[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017090622A1 - 通信システム及びコネクタ - Google Patents

通信システム及びコネクタ Download PDF

Info

Publication number
WO2017090622A1
WO2017090622A1 PCT/JP2016/084630 JP2016084630W WO2017090622A1 WO 2017090622 A1 WO2017090622 A1 WO 2017090622A1 JP 2016084630 W JP2016084630 W JP 2016084630W WO 2017090622 A1 WO2017090622 A1 WO 2017090622A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
node
connector
mcf
optical signal
Prior art date
Application number
PCT/JP2016/084630
Other languages
English (en)
French (fr)
Inventor
拓哉 小田
乾 哲郎
平野 章
今宿 亙
小林 正啓
貴章 田中
宮本 裕
高良 秀彦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201680068720.9A priority Critical patent/CN108292956B/zh
Priority to EP16868565.9A priority patent/EP3364568B1/en
Priority to US15/776,566 priority patent/US10527781B2/en
Priority to JP2017552669A priority patent/JP6368438B2/ja
Publication of WO2017090622A1 publication Critical patent/WO2017090622A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/05Spatial multiplexing systems
    • H04J14/052Spatial multiplexing systems using multicore fibre
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Definitions

  • the present invention relates to a communication system and a connector.
  • This application claims priority based on Japanese Patent Application No. 2015-230873 filed in Japan on November 26, 2015, the contents of which are incorporated herein by reference.
  • Communication networks using optical fibers have been built in core networks that connect large cities and metro networks that connect regional bases.
  • a plurality of optical fibers are bundled and used.
  • large-capacity signal transmission is performed by performing wavelength-division multiplexing (WDM) transmission in which a plurality of optical signals having different wavelengths are multiplexed on each optical fiber (for example, non-optical transmission).
  • WDM wavelength-division multiplexing
  • Patent Document 1 To further increase transmission capacity, consider using multi-core fiber (Multi-Core Fiber: MCF) instead of single-core optical fiber (Single-Core Fiber: SCF). (For example, Non-Patent Documents 2 and 3).
  • a multiplexed optical signal is wavelength-added in order to add / drop (insert and drop) a desired signal from an optical signal multiplexed and transmitted through an optical fiber. It was necessary to divide each. In the future, when a network is configured using MCF instead of SCF, the number of optical signals will be doubled by the number of cores to be transmitted, and the number of signals divided for each wavelength will increase significantly. Therefore, when a method similar to ADD / Drop in a network using SCF is applied to a network using MCF, there is a problem that an apparatus for performing Add / Drop of an optical signal in each node becomes complicated. In addition, there is a problem that it takes time to install and maintain the node.
  • an object of the present invention is to provide a communication system and a connector that facilitate the insertion and branching of an optical signal in a node connected to a multi-core fiber.
  • the communication system is a communication system including three or more nodes and using a multi-core fiber including a plurality of cores in at least a part of the connection between the nodes.
  • the node connected to the multi-core fiber includes the insertion and branching of signals to and from the core assigned exclusively as a communication path between the other node and the own node, and the multi-core fiber connected to the own node.
  • a connector for performing either or both of relaying of signals transmitted by the core assigned to communication between other nodes, and a connection position of the core at which signals are inserted or branched in the connector And the relative positional relationship between the connection position of the core to which the signal is relayed in the connector It is also the same in any of the connected the node.
  • all the nodes are connected to two other nodes, respectively.
  • At least one of the nodes sets a communication path using the assigned core for every other node. Have.
  • a plurality of nodes communicates a communication path using the assigned core with a plurality of other nodes. Have between.
  • all the nodes communicate with all other nodes by using a communication path using the assigned core. Have in between.
  • the node sets a communication path using the allocated core for each of the other nodes to be communicated. Have one.
  • the node determines a communication path using the assigned core for each of the other nodes to be communicated.
  • the communication path for each of the other nodes to be communicated is a communication path via a different core.
  • the node uses different communication paths for transmission and reception in communication with the other nodes to be communicated.
  • the core assigned to the communication path for transmission is different from the core assigned to the communication path for reception.
  • the node in the communication system according to the first embodiment, is connected to the same core for transmission and reception in communication with the other nodes to be communicated. Use the assigned communication path.
  • the plurality of cores are arranged on a circumference around a central axis of a multicore fiber, and the connector is The multi-core fiber is attached at a position rotated by a different angle at each of the nodes with respect to the central axis from a reference position.
  • the connector transmits communication with another node adjacent to the own node provided with the connector.
  • a signal relay unit that relays a signal transmitted by the core assigned for communication between the other nodes between a multi-core fiber connected to the node and a connection unit that inserts or branches a signal into the core
  • the number of the signal relay units provided in the connector is equal to or greater than the number of other nodes passing through the communication path from the own node to the other node to be communicated with by the own node.
  • the connector transmits a signal to a communication core used in communication between the nodes among the plurality of cores.
  • a first connector unit that performs insertion and branching, and relays signals of the communication cores that are not subject to signal insertion and branching between multicore fibers connected to the own node provided with the first connector unit;
  • a second connector unit that performs signal insertion, branching, or relaying to a shared core used for purposes other than communication between the nodes.
  • each of the nodes connected to the multicore fiber receives a signal inserted or branched by the second connector unit. Use.
  • the second connector unit provided in the node connected to the multi-core fiber is connected to the same shared core. To insert or branch signals.
  • the connector in the communication system according to the first embodiment, includes a small-diameter single mode fiber provided corresponding to each of the plurality of cores,
  • the small-diameter single-mode fiber performs signal insertion or branching and signal relaying between multi-core fibers connected to its own node.
  • the connector in the communication system according to the first embodiment, includes an optical waveguide including a waveguide core provided corresponding to each of the plurality of cores.
  • the waveguide core performs signal insertion or branching and signal relaying between multi-core fibers connected to its own node provided with the waveguide core.
  • the connector is output from the plurality of cores of a multi-core fiber connected to the own node provided with the connector.
  • a first optical element that spatially separates each of the signals to be separated, and a second optical that branches the signal by changing a propagation direction of the signal spatially separated by the first optical element to the outside of the connector
  • a third optical element that inserts a signal by changing the propagation direction of a signal input from the outside of the element to a spatially separated signal, and spatially separated by the first optical element; And the signal whose propagation direction has been changed by the third optical element are respectively transmitted to the plurality of cores of other multicore fibers connected to the own node provided with the third optical element. It comprises a fourth optical element for force and.
  • the connector in the eighteenth embodiment of the present invention includes three or more nodes, and a multicore fiber including a plurality of cores in at least a part of the connection between the nodes is used.
  • a connector used in the node connected to a multi-core fiber, and inserting and branching signals to and from the core assigned exclusively as a communication path between the own node provided by itself and the other node
  • the relative positional relationship between the connection position of the core where the signal is inserted in the connector and the connection position of the core where the signal is branched in the connector is determined by the connector used in the node connected to the multi-core fiber. It is the same in any case.
  • the core allocated for communication between the other nodes among the multicore fibers connected to the own node is used.
  • a connection position of the core through which a signal to be transmitted is relayed and a signal is inserted at the connector; a connection position of the core at which a signal is branched at the connector; and a connection position of the core at which the signal is relayed at the connector.
  • the relative positional relationship is the same in any of the connectors used in the node connected to the multicore fiber.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system 100 using an MCF according to the present invention.
  • the communication system 100 includes a transmission / reception node 110 and n (n is an integer of 1 or more) Add / Drop nodes 120.
  • the n Add / Drop nodes 120 are referred to as Add / Drop nodes 120-1 to 120-n, respectively.
  • the transmission / reception node 110 and the Add / Drop node 120 are collectively referred to as “node”.
  • a transmission device, a reception device, a transmission / reception device, and the like that perform communication using an optical signal and a node are described as separate configurations.
  • the node may include a transmission device, a reception device, and a transmission / reception device.
  • the nodes are connected by MCF (multi-core fiber) 200-1 to 200-4.
  • the communication system 100 has a physical topology of a one-system one-way ring configuration in which nodes are connected by MCFs 200-1 to 200-4.
  • the transmission / reception node 110 and the Add / Drop node 120-1 are connected by the MCF 200-1.
  • Add / Drop node 120-1 and Add / Drop node 120-2 are connected by MCF 200-2.
  • Add / Drop node 120-2 and Add / Drop node 120-3 are connected by MCF 200-3.
  • the Add / Drop node 120-3 and the transmission / reception node 110 are connected by the MCF 200-4.
  • the MCFs 200-1 to 200-4 in the communication system 100 include three cores 201, 202, and 203.
  • the Add / Drop node 120-i (1 ⁇ i ⁇ n ⁇ 1) is connected to the Add / Drop node 120- (i + 1) via the MCF 200- (i + 1).
  • the MCF 200-1 connects the transmission / reception node 110 and the Add / Drop node 120-1.
  • the MCF 200- (n + 1) connects the Add / Drop node 120-n and the transmission / reception node 110.
  • Each node of the communication system 100 includes a transmission device (Tx) and a reception device (Rx) that perform communication between nodes.
  • Tx transmission device
  • Rx reception device
  • transmission devices 111-1 to 111-3 and reception devices 112-1 to 112-3 are provided.
  • Add / Drop node 120-1 a transmission device 121-1 and a reception device 122-1 are provided.
  • Add / Drop node 120-2 a transmitting device 121-2 and a receiving device 122-2 are provided.
  • a transmission device 121-3 and a reception device 122-3 are provided for the Add / Drop node 120-3. Transmitting apparatuses 111-1 to 111-3 generate optical signals to be transmitted to Add / Drop nodes 120-1 to 120-3, respectively.
  • Receiving devices 112-1 to 112-3 receive the optical signals transmitted from Add / Drop nodes 120-1 to 120-3, and acquire information included in the optical signals.
  • the transmission devices 121-1 to 121-3 each generate an optical signal to be transmitted to the transmission / reception node 110.
  • the receiving devices 122-1 to 122-3 receive the optical signal transmitted from the transmission / reception node 110, and acquire information included in the optical signal.
  • the transmission devices 111-1 to 111-3 generate optical signals to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmitters 111-1 to 111-3 are inserted into the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals transmitted from Add / Drop nodes 120-1, 120-2, and 120-3 to the node provided with the receiving device, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals from Add / Drop nodes 120-1 to 120-3 via cores 201-4 to 203-4 of MCF 200-4, respectively.
  • a fan-in device or a fan-out device is used for insertion of an optical signal into the MCF 200 and branching of the optical signal from the MCF 200 in the transmission / reception node 110.
  • a fan-in device is a device that is connected to each core in a multi-core fiber and inserts an optical signal for each core.
  • the fan-out device is a device that is connected to each core in the multi-core fiber and branches each light propagating in each core. Since the difference between the two devices is only the direction of light propagation, even if one of the fan-in device and the fan-out device is used to input and output light to and from the multi-core fiber. Good. Further, the light insertion into the multi-core fiber and the light branching from the multi-core fiber may be simultaneously performed with one device.
  • the Add / Drop nodes 120-1 to 120-3 are provided with connectors 150-1 to 150-3, respectively.
  • the connector 150-i branches from the MCF 200-i the optical signal to the own node among the optical signals inserted by the transmission / reception node 110.
  • the connector 150-i inserts an optical signal to the transmission / reception node 110 into the core of the MCF 200- (i + 1).
  • the connector 150-1 branches an optical signal from the core 201-1 of the MCF 200-1 to the own node.
  • the connector 150-1 connects the branched optical signal to the receiving device 122-1. Further, the connector 150-1 inserts the optical signal generated by the transmission device 121-1 into the core 201-2 of the MCF 200-2.
  • the optical signal inserted into the core 201-2 is an optical signal transmitted from the Add / Drop node 120-1 to the transmission / reception node 110.
  • the connector 150-1 connects the cores 202-1 and 203-1 among the cores of the MCF 200-1 and the cores 202-2 and 203-2 among the cores of the MCF 200-2, respectively.
  • the connector 150-1 relays an optical signal between the MCF 200-1 and the MCF 200-2.
  • the connector 150-1 relays an optical signal transmitted by a core other than the cores 201-1 and 201-2 that add / drop an optical signal.
  • the connector 150-2 branches an optical signal from the core 202-2 of the MCF 200-2 to the own node.
  • the connector 150-2 connects the branched optical signal to the receiving device 122-2. Further, the connector 150-2 inserts the optical signal generated by the transmission device 121-2 into the core 202-3 of the MCF 200-3.
  • the optical signal inserted into the core 202-3 is an optical signal transmitted from the Add / Drop node 120-2 to the transmission / reception node 110.
  • the connector 150-2 connects the cores 201-2 and 203-2 among the cores of the MCF 200-2 and the cores 201-3 and 203-3 among the cores of the MCF 200-3, respectively.
  • the connector 150-2 relays an optical signal between the MCF 200-2 and the MCF 200-3.
  • the connector 150-2 relays an optical signal transmitted by a core other than the cores 201-2 and 201-3 that add / drop an optical signal.
  • the connector 150-3 branches an optical signal from the core 203-3 of the MCF 200-3 to the own node.
  • the connector 150-3 connects the branched optical signal to the receiving device 122-3.
  • the connector 150-3 inserts the optical signal generated by the transmission device 121-3 into the core 203-4 of the MCF 200-4.
  • the optical signal inserted into the core 203-4 is an optical signal transmitted from the Add / Drop node 120-3 to the transmission / reception node 110.
  • Connector 150-3 connects cores 201-3 and 202-3 of the core of MCF 200-3 and cores 201-4 and 202-4 of the core of MCF 200-4, respectively.
  • the connector 150-3 relays an optical signal between the MCF 200-3 and the MCF 200-4.
  • the connector 150-3 relays an optical signal transmitted by a core other than the cores 203-3 and 203-4 that add / drop the optical signal.
  • FIG. 2A and 2B are diagrams illustrating a first configuration example of the connector 150 used in the communication system 100.
  • the connector 150 includes a fan-in / fan-out portion including a plurality of small single mode fibers (SMF) and a plurality of SMFs.
  • the connector 150 includes a small-diameter SMF for each core of the MCF 200 to be connected.
  • One end of each of the plurality of small-diameter SMFs is provided at a position facing the core of the MCF 200.
  • the other ends of the plurality of small diameter SMFs are provided at positions facing one end of the SMF.
  • Each small-diameter SMF connects the core of the MCF 200 and the SMF.
  • the connector 150 can branch an optical signal transmitted through each core of the MCF 200 via the small diameter SMF and the SMF.
  • an optical signal can be input to each core of the MCF 200 by inputting the optical signal to the SMF.
  • the connector 150-i shown in FIG. 2B connects the MCF 200-i and the MCF 200- (i + 1).
  • the other end of the SMF corresponding to the core that transmits the optical signal to be added / dropped is drawn out to the side surface of the connector 150-i.
  • Optical signal insertion and branching can be performed at the other end of the SMF drawn out to the side surface of the connector 150-i.
  • an optical signal not subject to Add / Drop is relayed from the MCF 200-i to the MCF 200- (i + 1) through the small-diameter SMF and SMF.
  • FIGS. 3A and 3B are diagrams illustrating a second configuration example of the connector 150 used in the communication system 100.
  • FIG. 3A and 3B show a configuration example different from the configuration example of the connector 150 shown in FIGS. 2A and 2B.
  • the connector 150 shown in FIGS. 3A and 3B includes an optical waveguide including a plurality of waveguide cores formed on a glass substrate as a fan-in / fan-out portion.
  • a plurality of waveguide cores are provided at positions facing the respective cores of the MCF 200 to be connected.
  • Optical signals transmitted through each core of the MCF 200 are separated via the waveguide core.
  • an optical signal can be input to each core of the MCF 200 by inserting the optical signal into the waveguide core.
  • One end of the core is provided at a position facing the core of the MCF.
  • the other end of the waveguide core is provided on the side surface of the connector 150-i.
  • the optical signal can be inserted and branched at the other end of the waveguide core located on the side surface of the connector 150-i.
  • One end of the waveguide core with respect to the core that transmits an optical signal not subject to Add / Drop among the cores of the MCF 200-i is provided at a position facing the core of the MCF.
  • the other end of the waveguide core is provided at a position facing the core that transmits an optical signal that is not the target of Add / Drop among the cores of MCF200- (i + 1).
  • the cores that transmit optical signals that are not subject to Add / Drop are connected one-to-one via the waveguide core.
  • an optical signal that is not subject to Add / Drop is relayed from the core of the MCF 200-i to the core of the MCF 200- (i + 1) via the waveguide core.
  • the waveguide core is not only formed in a two-dimensional space on the substrate plane, but may be formed in a three-dimensional space as described in Reference Document 1.
  • Reference Document 1 RR Thomson, et al, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", Optics Express, OSA Publishing, 2007, Vol.15, Issue 18, p.11691- 11697
  • FIGS. 4A and 4B are diagrams illustrating a third configuration example of the connector 150 used in the communication system 100.
  • FIG. 4A and 4B show a configuration example different from the configuration example of the connector 150 shown in FIGS. 2A, 2B, 3A, and 3B.
  • the connector 150 shown in FIGS. 4A and 4B once outputs an optical signal transmitted by each core of the MCF 200 to free space, and separates the optical signal of each core by the optical system in the free space.
  • the connector 150 includes a fan-in / fan-out portion composed of two lenses.
  • Optical signals transmitted through each core of the MCF 200 are output to free space and separated by being refracted by two lenses. Add / Drop of an optical signal is performed using an optical system.
  • FIG. 4B is a diagram illustrating a configuration example of the connector 150-i.
  • an optical signal emitted from each core of the MCF 200-i is collimated by an optical system (collimator) in which two lenses are combined.
  • Each collimated optical signal is input to each core of MCF 200- (i + 1).
  • a mirror that changes the light path in the direction of the side surface of the connector 150-i is disposed in the light path of the optical signal to be added / dropped.
  • the optical signal to be separated is reflected by a mirror and branched to the outside of the connector 150-i, whereby the optical signal to be separated can be obtained.
  • the optical signal reflected by the mirror enters the optical system in which the two lenses are combined together with the collimated optical signal.
  • the optical signal incident on the optical system is connected to the core of MCF200- (i + 1), so that the optical signal to be added can be inserted into the core.
  • Optical signals that are not subject to Add / Drop are separated by the optical system, then bundled together with the added optical signal, and input to each core of the MCF 200- (i + 1).
  • an optical signal not subject to Add / Drop is relayed from the MCF 200-i to the MCF 200- (i + 1) through free space.
  • two lenses are used for collimating the light emitted from the fiber, and a mirror is used for changing the propagation direction of light in free space.
  • an optical device having a similar function may be used.
  • FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, FIG. 4A, and FIG. 4B show examples of the configuration of the connector 150.
  • the connector 150 may be realized using a medium other than the medium and method described above.
  • a planar optical circuit (Planar Lightwave Circuit: PLC) having an optical waveguide on silicon may be used as the connector.
  • an optical signal generated by the transmission device 111-1 of the transmission / reception node 110 is received by the reception device of the Add / Drop node 120-1 via the core 201-1 of the MCF 200-1 and the connector 150-1. Received at 122-1.
  • the optical signal generated by the transmitter 111-2 is added / dropped via the core 202-1 of the MCF 200-1, the connector 150-1, the core 202-2 of the MCF 200-2, and the connector 150-2.
  • the data is received by the receiving device 122-2 of the node 120-2.
  • the optical signal generated by the transmission device 111-3 includes the core 203-1 of the MCF 200-1, the connector 150-1, the core 203-2 of the MCF 200-2, the connector 150-2, and the core of the MCF 200-3.
  • the data is received by the receiving device 122-3 of the Add / Drop node 120-3 via 203-3 and the connector 150-3.
  • the optical signal generated by the transmission device 121-1 of the Add / Drop node 120-1 is the connector 150-1, the core 201-2 of the MCF 200-2, the connector 150-2, and the core of the MCF 200-3.
  • the data is received by the receiving device 112-1 of the transmission / reception node 110 via the 201-3, the connector 150-3, and the core 201-4 of the MCF 200-4.
  • the optical signals generated by the transmission device 121-2 of the Add / Drop node 120-2 are the connector 150-2, the core 202-3 of the MCF 200-3, the connector 150-3, and the core 202- of the MCF 200-4. 4 is received by the receiving device 112-2 of the transmission / reception node 110.
  • the optical signal generated by the transmission device 121-3 of the Add / Drop node 120-3 is received by the reception device 112-3 of the transmission / reception node 110 via the connector 150-3 and the core 203-4 of the MCF 200-4.
  • the transmission / reception node 110 has a transmission / reception communication path with each of the Add / Drop nodes 120-1 to 120-3.
  • the communication system 100 has a star-type logical topology centered on the transmission / reception node 110.
  • Add / Drop of an optical signal can be performed on the core of In the communication system 100, the MCF 200-i and the MCF 200- (i + 1) are connected via the connector 150-i, thereby branching the optical signal addressed to the Add / Drop node 120-i and the optical signal addressed to the transmission / reception node 110. Can be easily inserted.
  • the Add / Drop of the optical signal the process of dividing the multiplexed optical signals having different wavelengths for each wavelength becomes unnecessary, so that it is possible to reduce the installation and maintenance time of the devices in each Add / Drop node 120.
  • the MCF 200 may include four or more cores.
  • the add / drop node 120 may add / drop optical signals to two or more cores.
  • FIG. 5 is a diagram illustrating a configuration example of the Add / Drop node 120-1 when WDM transmission is performed in the communication system 100.
  • the Add / Drop node 120-1 includes a connector 150-1, a duplexer 124-1, a multiplexer 123-1, a plurality of reception devices 122-1, and a plurality of transmission devices 121-1. .
  • the optical signal branched from the core 201-1 of the MCF 200-1 at the connector 150-1 is input to the demultiplexer 124-1.
  • the demultiplexer 124-1 demultiplexes the input optical signal for each wavelength.
  • Each optical signal obtained by demultiplexing is received by the receiving device 122-1.
  • Optical signals having different wavelengths generated by the plurality of transmission apparatuses 121-1 are input to the multiplexer 123-1.
  • the multiplexer 123-1 combines the input optical signals and outputs the optical signal obtained by the multiplexing to the connector 150-1.
  • the connector 150-1 inserts the optical signal to the transmission / reception node 110 into the MCF 200-2 by connecting the optical signal input from the multiplexer 123-1 to the core 201-2 of the MCF 200-2.
  • the optical signals of the cores 202-1 and 203-1 of the MCF 200-1 that are not subject to Add / Drop are relayed to the cores 202-2 and 203-2 of the MCF 200-2. Therefore, it is not necessary to perform multiplexing / demultiplexing in units of wavelengths at each Add / Drop node for the relayed optical signal.
  • the other Add / Drop nodes 120 have the same configuration as that of the Add / Drop node 120-1.
  • FIG. 6 is a diagram illustrating a configuration example of a communication system 100A using the MCF according to the present invention.
  • the communication system 100A includes transmission / reception nodes 110a and 110b and n Add / Drop nodes 120.
  • the communication system 100A is different from the communication system 100 in that it has a physical topology of a ring configuration in both systems unidirectional.
  • the nodes are connected by MCFs 210-1 to 210-4.
  • the transmission / reception node 110a and the Add / Drop node 120-1 are connected by the MCF 210-1.
  • Add / Drop node 120-1 and Add / Drop node 120-2 are connected by MCF 210-2.
  • Add / Drop node 120-2 and Add / Drop node 120-3 are connected by MCF 210-3.
  • Add / Drop node 120-3 and transmission / reception node 110b are connected by MCF 210-4.
  • the MCFs 210-1 to 210-4 in the communication system 100A include six cores 211 to 216.
  • the Add / Drop node 120-i (1 ⁇ i ⁇ n ⁇ 1) is connected to the Add / Drop node 120- (i + 1) via the MCF 210- (i + 1).
  • the MCF 210-1 connects the transmission / reception node 110a and the Add / Drop node 120-1.
  • the MCF 210- (n + 1) connects the Add / Drop node 120-n and the transmission / reception node 110b.
  • Each node of the communication system 100A includes any one of a transmission device (Tx) and a reception device (Rx) that perform communication between the nodes, and a transmission / reception device (Tx / Rx).
  • Tx transmission device
  • Rx reception device
  • Tx / Rx transmission / reception device
  • transmission devices 111-1 to 111-3 and reception devices 112-1 to 112-3 are provided.
  • transmission / reception devices 125-1 and 126-1 are provided.
  • Transmission / reception devices 125-2 and 126-2 are provided for the Add / Drop node 120-2.
  • transmission / reception devices 125-3 and 126-3 are provided for the transmission / reception node 110b.
  • the transmission / reception nodes 110a and 110b are provided with the transmission device 111 and the reception device 112, and the Add / Drop nodes 120-1 to 120-3 are provided with the transmission / reception devices 125 and 126.
  • the described configuration will be described.
  • the transmission / reception devices 125 and 126 include the functions of both the transmission device and the reception device, and there is no significant difference between the combination of the transmission device and the reception device and the transmission / reception device.
  • any of the transmission device, the reception device, and the transmission / reception device may be provided.
  • the transmission devices 111-1 to 111-3 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the optical signals generated by the transmitters 111-1 to 111-3 are inserted into the cores 211-1, 213-1, and 215-1 of the MCF 210-1, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals transmitted from Add / Drop nodes 120-1 to 120-3 to transmission / reception node 110a, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals from cores 212-1, 214-1 and 216-1 of MCF 210-1, respectively.
  • the transmission devices 111-4 to 111-6 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the optical signals generated by the transmitters 111-4 to 111-6 are inserted into the cores 211-4, 213-4, and 215-4 of the MCF 210-4, respectively.
  • Receiving devices 112-4 to 112-6 receive optical signals transmitted from Add / Drop nodes 120-1 to 120-3 to transmission / reception node 110b, respectively.
  • Receiving devices 112-4 to 112-6 receive optical signals from cores 212-4, 214-4, and 216-4 of MCF 210-4, respectively.
  • a fan-in device or a fan-out device is used for insertion of an optical signal into the MCF 200 and branching of the optical signal from the MCF 200 in the transmission / reception nodes 110a and 110b.
  • the connector 160-i is connected to the MCF 210-i and the MCF 210- (i + 1).
  • the connector 160-i branches an optical signal to the own node from the MCF 210-i and MCF 210- (i + 1) among the optical signals inserted by the transmission / reception nodes 110a and 110b.
  • the connector 160-i inserts an optical signal addressed to the transmission / reception node 110a into the core of the MCF 210-i.
  • the connector 160-i inserts an optical signal addressed to the transmission / reception node 110b into the core of the MCF 210- (i + 1).
  • the connector 160-1 branches an optical signal from the core 211-1 of the MCF 210-1 to the own node.
  • the connector 160-1 connects the branched optical signal to the transmission / reception device 125-1.
  • the connector 160-1 inserts the optical signal generated by the transmission / reception device 125-1 into the core 212-1 of the MCF 210-1.
  • the optical signal inserted into the core 212-1 is an optical signal transmitted from the own node to the transmission / reception node 110a.
  • the connector 160-1 branches an optical signal from the core 211-2 of the MCF 210-2 to the own node.
  • the connector 160-1 connects the branched optical signal to the transmission / reception device 126-1.
  • the connector 160-1 inserts the optical signal generated by the transmission / reception device 126-1 into the core 212-2 of the MCF 210-2.
  • the optical signal inserted into the core 212-2 is an optical signal transmitted from the own node to the transmission / reception node 110b.
  • Connector 160-1 connects cores 213-1 to 216-1 among the cores of MCF 210-1 and 213-2 to 216-2 among the cores of MCF 210-2.
  • the connector 160-1 relays an optical signal between the MCF 210-1 and the MCF 210-2.
  • the connector 160-1 relays an optical signal transmitted by a core other than the cores 211-1, 212-1, 211-2, and 212-2 that Add / Drop an optical signal.
  • the connector 160-2 branches an optical signal from the core 213-2 of the MCF 210-2 to the own node.
  • the connector 160-2 connects the branched optical signal to the transmission / reception device 125-2.
  • the connector 160-2 inserts the optical signal generated by the transmission / reception device 125-2 into the core 214-2 of the MCF 210-2.
  • the optical signal inserted into the core 214-2 is an optical signal transmitted from the own node to the transmission / reception node 110a.
  • the connector 160-2 branches an optical signal from the core 213-3 of the MCF 210-3 to the own node.
  • the connector 160-2 connects the branched optical signal to the transmission / reception device 126-2.
  • the connector 160-2 inserts the optical signal generated by the transmission / reception device 126-2 into the core 214-3 of the MCF 210-3.
  • the optical signal inserted into the core 214-3 is an optical signal transmitted from the own node to the transmission / reception node 110b.
  • the connector 160-2 includes cores 211-2, 212-2, 215-2, and 216-2 among the cores of the MCF 210-2 and cores 211-3, 212-3, and 215-3 among the cores of the MCF 210-3. 216-3, respectively.
  • the connector 160-2 relays an optical signal between the MCF 210-2 and the MCF 210-3.
  • the connector 160-2 relays an optical signal transmitted by a core other than the cores 213-2, 214-2, 213-3, and 214-3 that adds / drops an optical signal.
  • the connector 160-3 branches an optical signal from the core 215-3 of the MCF 210-3 to the own node.
  • the connector 160-3 connects the branched optical signal to the transmission / reception device 126-3.
  • the connector 160-3 inserts the optical signal generated by the transmission / reception device 126-3 into the core 216-3 of the MCF 210-3.
  • the optical signal inserted into the core 216-3 is an optical signal transmitted from the own node to the transmission / reception node 110a.
  • the connector 160-3 branches an optical signal from the core 215-4 of the MCF 210-4 to the own node.
  • the connector 160-4 connects the branched optical signal to the transmission / reception device 125-3.
  • the connector 160-3 inserts the optical signal generated by the transmission / reception device 125-3 into the core 216-3 of the MCF 210-4.
  • the optical signal inserted into the core 216-4 is an optical signal transmitted from the own node to the transmission / reception node 110b.
  • Connector 160-3 connects cores 211-3 to 214-3 among the cores of MCF 210-3 and cores 211-4 to 214-4 among the cores of MCF 210-4.
  • the connector 160-3 relays an optical signal between the MCF 210-3 and the MCF 210-4.
  • the connector 160-3 relays an optical signal transmitted by a core other than the cores 215-3, 216-3, 215-4, and 216-4 that Add / Drop the optical signal.
  • the connectors 160-1 to 160-3 in the communication system 100A are formed by using a thin fiber, an optical waveguide, an optical system, or the like.
  • the communication system 100 can be configured similarly to the connectors 150-1 to 150-3.
  • a transmission communication path and a reception communication path are formed between the transmission / reception nodes 110a and 110b and the Add / Drop nodes 120-1 to 120-3.
  • the transmission / reception nodes 110a and 110b can individually communicate with the Add / Drop nodes 120-1 to 120-3.
  • the communication system 100A has a tree-type logical topology with the transmission / reception nodes 110a and 110b as root nodes.
  • the Add / Drop nodes 120-1 to 120-3 use one of the communication paths with the two transmission / reception nodes 110a and 110b as an active system (system 0) and the other as a standby system (system 1). May be. Further, the Add / Drop nodes 120-1 to 120-3 may use a communication path with a short transmission path as the 0 system and a communication path with a long transmission path as the 1 system. In the Add / Drop nodes 120-1 to 120-3, it is not necessary to separate the multiplexed optical signals with different wavelengths in the Add / Drop of the optical signal. Can be reduced.
  • each MCF 210 includes six cores 211 to 216 has been described, the MCF 210 may include seven or more cores.
  • the add / drop node 120 may add / drop optical signals to two or more cores.
  • WDM transmission may be performed in each core of the MCF 210.
  • each Add / Drop node 120 is provided with a demultiplexer or a multiplexer for the optical signal to be added / dropped.
  • the transmission / reception node 110a and the transmission / reception node 110b may be connected using the MCF 210 or an MCF including seven or more cores.
  • the communication system 100A when the roles of the transmission / reception nodes 110a and 110b and the Add / Drop nodes 120-1 to 120-3 are changed, connectors are attached to the transmission / reception nodes 110a and 110b, and the Add / Drop nodes 120-1 to 120-
  • the logical topology can be easily changed by replacing the connector 150 of 120-3 with another connector. Thereby, it is possible to flexibly cope with a change in the network configuration.
  • FIG. 7 is a diagram illustrating a configuration example of a communication system 100D using the MCF according to the present invention.
  • the communication system 100D includes transmission / reception nodes 110a and 110b and n Add / Drop nodes 120.
  • the connections of the MCFs 200-1 to 200-4 between the nodes are the same as the connections of the MCFs 210-1 to 210-4 in the communication system 100A.
  • the communication system 100D In the communication system 100D, communication from the transmission / reception nodes 110a and 110b to each Add / Drop node 120 and communication from each Add / Drop node 120 to the transmission / reception nodes 110a and 110b are performed using the same core.
  • the communication system 100D has a physical topology with a bi-directional bidirectional ring configuration.
  • Each node of the communication system 100D includes a transmission / reception device (Tx / Rx) that performs communication between the nodes.
  • the transmission / reception node 110a includes transmission / reception devices 113-1 to 113-3.
  • the transmission / reception node 110b is provided with transmission / reception devices 113-4 to 113-6.
  • the Add / Drop nodes 120-1 to 120-3 are provided with transmission / reception devices 125-1 to 125-3 and 126-1 to 126-3, respectively.
  • the transmission / reception devices 113-1 to 113-6 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the transmission / reception devices 125-1 to 125-3 generate optical signals to be transmitted to the transmission / reception node 110a.
  • the transmission / reception devices 126-1 to 126-3 generate optical signals to be transmitted to the transmission / reception node 110b. Further, the transmission / reception devices 113-1 to 113-6 receive the optical signals transmitted from the Add / Drop nodes 120-1 to 120-3, and acquire information included in the optical signals. The transmission / reception devices 125-1 to 125-3 receive the optical signal transmitted from the transmission / reception node 110a and acquire information included in the optical signal. The transmission / reception devices 126-1 to 126-3 receive the optical signal transmitted from the transmission / reception node 110b, and acquire information included in the optical signal.
  • the transmission / reception devices 113-1 to 113-3 In the transmission / reception node 110a, the transmission / reception devices 113-1 to 113-3 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmission / reception devices 113-1 to 113-3 are inserted into the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • the transmission / reception devices 113-1 to 113-3 receive optical signals from the Add / Drop nodes 120-1 to 120-3 via the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • a fan-in / fan-out device is used to insert an optical signal into the MCF 200-1 and branch an optical signal from the MCF 200-1.
  • the transmission / reception devices 113-4 to 113-6 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmission / reception devices 113-4 to 113-6 are inserted into the cores 201-4 to 203-4 of the MCF 200-4, respectively.
  • the transmission / reception devices 113-4 to 113-6 receive the optical signals from the Add / Drop nodes 120-1 to 120-3 via the cores 201-4 to 203-4 of the MCF 200-4, respectively.
