[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017084606A1 - 一种常温常压下直接制备膨胀石墨或石墨烯的方法 - Google Patents

一种常温常压下直接制备膨胀石墨或石墨烯的方法 Download PDF

Info

Publication number
WO2017084606A1
WO2017084606A1 PCT/CN2016/106285 CN2016106285W WO2017084606A1 WO 2017084606 A1 WO2017084606 A1 WO 2017084606A1 CN 2016106285 W CN2016106285 W CN 2016106285W WO 2017084606 A1 WO2017084606 A1 WO 2017084606A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
expanded graphite
graphite
dispersion
wet
Prior art date
Application number
PCT/CN2016/106285
Other languages
English (en)
French (fr)
Inventor
卢红斌
张佳佳
陈宇菲
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US15/776,968 priority Critical patent/US10927009B2/en
Publication of WO2017084606A1 publication Critical patent/WO2017084606A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/30Purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the invention belongs to the field of material preparation, and particularly relates to a method for directly preparing expanded graphite under normal temperature and normal pressure, and uses expanded graphite as a precursor to prepare high quality graphene.
  • the invention can be used for large-scale industrial production of high quality, low cost expanded graphite, graphene and composite materials thereof.
  • the top-down peeling method is considered to be a key way to achieve large-scale application of graphene.
  • graphene materials are prepared by redox, ultrasonication, shearing, ball milling, and the like. Since graphite is a close-packed structure formed by the sp 2 hybridized monoatomic carbon layer by ⁇ - ⁇ mode, the interlayer interaction is strong. In order to overcome this interaction, strong external force input is often required, which makes the preparation of graphene. Less efficient. Therefore, weakening the interaction between graphene layers is a key step to improve the preparation efficiency of graphene materials. The interlayer expansion can significantly reduce the interaction force between the graphene sheets, and thus can effectively improve the yield and efficiency of the graphene stripping preparation.
  • the object of the present invention is to establish a simple and efficient method for preparing expanded graphite under normal temperature and pressure, and based on this, low cost and high quality are prepared.
  • Graphene method Compared with the existing method for preparing expanded graphite, the method is completed in the next step at normal temperature and pressure, without any high temperature and high pressure treatment step, and the obtained expanded graphite does not additionally introduce defects or other impurities, and the obtained expanded graphite is used as a raw material. Non-defective high quality graphene powders and slurries can be further prepared.
  • the invention provides a method for directly preparing expanded graphite or graphene under normal temperature and normal pressure.
  • the raw material graphite is dispersed in an acidic solution to obtain a suspension, and then the obtained suspension is allowed to stand at normal temperature and normal pressure for a certain period of time.
  • the expanded graphite is obtained; the expanded graphite is washed and then peeled off to obtain a graphene dispersion; the graphene dispersion is removed by solid-liquid separation, and then dispersed in an organic solvent to form a slurry; the specific steps are as follows:
  • the obtained acidic solution is a sulfuric acid solution containing an oxidizing agent, and the oxidizing agent is any one of ammonium persulfate, potassium persulfate, sodium persulfate or hydrogen peroxide, and the amount of the oxidizing agent is 0.1-20 times the weight of the graphite;
  • the raw material graphite described in the step (1) means any one of flake graphite, artificial graphite or pyrolytic graphite, and the carbon content is more than 95%.
  • the solution described in the step (2) is a pure aqueous solution, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, toluene, ethylbenzene, chlorobenzene.
  • the peeling method in the step (2) is water bath ultrasonic, probe ultrasonic, high-speed shearing, fluid pulverization or any combination thereof, wherein: the ultrasonic power of the water bath ultrasonic is 20-5000 W, and the ultrasound of the probe ultrasonic The power is 50-5000W; the system temperature is controlled below 80 °C during ultrasonic, the ultrasonic time is 10 minutes-10 hours; the shear power in high speed shear is 100W-10kW, the shear rate is 1000-100,000 rpm, and the operating temperature is controlled.
  • the shear time is 10 minutes to 10 hours; when the fluid is crushed and peeled off, the fluid pressure is controlled to be below 200 MPa, the flow rate is controlled at 1.0-500 L/h, and the operating temperature is below 80 ° C.
  • the spray drying described in the step (3) employs a conventional aqueous phase or organic phase spray drying apparatus, and the centrifugal speed of the separation centrifuge is 1,000 to 20,000 rpm.
  • the expanded graphite worm has a maximum expansion volume of more than 1000 times and is in a wet state, which is convenient for re-dispersion, peeling and connection with downstream applications.
  • the graphene slurry or the wet graphene obtained by the present invention has high solid dispersibility.
  • the method is simple in operation, mild in condition, environmentally friendly, low in production cost, and convenient for industrialized mass production.
  • Figure 1 shows a comparison of the volume change of graphite before and after expansion, wherein: (a) is raw graphite and (b) is expanded graphite;
  • Figure 2 shows the TEM micrograph of the graphene after peeling and the ultraviolet absorption spectrum of the graphene suspension.
  • (a) is a graphene TEM image
  • (b) is a graphene dispersion liquid ultraviolet absorption spectrum.
  • Figure 3 shows the Raman spectrum of graphene.
  • normal temperature and normal pressure means: temperature (5-50 ° C) and pressure (about one atmosphere or about 101.325 kPa) under ambient conditions.
  • the method for preparing expanded graphite according to the present invention does not require high temperature and high pressure operation, and is a one-time effective spontaneous expansion process under normal temperature and normal pressure conditions.
  • the expansion of the present invention is liquid expansion rather than solid expansion, which is simple in operation and lower in cost.
  • the expansion of the present invention is carried out at a temperature of 5-40 ° C and ambient pressure (one atmosphere) using one or several acidic solutions selected from the group consisting of ammonium persulfate, potassium persulfate, sodium persulfate or hydrogen peroxide. Sulfuric acid solution.
