成させる工程と、を含む。
Figure JPOXMLDOC01-appb-C000048
 化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。
Figure JPOXMLDOC01-appb-C000049
 化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(1)中のZの結合点を示す。
 第2の製造方法では、ジアミン化合物と末端アミノ基封止剤が直接反応することがないため、化合物(3)で表される化合物の生成を抑制できる。
 1段階目の(C)工程において、化学式(42)で表される構造を有する樹脂を生成させるためには、ジアミン化合物のモル数を、テトラカルボン酸のモル数の1.01以上とすることが好ましく、1.05倍以上がより好ましく、1.1倍以上のモル数がより好ましく、1.2倍以上がさらに好ましい。1.01倍よりも小さいと、ジアミン化合物が樹脂の末端に位置する確率が減少するため、化学式(42)で表される構造を有する樹脂が得られにくい。
 また、ジアミン化合物のモル数は、テトラカルボン酸のモル数の2.0倍以下が好ましく、1.8倍以下がより好ましく、1.5倍以下がさらに好ましい。2.0倍よりも大きいと、1段階目の反応終了後に未反応のジアミン化合物が残留し、2段階目の(C)工程において化学式(3)で表される化合物が生成するおそれがある。
 2段階目の(D)工程では、末端アミノ基封止剤を加える操作として、第1の製造方法で記載した方法を用いてもよい。すなわち、時間をかけて末端アミノ基封止剤を加えてもよく、また末端アミノ基封止剤を適切な反応溶媒に溶解させて加えてもよい。1段階目の反応でジアミン化合物が残留している場合には、これらの方法によって、樹脂組成物中の化合物(3)で表される化合物の含有量を本発明の範囲に収めることができる。
 なお、後述の通り、使用するジアミン化合物のモル数とテトラカルボン酸のモル数は等しいことが好ましい。よって、2段階目の(D)工程後に、テトラカルボン酸を加えて、ジアミン化合物のモル数とテトラカルボン酸のモル数を等しくすることが好ましい。
 さらに、化学式(1)で表される構造を有する樹脂は第1の製造方法および第2の製造方法を併用して製造されたものであってもよい。
 前記の末端アミノ基封止剤としては、二炭酸エステルや二チオ炭酸エステルなどが好ましく用いられる。これらのうち、二炭酸ジアルキルエステルや、二チオ炭酸ジアルキルエステルが好ましい。より好ましくは二炭酸ジアルキルエステルである。具体的には、二炭酸ジエチル、二炭酸ジイソプロピル、二炭酸ジシクロヘキシル、二炭酸ジtert-ブチル、二炭酸ジtert-ペンチルなどであり、これらのうち二炭酸ジtert-ブチルが最も好ましい。
 なお、前記の第1の製造方法および第2の製造方法において、テトラカルボン酸として、対応する酸二無水物、活性エステル、活性アミドなども使用することもできる。また、ジアミン化合物は、対応するトリメチルシリル化ジアミンなども使用することもできる。また、得られる樹脂のカルボキシ基はアルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンと塩を形成したものでも、炭素数1~10の炭化水素基または炭素数1~10のアルキルシリル基でエステル化されたものであってもよい。
 また、前記の第1の製造方法および第2の製造方法において、使用するジアミン化合物のモル数とテトラカルボン酸のモル数は等しいことが好ましい。等しければ、樹脂組成物から高い機械特性の樹脂膜が得られやすい。
 前記の第1の製造方法および第2の製造方法において、反応溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、N-メチル-2-ジメチルプロパンアミド、N-エチル-2-メチルプロパンアミド、N-メチル-2,2-ジメチルプロパンアミド、N-メチル-2-メチルブタンアミド、N,N-ジメチルイソブチルアミド、N,N-ジメチル-2-メチルブタンアミド、N,N-ジメチル-2,2-ジメチルプロパンアミド、N-エチル-N-メチル-2-メチルプロパンアミド、N,N-ジメチル-2-メチルペンタンアミド、N,N-ジメチル-2,3-ジメチルブタンアミド、N,N-ジメチル-2-エチルブタンアミド、N,N-ジエチル-2-メチルプロパンアミド、N,N-ジメチル-2,2-ジメチルブタンアミド、N-エチル-N-メチル-2,2-ジメチルプロパンアミド、N-メチル-N-プロピル-2-メチルプロパンアミド、N-メチル-N-(1-メチルエチル)-2-メチルプロパンアミド、N,N-ジエチル-2,2-ジメチルプロパンアミド、N,N-ジメチル-2,2-ジメチルペンタンアミド、N-エチル-N-(1-メチルエチル)-2-メチルプロパンアミド、N-メチル-N-(2-メチルプロピル)-2-メチルプロパンアミド、N-メチル-N-(1-メチルエチル)-2,2-ジメチルプロパンアミド、N-メチル-N-(1-メチルプロピル)-2-メチルプロパンアミドなどのアミド類、γ-ブチロラクトン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,1,3,3-テトラメチルウレアなどのウレア類、ジメチルスルホキシド、テトラメチレンスルホキシドなどのスルホキシド類、ジメチルスルホン、スルホランなどのスルホン類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコール、シクロヘキサノンなどのケトン類、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル類、トルエン、キシレンなどの芳香族炭化水素類、メタノール、エタノール、イソプロパノールなどのアルコール類、および水などを単独、または2種以上使用することができる。
 また、反応溶媒に樹脂組成物として使用する(b)溶剤と同じものを用いたり、反応終了後に(b)溶剤を添加したりすることで、樹脂を単離することなく目的の樹脂組成物を得ることができる。
 得られた樹脂組成物は、濾過フィルターを用いて濾過し、パーティクルを除去することが好ましい。フィルター孔径は、例えば10μm、3μm、1μm、0.5μm、0.2μm、0.1μm、0.07μm、0.05μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。樹脂組成物中のパーティクル(粒径1μm以上)の個数は、100個/mL以下が好ましい。100個/mLよりも多いと、樹脂組成物から得られる耐熱性樹脂膜の機械特性が低下する。
 次に、本発明の第2の形態にかかる樹脂組成物を製造する方法について説明する。
 例えば、(a’)化学式(4A)で表される繰り返し単位を主成分とする樹脂を含む樹脂組成物樹脂、必要により(c)熱酸発生剤、(d)光酸発生剤、(e)熱架橋剤、(f)フェノール性水酸基を含む化合物、(g)密着改良剤、(h)無機粒子および(i)界面活性剤などを(b)溶剤に溶解させることにより、本発明の樹脂組成物の実施形態の一つであるワニスを得ることができる。溶解方法としては、撹拌や加熱が挙げられる。(d)光酸発生剤を含む場合、加熱温度は感光性樹脂組成物としての性能を損なわない範囲で設定することが好ましく、通常、室温~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法がある。また、(i)界面活性剤など撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。
 化学式(4A)で表される繰り返し単位を主成分とする樹脂は、以下に説明する2つの方法によって製造される。
 第1の製造方法は、
 (E)ジアミン化合物と、ジアミン化合物のアミノ基と反応する末端アミノ基封止剤とを反応させて化学式(41)で表される化合物を生成させる工程と、
Figure JPOXMLDOC01-appb-C000050
 化学式(41)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。
Figure JPOXMLDOC01-appb-C000051
 化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(41)中のZの結合点を示す。
 (F)化学式(41)で表される化合物、テトラカルボン酸二無水物および(E)工程で末端アミノ基封止剤と反応せずに残存するジアミン化合物を反応させて下記(A’)および(B’)からなる群より選ばれる一つ以上の樹脂を生成させる工程と、
 (A’)分子内に化学式(52)で表される部分構造を2つ以上含む樹脂(A’-1)と、分子内に化学式(6A)で表される部分構造を2つ以上含む樹脂(A’-2)と、を含む樹脂混合物
 (B’)分子内に化学式(52)で表される部分構造と、化学式(6A)で表される部分構造をそれぞれ1つ以上含む樹脂
Figure JPOXMLDOC01-appb-C000052
 化学式(52)および(6A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは上記化学式(2)で表される構造を示す。化学式(52)および(6A)中、*は他の原子と結合していることを示す。
 (G)化学式(52)で表される部分構造と反応する末端カルボニル基封止剤とを反応させて、化学式(5A)で表される構造を有する樹脂を生成させる工程と、を含む。
Figure JPOXMLDOC01-appb-C000053
 化学式(4A)および(5A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(5A)中、Wは化学式(7)で表される構造を示す。化学式(5A)中、*は他の原子と結合していることを示す。化学式(7)中のδは、炭素数2以上の1価の炭化水素基を示す。化学式(7)中のεは、酸素原子または硫黄原子を示す。化学式(7)中の*は化学式(5A)中のWの結合点を示す。