  • a fan-in / fan-out device is used for the insertion of the optical signal into the MCF 200-4 and the branching of the optical signal from the MCF 200-4, similarly to the transmission / reception node 110a.
  • the connector 185-i is connected to the MCF 200-i and the MCF 200- (i + 1).
  • the connector 185-i branches an optical signal from the core 20i-i of the MCF 200-i and connects the branched optical signal to the transmission / reception device 125-i.
  • the connector 185-i inserts the optical signal generated by the transmission / reception device 125-i into the core 20i-i of the MCF 200-i.
  • the optical signal generated by the transmission / reception device 125-i is an optical signal transmitted from the Add / Drop node 120-i to the transmission / reception node 110a.
  • the connector 185-i branches an optical signal from the core 20i- (i + 1) of the MCF 200- (i + 1), and connects the branched optical signal to the transmission / reception device 126-i.
  • the connector 185-i inserts the optical signal generated by the transmission / reception device 126-i into the core 20i- (i + 1) of the MCF 200- (i + 1).
  • the optical signal generated by the transmission / reception device 126-i is an optical signal transmitted from the Add / Drop node 120-i to the transmission / reception node 110b.
  • the connector 185-i connects the core 20i-i and the core 20i- (i + 1) other than the core to be added / dropped out of the core of the MCF 200-i and the core of the MCF 200- (i + 1). Relay the optical signal.
  • the transmission / reception node 110a and the Add / Drop node 120-1 perform bidirectional communication using a communication path formed by the core 201-1.
  • the transmission / reception node 110a and the Add / Drop node 120-2 perform bidirectional communication using a communication path formed by the cores 202-1 and 202-2.
  • the transmission / reception node 110a and the Add / Drop node 120-3 perform bidirectional communication using a communication path formed by the cores 203-1, 203-2, and 203-3.
  • the transmission / reception node 110b and the Add / Drop node 120-1 perform bidirectional communication using a communication path formed by the cores 201-4, 201-3, and 201-2.
  • the transmission / reception node 110b and the Add / Drop node 120-2 perform bidirectional communication using a communication path formed by the cores 202-4 and 202-3.
  • the transmission / reception node 110b and the Add / Drop node 120-3 perform bidirectional communication using a communication path formed by the core 203-4.
  • the communication system 100D has a tree-type logical topology capable of communicating with each of the Add / Drop nodes 120-1 to 120-3 using the transmission / reception nodes 110a and 110b as root nodes.
  • the Add / Drop nodes 120-1 to 120-3 can communicate with the transmission / reception nodes 110a and 110b, respectively.
  • the Add / Drop nodes 120-1 to 120-3 use one of the communication paths with the two transmission / reception nodes 110a and 110b as an active system (system 0) and the other as a standby system (system 1). May be.
  • the Add / Drop nodes 120-1 to 120-3 may use a communication path with a short transmission distance as the 0 system and a communication path with a long transmission distance as the 1 system.
  • the transmission / reception node 110a and the transmission / reception node 110b may be connected using the MCF 200 or an MCF including four or more cores.
  • the communication system 100D when the roles of the transmission / reception nodes 110a and 110b and the Add / Drop nodes 120-1 to 120-3 are changed, connectors are attached to the transmission / reception nodes 110a and 110b, and the Add / Drop nodes 120-1 to 120-
  • the logical topology can be easily changed by replacing the connector 185 of 120-3 with another connector. Thereby, it is possible to flexibly cope with a change in the network configuration.
  • FIG. 8 is a diagram illustrating a configuration example of a communication system 100E using the MCF according to the present invention.
  • the communication system 100E has a physical topology of a ring configuration, and has a fully meshed logical topology.
  • the communication system 100E includes n Add / Drop nodes 120.
  • the nodes are connected by MCF 200-1 to 200-4.
  • Add / Drop node 120-1 and Add / Drop node 120-2 are connected by MCF 200-2.
  • Add / Drop node 120-2 and Add / Drop node 120-3 are connected by MCF 200-3.
  • Add / Drop node 120-3 and Add / Drop node 120-4 are connected by MCF 200-4.
  • Add / Drop node 120-4 and Add / Drop node 120-1 are connected by MCF 200-1.
  • the MCFs 200-1 to 200-4 that connect the nodes include three cores 201, 202, and 203.
  • 190-i The transmission / reception device 125-i is provided corresponding to the Add / Drop node 120 of the communication partner.
  • Connector 190-1 is connected to MCF 200-1 and MCF 200-2.
  • the connector 190-2 is connected to the MCF 200-2 and the MCF 200-3.
  • the connector 190-3 is connected to the MCF 200-3 and the MCF 200-4.
  • the connector 190-4 is connected to the MCF 200-4 and the MCF 200-1.
  • the connector 190-1 branches an optical signal from the core 201-1 of the MCF 200-1, and transmits / receives the branched optical signal to / from the Add / Drop node 120-4. Connect to.
  • the connector 190-1 inserts the optical signal generated by the transmission / reception device 125-1 communicating with the Add / Drop node 120-4 into the core 201-1 of the MCF 200-1.
  • the connector 190-1 branches an optical signal from the core 202-2 of the MCF 200-2 and connects the branched optical signal to the transmission / reception device 125-1 that communicates with the Add / Drop node 120-3.
  • the connector 190-1 inserts the optical signal generated by the transmission / reception device 125-1 communicating with the Add / Drop node 120-3 into the core 202-2 of the MCF 200-2.
  • the connector 190-1 branches an optical signal from the core 201-2 of the MCF 200-2, and connects the branched optical signal to the transmission / reception device 125-1 that communicates with the Add / Drop node 120-2.
  • the connector 190-1 inserts the optical signal generated by the transmission / reception device 125-1 communicating with the Add / Drop node 120-2 into the core 201-2 of the MCF 200-2.
  • the connector 190-2 transmits light to the core 201-2 of the MCF 200-2 and the cores 201-3 and 202-3 of the MCF 200-3. Insert and branch signals.
  • the connector 190-2 connects the branched optical signal to each transmission / reception device 125-2 that communicates with the Add / Drop nodes 120-1, 120-3, and 120-4.
  • the connector 190-2 transmits the optical signal generated by each transmitting / receiving device 125-2 communicating with the Add / Drop nodes 120-1, 120-3, 120-4 to the core 201-2 and the MCF 200 of the MCF 200-2. -3 cores 201-3 and 202-3.
  • the connector 190-2 relays an optical signal between the core 202-2 of the MCF 200-2 and the core 202-3 of the MCF 200-3.
  • the connector 190-3 transmits light to the cores 201-3 and 202-3 of the MCF 200-3 and the core 202-4 of the MCF 200-4. Insert and branch signals.
  • the connector 190-3 connects the branched optical signal to the transmission / reception device 125-3 that communicates with the Add / Drop nodes 120-1, 120-2, 120-4.
  • the connector 190-3 transmits the optical signal generated by each transmitting / receiving device 125-3 communicating with the Add / Drop nodes 120-2, 120-1, 120-4 to the cores 201-3, 202 of the MCF 200-3. -3 and the core 202-4 of the MCF 200-4.
  • the connector 190-3 relays an optical signal between the core 203-3 of the MCF 200-3 and the core 203-4 of the MCF 200-4.
  • the connector 190-4 transmits light to the cores 202-4 and 203-4 of the MCF 200-4 and the core 201-1 of the MCF 200-1. Insert and branch signals.
  • the connector 190-4 connects the branched optical signal to the transmission / reception device 125-4 that communicates with the Add / Drop nodes 120-3, 120-2, and 120-1.
  • the connector 190-4 transmits the optical signal generated by each transmitting / receiving device 125-4 communicating with the Add / Drop nodes 120-3, 120-2, 120-1 to the core 201-1 and the MCF 200 of the MCF 200-1. -4 cores 201-4 and 202-4.
  • the communication system 100E has a fully meshed logical topology.
  • the communication system 100E the configuration in which communication paths are formed between all the Add / Drop nodes 120-1 to 120-4 has been described.
  • the communication system may have a partial mesh type logical topology in which a communication path is formed in a part between each of the Add / Drop nodes 120-1 to 120-4.
  • the configuration in which bidirectional communication is performed in which optical signals having different transmission directions are transmitted by one core has been described.
  • the communication system may perform one-way communication in which only one optical signal in one transmission direction is transmitted by one core, as shown in FIG. 1, FIG. 6, FIG.
  • the communication system may have a two-system configuration in which two communication paths are formed between each of the Add / Drop nodes 120-1 to 120-4.
  • the four communication systems 100, 100A, 100D, and 100E have been described as communication systems to which the connector according to the embodiment of the present invention can be applied.
  • each communication system the configuration using MCF for connection between nodes has been described.
  • the connector described in each embodiment may be applied to a communication system in which SCF (Single Core Fiber) is used for connection between nodes.
  • SCF Single Core Fiber
  • a conversion connector that connects the MCF and the plurality of SCFs, or a conversion connector that connects the connector and the plurality of SCFs is used.
  • FIG. 9 shows a first configuration example in which a plurality of SCFs 451, 452, and 453 are used as part of the connection between the Add / Drop node 120-1 and the Add / Drop node 120-2 in the communication system 100 shown in FIG. FIG. SCFs 451, 452, and 453 are used between the MCF 200-21 connected to the connector 150-1 and the MCF 200-22 connected to the connector 150-2.
  • Conversion connector 400-1 is used for connection between MCF200-21 and SCF451-453.
  • the conversion connector 400-1 connects the cores 201-21, 202-21, and 203-21 of the MCF 200-21 and the SCFs 451, 452, and 453, respectively.
  • a conversion connector 400-2 is used to connect the MCF 200-22 and the SCFs 451 to 453.
  • the conversion connector 400-2 connects the cores 201-22, 202-22, and 203-22 of the MCF 200-22 to the SCFs 451, 452, and 453, respectively.
  • the conversion connectors 400-1 and 400-2 have the same configuration as the fan-in device or fan-out device. By using the conversion connectors 400-1 and 400-2, the SCF can be used in a part of the connection between the nodes.
  • FIG. 10 is a block diagram showing a second configuration example in which a plurality of SCFs 451, 452, and 453 are used for connection between the Add / Drop node 120-1 and the Add / Drop node 120-2 in the communication system 100 shown in FIG. FIG. SCFs 451, 452, and 453 are used to connect the connector 150-1 and the connector 150-2.
  • the configuration example shown in FIG. 10 is different from the configuration example shown in FIG. 9 in that the MCF is not used for the connection between the Add / Drop nodes 120-1 and 120-2.
  • the Add / Drop node 120-1 further includes a conversion connector 410-1. Conversion connector 410-1 is attached to Add / Drop node 120-2 side of connector 150-1.
  • the Add / Drop node 120-2 further includes a conversion connector 410-2. Conversion connector 410-2 is attached to Add / Drop node 120-1 side of connector 150-2.
  • the same number of SCFs 451 to 453 as the number of cores included in the MCF 200 are used for connection between the conversion connectors 410-1 and 410-2.
  • the conversion connector 410-1 connects the SCFs 451, 452, and 453 to the connector 150-1.
  • the connector 150-1 performs optical signal input / output with the conversion connector 410-1 instead of the MCF 200-2.
  • the connector 150-1 connects the cores 202-1 and 203-1 of the MCF 200-1 and the SCFs 452 and 453 via the conversion connector 410-1.
  • the conversion connector 410-1 inserts the optical signal generated by the transmission device 121-1 into the SCF 451 via the connector 150-1.
  • the conversion connector 410-2 connects the SCFs 451, 452, and 453 to the connector 150-2.
  • the connector 150-2 performs optical signal input / output with the conversion connector 410-2 instead of the MCF 200-2.
  • the connector 150-2 connects the SCFs 451 and 453 and the cores 201-3 and 203-3 of the MCF 200-3 via the conversion connector 410-2, respectively.
  • the connector 150-2 connects the optical signal branched from the SCF 453 to the receiving device 122-2 via the conversion connector 410-2.
  • the conversion connectors 410-1 and 410-2 have the same configuration as the fan-in device or fan-out device. By using conversion connectors 410-1 and 410-2, SCF can be used for connection between nodes.
  • SCF may be used for connection between nodes instead of MCF having two or more cores. Also in this case, a conversion connector is used similarly.
  • SCF may also be used for connections between other nodes.
  • the conversion connector 400 may be used for connection between one node, and the conversion connector 410 may be used for connection between other nodes.
  • the conversion connector 400 that connects the MCF and the SCF and the conversion connector 410 that connects to the connector 150 may be used in combination for connection between one node.
  • the conversion connector 400 may be used in the Add / Drop node 120-1 and the conversion connector 410 may be used in the Add / Drop node 120-2.
  • conversion between MCF and SCF may be performed a plurality of times.
  • MCF and SCF may be used in the order of MCF, SCF, MCF, SCF, and MCF.
  • a conversion connector is used between the MCF and the SCF.
  • the connector 150-1 and the conversion connector 410-1 described in FIG. 10 may be configured as one connector.
  • the connector 150-2 and the conversion connector 410-2 may be configured as one connector. That is, a connector connected to the MCF and the plurality of SCFs may perform optical signal ADD / Drop to the MCF or SCF, and may relay the optical signal between the MCF and the SCF.
  • the SCF may be used for one or a plurality of connections between nodes in the communication system 100 shown in FIG. 1 and other communication systems.
  • connectors having the same configuration at each node connect the MCFs.
  • the connector performs insertion and branching (Add / Drop) of the optical signal related to the own node.
  • FIG. 11A and 11B are diagrams illustrating the configuration of the connector 510 according to the first embodiment.
  • the connector 510 according to the first embodiment is used in a communication system having a tree-type logical topology having a ring-type physical topology and having two transmission / reception nodes as root nodes, for example, the same as the communication system 100A shown in FIG. It is done.
  • the connector 510 connects two multi-core fibers in which a plurality of cores are arranged on a circumference centering on the central axis of the multi-core fiber in the cross section of the multi-core fiber.
  • the arrangement of the plurality of cores in the two multi-core fibers is the same arrangement.
  • the connector 510 is used in each Add / Drop node of the communication system 100A shown in FIG.
  • a multi-core fiber (MCF) 210 shown in FIGS. 11A and 11B is the MCF 210 used in the communication system 100A shown in FIG. 6, and includes six cores 211-216. When viewed from the axial direction of the MCF 210, the six cores 211 to 216 are arranged at equal intervals on a concentric circle and arranged in a rotationally symmetrical manner of 6-fold symmetry.
  • the connector 510 selects two cores among the cores 211 to 216 as shown in FIG. 11A.
  • the connector 510 inserts / drops an optical signal with respect to two selected cores, and relays (through) the optical signal with respect to the other cores.
  • the set of cores to which optical signals are inserted / branched is either a set of cores 211 and 212, a set of cores 213 and 214, or a set of cores 215 and 216.
  • the center axis of the MCF with respect to the axial direction of the MCF 210 (the depth direction with respect to the paper surface) with respect to the attachment position of the connector 510 and the MCF 210 when optical signals are inserted / branched with respect to the cores 211 and 212
  • the connector 510 can insert / branch an optical signal into and from the core 213 and the core 214 due to the rotational symmetry of the core arrangement.
  • the connector 510 when the connector 510 is attached at a position rotated 120 degrees around the central axis of the MCF with respect to the axial direction of the MCF 210, the connector 510 inserts / branches optical signals into and from the core 215 and the core 216. It can be carried out.
  • the user may be able to easily grasp the rotation angle of the connector 510 with respect to the axial direction of the MCF 210.
  • a reference line or mark may be attached to the film of the MCF 210 along the axial direction so that the reference position can be known.
  • the reference position is, for example, a position where the position of the core 211 can be grasped.
  • the shape of the film of the MCF 210 may be formed so that the reference position can be grasped.
  • a groove or a protrusion may be formed in the film along the axial direction so that the position of the core 211 can be grasped.
  • FIG. 11B is a diagram illustrating how an optical signal is handled when the connector 510 connects two MCFs 210.
  • FIG. 11B shows a case where the connector 510 is used for the Add / Drop node 120-3 in the communication system 100A of FIG. That is, the case where the connector 510 is used instead of the connector 160-3 is shown.
  • the connector 510 connects the MCF 210-3 and the MCF 210-4.
  • the connector 510 branches an optical signal from the core 215-3 of the MCF 210-3 and connects the branched optical signal to the transmission / reception device 126-3.
  • the connector 510 inserts the optical signal to the transmission / reception node 110a generated by the transmission / reception device 126-3 into the core 216-3 of the MCF 210-3.
  • the connector 510 branches an optical signal from the core 215-4 of the MCF 210-4 and connects the branched optical signal to the transmission / reception device 125-3.
  • the connector 510 inserts an optical signal to the transmission / reception node 110b generated by the transmission / reception device 125-3 into the core 216-4 of the MCF 210-4.
  • the connector 510 when the reference position of the MCF 210-3 and the reference position of the MCF 210-4 are matched, is not an add / drop target core among the opposing cores 211 to 216.
  • the optical signals in the cores 211 to 214 are relayed.
  • the connector 510 When attaching the connector 510 to the MCF 210, the connector 510 can be made to select a core to be added / dropped by rotating the connector 510 by a predetermined angle with respect to the axial direction of the MCF 210. When the core to be added / dropped is different for each node, the connector 510 is attached to the MCF 210 after being rotated at a different angle for each node with respect to the axial direction of the MCF 210. By attaching the connector 510 to the MCF 210 in this way, it is possible to add / drop an optical signal to a desired core using the same connector 510 at each node.
  • the angle that differs for each node is an angle that is an integral multiple of (360 / n) degrees when the core arrangement in the MCF 210 is n-fold symmetric.
  • the same core is selected for selection at 0 degrees and 180 degrees, 60 degrees and 240 degrees, and 120 degrees and 300 degrees.
  • the multicore fiber 210 demonstrated as an example the core group which opposes on both sides of the center (center axis of a multicore fiber) as a core group selected.
  • the set of cores selected may be other than the set shown in FIGS. 11A and 11B.
  • adjacent cores may be paired.
  • the cores 211 and 213, the cores 215 and 212, and the cores 214 and 216 may be combined. In this case, when the attachment position of the connector for selecting the pair of cores 211 and 213 is set as the reference position, the node for selecting the pair of cores 215 and 212 is 120 clockwise from the reference position with respect to the central axis of the multicore fiber.
  • the connector is attached to the multi-core fiber at a position rotated by a predetermined degree. Further, in the node that selects the pair of cores 214 and 216, the connector is attached to the multi-core fiber at a position rotated clockwise by 240 degrees from the reference with respect to the central axis.
  • an example of the core arrangement in the multi-core fiber and a configuration example of the connector corresponding to the core arrangement are shown.
  • the core assigned to each Add / Drop node can be selected according to the rotation angle at which the connector is attached to the multi-core fiber.
  • cores to be added / dropped are selected at each of n different rotation angles, and optical signals in other cores are relayed between multi-core fibers.
  • the core should just be arrange
  • the connector may be provided with an optical signal relay structure used only at some nodes so that the relay can be performed between the multi-core fibers.
  • the Add / Drop of the optical signal the process of dividing the multiplexed optical signals having different wavelengths for each wavelength becomes unnecessary, so that it is possible to reduce the installation and maintenance time of the devices in each Add / Drop node 120.
  • the connector 510 in the first embodiment performs Add / Drop with two cores in the MCF for each transmission / reception node, but 1 in the MCF for each transmission / reception node.
  • 12A and 12B are diagrams illustrating the configuration of the connector 520 in the second embodiment.
  • the connector 520 has the same ring-type physical topology as that of the communication system shown in FIGS. 1 and 7, for example, and is used in a communication system having a tree-type logical topology with a transmission / reception node as a root node.
  • the connector 520 connects two multi-core fibers in which a plurality of cores are arranged on a circumference centering on the central axis of the multi-core fiber in the fiber cross section.
  • the arrangement of the plurality of cores in the two multi-core fibers is the same arrangement.
  • the connector 520 is used in each Add / Drop node of the communication system shown in FIG. 1 or FIG.
  • a multi-core fiber (MCF) 200 shown in FIGS. 12A and 12B is the MCF 200 used in the communication system shown in FIGS. 1 and 7, and includes three cores 201-203.
  • the three cores 201 to 203 are arranged at equal intervals on a concentric circle, and are arranged in three-fold rotational symmetry.
  • the connector 520 inserts / drops an optical signal into / from any one of the cores 201 to 203, and relays the optical signal to the other core. Clockwise about the central axis of the MCF with respect to the axial direction of the MCF 200 (the depth direction with respect to the paper surface) with respect to the mounting position of the connector 520 and the MCF 200 when optical signals are inserted / branched with respect to the core 201
  • the connector 510 is attached at a position rotated by 120 degrees
  • the connector 520 can insert / branch an optical signal with respect to the core 202 due to the rotational symmetry of the core arrangement.
  • the connector 510 can insert / branch an optical signal with respect to the core 203.
  • the user when the connector 520 is attached to the MCF 200, the user may be able to easily grasp the rotation angle of the connector 520 with respect to the axial direction of the MCF 200.
  • a mark, a line, a mark, a groove, or a protrusion may be provided along the axial direction on the film of the MCF 200 so that the reference position can be known.
  • the reference position is, for example, a position where the position of the core 201 can be grasped.
  • FIG. 12B is a diagram illustrating how an optical signal is handled when two MCFs 200 are connected to the connector 520.
  • FIG. 12B shows a case where the connector 520 is used for the Add / Drop node 120-2 in the communication system 100D of FIG. That is, the case where the connector 520 is used instead of the connector 185-2 is shown.
  • Connector 520 is connected to MCF 200-2 and MCF 200-3.
  • the connector 520 branches an optical signal from the core 202-2 of the MCF 200-2 and connects the branched optical signal to the transmission / reception device 125-2.
  • the connector 520 inserts the optical signal to the transmission / reception node 110a generated by the transmission / reception device 125-2 into the core 202-2 of the MCF 200-2.
  • the connector 520 branches an optical signal from the core 202-3 of the MCF 200-3 and connects the branched optical signal to the transmission / reception device 126-2.
  • the connector 520 inserts the optical signal to the transmission / reception node 110b generated by the transmission / reception device 126-2 into the core 203-3 of the MCF 200-3.
  • the connector 510 when the reference position of the MCF 200-2 and the reference position of the MCF 200-3 are matched, the cores 201 to 203 that face each other except the core that is the target of Add / Drop.
  • the optical signals in the cores 201 and 203 are relayed.
  • the connector 520 can select the core to be added / dropped by rotating the connector 520 by a predetermined angle with respect to the axial direction of the MCF 200.
  • the connector 520 is similarly used at each node.
  • Optical signal Add / Drop can be performed on a desired core. Also, by performing Add / Drop of optical signals in units of cores, processing for dividing multiplexed optical signals with different wavelengths for each wavelength becomes unnecessary, so that installation and maintenance of devices at each Add / Drop node can be performed. Time and effort can be reduced.
  • an example of the core arrangement in the multi-core fiber and a configuration example of the connector corresponding to the core arrangement are shown.
  • the core assigned to each Add / Drop node can be selected according to the rotation angle at which the connector is attached to the multi-core fiber.
  • cores to be added / dropped are selected at each of n different rotation angles, and optical signals in other cores are relayed between multi-core fibers.
  • the core should just be arrange
  • the connector may be provided with an optical signal relay structure used only at some nodes so that the relay can be performed between the multi-core fibers.
  • the connectors provided in the Add / Drop node of the communication system in the first and second embodiments have the same configuration.
  • each of the connectors is connected to the first MCF that connects the first node adjacent to the own node with which the connector is provided and the second node adjacent to the opposite side of the first node.
  • the second MCF is connected to the node.
  • the connector is attached to the first and second MCFs at a position rotated by a different angle at each node from the reference position with respect to the central axis direction of the first and second MCFs.
  • the connector has a configuration in which an optical signal is inserted or branched with respect to a core selected according to an angle attached to the MCF, and an optical signal is relayed to another core.
  • the connector is connected between the other node between the first MCF and the second MCF, and the connection unit that inserts or branches the optical signal to the core that transmits the communication between the own node and the other node.
  • a signal relay unit that relays a signal transmitted by a core assigned for communication.
  • the connection unit is configured to connect an optical signal from the core 202-2 to the transmission / reception device 125-2, and the signal relay unit includes the core 201-2 and the core 210. -3 to connect the optical signal between both cores.
  • the connector in the third embodiment is a connector having the same configuration that can be used in each node without depending on the core arrangement in the multicore fiber.
  • FIG. 13 is a diagram illustrating a configuration of the connector 530 according to the third embodiment.
  • the connector 530 is used in a communication system having a tree-type logical topology having the same ring-type physical topology as the communication system 100A shown in FIG. 6 and having two transmission / reception nodes as root nodes.
  • FIG. 13 shows connections between the connectors 530 and the MCFs 210-1 to 210-4 when the connectors 530 are used for the Add / Drop nodes 120-1 to 120-3 of the communication system 100A.
  • Connector 530 is characterized by a method for relaying optical signals between two MCFs 210 to be connected.
  • the connector 530 can perform Add / Drop of optical signals related to the same node to the same core in any of the Add / Drop nodes 120-1 to 120-3.
  • description will be given focusing on the connector 530-2 provided in the Add / Drop node 120-2, but all the connectors 530 have the same configuration.
  • the MCF 210-2 is connected to the transmission / reception node 110a side of the connector 530-2, and the MCF 210-3 is connected to the transmission / reception node 110b side of the connector 530-2.
  • the connector 530-2 includes connection points that connect to the cores 211-2 to 216-2 of the MCF 210-2 and the cores 211-3 to 216-3 of the MCF 210-3, respectively. At each connection point, an optical signal is input to and output from the connected core.
  • Connector 530-2 includes connection points 1a to 1f for each core of MCF 210-2 and connection points 2a to 2f for each core of MCF 210-3.
  • connection point 1a is connected to the core 211-2 of the MCF 210-2 and branches an optical signal from the transmission / reception node 110a to the own node from the core 211-2.
  • the optical signal branched by the connection point 1a is connected through the connector 530-2 to the transmission / reception device 125-2 provided in the Add / Drop node 120-2.
  • the connection point 1b is connected to the core 212-2 of the MCF 210-2, and branches an optical signal from the transmission / reception node 110a to the Add / Drop node 120-3 from the core 212-2.
  • the optical signal branched by the connection point 1b is relayed by being connected to the connection point 2a.
  • connection point 1c is connected to the core 213-2 of the MCF 210-2 and branches an optical signal from the Add / Drop node 120-1 to the transmission / reception node 11b from the core 213-2.
  • the optical signal branched by the connection point 1c is relayed by being connected to the connection point 2b.
  • connection point 1d is connected to the core 214-2 of the MCF 210-2.
  • the optical signal branched from the connection point 2e and transmitted from the transmission / reception node 110b to the Add / Drop node 120-1 is relayed to the core 214-2 by being connected to the connection point 1d.
  • the connection point 1e is connected to the core 215-2 of the MCF 210-2.
  • An optical signal branched from the connection point 2f and transmitted from the Add / Drop node 120-3 to the transmission / reception node 110a is relayed to the core 215-2 by being connected to the connection point 1e.
  • the connection point 1f is connected to the core 216-2 of the MCF 210-2, and inserts an optical signal generated by the transmission / reception device 125-2 from the own node to the transmission / reception node 110a into the core 216-2.
  • connection point 2a is connected to the core 211-3 of the MCF 210-3.
  • the optical signal branched by the connection point 1b is relayed to the core 211-3 by being connected to the connection point 2a.
  • the connection point 2b is connected to the core 212-3 of the MCF 210-3.
  • the optical signal branched by the connection point 1c is relayed to the core 211-3 by being connected to the connection point 2b.
  • the connection point 2c is connected to the core 212-3 of the MCF 210-3, and is an optical signal generated by the transmission / reception device 126-2 provided in the own node, and an optical signal from the own node to the own node from the transmission / reception node 110b. Insert into core 213-3.
  • connection point 2d is connected to the core 214-3 of the MCF 210-3 and branches an optical signal from the transmission / reception node 110b to the own node from the core 214-3.
  • the optical signal branched by the connection point 2d is connected to the transmission / reception device 126-2 through the connector 530-2.
  • the connection point 2e is connected to the core 215-3 of the MCF 210-3 and branches an optical signal from the core 215-3.
  • the optical signal branched by the connection point 2e is relayed to the core 214-1 by being connected to the connection point 1d.
  • connection point 2f is connected to the core 216-3 of the MCF 210-3 and branches an optical signal from the core 216-3.
  • the optical signal branched at the connection point 2f is relayed to the core 215-2 by being connected to the connection point 1e.
  • the core 211 transmits an optical signal to a node connected on the first direction side from the transmission / reception node 110a to the transmission / reception node 110b.
  • the core 212 transmits an optical signal to the next two nodes in the first direction.
  • the core 212 transmits an optical signal to a node connected to the first direction side.
  • the core 213 transmits an optical signal to the three nodes ahead in the first direction. If there are no three nodes ahead in the first direction, as in the cores 213-3 and 213-4 in FIG. 13, an optical signal is transmitted to the two nodes ahead and one node ahead.
  • the core 214 transmits an optical signal to a node connected on the second direction side from the transmission / reception node 110b toward the transmission / reception node 110a.
  • the core 215 transmits an optical signal to the next two nodes in the second direction. If there is no second node in the second direction like the core 215-1 in FIG. 13, the core 215 transmits an optical signal to a node connected to the second direction side. .
  • the core 216 transmits an optical signal to the third node in the second direction. If there are no three nodes ahead in the second direction like the cores 216-1 and 216-2 in FIG. 13, an optical signal is transmitted to the nodes one and two ahead.
  • each Add / Drop node 120 can Add / Drop an optical signal related to the own node, and the transmission / reception nodes 110a and 110b and each Add / Drop node 120 A communication path between the two can be formed.
  • a connector 530 having the same configuration connects the MCF 210 on the transmission / reception node 110a side and the MCF 210 on the transmission / reception node 110b side.
  • each Add / Drop node 120 since the connectors used in each Add / Drop node 120 are the same, it is possible to prevent the occurrence of a human error such as an incorrect connector used for connecting the MCF. Also, by performing Add / Drop of optical signals in units of cores, processing for dividing multiplexed optical signals with different wavelengths for each wavelength becomes unnecessary, so that installation and maintenance of devices at each Add / Drop node can be performed. Time and effort can be reduced.
  • FIG. 14 is a diagram illustrating a configuration of a connector 540 according to the fourth embodiment.
  • the connector 540 has the same ring type physical topology as the communication system 100D shown in FIG. 7, and is used in a communication system having a tree type logical topology in which each of two transmission / reception nodes is a root node.
  • FIG. 14 shows connections between the connectors 540 and the MCFs 200-1 to 200-4 when the connectors 540 are used for the Add / Drop nodes 120-1 to 120-3 of the communication system 100D.
  • Connector 540 is characterized by a method of relaying optical signals from core to core between two connected MCFs 200.
  • the connector 540 can add / drop optical signals related to the same node to the same core in any of the Add / Drop nodes 120-1 to 120-3.
  • description will be given focusing on the connector 540-2 provided in the Add / Drop node 120-2, but all the connectors 540 have the same configuration.
  • the MCF 200-2 is connected to the transmission / reception node 110a side of the connector 540-2, and the MCF 200-3 is connected to the transmission / reception node 110b side of the connector 540-2.
  • the connector 540-2 includes connection points that connect to the cores 201 to 206 of the MCF 200-2 and the cores 201 to 206 of the MCF 200-3, respectively. At each connection point, an optical signal is input to and output from the connected core.
  • Connector 540-2 includes connection points 1a to 1c for each core of MCF 200-2 and connection points 2a to 2c for each core of MCF 200-3.
  • connection point 1a is connected to the core 201-2 of the MCF 200-2 and branches an optical signal from the transmission / reception node 110a to the own node from the core 201-2.
  • the optical signal branched by the connection point 1a is connected through the connector 540-2 to the transmission / reception device 125-2 provided in the Add / Drop node 120-2.
  • the connection point 1a inserts an optical signal generated by the transmission / reception device 125-2 from the own node to the transmission / reception node 110a into the core 201-2.
  • connection point 1b is connected to the core 202-2 of the MCF 200-2 and branches an optical signal from the transmission / reception node 110a to the Add / Drop node 120-3 from the core 202-2.
  • the optical signal branched by the connection point 1b is relayed by being connected to the connection point 2a.
  • the connection point 1b connects the optical signal branched from the connection point 2a and transmitted from the Add / Drop node 120-3 to the transmission / reception node 110a to the core 202-2.
  • connection point 1c is connected to the core 203-2 of the MCF 200-2 and branches an optical signal from the Add / Drop node 120-1 to the transmission / reception node 110b from the core 203-2.
  • the optical signal branched by the connection point 1c is relayed by being connected to the connection point 2b.
  • the connection point 1c connects an optical signal branched from the connection point 2b and transmitted from the transmission / reception node 110b to the Add / Drop node 120-1 to the core 203-2.
  • connection point 2a is connected to the core 201-3 of the MCF 200-3 and branches an optical signal from the core 201-3.
  • the optical signal branched by the connection point 2a is relayed by being connected to the connection point 1b.
  • the connection point 2a connects the optical signal branched by the connection point 1b to the core 201-3.
  • the connection point 2b is connected to the core 202-3 of the MCF 200-3 and branches an optical signal from the core 202-3.
  • the optical signal branched by the connection point 2b is relayed by being connected to the connection point 1c.
  • the connection point 2b connects the optical signal branched by the connection point 1c to the core 202-3.
  • connection point 2c is connected to the core 203-3 of the MCF 200-3 and branches an optical signal from the transmission / reception node 110b to the own node.
  • the optical signal branched by the connection point 2c is connected through the connector 540-2 to the transmission / reception device 126-2 included in the Add / Drop node 120-2.
  • the connection point 2c inserts an optical signal generated by the transmission / reception device 126-2 and transmitted from the own node to the transmission / reception node 110b into the core 203-3.
  • the core 201 includes a node connected on the first direction side from the transmission / reception node 110a to the transmission / reception node 110b, and the transmission / reception node 110b. Transmits an optical signal in communication with three nodes ahead in the second direction from the node toward the transmission / reception node 110a. If there are no three nodes ahead in the second direction, such as the cores 201-1 and 201-2 in FIG. 14, the first and second nodes and the first direction side An optical signal is transmitted in communication with a connected node.
  • the core 202 transmits an optical signal in communication between the two nodes ahead in the first direction and the two nodes ahead in the second direction. If there are no two nodes ahead in the first direction like the core 202-4 in FIG. 14, the core 202 has two nodes in the first direction and two nodes in the second direction. An optical signal in communication with the previous node is transmitted. In addition, as in the core 202-1 in FIG. 14, when there is no second node in the second direction, the core 202 includes two nodes in the first direction and two nodes in the first direction. An optical signal in communication with the previous node is transmitted.