  • the graphene paste or wet graphene produced may be a defect-containing oxidized graphene (graphene oxide) or a non-oxidized graphene having no defects, for graphene oxide, a technique of the art The person can prepare the graphene after the treatment with the reducing agent or after the high temperature reduction as needed.
  • the defect ratio (Raman D band and G band intensity ratio) of the graphene material of the present invention is less than or equal to 0.1.
  • the graphene slurry or the wet graphene solid obtained by the preparation method of the invention is easy to be redispersed into other solvents with good dispersibility, and the other solvent is selected from the group consisting of N-methylpyrrolidone, N,N-dimethyl Formamide, N,N-dimethyl sulfoxide, benzyl benzoate, alcohol, water or a combination thereof.
  • the dispersion of graphene obtained by the above method is dispersed in a solvent such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylsulfoxide, benzyl benzoate or isopropanol. After one month, no obvious precipitation occurred, indicating that the graphene obtained by the method has stable properties.
  • a solvent such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylsulfoxide, benzyl benzoate or isopropanol.
  • Figure 2 shows the TEM image of the graphene after peeling and the characteristic absorption of the ultraviolet spectrum of the graphene suspension, indicating that the exfoliated graphene sheet has a single layer and a small layer morphology, and the single layer graphene is above 75%.
  • the layer size is around 5-10 microns, and the UV absorption at 270 nm reflects the good lattice integrity of the graphene sheets.
  • Example 1 Repeat steps (1) and (2) in Example 1, and add the obtained water-washed expanded graphite to water, using a 500 W shear.
  • the slit disperser was shear-peeled at 18,000 rpm for 30 minutes to obtain a graphene dispersion.
  • the graphene dispersion in the step (1) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate. In a solvent such as isopropyl alcohol.
  • the graphene dispersion obtained by the above method showed no significant precipitation after standing for one month.
  • Example 1 (1) The steps (1) and (2) of Example 1 were repeated, and the obtained water-washed expanded graphite was added to water, and the mixture was treated with a 750 W high-pressure fluid pulverizer at 25 ° C at a flow rate of 1.0 L/h to obtain graphite. Alkene dispersion.
  • the acid-containing expanded graphite in the step (1) is added to deionized water, filtered, and washed with water to obtain expanded graphite after washing with water.
  • the graphene dispersion in the step (3) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate. In alcohol, water or a mixed solvent thereof.
  • Example 4 (1) The steps (1) and (2) of Example 4 were repeated, and the obtained water-washed expanded graphite was added to water, and shear-peeled at 18,000 rpm for 30 minutes using a 500 W shear disperser to obtain a graphene dispersion.
  • the graphene dispersion in the step (1) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate.
  • a solvent such as isopropyl alcohol.
  • the graphene obtained by the above method is dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate, alcohol, water or a mixed solvent thereof. No significant precipitation occurred after the liquid was allowed to stand for one month.
  • Example 4 (1) The steps (1) and (2) in Example 4 were repeated, and the obtained water-washed expanded graphite was added to water, and the mixture was treated with a 750 W, high-pressure fluid pulverizer at 25 ° C at a flow rate of 1.0 L/h to obtain graphite. Alkene dispersion.
  • the graphene dispersion in the step (1) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate. In alcohol, water or a mixed solvent thereof.
  • the dispersion of graphene obtained by the above method is dispersed in a solvent such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylsulfoxide, benzyl benzoate or isopropanol. No significant precipitation occurred after one month.
  • the acid-containing expanded graphite in the step (1) is added to deionized water, filtered with suction, and washed with water to obtain expanded graphite after washing with water.
  • step (3) The expanded graphite washed in the step (2) was added to water under a wet condition, and subjected to ultrasonic treatment at 500 ° C for 20 minutes at 25 ° C to obtain a graphene dispersion.
  • the acid-containing expanded graphite in the step (1) is added to deionized water, filtered with suction, and washed with water to obtain expanded graphite after washing with water.
  • the graphene dispersion in the step (3) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate. In alcohol, water or a mixed solvent thereof.
  • the graphene prepared by the above method is dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl
  • the dispersion in the sulfone, benzyl benzoate, alcohol, water or a mixed solvent thereof did not show any significant precipitation after standing for one month, indicating that the graphene obtained by the method has stable properties. There is almost no peak of the D band on the Raman spectrum, indicating that the obtained graphene is a low-defect graphene.
  • the mixed liquid in the step (1) is added to deionized water, and after suction filtration, washing is repeated to obtain a water-washed product.
  • step (3) The product after washing in the step (2) was added to water under a wet condition, and subjected to ultrasonic treatment at 500 ° C, 20 kHz for 2 hours at 25 ° C to obtain a dispersion.
  • the dispersion in the step (3) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate, alcohol , water or a mixture of them.
  • step (2) adding the acidic mixed solution in the step (1) to deionized water, washing and washing repeatedly, to obtain a water-washed product.
  • step (3) The product after washing in the step (2) was added to water under a wet condition, and subjected to ultrasonic treatment at 500 ° C, 20 kHz for 2 hours at 25 ° C to obtain a dispersion.
  • the dispersion in the step (3) is suction filtered and dispersed in N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethyl sulfoxide, benzyl benzoate, alcohol , water or a mixture of them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种常温常压下直接制备膨胀石墨或石墨烯的方法、石墨烯材料和制品。该方法具体步骤如下:首先将石墨分散于含氧化剂的酸性介质中,然后将所得悬浮液在常温常压下静置,得到膨胀石墨。该方法不涉及任何高温高压反应过程,操作安全,能耗低,效率高,环境友好。得到的膨胀石墨可实现50-1500倍的体积膨胀,并且石墨烯片层的sp 2杂化结构基本不会被破坏;可广泛应用于储能、热量管理、光电子器件、太阳能电池、防腐涂料以及各种复合材料等领域。制备的膨胀石墨也可作为制备高质量石墨烯的前驱体,将膨胀石墨进行剥离,可获得基本不含缺陷的高质量石墨烯。