 第1の製造方法では、1段階目の(E)工程において、ジアミン化合物の有する2つのアミノ基のうち、1つのアミノ基だけに末端アミノ基封止剤を反応させる。このため、1段階目の(E)工程においてはジアミン化合物のモル数を、末端アミノ基封止剤のモル数と同等かそれ以上とすることが好ましい。好ましいジアミン化合物のモル数は、末端アミノ基封止剤のモル数の2倍以上であり、5倍以上のモル数がより好ましく、10倍以上のモル数がさらに好ましい。
 なお、末端アミノ基封止剤に対して過剰のジアミン化合物は、1段階目の(E)工程で未反応のまま残留し、2段階目の(F)工程でテトラカルボン酸と反応する。
 3段階目の(G)工程において、末端カルボニル基封止剤のモル数は、1段階目の(E)工程で使用する末端アミノ基封止剤のモル数の1~2倍が好ましい。1倍以上であれば、樹脂の末端に保護されていない酸無水物基が生成しにくい。2倍以下であれば、未反応の末端カルボニル基封止剤が増加するのを防ぐことができる。
 第2の製造方法は
 (H)テトラカルボン酸二無水物と、末端カルボニル基封止剤とを反応させて化学式(53)で表される化合物を生成させる工程と、
Figure JPOXMLDOC01-appb-C000054
 化学式(53)中、Xは炭素数2以上の4価のテトラカルボン酸残基を示す。Wは化学式(7)で表される構造を示す。
Figure JPOXMLDOC01-appb-C000055
 化学式(7)中のδは、炭素数2以上の1価の炭化水素基を示し、εは、酸素原子または硫黄原子を示す。化学式(7)中の*は化学式(53)中のWの結合点を示す。
 (I)化学式(53)で表される化合物、ジアミン化合物および(H)工程で末端カルボニル基封止剤と反応せずに残存するテトラカルボン酸二無水物を反応させて下記(A’’)および(B’’)からなる群より選ばれる一つ以上の樹脂を生成させる工程と、
 (A’’)分子内に化学式(54)で表される部分構造を2つ以上含む樹脂(A’’-1)と、分子内に化学式(5A)で表される部分構造を2つ以上含む樹脂(A’’-2)と、を含む樹脂混合物
 (B’’)分子内に化学式(54)で表される部分構造と化学式(5A)で表される部分構造をそれぞれ1つ以上含む樹脂
Figure JPOXMLDOC01-appb-C000056
 化学式(54)および(5A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Wは上記化学式(7)で表される構造を示す。化学式(54)および(5A)中、*は他の原子と結合していることを示す。
 (J)化学式(54)で表される部分構造と末端アミノ基封止剤とを反応させて、化学式(6A)で表される構造を有する樹脂を生成させる工程と、を含む。
Figure JPOXMLDOC01-appb-C000057
 化学式(4A)および(6A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。化学式(2)中のαは、炭素数2以上の1価の炭化水素基を示す。化学式(2)中のβおよびγは、それぞれ独立して酸素原子または硫黄原子を示す。化学式(2)中の*は化学式(6A)中のZの結合点を示す。
 第2の製造方法では、1段階目の(H)工程において、テトラカルボン酸二無水物の有する2つの酸無水物基のうち、1つの酸無水物基だけに末端カルボニル基封止剤を反応させる。このため、1段階目の(H)工程においてはテトラカルボン酸二無水物のモル数を、末端カルボニル基封止剤のモル数と同等かそれ以上とすることが好ましい。好ましいテトラカルボン酸二無水物のモル数は、末端カルボニル基封止剤のモル数の2倍以上であり、5倍以上のモル数がより好ましく、10倍以上のモル数がさらに好ましい。
 なお、末端カルボニル基封止剤に対して過剰のテトラカルボン酸二無水物は、1段階目の(H)工程で未反応のまま残留し、2段階目の(I)工程でジアミン化合物と反応する。
 3段階目の(J)工程において、末端アミノ基封止剤のモル数は、1段階目の(H)工程で使用する末端カルボニル基封止剤のモル数の1~2倍が好ましい。1倍以上であれば、樹脂の末端に保護されていないアミノ基が生成しにくい。2倍以下であれば、未反応の末端アミノ基封止剤が増加するのを防ぐことができる。
 なお、化学式(4A)で表される繰り返し単位を主成分とする樹脂の第1の製造方法1および第2の製造方法において、使用するジアミン化合物のモル数とテトラカルボン酸のモル数が等しいことが好ましい。等しければ、この方法によって得られる樹脂は、化学式(5A)で表される部分構造と化学式(6A)で表される部分構造をほぼ等モルで含む。この樹脂を加熱すると、末端に発生する酸無水物基のモル数とアミノ基のモル数が等しくなりやすい。その結果、得られるポリイミド樹脂の重合度が向上しやすい。
 前記の末端アミノ基封止剤としては、化学式(1)で表される構造を有する樹脂の製造方法において使用する末端アミノ基封止剤を使用することができる。
 前記の末端カルボニル基封止剤としては、炭素数2~10のアルコールまたはチオールなどが好ましく用いられる。これらのうち、アルコールが好ましい。具体的には、エチルアルコール、n-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、n-ヘキシルアルコール、n-ヘプチルアルコール、n-オクチルアルコール、n-ノニルアルコール、n-デシルアルコール、イソプロピルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソペンチルアルコール、sec-ペンチルアルコール、tert-ペンチルアルコール、イソヘキシルアルコール、sec- ヘキシルアルコール、シクロプロピルアルコール、シクロブチルアルコール、シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール、ノルボルニルアルコール、アダマンチルアルコールなどが挙げられる。これらのアルコールのうち、イソプロピルアルコール、シクロヘキシルアルコール、tert-ブチルアルコール、tert-ペンチルアルコールなどであり、これらのうち、イソプロピルアルコール、シクロヘキシルアルコール、tert-ブチルアルコール、tert-ペンチルアルコールがより好ましく、tert-ブチルアルコールが最も好ましい。
 また、アルコールまたはチオールの反応を促進させるため、触媒を添加して行うことが好ましい。触媒を添加すれば、過剰にアルコールまたはチオール使用する必要がない。このような触媒としては、イミダゾール類、ピリジン類が挙げられる。これらの触媒のうち、1-メチルイミダゾール、N,N-ジメチル-4-アミノピリジンが好ましい。
 なお、得られる樹脂のカルボキシ基はアルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンと塩を形成したものでも、炭素数1~10の炭化水素基または炭素数1~10のアルキルシリル基でエステル化されたものであってもよい。
 反応溶媒としては、化学式(1)で表される構造を有する樹脂の製造方法において使用する反応溶媒を使用することができる。
 上記の製造方法により得られた第2の形態にかかる樹脂組成物は、濾過フィルターを用いて濾過し、ゴミなどの異物を除去することが好ましい。フィルター孔径や材質は、第1の形態に係る樹脂組成物と同様のものを使用することができる。
 (耐熱性樹脂膜の製造方法)
 次に、本発明の樹脂組成物を用いて耐熱性樹脂膜を製造する方法について説明する。その方法は、本発明の樹脂組成物を塗布する工程、および得られた塗布膜を220℃以上の温度で加熱する工程を含む。
 まず、本発明の樹脂組成物の実施形態の一つであるワニスを支持体上に塗布する。支持体としては、シリコン、ガリウムヒ素などのウェハ基板、サファイアガラス、ソーダ石灰硝子、無アルカリ硝子などのガラス基板、ステンレス、銅などの金属基板あるいは金属箔、セラミックス基板などが挙げられるがこれらに限定されない。
 ワニスの塗布方法としては、スピン塗布法、スリット塗布法、ディップ塗布法、スプレー塗布法、印刷法などが挙げられ、これらを組み合わせてもよい。耐熱性樹脂膜を電子デバイス用基板として用いる場合には、大型サイズのガラス基板上に塗布する必要があるため、特にスリット塗布法が好ましく用いられる。
 スリット塗布を行う場合、樹脂組成物の粘度が変化すると塗布性が変化するため、スリット塗布装置のチューニングをやり直す必要がある。よって、樹脂組成物の粘度変化は極力小さいことが好ましい。好ましい粘度変化の範囲は±10%以下である。より好ましくは±5%以下であり、さらに好ましくは±3%以下である。粘度変化の範囲が10%以下であれば、得られる耐熱性樹脂膜の膜厚の均一性を5%以下に抑えることができる。
 塗布に先立ち、支持体を予め前処理してもよい。例えば、前処理剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を用いて、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法で支持体表面を処理する方法が挙げられる。必要に応じて、減圧乾燥処理を施し、その後50℃~300℃の熱処理により支持体と前処理剤との反応を進行させることができる。
 塗布後は、樹脂組成物の塗膜を乾燥させることが一般的である。乾燥方法としては、減圧乾燥や加熱乾燥、あるいはこれらを組み合わせて用いることができる。減圧乾燥の方法としては、例えば、真空チャンバー内に塗膜を形成した支持体を置き、真空チャンバー内を減圧することで行う。また、加熱乾燥はホットプレート、オーブン、赤外線などを使用して行なう。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上に塗膜を保持して加熱乾燥する。