  • the core 203 transmits an optical signal in communication between a node that is three ahead in the first direction and a node connected to the second direction side. If there are no three nodes ahead in the first direction, such as the cores 203-3 and 203-4 in FIG. 14, two nodes ahead, one node ahead, and the second direction side. An optical signal is transmitted in communication with a connected node.
  • each Add / Drop node 120 can Add / Drop an optical signal related to its own node, and the transmission / reception nodes 110a and 110b and each Add / Drop node 120 A communication path between the two can be formed.
  • a connector 540 having the same configuration connects the MCF 200 on the transmission / reception node 110a side and the MCF 200 on the transmission / reception node 110b side.
  • each of the connectors is connected to the first MCF that connects the first node adjacent to the own node with which the connector is provided and the second node adjacent to the opposite side of the first node.
  • the second MCF is connected to the node.
  • the connector also includes a first connection point for inserting or branching an optical signal in communication between the transmission / reception node and the own node with respect to the first core of the first MCF, and communication between the transmission / reception node and the second node.
  • the first core of the second MCF is the first core of the first MCF when viewed from the second node.
  • the connector is connected between the other node between the first MCF and the second MCF, and the connection unit that inserts or branches the optical signal to the core that transmits the communication between the own node and the other node.
  • a signal relay unit that relays a signal transmitted by a core assigned for communication. For example, in the connector 540-1 shown in FIG.
  • connection unit includes a connection point 1a for connecting an optical signal from the core 201-1 to the transmission / reception device, and the signal relay unit includes the core 202-1 and the core 202-1. It is configured to include connection points 1b and 2a that connect to the optical fiber 201-2 and relay the optical signal between both cores.
  • FIG. 15A and FIG. 15B are diagrams showing configurations of the communication system 500 and the connector 550 in the fifth embodiment.
  • FIG. 15A shows the physical topology of the communication system 500 in the fifth embodiment.
  • the communication system includes four Add / Drop nodes 120-1 to 120-4, and has a ring-type physical topology in which the Add / Drop nodes 120 are connected by the MCF 200.
  • the physical topology of the communication system 500 is the same physical topology as the communication system 100E shown in FIG.
  • the logical topology of the communication system 500 is also the same physical topology as that of the communication system 100E, and is a complete mesh type logical topology in which communication paths are provided between the Add / Drop nodes 120.
  • the MCF 200 that connects between the Add / Drop nodes 120 includes three cores 201 to 203. Similarly to the cores 201 to 203 in the fourth embodiment, the cores 201 to 203 transmit optical signals having different transmission directions in the same core.
  • FIG. 15B shows connections between the connectors 550 and the MCFs 200-1 to 200-4 when the connectors 550 are used for the Add / Drop nodes 120-1 to 120-4 of the communication system 500.
  • the connector 550 is characterized in a method of relaying an optical signal from the core to the core between the two connected MCFs 200.
  • the connector 550 can add / drop optical signals related to the same node to the same core in any of the Add / Drop nodes 120-1 to 120-4.
  • the description will be given focusing on the connector 550-3 provided in the Add / Drop node 120-3, but all the connectors 550 have the same configuration.
  • the Add / Drop node 120-3 is connected via the MCF 200-3 to the first direction side that is the clockwise direction in the ring shape connecting the nodes of the communication system 500. ing.
  • An Add / Drop node 120-4 is connected to the second direction side, which is the counterclockwise direction, via the MCF 200-4.
  • the connector 550-3 is connected to the MCF 200-3 on the first direction side and the MCF 200-4 on the second direction side.
  • the connector 550-3 includes connection points that connect to the cores 201-3 to 203-3 of the MCF 200-3 and the cores 201-4 to 203-4 of the MCF 200-4. At each connection point, an optical signal is input to and output from the connected core.
  • the connector 550-3 includes connection points 1a to 1c for each core of the MCF 200-3 and connection points 2a to 2c for each core of the MCF 200-4.
  • connection point 1a is connected to the core 201-3 of the MCF 200-3.
  • the connection point 1a cores an optical signal from the Add / Drop node 120-2 connected to the first direction side of the own node to the Add / Drop node 120-4 connected to the second direction side of the own node. Branch from 201-3.
  • the optical signal branched by the connection point 1a is relayed to the core 201-4 by being connected to the connection point 2b.
  • the connection point 1a connects an optical signal branched from the connection point 2b and transmitted from the Add / Drop node 120-4 to the Add / Drop node 120-2 to the core 201-3.
  • connection point 1b is connected to the core 202-3 of the MCF 200-3.
  • the connection point 1b branches from the core 202-3 an optical signal from the Add / Drop node 120-1 that is two points ahead in the first direction from the own node to the own node.
  • the optical signal branched by the connection point 1b is connected to a transmission / reception device provided in the Add / Drop node 120-3.
  • the connection point 1b inserts an optical signal generated by the transmission / reception device from the own node to the Add / Drop node 120-1 into the core 202-3.
  • connection point 1c is connected to the core 203-3 of the MCF 200-3.
  • the connection point 1c branches an optical signal from the Add / Drop node 120-2 connected in the first direction of the own node to the own node.
  • the optical signal branched by the connection point 1c is connected to the transmitting / receiving device of the own node.
  • the connection point 1c inserts an optical signal generated by the transmission / reception device from the own node to the Add / Drop node 120-2 into the core 203-3.
  • connection point 2a is connected to the core 201-4 of the MCF 200-4.
  • the connection point 2a inserts into the core 201-4 an optical signal that is generated by the transmitting / receiving device of the own node and that is the optical signal from the own node to the second Add / Drop node 120-1 in the second direction.
  • the connection point 2a branches an optical signal from the Add / Drop node 120-1 to the own node from the core 201-4.
  • the optical signal branched by the connection point 2a is connected to the transmitting / receiving device of the own node.
  • connection point 2b is connected to the core 202-4 of the MCF 200-4.
  • the optical signal branched by the connection point 1a is relayed to the core 202-4 by being connected to the connection point 2b.
  • the connection point 2b cores an optical signal from the Add / Drop node 120-4 connected in the second direction of the own node to the Add / Drop node 120-2 connected in the first direction of the own node. Branch from 202-4.
  • the optical signal branched by the connection point 2b is relayed to the core 201-3 by being connected to the connection point 1a.
  • connection point 2c is connected to the core 203-4 of the MCF 200-4.
  • the connection point 2c inserts, into the core 203-4, an optical signal generated by the transmission / reception device of the own node and to the Add / Drop node 120-4 connected to the second direction side of the own node. .
  • the connection point 2c branches an optical signal from the Add / Drop node 120-4 to the own node from the core 203-4.
  • the optical signal branched by the connection point 2c is connected to the transmitting / receiving device of the own node.
  • the core 201 performs communication between the node connected in the first direction and the two nodes ahead in the second direction. Transmit optical signals.
  • the core 202 transmits an optical signal in communication between two nodes ahead in the first direction and a node connected in the second direction.
  • the core 203 transmits an optical signal in communication between a node connected in the first direction and a node connected in the second direction.
  • the connector 550 used in all nodes has the same structure, and an optical signal is inserted, branched and relayed in each node. In FIG.
  • a path indicated by a line without an arrow in each connector 550 indicates a path that is not used for communication in this embodiment.
  • the path connected to the connection point 2a is a path that is not used in communication. This is because the connector 550 has the same structure, so that more communication paths than the necessary number of communication paths are formed. Note that a route that is not used may be used as a communication route.
  • each Add / Drop node 120 can add / drop an optical signal in communication between the own node and another Add / Drop node 120, and each Add A communication path between the / Drop nodes 120 can be formed.
  • a connector 550 having the same configuration connects the MCF 200 connected to the first direction side and the MCF 200 connected to the second direction side.
  • FIG. 16 is a diagram illustrating a connection between the connector 560 of each Add / Drop node 120 and the MCF 220 in the sixth embodiment.
  • the communication system according to the sixth embodiment includes four Add / Drop nodes 120-1 to 120-4, similarly to the communication system according to the fifth embodiment.
  • the communication system according to the sixth embodiment has a ring-type physical topology and a fully meshed logical topology.
  • the MCF 220 that connects between the Add / Drop nodes 120 includes four cores 221 to 224.
  • Each of the Add / Drop nodes 120-1 to 120-4 is provided with a connector 560.
  • description will be given focusing on the connector 560-3 provided in the Add / Drop node 120-3, but all the connectors 560 have the same configuration.
  • the Add / Drop node 120-3 is connected via the MCF 220-3 to the first direction side which is the clockwise direction in the ring shape connecting the nodes of the communication system. Yes.
  • An Add / Drop node 120-4 is connected via the MCF 220-4 to the second direction side which is the counterclockwise direction.
  • the connector 560-3 is connected to the MCF 220-3 on the first direction side and the MCF 220-4 on the second direction side.
  • the connector 560-3 includes connection points that connect to the cores 221-3 to 224-3 of the MCF 220-3 and the cores 221-4 to 224-4 of the MCF 220-4, respectively. At each connection point, an optical signal is input to and output from the connected core.
  • the connector 560-3 includes connection points 1a to 1d for each core of the MCF 220-3 and connection points 2a to 2d for each core of the MCF 220-4.
  • connection point 1a is connected to the core 221-3 of the MCF 220-3.
  • the connection point 1a transmits an optical signal from the Add / Drop node 120-2 connected to the first direction side of its own node to the Add / Drop node 120-4 connected to the second direction side of the core 221-3. Branch from.
  • the optical signal branched by the connection point 1a is relayed by being connected to the connection point 2b.
  • the connection point 1b is connected to the core 222-3 of the MCF 220-3.
  • the connection point 1b branches an optical signal from the Add / Drop node 120-1 that is two points ahead in the first direction from the own node to the own node.
  • the optical signal branched by the connection point 1b is connected to the transmitting / receiving device of the own node.
  • connection point 1c is connected to the core 223-3 of the MCF 220-3.
  • the connection point 1c inserts, into the core 223-3, an optical signal generated by the transmission / reception device of the own node and transmitted from the own node to the Add / Drop node 120-2 connected in the first direction.
  • the connection point 1d is connected to the core 224-3 of the MCF 220-3.
  • the connection point 1d branches an optical signal from the Add / Drop node 120-2 connected to the first direction side of the own node to the own node.
  • the optical signal branched by the connection point 1d is connected to the transmitting / receiving device of the own node.
  • connection point 2a is connected to the core 221-4 of the MCF 220-4.
  • the connection point 2a inserts into the core 221-4 an optical signal that is generated by the transmitting / receiving device of the own node and that is transmitted from the own node to the second Add / Drop node 120-1 in the second direction.
  • the connection point 2b is connected to the core 222-4 of the MCF 220-4.
  • the connection point 2b connects the optical signal branched by the connection point 1a to the core 222-4.
  • connection point 2c is connected to the core 223-4 of the MCF 220-4.
  • the connection point 2c branches an optical signal from the Add / Drop node 120-4 connected in the second direction to the own node.
  • the optical signal branched by the connection point 2c is connected to the transmitting / receiving device of the own node.
  • the connection point 2d is connected to the core 224-4 of the MCF 220-4.
  • the connection point 2d inserts into the core 224-4 an optical signal generated by the transmission / reception apparatus of its own node and to the Add / Drop node 120-4 connected to the second direction side.
  • the core 221 transmits light from the node connected on the first direction side to the next node in the second direction. Transmit the signal.
  • the core 222 transmits an optical signal from a second node ahead in the first direction to a node connected to the second direction side.
  • the core 223 transmits an optical signal from a node connected on the second direction side to a node connected on the first direction side.
  • the core 224 transmits an optical signal from a node connected to the first direction side to a node connected to the second direction side.
  • each Add / Drop node 120 can add / drop an optical signal in communication between the own node and another Add / Drop node 120, and each Add A communication path between the / Drop nodes 120 can be formed.
  • the connector 560 having the same configuration connects the MCF 220 connected to the first direction side and the MCF 220 connected to the second direction side.
  • the MCF 220 By connecting the MCF 220 with the connector 560, it is possible to reduce the cost applied to the connector, and it is possible to prevent the occurrence of a human error such as an incorrect connector used for connecting the MCF.
  • Add / Drop of optical signals in units of cores, processing for dividing multiplexed optical signals with different wavelengths for each wavelength becomes unnecessary, so that installation and maintenance of devices at each Add / Drop node can be performed. Time and effort can be reduced.
  • FIG. 17 is a diagram illustrating a connection between the connector 570 of each Add / Drop node 120 and the MCF 210 in the seventh embodiment.
  • the MCF 210 that connects between the Add / Drop nodes 120 has six cores 211 to 216.
  • the description will be given focusing on the connector 570-3 provided in the Add / Drop node 120-3, but all the connectors 570 have the same configuration.
  • the Add / Drop node 120-3 is connected via the MCF 210-3 to the first direction side that is the clockwise direction in the ring shape connecting the nodes of the communication system. Yes.
  • An Add / Drop node 120-4 is connected via the MCF 210-4 to the second direction side which is the counterclockwise direction.
  • the connector 570-3 is connected to the MCF 210-3 on the first direction side and the MCF 210-3 on the second direction side.
  • the connector 570-3 includes connection points that connect to the cores 211 to 216 of the MCF 210-3 and the cores 211 to 216 of the MCF 210-4, respectively. At each connection point, an optical signal is input to and output from the connected core.
  • the connector 560-3 includes connection points 1a to 1f for each core of the MCF 210-3 and connection points 2a to 2f for each core of the MCF 210-4.
  • connection point 1a is connected to the core 211-3 of the MCF 210-3.
  • the connection point 1a branches an optical signal from the Add / Drop node 120-2 connected to the first node of the own node to the own node from the core 211-3.
  • the optical signal branched by the connection point 1a is connected to a transmission / reception device provided in the own node.
  • the connection point 1a inserts an optical signal, which is an optical signal generated by a transmission / reception device provided in the own node, from the own node to the Add / Drop node 120-2 into the core 211-3.
  • connection point 1b is connected to the core 212-3 of the MCF 210-3.
  • the connection point 1b branches from the core 212-3 an optical signal from the Add / Drop node 120-1 that is two points ahead in the first direction from the own node to the own node.
  • the optical signal branched by the connection point 1b is connected to a transmission / reception device provided in the own node. Further, the connection point 1b inserts an optical signal from the own node to the Add / Drop node 120-1 into the core 212-3, which is an optical signal generated by the transmitting / receiving device of the own node.
  • connection point 1c is connected to the core 213-3 of the MCF 210-3.
  • the connection point 1c cores the optical signal from the Add / Drop node 120-2 connected to the first direction side of the own node to the Add / Drop node 120-4 connected to the second direction side of the own node. Branches from 213-3.
  • the optical signal branched by the connection point 1c is relayed to the core 212-4 by being connected to the connection point 2b. Further, the connection point 1c connects an optical signal branched from the connection point 2b to the core 213-3 from the Add / Drop node 120-4 to the Add / Drop node 120-2.
  • connection point 1d is connected to the core 214-3 of the MCF 210-3.
  • the connection point 1d branches the optical signal from the add / drop node 120-4, which is three points ahead from the own node, in the first direction from the core 214-3.
  • the optical signal branched by the connection point 1d is connected to the transmitting / receiving device of the own node.
  • the connection point 1d inserts an optical signal generated by the transmission / reception apparatus of its own node from the own node to the Add / Drop node 120-4 into the core 214-3.
  • connection point 1e is connected to the core 215-3 of the MCF 210-3.
  • the connection point 1e transmits an optical signal from the core 215-3 to the Add / Drop node 120-4 connected to the second direction side from the Add / Drop node 120-1 that is two points ahead from its own node in the first direction. Branch.
  • the optical signal branched by the connection point 1e is relayed to the core 214-4 by being connected to the connection point 2d.
  • the connection point 1e connects an optical signal branched from the connection point 2d and transmitted from the Add / Drop node 120-4 to the Add / Drop node 120-1 to the core 215-3.
  • connection point 1f is connected to the core 216-3 of the MCF 210-3.
  • the connection point 1f transmits an optical signal from the Add / Drop node 120-2 connected to the first direction side of the own node to the Add / Drop node 120-1 that is two points ahead from the own node in the second direction. Branch.
  • the optical signal branched by the connection point 1f is relayed to the core 215-4 by being connected to the connection point 2e.
  • the connection point 1f is an optical signal branched by the connection point 2e, and is an Add / Drop node 120-1 that is two points ahead from its own node in the second direction.
  • An optical signal to the drop node 120-2 is connected to the core 216-3.
  • connection point 2a is connected to the core 211-4 of the MCF 210-4.
  • the connection point 2a inserts, into the core 211-4, an optical signal generated by the transmission / reception device of the own node and to the Add / Drop node 120-4 connected to the second direction side of the own node. .
  • the connection point 2a branches an optical signal from the Add / Drop node 120-4 to the own node from the core 211-4.
  • the optical signal branched by the connection point 2a is connected to the transmitting / receiving device of the own node.
  • connection point 2b is connected to the core 212-4 of the MCF 210-4.
  • the connection point 2b branches an optical signal from the Add / Drop node 120-4 connected to the second direction side of the own node to the Add / Drop node 120-2 connected to the first direction side of the own node. To do.
  • the optical signal branched by the connection point 2b is relayed to the core 213-3 by being connected to the connection point 1c.
  • the connection point 2b connects the optical signal branched by the connection point 1c to the core 212-4.
  • connection point 2c is connected to the core 213-4 of the MCF 210-4.
  • the connection point 2c inserts into the core 213-4 an optical signal that is generated by the transmitting / receiving device of the own node and that is the second optical signal from the own node to the Add / Drop node 120-1 in the second direction.
  • the connection point 2c branches the optical signal from the Add / Drop node 120-1 to the own node from the core 213-4.
  • the optical signal branched by the connection point 2c is connected to the transmitting / receiving device of the own node.
  • connection point 2d is connected to the core 214-4 of the MCF 210-4.
  • the connection point 2d transmits an optical signal from the Add / Drop node 120-4 connected to the second direction side of the own node to the Add / Drop node 120-1 that is two points ahead from the own node in the first direction. Branch.
  • the optical signal branched by the connection point 2d is relayed to the core 215-3 by being connected to the connection point 1e.
  • the connection point 2d connects the optical signal branched by the connection point 1e to the core 214-4.
  • connection point 2e is connected to the core 215-4 of the MCF 210-4.
  • the connection point 2e branches an optical signal from the Add / Drop node 120-1 that is two points ahead in the second direction from the own node to the Add / Drop node 120-2 that is connected to the first direction side of the own node. To do.
  • the optical signal branched by the connection point 2e is relayed to the core 216-3 by being connected to the connection point 1f.
  • the connection point 2e connects the optical signal branched by the connection point 1f to the core 215-4.
  • connection point 2f is connected to the core 216-4 of the MCF 210-4.
  • the connection point 2f branches from the core 216-4 an optical signal from the node Add / Drop node 120-2, which is three points ahead in the second direction from the node, to the node.
  • the optical signal branched by the connection point 2f is connected to the transmitting / receiving device of the own node.
  • the connection point 2f inserts an optical signal generated by the transmitting / receiving device of the own node and to the Add / Drop node 120-2 into the core 216-4.
  • the core 211 communicates between a node connected on the first direction side and a node connected on the second direction side.
  • the optical signal at is transmitted.
  • the core 212 transmits an optical signal in communication between a node two ahead in the first direction and a node connected on the second direction side.
  • the core 213 transmits an optical signal in communication between the node connected on the first direction side and the second node in the second direction.
  • the core 214 transmits an optical signal in communication between a node that is three points ahead in the first direction and a node that is connected on the second direction side.
  • the core 215 transmits an optical signal in communication between the second node in the first direction and the second node in the second direction.
  • the core 216 transmits an optical signal in communication between the node connected on the first direction side and the three nodes ahead in the second direction.
  • each Add / Drop node 120 can Add / Drop an optical signal in communication between the own node and another Add / Drop node 120, and each Add A communication path between the / Drop nodes 120 can be formed.
  • the connector 570 having the same configuration connects the MCF 210 connected to the first direction side and the MCF 210 connected to the second direction side.
  • the MCF 210 By connecting the MCF 210 with the connector 570, it is possible to reduce the cost applied to the connector, and it is possible to prevent the occurrence of a human error such as an incorrect connector used for connecting the MCF.
  • Add / Drop of optical signals in units of cores, processing for dividing multiplexed optical signals with different wavelengths for each wavelength becomes unnecessary, so that installation and maintenance of devices at each Add / Drop node can be performed. Time and effort can be reduced.
  • FIG. 18 is a diagram illustrating a connection between the connector 580 of each Add / Drop node 120 and the MCF 230 in the eighth embodiment.
  • the MCF 230 that connects between the Add / Drop nodes 120 includes 12 cores 231 to 242.
  • Each of the Add / Drop nodes 120-1 to 120-4 is provided with a connector 580.
  • description will be given focusing on the connector 580-3 provided in the Add / Drop node 120-3, but all the connectors 580 have the same configuration.
  • the Add / Drop node 120-3 is connected via the MCF 230-3 to the first direction side which is the clockwise direction in the ring shape connecting the nodes of the communication system. Yes.
  • An Add / Drop node 120-4 is connected to the second direction side, which is the counterclockwise direction, via the MCF 230-4.
  • the connector 580-3 is connected to the MCF 230-3 on the first direction side and the MCF 230-4 on the second direction side.
  • the connector 580-3 includes connection points that connect to the cores 231 to 242 of the MCF 230-3 and the cores 231 to 242 of the MCF 230-4, respectively. At each connection point, an optical signal is input to and output from the connected core.
  • the connector 580-3 includes connection points 1a to 1m for each core of the MCF 230-3 and connection points 2a to 2m for each core of the MCF 230-4.
  • connection point 1a is connected to the core 231 of the MCF 230-3.
  • the connection point 1a branches an optical signal from the core 231 from the Add / Drop node 120-2 connected to the node in the first direction to the node.
  • the optical signal branched by the connection point 1a is connected to the transmitting / receiving device of the own node.
  • the connection point 1b is connected to the core 232 of the MCF 230-3.
  • the connection point 1b branches an optical signal from the core 232 from the Add / Drop node 120-1 that is two points ahead in the first direction from the node.
  • the optical signal branched by the connection point 1b is connected to the transmitting / receiving device of the own node.
  • connection point 1c is connected to the core 233 of the MCF230-3.
  • the connection point 1c branches an optical signal from the core 233 from the Add / Drop node 120-2 to the Add / Drop node 120-4 connected to the second direction side of the own node.
  • the optical signal branched by the connection point 1c is relayed to the core 232 of the MCF 230-4 by being connected to the connection point 2b.
  • the connection point 1d is connected to the core 234 of the MCF 230-3.
  • the connection point 1d branches from the core 234 an optical signal from the Add / Drop node 120-4, which is three points ahead from the own node, in the first direction.
  • the optical signal branched by the connection point 1d is connected to the transmitting / receiving device of the own node.
  • connection point 1e is connected to the core 235 of the MCF230-3.
  • the connection point 1e branches the optical signal from the Add / Drop node 120-1 to the Add / Drop node 120-4 from the core 235.
  • the optical signal branched by the connection point 1e is relayed to the core 234 of the MCF 230-4 by being connected to the connection point 2d.
  • the connection point 1f is connected to the core 236 of the MCF 230-3.
  • the connection point 1f branches an optical signal from the core 236 from the Add / Drop node 120-2 to the Add / Drop node 120-1 that is two points ahead from the own node in the second direction.
  • the optical signal branched by the connection point 1f is relayed to the core 234 of the MCF 230-4 by being connected to the connection point 2e.
  • connection point 1g is connected to the core 237 of the MCF230-3.
  • the connection point 1g is an optical signal branched by the connection point 2h and connects the optical signal from the Add / Drop node 120-1 to the Add / Drop node 120-2 to the core 237.
  • the connection point 1h is connected to the core 238 of the MCF 230-3.
  • the connection point 1h is an optical signal branched by the connection point 2i and connects the optical signal from the Add / Drop node 120-4 to the Add / Drop node 120-1 to the core 238.
  • connection point 1i is connected to the core 239 of the MCF230-3.
  • the connection point 1i inserts, into the core 239, an optical signal that is generated by the transmitting / receiving device of the own node and that is transmitted from the own node to the Add / Drop node 120-3 that is three points ahead in the first direction.
  • the connection point 1j is connected to the core 240 of the MCF 230-3.
  • the connection point 1j is an optical signal branched by the connection point 2k and connects the optical signal from the Add / Drop node 120-4 to the Add / Drop node 120-2 to the core 240.
  • connection point 1k is connected to the core 241 of the MCF 230-3.
  • the connection point 1k inserts into the core 241 an optical signal that is generated by the transmission / reception device of the own node and that is to the Add / Drop node 120-1.
  • the connection point 1m is connected to the core 242 of the MCF 230-3.
  • the connection point 1m inserts into the core 242 an optical signal generated by the transmission / reception apparatus of its own node and to the Add / Drop node 120-2.
  • connection point 2a is connected to the core 231 of the MCF 230-4.
  • the connection point 2a inserts into the core 231 an optical signal generated by the transmission / reception apparatus of its own node and to the Add / Drop node 120-4.
  • the connection point 2b is connected to the core 232 of the MCF 230-4.
  • the connection point 2 b connects the optical signal branched by the connection point 1 c to the core 232.
  • connection point 2c is connected to the core 233 of the MCF230-4.
  • the connection point 2c is an optical signal generated by the transmission / reception apparatus of its own node and inserts an optical signal to the Add / Drop node 120-1 into the core 233.
  • the connection point 2d is connected to the core 234 of the MCF 230-4.
  • the connection point 2d connects the optical signal branched by the connection point 1e to the core 234.
  • connection point 2e is connected to the core 235 of the MCF230-4.
  • the connection point 2e connects the optical signal branched by the connection point 1f to the core 235.
  • the connection point 2f is connected to the core 236 of the MCF 230-4.
  • the connection point 2f inserts into the core 236 an optical signal that is generated by the transmitting / receiving device of the own node and that is transmitted three times ahead from the own node to the Add / Drop node 120-2.
  • connection point 2g is connected to the core 237 of the MCF230-4.
  • the connection point 2g branches the optical signal from the Add / Drop node 120-2 to its own node from the core 237.
  • the optical signal branched by the connection point 2g is connected to the transmitting / receiving device of the own node.
  • the connection point 2h is connected to the core 238 of the MCF 230-4.
  • the connection point 2h branches an optical signal from the Add / Drop node 120-1 to the Add / Drop node 120-2.
  • the optical signal branched by the connection point 2h is relayed to the core 237 of the MCF 230-3 by being connected to the connection point 1g.
  • connection point 2i is connected to the core 239 of the MCF230-4.
  • the connection point 2i branches the optical signal from the Add / Drop node 120-4 to the Add / Drop node 120-1 from the core 239.
  • the optical signal branched by the connection point 2i is relayed to the core 238 of the MCF 230-3 by being connected to the connection point 1h.
  • the connection point 2j is connected to the core 240 of the MCF 230-4.
  • the connection point 2j branches the optical signal from the Add / Drop node 120-1 to the own node from the core 240.
  • the optical signal branched by the connection point 2j is connected to the transmitting / receiving device of its own node.
  • connection point 2k is connected to the core 241 of the MCF 230-4.
  • the connection point 2k branches an optical signal from the core 241 from the Add / Drop node 120-4 to the Add / Drop node 120-2 connected to the first direction side of the own node.
  • the optical signal branched by the connection point 2k is relayed to the core 240 of the MCF 230-3 by being connected to the connection point 1j.
  • the connection point 2m is connected to the core 242 of the MCF 230-4.
  • the connection point 2m branches the optical signal from the Add / Drop node 120-4 to the own node from the core 242.
  • the optical signal branched by the connection point 2m is connected to the transmitting / receiving device of the own node.
  • the core 231 transmits light from the node connected on the first direction side to the node connected on the second direction side. Transmit the signal.
  • the core 232 transmits an optical signal from a node two ahead in the first direction to a node connected on the second direction side.
  • the core 233 transmits an optical signal from the node connected on the first direction side to the next node in the second direction.
  • the core 234 transmits an optical signal from a node three nodes ahead in the first direction to a node connected on the second direction side.
  • the core 235 transmits an optical signal from the second node in the first direction to the second node in the second direction.
  • the core 236 transmits an optical signal from a node connected on the first direction side to a node three ahead in the second direction.
  • the core 237 transmits an optical signal from a node three nodes ahead in the second direction to a node connected on the first direction side.
  • the core 238 transmits an optical signal from the second node in the second direction to the second node in the first direction.
  • the core 239 transmits an optical signal from a node connected on the second direction side to a node three ahead in the first direction.
  • the core 240 transmits an optical signal from a node two nodes ahead in the second direction to a node connected to the first direction side.
  • the core 241 transmits an optical signal from a node connected on the second direction side to the next node in the first direction.
  • the core 242 transmits an optical signal from a node connected on the second direction side to a node connected on the first direction side.
  • each Add / Drop node 120 can add / drop an optical signal in communication between its own node and another Add / Drop node 120, and each Add A communication path between the / Drop nodes 120 can be formed.
  • the connector 580 having the same configuration connects the MCF 230 connected to the first direction side and the MCF 230 connected to the second direction side.
  • the MCF 230 By connecting the MCF 230 with the connector 580, it is possible to reduce the cost applied to the connector, and it is possible to prevent the occurrence of a human error such as an incorrect connector used for connecting the MCF.
  • Add / Drop of optical signals in units of cores, processing for dividing multiplexed optical signals with different wavelengths for each wavelength becomes unnecessary, so that installation and maintenance of devices at each Add / Drop node can be performed. Time and effort can be reduced.
  • each of the connectors includes a first MCF that connects the first Add / Drop node adjacent to its own node and its own node, and a second adjacent to the opposite side of the first node. It has a configuration for connecting the Add / Drop node and the second MCF that connects the own node.
  • the connector also includes a first connection point for inserting or branching an optical signal in communication between the first Add / Drop node and the own node with respect to the first core of the first MCF, and a second Add / Drop.
  • the first core of the second MCF is the first core of the first MCF in the second Add / Drop node. That is, a configuration in which the relative positional relationship between a connection point for a core that transmits an optical signal inserted or branched in the own node and a connection point for a core that transmits a relayed optical signal is the same in each Add / Drop node.
  • the connector has.
  • the connector is connected between the other node between the first MCF and the second MCF, and the connection unit that inserts or branches the optical signal to the core that transmits the communication between the own node and the other node.
  • a signal relay unit that relays a signal transmitted by a core assigned for communication.
  • the connection unit includes a connection point 1b for connecting an optical signal from the core 202-3 to the transmission / reception device, and the signal relay unit includes the core 201-3 and the core 201-3. 202-4 is connected and includes a connection point 1a, 2b that relays an optical signal between both cores.
  • N the number of cores necessary for the MCF used in the communication system.
  • a core having a ring-type physical topology and a full mesh-type logical topology and transmitting a unidirectional optical signal in each core is required when the number of nodes is N.
  • the number C is obtained by equation (1). It should be noted that N ⁇ 3 because a ring-type physical topology cannot be constructed under the condition of N ⁇ 2.
  • each core needs to have N nodes when transmitting bidirectional optical signals.
  • the number of cores C obtained is obtained by equation (2).
  • each core transmits a bidirectional optical signal, and the number of nodes is doubled. If N is N, the required number of cores C is obtained by equation (3).
  • each core transmits a one-way optical signal and the communication path is duplicated, the number of nodes If N is N, the required number of cores C can be obtained by equation (4).
  • FIGS. 19A and 19B are diagrams illustrating an example of a configuration in which a shared core is provided in a multicore fiber according to the present invention.
  • FIG. 19A shows a cross-sectional view of a multi-core fiber.
  • the core arranged on the outer peripheral side of the multi-core fiber may be a dedicated core group as a core used for communication between nodes in the communication system of each embodiment, and the core arranged inside may be a shared core group.
  • the connector is provided with the first connector portion described in each embodiment and the second connector portion for performing Add / Drop of an optical signal to the shared core. That's fine.
  • the cores of the shared core group may be used for different purposes one by one, or a plurality of cores may be used for one purpose.
  • the shared core may be used for purposes other than communication between nodes.
  • FIG. 19B shows the concept of Add / Drop of an optical signal for the shared core.
  • the configuration of the connectors is made the same in the nodes using the shared core group. Also good.
  • some or all of the optical signals of the shared core are added / dropped at some or all nodes, and other optical signals are transmitted.
  • the ratio between the optical signal to be added / dropped and the optical signal to be transmitted depends on the number of nodes. In this configuration, it is not necessary to change the connector when using the shared core, and the connector can be used as needed.
  • the connector in the communication system of each embodiment can be used when realizing a logical topology of a tree or a complete mesh, but may be used in a form that does not transmit an optical signal to some cores.
  • a connector used in a communication system including two transmission / reception nodes has been described.
  • the connector can also be used in a communication system including one transmission / reception node. In that case, a core that forms a part of communication paths is not used.
  • connection points are examples, and the correspondence relationships illustrated in the drawings and the like The arrangement and position of the connection points are not limited to those described in the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを備えるマルチコアファイバが用いられている通信システムにおいて、マルチコアファイバに接続されたノードは、他のノードと自ノードとの間の通信経路として排他的に割り当てられたコアに対する信号の挿入及び分岐と、自ノードに接続されたマルチコアファイバの間において他のノード間の通信に割り当てられたコアにより伝送される信号の中継とのいずれか一方又は両方を行うコネクタを備える。コネクタにおいて信号が挿入又は分岐されるコアの接続位置と、コネクタにおいて信号が中継されるコアの接続位置との相対的な位置関係は、マルチコアファイバに接続されたノードのいずれにおいても同じである。