Description

一种常温常压下直接制备膨胀石墨或石墨烯的方法 技术领域
本发明属于材料制备领域,具体涉及一种在常温常压下直接制备膨胀石墨的方法,并以膨胀石墨为前驱体,制备高质量石墨烯。本发明可用于大规模工业生产高质量、低成本的膨胀石墨、石墨烯及其复合材料。
背景技术
石墨烯自2004年被成功制备以来,已经成为科学研究和产业领域中的明星材料。石墨烯具有高比表面积以及优异的光学、力学、电学等性能,已经被广泛应用于能源、环境、复合材料、涂料等领域。为了实现石墨烯的大规模应用,建立简单、高效的石墨烯制备方法至关重要。
在石墨烯的制备方法中,自上而下的剥离法被认为是实现石墨烯大规模应用的关键途径。剥离通常以天然或人工合成的石墨为原料,通过氧化还原、超声、剪切、球磨等方式来制备石墨烯材料。由于石墨是由sp2杂化的单原子碳层通过π-π方式形成的紧密堆积结构,层间相互作用较强,为了克服这种相互作用,往往需要强外力输入,这使得石墨烯的制备效率较低。因而,减弱石墨烯层间相互作用是提高石墨烯材料的制备效率至关重要的关键环节。层间膨胀可显著降低石墨烯片层之间的相互作用力,因而可有效提高石墨烯剥离制备时的产率和效率。
在公开的膨胀石墨制备方法中,石墨主要经氧化剂/酸混合液处理后,首先制得插层石墨,将此插层石墨经水洗干燥后,再在高温条件下实现膨胀。这种膨胀石墨的制备过程需要高温反应过程,能耗较大,所得膨胀石墨结构不均匀,石墨烯片层在膨胀后的聚集体中仍多是以几十甚至上百片堆积在一起的,将它们再次分散于液体中进一步剥离十分耗时和困难,剥离也难以充分,产率受限。此外,由于得到的膨胀石墨处于干燥状态,片层厚度也相对较大,不利于与其它材料的复合以及性能优化。
发明内容
为克服现有的膨胀石墨和石墨烯制备方面存在的困难,本发明的目的在于建立一种简单高效、在常温常压下制备膨胀石墨的方法,并以此为基础,制备低成本、高质量石墨烯的方法。与现有的膨胀石墨制备方法相比,本方法在常温常压下一步完成,无需任何高温高压处理步骤,所得到的膨胀石墨不会额外引入缺陷或其它杂质,以得到的膨胀石墨为原料,可进一步制备无缺陷的高质量石墨烯粉体和浆料。
本发明提出的一种常温常压下直接制备膨胀石墨或石墨烯的方法,首先将原料石墨分散于酸性溶液中,得到悬浮液,然后将得到的悬浮液在常温常压下静置一段时间,得到膨胀石墨;膨胀石墨水洗处理后经剥离,得到石墨烯分散液;石墨烯分散液通过固液分离除去溶剂后,可分散于有机溶剂中形成浆料;具体步骤如下:
(1)将1重量份的原料石墨加入到1-200重量份的酸性溶液中,得到悬浮液,将得到的悬浮液在常温常压下搅拌1分钟-2小时后,静置1-48小时,得到膨胀石墨;所述的酸性溶液为含有氧化剂的硫酸溶液,氧化剂为过硫酸铵、过硫酸钾、过硫酸钠或双氧水中任一种,氧化剂用量为石墨重量的0.1-20倍;
(2)将得到的膨胀石墨用去离子水洗涤后,过滤得到湿态膨胀石墨;将湿态膨胀石墨在溶液中进行剥离,得石墨烯分散液;
(3)将剥离后的石墨烯分散液进行喷雾干燥,得到石墨烯粉体,或离心/过滤处理后,得到石墨烯浆料或湿态石墨烯固体,湿态石墨烯固体易于再次分散到其它溶剂中。
本发明中,步骤(1)中所述的原料石墨是指鳞片石墨、人造石墨或热解石墨中任一种,碳含量大于95%。
本发明中,步骤(2)中所述的溶液为纯水溶液、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲苯、乙苯、氯苯、二氯苯、甲醇、乙醇、丙醇、异丙醇、丁醇、戊醇、苯甲酸苄酯、醋酸乙酯、醋酸丁酯或氯仿中一种或几种。
本发明中,步骤(2)中所述剥离方法为水浴超声、探头超声、高速剪切、流体粉碎或它们之间的任意组合,其中:水浴超声的超声功率为20-5000W,探头超声的超声功率为50-5000W;超声时体系温度控制在80℃以下,超声时间为10分钟-10小时;高速剪切中的剪切功率为100W-10kW,剪切速率为1000-100,000转,操作温度控制在80℃以下,剪切时间为10分钟-10小时;流体粉碎剥离时流体压力控制在200MPa以下,流量控制在1.0-500L/h,操作温度在80℃以下。
本发明中,步骤(3)所述的喷雾干燥采用常规水相或有机相喷雾干燥设备,分离离心机的转速为1,000-20,000rpm。
本发明与现有技术相比具有以下突出优势:
(1)无需高温高压操作,膨胀过程在常温常压下进行,无需任何外功的输入,是室温环境条件下的自发膨胀过程。
(2)相比原料鳞片石墨,膨胀后的石墨蠕虫最大膨胀体积可达1000倍以上,并且处于湿态,便于再次分散、剥离以及与下游应用的衔接。
(3)以膨胀石墨为前驱体,经剥离操作后,得到的石墨烯sp2晶格结构保存完好,不 会引入缺陷。
(4)本发明所得的石墨烯浆料或湿态石墨烯固体分散性高。
(5)本方法操作简单,条件温和,环境友好,生产成本低廉,便于工业化大规模生产。
附图说明
图1显示了石墨在膨胀前后体积变化的对比图,其中:(a)为原料石墨,(b)为膨胀石墨;
图2显示了剥离后的石墨烯TEM显微图像以及石墨烯悬浮液的紫外吸收谱。其中:(a)为石墨烯TEM图像,(b)为石墨烯分散液的紫外吸收谱。
图3显示了石墨烯的拉曼光谱。