 プロキシピンの材質としては、アルミニウムやステンレス等の金属材料、あるいはポリイミド樹脂や“テフロン(登録商標)”等の合成樹脂があり、耐熱性があればいずれの材質のプロキシピンを用いてもかまわない。プロキシピンの高さは、支持体のサイズ、樹脂組成物に用いられる(b)溶剤の種類、乾燥方法等により様々選択可能であるが、0.1~10mm程度が好ましい。加熱温度は樹脂組成物に用いられる(b)溶剤の種類や目的により様々であり、室温から180℃の範囲で1分間~数時間行うことが好ましい。ただし、樹脂組成物が(c)熱酸発生剤を含む場合には、室温から150℃の範囲で1分間~数時間行うことが好ましい。150℃よりも高い温度で加熱すると、(c)熱酸発生剤が分解して酸が発生し、得られる塗布膜の保管安定性が低下する。
 本発明の樹脂組成物に(d)光酸発生剤を含む場合、次に説明する方法により、乾燥後の塗膜からパターンを形成することができる。塗膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。ポジ型の感光性を有する場合、露光部が現像液に溶解する。ネガ型の感光性を有する場合、露光部が硬化し、現像液に不溶化する。
 露光後、現像液を用いてポジ型の場合は露光部を、またネガ型の場合は非露光部を除去することによって所望のパターンを形成する。現像液としては、ポジ型・ネガ型いずれの場合もテトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルアクリルアミド、N,N-ジメチルイソブチルアミドなどのアミド類、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、ジメチルスルホキシドなどのスルホキシド類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類、メタノール、エタノール、イソプロパノールなどのアルコール類などを単独あるいは数種を組み合わせたものを添加してもよい。またネガ型においては、アルカリ水溶液を含まない上記アミド類、エステル類、スルホキシド類、ケトン類、アルコール類などを単独あるいは数種を組み合わせたものを用いることもできる。現像後は水にてリンス処理をすることが一般的である。ここでも乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノール、イソプロピルアルコールなどのアルコール類などを水に加えてリンス処理をしてもよい。
 最後に180℃以上600℃以下の範囲で加熱処理し、塗膜を焼成することにより耐熱性樹脂膜を製造することができる。本発明においては、化学式(1)または化学式(6)中のZ、すなわち化学式(2)で表される構造の熱分解を促進するため、220℃以上の温度で加熱することがより好ましい。また、樹脂組成物が(c)熱酸発生剤を含む場合には、加熱する温度は、(c)熱酸発生剤の熱分解開始温度以上であることがより好ましい。熱酸発生剤の熱分解開始温度以上で加熱すると、前述の通り、(c)熱酸発生剤から発生した酸によって、化学式(1)または化学式(6)中の末端構造Zの熱分解が促進される。このため、引張り伸度および引張り最大応力に優れるポリイミド膜が得られる。
 得られた耐熱性樹脂膜は、半導体素子の表面保護膜や層間絶縁膜、有機エレクトロルミネッセンス素子(有機EL素子)の絶縁層やスペーサー層、薄膜トランジスタ基板の平坦化膜、有機トランジスタの絶縁層、リチウムイオン二次電池の電極用バインダー、半導体用接着剤などに好適に用いられる。
 また、本発明の耐熱性樹脂膜はフレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブル電子ペーパー用基板、フレキシブル太陽電池用基板、フレキシブルカラーフィルタ用基板などの電子デバイス用基板として好適に用いられる。これらの用途において、耐熱性樹脂膜の好ましい引張り伸度および引っ張り最大応力は、それぞれ15%以上、150MPa以上である。
 本発明における耐熱性樹脂膜の膜厚は特に限定されるものではないが、例えば電子デバイス用基板として用いられる場合、膜厚は5μm以上が好ましい。より好ましくは7μm以上であり、さらに好ましくは10μm以上である。膜厚が5μm以上であれば、フレキシブルディスプレイ用基板として十分な機械特性が得られる。
 耐熱性樹脂膜を電子デバイス用基板として用いる場合、耐熱性樹脂膜の膜厚の面内均一性は、5%以下が好ましい。より好ましくは4%以下であり、さらに好ましくは3%以下である。耐熱性樹脂膜の膜厚の面内均一性は、5%以下であれば、耐熱性樹脂膜上に形成する電子デバイスの信頼性が向上する。
 以下では本発明の製造方法によって得られた耐熱性樹脂膜を電子デバイスの基板として用いる方法を説明する。その方法は、上述の方法で樹脂膜を形成する工程、およびその樹脂膜の上に電子デバイスを形成する工程を含む。
 まず、本発明の製造方法によって耐熱性樹脂膜をガラス基板などの支持体の上に製造する。
 つづいて耐熱性樹脂膜の上に駆動素子や電極を形成する等により、電子デバイスを形成する。例えば、電子デバイスが画像表示装置の場合は、画素駆動素子または着色画素を形成する等により、電子デバイスを形成する。画像表示装置が有機ELディスプレイの場合、画像駆動素子であるTFT、第一電極、有機EL発光素子、第二電極、封止膜を順に形成する。カラーフィルタの場合、必要に応じてブラックマトリックスを形成した後、赤、緑、青などの着色画素を形成する。
 必要に応じて耐熱性樹脂膜と画素駆動素子または着色画素の間に、ガスバリア膜を設けてもよい。ガスバリア膜を設けることで、画像表示装置の外部から水分や酸素が耐熱性樹脂膜を通過して画素駆動素子や着色画素の劣化を引き起こすのを防ぐことができる。ガスバリア膜としては、シリコン酸化膜(SiOx)、シリコン窒素膜(SiNy)、シリコン酸窒化膜(SiOxNy)などの無機膜を単膜、あるいは複数の種類の無機膜を積層したものが用いられる。これらのガスバリア膜の成膜方法は、化学気相成長法(CVD)や物理気相成長法(PVD)などの方法を用いて行われる。さらには、ガスバリア膜としては、これらの無機膜とポリビニルアルコールなどの有機膜とを交互に積層したものなども用いることができる。
 最後に支持体から耐熱性樹脂膜を剥離し、耐熱性樹脂膜を含む電子デバイスを得る。支持体と耐熱性樹脂膜の界面で剥離する方法には、レーザーを用いる方法、機械的な剥離方法、支持体をエッチングする方法などが挙げられる。レーザーを用いる方法では、ガラス基板などの支持体に対し、画像表示素子が形成されていない側からレーザーを照射することで、画像表示素子にダメージを与えることなく、剥離を行うことができる。また、剥離しやすくするためのプライマー層を、支持体と耐熱性樹脂膜の間に設けても構わない。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 (1)ポリイミドフィルム(耐熱性樹脂膜)の作製
 塗布装置Mark-7(東京エレクトロン株式会社製)を用いて、8インチのガラス基板上にワニスをスピンコートし、110℃で8分間、乾燥した。つづいて、イナートオーブン(光洋サーモシステム株式会社製 INH-21CD)を用いて、窒素雰囲気下(酸素濃度20ppm以下)、50℃から4℃/minで昇温し、350度で30分加熱した。冷却後、ガラス基板をフッ酸に4分間浸漬してポリイミドフィルムをガラス基板から剥離し、風乾した。
 (2)耐熱性樹脂膜の引張り伸度、引張り最大応力、ヤング率の測定
 テンシロン万能材料試験機(株式会社オリエンテック製 RTM-100)を用い、日本工業規格(JIS K 7127:1999)に従って測定を行った。
 測定条件は、試験片の幅10mm、チャック間隔50mm、試験速度50mm/min、側定数n=10とした。
 (3)液中パーティクルの測定
 液中パーティクルカウンター(リオン株式会社製 XP-65)を用いて、ワニス中のパーティクル(粒径1μm以上)の個数を測定した。
 (4)化学式(4)で表される化合物の含有量測定
 液体クロマトグラフ質量分析計(液体クロマトグラフ:株式会社島津製作所製 LC-20A、質量分析計:株式会社エービーサイエックス製 API4000)を用いて、合成例AおよびBで得られた標準試料から検量線を作成した。つづいて、同じ装置を用いてワニス中の化学式(4)で表される化合物の含有量を測定した。
 (5)H-NMRスペクトル測定
 核磁気共鳴装置(日本電子株式会社製 EX-270)を用い、重溶媒に重ジメチルスルホキシドを用いてH-NMRスペクトルを測定した。
 (6)粘度
 粘度計(東機産業株式会社製、TVE-22H)を用い、25℃にてワニスの粘度測定を行った。
 (7)ワニスの保管
 各合成例で得られたワニスを、クリーンボトル(株式会社アイセロ製)の中で、23℃、または30℃で30日、または60日間放置した。保管後のワニスを用いて、(6)の方法で粘度を測定し、保管後のワニスにより(1)の方法で作製したポリイミドフィルムについて、(2)および(3)と同様にして引張り伸度、引張り最大応力、ヤング率、液中パーティクルの測定を行った。粘度の変化率は下式に従って求めた。
 粘度の変化率(%)=(保管後の粘度-保管前の粘度)/保管前の粘度×100
 (8)耐熱性樹脂膜の膜厚の面内均一性の測定
 (1)と同様にしてガラス基板上にポリイミドフィルムを作製し、ガラス基板の端から10mmを除外したエリアの部分を、膜厚測定装置(RE-8000 スクリーン株式会社製)を用いて、10mmおきに耐熱性樹脂膜の膜厚を測定した。測定した膜厚から、下式に従って膜厚の面内均一性を求めた。
 膜厚の面内均一性(%)=(膜厚の最大値-膜厚の最小値)/(膜厚の平均値×2)×100
 (9)熱分解開始温度の測定
 示差走査熱量測定(株式会社島津製作所 DSC-50)を用いた。アルミ製のセルに試料((c)熱酸発生剤)を入れて、室温から400℃まで10℃/minで昇温して測定した。観測された吸熱ピークのピークトップ温度を熱分解開始温度とした。
 以下、下記の合成例等で使用する化合物の略称を記載する。