Description

通信システム及びコネクタ
 本発明は、通信システム及びコネクタに関する。
 本願は、2015年11月26日に、日本に出願された特願2015-230873号に基づき優先権を主張し、その内容をここに援用する。
 大都市間を接続するコアネットワークや、地域内の拠点を接続するメトロネットワークなどでは光ファイバを用いた通信網が構築されている。このようなネットワークでは、複数の光ファイバが束ねて用いられている。また、1本の光ファイバそれぞれに波長が異なる複数の光信号を多重化する波長分割多重(Wavelength Division Multiplexing:WDM)伝送を行うことで、大容量の信号伝送が行われている(例えば、非特許文献1)。更なる伝送容量の増加に向けて、1つのコアを持つ光ファイバ(Single Core Fiber:SCF)に代えて、複数のコアを持つ光ファイバであるマルチコアファイバ(Multi Core Fiber:MCF)の利用が検討されている(例えば、非特許文献2、3)。
 SCFを用いた波長分割多重伝送におけるリングネットワークのノードでは、光ファイバ中を多重伝送される光信号から所望の信号をAdd/Drop(挿入と分岐)するために、多重化された光信号を波長ごとに分ける必要があった。今後、SCFに代えてMCFを用いてネットワークを構成する場合、光信号は伝送するコア数分だけ倍増することとなり、波長ごとに分けられた信号数も著しく増加する。そのため、SCFを用いたネットワークにおけるADD/Dropと同様の手法を、MCFを用いたネットワークにおいて適用した場合、各ノードにおいて光信号のAdd/Dropを行うための装置が複雑になるという問題がある。また、ノードの設置や保守などに手間が掛かってしまうという問題も生じる。
松岡伸治、「経済的なコア・メトロネットワークを実現する超高速大容量光トランスポートネットワーク技術」、NTT技術ジャーナル、2011年3月、p.8-12 宮本裕、竹ノ内弘和、「毎秒ペタビット級伝送の実現を目指した高密度空間多重光通信技術」、NTT技術ジャーナル、2014年8月、p.52-56 白木和之、「光ファイバ・ケーブル技術における研究開発の動向」、NTT技術ジャーナル、2015年1月、p.59-63
 前述の事情に鑑み、本発明は、マルチコアファイバに接続されたノードにおいて光信号の挿入と分岐とを容易にする通信システム及びコネクタを提供することを目的としている。
 本発明の第1の実施態様における通信システムは、3つ以上のノードを備え、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを備えるマルチコアファイバが用いられている通信システムであって、マルチコアファイバに接続された前記ノードは、他の前記ノードと自ノードとの間の通信経路として排他的に割り当てられた前記コアに対する信号の挿入及び分岐と、自ノードに接続されたマルチコアファイバの間において他のノード間の通信に割り当てられた前記コアにより伝送される信号の中継とのいずれか一方又は両方を行うコネクタを備え、前記コネクタにおいて信号が挿入又は分岐される前記コアの接続位置と、前記コネクタにおいて信号が中継される前記コアの接続位置との相対的な位置関係は、マルチコアファイバに接続された前記ノードのいずれにおいても同じである。
 また、本発明の第2の実施態様によれば、上記第1の実施態様の通信システムにおいて、すべての前記ノードは、それぞれ2つの他の前記ノードと接続されている。
 また、本発明の第3の実施態様によれば、上記第1の実施態様の通信システムにおいて、少なくとも1つの前記ノードは、割り当てられた前記コアを用いた通信経路をすべての他の前記ノードごとに有する。
 また、本発明の第4の実施態様によれば、上記第1の実施態様の通信システムにおいて、複数の前記ノードは、割り当てられた前記コアを用いた通信経路を、複数の他の前記ノードとの間に有する。
 また、本発明の第5の実施態様によれば、上記第4の実施態様の通信システムにおいて、すべての前記ノードは、割り当てられた前記コアを用いた通信経路を、他の前記ノードすべてとの間に有する。
 また、本発明の第6の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記ノードは、割り当てられた前記コアを用いた通信経路を、通信対象の他の前記ノードごとに1つ有する。
 また、本発明の第7の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記ノードは、割り当てられた前記コアを用いた通信経路を、通信対象の他の前記ノードごとに有し、通信対象の他の前記ノードごとの通信経路は、異なる前記コアを介した通信経路である。
 また、本発明の第8の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記ノードは、通信対象の他の前記ノードとの通信における送信と受信とに異なる通信経路を用い、送信用の前記通信経路に割り当てられる前記コアと、受信用の前記通信経路に割り当てられる前記コアとは異なる。
 また、本発明の第9の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記ノードは、通信対象の他の前記ノードとの通信における送信と受信とに、同じ前記コアに割り当てられた通信経路を用いる。
 また、本発明の第10の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記複数のコアは、マルチコアファイバの中心軸を中心にした円周上に配置され、前記コネクタは、基準となる位置から前記中心軸に対して前記ノードそれぞれで異なる角度だけ回転した位置でマルチコアファイバに取り付けられている。
 また、本発明の第11の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記コネクタは、自身が備えられた自ノードに隣接する他の前記ノードとの通信を伝送する前記コアに対して信号を挿入又は分岐する接続部と、自ノードに接続されているマルチコアファイバ間において、他の前記ノード間の通信に割り当てられた前記コアにより伝送される信号を中継する信号中継部と、を備え、前記コネクタに備えられる前記信号中継部の数は、自ノードから自ノードの通信対象の他の前記ノードまでの通信経路において経由する他の前記ノードの数以上である。
 また、本発明の第12の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記コネクタは、前記複数のコアのうち前記ノード間の通信において用いられる通信コアに対して信号の挿入及び分岐と、信号の挿入及び分岐の対象外の前記通信コアの信号を自身が備えられた自ノードに接続されているマルチコアファイバ間での中継とを行う第1のコネクタ部と、前記複数のコアのうち前記ノード間の通信以外の目的で用いられる共用コアに対して、信号の挿入、分岐又は中継を行う第2のコネクタ部と、を備える。
 また、本発明の第13の実施態様によれば、上記第12の実施態様の通信システムにおいて、マルチコアファイバに接続された前記ノードは、それぞれ前記第2のコネクタ部により挿入又は分岐される信号を利用する。
 また、本発明の第14の実施態様によれば、上記第12の実施態様の通信システムにおいて、マルチコアファイバに接続された前記ノードに備えられる前記第2のコネクタ部は、同一の共用コアに対して信号の挿入又は分岐を行う。
 また、本発明の第15の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記コネクタは、前記複数のコアそれぞれに対応して設けられた細径シングルモードファイバを備え、前記細径シングルモードファイバは、信号の挿入又は分岐と、自身が備えられた自ノードに接続されたマルチコアファイバ間における信号の中継とを行う。
 また、本発明の第16の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記コネクタは、前記複数のコアそれぞれに対応して設けられた導波路コアを含む光導波路を備え、前記導波路コアは、信号の挿入又は分岐と、自身が備えられた自ノードに接続されたマルチコアファイバ間における信号の中継とを行う。
 また、本発明の第17の実施態様によれば、上記第1の実施態様の通信システムにおいて、前記コネクタは、自身が備えられた自ノードに接続されたマルチコアファイバの前記複数のコアから出力される信号それぞれを空間的に分離する第1の光学素子と、前記第1の光学素子により空間的に分離された信号の伝搬方向をコネクタ外部へ変化させることで信号の分岐を行う第2の光学素子と、コネクタ外部から入力された信号の伝搬方向を空間的に分離された信号の伝搬方向へ変化させることで信号の挿入を行う第3の光学素子と、前記第1の光学素子により空間的に分離された信号と前記第3の光学素子により伝搬方向が変化された信号とを、自身が備えられた自ノードに接続された他のマルチコアファイバの前記複数のコアにそれぞれ入力する第4の光学素子と、を備える。
 また、本発明の第18の実施態様におけるコネクタは、3つ以上のノードを備え、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを備えるマルチコアファイバが用いられている通信システムにおいて、マルチコアファイバに接続された前記ノードで用いられるコネクタであって、自身が備えられる自ノードと他の前記ノードとの間の通信経路として排他的に割り当てられた前記コアに対する信号の挿入及び分岐を行い、コネクタにおいて信号が挿入される前記コアの接続位置と、コネクタにおいて信号が分岐される前記コアの接続位置との相対的な位置関係は、マルチコアファイバに接続された前記ノードで用いられるコネクタのいずれにおいても同じである。
 また、本発明の第19の実施態様によれば、上記第18の実施態様のコネクタにおいて、前記自ノードに接続されたマルチコアファイバの間において他の前記ノード間の通信に割り当てられた前記コアにより伝送される信号を中継し、コネクタにおいて信号が挿入される前記コアの接続位置と、コネクタにおいて信号が分岐される前記コアの接続位置と、コネクタにおいて信号が中継される前記コアの接続位置との相対的な位置関係は、マルチコアファイバに接続された前記ノードで用いられるコネクタのいずれにおいても同じである。
 本発明によれば、マルチコアファイバに接続されたノードにおいて光信号の挿入と分岐を容易にすることが可能となる。
本発明に関する通信システムの第1の構成例を示す図である。 通信システムに用いられるコネクタの第1の構成例を示す図である。 通信システムに用いられるコネクタの第1の構成例を示す図である。 通信システムに用いられるコネクタの第2の構成例を示す図である。 通信システムに用いられるコネクタの第2の構成例を示す図である。 通信システムに用いられるコネクタの第3の構成例を示す図である。 通信システムに用いられるコネクタの第3の構成例を示す図である。 通信システムでWDM伝送を行う場合における、Add/Dropノードの構成例を示す図である。 本発明に関する通信システムの第2の構成例を示す図である。 本発明に関する通信システムの第3の構成例を示す図である。 本発明に関する通信システムの第4の構成例を示す図である。 図1に示した通信システムにおいて、Add/Dropノード間の接続の一部に複数のSCFを用いる第1の構成例を示す図である。 図1に示した通信システムにおいて、Add/Dropノード間の接続に複数のSCFを用いる第2の構成例を示す図である。 本発明の第1の実施形態におけるコネクタの構成を示す第1の図である。 第1の実施形態におけるコネクタの構成を示す第2の図である。 本発明の第2の実施形態におけるコネクタの構成を示す第1の図である。 第2の実施形態におけるコネクタの構成を示す第2の図である。 本発明の第3の実施形態におけるコネクタの構成を示す図である。 本発明の第4の実施形態におけるコネクタの構成を示す図である。 本発明の第5の実施形態における通信システムの物理トポロジを示す図である。 第5の実施形態における各Add/DropノードのコネクタとMCFとの接続を示す図である。 本発明の第6の実施形態における各Add/DropノードのコネクタとMCFとの接続を示す図である。 本発明の第7の実施形態における各Add/DropノードのコネクタとMCFとの接続を示す図である。 本発明の第8の実施形態における各Add/DropノードのコネクタとMCFとの接続を示す図である。 本発明に関するマルチコアファイバにおいて共用のコアを設ける一例を示す図である。 共用コアに対する光信号のAdd/Dropの概念を示す図である。
 以下、図面を参照して、本発明の実施形態における通信システム及びコネクタを説明する。なお、以下の実施形態では、同一の符号を付した構成要素は同様の動作を行うものとして、重複する説明を適宜省略する。
 まず、本発明の実施形態におけるコネクタが適用可能な通信システムであって、マルチコアファイバ(MCF)を用いた通信システムの例について説明する。図1は、本発明に関するMCFを用いた通信システム100の構成例を示す図である。通信システム100は、送受信ノード110と、n台(nは1以上の整数)のAdd/Dropノード120と、を備える。図1には、n=3の場合における通信システム100の構成例が示されている。以下の説明では、n台のAdd/Dropノード120をそれぞれ、Add/Dropノード120-1~120-nと記載する。また、送受信ノード110とAdd/Dropノード120とを総称して「ノード」と記載する。以下の説明では、光信号を用いて通信を行う送信装置や受信装置、送受信装置などと、ノードとを個別の構成として記載する。しかし、送信装置や受信装置、送受信装置などをノードが含む構成であってもよい。
 ノード間は、MCF(マルチコアファイバ)200-1~200-4で接続されている。通信システム100は、MCF200-1~200-4でノード間を接続した片系片方向のリング構成の物理トポロジを有している。送受信ノード110とAdd/Dropノード120-1とは、MCF200-1で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF200-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF200-3で接続されている。Add/Dropノード120-3と送受信ノード110とは、MCF200-4で接続されている。通信システム100におけるMCF200-1~200-4は、3つのコア201、202、203を備えている。
 通信システム100の構成についての説明を一般化すると、Add/Dropノード120-i(1≦i≦n-1)は、Add/Dropノード120-(i+1)とMCF200-(i+1)を介して接続されている。MCF200-1は、送受信ノード110とAdd/Dropノード120-1とを接続する。MCF200-(n+1)は、Add/Dropノード120-nと送受信ノード110とを接続する。
 通信システム100の各ノードは、ノード間での通信を行う送信装置(Tx)及び受信装置(Rx)を備える。送受信ノード110に対して、送信装置111-1~111-3と受信装置112-1~112-3とが備えられている。Add/Dropノード120-1に対して、送信装置121-1と受信装置122-1とが備えられている。Add/Dropノード120-2に対して、送信装置121-2と受信装置122-2とが備えられている。Add/Dropノード120-3に対して、送信装置121-3と受信装置122-3とが備えられている。送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。受信装置112-1~112-3は、Add/Dropノード120-1~120-3から送信される光信号を受信し、光信号に含まれる情報を取得する。送信装置121-1~121-3は、それぞれ送受信ノード110へ送信する光信号を生成する。受信装置122-1~122-3は、送受信ノード110から送信される光信号を受信し、光信号に含まれる情報を取得する。
 送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3への光信号を生成する。送信装置111-1~111-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。受信装置112-1~112-3は、それぞれAdd/Dropノード120-1、120-2、120-3から受信装置が備えられたノードに送信された光信号を受信する。受信装置112-1~112-3は、それぞれMCF200-4のコア201-4~203-4を介してAdd/Dropノード120-1~120-3からの光信号を受信する。送受信ノード110における、MCF200への光信号の挿入とMCF200からの光信号の分岐とには、ファンイン・デバイス又はファンアウト・デバイスが用いられる。
 なお、ファンイン・デバイスは、マルチコアファイバ中のコアそれぞれに対して接続され、コアごとに光信号を挿入するデバイスである。ファンアウト・デバイスは、マルチコアファイバ中の各コアに対して接続され、各コア内を伝搬する光それぞれを分岐するデバイスである。両者のデバイスの違いは、光の伝搬方向が異なるだけであることから、ファンイン・デバイス又はファンアウト・デバイスのどちらか1つのデバイスを用いてマルチコアファイバとの光の入出力を実施してもよい。また、1つのデバイスでマルチコアファイバへの光の挿入及びマルチコアファイバからの光の分岐を同時に行ってもよい。
 各Add/Dropノード120-1~120-3には、それぞれコネクタ150-1~150-3が備えられている。Add/Dropノード120-i(i=1,2,3)におけるコネクタ150-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ150-iは、送受信ノード110で挿入された光信号のうち自ノードへの光信号をMCF200-iから分岐する。また、コネクタ150-iは、送受信ノード110への光信号をMCF200-(i+1)のコアへ挿入する。
 Add/Dropノード120-1において、コネクタ150-1は、MCF200-1のコア201-1から自ノードへの光信号を分岐する。コネクタ150-1は、分岐した光信号を受信装置122-1へ接続する。また、コネクタ150-1は、送信装置121-1により生成された光信号を、MCF200-2のコア201-2へ挿入する。コア201-2へ挿入される光信号は、Add/Dropノード120-1から送受信ノード110へ伝送される光信号である。
 コネクタ150-1は、MCF200-1のコアのうちコア202-1、203-1と、MCF200-2のコアのうちコア202-2、203-2とをそれぞれ接続する。コネクタ150-1は、MCF200-1とMCF200-2との間において光信号を中継する。コネクタ150-1は、光信号をAdd/Dropするコア201-1、201-2以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-2において、コネクタ150-2は、MCF200-2のコア202-2から自ノードへの光信号を分岐する。コネクタ150-2は、分岐した光信号を受信装置122-2へ接続する。また、コネクタ150-2は、送信装置121-2により生成された光信号を、MCF200-3のコア202-3へ挿入する。コア202-3へ挿入される光信号は、Add/Dropノード120-2から送受信ノード110へ伝送される光信号である。
 コネクタ150-2は、MCF200-2のコアのうちコア201-2、203-2と、MCF200-3のコアのうちコア201-3、203-3とをそれぞれ接続する。コネクタ150-2は、MCF200-2とMCF200-3との間において光信号を中継する。コネクタ150-2は、光信号をAdd/Dropするコア201-2、201-3以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-3において、コネクタ150-3は、MCF200-3のコア203-3から自ノードへの光信号を分岐する。コネクタ150-3は、分岐した光信号を受信装置122-3へ接続する。また、コネクタ150-3は、送信装置121-3により生成された光信号をMCF200-4のコア203-4へ挿入する。コア203-4へ挿入される光信号は、Add/Dropノード120-3から送受信ノード110へ伝送される光信号である。
 コネクタ150-3は、MCF200-3のコアのうちコア201-3、202-3と、MCF200-4のコアのうちコア201-4、202-4とをそれぞれ接続する。コネクタ150-3は、MCF200-3とMCF200-4との間において光信号を中継する。コネクタ150-3は、光信号をAdd/Dropするコア203-3、203-4以外のコアで伝送される光信号を中継する。
 図2A及び図2Bは、通信システム100に用いられるコネクタ150の第1の構成例を示す図である。コネクタ150は、複数の細径シングルモードファイバ(SMF)と複数のSMFとを含むファンイン・ファンアウト部を備える。図2Aに示すように、コネクタ150は、接続対象のMCF200のコアそれぞれに対して細径SMFを備える。複数の細径SMFそれぞれの一端は、MCF200のコアに対向する位置に設けられている。また、複数の細径SMFの他端がSMFの一端に対向する位置に設けられている。細径SMFそれぞれは、MCF200のコアとSMFとを接続している。コネクタ150は、MCF200の各コアで伝送される光信号を、細径SMFとSMFとを介して分岐することができる。また、SMFへ光信号を入力することで、MCF200の各コアへ光信号を入力することができる。
 図2Bに示されるコネクタ150-iは、MCF200-iとMCF200-(i+1)とを接続する。Add/Dropの対象となる光信号を伝送するコアに対応するSMFの他端が、コネクタ150-iの側面に引き出されている。コネクタ150-iの側面に引き出されているSMFの他端において、光信号の挿入と分岐(Add/Drop)を行うことができる。
 MCF200-iのコアのうちAdd/Dropの対象でない光信号を伝送するコアに対するSMFの他端と、MCF200-(i+1)のコアのうちAdd/Dropの対象でない光信号を伝送するコアに対するSMFの他端とは、対向する位置に設けられている。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、細径SMF及びSMFを介して、MCF200-iからMCF200-(i+1)へと中継される。
 図3A及び図3Bは、通信システム100に用いられるコネクタ150の第2の構成例を示す図である。図3A及び図3Bには、図2A及び図2Bに示したコネクタ150の構成例と異なる構成例が示されている。図3A及び図3Bに示されるコネクタ150は、ガラス基板上に形成された複数の導波路コアを含む光導波路をファンイン・ファンアウト部として備える。図3Aに示されるように、コネクタ150では、複数の導波路コアが、接続対象のMCF200のコアそれぞれに対向する位置に設けられている。MCF200の各コアで伝送される光信号は、導波路コアを介して分離される。また、導波路コアへ光信号を挿入することにより、MCF200の各コアへ光信号を入力することができる。
 図3Bに示されるコネクタ150-iでは、コネクタ150-iにより接続されるMCF200-i及びMCF200-(i+1)のコアのうちAdd/Dropの対象となる光信号を伝送するコアに対応する導波路コアの一端は、MCFのコアに対向する位置に設けられている。導波路コアの他端は、コネクタ150-iの側面に設けられている。コネクタ150-iの側面に位置する導波路コアの他端において、光信号の挿入と分岐を行うことができる。
 MCF200-iのコアのうちAdd/Dropの対象でない光信号を伝送するコアに対する導波路コアの一端はMCFのコアに対向する位置に設けられる。導波路コアの他端は、MCF200-(i+1)のコアのうちAdd/Dropの対象でない光信号を伝送するコアに対向する位置に設けられる。MCF200-i及びMCF200-(i+1)においてAdd/Dropの対象でない光信号を伝送するコアは、導波路コアを介して、一対一に接続される。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、導波路コアを介して、MCF200-iのコアからMCF200-(i+1)のコアへと中継される。
 なお、導波路コアは、基板平面の二次元空間に形成されるだけでなく、参考文献1に記載されているように三次元空間に形成されてもよい。
[参考文献1]R. R. Thomson, et al, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", Optics Express, OSA Publishing, 2007, Vol.15, Issue 18, p.11691-11697
 図4A及び図4Bは、通信システム100に用いられるコネクタ150の第3の構成例を示す図である。図4A及び図4Bには、図2A、図2B、図3A及び図3Bに示したコネクタ150の構成例と異なる構成例が示されている。図4A及び図4Bに示されるコネクタ150は、MCF200の各コアで伝送される光信号を一旦自由空間に出力させ、自由空間において各コアの光信号を光学系で分離する。例えば図4Aに示されるように、コネクタ150は2つのレンズで構成されるファンイン・ファンアウト部を備える。MCF200の各コアで伝送される光信号は、自由空間へ出力され、2つのレンズで屈折されることで分離される。光信号のAdd/Dropは、光学系を用いて行われる。自由空間を介した2つのMCF200の接続は、例えば参考文献2に記載されている。
[参考文献2]W. Klaus, et al, "Free-Space Coupling Optics for Multicore Fibers", Photonics Technology Letters, IEEE, 2012 September, Volume 24, Issue 21, p.1902-1905
 図4Bは、コネクタ150-iの構成例を示す図である。図4Bに示されるコネクタ150-iでは、2つのレンズを組み合わせた光学系(コリメーター)によりMCF200-iの各コアから出射される光信号をコリメートしている。また、コリメートされた光信号それぞれは、MCF200-(i+1)の各コアに入力される。Add/Dropの対象となる光信号の光線経路には、光線経路をコネクタ150-iの側面方向に変更する鏡が配置されている。光学系により平行光線にされた光信号のうち分離対象の光信号を鏡で反射させてコネクタ150-iの外部へ分岐させることにより、分離対象の光信号を得ることができる。また、コネクタ150-iの外部から入力される光信号を鏡に当てることにより、鏡で反射される光信号がコリメートされた光信号と共に2つのレンズを組み合わせた光学系に入射する。光学系に入射した光信号がMCF200-(i+1)のコアに接続されることで、Add対象の光信号をコアへ挿入することができる。
 Add/Dropの対象でない光信号は、光学系で分離された後に、Addされた光信号と共に束ねられてMCF200-(i+1)のコアそれぞれに入力される。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、自由空間を介して、MCF200-iからMCF200-(i+1)へと中継される。なお、図面ではファイバ出射光のコリメートにレンズ2枚を使い、自由空間中における光の伝搬方向変更に鏡を使っているが、同様の機能を持つ光学機器を用いてもよい。
 図2A、図2B、図3A、図3B、図4A及び図4Bにおいてコネクタ150の構成例を示したが、コネクタ150は、説明した媒質及び方法以外のものを用いて実現してもよい。例えば、シリコン上に光導波路を持たせた平面光回路(Planar Lightwave Circuit:PLC)をコネクタとして用いてもよい。
 通信システム100では、送受信ノード110の送信装置111-1で生成された光信号は、MCF200-1のコア201-1と、コネクタ150-1とを介してAdd/Dropノード120-1の受信装置122-1で受信される。送信装置111-2で生成された光信号は、MCF200-1のコア202-1と、コネクタ150-1と、MCF200-2のコア202-2と、コネクタ150-2とを介してAdd/Dropノード120-2の受信装置122-2で受信される。送信装置111-3で生成された光信号は、MCF200-1のコア203-1と、コネクタ150-1と、MCF200-2のコア203-2と、コネクタ150-2と、MCF200-3のコア203-3と、コネクタ150-3とを介してAdd/Dropノード120-3の受信装置122-3で受信される。
 また、Add/Dropノード120-1の送信装置121-1で生成された光信号は、コネクタ150-1と、MCF200-2のコア201-2と、コネクタ150-2と、MCF200-3のコア201-3と、コネクタ150-3と、MCF200-4のコア201-4とを介して送受信ノード110の受信装置112-1で受信される。Add/Dropノード120-2の送信装置121-2で生成された光信号は、コネクタ150-2と、MCF200-3のコア202-3と、コネクタ150-3と、MCF200-4のコア202-4とを介して送受信ノード110の受信装置112-2で受信される。Add/Dropノード120-3の送信装置121-3で生成された光信号は、コネクタ150-3と、MCF200-4のコア203-4を介して送受信ノード110の受信装置112-3で受信される。
 通信システム100において、送受信ノード110は、Add/Dropノード120-1~120-3それぞれとの送受信の通信経路を有している。通信システム100は、送受信ノード110を中心としたスター型の論理トポロジを有する。
 例えば図2A、図2B、図3A、図3B、図4A及び図4Bに示したいずれかのコネクタ150を用いて、各ノードでMCF200を接続することにより、MCF200に含まれる複数のコアのうち所定のコアに対して光信号のAdd/Dropを行うことができる。通信システム100において、MCF200-iとMCF200-(i+1)とをコネクタ150-iを介して接続することにより、Add/Dropノード120-i宛の光信号の分岐と、送受信ノード110宛の光信号の挿入とを容易に行うことができる。光信号のAdd/Dropにおいては、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノード120における装置の設置や保守の手間を削減できる。
 なお、MCF200が3つのコアを備える場合について説明したが、MCF200が4つ以上のコアを備えてもよい。MCF200が4つ以上のコアを備える場合、Add/Dropノード120において2つ以上のコアに対して光信号をAdd/Dropしてもよい。
 また、MCF200の各コアにおいてWDM伝送を行ってもよい。WDM伝送を行う場合、Add/Dropノード120において、各波長の光信号の分波と合波とが必要になる。図5は、通信システム100でWDM伝送を行う場合における、Add/Dropノード120-1の構成例を示す図である。Add/Dropノード120-1は、コネクタ150-1と、分波器124-1と、合波器123-1と、複数の受信装置122-1と、複数の送信装置121-1とを備える。
 コネクタ150-1においてMCF200-1のコア201-1から分岐された光信号は、分波器124-1に入力される。分波器124-1は、入力された光信号を波長ごとに分波する。分波して得られた各光信号は、それぞれ受信装置122-1で受信される。複数の送信装置121-1で生成されたそれぞれ波長の異なる光信号は、合波器123-1に入力される。合波器123-1は、入力された各光信号を合波し、合波して得られた光信号をコネクタ150-1へ出力する。コネクタ150-1は、合波器123-1から入力された光信号を、MCF200-2のコア201-2へ接続することで、送受信ノード110への光信号をMCF200-2へ挿入する。
 なお、WDM伝送を行う場合においても、Add/Dropの対象でないMCF200-1のコア202-1、203-1の光信号は、MCF200-2のコア202-2、203-2へ中継される。そのため、中継される光信号に対しては、各Add/Dropノードにて波長単位の合分波を行わなくてもよい。WDM伝送を行う場合には他のAdd/Dropノード120においても、Add/Dropノード120-1と同様の構成を備える。
 図1に示した通信システム100と異なる構成の通信システムについて説明する。図6は、本発明に関するMCFを用いた通信システム100Aの構成例を示す図である。通信システム100Aは、送受信ノード110a、110bと、n台のAdd/Dropノード120と、を備える。図6には、n=3の場合における通信システム100Aの構成例が示されている。通信システム100Aは、両系片方向のリング構成の物理トポロジを有している点が、通信システム100と異なる。