具体实施方式
下面结合附图和具体实施例对本发明做进一步阐述。以下实施例旨在对本发明进行理解,对发明内容本身不做任何限定。应该理解,本发明提到的一个或多个步骤不排斥在所述组合步骤前后还存在其它方法和步骤,或者这些明确提及的步骤之间还可以插入其它方法和步骤。还应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的目的,而非为限制每个方法的排列次序或限定本发明的实施范围,其相对关系的改变或调整,在无实质技术内容变更的条件下,当亦视为本发明可实施的范畴。
术语说明
如本文所用,“常温常压”指的是:在环境条件下的温度(5-50℃)和压力(一个大气压或101.325kPa左右)。
膨胀石墨
本发明所述制备膨胀石墨的方法无需高温高压操作,是常温常压条件下的一次性的有效的自发膨胀过程。
本发明所述膨胀是液态膨胀而非固态膨胀,操作简便,成本更低。
本发明所述膨胀是在5-40℃和环境压力(一个大气压)条件下,采用选自下组一种或几种酸性溶液进行:含有过硫酸铵、过硫酸钾、过硫酸钠或双氧水的硫酸溶液。
氧化石墨烯与石墨烯
如本文所用,所制得的石墨烯浆料或湿态石墨烯可以为含缺陷的氧化态石墨烯(氧化石墨烯)或不含缺陷的非氧化态石墨烯,对氧化石墨烯,本领域技术人员可以根据需要制备经还原剂处理或高温还原之后的石墨烯。
本发明所述的石墨烯材料的缺陷比例(Raman D带和G带强度比)小于或等于0.1。
石墨烯浆料或湿态石墨烯固体
本发明制备方法所得的石墨烯浆料或湿态石墨烯固体易于再次分散到其它溶剂中,分散性好,所述其它溶剂选自下组:N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或其组合。
实施例1:
(1)将10g过硫酸铵加入300ml浓硫酸中,随后加入1g原料石墨,搅拌15分钟后,在室温条件下静置6小时,过滤后得到含酸膨胀石墨。
(2)将步骤(1)中的含酸膨胀石墨加入去离子水中,过滤后再次水洗,得水洗后的膨胀石墨。图1给出了与原料石墨和膨胀石墨的外观。
(3)将步骤(2)中得到水洗膨胀石墨在湿态条件下加入水中,通过500W、20kHz的探头超声在25℃下处理60分钟,得到石墨烯分散液。
(4)将步骤(3)中的石墨烯分散液过滤,并分散在溶剂中。
上述方法得到的石墨烯分散在N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、异丙醇等溶剂中的分散液静置一个月后,无明显的沉淀产生,说明本方法得到的石墨烯性能稳定。
如图3所示,拉曼光谱上几乎没有D带的峰,说明得到的石墨烯是低缺陷或基本无缺陷的石墨烯。
图2给出了剥离后的石墨烯TEM图像以及石墨烯悬浮液紫外光谱的特征吸收,说明了剥离的石墨烯片层有单层和少层形态,单层石墨烯在75%以上,且片层尺寸在5-10微米左右,270nm的紫外吸收反映了石墨烯片层良好的晶格完整性。
实施例2:
(1)重复实施例1中(1)和(2)步骤,将得到的水洗膨胀石墨加入水中,采用500W剪 切分散机在18,000转时进行剪切剥离30分钟,得到石墨烯分散液。
(2)将步骤(1)中的石墨烯分散液抽滤,并分散在N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、异丙醇等溶剂中。上述方法得到的石墨烯分散液静置一个月后无明显的沉淀产生。
实施例3:
(1)重复实施例1中(1)和(2)步骤,将得到的水洗膨胀石墨加入水中,采用750W、高压流体粉碎机在25℃、以1.0L/h流速处理上述混合液,得到石墨烯分散液。
(2)将步骤(1)中的石墨烯分散液过滤,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。上述方法得到的石墨烯液静置一个月后无明显的沉淀产生。
实施例4:
(1)将100毫升浓硫酸缓慢加入60毫升双氧水中,待溶液冷却至室温,加入1g原料石墨,搅拌5分钟后,在室温条件下静置4小时,得含酸膨胀石墨。
(2)将步骤(1)中的含酸膨胀石墨加入去离子水中,过滤后水洗,得到水洗后膨胀石墨。
(3)将步骤(2)中水洗后的膨胀石墨抽滤后,在湿态条件下加入水中,通过500W、20kHz的探头超声在25℃下处理40分钟,得到石墨烯分散液。
(4)将步骤(3)中的石墨烯分散液抽滤,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。
上述方法制得的石墨烯在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中的分散液静置一个月后无明显的沉淀产生。
实施例5:
(1)重复实施例4中(1)和(2)步骤,将得到的水洗膨胀石墨加入水中,采用500W剪切分散机在18,000转时进行剪切剥离30分钟,得到石墨烯分散液。
(2)将步骤(1)中的石墨烯分散液抽滤,并分散在N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、异丙醇等溶剂中。上述方法得到的石墨烯分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中的分散液静置一个月后无明显的沉淀产生。