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
PDA:p-フェニレンジアミン
DAE:4,4’-ジアミノジフェニルエーテル
DIBOC:二炭酸ジ-tert-ブチル
NMP:N-メチル-2-ピロリドン
THF:テトラヒドロフラン。
TAG-1(熱分解開始温度:213℃):
Figure JPOXMLDOC01-appb-C000058
TAG-2(熱分解開始温度:203℃):
Figure JPOXMLDOC01-appb-C000059
TAG-3(熱分解開始温度:167℃):
Figure JPOXMLDOC01-appb-C000060
TAG-4(熱分解開始温度:160℃):
Figure JPOXMLDOC01-appb-C000061
TAG-5(熱分解開始温度:149℃):
Figure JPOXMLDOC01-appb-C000062
TAG-6(熱分解開始温度:145℃):
Figure JPOXMLDOC01-appb-C000063
TAG-7(熱分解開始温度:129℃):
Figure JPOXMLDOC01-appb-C000064
 合成例A
 200mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、THF30gを投入し、0℃に冷却した。撹拌しながらPDA5.407g(50.00mmol)を入れて、THF10gで洗いこんだ。つづいて、DIBOC22.92g(105.0mmol)をTHF40gで希釈したものを1時間かけて滴下させながら加えた。滴下終了後、室温に昇温した。しばらくして、反応溶液中に析出物が現れた。12時間後、反応溶液を濾過して析出物を回収し、50℃で乾燥した。析出物のH-NMRスペクトル測定を行い、化学式(51)で表される化合物であることを確認し、標準試料とした。
Figure JPOXMLDOC01-appb-C000065
 合成例B
 200mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、THF30gを投入し、0℃に冷却した。撹拌しながらDAE10.01g(50.00mmol)を入れて、THF10gで洗いこんだ。つづいて、DIBOC22.92g(105.0mmol)をTHF40gで希釈したものを1時間かけて滴下させながら加えた。滴下終了後、室温に昇温した。しばらくして、反応溶液中に析出物が現れた。12時間後、反応溶液を濾過して析出物を回収し、50℃で乾燥した。析出物のH-NMRスペクトル測定を行い、化学式(52)で表される化合物であることを確認し、標準試料とした。
Figure JPOXMLDOC01-appb-C000066
 合成例1:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、BPDA26.48g(90.00mmol)を投入し、NMP10gで洗いこんだ。4時間後、DIBOC3.274g(15.00mmol)を加えて、NMP10gで洗いこんだ。さらに1時間後、BPDA2.942g(10.00mmol)加えて、NMP10gで洗いこんだ。2時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例2:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを10分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例3:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを20分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例4:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを30分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例5:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを60分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例6:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを120分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例7:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP80gを投入し、40℃に昇温した。昇温後、撹拌しながらDAE20.02g(100.0mmol)を入れて、NMP10gで洗いこんだ。DAEが溶解したことを確認し、PMDA19.63g(90.00mmol)を投入し、NMP10gで洗いこんだ。2時間後、DIBOC3.274g(15.00mmol)を加えて、NMP10gで洗いこんだ。さらに1時間後、PMDA2.181g(10.00mmol)加えて、NMP10gで洗いこんだ。2時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例8:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらDAE20.02g(100.0mmol)を入れて、NMP10gで洗いこんだ。DAEが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを20分かけて滴下させながら加えた。滴下が完了してから、1時間後、PMDA21.81g(100.00mmol)加えて、NMP10gで洗いこんだ。2時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例9:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)を30分かけて滴下させながら加え、NMP20gで洗いこんだ。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例10:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC3.274g(15.00mmol)を1分かけて加え、NMP20gで洗いこんだ。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例11:
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらDAE20.02g(100.0mmol)を入れて、NMP10gで洗いこんだ。DAEが溶解したことを確認し、DIBOC3.274g(15.00mmol)をNMP20gで希釈したものを1分かけて加えた。1時間後、PMDA21.81g(100.00mmol)加えて、NMP10gで洗いこんだ。2時間後、冷却した。反応溶液をフィルター孔径0.2μmのフィルターで濾過してワニスとした。
 実施例1
 A:合成例1で得られたワニスを用いて、液中パーティクルを測定するとともに、上記の(1)の方法でポリイミドフィルムを作製し、引張り伸度、引張り最大応力、ヤング率、の測定を行った。
 B:合成例1で得られたワニスを、クリーンボトル(株式会社アイセロ製)の中で、23℃で30日間保管した。その後、保管後のワニスの液中パーティクルを測定するとともに、ポリイミドフィルムを作製し、引張り伸度、引張り最大応力、ヤング率、の測定を行った。
 実施例2~8、比較例1~3
 表1~2に記載のとおり、合成例2~11で得られたワニスを用いて、実施例1と同様の評価を行った。
 実施例1~8および比較例1~3の評価結果を表1~2に示す。
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
 実施例11
 C:合成例1で得られたワニスを用いて、粘度の測定を行った。同じワニスを用いて、スリット塗布装置(東レエンジニアリング株式会社製)のチューニングを行った。つづいて、同じスリット塗布装置で、縦350mm×横300mm×厚さ0.5mmの無アルカリガラス基板(AN-100、旭硝子株式会社製)上に、塗布を行った。つづいて、VCDおよびホットプレートで乾燥後、ガスオーブン(INH-21CD 光洋サーモシステム株式会社製)を用いて、窒素雰囲気下(酸素濃度20ppm以下)、500℃で30分加熱して、ガラス基板上に耐熱性樹脂膜を形成した。形成した耐熱性樹脂膜の膜厚の面内均一性を測定した。
 D:合成例1で得られたワニスを、クリーンボトル(株式会社アイセロ製)の中で、23℃で30日間保管した。その後、保管後のワニスの粘度の測定を行った。同じワニスを用いて、Cでチューニング済みのスリット塗布装置で、Cと同様にガラス基板上に塗布を行った。つづいて、Cと同様に、ガラス基板上に耐熱性樹脂膜を形成し、形成した耐熱性樹脂膜の膜厚の面内均一性を測定した。
 実施例12~16
 表3に記載のとおり、合成例2~6で得られたワニスを用いて、実施例11と同様の評価を行った。
 実施例11~16の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000069
 実施例21
 実施例1のBで得られた耐熱性樹脂膜の上にCVDによりSiO、Siの積層から成るガスバリア膜を成膜した。つづいてTFTを形成し、このTFTを覆う状態でSiから成る絶縁膜を形成した。次に、この絶縁膜にコンタクトホールを形成した後、このコンタクトホールを介してTFTに接続される配線を形成した。