 ノード間は、MCF210-1~210-4で接続されている。送受信ノード110aとAdd/Dropノード120-1とは、MCF210-1で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF210-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF210-3で接続されている。Add/Dropノード120-3と送受信ノード110bとは、MCF210-4で接続されている。通信システム100AにおけるMCF210-1~210-4は、6つのコア211~216を備えている。
 通信システム100Aの構成についての説明を一般化すると、Add/Dropノード120-i(1≦i≦n-1)は、Add/Dropノード120-(i+1)とMCF210-(i+1)を介して接続されている。MCF210-1は、送受信ノード110aとAdd/Dropノード120-1とを接続する。MCF210-(n+1)は、Add/Dropノード120-nと送受信ノード110bとを接続する。
 通信システム100Aの各ノードは、ノード間での通信を行う送信装置(Tx)及び受信装置(Rx)と、送受信装置(Tx/Rx)とのいずれかを備える。送受信ノード110aに対して、送信装置111-1~111-3と受信装置112-1~112-3とが備えられている。Add/Dropノード120-1に対して、送受信装置125-1、126-1が備えられている。Add/Dropノード120-2に対して、送受信装置125-2、126-2が備えられている。Add/Dropノード120-3に対して、送受信装置125-3、126-3が備えられている。送受信ノード110bに対して、送信装置111-4~111-6と受信装置112-4~112-6とが備えられている。なお、図6に示す通信システム100Aの構成例では、送受信ノード110a、110bに送信装置111及び受信装置112が備えられ、Add/Dropノード120-1~120-3に送受信装置125、126が備えられた構成を説明する。しかし、送受信装置125、126は、その内部に送信装置と受信装置との両者の機能を内包したものであり、送信装置と受信装置とを組み合わせたものと送受信装置とには大きな差分はない。送受信ノード110a、110bとAdd/Dropノード120-1~120-3とにおいて、送信装置及び受信装置と、送受信装置とのいずれが備えられていてもよい。
 送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送信装置111-1~111-3により生成された光信号は、それぞれMCF210-1のコア211-1、213-1、215-1に挿入される。受信装置112-1~112-3は、それぞれAdd/Dropノード120-1~120-3から送受信ノード110a宛に送信された光信号を受信する。受信装置112-1~112-3は、それぞれMCF210-1のコア212-1、214-1、216-1から光信号を受信する。
 送信装置111-4~111-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送信装置111-4~111-6により生成された光信号は、それぞれMCF210-4のコア211-4、213-4、215-4に挿入される。受信装置112-4~112-6は、それぞれAdd/Dropノード120-1~120-3から送受信ノード110b宛に送信された光信号を受信する。受信装置112-4~112-6は、それぞれMCF210-4のコア212-4、214-4、216-4から光信号を受信する。送受信ノード110a、110bにおける、MCF200への光信号の挿入とMCF200からの光信号の分岐とには、ファンイン・デバイス又はファンアウト・デバイスが用いられる。
 各Add/Dropノード120-i(i=1,2,3)には、それぞれコネクタ160-iが備えられている。コネクタ160-iは、MCF210-iとMCF210-(i+1)とに接続される。コネクタ160-iは、送受信ノード110a、110bで挿入された光信号のうち自ノードへの光信号をMCF210-i及びMCF210-(i+1)から分岐する。コネクタ160-iは、送受信ノード110a宛の光信号をMCF210-iのコアへ挿入する。コネクタ160-iは、送受信ノード110b宛の光信号をMCF210-(i+1)のコアへ挿入する。
 Add/Dropノード120-1において、コネクタ160-1は、MCF210-1のコア211-1から自ノードへの光信号を分岐する。コネクタ160-1は、分岐した光信号を送受信装置125-1へ接続する。また、コネクタ160-1は、送受信装置125-1により生成された光信号をMCF210-1のコア212-1へ挿入する。コア212-1へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-1は、MCF210-2のコア211-2から自ノードへの光信号を分岐する。コネクタ160-1は、分岐した光信号を送受信装置126-1へ接続する。また、コネクタ160-1は、送受信装置126-1により生成された光信号をMCF210-2のコア212-2へ挿入する。コア212-2へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-1は、MCF210-1のコアのうちコア213-1~216-1と、MCF210-2のコアのうち213-2~216-2とをそれぞれ接続する。コネクタ160-1は、MCF210-1とMCF210-2との間において光信号を中継する。コネクタ160-1は、光信号をAdd/Dropするコア211-1、212-1、211-2、212-2以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-2において、コネクタ160-2は、MCF210-2のコア213-2から自ノードへの光信号を分岐する。コネクタ160-2は、分岐した光信号を送受信装置125-2へ接続する。また、コネクタ160-2は、送受信装置125-2により生成された光信号をMCF210-2のコア214-2へ挿入する。コア214-2へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-2は、MCF210-3のコア213-3から自ノードへの光信号を分岐する。コネクタ160-2は、分岐した光信号を送受信装置126-2へ接続する。また、コネクタ160-2は、送受信装置126-2により生成された光信号をMCF210-3のコア214-3へ挿入する。コア214-3へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-2は、MCF210-2のコアのうちコア211-2、212-2、215-2、216-2と、MCF210-3のコアのうちコア211-3、212-3、215-3、216-3とをそれぞれ接続する。コネクタ160-2は、MCF210-2とMCF210-3との間において光信号を中継する。コネクタ160-2は、光信号をAdd/Dropするコア213-2、214-2、213-3、214-3以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-3において、コネクタ160-3は、MCF210-3のコア215-3から自ノードへの光信号を分岐する。コネクタ160-3は、分岐した光信号を送受信装置126-3へ接続する。また、コネクタ160-3は、送受信装置126-3により生成された光信号をMCF210-3のコア216-3へ挿入する。コア216-3へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-3は、MCF210-4のコア215-4から自ノードへの光信号を分岐する。コネクタ160-4は、分岐した光信号を送受信装置125-3へ接続する。また、コネクタ160-3は、送受信装置125-3により生成された光信号をMCF210-4のコア216-3へ挿入する。コア216-4へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-3は、MCF210-3のコアのうちコア211-3~214-3と、MCF210-4のコアのうちコア211-4~214-4とをそれぞれ接続する。コネクタ160-3は、MCF210-3とMCF210-4との間において光信号を中継する。コネクタ160-3は、光信号をAdd/Dropするコア215-3、216-3、215-4、216-4以外のコアで伝送される光信号を中継する。
 通信システム100Aにおけるコネクタ160-1~160-3は、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることにより、通信システム100におけるコネクタ150-1~150-3と同様に構成することができる。
 通信システム100Aでは、送受信ノード110a、110bとAdd/Dropノード120-1~120-3それぞれとの間に送信用の通信経路と受信用の通信経路が形成される。送受信ノード110a、110bは、Add/Dropノード120-1~120-3と個別に通信することができる。このように、通信システム100Aは、送受信ノード110a、110bそれぞれをルートノードとするツリー型の論理トポロジを有している。
 Add/Dropノード120-1~120-3は、2つの送受信ノード110a、110bとの通信経路のうちいずれか一方を現用系(0系)として利用し、他方を予備系(1系)として利用してもよい。また、Add/Dropノード120-1~120-3は、伝送経路の短い通信経路を0系として利用し、伝送経路の長い通信経路を1系として利用してもよい。Add/Dropノード120-1~120-3では、光信号のAdd/Dropにおいて、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるので装置の設置や保守の手間を削減できる。
 なお、各MCF210が6つのコア211~216を備える場合について説明したが、MCF210が7つ以上のコアを備えてもよい。MCF210が7つ以上のコアを備える場合、Add/Dropノード120において2つ以上のコアに対して光信号をAdd/Dropしてもよい。
 また、MCF210の各コアにおいてWDM伝送を行ってもよい。WDM伝送を行う場合、図5に示したように、各Add/Dropノード120にはAdd/Dropする光信号に対する分波器又は合波器が備えられる。
 また、送受信ノード110aと送受信ノード110bとの間を、MCF210又は7つ以上のコアを備えるMCFを用いて接続してもよい。通信システム100Aにおいて、送受信ノード110a、110bとAdd/Dropノード120-1~120-3との役割が変わった場合に、送受信ノード110a、110bにコネクタを取り付け、各Add/Dropノード120-1~120-3のコネクタ150を他のコネクタ付け替えることで、論理トポロジを容易に変更することができる。これにより、ネットワーク構成の変更に対し柔軟に対応することができる。
 図1及び図6に示した通信システムと異なる構成の通信システムについて説明する。図7は、本発明に関するMCFを用いた通信システム100Dの構成例を示す図である。通信システム100Dは、送受信ノード110a、110bと、n台のAdd/Dropノード120と、を備える。図7には、n=3の場合における通信システム100Dの構成例が示されている。通信システム100Dにおいて、ノード間におけるMCF200-1~200-4の接続は、通信システム100AにおけるMCF210-1~210-4の接続と同様である。通信システム100Dでは、送受信ノード110a、110bから各Add/Dropノード120への通信と、各Add/Dropノード120から送受信ノード110a、110bへの通信とが同一のコアを用いて行われる。通信システム100Dは、両系双方向のリング構成の物理トポロジを有する。
 通信システム100Dの各ノードは、ノード間での通信を行う送受信装置(Tx/Rx)を備える。送受信ノード110aには、送受信装置113-1~113-3が備えられている。送受信ノード110bには、送受信装置113-4~113-6が備えられている。Add/Dropノード120-1~120-3には、送受信装置125-1~125-3、126-1~126-3がそれぞれ備えられている。送受信装置113-1~113-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置125-1~125-3は、送受信ノード110aへ送信する光信号を生成する。送受信装置126-1~126-3は、送受信ノード110bへ送信する光信号を生成する。また、送受信装置113-1~113-6は、Add/Dropノード120-1~120-3それぞれから送信される光信号を受信し、光信号に含まれる情報を取得する。送受信装置125-1~125-3は、送受信ノード110aから送信されられる光信号を受信し、光信号に含まれる情報を取得する。送受信装置126-1~126-3は、送受信ノード110bから送信される光信号を受信し、光信号に含まれる情報を取得する。
 送受信ノード110aにおいて、送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-1~113-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。また、送受信装置113-1~113-3は、それぞれMCF200-1のコア201-1~203-1を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-1への光信号の挿入とMCF200-1からの光信号の分岐とには、ファンイン/ファンアウト・デバイスが用いられる。
 送受信ノード110bにおいて、送受信装置113-4~113-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-4~113-6により生成された3つの光信号は、それぞれMCF200-4のコア201-4~203-4に挿入される。また、送受信装置113-4~113-6は、それぞれMCF200-4のコア201-4~203-4を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-4への光信号の挿入とMCF200-4からの光信号の分岐とには、送受信ノード110aと同様に、ファンイン/ファンアウト・デバイスが用いられる。
 Add/Dropノード120-i(i=1,2,3)それぞれには、コネクタ185-iが備えられている。コネクタ185-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ185-iは、MCF200-iのコア20i-iから光信号を分岐し、分岐した光信号を送受信装置125-iへ接続する。コネクタ185-iは、送受信装置125-iにより生成された光信号をMCF200-iのコア20i-iへ挿入する。送受信装置125-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110aへ伝送される光信号である。
 また、コネクタ185-iは、MCF200-(i+1)のコア20i-(i+1)から光信号を分岐し、分岐した光信号を送受信装置126-iへ接続する。コネクタ185-iは、送受信装置126-iにより生成された光信号をMCF200-(i+1)のコア20i-(i+1)へ挿入する。送受信装置126-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110bへ伝送される光信号である。
 また、コネクタ185-iは、MCF200-iのコアとMCF200-(i+1)のコアとのうち、Add/Dropの対象となるコア以外のコア20i-iとコア20i-(i+1)とを接続して光信号を中継する。
 送受信ノード110aとAdd/Dropノード120-1とは、コア201-1により形成される通信経路を用いた双方向の通信を行う。送受信ノード110aとAdd/Dropノード120-2とは、コア202-1、202-2により形成される通信経路を用いた双方向の通信を行う。送受信ノード110aとAdd/Dropノード120-3とは、コア203-1、203-2、203-3により形成される通信経路を用いた双方向の通信を行う。
 送受信ノード110bとAdd/Dropノード120-1とは、コア201-4、201-3、201-2により形成される通信経路を用いた双方向通信を行う。送受信ノード110bとAdd/Dropノード120-2とは、コア202-4、202-3により形成される通信経路を用いた双方向通信を行う。送受信ノード110bとAdd/Dropノード120-3とは、コア203-4により形成される通信経路を用いた双方向通信を行う。
 このように、通信システム100Dは、送受信ノード110a、110bそれぞれをルートノードとしてAdd/Dropノード120-1~120-3それぞれと通信可能なツリー型の論理トポロジを有する。通信システム100Dでは、Add/Dropノード120-1~120-3は、それぞれ送受信ノード110a、110bと通信を行うことができる。Add/Dropノード120-1~120-3は、2つの送受信ノード110a、110bとの通信経路のうちいずれか一方を現用系(0系)として利用し、他方を予備系(1系)として利用してもよい。また、Add/Dropノード120-1~120-3は、伝送距離の短い通信経路を0系として利用し、伝送距離の長い通信経路を1系として利用してもよい。
 なお、通信システム100Dにおいて、送受信ノード110aと送受信ノード110bとの間をMCF200や、4つ以上のコアを備えるMCFを用いて接続してもよい。通信システム100Dにおいて、送受信ノード110a、110bとAdd/Dropノード120-1~120-3との役割が変わった場合に、送受信ノード110a、110bにコネクタを取り付け、各Add/Dropノード120-1~120-3のコネクタ185を他のコネクタ付け替えることで、論理トポロジを容易に変更することができる。これにより、ネットワーク構成の変更に対し柔軟に対応することができる。
 図1、図6及び図7に示した通信システムと異なる構成の通信システムについて説明する。図8は、本発明に関するMCFを用いた通信システム100Eの構成例を示す図である。通信システム100Eは、リング構成の物理トポロジを有し、完全メッシュ型の論理トポロジを有する。通信システム100Eは、n台のAdd/Dropノード120を有する。図8には、n=4の場合における通信システム100Eの構成が示されている。
 ノード間は、MCF200-1~200-4で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF200-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF200-3で接続されている。Add/Dropノード120-3とAdd/Dropノード120-4とは、MCF200-4で接続されている。Add/Dropノード120-4とAdd/Dropノード120-1とは、MCF200-1で接続されている。ノード間を接続するMCF200-1~200-4は、3つのコア201、202、203を備えている。
 各Add/Dropノード120-i(i=1,2,3,4)には、それぞれ他のAdd/Dropノード120と通信するために3つの送受信装置(Tx/Rx)125-iと、コネクタ190-iとが備えられている。送受信装置125-iは、それぞれ通信相手のAdd/Dropノード120に対応して設けられている。コネクタ190-1は、MCF200-1とMCF200-2とに接続されている。コネクタ190-2は、MCF200-2とMCF200-3とに接続されている。コネクタ190-3は、MCF200-3とMCF200-4とに接続されている。コネクタ190-4は、MCF200-4とMCF200-1とに接続されている。
 Add/Dropノード120-1において、コネクタ190-1は、MCF200-1のコア201-1から光信号を分岐し、分岐した光信号をAdd/Dropノード120-4と通信する送受信装置125-1へ接続する。コネクタ190-1は、Add/Dropノード120-4と通信する送受信装置125-1により生成された光信号を、MCF200-1のコア201-1へ挿入する。また、コネクタ190-1は、MCF200-2のコア202-2から光信号を分岐し、分岐した光信号をAdd/Dropノード120-3と通信する送受信装置125-1へ接続する。コネクタ190-1は、Add/Dropノード120-3と通信する送受信装置125-1により生成された光信号を、MCF200-2のコア202-2へ挿入する。また、コネクタ190-1は、MCF200-2のコア201-2から光信号を分岐し、分岐した光信号をAdd/Dropノード120-2と通信する送受信装置125-1へ接続する。コネクタ190-1は、Add/Dropノード120-2と通信する送受信装置125-1により生成された光信号を、MCF200-2のコア201-2へ挿入する。
 Add/Dropノード120-2においても、コネクタ190-1と同様に、コネクタ190-2は、MCF200-2のコア201-2とMCF200-3のコア201-3、202-3とに対して光信号の挿入及び分岐を行う。コネクタ190-2は、分岐した光信号を、Add/Dropノード120-1、120-3、120-4と通信する各送受信装置125-2へ接続する。また、コネクタ190-2は、Add/Dropノード120-1、120-3、120-4と通信する各送受信装置125-2により生成された光信号を、MCF200-2のコア201-2とMCF200-3のコア201-3、202-3とへ挿入する。コネクタ190-2は、MCF200-2のコア202-2とMCF200-3のコア202-3との間における光信号を中継する。
 Add/Dropノード120-3においても、コネクタ190-1と同様に、コネクタ190-3は、MCF200-3のコア201-3、202-3とMCF200-4のコア202-4とに対して光信号の挿入及び分岐を行う。コネクタ190-3は、分岐した光信号を、Add/Dropノード120-1、120-2、120-4と通信する送受信装置125-3へ接続する。また、コネクタ190-3は、Add/Dropノード120-2、120-1、120-4と通信する各送受信装置125-3により生成された光信号を、MCF200-3のコア201-3、202-3とMCF200-4のコア202-4とへ挿入する。コネクタ190-3は、MCF200-3のコア203-3とMCF200-4のコア203-4との間における光信号を中継する。
 Add/Dropノード120-4においても、コネクタ190-1と同様に、コネクタ190-4は、MCF200-4のコア202-4、203-4とMCF200-1のコア201-1とに対して光信号の挿入及び分岐を行う。コネクタ190-4は、分岐した光信号を、Add/Dropノード120-3、120-2、120-1と通信する送受信装置125-4へ接続する。また、コネクタ190-4は、Add/Dropノード120-3、120-2、120-1と通信する各送受信装置125-4により生成された光信号を、MCF200-1のコア201-1とMCF200-4のコア201-4、202-4とへ挿入する。
 MCF200-1~200-4をコネクタ190-1~190-4を用いて上述のように接続することにより、Add/Dropノード120-1~120-4それぞれの間に一対一の通信経路が形成される。通信システム100Eは完全メッシュ型の論理トポロジを有する。
 なお、通信システム100Eでは、Add/Dropノード120-1~120-4それぞれの間すべてに通信経路を形成した構成を説明した。しかし、通信システムは、Add/Dropノード120-1~120-4それぞれの間の一部に通信経路を形成した部分メッシュ型の論理トポロジを有してもよい。また、通信システム100Eでは、伝送方向が異なる光信号を1つのコアで伝送する双方向の通信が行われる構成を説明した。しかし、通信システムは、図1や図6、図7などに示したように、1つのコアで1つの伝送方向の光信号のみを伝送する片方向の通信を行うようにしてもよい。また、通信システムは、各Add/Dropノード120-1~120-4それぞれの間において2系統の通信経路を形成した両系の構成を有してもよい。
 本発明の実施形態におけるコネクタが適用可能な通信システムとして、4つの通信システム100、100A、100D、100Eを説明した。各通信システムでは、ノード間の接続にMCFを用いる構成を説明した。しかし、ノード間の接続にSCF(Single Core Fiber)が用いられた通信システムに対して、各実施形態において説明するコネクタを適用してもよい。ノード間の接続にSCFが用いられる場合、MCFと複数のSCFとを接続する変換コネクタ、又はコネクタと複数のSCFとを接続する変換コネクタが用いられる。
 図9は、図1に示した通信システム100において、Add/Dropノード120-1とAdd/Dropノード120-2との接続の一部に複数のSCF451、452、453を用いる第1の構成例を示すブロック図である。コネクタ150-1に接続されたMCF200-21と、コネクタ150-2に接続されたMCF200-22との間にSCF451、452、453が用いられている。
 MCF200-21とSCF451~453との接続には変換コネクタ400-1が用いられている。変換コネクタ400-1は、MCF200-21のコア201-21、202-21、203-21と、SCF451、452、453とをそれぞれ接続する。MCF200-22とSCF451~453との接続には変換コネクタ400-2が用いられている。変換コネクタ400-2は、MCF200-22のコア201-22、202-22、203-22と、SCF451、452、453とをそれぞれ接続する。
 変換コネクタ400-1、400-2は、ファンイン・デバイス又はファンアウト・デバイスと同じ構成を有している。変換コネクタ400-1、400-2を用いることにより、ノード間の接続における一部区間にSCFを用いることができる。
 図10は、図1に示した通信システム100において、Add/Dropノード120-1とAdd/Dropノード120-2との接続に複数のSCF451、452、453を用いる第2の構成例を示すブロック図である。コネクタ150-1とコネクタ150-2との接続にSCF451、452、453が用いられている。図10に示す構成例は、Add/Dropノード120-1、120-2間の接続にMCFが用いられていない構成が図9に示した構成例と異なる。
 Add/Dropノード120-1は、更に変換コネクタ410-1を備える。コネクタ150-1のAdd/Dropノード120-2側に変換コネクタ410-1が取り付けられる。Add/Dropノード120-2は、更に変換コネクタ410-2を備える。コネクタ150-2のAdd/Dropノード120-1側に変換コネクタ410-2が取り付けられる。MCF200が有するコア数と同数のSCF451~453が、変換コネクタ410-1、410-2間の接続に用いられる。
 変換コネクタ410-1は、SCF451、452、453とコネクタ150-1とを接続する。コネクタ150-1は、MCF200-2に代えて、変換コネクタ410-1と光信号の入出力を行う。コネクタ150-1は、変換コネクタ410-1を介して、MCF200-1のコア202-1、203-1とSCF452、453とをそれぞれ接続する。変換コネクタ410-1は、コネクタ150-1を介して、送信装置121-1が生成した光信号をSCF451へ挿入する。
 変換コネクタ410-2は、SCF451、452、453とコネクタ150-2とを接続する。コネクタ150-2は、MCF200-2に代えて、変換コネクタ410-2と光信号の入出力を行う。コネクタ150-2は、変換コネクタ410-2を介して、SCF451、453とMCF200-3のコア201-3、203-3とをそれぞれ接続する。コネクタ150-2は、変換コネクタ410-2を介して、SCF453から分岐した光信号を受信装置122-2へ接続する。
 変換コネクタ410-1、410-2は、ファンイン・デバイス又はファンアウト・デバイスと同じ構成を有している。変換コネクタ410-1、410-2を用いることにより、ノード間の接続にSCFを用いることができる。
 図9及び図10では、3つコアを有するMCF200に代えてSCFを用いてノード間を接続する構成例を示した。2つ又は4つ以上のコアを有するMCFに代えてSCFをノード間の接続に用いてもよい。この場合においても、同様に、変換コネクタが用いられる。
 図9及び図10では、図1に示した通信システム100におけるAdd/Dropノード120-1、120-2間の接続にSCFを用いる例を示した。他のノード間の接続にもSCFを用いてもよい。この場合、一つのノード間の接続に変換コネクタ400を用い、他のノード間の接続に変換コネクタ410を用いてもよい。また、一つのノード間の接続に、MCFとSCFとを接続する変換コネクタ400と、コネクタ150に接続する変換コネクタ410とを組み合わせて用いてもよい。例えば、Add/Dropノード120-1において変換コネクタ400が用いられ、Add/Dropノード120-2において変換コネクタ410が用いられてもよい。
 一つのノード間の接続において、MCFとSCFとの変換が複数回行われてもよい。例えば、Add/Dropノード120-1、120-2との間の接続において、MCF、SCF、MCF、SCF、MCFの順でMCFとSCFとが用いられてもよい。この場合、MCFとSCFとの間それぞれに変換コネクタが用いられる。
 また、図10において説明した、コネクタ150-1と変換コネクタ410-1とが1つのコネクタとして構成されてもよい。同様に、コネクタ150-2と変換コネクタ410-2とが1つのコネクタとして構成されてもよい。すなわち、MCFと複数のSCFとに接続されるコネクタが、MCF又はSCFに対して光信号のADD/Dropを行うとともに、MCFとSCFとの間における光信号の中継を行ってもよい。
 以上説明したように、図1に示した通信システム100及び他の通信システムにおけるノード間の接続のうち一つ又は複数に、SCFが用いられてもよい。
[第1の実施形態]
 本発明に係る第1の実施形態における通信システムでは、各ノードにおいて同一の構成を有するコネクタが、MCF間を接続する。コネクタが、自ノードに関する光信号の挿入及び分岐(Add/Drop)を行う。各ノードで同一の構成又は形状を有するコネクタを用いることにより、ノードごとに構成又は形状の異なるコネクタを用意する必要がなくなる。更に、通信システムを構成する際のコストの削減、MCF間を接続する際に間違ったコネクタを用いてしまうなどの人為的なミスの抑制が可能となる。
 図11A及び図11Bは、第1の実施形態におけるコネクタ510の構成を説明する図である。第1の実施形態のコネクタ510は、例えば図6に示した通信システム100Aと同じ、リング型の物理トポロジであり2つの送受信ノードそれぞれをルートノードとするツリー型の論理トポロジを有する通信システムにおいて用いられる。コネクタ510は、マルチコアファイバの断面において複数のコアがマルチコアファイバの中心軸を中心とする円周上に配置されている2つのマルチコアファイバを接続する。2つのマルチコアファイバにおける複数のコアの配置は、同じ配置である。コネクタ510は、図6に示した通信システム100Aの各Add/Dropノードで用いられる。図11A及び図11Bに示すマルチコアファイバ(MCF)210は、図6に示した通信システム100Aで用いられるMCF210であり、6つのコア211~216を備える。6つのコア211~216は、MCF210の軸方向からみると、同心円上に等間隔に配置され、6回対称の回転対称に配置されている。
 コネクタ510は、図11Aに示すようにコア211~216のうち、2つのコアを選択する。コネクタ510は、選択した2つのコアに対して光信号の挿入/分岐を行い、他のコアに対して光信号を中継(スルー)する。光信号の挿入/分岐の対象となるコアの組は、コア211とコア212との組、コア213とコア214との組、あるいはコア215とコア216の組のいずれかである。コア211、212に対して光信号の挿入/分岐を行う場合のコネクタ510とMCF210との取り付け位置に対して、コネクタ510をMCF210の軸方向(紙面に対し奥行き方向)に対してMCFの中心軸を中心として時計回りに60度回転させた位置に取り付けたとき、コア配置の回転対称性により、コネクタ510は、コア213とコア214とに対して光信号の挿入/分岐を行うことができる。更に、コネクタ510をMCF210の軸方向に対してMCFの中心軸を中心として120度回転させた位置に取り付けたとき、コネクタ510は、コア215とコア216とに対して光信号の挿入/分岐を行うことができる。