实施例6:
(1)重复实施例4中(1)和(2)步骤,将得到的水洗膨胀石墨加入水中,采用750W、高压流体粉碎机在25℃、以1.0L/h流速处理上述混合液,得到石墨烯分散液。
(2)将步骤(1)中的石墨烯分散液抽滤,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。上述方法得到的石墨烯分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、异丙醇等溶剂中的分散液静置一个月后无明显的沉淀产生。
实施例7:
(1)10g过硫酸钾加入100ml浓硫酸中,再加入1g原料石墨,搅拌20分钟后,在室温条件下静置4小时,得含酸膨胀石墨。
(2)将步骤(1)中的含酸膨胀石墨加入去离子水中,抽滤后水洗,得水洗后的膨胀石墨。
(3)将步骤(2)中水洗后的膨胀石墨在湿态条件下加入水中,通过500W、20kHz的探头超声在25℃下处理50分钟,得到石墨烯分散液。
(4)将步骤(3)中的石墨烯分散液通过离心方法除去溶剂,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。
上述方法所得的石墨烯分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中的分散液静置一个月后无明显的沉淀产生,说明本方法得到的石墨烯性能稳定。拉曼光谱上几乎没有D带的峰,说明得到的石墨烯是低缺陷石墨烯。
实施例8:
(1)将10g过硫酸钠加入100毫升浓硫酸中,并加入1g原料石墨,搅拌10分钟后,在室温条件下静置4.5小时,得含酸膨胀石墨。
(2)将步骤(1)中的含酸膨胀石墨加入去离子水中,抽滤后水洗,得水洗后的膨胀石墨。
(3)将步骤(2)中水洗后的膨胀石墨抽滤后,在湿态条件下加入水中,通过500W、20kHz的探头超声在25℃下处理40分钟,得到石墨烯分散液。
(4)将步骤(3)中的石墨烯分散液抽滤,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。
上述方法制得的石墨烯分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚 砜、苯甲酸苄酯、醇、水或它们的混合溶剂中的分散液静置一个月后无明显的沉淀产生,说明本方法得到的石墨烯性能稳定。拉曼光谱上几乎没有D带的峰,说明得到的石墨烯是低缺陷石墨烯。
对比例1:
(1)将1g原料石墨加入100毫升双氧水中,室温条件下搅拌20分钟,随后静置48小时。
(2)将步骤(1)中的混合液加入去离子水中,抽滤后反复洗涤,得水洗产物。
(3)将步骤(2)中水洗后的产物在湿态条件下加入水中,通过500W、20kHz的探头超声在25℃下处理2小时,得到分散液。
(4)将步骤(3)中的分散液抽滤,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。
上述方法中石墨未见膨胀,并且经超声处理后,未得到显著量的剥离石墨烯。
说明单纯双氧水处理无法通过探头超声实现很好的剥离,表明膨胀过程是通过超声实现良好剥离的关键环节。
对比例2:
重复对比例1中(1)和(2)步骤,将湿态水洗膨胀石墨加入水中,采用750W、高压流体粉碎机在25℃、以1.0L/h流速处理上述混合液。将分散液抽滤后分散于N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。石墨未见膨胀,并且经高压流体粉碎处理后,未得到剥离石墨烯。
说明单纯双氧水处理无法通过高压流体粉碎机实现很好剥离,反映了膨胀过程对采用高压流体粉碎机方式实现高产率石墨烯剥离的重要性。
对比例3:
(1)将1g原料石墨加入100毫升浓硫酸中,室温条件下搅拌20分钟,随后静置48小时。
(2)将步骤(1)中的酸性混合液加入去离子水中,抽滤后反复洗涤,得水洗产物
(3)将步骤(2)中水洗后的产物在湿态条件下加入水中,通过500W、20kHz的探头超声在25℃下处理2小时,得到分散液。
(4)将步骤(3)中的分散液抽滤,并分散在N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。
上述方法中石墨未见膨胀,并且经超声处理后,未得到剥离石墨烯。
说明双氧水对于实现石墨膨胀的关键作用,仅硫酸处理无法实现很好的膨胀,也无法通过超声实现石墨烯的高产率制备。
对比例4:
重复对比例3中(1)和(2)步骤,将湿态水洗膨胀石墨加入水中,采用750W、高压流体粉碎机在25℃、以1.0L/h流速处理上述混合液。将分散液抽滤后分散于N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或它们的混合溶剂中。石墨未见膨胀,并且经高压流体粉碎处理后,未得到显著量的剥离石墨烯。
说明双氧水对实现石墨膨胀的关键作用,仅硫酸处理无法很好的膨胀,也无法通过高压流体粉碎机实现石墨烯的高产率剥离制备。

Claims (12)

  1. 一种常温常压下直接制备膨胀石墨或石墨烯的方法,其特征在于:
    首先将原料石墨分散于酸性溶液中,得到悬浮液,然后将得到的悬浮液在常温常压下静置一段时间,得到膨胀石墨;膨胀石墨水洗处理后经剥离,得到石墨烯分散液;石墨烯分散液通过固液分离除去溶剂后,可分散于有机溶剂中形成浆料;包括步骤:
    (1)将1重量份的原料石墨加入到1-200重量份的酸性溶液中,得到悬浮液,将得到的悬浮液在常温常压下搅拌1分钟-2小时后,静置1-48小时,得到膨胀石墨;所述的酸性溶液为含有氧化剂的硫酸溶液,氧化剂为过硫酸铵、过硫酸钾、过硫酸钠或双氧水中任一种,氧化剂用量为原料石墨重量的0.1-20倍;
    (2)将得到的膨胀石墨用去离子水洗涤后,过滤得到湿态膨胀石墨;将湿态膨胀石墨在溶液中进行剥离,得石墨烯分散液;
    (3)将剥离后的石墨烯分散液进行喷雾干燥,得到石墨烯粉体,或离心/过滤处理后,得到石墨烯浆料或湿态石墨烯固体,该湿态石墨烯固体易于再次分散到其它溶剂中。
  2. 根据权利要求1所述的方法,其特征在于:步骤(1)中所述的原料石墨是指鳞片石墨、人造石墨或热解石墨中任一种,碳含量大于95%。
  3. 根据权利要求1所述的方法,其特征在于:步骤(2)中所述的溶液为纯水溶液、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲苯、乙苯、氯苯、二氯苯、甲醇、乙醇、丙醇、异丙醇、丁醇、戊醇、苯甲酸苄酯、醋酸乙酯、醋酸丁酯或氯仿中一种或几种。
  4. 根据权利要求1所述的方法,其特征在于:步骤(2)中所述剥离方法为水浴超声、探头超声、高速剪切、流体粉碎或它们之间的任意组合,其中:水浴超声的超声功率为20-5000W,探头超声的超声功率为50-5000W;超声时体系温度控制在80℃以下,超声时间为10分钟-10小时;高速剪切中的剪切功率为100W-10kW,剪切速率为1000-100,000转,操作温度控制在80℃以下,剪切时间为10分钟-10小时;流体粉碎剥离时流体压力控制在200MPa以下,流量控制在1.0-500L/h,操作温度在80℃以下。
  5. 根据权利要求1所述的方法,其特征在于:步骤(3)所述的喷雾干燥采用常规水相或有机相喷雾干燥设备,分离离心机的转速为1,000-20,000rpm。
  6. 根据权利要求1所述的方法,其特征在于,所述氧化石墨烯或石墨烯的径向尺寸范围为1-10μm。
  7. 根据权利要求1所述的方法,其特征在于,所述氧化石墨烯或石墨烯中单层石墨烯的比例高于75%。
  8. 根据权利要求1所述的方法,其特征在于,所述步骤(1)中,所述氧化剂用量为原料石墨重量的1-19倍,较佳地为1.5-15倍,更佳地为2-10倍。
  9. 一种石墨烯材料,其特征在于,所述石墨烯材料的径向尺寸范围为1-10μm,且所述石墨烯材料中单层石墨烯的比例≥75%。
  10. 如权利要求9所述的石墨烯材料,其特征在于,所述石墨烯材料的缺陷比例小于或等于0.1。
  11. 一种制品,其特征在于,所述制品包含如权利要求9所述的石墨烯材料或由权利要求9所述的石墨烯材料制备。
  12. 一种制备石墨烯的方法,包括步骤:
    (a)将石墨与酸性溶液在常温常压下反应,得到膨胀石墨,所述酸性溶液为含有氧化剂的硫酸溶液,所述氧化剂选自下组:过硫酸铵、过硫酸钾、过硫酸钠、双氧水、或其组合;
    (b)将得到的膨胀石墨与溶液混合后进行剥离,得到石墨烯分散液;
    (c)对步骤(b)得到的石墨烯分散液进行干燥,得到石墨烯浆料或湿态石墨烯固体;和
    (d)任选地,将步骤(c)所得的石墨烯浆料或湿态石墨烯固体分散到其他溶剂中,所述其他溶剂选自下组:N-甲基吡咯烷酮,N,N-二甲基甲酰胺、N,N-二甲基亚砜、苯甲酸苄酯、醇、水或其组合。
PCT/CN2016/106285 2015-11-18 2016-11-17 一种常温常压下直接制备膨胀石墨或石墨烯的方法 WO2017084606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,968 US10927009B2 (en) 2015-11-18 2016-11-17 Method for directly preparing expanded graphite or graphene under normal temperature and normal pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510792745.0 2015-11-18
CN201510792745.0A CN105253878B (zh) 2015-11-18 2015-11-18 一种常温常压下直接制备膨胀石墨或石墨烯的方法

Publications (1)

Publication Number Publication Date
WO2017084606A1 true WO2017084606A1 (zh) 2017-05-26

Family

ID=55093882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106285 WO2017084606A1 (zh) 2015-11-18 2016-11-17 一种常温常压下直接制备膨胀石墨或石墨烯的方法

Country Status (3)

Country Link
US (1) US10927009B2 (zh)
CN (1) CN105253878B (zh)
WO (1) WO2017084606A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890678A (zh) * 2022-04-27 2022-08-12 中国科学院西安光学精密机械研究所 一种大尺寸低膨胀玻璃基复合材料及其注浆成型方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105253878B (zh) * 2015-11-18 2018-06-26 复旦大学 一种常温常压下直接制备膨胀石墨或石墨烯的方法
CN106082180A (zh) * 2016-06-06 2016-11-09 南通伟德动力电池研究所(普通合伙) 一种用酸插层石墨和过硫酸铵为原料制造石墨烯的方法
CN106145102B (zh) * 2016-07-25 2018-10-26 华侨大学 一种制备膨胀石墨或石墨烯的方法
CN107082425B (zh) * 2017-04-14 2018-12-28 燕山大学 一种常温一步制备膨胀石墨的方法
CN107768021A (zh) * 2017-09-25 2018-03-06 江苏时瑞电子科技有限公司 一种复合导电浆料的制备方法
CN107867685A (zh) * 2017-10-18 2018-04-03 复旦大学 一种高热导率的天然石墨散热膜的制备方法
CN107792851A (zh) * 2017-10-18 2018-03-13 复旦大学 一种天然石墨散热膜的简易制备方法
CN107603225B (zh) * 2017-10-27 2018-11-06 泉州嘉德利电子材料有限公司 一种可粘贴的石墨烯防腐薄膜及制备方法
CN109019575A (zh) * 2018-08-28 2018-12-18 大同新成新材料股份有限公司 一种石墨烯分选工艺
CN109775696A (zh) * 2019-03-14 2019-05-21 西南科技大学 室温半干法制备膨胀石墨、以及湿法剥离制备石墨烯方法
CN109824040A (zh) * 2019-03-14 2019-05-31 西南科技大学 快速制备膨胀石墨方法、湿法剥离制备石墨烯方法
KR102691580B1 (ko) * 2019-03-20 2024-08-07 한국전력공사 팽창 그라파이트 제조 방법, 팽창된 산화 그래핀 제조 방법 및 이로부터 제조된 팽창된 산화 그래핀
WO2020229881A1 (en) * 2019-05-16 2020-11-19 Arcelormittal A method for the manufacture of graphene oxide from expanded kish graphite
WO2020229882A1 (en) * 2019-05-16 2020-11-19 Arcelormittal A method for the manufacture of reduced graphene oxide from expanded kish graphite
CN110104643A (zh) * 2019-05-20 2019-08-09 四川大学 一种柔性膨胀石墨及其制备方法和应用
CN113582168A (zh) * 2020-04-30 2021-11-02 北京超思电子技术有限责任公司 一种基于混合无机酸溶剂的石墨烯制备方法
CN111410192A (zh) * 2020-05-22 2020-07-14 燕山大学 一种低温预处理天然石墨制备石墨烯薄膜的方法
CN114426271A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 一种石墨烯及其制备方法
CN113247888B (zh) * 2021-04-27 2024-03-22 佛山市胜锦洁金属表面技术有限公司 石墨烯复合材料及其制备方法
US11814292B2 (en) 2021-07-23 2023-11-14 Nanotech Energy, Inc. Methods of graphene production and compositions thereof
CN113735102B (zh) * 2021-08-16 2023-07-14 中钢集团南京新材料研究院有限公司 担载金属氧化物的石墨烯气凝胶及其制备方法和应用
CN113511651B (zh) * 2021-09-09 2021-11-26 成都特隆美储能技术有限公司 一种聚吡咯修饰微氧化膨胀石墨负极材料的制备方法
CN114789998B (zh) * 2021-11-01 2024-03-19 广东一纳科技有限公司 负极材料及其制备方法、电池
CN113941120B (zh) * 2021-12-20 2022-03-11 河北化工医药职业技术学院 一种石墨烯材料的消解方法
CN115072712A (zh) * 2022-06-21 2022-09-20 西南科技大学 一种具有大片径和高导电性石墨烯及其制备方法
CN115893394B (zh) * 2022-12-12 2024-08-06 中国铝业股份有限公司 一种石墨烯的剥离方法
CN117735536A (zh) * 2024-02-02 2024-03-22 广州优刻谷科技有限公司 一种石墨烯rfid标签及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173414A (zh) * 2011-03-18 2011-09-07 中国地质大学(武汉) 一种化学剥离制备氧化石墨烯的方法
CN102431999A (zh) * 2011-09-22 2012-05-02 中国科学院金属研究所 一种制备高质量石墨烯的方法
CN102452649A (zh) * 2010-10-18 2012-05-16 中国科学院宁波材料技术与工程研究所 一种石墨烯的制备方法
CN103253661A (zh) * 2013-05-27 2013-08-21 中国科学院上海微系统与信息技术研究所 一种大规模制备石墨烯粉体的方法
CN103833008A (zh) * 2012-11-20 2014-06-04 中国科学院兰州化学物理研究所 一种常温下石墨烯的制备方法
CN105253878A (zh) * 2015-11-18 2016-01-20 复旦大学 一种常温常压下直接制备膨胀石墨或石墨烯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381699B (zh) * 2011-07-26 2013-05-08 中科恒达石墨股份有限公司 一种可膨胀石墨的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452649A (zh) * 2010-10-18 2012-05-16 中国科学院宁波材料技术与工程研究所 一种石墨烯的制备方法
CN102173414A (zh) * 2011-03-18 2011-09-07 中国地质大学(武汉) 一种化学剥离制备氧化石墨烯的方法
CN102431999A (zh) * 2011-09-22 2012-05-02 中国科学院金属研究所 一种制备高质量石墨烯的方法
CN103833008A (zh) * 2012-11-20 2014-06-04 中国科学院兰州化学物理研究所 一种常温下石墨烯的制备方法
CN103253661A (zh) * 2013-05-27 2013-08-21 中国科学院上海微系统与信息技术研究所 一种大规模制备石墨烯粉体的方法
CN105253878A (zh) * 2015-11-18 2016-01-20 复旦大学 一种常温常压下直接制备膨胀石墨或石墨烯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890678A (zh) * 2022-04-27 2022-08-12 中国科学院西安光学精密机械研究所 一种大尺寸低膨胀玻璃基复合材料及其注浆成型方法

Also Published As

Publication number Publication date
CN105253878B (zh) 2018-06-26
US20180327268A1 (en) 2018-11-15
US10927009B2 (en) 2021-02-23
CN105253878A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2017084606A1 (zh) 一种常温常压下直接制备膨胀石墨或石墨烯的方法
WO2017084561A1 (zh) 一种大尺寸氧化石墨烯或石墨烯的制备方法
WO2017128929A1 (zh) 一种制备石墨烯分散液的方法及其制品
CN106882796B (zh) 一种三维石墨烯结构体/高质量石墨烯的制备方法
CN105110318B (zh) 一种石墨烯水性浆料及其制备方法
CN108706575B (zh) 一种液相球磨剥离石墨烯的制备方法
CN107226467B (zh) 一种利用超临界流体制备并分散石墨烯的方法
US10472243B2 (en) Industrial method for preparing large-sized graphene
WO2017190570A1 (zh) 一种规模化清洁制备石墨烯的方法
WO2016101208A1 (zh) 单层石墨烯分散液及其制备方法
WO2012145911A1 (zh) 一种制备石墨烯的方法
Song et al. Graphene functionalization: a review
CN114314574B (zh) 一种核黄素磷酸钠辅助的大尺寸石墨烯水相制备方法
CN113666361A (zh) 一种利用超临界co2制备氧化石墨炔纳米片的方法
CN108640107B (zh) 一种用于高质量石墨烯量产的快速剥离石墨的插层剂
CN108314027B (zh) 一种高导电率的羟基/环氧基外修饰石墨烯透明导电薄膜的制备方法
CN106672951A (zh) 一种环境友好高效率可规模化制备石墨烯的方法
CN113443620B (zh) 一种少层石墨烯粉体的制备方法及其应用
CN106477560A (zh) 一种石墨烯的制备方法
WO2019109337A1 (zh) 一种类石墨微晶碳纳米材料及其制备方法和应用
WO2024088254A1 (zh) 一种边缘接枝改性石墨烯及其水分散液和制备方法
JP2016190772A (ja) 炭素膜およびその製造方法
CN112573510A (zh) 一种石墨烯浆料及其制备方法和应用
KR102654623B1 (ko) 고품질의 그래핀을 대량으로 제조하는 방법
CN108773842B (zh) 一种石墨烯的制备方法及石墨烯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15776968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865783

Country of ref document: EP

Kind code of ref document: A1