 さらに、配線の形成による凹凸を平坦化するために、平坦化膜を形成した。次に、得られた平坦化膜上に、ITOからなる第一電極を配線に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャントを用いたウエットエッチングによりパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、加熱脱水して平坦化膜付き電極基板を得た。次に、第一電極の周縁を覆う形状の絶縁膜を形成した。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設けた。次いで、基板上方の全面にAl/Mgから成る第二電極を形成した。さらにCVDによりSiO、Siの積層から成る封止膜を形成した。最後にガラス基板に対し、耐熱性樹脂膜が成膜されていない側からレーザー(波長:308nm)を照射し、耐熱性樹脂膜との界面で剥離を行った。
 以上のようにして、耐熱性樹脂膜上に形成された有機EL表示装置が得られた。駆動回路を介して電圧を印加したところ、良好な発光を示した。
 比較例22
 比較例1のBで得られた耐熱性樹脂膜の上に、実施例21と同様にして有機EL表示装置を形成した。しかし、駆動回路を介して電圧を印加したところ、ワニス中のパーティクルに由来する耐熱性樹脂膜表面の凹凸によって、ダークスポットが発生し、発光特性は不良であった。
 合成例101
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC2.183g(10.00mmol)をNMP20gで希釈したものを30分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。2時間後エタノール0.4607g(10.00mmol)を加えてNMP10gで洗いこんだ。1時間後、冷却した。反応溶液の粘度が約2000cPになるようにNMPで希釈し、フィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例102
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC2.183g(10.00mmol)をNMP20gで希釈したものを30分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後エタノール0.4607g(10.00mmol)および1-メチルイミダゾール8.210mg(0.1000mmol)を加えてNMP10gで洗いこんだ。1時間後、冷却した。反応溶液の粘度が約2000cPになるようにNMPで希釈し、フィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例103
 エタノールの代わりに、イソプロピルアルコール0.6010g(10.00mmol)を用いた以外は、合成例102と同様にワニスを作製した。
 合成例104
 エタノールの代わりに、tert-ブチルアルコール0.7412g(10.00mmol)を用いた以外は、合成例101と同様にワニスを作製した。
 合成例105:
 エタノールの代わりに、tert-ブチルアルコール0.7412g(10.00mmol)を用いた以外は、合成例102と同様にワニスを作製した。
 合成例106
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらDAE20.02g(100.0mmol)を入れて、NMP10gで洗いこんだ。DAEが溶解したことを確認し、DIBOC2.183g(10.00mmol)をNMP20gで希釈したものを30分かけて滴下させながら加えた。滴下が完了してから、1時間後、PMDA21.81g(100.00mmol)加えて、NMP10gで洗いこんだ。2時間後エタノール0.4607g(10.00mmol)および1-メチルイミダゾール8.210mg(0.1000mmol)を加えてNMP10gで洗いこんだ。1時間後、冷却した。反応溶液の粘度が約2000cPになるようにNMPで希釈し、フィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例107
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらPDA10.81g(100.0mmol)を入れて、NMP10gで洗いこんだ。PDAが溶解したことを確認し、DIBOC2.183g(10.00mmol)をNMP20gで希釈したものを30分かけて滴下させながら加えた。滴下が完了してから、1時間後、BPDA29.42g(100.00mmol)加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液の粘度が約2000cPになるようにNMPで希釈し、フィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例108
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらBPDA29.42g(100.00mmol)を入れて、NMP10gで洗いこんだ。つづいて、tert-ブチルアルコール0.7412g(10.00mmol)を加えて、NMP10gで洗いこんだ。1時間後、PDA10.81g(100.0mmol)を加えて、NMP10gで洗いこんだ。4時間後、冷却した。反応溶液の粘度が約2000cPになるようにNMPで希釈し、フィルター孔径0.2μmのフィルターで濾過してワニスとした。
 合成例109
 300mL4つ口フラスコに、温度計、撹拌羽根付き撹拌棒をセットした。次に、乾燥窒素気流下、NMP90gを投入し、40℃に昇温した。昇温後、撹拌しながらDAE20.02g(100.0mmol)を入れて、NMP10gで洗いこんだ。DAEが溶解したことを確認し、DIBOC2.183g(10.00mmol)をNMP20gで希釈したものを30分かけて滴下させながら加えた。滴下が完了してから、1時間後、PMDA21.81g(100.00mmol)加えて、NMP10gで洗いこんだ。2時間後、冷却した。反応溶液の粘度が約2000cPになるようにNMPで希釈し、フィルター孔径0.2μmのフィルターで濾過してワニスとした。
 実施例101
 E:合成例101で得られたワニスを用いて、実施例11と同様にして、粘度および耐熱性樹脂膜の膜厚の面内均一性を測定した。
 F:合成例101で得られたワニスを、クリーンボトル(株式会社アイセロ製)の中で、30℃で60日間保管したものについても実施例11と同様に、粘度および耐熱性樹脂膜の膜厚の面内均一性を測定した。
 実施例102~106、参考例101、比較例102、参考例103
 表4および5に記載のとおり、合成例102~109で得られたワニスを用いて、実施例11と同様の評価を行った。ただし、実施例105および比較例103において、ガスオーブンの加熱温度は400℃とした。
 実施例101~106および参考例101、比較例102、参考例103の評価結果を表4および5に示す。
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
 実施例107
 実施例101のFで得られた耐熱性樹脂膜の上に、実施例21と同様にして有機EL表示装置を形成した。
 形成した有機EL表示装置に駆動回路を介して電圧を印加したところ、良好な発光を示した。
 参考例104
 参考例101のFで得られた耐熱性樹脂膜の上に、実施例107と同様にして有機EL表示装置を形成した。しかし、駆動回路を介して電圧を印加したところ、発光にムラが生じ不良であった。
 実施例201:
 合成例1で得られたワニス50gに、0.50g(1.6mmol)のTAG-1をNMP1gに溶解したものを添加し、フィルター孔径0.2μmのフィルターで濾過した。濾過後のワニスを用い、ポリイミドフィルムを作製した。ただし、イナートオーブンの加熱条件は表6に記載の通りとした。得られたポリイミドフィルの引張り伸度、引張り最大応力、ヤング率を測定した。
 実施例202~209: 
 表6に従って、樹脂の種類、熱酸発生剤の種類、イナートオーブンの加熱条件を適宜変更した以外は、実施例201と同様に評価を行った。
 参考例201~203
 熱酸発生剤を添加しない以外は、表6に従って、樹脂の種類、イナートオーブンの加熱条件を適宜変更した以外は実施例201と同様に評価を行った。
 実施例201~209、参考例201~203の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000072
 実施例210
 実施例201で得られた耐熱性樹脂膜の上に、実施例21と同様にして有機EL表示装置を形成した。形成した有機EL表示装置に駆動回路を介して電圧を印加したところ、良好な発光を示した。
 参考例204: 
 参考例201で得られた耐熱性樹脂膜の上に、実施例21と同様にして有機EL素子を形成した。しかし、ガラス基板から剥離する工程で、耐熱性樹脂膜の機械強度が低く、破断したため、以降の評価に進めることができなかった。

Claims (14)

  1.  (a)化学式(1)で表される構造を有する樹脂と、
    Figure JPOXMLDOC01-appb-C000001
    (化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。)
    Figure JPOXMLDOC01-appb-C000002
    (化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(1)中のZの結合点を示す。)
     (b)溶剤と、を含み、
     化学式(3)で表される化合物の量が0.1質量ppm以上40質量ppm以下である樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (化学式(3)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは前記化学式(2)で表される構造を示す。)