 コネクタ510をMCF210に取り付ける際にMCF210の軸方向に対してコネクタ510の回転角度をユーザが容易に把握できるようにしてもよい。例えば、MCF210の皮膜に目印となる線やマークを軸方向に沿ってつけて基準となる位置が分かるようにしてもよい。基準となる位置は、例えばコア211の位置が把握できる位置である。また、基準となる位置を把握できるようにMCF210の皮膜の形状を形成してもよい。例えば、コア211の位置が把握できるように、軸方向に沿って皮膜に溝や突起をつけてもよい。
 図11Bは、コネクタ510が2つのMCF210を接続した際の光信号の扱いを示す図である。図11Bには、コネクタ510を、図6の通信システム100AにおけるAdd/Dropノード120-3に用いた場合が示されている。すなわち、コネクタ160-3に代えてコネクタ510を用いた場合が示されている。コネクタ510は、MCF210-3とMCF210-4とを接続する。
 コネクタ510は、MCF210-3のコア215-3から光信号を分岐し、分岐した光信号を送受信装置126-3へ接続する。コネクタ510は、送受信装置126-3により生成される送受信ノード110aへの光信号を、MCF210-3のコア216-3へ挿入する。また、コネクタ510は、MCF210-4のコア215-4から光信号を分岐し、分岐した光信号を送受信装置125-3へ接続する。コネクタ510は、送受信装置125-3により生成される送受信ノード110bへの光信号を、MCF210-4のコア216-4へ挿入する。また、コネクタ510は、MCF210-3の基準となる位置と、MCF210-4の基準となる位置とを合わせた際に、対向するそれぞれのコア211~216のうちAdd/Dropの対象となるコア以外のコア211~214における光信号を中継する。
 コネクタ510をMCF210に取り付ける際にMCF210の軸方向に対してコネクタ510を所定の角度回転させることにより、Add/Dropの対象となるコアをコネクタ510に選択させることができる。Add/Dropの対象となるコアがノードごとに異なる場合には、コネクタ510をMCF210の軸方向に対してノードごとに異なる角度回転させた上でMCF210に取り付ける。このようにコネクタ510がMCF210に取り付けられることにより、各ノードにおいて同じコネクタ510を用いて、所望のコアに対して光信号のAdd/Dropを行うことができる。ここで、ノードごとに異なる角度は、MCF210におけるコアの配置がn回対称である場合において(360/n)度の整数倍の角度である。本実施形態では、2つのコアを選択するので、0度と180度、60度と240度、120度と300度のそれぞれにおける選択では同じコアが選択される。
 なお、図11A及び図11Bでは、マルチコアファイバ210において、選択されるコアの組として中心(マルチコアファイバの中心軸)を挟んで対向するコアの組を一例として説明した。しかし、選択されるコアの組は、図11A及び図11Bに示した組以外でもよい。例えば、隣接するコアを組としてもよい。コア211、213と、コア215、212と、コア214、216とをそれぞれ組としてもよい。この場合、コア211、213の組を選択するコネクタの取り付け位置を基準位置にしたとき、コア215、212の組を選択するノードでは、マルチコアファイバの中心軸に対して基準位置から時計方向に120度回転させた位置でコネクタがマルチコアファイバに取り付けられることになる。また、コア214、216の組を選択するノードでは、中心軸に対して基準から時計方向に240度回転させた位置でコネクタがマルチコアファイバに取り付けられることになる。
 本実施形態ではマルチコアファイバにおけるコアの配置の一例と、コアの配置に応じたコネクタの構成例とを示した。前述の例に限ることなく、複数のAdd/Dropノードがある場合であってもコネクタをマルチコアファイバに取り付ける回転角度に応じて各Add/Dropノードに割り当てられたコアを選択できればよい。Add/Dropノードがnノードある場合には、n個の異なる回転角度それぞれで、Add/Dropの対象となるコアが選択され、他のコアにおける光信号がマルチコアファイバ間で中継されるように、マルチコアファイバにおいてコアが配置されていればよい。その際、コネクタはマルチコアファイバ間の中継が行えるように一部ノードでのみ用いる光信号の中継構造を備えてもよい。
 また、MCF210-i(i=1,2,3)とMCF200-(i+1)とをコネクタ510を介して接続することにより、Add/Dropノード120-iへの光信号の取得と、送受信ノード110a,110bへの光信号の挿入とを容易に行うことができる。光信号のAdd/Dropにおいては、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノード120における装置の設置や保守の手間を削減できる。
[第2の実施形態]
 第2の実施形態におけるコネクタは、第1の実施形態におけるコネクタ510が各送受信ノードに対してMCF中の2つのコアでAdd/Dropを行っていたが、各送受信ノードに対してMCF中の1つのコアでAdd/Dropを行う。図12A及び図12Bは、第2の実施形態におけるコネクタ520の構成を説明する図である。コネクタ520は、例えば図1や図7に示した通信システムと同じ、リング型の物理トポロジであり、送受信ノードをルートノードとするツリー型の論理トポロジを有する通信システムにおいて用いられる。コネクタ520は、ファイバ断面において複数のコアがマルチコアファイバの中心軸を中心とする円周上に配置されている2つのマルチコアファイバを接続する。2つのマルチコアファイバにおける複数のコアの配置は、同じ配置である。コネクタ520は、図1や図7に示した通信システムの各Add/Dropノードで用いられる。図12A及び図12Bに示すマルチコアファイバ(MCF)200は、図1や図7に示した通信システムで用いられるMCF200であり、3つのコア201~203を備える。3つのコア201~203は、MCF200の軸方向からみると、同心円上に等間隔に配置され、3回対称の回転対称に配置されている。
 コネクタ520は、図12Aに示すように、コア201~203のうち、いずれか1つのコアに対して光信号の挿入/分岐を行い、他のコアに対して光信号を中継する。コア201に対して光信号の挿入/分岐を行う場合のコネクタ520とMCF200との取り付け位置に対して、MCF200の軸方向(紙面に対し奥行き方向)に対してMCFの中心軸を中心として時計回りに120度回転させた位置にコネクタ510を取り付けると、コア配置の回転対称性により、コネクタ520は、コア202に対して光信号の挿入/分岐を行うことができる。更に、コネクタ520をMCF200の軸方向に対してMCFの中心軸を中心として240度回転させた位置に取り付けると、コネクタ510は、コア203に対して光信号の挿入/分岐を行うことができる。
 第1の実施形態と同様に、コネクタ520をMCF200に取り付ける際にMCF200の軸方向に対してコネクタ520の回転角度をユーザが容易に把握できるようにしてもよい。例えば、MCF200の皮膜に目印となる線やマーク、溝、突起を軸方向に沿ってつけて基準となる位置が分かるようにしてもよい。基準となる位置は、例えばコア201の位置が把握できる位置である。
 図12Bは、コネクタ520に2つのMCF200を接続した際の光信号の扱いを示す図である。図12Bには、コネクタ520を図7の通信システム100DにおけるAdd/Dropノード120-2に用いた場合が示されている。すなわち、コネクタ185-2に代えてコネクタ520を用いた場合が示されている。コネクタ520は、MCF200-2とMCF200-3とに接続される。
 コネクタ520は、MCF200-2のコア202-2から光信号を分岐し、分岐した光信号を送受信装置125-2へ接続する。コネクタ520は、送受信装置125-2により生成される送受信ノード110aへの光信号を、MCF200-2のコア202-2へ挿入する。また、コネクタ520は、MCF200-3のコア202-3から光信号を分岐し、分岐した光信号を送受信装置126-2へ接続する。コネクタ520は、送受信装置126-2により生成される送受信ノード110bへの光信号を、MCF200-3のコア203-3へ挿入する。また、コネクタ510は、MCF200-2の基準となる位置と、MCF200-3の基準となる位置とを合わせた際に、対向するそれぞれのコア201~203のうちAdd/Dropの対象となるコア以外のコア201、203における光信号を中継する。
 コネクタ520をMCF200に取り付ける際に、MCF200の軸方向に対してコネクタ520を所定の角度回転させることにより、Add/Dropの対象となるコアをコネクタ520に選択させることができる。Add/Dropの対象となるコアがノードごとに異なる場合には、MCF200の軸方向に対してノードごとに異なる角度回転でコネクタ520をMCF200に取り付けることにより、各ノードにおいて同じくコネクタ520を用いて、所望のコアに対して光信号のAdd/Dropを行うことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
 本実施形態ではマルチコアファイバにおけるコアの配置の一例と、コアの配置に応じたコネクタの構成例とを示した。前述の例に限ることなく、複数のAdd/Dropノードがある場合であってもコネクタをマルチコアファイバに取り付ける回転角度に応じて各Add/Dropノードに割り当てられたコアを選択できればよい。Add/Dropノードがnノードある場合には、n個の異なる回転角度それぞれで、Add/Dropの対象となるコアが選択され、他のコアにおける光信号がマルチコアファイバ間で中継されるように、マルチコアファイバにおいてコアが配置されていればよい。その際、コネクタはマルチコアファイバ間の中継が行えるように一部ノードでのみ用いる光信号の中継構造を備えてもよい。
 上述のように、第1及び第2の実施形態における通信システムのAdd/Dropノードに備えられるコネクタは、それぞれ同じ構成を有している。例えば、コネクタそれぞれは、自身が備えられている自ノードに隣接する第1のノードと自ノードとを接続する第1のMCFと、第1のノードと逆側に隣接する第2のノードと自ノードとを接続する第2のMCFとを接続する構成を有している。また、コネクタは、第1及び第2のMCFの中心軸方向に対して基準となる位置からノードそれぞれで異なる角度だけ回転した位置で第1及び第2のMCFに取り付けられる。コネクタは、MCFに取り付けられた角度に応じて選択されたコアに対して光信号の挿入又は分岐を行い、他のコアに対して光信号の中継を行う構成を有している。また、コネクタは、自ノードと他のノードとの通信を伝送するコアに対して光信号を挿入又は分岐する接続部と、第1のMCFと第2のMCFとの間において他のノード間の通信に対して割り当てられたコアにより伝送される信号を中継する信号中継部とを備える。例えば、図12A及び図12Bに示したコネクタ520において、接続部は、コア202-2から送受信装置125-2へ光信号を接続する構成であり、信号中継部は、コア201-2とコア210-3とを接続して光信号を両コア間において中継する構成である。
[第3の実施形態]
 第3の実施形態におけるコネクタは、第1及び第2の実施形態におけるコネクタと異なり、マルチコアファイバにおけるコア配置に依存せずに、各ノードにおいて使用できる同じ構成を有するコネクタである。図13は、第3の実施形態におけるコネクタ530の構成を示す図である。コネクタ530は、図6に示した通信システム100Aと同じリング型の物理トポロジであり2つの送受信ノードそれぞれをルートノードとするツリー型の論理トポロジを有する通信システムにおいて用いられる。図13には、通信システム100Aの各Add/Dropノード120-1~120-3にコネクタ530を用いた場合の各コネクタ530とMCF210-1~210-4との接続が示されている。
 コネクタ530は、接続される2つのMCF210間において光信号の中継方法に特徴がある。コネクタ530は、いずれのAdd/Dropノード120-1~120-3においても、同じコアに対して自ノードに関する光信号のAdd/Dropを行うことができる。ここでは、Add/Dropノード120-2に備えられるコネクタ530-2に着目して説明を行うが、いずれのコネクタ530も同じ構成を有している。
 コネクタ530-2の送受信ノード110a側にはMCF210-2が接続され、コネクタ530-2の送受信ノード110b側にはMCF210-3が接続されている。コネクタ530-2は、MCF210-2の各コア211-2~216-2及びMCF210-3の各コア211-3~216-3それぞれと接続する接続点を備える。各接続点では、接続するコアに対して光信号の入力と出力が実施される。コネクタ530-2は、MCF210-2の各コアに対する接続点1a~1fと、MCF210-3の各コアに対する接続点2a~2fとを備える。
 コネクタ530-2において、接続点1aは、MCF210-2のコア211-2に接続し、送受信ノード110aから自ノードへの光信号をコア211-2から分岐する。接続点1aにより分岐される光信号は、Add/Dropノード120-2に備えられる送受信装置125-2へコネクタ530-2を通じて接続される。接続点1bは、MCF210-2のコア212-2に接続し、送受信ノード110aからAdd/Dropノード120-3への光信号をコア212-2から分岐する。接続点1bにより分岐される光信号は、接続点2aへと接続されることで中継される。接続点1cは、MCF210-2のコア213-2に接続し、Add/Dropノード120-1から送受信ノード11bへの光信号をコア213-2から分岐する。接続点1cにより分岐される光信号は、接続点2bへ接続されることで中継される。
 接続点1dは、MCF210-2のコア214-2に接続する。接続点2eにより分岐される光信号であって送受信ノード110bからAdd/Dropノード120-1への光信号は、接続点1dに接続されることでコア214-2へ中継される。接続点1eは、MCF210-2のコア215-2に接続する。接続点2fにより分岐される光信号であってAdd/Dropノード120-3から送受信ノード110aへの光信号は、接続点1eに接続されることでコア215-2へ中継される。接続点1fは、MCF210-2のコア216-2に接続し、送受信装置125-2により生成される光信号であって自ノードから送受信ノード110aへの光信号をコア216-2へ挿入する。
 接続点2aは、MCF210-3のコア211-3に接続する。接続点1bにより分岐される光信号は、接続点2aに接続されることでコア211-3へ中継される。接続点2bは、MCF210-3のコア212-3と接続する。接続点1cにより分岐される光信号は、接続点2bに接続されることでコア211-3へ中継される。接続点2cは、MCF210-3のコア212-3に接続し、自ノードに備えられる送受信装置126-2により生成される光信号であって自ノードから送受信ノード110bから自ノードへの光信号をコア213-3へ挿入する。
 接続点2dは、MCF210-3のコア214-3に接続し、送受信ノード110bから自ノードへの光信号をコア214-3から分岐する。接続点2dにより分岐される光信号は、送受信装置126-2へコネクタ530-2を通じて接続される。接続点2eは、MCF210-3のコア215-3に接続し、光信号をコア215-3から分岐する。接続点2eにより分岐される光信号は、接続点1dへ接続されることでコア214-1へ中継される。接続点2fは、MCF210-3のコア216-3に接続し、光信号をコア216-3から分岐する。接続点2fで分岐される光信号は、接続点1eへ接続されることでコア215-2へ中継される。
 前述の構成を有するコネクタ530-2に接続されるMCF210-2、210-3において、コア211は、送受信ノード110aから送受信ノード110bへ向かう第1の方向側に接続されるノードへの光信号を伝送する。コア212は、第1の方向の2つ先のノードへの光信号を伝送する。なお、図13におけるコア212-4のように、第1の方向の2つ先のノードがない場合には、コア212は、第1の方向側に接続されるノードへの光信号を伝送する。
 コア213は、第1の方向の3つ先のノードへの光信号を伝送する。なお、図13におけるコア213-3、213-4のように、第1の方向の3つ先のノードがない場合には、2つ先、1つ先のノードへの光信号を伝送する。コア214は、送受信ノード110bから送受信ノード110aへ向かう第2の方向側に接続されるノードへの光信号を伝送する。
 コア215は、第2の方向の2つ先のノードへの光信号を伝送する。なお、図13におけるコア215-1のように、第2の方向の2つ先のノードがない場合には、コア215は、第2の方向側に接続されるノードへの光信号を伝送する。コア216は、第2の方向の3つ先のノードへの光信号を伝送する。なお、図13におけるコア216-1、216-2のように、第2の方向の3つ先のノードがない場合には、1つ先、2つ先のノードへの光信号を伝送する。
 上述の構成を備えるコネクタ530を各Add/Dropノード120に備えることで、各Add/Dropノード120は自ノードに関する光信号をAdd/Dropでき、送受信ノード110a、110bと各Add/Dropノード120との間の通信経路を形成することができる。各Add/Dropノード120では、送受信ノード110a側のMCF210と送受信ノード110b側のMCF210とを同じ構成のコネクタ530が接続する。コネクタ530でMCF210を接続することにより、Add/Dropノード120ごとに構成の異なるコネクタを用意する必要がなくなり、コネクタに掛かるコストを削減することができる。また、各Add/Dropノード120において用いるコネクタが同じになるため、MCFの接続に用いるコネクタを間違えるなどの人的なミスの発生を防ぐことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
[第4の実施形態]
 第4の実施形態におけるコネクタは、第3の実施形態におけるコネクタと同様に、マルチコアファイバにおけるコア配置に依存せずに、各ノードにおいて使用できる同じ構成を有するコネクタである。図14は、第4の実施形態におけるコネクタ540の構成を示す図である。コネクタ540は、図7に示した通信システム100Dと同じリング型の物理トポロジであり2つの送受信ノードそれぞれをルートノードとするツリー型の論理トポロジを有する通信システムにおいて用いられる。第3の実施形態では、マルチコアファイバ中の1つのコアには一方向の光信号のみが伝送されていたが、本実施形態では1つのコアに伝送方向が異なる2つの光信号が伝送される。図14には、通信システム100Dの各Add/Dropノード120-1~120-3にコネクタ540を用いた場合の各コネクタ540とMCF200-1~200-4との接続が示されている。
 コネクタ540は、接続される2つのMCF200間におけるコアからコアへの光信号の中継方法に特徴がある。コネクタ540は、いずれのAdd/Dropノード120-1~120-3においても、同じコアに対して自ノードに関する光信号のAdd/Dropを行うことができる。ここでは、Add/Dropノード120-2に備えられるコネクタ540-2に着目して説明を行うが、いずれのコネクタ540も同じ構成を有している。
 コネクタ540-2の送受信ノード110a側にはMCF200-2が接続され、コネクタ540-2の送受信ノード110b側にはMCF200-3が接続されている。コネクタ540-2は、MCF200-2の各コア201~206及びMCF200-3の各コア201~206それぞれと接続する接続点を備える。各接続点では、接続するコアに対して光信号の入力と出力が実施される。コネクタ540-2は、MCF200-2の各コアに対する接続点1a~1cと、MCF200-3の各コアに対する接続点2a~2cとを備える。
 コネクタ540-2において、接続点1aは、MCF200-2のコア201-2に接続し、送受信ノード110aから自ノードへの光信号をコア201-2から分岐する。接続点1aにより分岐される光信号は、Add/Dropノード120-2に備えられる送受信装置125-2へコネクタ540-2を通じて接続される。また、接続点1aは、送受信装置125-2により生成される光信号であって自ノードから送受信ノード110aへの光信号をコア201-2へ挿入する。
 接続点1bは、MCF200-2のコア202-2に接続し、送受信ノード110aからAdd/Dropノード120-3への光信号をコア202-2から分岐する。接続点1bにより分岐される光信号は、接続点2aへ接続されることで中継される。また、接続点1bは、接続点2aにより分岐される光信号であってAdd/Dropノード120-3から送受信ノード110aへの光信号をコア202-2へ接続する。
 接続点1cは、MCF200-2のコア203-2に接続し、Add/Dropノード120-1から送受信ノード110bへの光信号をコア203-2から分岐する。接続点1cにより分岐される光信号は、接続点2bへ接続されることで中継される。また、接続点1cは、接続点2bにより分岐される光信号であって送受信ノード110bからAdd/Dropノード120-1への光信号をコア203-2へ接続する。
 接続点2aは、MCF200-3のコア201-3に接続し、光信号をコア201-3から分岐する。接続点2aにより分岐される光信号は、接続点1bへ接続されることで中継される。また、接続点2aは、接続点1bにより分岐される光信号をコア201-3へ接続する。接続点2bは、MCF200-3のコア202-3に接続し、光信号をコア202-3から分岐する。接続点2bにより分岐される光信号は、接続点1cへ接続されることで中継される。また、接続点2bは、接続点1cにより分岐される光信号をコア202-3へ接続する。
 接続点2cは、MCF200-3のコア203-3に接続し、送受信ノード110bから自ノードへの光信号を分岐する。接続点2cにより分岐される光信号は、Add/Dropノード120-2に備えられる送受信装置126-2へコネクタ540-2を通じて接続される。また、接続点2cは、送受信装置126-2により生成される光信号であって自ノードから送受信ノード110bへの光信号をコア203-3へ挿入する。
 前述の構成を有するコネクタ540-2に接続されるMCF200-2、200-3において、コア201は、送受信ノード110aから送受信ノード110bへ向かう第1の方向側に接続されるノードと、送受信ノード110bから送受信ノード110aへ向かう第2の方向の3つ先のノードとの通信における光信号を伝送する。なお、図14におけるコア201-1、201-2のように、第2の方向の3つ先のノードがない場合には、1つ先、2つ先のノードと、第1の方向側に接続されるノードとの通信における光信号を伝送する。
 コア202は、第1の方向の2つ先のノードと第2の方向の2つ先のノードとの通信における光信号を伝送する。なお、図14におけるコア202-4のように、第1の方向の2つ先のノードがない場合、コア202は、第1の方向側に接続されるノードと、第2の方向の2つ先のノードとの通信における光信号を伝送する。また、図14におけるコア202-1のように、第2の方向の2つ先のノードがない場合、コア202は、第2の方向側に接続されるノードと、第1の方向の2つ先のノードとの通信における光信号を伝送する。
 コア203は、第1の方向の3つ先のノードと第2の方向側に接続されるノードとの通信における光信号を伝送する。なお、図14におけるコア203-3、203-4のように、第1の方向の3つ先のノードがない場合には、2つ先、1つ先のノードと、第2の方向側に接続されるノードとの通信における光信号を伝送する。
 上述の構成を備えるコネクタ540を各Add/Dropノード120に備えることで、各Add/Dropノード120は自ノードに関する光信号をAdd/Dropでき、送受信ノード110a、110bと各Add/Dropノード120との間の通信経路を形成することができる。各Add/Dropノード120では、送受信ノード110a側のMCF200と送受信ノード110b側のMCF200とを同じ構成のコネクタ540が接続する。コネクタ540でMCF200を接続することにより、コネクタに掛かるコストを削減することができ、MCFの接続に用いるコネクタを間違えるなどの人的なミスの発生を防ぐことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
 第3及び第4の実施形態における通信システムのAdd/Dropノードに備えられるコネクタは、それぞれ同じ構成を有している。例えば、コネクタそれぞれは、自身が備えられている自ノードに隣接する第1のノードと自ノードとを接続する第1のMCFと、第1のノードと逆側に隣接する第2のノードと自ノードとを接続する第2のMCFとを接続する構成を有している。また、コネクタは、送受信ノードと自ノードとの通信における光信号を第1のMCFの第1のコアに対して挿入又は分岐する第1の接続点と、送受信ノードと第2のノードとの通信における光信号を第1のMCFの第2のコアに対して挿入又は分岐する第2の接続点と、第2の接続点で挿入又は分岐される光信号を第2のMCFの第1のコアに対して挿入又は分岐する第3の接続点とを備える。ここで、第2のMCFの第1のコアは、第2のノードでみたときの第1のMCFの第1のコアである。また、コネクタは、自ノードと他のノードとの通信を伝送するコアに対して光信号を挿入又は分岐する接続部と、第1のMCFと第2のMCFとの間において他のノード間の通信に対して割り当てられたコアにより伝送される信号を中継する信号中継部とを備える。例えば、図14に示したコネクタ540-1において、接続部は、コア201-1から送受信装置へ光信号を接続する接続点1aを含む構成であり、信号中継部は、コア202-1とコア201-2とを接続して光信号を両コア間において中継する接続点1b、2aを含む構成である。
[第5の実施形態]
 図15A及び図15Bは、第5の実施形態における通信システム500とコネクタ550との構成を示す図である。図15Aには、第5の実施形態における通信システム500の物理トポロジが示されている。通信システムは、4つのAdd/Dropノード120-1~120-4を備え、Add/Dropノード120間をMCF200で接続したリング型の物理トポロジを有している。通信システム500の物理トポロジは、図8に示した通信システム100Eと同じ物理トポロジである。また、通信システム500の論理トポロジも、通信システム100Eと同じ物理トポロジであり、Add/Dropノード120それぞれの間に通信経路が設けられた完全メッシュ型の論理トポロジである。Add/Dropノード120間を接続するMCF200は、3つのコア201~203を備える。コア201~203は、第4の実施形態におけるコア201~203と同様に、同一コアで伝送方向が異なる光信号を伝送する。
 図15Bには、通信システム500の各Add/Dropノード120-1~120-4にコネクタ550を用いた場合の各コネクタ550とMCF200-1~200-4との接続が示されている。コネクタ550は、第3及び第4の実施形態におけるコネクタと同様に、接続される2つのMCF200間におけるコアからコアへの光信号の中継方法に特徴がある。コネクタ550は、いずれのAdd/Dropノード120-1~120-4においても、同じコアに対して自ノードに関する光信号のAdd/Dropを行うことができる。ここでは、Add/Dropノード120-3に備えられるコネクタ550-3に着目して説明を行うが、いずれのコネクタ550も同じ構成を有している。
 Add/Dropノード120-3において、通信システム500の各ノードを接続するリング形状における時計回り方向である第1の方向側には、MCF200-3を介してAdd/Dropノード120-2が接続されている。反時計回り方向である第2の方向側には、MCF200-4を介してAdd/Dropノード120-4が接続されている。コネクタ550-3は、第1の方向側のMCF200-3と、第2の方向側のMCF200-4とに接続されている。コネクタ550-3は、MCF200-3の各コア201-3~203-3及びMCF200-4の各コア201-4~203-4それぞれと接続する接続点を備える。各接続点では、接続するコアに対して光信号の入力と出力が実施される。コネクタ550-3は、MCF200-3の各コアに対する接続点1a~1cと、MCF200-4の各コアに対する接続点2a~2cとを備える。
 コネクタ550-3において、接続点1aは、MCF200-3のコア201-3に接続する。接続点1aは、自ノードの第1の方向側に接続されたAdd/Dropノード120-2から自ノードの第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア201-3から分岐する。接続点1aにより分岐される光信号は、接続点2bへ接続されることでコア201-4へ中継される。また、接続点1aは、接続点2bにより分岐される光信号であってAdd/Dropノード120-4からAdd/Dropノード120-2への光信号をコア201-3へ接続する。
 接続点1bは、MCF200-3のコア202-3に接続する。接続点1bは、自ノードから第1の方向へ2つ先のAdd/Dropノード120-1から自ノードへの光信号をコア202-3から分岐する。接続点1bにより分岐される光信号は、Add/Dropノード120-3に備えられる送受信装置へ接続される。また、接続点1bは、送受信装置により生成される光信号であって自ノードからAdd/Dropノード120-1への光信号をコア202-3へ挿入する。
 接続点1cは、MCF200-3のコア203-3に接続する。接続点1cは、自ノードの第1の方向に接続されたAdd/Dropノード120-2から自ノードへの光信号を分岐する。接続点1cにより分岐される光信号は、自ノードの送受信装置へ接続される。また、接続点1cは、送受信装置により生成される光信号であって自ノードからAdd/Dropノード120-2への光信号をコア203-3へ挿入する。
 接続点2aは、MCF200-4のコア201-4に接続する。接続点2aは、自ノードの送受信装置により生成される光信号であって自ノードから第2の方向へ2つ先のAdd/Dropノード120-1への光信号をコア201-4へ挿入する。また、接続点2aは、Add/Dropノード120-1から自ノードへの光信号をコア201-4から分岐する。接続点2aにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点2bは、MCF200-4のコア202-4に接続する。接続点1aにより分岐される光信号は、接続点2bに接続されることでコア202-4へ中継される。また、接続点2bは、自ノードの第2の方向に接続されたAdd/Dropノード120-4から自ノードの第1の方向に接続されたAdd/Dropノード120-2への光信号をコア202-4から分岐する。接続点2bにより分岐される光信号は、接続点1aへ接続されることでコア201-3へ中継される。
 接続点2cは、MCF200-4のコア203-4に接続する。接続点2cは、自ノードの送受信装置により生成される光信号であって自ノードの第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア203-4へ挿入する。また、接続点2cは、Add/Dropノード120-4から自ノードへの光信号をコア203-4から分岐する。接続点2cにより分岐された光信号は、自ノードの送受信装置へ接続される。
 前述の構成を有するコネクタ550-3に接続されるMCF200-3、200-4において、コア201は、第1の方向に接続されるノードと第2の方向の2つ先のノードとの通信における光信号を伝送する。コア202は、第1の方向の2つ先のノードと第2の方向に接続されるノードとの通信における光信号を伝送する。コア203は、第1の方向に接続されるノードと第2の方向に接続されるノードとの通信における光信号を伝送する。なお、すべてのノードにおいて用いられるコネクタ550は、同じ構造を有し、それぞれのノードで光信号の挿入、分岐及び中継を行う。図15Bにおいて、各コネクタ550内の矢印がない線で示された経路は、本実施形態では通信に使用されていない経路を示している。例えば、コネクタ550-3では、接続点2aに接続する経路は通信において使用されていない経路になる。これは、コネクタ550が同一構造を有するため、通信経路として必要な経路数以上の通信経路を形成されるからである。なお、使用していない経路を通信経路として用いてもよい。
 上述の構成を備えるコネクタ550を各Add/Dropノード120に備えることで、各Add/Dropノード120は自ノードと他のAdd/Dropノード120との通信における光信号をAdd/Dropでき、各Add/Dropノード120間の通信経路を形成することができる。各Add/Dropノード120では、第1の方向側に接続するMCF200と第2の方向側に接続するMCF200とを同じ構成のコネクタ550が接続する。コネクタ550でMCF200を接続することにより、コネクタに掛かるコストを削減することができ、MCFの接続に用いるコネクタを間違えるなどの人的なミスの発生を防ぐことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
[第6の実施形態]
 第5の実施形態では、1つのコアで伝送方向が異なる信号を伝送する双方向の通信を行う通信システムに用いられるコネクタを説明した。第6の実施形態では、1つのコアで1方向の光信号を伝送する通信システムで用いられるコネクタを説明する。図16は、第6の実施形態における各Add/Dropノード120のコネクタ560とMCF220との接続を示す図である。なお、第6の実施形態における通信システムは、第5の実施形態における通信システムと同様に、4つのAdd/Dropノード120-1~120-4を備える。第6の実施形態における通信システムは、リング型の物理トポロジを有し、完全メッシュ型の論理トポロジを有する。Add/Dropノード120間を接続するMCF220は、4つのコア221~224を備える。Add/Dropノード120-1~120-4それぞれには、コネクタ560が備えられる。ここでは、Add/Dropノード120-3に備えられるコネクタ560-3に着目して説明を行うが、いずれのコネクタ560も同じ構成を有している。
 Add/Dropノード120-3において、通信システムの各ノードを接続するリング形状における時計回り方向である第1の方向側には、MCF220-3を介してAdd/Dropノード120-2が接続されている。反時計回り方向である第2の方向側には、MCF220-4を介してAdd/Dropノード120-4が接続されている。コネクタ560-3は、第1の方向側のMCF220-3と、第2の方向側のMCF220-4とに接続されている。コネクタ560-3は、MCF220-3の各コア221-3~224-3及びMCF220-4の各コア221-4~224-4それぞれと接続する接続点を備える。各接続点では、接続するコアに対して光信号の入力と出力が実施される。コネクタ560-3は、MCF220-3の各コアに対する接続点1a~1dと、MCF220-4の各コアに対する接続点2a~2dとを備える。
 コネクタ560-3において、接続点1aは、MCF220-3のコア221-3と接続する。接続点1aは、自ノードの第1の方向側に接続されたAdd/Dropノード120-2から第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア221-3から分岐する。接続点1aにより分岐される光信号は、接続点2bへ接続されることで中継される。接続点1bは、MCF220-3のコア222-3と接続する。接続点1bは、自ノードから第1の方向へ2つ先のAdd/Dropノード120-1から自ノードへの光信号を分岐する。接続点1bにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点1cは、MCF220-3のコア223-3と接続する。接続点1cは、自ノードの送受信装置により生成される光信号であって自ノードから第1の方向側に接続するAdd/Dropノード120-2への光信号をコア223-3へ挿入する。接続点1dは、MCF220-3のコア224-3と接続する。接続点1dは、自ノードの第1の方向側に接続するAdd/Dropノード120-2から自ノードへの光信号を分岐する。接続点1dにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点2aは、MCF220-4のコア221-4と接続する。接続点2aは、自ノードの送受信装置により生成される光信号であって自ノードから第2の方向へ2つ先のAdd/Dropノード120-1への光信号をコア221-4へ挿入する。接続点2bは、MCF220-4のコア222-4と接続する。接続点2bは、接続点1aにより分岐される光信号をコア222-4へ接続する。
 接続点2cは、MCF220-4のコア223-4と接続する。接続点2cは、第2の方向側に接続されたAdd/Dropノード120-4から自ノードへの光信号を分岐する。接続点2cにより分岐される光信号は、自ノードの送受信装置へ接続される。接続点2dは、MCF220-4のコア224-4と接続する。接続点2dは、自ノードの送受信装置により生成される光信号であって第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア224-4へ挿入する。
 前述の構成を有するコネクタ560-3に接続されるMCF220-3、220-4において、コア221は、第1の方向側に接続されたノードから第2の方向の2つ先のノードへの光信号を伝送する。コア222は、第1の方向の2つ先のノードから第2の方向側に接続されたノードへの光信号を伝送する。コア223は、第2の方向側に接続されたノードから第1の方向側に接続されたノードへの光信号を伝送する。コア224は、第1の方向側に接続されたノードから第2の方向側に接続されたノードへの光信号を伝送する。
 前述の構成を備えるコネクタ560を各Add/Dropノード120に備えることで、各Add/Dropノード120は自ノードと他のAdd/Dropノード120との通信における光信号をAdd/Dropでき、各Add/Dropノード120間の通信経路を形成することができる。各Add/Dropノード120では、第1の方向側に接続するMCF220と第2の方向側に接続するMCF220とを同じ構成のコネクタ560が接続する。コネクタ560でMCF220を接続することにより、コネクタに掛かるコストを削減することができ、MCFの接続に用いるコネクタを間違えるなどの人的なミスの発生を防ぐことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
[第7の実施形態]
 第5の実施形態ではAdd/Dropノード間の送受信の通信経路が1つ設けられた通信システムで用いられるコネクタを説明した。また、第6の実施形態ではAdd/Dropノード間の送信の通信経路と受信の通信経路とがそれぞれ1つ設けられた通信システムで用いられるコネクタを説明した。これに対して、第7の実施形態では、第5及び第6の通信システムと同じ物理トポロジを有し、ノード間の通信経路が二重化された完全メッシュ型の論理トポロジを有する通信システムにおいて用いられるコネクタの構成を説明する。図17は、第7の実施形態における各Add/Dropノード120のコネクタ570とMCF210との接続を示す図である。Add/Dropノード120間を接続するMCF210は6つのコア211~216を有する。ここでは、Add/Dropノード120-3に備えられるコネクタ570-3に着目して説明を行うが、いずれのコネクタ570も同じ構成を有している。
 Add/Dropノード120-3において、通信システムの各ノードを接続するリング形状における時計回り方向である第1の方向側には、MCF210-3を介してAdd/Dropノード120-2が接続されている。反時計回り方向である第2の方向側には、MCF210-4を介してAdd/Dropノード120-4が接続されている。コネクタ570-3は、第1の方向側のMCF210-3と、第2の方向側のMCF210-3とに接続されている。コネクタ570-3は、MCF210-3の各コア211~216及びMCF210-4の各コア211~216それぞれと接続する接続点を備える。各接続点では、接続するコアに対して光信号の入力と出力が実施される。コネクタ560-3は、MCF210-3の各コアに対する接続点1a~1fと、MCF210-4の各コアに対する接続点2a~2fとを備える。
 コネクタ570-3において、接続点1aは、MCF210-3のコア211-3と接続する。接続点1aは、自ノードの第1の方向側に接続されるAdd/Dropノード120-2から自ノードへの光信号をコア211-3から分岐する。接続点1aにより分岐される光信号は、自ノードに備えられる送受信装置へ接続される。また、接続点1aは、自ノードに備えられる送受信装置により生成される光信号であって自ノードからAdd/Dropノード120-2への光信号をコア211-3へ挿入する。
 接続点1bは、MCF210-3のコア212-3と接続する。接続点1bは、自ノードから第1の方向へ2つ先のAdd/Dropノード120-1から自ノードへの光信号をコア212-3から分岐する。接続点1bにより分岐される光信号は、自ノードに備えられる送受信装置へ接続される。また、接続点1bは、自ノードの送受信装置により生成される光信号であって自ノードからAdd/Dropノード120-1への光信号をコア212-3へ挿入する。
 接続点1cは、MCF210-3のコア213-3と接続する。接続点1cは、自ノードの第1の方向側に接続されたAdd/Dropノード120-2から自ノードの第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア213-3から分岐する。接続点1cにより分岐される光信号は、接続点2bへ接続されることでコア212-4へ中継される。また、接続点1cは、接続点2bにより分岐される光信号であってAdd/Dropノード120-4からAdd/Dropノード120-2への光信号をコア213-3へ接続する。
 接続点1dは、MCF210-3のコア214-3と接続する。接続点1dは、自ノードから第1の方向へ3つ先のAdd/Dropノード120-4から自ノードへの光信号をコア214-3から分岐する。接続点1dにより分岐される光信号は、自ノードの送受信装置へ接続される。また、接続点1dは、自ノードの送受信装置により生成される光信号であって自ノードからAdd/Dropノード120-4への光信号をコア214-3へ挿入する。
 接続点1eは、MCF210-3のコア215-3と接続する。接続点1eは、自ノードから第1の方向へ2つ先のAdd/Dropノード120-1から第2の方向側に接続するAdd/Dropノード120-4への光信号をコア215-3から分岐する。接続点1eにより分岐される光信号は、接続点2dへ接続されることでコア214-4へ中継される。また、接続点1eは、接続点2dにより分岐される光信号であってAdd/Dropノード120-4からAdd/Dropノード120-1への光信号をコア215-3へ接続する。
 接続点1fは、MCF210-3のコア216-3と接続する。接続点1fは、自ノードの第1の方向側に接続されたAdd/Dropノード120-2から、自ノードから第2の方向へ2つ先のAdd/Dropノード120-1への光信号を分岐する。接続点1fにより分岐される光信号は、接続点2eへ接続されることでコア215-4へ中継される。また、接続点1fは、接続点2eにより分岐される光信号であって自ノードから第2の方向へ2つ先のAdd/Dropノード120-1から第1の方向側に接続されたAdd/Dropノード120-2への光信号をコア216-3へ接続する。
 接続点2aは、MCF210-4のコア211-4と接続する。接続点2aは、自ノードの送受信装置により生成される光信号であって自ノードの第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア211-4へ挿入する。また、接続点2aは、Add/Dropノード120-4から自ノードへの光信号をコア211-4から分岐する。接続点2aにより分岐された光信号は、自ノードの送受信装置へ接続される。
 接続点2bは、MCF210-4のコア212-4と接続する。接続点2bは、自ノードの第2の方向側に接続されたAdd/Dropノード120-4から自ノードの第1の方向側に接続されたAdd/Dropノード120-2への光信号を分岐する。接続点2bにより分岐される光信号は、接続点1cへ接続されることでコア213-3へ中継される。また、接続点2bは、接続点1cにより分岐される光信号をコア212-4へ接続する。
 接続点2cは、MCF210-4のコア213-4と接続する。接続点2cは、自ノードの送受信装置により生成される光信号であって自ノードから第2の方向へ2つ先のAdd/Dropノード120-1への光信号をコア213-4へ挿入する。また、接続点2cは、Add/Dropノード120-1から自ノードへの光信号をコア213-4から分岐する。接続点2cにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点2dは、MCF210-4のコア214-4と接続する。接続点2dは、自ノードの第2の方向側に接続されたAdd/Dropノード120-4から、自ノードから第1の方向へ2つ先のAdd/Dropノード120-1への光信号を分岐する。接続点2dにより分岐される光信号は、接続点1eへ接続されることでコア215-3へ中継される。また、接続点2dは、接続点1eにより分岐される光信号をコア214-4へ接続する。
 接続点2eは、MCF210-4のコア215-4と接続する。接続点2eは、自ノードから第2の方向へ2つ先のAdd/Dropノード120-1から自ノードの第1の方向側に接続されたAdd/Dropノード120-2への光信号を分岐する。接続点2eにより分岐される光信号は、接続点1fへ接続されることでコア216-3へ中継される。また、接続点2eは、接続点1fにより分岐される光信号をコア215-4へ接続する。
 接続点2fは、MCF210-4のコア216-4と接続する。接続点2fは、自ノードから第2の方向へ3つ先のAdd/Dropノード120-2から自ノードへの光信号をコア216-4から分岐する。接続点2fにより分岐される光信号は、自ノードの送受信装置へ接続される。また、接続点2fは、自ノードの送受信装置により生成される光信号であってAdd/Dropノード120-2への光信号をコア216-4へ挿入する。
 前述の構成を有するコネクタ570-3に接続されるMCF210-3、210-4において、コア211は、第1の方向側に接続されたノードと第2の方向側に接続されたノードとの通信における光信号を伝送する。コア212は、第1の方向へ2つ先のノードと第2の方向側に接続されたノードとの通信における光信号を伝送する。コア213は、第1の方向側に接続されたノードと第2の方向へ2つ先のノードとの通信における光信号を伝送する。コア214は、第1の方向へ3つ先のノードと第2の方向側に接続されたノードとの通信における光信号を伝送する。コア215は、第1の方向へ2つ先のノードと第2の方向へ2つ先のノードとの通信における光信号を伝送する。コア216は、第1の方向側に接続されたノードと第2の方向へ3つ先のノードとの通信における光信号を伝送する。
 前述の構成を備えるコネクタ570を各Add/Dropノード120に備えることで、各Add/Dropノード120は自ノードと他のAdd/Dropノード120との通信における光信号をAdd/Dropでき、各Add/Dropノード120間の通信経路を形成することができる。各Add/Dropノード120では、第1の方向側に接続するMCF210と第2の方向側に接続するMCF210とを同じ構成のコネクタ570が接続する。コネクタ570でMCF210を接続することにより、コネクタに掛かるコストを削減することができ、MCFの接続に用いるコネクタを間違えるなどの人的なミスの発生を防ぐことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
[第8の実施形態]
 第7の実施形態では、1つのコアで伝送方向が異なる信号を伝送する双方向の通信を行う通信システムに用いられるコネクタを説明した。第8の実施形態では、第7の実施形態の通信システムと同じ物理トポロジ及び論理トポロジを有する通信システムであって1つのコアで1方向の光信号のみを伝送する通信システムで用いられるコネクタを説明する。図18は、第8の実施形態における各Add/Dropノード120のコネクタ580とMCF230との接続を示す図である。Add/Dropノード120間を接続するMCF230は、12個のコア231~242を備える。Add/Dropノード120-1~120-4それぞれには、コネクタ580が備えられる。ここでは、Add/Dropノード120-3に備えられるコネクタ580-3に着目して説明を行うが、いずれのコネクタ580も同じ構成を有している。
 Add/Dropノード120-3において、通信システムの各ノードを接続するリング形状における時計回り方向である第1の方向側には、MCF230-3を介してAdd/Dropノード120-2が接続されている。反時計回り方向である第2の方向側には、MCF230-4を介してAdd/Dropノード120-4が接続されている。コネクタ580-3は、第1の方向側のMCF230-3と、第2の方向側のMCF230-4とに接続されている。コネクタ580-3は、MCF230-3の各コア231~242及びMCF230-4の各コア231~242それぞれと接続する接続点を備える。各接続点では、接続するコアに対して光信号の入力と出力を行う。コネクタ580-3は、MCF230-3の各コアに対する接続点1a~1mと、MCF230-4の各コアに対する接続点2a~2mとを備える。
 コネクタ580-3において、接続点1aは、MCF230-3のコア231と接続する。接続点1aは、自ノードの第1の方向側に接続されたAdd/Dropノード120-2から自ノードへの光信号をコア231から分岐する。接続点1aにより分岐される光信号は、自ノードの送受信装置へ接続される。接続点1bは、MCF230-3のコア232と接続する。接続点1bは、自ノードから第1の方向へ2つ先のAdd/Dropノード120-1から自ノードへの光信号をコア232から分岐する。接続点1bにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点1cは、MCF230-3のコア233と接続する。接続点1cは、Add/Dropノード120-2から自ノードの第2の方向側に接続されたAdd/Dropノード120-4への光信号をコア233から分岐する。接続点1cにより分岐される光信号は、接続点2bへ接続されることでMCF230-4のコア232へ中継される。接続点1dは、MCF230-3のコア234と接続する。接続点1dは、自ノードから第1の方向へ3つ先のAdd/Dropノード120-4から自ノードへの光信号をコア234から分岐する。接続点1dにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点1eは、MCF230-3のコア235と接続する。接続点1eは、Add/Dropノード120-1からAdd/Dropノード120-4への光信号をコア235から分岐する。接続点1eにより分岐される光信号は、接続点2dへ接続されることでMCF230-4のコア234中継される。接続点1fは、MCF230-3のコア236と接続する。接続点1fは、Add/Dropノード120-2から、自ノードから第2の方向へ2つ先のAdd/Dropノード120-1への光信号をコア236から分岐する。接続点1fにより分岐される光信号は、接続点2eへ接続されることでMCF230-4のコア234中継される。
 接続点1gは、MCF230-3のコア237と接続する。接続点1gは、接続点2hにより分岐される光信号であってAdd/Dropノード120-1からAdd/Dropノード120-2への光信号をコア237へ接続する。接続点1hは、MCF230-3のコア238と接続する。接続点1hは、接続点2iにより分岐される光信号であってAdd/Dropノード120-4からAdd/Dropノード120-1への光信号をコア238へ接続する。
 接続点1iは、MCF230-3のコア239と接続する。接続点1iは、自ノードの送受信装置により生成される光信号であって自ノードから第1の方向へ3つ先のAdd/Dropノード120-3への光信号をコア239へ挿入する。接続点1jは、MCF230-3のコア240と接続する。接続点1jは、接続点2kにより分岐される光信号であってAdd/Dropノード120-4からAdd/Dropノード120-2への光信号をコア240へ接続する。
 接続点1kは、MCF230-3のコア241と接続する。接続点1kは、自ノードの送受信装置により生成される光信号であってAdd/Dropノード120-1への光信号をコア241へ挿入する。接続点1mは、MCF230-3のコア242と接続する。接続点1mは、自ノードの送受信装置により生成される光信号であってAdd/Dropノード120-2への光信号をコア242へ挿入する。
 接続点2aは、MCF230-4のコア231と接続する。接続点2aは、自ノードの送受信装置により生成される光信号であってAdd/Dropノード120-4への光信号をコア231へ挿入する。接続点2bは、MCF230-4のコア232と接続する。接続点2bは、接続点1cにより分岐される光信号をコア232へ接続する。
 接続点2cは、MCF230-4のコア233と接続する。接続点2cは、自ノードの送受信装置により生成される光信号であってAdd/Dropノード120-1への光信号をコア233へ挿入する。接続点2dは、MCF230-4のコア234と接続する。接続点2dは、接続点1eにより分岐される光信号をコア234へ接続する。
 接続点2eは、MCF230-4のコア235と接続する。接続点2eは、接続点1fにより分岐される光信号をコア235へ接続する。接続点2fは、MCF230-4のコア236と接続する。接続点2fは、自ノードの送受信装置により生成される光信号であって自ノードから第2の方向へ3つ先のAdd/Dropノード120-2への光信号をコア236へ挿入する。
 接続点2gは、MCF230-4のコア237と接続する。接続点2gは、Add/Dropノード120-2から自ノードへの光信号をコア237から分岐する。接続点2gにより分岐される光信号は、自ノードの送受信装置へ接続される。接続点2hは、MCF230-4のコア238と接続する。接続点2hは、Add/Dropノード120-1からAdd/Dropノード120-2への光信号を分岐する。接続点2hにより分岐される光信号は、接続点1gへ接続されることでMCF230-3のコア237へ中継される。
 接続点2iは、MCF230-4のコア239と接続する。接続点2iは、Add/Dropノード120-4から、Add/Dropノード120-1への光信号をコア239から分岐する。接続点2iにより分岐される光信号は、接続点1hへ接続されることでMCF230-3のコア238へ中継される。接続点2jは、MCF230-4のコア240と接続する。接続点2jは、Add/Dropノード120-1から自ノードへの光信号をコア240から分岐する。接続点2jにより分岐される光信号は、自ノードの送受信装置へ接続される。
 接続点2kは、MCF230-4のコア241と接続する。接続点2kは、Add/Dropノード120-4から自ノードの第1の方向側に接続されたAdd/Dropノード120-2への光信号をコア241から分岐する。接続点2kにより分岐される光信号は、接続点1jへ接続されることでMCF230-3のコア240へ中継される。接続点2mは、MCF230-4のコア242と接続する。接続点2mは、Add/Dropノード120-4から自ノードへの光信号をコア242から分岐する。接続点2mにより分岐される光信号は、自ノードの送受信装置へ接続される。
 前述の構成を有するコネクタ580-3に接続されるMCF230-3、230-4において、コア231は、第1の方向側に接続されたノードから第2の方向側に接続されたノードへの光信号を伝送する。コア232は、第1の方向に2つ先のノードから第2の方向側に接続されたノードへの光信号を伝送する。コア233は、第1の方向側に接続されたノードから第2の方向に2つ先のノードへの光信号を伝送する。コア234は、第1の方向に3つ先のノードから第2の方向側に接続されたノードへの光信号を伝送する。コア235は、第1の方向に2つ先のノードから2の方向に2つ先のノードへの光信号を伝送する。
 コア236は、第1の方向側に接続されたノードから第2の方向に3つ先のノードへの光信号を伝送する。コア237は、第2の方向に3つ先のノードから第1の方向側に接続されたノードへの光信号を伝送する。コア238は、第2の方向に2つ先のノードから第1の方向に2つ先のノードへの光信号を伝送する。コア239は、第2の方向側に接続されたノードから第1の方向に3つ先のノードへの光信号を伝送する。コア240は、第2の方向に2つ先のノードから第1の方向側に接続されたノードへの光信号を伝送する。コア241は、第2の方向側に接続されたノードから第1の方向に2つ先のノードへの光信号を伝送する。コア242は、第2の方向側に接続されたノードから第1の方向側に接続されたノードへの光信号を伝送する。
 前述の構成を備えるコネクタ580を各Add/Dropノード120に備えることで、各Add/Dropノード120は自ノードと他のAdd/Dropノード120との通信における光信号をAdd/Dropでき、各Add/Dropノード120間の通信経路を形成することができる。各Add/Dropノード120では、第1の方向側に接続するMCF230と第2の方向側に接続するMCF230とを同じ構成のコネクタ580が接続する。コネクタ580でMCF230を接続することにより、コネクタに掛かるコストを削減することができ、MCFの接続に用いるコネクタを間違えるなどの人的なミスの発生を防ぐことができる。また、コア単位で光信号のAdd/Dropを行うことにより、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノードにおける装置の設置や保守の手間を削減できる。
 第5から第8の実施形態における通信システムのAdd/Dropノードに備えられるコネクタは、それぞれ同じ構成を有している。例えば、コネクタそれぞれは、自身が備えられている自ノードに隣接する第1のAdd/Dropノードと自ノードとを接続する第1のMCFと、第1のノードと逆側に隣接する第2のAdd/Dropノードと自ノードとを接続する第2のMCFとを接続する構成を有している。また、コネクタは、第1のAdd/Dropノードと自ノードとの通信における光信号を第1のMCFの第1のコアに対して挿入又は分岐する第1の接続点と、第2のAdd/Dropノードと自ノードとの通信における光信号を第2のMCFの第1のコアに対して挿入又は分岐する第2の接続点とを備える。ここで、第2のMCFの第1のコアは、第2のAdd/Dropノードにおける第1のMCFの第1のコアである。すなわち、自ノードにおいて挿入又は分岐される光信号を伝送するコアに対する接続点と、中継する光信号を伝送するコアに対する接続点との相対的な位置関係が各Add/Dropノードにおいて同じとなる構成をコネクタは有している。また、コネクタは、自ノードと他のノードとの通信を伝送するコアに対して光信号を挿入又は分岐する接続部と、第1のMCFと第2のMCFとの間において他のノード間の通信に対して割り当てられたコアにより伝送される信号を中継する信号中継部とを備える。例えば、図15に示したコネクタ550-3において、接続部は、コア202-3から送受信装置へ光信号を接続する接続点1bを含む構成であり、信号中継部は、コア201-3とコア202-4とを接続して光信号を両コア間において中継する接続点1a、2bを含む構成である。
 ここで、通信システムにおいて用いられるMCFに必要となるコア数について説明する。図15において示した通信システムのように、リング型の物理トポロジと完全メッシュ型の論理トポロジを有し、各コアでは一方向の光信号を伝送する場合、ノード数をNとすると必要となるコア数Cは、式(1)で得られる。なお、N≦2の条件下では、リング型の物理トポロジを構築できないため、N≧3とする。
Figure JPOXMLDOC01-appb-M000001
 また、図16において示した通信システムのように、リング型の物理トポロジと完全メッシュ型の論理トポロジを有し、各コアでは双方向の光信号を伝送する場合、ノード数をNとすると必要となるコア数Cは、式(2)で得られる。
Figure JPOXMLDOC01-appb-M000002
 また、図17において示した通信システムのように、リング型の物理トポロジと完全メッシュ型の論理トポロジを有し、各コアでは双方向の光信号を伝送し、通信経路を二重化した場合、ノード数をNとすると必要となるコア数Cは、式(3)で得られる。
Figure JPOXMLDOC01-appb-M000003
 また、図18において示した通信システムのように、リング型の物理トポロジと完全メッシュ型の論理トポロジを有し、各コアでは一方向の光信号を伝送し、通信経路を二重化した場合、ノード数をNとすると必要となるコア数Cは、式(4)で得られる。
Figure JPOXMLDOC01-appb-M000004
 なお、各実施形態における通信システムでは、ノード間を接続するMCFが有するコアをすべて利用する構成について説明した。しかし、ノード間の接続に必要なコア数より多いコア数を有するMCFを用いてもよい。この場合には、ノード間の接続に利用されないコアを共用のコアとして確保し、トラヒック需要が著しく増加したときや利用しているコアに故障が生じたときに共用のコアを利用してもよい。図19A及び図19Bは、本発明に関するマルチコアファイバにおいて共用のコアを設ける構成の一例を示す図である。図19Aには、マルチコアファイバの断面図が示されている。マルチコアファイバの外周側に配置されたコアを各実施形態の通信システムにおけるノード間の通信に用いるコアとしての専用コア群とし、内側に配置されたコアを共用コア群としてもよい。このように共用コアを設ける場合には、各実施形態において説明した第1のコネクタ部と、共用コアに対して光信号のAdd/Dropを行うための第2のコネクタ部とをコネクタが備えればよい。なお、共用コア群のコアに関しては、1つずつ異なる目的に利用してもよいし、1つの目的に対して複数のコアを用いてもよい。また、共用のコアは、ノード間の通信以外の目的で用いてもよい。
 図19Bには、共用コアに対する光信号のAdd/Dropの概念が示されている。共用コアに関しては、コア単位でAdd/Dropするのではなく、共用コアの光信号に対する一部分岐と挿入とを行うことで、共用コア群を利用するノードにおいてコネクタの構成が同じになるようにしてもよい。図19Bに示すように、一部又はすべてのノードにおいて共用コアの光信号の一部の光信号をAdd/Dropし、他の光信号を透過させる。この場合、Add/Dropする光信号と透過する光信号との比率は、ノード数に依存する。この構成の場合には、共用コアの利用に際してコネクタを変更する必要がなく、必要に応じて適宜利用することができる。
 また、各実施形態の通信システムにおけるコネクタは、ツリーや完全メッシュの論理トポロジを実現する際に用いることができるが、一部のコアへの光信号の伝送を行わない形態で使用してもよい。例えば、上述の実施形態では、2つの送受信ノードを備える通信システムで用いるコネクタについて説明したが、1つの送受信ノードを備える通信システムでも同様に用いることができる。その場合には、一部の通信経路を形成するコアを使用しないことになる。
 また、各実施形態の通信システムでは、ノード間の接続にMCFを用いる構成例を説明した。しかし、図9及び図10に示したように、ノード間の接続の一部又は複数に複数のSCFが用いられてもよい。
 また、各実施形態の通信システムにおいて説明した、コネクタの接続点とAdd/Dropの対象となるコアの対応関係や、接続点の並びや位置は、一例であり、図面などに示した対応関係や、接続点の並びと位置などは、実施形態において説明したものに限定されるものではない。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 マルチコアファイバに接続されたノードにおいて光信号の挿入と分岐とを容易にすることが不可欠な用途にも適用できる。
 120 Add/Dropノード
 125,126 送受信装置
 200,210,220,230 MCF(Multi Core Fiber)
 201,202,203 コア
 211,212,213,214,215,216 コア
 221,222,223,224 コア
 231,232,233,234,235,236,237,238,239,240,241,242 コア
 400,410 変換コネクタ
 451、452、453 SCF(Single Core Fiber)
 500 通信システム
 510,520,530,540,550,560,570,580 コネクタ