  2.  前記化学式(3)で表される化合物の量が4質量ppm以上である請求項1に記載の樹脂組成物。
  3.  (a’)化学式(4)で表される繰り返し単位を主成分とする樹脂と、(b)溶剤とを含む樹脂組成物であって、前記(a’)樹脂が下記(A)および(B)からなる群より選ばれる一つ以上の樹脂を含む樹脂組成物。
     (A)分子内に化学式(5)で表される部分構造を2つ以上含む樹脂(A-1)と、分子内に化学式(6)で表される部分構造を2つ以上含む樹脂(A-2)と、を含む樹脂混合物
     (B)分子内に化学式(5)で表される部分構造と化学式(6)で表される部分構造をそれぞれ1つ以上含む樹脂
    Figure JPOXMLDOC01-appb-C000004
    (化学式(4)~(6)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(5)中、Wは化学式(7)で表される構造を示す。Zは化学式(2)で表される構造を示す。化学式(4)~(6)において、RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基または炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。化学式(5)および(6)中の*は他の原子と結合していることを示す。)
    Figure JPOXMLDOC01-appb-C000005
    (化学式(7)中のδおよび化学式(2)中のαは、それぞれ独立して炭素数2以上の1価の炭化水素基を示す。化学式(7)中のεならびに化学式(2)中のβおよびγは、それぞれ独立して酸素原子または硫黄原子を示す。化学式(7)中の*は化学式(5)中のWの結合点を示す。化学式(2)中の*は化学式(6)中のZの結合点を示す。)
  4.  前記化学式(2)中のβおよびγが酸素原子である請求項1~3のいずれかに記載の樹脂組成物。
  5.  前記化学式(2)中のαが、tert-ブチル基である請求項1~4のいずれかに記載の樹脂組成物。
  6.  さらに(c)熱酸発生剤を含む請求項1~5のいずれかに記載の樹脂組成物。
  7.  (A)ジアミン化合物のアミノ基と反応する末端アミノ基封止剤を反応溶媒に20質量%以下で溶解した溶液を、ジアミン化合物に10分以上の時間をかけて徐々に加えて、化学式(41)で表される化合物を生成させる工程と、
    Figure JPOXMLDOC01-appb-C000006
    (化学式(41)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(41)中のZの結合点を示す。)
     (B)化学式(41)で表される化合物、テトラカルボン酸、および(A)工程で末端アミノ基封止剤と反応せずに残存するジアミン化合物を反応させる工程と、を含む化学式(1)で表される構造を有する樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。)
  8.  (C)ジアミン化合物とテトラカルボン酸を反応させて化学式(42)で表される構造を有する樹脂を生成させる工程と、
    Figure JPOXMLDOC01-appb-C000009
    (化学式(42)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。)
     (D)化学式(42)で表される構造を有する樹脂と、化学式(42)で表される構造を有する樹脂の末端アミノ基と反応する末端アミノ基封止剤とを反応させて、化学式(1)で表される構造を有する樹脂を生成させる工程と、を含む化学式(1)で表される構造を有する樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000010
    (化学式(1)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。nは正の整数を示す。RおよびRはそれぞれ独立して水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属イオン、アンモニウムイオン、イミダゾリウムイオンまたはピリジニウムイオンを示す。*は他の原子と結合していることを示す。)
    Figure JPOXMLDOC01-appb-C000011
    (化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(1)中のZの結合点を示す。)
  9.  (E)ジアミン化合物と、ジアミン化合物のアミノ基と反応する末端アミノ基封止剤とを反応させて化学式(41)で表される化合物を生成させる工程と、
    Figure JPOXMLDOC01-appb-C000012
    (化学式(41)中、Yは炭素数2以上の2価のジアミン残基を示す。Zは化学式(2)で表される構造を示す。)
    Figure JPOXMLDOC01-appb-C000013
    (化学式(2)中、αは炭素数2以上の1価の炭化水素基を示し、βおよびγはそれぞれ独立して酸素原子または硫黄原子を示す。*は化学式(41)中のZの結合点を示す。)
     (F)化学式(41)で表される化合物、テトラカルボン酸二無水物および(E)工程で末端アミノ基封止剤と反応せずに残存するジアミン化合物を反応させて下記(A’)および(B’)からなる群より選ばれる一つ以上の樹脂を生成させる工程と、
     (A’)分子内に化学式(52)で表される部分構造を2つ以上含む樹脂(A’-1)と、分子内に化学式(6A)で表される部分構造を2つ以上含む樹脂(A’-2)と、を含む樹脂混合物
     (B’)分子内に化学式(52)で表される部分構造と、化学式(6A)で表される部分構造をそれぞれ1つ以上含む樹脂
    Figure JPOXMLDOC01-appb-C000014
    (化学式(52)および(6A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。Zは上記化学式(2)で表される構造を示す。化学式(52)および(6A)中、*は他の原子と結合していることを示す。)
     (G)化学式(52)で表される部分構造と反応する末端カルボニル基封止剤とを反応させて、化学式(5A)で表される構造を有する樹脂を生成させる工程と、を含む化学式(4A)で表される構造を有する樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000015
    (化学式(4A)および(5A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(5A)中、Wは化学式(7)で表される構造を示す。化学式(7)中のδは、炭素数2以上の1価の炭化水素基を示す。化学式(7)中のεは、酸素原子または硫黄原子を示す。化学式(5A)中、*は他の原子と結合していることを示す。化学式(7)中の*は化学式(5A)中のWの結合点を示す。)
  10.  (H)テトラカルボン酸二無水物と、末端カルボニル基封止剤とを反応させて化学式(53)で表される化合物を生成させる工程と、
    Figure JPOXMLDOC01-appb-C000016
    (化学式(53)中、Xは炭素数2以上の4価のテトラカルボン酸残基を示す。Wは化学式(7)で表される構造を示す。
    Figure JPOXMLDOC01-appb-C000017
    (化学式(7)中のδは、炭素数2以上の1価の炭化水素基を示し、εは、酸素原子または硫黄原子を示す。化学式(7)中の*は化学式(53)中のWの結合点を示す。)
     (I)化学式(53)で表される化合物、ジアミン化合物および(H)工程で末端カルボニル基封止剤と反応せずに残存するテトラカルボン酸二無水物を反応させて下記(A’’)および(B’’)からなる群より選ばれる一つ以上の樹脂を生成させる工程と、
     (A’’)分子内に化学式(54)で表される部分構造を2つ以上含む樹脂(A’’-1)と、分子内に化学式(5A)で表される部分構造を2つ以上含む樹脂(A’’-2)と、を含む樹脂混合物
     (B’)分子内に化学式(54)で表される部分構造と化学式(5A)で表される部分構造をそれぞれ1つ以上含む樹脂
    Figure JPOXMLDOC01-appb-C000018
    (化学式(54)および(5A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(54)および(5A)中、*は他の原子と結合していることを示す。Wは上記化学式(7)で表される構造を示す。)
     (J)化学式(54)で表される部分構造と末端アミノ基封止剤とを反応させて、化学式(6A)で表される構造を有する樹脂を生成させる工程と、を含む化学式(4A)で表される構造を有する樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000019
    (化学式(4A)および(6A)中、Xは炭素数2以上の4価のテトラカルボン酸残基を、Yは炭素数2以上の2価のジアミン残基を示す。化学式(6A)中、*は他の原子と結合していることを示す。Zは化学式(2)で表される構造を示す。化学式(2)中のαは、炭素数2以上の1価の炭化水素基を示す。化学式(2)中のβおよびγは、それぞれ独立して酸素原子または硫黄原子を示す。化学式(2)中の*は化学式(6)中のZの結合点を示す。)
  11.  支持体に請求項1~6のいずれかに記載の樹脂組成物を塗布する工程と、
     得られた前記塗布膜を220℃以上の温度で加熱する工程と、を含む樹脂膜の製造方法。
  12.  請求項11に記載の方法で樹脂膜を形成する工程と、
     前記樹脂膜の上に電子デバイスを形成する工程と、を含む電子デバイスの製造方法。
  13.  前記電子デバイスが画像表示装置である請求項12に記載の電子デバイスの製造方法。
  14.  前記電子デバイスが有機ELディスプレイである請求項12に記載の電子デバイスの製造方法。
PCT/JP2016/086593 2015-12-11 2016-12-08 樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法 WO2017099183A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016573149A JP6241557B2 (ja) 2015-12-11 2016-12-08 樹脂組成物、樹脂の製造方法、樹脂組成物の製造方法、樹脂膜の製造方法および電子デバイスの製造方法
US15/781,886 US20180362763A1 (en) 2015-12-11 2016-12-08 Resin composition, method for producing resin, method for producing resin film, and method for producing electronic device
KR1020187017304A KR101916647B1 (ko) 2015-12-11 2016-12-08 수지 조성물, 수지의 제조 방법, 수지막의 제조 방법 및 전자 디바이스의 제조 방법
CN201680072204.3A CN108431135B (zh) 2015-12-11 2016-12-08 树脂组合物、树脂的制造方法、树脂膜的制造方法和电子设备的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015241900 2015-12-11
JP2015-241899 2015-12-11
JP2015241899 2015-12-11
JP2015-241900 2015-12-11
JP2016-018605 2016-02-03
JP2016018605 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017099183A1 true WO2017099183A1 (ja) 2017-06-15

Family

ID=59013269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086593 WO2017099183A1 (ja) 2015-12-11 2016-12-08 樹脂組成物、樹脂の製造方法、樹脂膜の製造方法および電子デバイスの製造方法

Country Status (6)

Country Link
US (1) US20180362763A1 (ja)
JP (1) JP6241557B2 (ja)
KR (1) KR101916647B1 (ja)
CN (1) CN108431135B (ja)
TW (1) TWI631183B (ja)
WO (1) WO2017099183A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049517A1 (ja) * 2017-09-07 2019-03-14 東レ株式会社 樹脂組成物、樹脂膜の製造方法および電子デバイスの製造方法
JP2019157135A (ja) * 2018-03-16 2019-09-19 三星電子株式会社Samsung Electronics Co.,Ltd. オリゴマー、前記オリゴマーを含む組成物、前記組成物から製造される成形品、前記成形品の製造方法、および前記成形品を含む表示装置
WO2020175167A1 (ja) * 2019-02-26 2020-09-03 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂膜およびその製造方法、積層体、ならびに、電子デバイスおよびその製造方法
KR20200107953A (ko) 2018-01-18 2020-09-16 도레이 카부시키가이샤 디스플레이 기판용 수지 조성물, 디스플레이 기판용 수지막 및 그것을 포함하는 적층체, 화상 표시 장치, 유기 el 디스플레이, 그리고 그들의 제조 방법
JP2020199767A (ja) * 2019-06-06 2020-12-17 Agc株式会社 積層基板、電子デバイスの製造方法、および積層基板の製造方法
JP2022506796A (ja) * 2019-02-14 2022-01-17 エルジー・ケム・リミテッド ポリイミド前駆体組成物及びそれを用いて製造されたポリイミドフィルム
WO2022070362A1 (ja) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 樹脂組成物、半導体装置の製造方法、硬化物及び半導体装置
KR20220066263A (ko) 2019-09-24 2022-05-24 도레이 카부시키가이샤 수지막, 전자 디바이스, 수지막의 제조 방법 및 전자 디바이스의 제조 방법
KR20220157949A (ko) 2020-03-24 2022-11-29 도레이 카부시키가이샤 수지막, 그 제조 방법, 수지 조성물, 디스플레이 및 그 제조 방법
KR20220158227A (ko) 2020-03-24 2022-11-30 도레이 카부시키가이샤 수지 조성물, 그것을 사용한 표시 디바이스 또는 수광 디바이스의 제조 방법, 기판 및 디바이스
WO2023182038A1 (ja) * 2022-03-23 2023-09-28 三菱瓦斯化学株式会社 重合体の製造方法、ワニス、及びワニスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117866199B (zh) * 2024-03-11 2024-05-28 烟台三月科技有限责任公司 一种液晶取向剂、液晶取向膜及其液晶显示元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109588A (ja) * 2007-10-26 2009-05-21 Asahi Kasei Corp 感光性樹脂組成物、感光性樹脂組成物フィルム、およびそれらを用いた樹脂パターン
JP2010155987A (ja) * 2008-12-31 2010-07-15 Eternal Chemical Co Ltd ポリイミドのための前駆体組成物及びその使用
WO2012093586A1 (ja) * 2011-01-07 2012-07-12 東レ株式会社 ポリアミド酸樹脂組成物およびその製造方法
JP2013139566A (ja) * 2011-12-29 2013-07-18 Eternal Chemical Co Ltd 塩基発生剤、塩基発生剤を含むポリイミド前駆体組成物、ならびにその製造方法およびその使用
WO2013146967A1 (ja) * 2012-03-29 2013-10-03 東レ株式会社 ポリアミド酸およびそれを含有する樹脂組成物
WO2014021319A1 (ja) * 2012-08-01 2014-02-06 東レ株式会社 ポリアミド酸樹脂組成物、これを用いたポリイミドフィルムおよびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484500A (zh) * 2006-07-06 2009-07-15 东丽株式会社 热塑性聚酰亚胺、使用该聚酰亚胺的层合聚酰亚胺薄膜以及金属箔层合聚酰亚胺薄膜
JP5068628B2 (ja) 2007-10-26 2012-11-07 旭化成イーマテリアルズ株式会社 感光性樹脂組成物、感光性樹脂組成物フィルム、およびそれらを用いたカバーレイ
CN101492540B (zh) * 2009-01-14 2011-02-09 长兴化学工业股份有限公司 聚醯亚胺的前驱物组合物及其制备聚醯亚胺的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109588A (ja) * 2007-10-26 2009-05-21 Asahi Kasei Corp 感光性樹脂組成物、感光性樹脂組成物フィルム、およびそれらを用いた樹脂パターン
JP2010155987A (ja) * 2008-12-31 2010-07-15 Eternal Chemical Co Ltd ポリイミドのための前駆体組成物及びその使用
WO2012093586A1 (ja) * 2011-01-07 2012-07-12 東レ株式会社 ポリアミド酸樹脂組成物およびその製造方法
JP2013139566A (ja) * 2011-12-29 2013-07-18 Eternal Chemical Co Ltd 塩基発生剤、塩基発生剤を含むポリイミド前駆体組成物、ならびにその製造方法およびその使用
WO2013146967A1 (ja) * 2012-03-29 2013-10-03 東レ株式会社 ポリアミド酸およびそれを含有する樹脂組成物
WO2014021319A1 (ja) * 2012-08-01 2014-02-06 東レ株式会社 ポリアミド酸樹脂組成物、これを用いたポリイミドフィルムおよびその製造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017144B2 (ja) 2017-09-07 2022-02-08 東レ株式会社 樹脂組成物、樹脂膜の製造方法および電子デバイスの製造方法
KR102532485B1 (ko) * 2017-09-07 2023-05-16 도레이 카부시키가이샤 수지 조성물, 수지막의 제조 방법 및 전자 디바이스의 제조 방법
CN111051432B (zh) * 2017-09-07 2023-04-04 东丽株式会社 树脂组合物、树脂膜的制造方法及电子设备的制造方法
CN111051432A (zh) * 2017-09-07 2020-04-21 东丽株式会社 树脂组合物、树脂膜的制造方法及电子设备的制造方法
KR20200050953A (ko) * 2017-09-07 2020-05-12 도레이 카부시키가이샤 수지 조성물, 수지막의 제조 방법 및 전자 디바이스의 제조 방법
JPWO2019049517A1 (ja) * 2017-09-07 2020-08-20 東レ株式会社 樹脂組成物、樹脂膜の製造方法および電子デバイスの製造方法
WO2019049517A1 (ja) * 2017-09-07 2019-03-14 東レ株式会社 樹脂組成物、樹脂膜の製造方法および電子デバイスの製造方法
US12060457B2 (en) 2018-01-18 2024-08-13 Toray Industries, Inc. Resin composition for display substrate, resin film for display substrate and laminate body containing this, image display device, organic EL display, and manufacturing method of these
KR20200107953A (ko) 2018-01-18 2020-09-16 도레이 카부시키가이샤 디스플레이 기판용 수지 조성물, 디스플레이 기판용 수지막 및 그것을 포함하는 적층체, 화상 표시 장치, 유기 el 디스플레이, 그리고 그들의 제조 방법
US11306182B2 (en) * 2018-03-16 2022-04-19 Samsung Electronics Co., Ltd. Oligomer, composition including oligomer, article prepared from the composition, method for preparing article, and display device including the article
KR20190109132A (ko) * 2018-03-16 2019-09-25 삼성전자주식회사 올리고머, 올리고머를 포함하는 조성물, 조성물로부터 제조되는 성형품, 성형품의 제조 방법, 및 성형품을 포함하는 표시 장치
JP2019157135A (ja) * 2018-03-16 2019-09-19 三星電子株式会社Samsung Electronics Co.,Ltd. オリゴマー、前記オリゴマーを含む組成物、前記組成物から製造される成形品、前記成形品の製造方法、および前記成形品を含む表示装置
KR102591368B1 (ko) * 2018-03-16 2023-10-19 삼성전자주식회사 올리고머, 올리고머를 포함하는 조성물, 조성물로부터 제조되는 성형품, 성형품의 제조 방법, 및 성형품을 포함하는 표시 장치
JP7360765B2 (ja) 2018-03-16 2023-10-13 三星電子株式会社 オリゴマー、前記オリゴマーを含む組成物、前記組成物から製造される成形品、前記成形品の製造方法、および前記成形品を含む表示装置
CN110272544B (zh) * 2018-03-16 2023-07-04 三星电子株式会社 低聚物、组合物、制品、用于制备制品的方法、和显示设备
CN110272544A (zh) * 2018-03-16 2019-09-24 三星电子株式会社 低聚物、组合物、制品、用于制备制品的方法、和显示设备
JP7164083B2 (ja) 2019-02-14 2022-11-01 エルジー・ケム・リミテッド ポリイミド前駆体組成物及びそれを用いて製造されたポリイミドフィルム
JP2022506796A (ja) * 2019-02-14 2022-01-17 エルジー・ケム・リミテッド ポリイミド前駆体組成物及びそれを用いて製造されたポリイミドフィルム
US12129337B2 (en) 2019-02-14 2024-10-29 Lg Chem, Ltd. Polyimide precursor composition and polyimide film manufactured using same
JP7127681B2 (ja) 2019-02-26 2022-08-30 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂膜およびその製造方法、積層体、ならびに、電子デバイスおよびその製造方法
JPWO2020175167A1 (ja) * 2019-02-26 2021-12-23 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂膜およびその製造方法、積層体、ならびに、電子デバイスおよびその製造方法
WO2020175167A1 (ja) * 2019-02-26 2020-09-03 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂膜およびその製造方法、積層体、ならびに、電子デバイスおよびその製造方法
JP7115511B2 (ja) 2019-06-06 2022-08-09 Agc株式会社 積層基板、電子デバイスの製造方法、および積層基板の製造方法
JP2020199767A (ja) * 2019-06-06 2020-12-17 Agc株式会社 積層基板、電子デバイスの製造方法、および積層基板の製造方法
KR20220066263A (ko) 2019-09-24 2022-05-24 도레이 카부시키가이샤 수지막, 전자 디바이스, 수지막의 제조 방법 및 전자 디바이스의 제조 방법
KR20220157949A (ko) 2020-03-24 2022-11-29 도레이 카부시키가이샤 수지막, 그 제조 방법, 수지 조성물, 디스플레이 및 그 제조 방법
KR20220158227A (ko) 2020-03-24 2022-11-30 도레이 카부시키가이샤 수지 조성물, 그것을 사용한 표시 디바이스 또는 수광 디바이스의 제조 방법, 기판 및 디바이스
WO2022070362A1 (ja) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 樹脂組成物、半導体装置の製造方法、硬化物及び半導体装置
WO2023182038A1 (ja) * 2022-03-23 2023-09-28 三菱瓦斯化学株式会社 重合体の製造方法、ワニス、及びワニスの製造方法

Also Published As

Publication number Publication date
CN108431135B (zh) 2020-06-23
KR20180075688A (ko) 2018-07-04
KR101916647B1 (ko) 2018-11-07
JP6241557B2 (ja) 2017-12-06
TW201731959A (zh) 2017-09-16
JPWO2017099183A1 (ja) 2017-12-07
TWI631183B (zh) 2018-08-01
US20180362763A1 (en) 2018-12-20
CN108431135A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
JP6241557B2 (ja) 樹脂組成物、樹脂の製造方法、樹脂組成物の製造方法、樹脂膜の製造方法および電子デバイスの製造方法
KR101931997B1 (ko) 폴리아미드산 수지 조성물, 이것을 사용한 폴리이미드 필름 및 그 제조 방법
JP6819292B2 (ja) ディスプレイ基板用樹脂組成物、並びに、それを用いた耐熱性樹脂フィルム、有機elディスプレイ基板及び有機elディスプレイの製造方法
JP7003659B2 (ja) 樹脂組成物
JP6780501B2 (ja) 耐熱性樹脂組成物、耐熱性樹脂膜の製造方法、層間絶縁膜または表面保護膜の製造方法、および電子部品または半導体部品の製造方法
JP5472540B1 (ja) ポリアミド酸およびそれを含有する樹脂組成物
JP2019077871A (ja) 耐熱性樹脂膜およびその製造方法、加熱炉ならびに画像表示装置の製造方法
JP7322699B2 (ja) ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
JP5712658B2 (ja) ポジ型感光性樹脂組成物
JP2019172970A (ja) 表示デバイスまたは受光デバイスの基板用樹脂組成物、並びに、それを用いた表示デバイスまたは受光デバイスの基板、表示デバイス、受光デバイス、表示デバイスまたは受光デバイスの製造方法。
JP5206214B2 (ja) ポジ型感光性樹脂組成物
WO2021060058A1 (ja) 樹脂膜、電子デバイス、樹脂膜の製造方法および電子デバイスの製造方法
WO2023276517A1 (ja) 樹脂組成物、硬化物、硬化物の製造方法、電子部品、表示装置および半導体装置
JP2022146919A (ja) 樹脂組成物、それを用いた表示デバイスまたは受光デバイスの製造方法、基板ならびにデバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016573149

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017304

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16873076

Country of ref document: EP

Kind code of ref document: A1