Claims (19)

  1.  3つ以上のノードを備え、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを備えるマルチコアファイバが用いられている通信システムであって、
     マルチコアファイバに接続された前記ノードは、
     他の前記ノードと自ノードとの間の通信経路として排他的に割り当てられた前記コアに対する信号の挿入及び分岐と、自ノードに接続されたマルチコアファイバの間において他のノード間の通信に割り当てられた前記コアにより伝送される信号の中継とのいずれか一方又は両方を行うコネクタを備え、
     前記コネクタにおいて信号が挿入又は分岐される前記コアの接続位置と、前記コネクタにおいて信号が中継される前記コアの接続位置と相対的な位置関係は、マルチコアファイバに接続された前記ノードのいずれにおいても同じである、
     通信システム。
  2.  すべての前記ノードは、それぞれ2つの他の前記ノードと接続されている、
     請求項1に記載の通信システム。
  3.  少なくとも1つの前記ノードは、割り当てられた前記コアを用いた通信経路をすべての他の前記ノードごとに有する、
     請求項1に記載の通信システム。
  4.  複数の前記ノードは、割り当てられた前記コアを用いた通信経路を、複数の他の前記ノードとの間に有する、
     請求項1に記載の通信システム。
  5.  すべての前記ノードは、割り当てられた前記コアを用いた通信経路を、他の前記ノードすべてとの間に有する、
     請求項4に記載の通信システム。
  6.  前記ノードは、割り当てられた前記コアを用いた通信経路を、通信対象の他の前記ノードごとに1つ有する、
     請求項1に記載の通信システム。
  7.  前記ノードは、割り当てられた前記コアを用いた通信経路を、通信対象の他の前記ノードごとに有し、
     通信対象の他の前記ノードごとの通信経路は、異なる前記コアを介した通信経路である、
     請求項1に記載の通信システム。
  8.  前記ノードは、通信対象の他の前記ノードとの通信における送信と受信とに異なる通信経路を用い、
     送信用の前記通信経路に割り当てられる前記コアと、受信用の前記通信経路に割り当てられる前記コアとは異なる、
     請求項1に記載の通信システム。
  9.  前記ノードは、通信対象の他の前記ノードとの通信における送信と受信とに、同じ前記コアに割り当てられた通信経路を用いる、
     請求項1に記載の通信システム。
  10.  前記複数のコアは、マルチコアファイバの中心軸を中心にした円周上に配置され、
     前記コネクタは、基準となる位置から前記中心軸に対して前記ノードそれぞれで異なる角度だけ回転した位置でマルチコアファイバに取り付けられている、
     請求項1に記載の通信システム。
  11.  前記コネクタは、
     自身が備えられた自ノードに隣接する他の前記ノードとの通信を伝送する前記コアに対して信号を挿入又は分岐する接続部と、
     自ノードに接続されているマルチコアファイバ間において、他の前記ノード間の通信に割り当てられた前記コアにより伝送される信号を中継する信号中継部と、
     を備え、
     前記コネクタに備えられる前記信号中継部の数は、自ノードから自ノードの通信対象の他の前記ノードまでの通信経路において経由する他の前記ノードの数以上である、
     請求項1に記載の通信システム。
  12.  前記コネクタは、
     前記複数のコアのうち前記ノード間の通信において用いられる通信コアに対して信号の挿入及び分岐と、信号の挿入及び分岐の対象外の前記通信コアの信号を自身が備えられた自ノードに接続されているマルチコアファイバ間での中継とを行う第1のコネクタ部と、
     前記複数のコアのうち前記ノード間の通信以外の目的で用いられる共用コアに対して、信号の挿入、分岐又は中継を行う第2のコネクタ部と、
     を備える、
     請求項1に記載の通信システム。
  13.  マルチコアファイバに接続された前記ノードは、それぞれ前記第2のコネクタ部により挿入又は分岐される信号を利用する、
     請求項12に記載の通信システム。
  14.  マルチコアファイバに接続された前記ノードに備えられる前記第2のコネクタ部は、同一の共用コアに対して信号の挿入又は分岐を行う、
     請求項12に記載の通信システム。
  15.  前記コネクタは、
     前記複数のコアそれぞれに対応して設けられた細径シングルモードファイバを備え、
     前記細径シングルモードファイバは、信号の挿入又は分岐と、自身が備えられた自ノードに接続されたマルチコアファイバ間における信号の中継とを行う、
     請求項1に記載の通信システム。
  16.  前記コネクタは、
     前記複数のコアそれぞれに対応して設けられた導波路コアを含む光導波路を備え、
     前記導波路コアは、信号の挿入又は分岐と、自身が備えられた自ノードに接続されたマルチコアファイバ間における信号の中継とを行う、
     請求項1に記載の通信システム。
  17.  前記コネクタは、
     自身が備えられた自ノードに接続されたマルチコアファイバの前記複数のコアから出力される信号それぞれを空間的に分離する第1の光学素子と、
     前記第1の光学素子により空間的に分離された信号の伝搬方向をコネクタ外部へ変化させることで信号の分岐を行う第2の光学素子と、
     コネクタ外部から入力された信号の伝搬方向を空間的に分離された信号の伝搬方向へ変化させることで信号の挿入を行う第3の光学素子と、
     前記第1の光学素子により空間的に分離された信号と前記第3の光学素子により伝搬方向が変化された信号とを、自身が備えられた自ノードに接続された他のマルチコアファイバの前記複数のコアにそれぞれ入力する第4の光学素子と、
     を備える、
     請求項1に記載の通信システム。
  18.  3つ以上のノードを備え、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを備えるマルチコアファイバが用いられている通信システムにおいて、マルチコアファイバに接続された前記ノードで用いられるコネクタであって、
     自身が備えられる自ノードと他の前記ノードとの間の通信経路として排他的に割り当てられた前記コアに対する信号の挿入及び分岐を行い、
     コネクタにおいて信号が挿入される前記コアの接続位置と、コネクタにおいて信号が分岐される前記コアの接続位置との相対的な位置関係は、マルチコアファイバに接続された前記ノードで用いられるコネクタのいずれにおいても同じである、
     コネクタ。
  19.  前記自ノードに接続されたマルチコアファイバの間において他の前記ノード間の通信に割り当てられた前記コアにより伝送される信号を中継し、
     コネクタにおいて信号が挿入される前記コアの接続位置と、コネクタにおいて信号が分岐される前記コアの接続位置と、コネクタにおいて信号が中継される前記コアの接続位置との相対的な位置関係は、マルチコアファイバに接続された前記ノードで用いられるコネクタのいずれにおいても同じである、
     請求項18に記載のコネクタ。
PCT/JP2016/084630 2015-11-26 2016-11-22 通信システム及びコネクタ WO2017090622A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680068720.9A CN108292956B (zh) 2015-11-26 2016-11-22 通信系统及连接器
EP16868565.9A EP3364568B1 (en) 2015-11-26 2016-11-22 Communication system and connector
US15/776,566 US10527781B2 (en) 2015-11-26 2016-11-22 Communication system and connector
JP2017552669A JP6368438B2 (ja) 2015-11-26 2016-11-22 通信システム及びコネクタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230873 2015-11-26
JP2015-230873 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090622A1 true WO2017090622A1 (ja) 2017-06-01

Family

ID=58764104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084630 WO2017090622A1 (ja) 2015-11-26 2016-11-22 通信システム及びコネクタ

Country Status (5)

Country Link
US (1) US10527781B2 (ja)
EP (1) EP3364568B1 (ja)
JP (1) JP6368438B2 (ja)
CN (1) CN108292956B (ja)
WO (1) WO2017090622A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176978A1 (ja) * 2021-02-19 2022-08-25 株式会社フジクラ 光入出力装置
WO2023238450A1 (ja) * 2022-06-08 2023-12-14 株式会社フジクラ マルチコアファイバ接続体、マルチコアファイバ接続体を用いた光通信ネットワーク及び光通信ネットワークの接続方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090622A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及びコネクタ
JP7578393B2 (ja) * 2019-08-02 2024-11-06 住友電気工業株式会社 光コネクタ
US20240007215A1 (en) * 2022-06-30 2024-01-04 Nokia Solutions And Networks Oy Add/drop capability for spatial division multiplexed optical systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321309A1 (en) * 2011-06-20 2012-12-20 Barry Richard A Optical architecture and channel plan employing multi-fiber configurations for data center network switching
JP2013106272A (ja) * 2011-11-15 2013-05-30 Fujitsu Ltd 光伝送システム、励起光供給制御方法及び励起光供給装置
WO2013128929A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 光伝送システムおよび光伝送方法
US20140140694A1 (en) * 2012-11-16 2014-05-22 At&T Intellectual Property I, L.P. Distributed spatial mode processing for spatial-mode multiplexed communication systems
WO2014141533A1 (ja) * 2013-03-11 2014-09-18 株式会社日立製作所 切替装置および伝送システム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785472B1 (en) * 1999-06-15 2004-08-31 Lucent Technologies Inc. Broadband amplified WDM ring
US6721509B2 (en) * 2000-12-05 2004-04-13 Avanex Corporation Self-adjusting optical add-drop multiplexer and optical networks using same
US20060210274A1 (en) * 2001-02-06 2006-09-21 Eyal Lichtman Apparatus For and Method of MAC Based Transmission in WDM Optical Ring Networks
EP1453234A3 (en) * 2003-02-27 2006-05-17 ECI Telecom Ltd. An optical communication system and method
KR100569825B1 (ko) * 2003-08-07 2006-04-11 최준국 절체형 미디어 변환기와 그를 포함하는 상하향 동일파장의 링형 wdm pon 시스템
WO2006080050A1 (ja) * 2005-01-25 2006-08-03 Fujitsu Limited ネットワーク管理装置、光分岐挿入ノードおよびネットワーク管理方法
WO2009107414A1 (ja) 2008-02-27 2009-09-03 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ
US10078190B2 (en) * 2010-12-20 2018-09-18 Alcatel Lucent Multi-core optical cable to photonic circuit coupler
US20120177065A1 (en) * 2011-01-09 2012-07-12 Winzer Peter J Secure Data Transmission Using Spatial Multiplexing
CN103443679B (zh) * 2011-03-09 2015-11-25 古河电气工业株式会社 光连接器、多芯光纤和光纤束结构的调芯方法以及光纤排列转换部件
JP5830262B2 (ja) * 2011-04-08 2015-12-09 古河電気工業株式会社 光伝送方式
US9438004B2 (en) * 2011-05-20 2016-09-06 Alcatel Lucent Optical pumping and powering in spatially multiplexed transmission links
CN103907302B (zh) * 2011-09-02 2017-11-17 阿尔卡特朗讯 用于空分复用系统的方法和装置
US8811787B2 (en) * 2011-11-30 2014-08-19 At&T Intellectual Property I, L.P. Multicore optical fiber with reduced inter-core crosstalk
JP5635056B2 (ja) * 2012-11-07 2014-12-03 株式会社フジクラ 増幅用光ファイバ及び光増幅器
US9537282B2 (en) * 2013-09-20 2017-01-03 Alcatel Lucent System and method for a multi-mode pump in an optical amplifier
US9503197B2 (en) * 2014-09-09 2016-11-22 Tyco Electronics Subsea Communications Llc Spatial division multiplexing in limited power optical communication systems
US20180375579A1 (en) * 2015-11-26 2018-12-27 Nippon Telegraph And Telephone Corporation Communication system and connector
WO2017090622A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及びコネクタ
WO2017090598A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 光増幅システム及び光増幅方法
CN108292952B (zh) * 2015-11-26 2021-07-06 日本电信电话株式会社 通信系统以及故障检测方法
WO2017090616A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
WO2017090608A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 ノード及び光給電システム
US9885825B2 (en) * 2016-04-18 2018-02-06 Chiral Photonics, Inc. Pitch reducing optical fiber array and multicore fiber comprising at least one chiral fiber grating
US10382843B2 (en) * 2016-08-24 2019-08-13 Verizon Patent And Licensing Inc. Colorless, directionless, contentionless, spaceless, and flexible grid reconfigurable optical node

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321309A1 (en) * 2011-06-20 2012-12-20 Barry Richard A Optical architecture and channel plan employing multi-fiber configurations for data center network switching
JP2013106272A (ja) * 2011-11-15 2013-05-30 Fujitsu Ltd 光伝送システム、励起光供給制御方法及び励起光供給装置
WO2013128929A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 光伝送システムおよび光伝送方法
US20140140694A1 (en) * 2012-11-16 2014-05-22 At&T Intellectual Property I, L.P. Distributed spatial mode processing for spatial-mode multiplexed communication systems
WO2014141533A1 (ja) * 2013-03-11 2014-09-18 株式会社日立製作所 切替装置および伝送システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAZUYUKI SHIRAKI: "R&D Trends in Optical Fiber and Cable Technology", NTT TECHNICAL JOURNAL, January 2015 (2015-01-01), pages 59 - 63
R. R. THOMSON ET AL.: "Optics Express", vol. 15, 2007, OSA PUBLISHING, article "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", pages: 11691 - 11697
SHINJI MATSUOKA: "Ultrahigh-speed Ultrahigh-capacity Transport Network Technology for Cost-effective Core and Metro Networks", NTT TECHNICAL JOURNAL, March 2011 (2011-03-01), pages 8 - 12
W. KLAUS ET AL.: "Photonics Technology Letters", vol. 24, September 2012, IEEE, article "Free-Space Coupling Optics for Multicore Fibers", pages: 1902 - 1905
YUTAKA MIYAMOTO; HIROKAZU TAKENOUCHI: "Dense Space-division-multiplexing Optical Communications Technology for Petabit-per-second Class Transmission", NTT TECHNICAL JOURNAL, August 2014 (2014-08-01), pages 52 - 56

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176978A1 (ja) * 2021-02-19 2022-08-25 株式会社フジクラ 光入出力装置
WO2023238450A1 (ja) * 2022-06-08 2023-12-14 株式会社フジクラ マルチコアファイバ接続体、マルチコアファイバ接続体を用いた光通信ネットワーク及び光通信ネットワークの接続方法
JP7569459B2 (ja) 2022-06-08 2024-10-17 株式会社フジクラ 光通信ネットワークの製造方法

Also Published As

Publication number Publication date
EP3364568B1 (en) 2020-04-15
JP6368438B2 (ja) 2018-08-01
CN108292956B (zh) 2021-04-27
CN108292956A (zh) 2018-07-17
EP3364568A1 (en) 2018-08-22
US20180341060A1 (en) 2018-11-29
EP3364568A4 (en) 2019-05-29
US10527781B2 (en) 2020-01-07
JPWO2017090622A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6368438B2 (ja) 通信システム及びコネクタ
JP6527593B2 (ja) ノード及び光給電システム
JP6480601B2 (ja) 通信システム及び故障検出方法
WO2017090600A1 (ja) 通信システム及びコネクタ
JP6491762B2 (ja) 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
JP6588567B2 (ja) 通信システム及び故障箇所特定方法
JP6517946B2 (ja) 光増幅システム及び光増幅方法
CN105629381B (zh) 光纤模式旋转器、全光纤模式复用器和解复用器
CN109194439A (zh) 一种基于弱导环形结构光纤的模式复用通信系统及方法
JP2009290689A (ja) 光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552669

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15776566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016868565

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE