[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013015632A2 - 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 Download PDF

Info

Publication number
WO2013015632A2
WO2013015632A2 PCT/KR2012/005972 KR2012005972W WO2013015632A2 WO 2013015632 A2 WO2013015632 A2 WO 2013015632A2 KR 2012005972 W KR2012005972 W KR 2012005972W WO 2013015632 A2 WO2013015632 A2 WO 2013015632A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
resource region
region
resource
search space
Prior art date
Application number
PCT/KR2012/005972
Other languages
English (en)
French (fr)
Other versions
WO2013015632A3 (ko
Inventor
양석철
안준기
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020137031634A priority Critical patent/KR101513049B1/ko
Priority to US14/123,475 priority patent/US9144070B2/en
Publication of WO2013015632A2 publication Critical patent/WO2013015632A2/ko
Publication of WO2013015632A3 publication Critical patent/WO2013015632A3/ko
Priority to US14/829,401 priority patent/US9532353B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting control information.
  • the wireless communication system can support Carrier Aggregation (CA).
  • CA Carrier Aggregation
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting control information in a wireless communication system. Another object of the present invention is to provide a channel format, resource allocation, signal processing, and apparatus therefor for efficiently transmitting control information. It is still another object of the present invention to provide a method for efficiently allocating resources for transmitting control information and an apparatus therefor.
  • a method for receiving a downlink signal by a terminal in a wireless communication system comprising: receiving a subframe including a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols; Monitoring a plurality of search spaces configured on the subframe to receive a physical downlink control channel (PDCCH) directed to the terminal; And when the PDCCH indicated to the terminal is detected, performing an operation according to the detected PDCCH, wherein each search space is configured in at least one of the first resource region and the second resource region according to a predetermined condition.
  • the first resource region and the second resource region is provided with a method for separating a specific OFDM symbol boundary in the time domain (time domain).
  • a terminal for use in a wireless communication system, comprising: a radio frequency (RF) unit; And a processor, wherein the processor is configured to receive a subframe including a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols and to receive a Physical Downlink Control CHannel (PDCCH) directed to the UE.
  • Monitor a plurality of search spaces, and if a PDCCH indicated to the terminal is detected, perform an operation according to the detected PDCCH, each search space being one of a first resource region and a second resource region according to a predetermined condition;
  • the terminal is provided in at least one, and the first resource region and the second resource region are separated by a specific OFDM symbol boundary in the time domain.
  • a search space for a plurality of PDCCH candidates having a control channel element aggregation level of CCE or less is equal to or less than a first value is configured in the first resource region, and a plurality of search spaces of which the CCE aggregation level is greater than or equal to a second value.
  • a search space for PDCCH candidates is configured in the second resource region.
  • a plurality of PDCCH candidates are divided into two candidate sets, a search space for a first candidate set of the two candidate sets is configured in the first resource region, and a second candidate set is selected.
  • the search space for is configured in the second resource zone.
  • a search space for a first type Downlink Control Information (DCI) format is configured in the first resource region, and a search space for a second type DCI format is configured in the second resource region.
  • the first type DCI includes a DCI format used for uplink scheduling
  • the second type DCI includes a DCI format used only for downlink scheduling.
  • the first resource region is located at the front of the subframe based on the specific OFDM symbol
  • the second resource region is located at the rear of the subframe based on the specific OFDM symbol.
  • the 2 resource regions are multiplexed with resources for the downlink shared channel by frequency division multiplexing (FDM).
  • FDM frequency division multiplexing
  • the basic resource unit of the first resource region is a resource element group (REG), and the basic resource unit of the second resource region is a resource block (RB).
  • REG resource element group
  • RB resource block
  • the OFDM symbol is indicated through a Physical Control Format Indicator CHannel (PCFICH) signal or Radio Resource Control (RRC) signaling.
  • PCFICH Physical Control Format Indicator CHannel
  • RRC Radio Resource Control
  • control information can be efficiently transmitted in a wireless communication system.
  • a channel format, a resource allocation, and a signal processing method for efficiently transmitting control information can be provided.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • FIG. 5 illustrates a process of configuring a PDCCH at a base station.
  • FIG. 6 illustrates a process in which the UE processes the PDCCH.
  • FIG. 7 illustrates a structure of an uplink subframe.
  • CA 8 illustrates a Carrier Aggregation (CA) communication system.
  • FIG. 10 shows an example of allocating a PDCCH to a data region of a subframe.
  • 11 illustrates a process of resource allocation and PDSCH reception for an E-PDCCH.
  • FIG. 15 illustrates a downlink signal processing scheme according to an embodiment of the present invention.
  • 16 to 17 illustrate a search space configuration method according to an embodiment of the present invention.
  • FIG. 18 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP LTE / LTE-A the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and provides information such as cell identity (cell identity). Acquire.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to be more specific.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a general downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 2 illustrates a structure of a radio frame.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • the number of OFDM symbols included in one slot may be seven.
  • the number of OFDM symbols included in one slot is smaller than that in the case of a normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • one slot when CP is used, one slot includes 7 OFDM symbols, so one subframe includes 14 OFDM symbols.
  • First up to three OFDM symbols of a subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frame consists of two half frames, each half frame is composed of five subframes, downlink pilot time slot (DwPTS), guard period (GP), uplink pilot time slot (UpPTS) It consists of.
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization, or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 3 illustrates a resource grid for a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block (RB) is illustrated as including 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12 7 REs.
  • the number N DL of RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located in front of the first slot in a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbol corresponds to a data region to which a physical downlink shared chance (PDSCH) is allocated, and a basic resource unit of the data region is RB.
  • Examples of downlink control channels used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH is a response to uplink transmission and carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal.
  • Control information transmitted on the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain group of terminals.
  • DCI downlink control information
  • the DCI format has formats 0, 3, 3A, 4 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, etc. defined for downlink.
  • the type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format.
  • the DCI format may include a hopping flag, an RB assignment, a modulation coding scheme (MCS), a redundancy version (RV), a new data indicator (NDI), a transmit power control (TPC), It optionally includes information such as a HARQ process number and a precoding matrix indicator (PMI) confirmation.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • PMI precoding matrix indicator
  • any DCI format may be used for transmitting two or more kinds of control information.
  • DCI format 0 / 1A is used to carry DCI format 0 or DCI format 1, which are distinguished by a flag field.
  • the PDCCH includes a transmission format and resource allocation of a downlink shared channel (DL-SCH), resource allocation information for an uplink shared channel (UL-SCH), paging information for a paging channel (PCH), and system information on the DL-SCH. ), Resource allocation information of a higher-layer control message such as a random access response transmitted on a PDSCH, transmission power control commands for individual terminals in an arbitrary terminal group, activation of voice over IP (VoIP), and the like. .
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive CCEs (consecutive control channel elements).
  • the CCE is a logical allocation unit used to provide a PDCCH of a predetermined coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the correlation between the number of CCEs and the code rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with a unique identifier (referred to as a radio network temporary identifier (RNTI)) depending on the owner of the PDCCH or the intended use.
  • RNTI radio network temporary identifier
  • a unique identifier (eg, C-RNTI (cell-RNTI)) of the terminal is masked on the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier eg, p-RNTI (p-RNTI)
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries a message known as Downlink Control Information (DCI), and the DCI includes resource allocation and other control information for one terminal or a group of terminals.
  • DCI Downlink Control Information
  • a plurality of PDCCHs may be transmitted in one subframe.
  • Each PDCCH is transmitted using one or more Control Channel Elements (CCEs), and each CCE corresponds to nine sets of four resource elements.
  • CCEs Control Channel Elements
  • the four resource elements are referred to as resource element groups (REGs).
  • Four QPSK symbols are mapped to one REG.
  • the resource element allocated to the reference signal is not included in the REG, so that the total number of REGs within a given OFDM symbol depends on the presence of a cell-specific reference signal.
  • REG is also used for other downlink control channels (PCFICH and PHICH). That is, REG is used as a basic resource unit of the control region.
  • PCFICH downlink control channels
  • PHICH PHICH
  • a PDCCH with a format consisting of n CCEs can only start with a CCE having the same number as a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to channel conditions. For example, if the PDCCH is for a terminal having a good downlink channel (eg, close to a base station), one CCE may be sufficient. However, in case of a terminal having a bad channel (eg, close to a cell boundary), eight CCEs may be used to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to channel conditions.
  • the approach introduced in LTE is to define a limited set of CCE locations where the PDCCH can be located for each terminal.
  • the limited set of CCE locations where the UE can find its own PDCCH may be referred to as a 'search space (SS)'.
  • the search space has a different size according to each PDCCH format.
  • UE-specific and common search spaces are defined separately.
  • the UE-Specific Search Space is set individually for each terminal, and the range of the common search space is known to all terminals. UE-specific and common search spaces may overlap for a given terminal.
  • the base station may not find CCE resources for transmitting the PDCCH to all possible UEs.
  • the UE-specific hopping sequence is applied to the start position of the UE-specific search space in order to minimize the possibility of the above blocking leading to the next subframe.
  • Table 2 shows the sizes of common and UE-specific search spaces.
  • the UE In order to keep the computational load according to the total number of blind detections (BDs) under control, the UE is not required to simultaneously search all defined DCI formats.
  • the terminal In general, within a UE-specific search space, the terminal always searches for formats 0 and 1A. Formats 0 and 1A have the same size and are distinguished by flags in the message.
  • the terminal may be required to receive the additional format (eg, 1, 1B or 2 depending on the PDSCH transmission mode set by the base station).
  • the UE searches for formats 1A and 1C.
  • the terminal may be configured to search for format 3 or 3A.
  • Formats 3 and 3A have the same size as formats 0 and 1A and can be distinguished by scrambled CRCs with different (common) identifiers, rather than terminal-specific identifiers.
  • the information content of transmission mode and DCI formats for configuring multi-antenna technology is listed below.
  • Transmission mode 1 Transmission from a single base station antenna port
  • Transmission mode 7 transmission using a terminal-specific reference signal
  • Format 1B Compact resource allocation for PDSCH (mode 6) using rank-1 closed-loop precoding
  • Format 1D compact resource allocation for PDSCH (mode 5) using multi-user MIMO
  • the UE is required to perform at most 44 blind detections in one subframe. Since checking the same message with different CRC values only requires a small additional computational complexity, checking the same message with different CRC values is not included in the number of blind detections.
  • 5 is a flowchart illustrating the configuration of a PDCCH at a base station.
  • the base station generates control information according to the DCI format.
  • the base station may select one DCI format from among a plurality of DCI formats (DCI formats 1, 2, and N) according to control information to be sent to the terminal.
  • a cyclic redundancy check (CRC) for error detection is attached to control information generated according to each DCI format.
  • CRC cyclic redundancy check
  • an identifier eg, Radio Network Temporary Identifier
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is CRC scrambled with an identifier (eg, RNTI).
  • Table 3 shows examples of identifiers masked on the PDCCH.
  • the PDCCH carries control information for a specific UE. If other RNTIs are used, the PDCCH carries common control information received by all UEs in a cell.
  • rate matching is performed according to a CCE aggregation level allocated to the PDCCH format.
  • modulated coded data is generated.
  • the modulation symbols constituting one PDCCH may have one of 1, 2, 4, and 8 CCE aggregation levels.
  • modulation symbols are mapped to the physical resource elements RE (CCE to RE mapping).
  • FIG. 6 is a flowchart illustrating processing of a PDCCH by a terminal.
  • step S510 the UE demaps a physical resource element to CCE.
  • step S520 the UE demodulates each CCE aggregation level because it does not know which CCE aggregation level it should receive the PDCCH.
  • step S530 the terminal performs rate dematching on the demodulated data. Since the UE does not know what DCI format (or DCI payload size) to receive control information, it performs rate de-matching for each DCI format (or DCI payload size).
  • operation S540 channel decoding is performed on the rate dematched data according to a code rate, and a CRC is checked to detect whether an error occurs. If no error occurs, the UE detects its own PDCCH.
  • step S550 the UE detecting its own PDCCH removes the CRC from the decoded data and obtains control information.
  • a plurality of PDCCHs for a plurality of terminals may be transmitted in a control region of the same subframe.
  • the base station does not provide the terminal with information about where the corresponding PDCCH is in the control region.
  • the UE monitors a set of PDCCH candidates in a subframe and finds its own PDCCH.
  • monitoring means that the UE attempts to decode the received PDCCH candidates according to each DCI format. This is called blind detection.
  • blind detection the UE simultaneously performs identification of the PDCCH transmitted to itself and decoding of control information transmitted through the corresponding PDCCH. For example, when de-masking the PDCCH with C-RNTI, if there is no CRC error, the UE detects its own PDCCH.
  • the number of DCI formats is smaller than the type of control information transmitted using the PDCCH.
  • the DCI format includes a plurality of different information fields. The type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format. In addition, the size of control information matched to the DCI format varies according to the DCI format. Any DCI format may be used for transmitting two or more kinds of control information.
  • Table 4 shows an example of control information transmitted by DCI format 0.
  • bit size of each information field is only an example, and does not limit the bit size of the field.
  • the flag field is an information field for distinguishing between format 0 and format 1A. That is, DCI formats 0 and 1A have the same payload size and are distinguished by flag fields.
  • the resource block allocation and hopping resource allocation fields may have different bit sizes according to a hopping PUSCH or a non-hoppping PUSCH.
  • Resource block allocation and hopping resource allocation fields for the non-hoping PUSCH Provides bits to the resource allocation of the first slot in the uplink subframe. here, Is the number of resource blocks included in the uplink slot and depends on the uplink transmission bandwidth set in the cell. Therefore, the payload size of DCI format 0 may vary depending on the uplink bandwidth.
  • DCI format 1A includes an information field for PDSCH allocation, and the payload size of DCI format 1A may also vary according to downlink bandwidth.
  • DCI format 1A provides reference information bit size for DCI format 0. Therefore, if the number of information bits of DCI format 0 is less than the number of information bits of DCI format 1A, '0' is added to DCI format 0 until the payload size of DCI format 0 is equal to the payload size of DCI format 1A. Is added. The added '0' is filled in the padding field of the DCI format.
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length. For example, in case of a normal CP, a slot may include 7 SC-FDMA symbols.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH and is used to transmit control information.
  • the control information includes HARQ ACK / NACK, Channel Quality Information (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Information
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • CA 8 illustrates a Carrier Aggregation (CA) communication system.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs are different.
  • the control information may be set to be transmitted and received only through a specific CC. This particular CC may be referred to as the primary CC and the remaining CCs may be referred to as the secondary CC.
  • the PDCCH for downlink allocation may be transmitted in DL CC # 0, and the corresponding PDSCH may be transmitted in DL CC # 2.
  • component carrier may be replaced with other equivalent terms (eg, carrier, cell, etc.).
  • a carrier indicator field (CIF) is used.
  • Configuration for the presence or absence of CIF in the PDCCH may be semi-statically enabled by higher layer signaling (eg, RRC signaling) to be UE-specific (or UE group-specific).
  • RRC signaling e.g., RRC signaling
  • ⁇ CIF disabled The PDCCH on the DL CC allocates PDSCH resources on the same DL CC and PUSCH resources on a single linked UL CC.
  • a PDCCH on a DL CC may allocate a PDSCH or PUSCH resource on one DL / UL CC among a plurality of merged DL / UL CCs using the CIF.
  • the base station may allocate a monitoring DL CC (set) to reduce the BD complexity at the terminal side.
  • the UE may perform detection / decoding of the PDCCH only in the corresponding DL CC.
  • the base station may transmit the PDCCH only through the monitoring DL CC (set).
  • the monitoring DL CC set may be set in a terminal-specific, terminal-group-specific or cell-specific manner.
  • each DL CC may transmit a PDCCH scheduling a PDSCH of each DL CC without CIF according to the LTE PDCCH rule.
  • the CIF is enabled by higher layer signaling, only the DL CC A can transmit the PDCCH scheduling the PDSCH of another DL CC as well as the PDSCH of the DL CC A using the CIF.
  • PDCCH is not transmitted in DL CCs B and C that are not configured as monitoring DL CCs.
  • the "monitoring DL CC" may be replaced with equivalent terms such as a monitoring carrier, a monitoring cell, a scheduling carrier, a scheduling cell, a serving carrier, a serving cell, and the like.
  • the DL CC through which the PDSCH corresponding to the PDCCH is transmitted and the UL CC through which the PUSCH corresponding to the PDCCH is transmitted may be referred to as a scheduled carrier, a scheduled cell, or the like.
  • FDD DL carrier and TDD DL subframes are used for transmission of PDCCH, PHICH, PCFICH, etc., which are physical channels for transmitting various control information as described in FIG.
  • the remaining OFDM symbols are used for PDSCH transmission.
  • the number of symbols used for control channel transmission in each subframe is delivered to the UE dynamically or semi-statically through RRC signaling through a physical channel such as PCFICH.
  • the n value may be set from 1 symbol up to 4 symbols according to subframe characteristics and system characteristics (FDD / TDD, system band, etc.).
  • PDCCH which is a physical channel for transmitting DL / UL scheduling and various control information in the existing LTE system
  • PDCCH has limitations such as transmission through limited OFDM symbols. Therefore, the introduction of enhanced PDCCH (E-PDCCH), which is more freely multiplexed with PDSCH and FDM / TDM scheme, is considered.
  • E-PDCCH enhanced PDCCH
  • FIG. 10 shows an example of allocating a downlink physical channel to a subframe.
  • a control region (see FIG. 4) of a subframe may be allocated a PDCCH (legacy PDCCH) according to existing LTE / LTE-A.
  • the L-PDCCH region means a region to which a legacy PDCCH can be allocated.
  • the L-PDCCH region may mean a control region, a control channel resource region (ie, a CCE resource) to which a PDCCH can be actually allocated in the control region, or a PDCCH search space.
  • a PDCCH may be additionally allocated in a data region (eg, a resource region for PDSCH, see FIG. 4).
  • the PDCCH allocated to the data region is called an E-PDCCH.
  • the figure shows a case where one E-PDCCH exists in one slot. However, as an example, the E-PDCCH may exist in subframe units (ie, over two slots).
  • the base station terminal may be replaced with a base station relay or a relay terminal.
  • the relay and the terminal may be generalized to the receiving end.
  • the relay operates as a receiver, the E-PDCCH may be replaced with a relay-PDCCH (R-PDCCH).
  • E-PDCCH carries DCI.
  • the E-PDCCH may carry downlink scheduling information and uplink scheduling information.
  • the E-PDCCH / PDSCH process and the E-PDCCH / PUSCH process are the same / similar to those described with reference to steps S107 and S108 of FIG. 1. That is, the terminal may receive the E-PDCCH and may receive data / control information through a PDSCH corresponding to the E-PDCCH.
  • the UE may receive the E-PDCCH and transmit data / control information through a PUSCH corresponding to the E-PDCCH.
  • E-PDCCH transmission processing eg, channel encoding, interleaving, multiplexing, etc.
  • a PDCCH candidate region (hereinafter, referred to as a PDCCH search space) is reserved in a control region in advance and a method of transmitting a PDCCH of a specific terminal to a portion thereof is selected. Therefore, the UE can obtain its own PDCCH in the PDCCH search space through blind detection. Similarly, the E-PDCCH may also be transmitted over some or all of the pre-reserved resources.
  • FIG. 11 illustrates a process of resource allocation and E-PDCCH reception for an E-PDCCH.
  • the base station transmits E-PDCCH resource allocation (RA) information to the terminal (S1210).
  • the E-PDCCH RA information may include RB (or Virtual Resource Block (VRB)) allocation information.
  • RB allocation information may be given in units of RBs or in units of resource block groups (RBGs).
  • RBGs comprise two or more consecutive RBs.
  • the E-PDCCH RA information may be transmitted using higher layer (eg, RRC) signaling.
  • the E-PDCCH RA information is used to pre-reserve the E-PDCCH resource (area). Thereafter, the base station transmits the E-PDCCH to the terminal (S1220).
  • the E-PDCCH may be transmitted in some areas or all areas of the reserved E-PDCCH resources (eg, M RBs) in step S1210. Therefore, the UE monitors a resource (area) (hereinafter, E-PDCCH search space, simply search space) in which the E-PDCCH can be transmitted (S1230).
  • E-PDCCH search space may be given as part of the RB set allocated in step S1210.
  • monitoring includes blindly detecting a plurality of E-PDCCH candidates in the search space.
  • the PDSCH scheduling degree of freedom for other UEs may be lowered, or as a result, resources that are not allocated to the E-PDCCH or PDSCH may be discarded.
  • the L-PDCCH region may mean a control region, a control channel resource region (that is, a CCE resource), or a PDCCH search space in which a PDCCH may be actually allocated in the control region, the control region according to the context.
  • the E-PDCCH region may be a data region (see FIG. 4) or a control channel resource region (i.e., a VRB resource allocated by an upper layer; see FIG. 11) in which the PDCCH may actually be allocated within the data region according to the context.
  • Or may mean an E-PDCCH search space.
  • the present invention will be described based on the CCE aggregation level for PDCCH encoding defined in the existing 3GPP LTE / LTE-A, the number of PDCCH candidates to perform blind detection (BD), the DCI format for DL / UL schedule, etc. It is noted that the CCE merge level, PDCCH candidate number, DCI format, etc., which are added / changed to the CCE may be extended / applied in a similar manner.
  • legacy PDCCH and E-PDCCH may be collectively referred to as PDCCH unless otherwise specified.
  • three DCI formats may optionally include (i) DL-dedicated DCI formats (e.g. DCI format 2) used only for DL scheduling, (ii) DL / UL scheduling while sharing one DCI payload size.
  • DL / UL-common DCI format eg, DCI format 0 / 1A
  • UL-only DCI format eg, DCI format 4
  • Method 1 SS distribution based on CCE merge level
  • the SS may be distributedly allocated to the L-PDCCH region and the E-PDCCH region according to the CCE aggregation level (that is, the CCE level).
  • the CCE level the CCE aggregation level
  • DMRS DeModulation Reference Signal
  • the distinction between low and high CCE levels may vary depending on the situation.
  • which PDCCH region eg, L-PDCCH or E-PDCCH
  • which PCECH region (eg, L-PDCCH or E-PDCCH) for which CCE level is configured for each subframe may be set in advance through RRC signaling.
  • the SS for a certain CCE level is assigned to a certain PDCCH region (L-PDCCH or E-PDCCH).
  • L-PDCCH or E-PDCCH PDCCH region
  • E-PDCCH E-PDCCH
  • the SS may be allocated to the L-PDCCH region or the E-PDCCH region according to the CCE level.
  • PDCCH candidates may be divided into two sets for each CCE merging level (eg, divided into two), and SS for each set may be allocated to the L-PDCCH region and the E-PDCCH region.
  • which PDCCH region for example, L-PDCCH or E-PDCCH
  • which PDCCH region for example, L-PDCCH or E-PDCCH
  • which PDCCH region for example, L-PDCCH or E-PDCCH
  • PDCCH region eg, L-PDCCH or E-PDCCH
  • which PDCCH region (eg, L-PDCCH or E-PDCCH) of SSs for how many PDCCH candidates for each CCE level for each subframe may be set in advance through RRC signaling or the like.
  • PDCCH region eg, L-PDCCH region or E-PDCCH region
  • PDCCH candidates are divided into two sets at the corresponding CCE level, and SS for each set is allocated to the L-PDCCH region and the E-PDCCH region.
  • X1,1 to X8,2 are integers of 1 or more.
  • PDCCH candidates ie, SSs
  • PDCCH candidates may be allocated only to the L-PDCCH region or the E-PDCCH region.
  • the SS for the DCI format may be distributedly allocated to the L-PDCCH region and the E-PDCCH region according to the DCI format usage (eg, DL-only or DL / UL-common or UL-only).
  • the DCI format usage eg, DL-only or DL / UL-common or UL-only.
  • which PDCCH region (eg, L-PDCCH region or E-PDCCH region) for which DCI format is configured may be set in advance through RRC signaling.
  • the PDCCH region (eg, L-PDCCH region or E-PDCCH region) for which DCI format is configured for each subframe may be set in advance through RRC signaling.
  • the PDSCH may be scheduled including the RB or RBG region to which the corresponding E-PDCCH belongs.
  • the UE may receive DL data (ie, PDSCH) through the remaining portion of the resource allocated for the PDSCH except for the region where the E-PDCCH is detected.
  • resources available in the RB or RBG region to which the corresponding E-PDCCH belongs ie, excluding the region in which the corresponding E-PDCCH is detected
  • Additional signaling may be required for this purpose.
  • the SS for the DL-only DCI format is allocated to the E-PDCCH region, and the DL-non-dedicated DCI format (ie DL / UL-common). Or SS for UL-only) may be allocated to the L-PDCCH region (Method 1).
  • 14 (a) illustrates scheme 1.
  • a to C are the number of PDCCH candidates for the corresponding DCI format.
  • the number of PDCCH candidates for the corresponding DCI format may vary depending on the configured transmission mode.
  • the control channel overhead for the DL / UL-dedicated DCI format is existing. Even more weighted.
  • the SS for the DL / UL-dedicated DCI format may be allocated to the E-PDCCH region, and the SS for the DL / UL-common DCI format may be allocated to the L-PDCCH region (Method 2).
  • 14 (b) illustrates an alternative 2.
  • a to C are the number of PDCCH candidates for the corresponding DCI format.
  • the number of PDCCH candidates for the corresponding DCI format may vary depending on the configured transmission mode.
  • the SS for each DCI format may be an L-PDCCH region, an E-PDCCH region in a first slot (hereinafter, referred to as a 1st slot E-PDCCH region), or an E-PDCCH region in a second slot ( Hereinafter, it may be allocated to a 2nd slot E-PDCCH region (Method 3).
  • a 1st slot E-PDCCH region an E-PDCCH region in a first slot
  • E-PDCCH region in a second slot hereinafter, it may be allocated to a 2nd slot E-PDCCH region (Method 3).
  • the SS for DL / UL-common DCI format is connected to the base station.
  • the L-PDCCH region may be allocated to prevent misalignment between terminals.
  • the SS for the DL-only DCI format may be allocated to the 1st slot E-PDCCH region.
  • an SS for the UL-only DCI format may be allocated to the 2nd slot E-PDCCH region.
  • the entire SS configuration may vary depending on the type of transmission mode and the DCI format corresponding thereto. For example 3, when the UE is set to a transmission mode using only the DL / UL-common DCI format and the DL-only DCI format, the SS for the DL / UL-common DCI format is allocated to the L-PDCCH region. The SS for the DL-only DCI format is allocated to the 1st slot E-PDCCH region, and the SS may not be configured in the E-PDCCH region in the 2nd slot.
  • the SS for the DL / UL-common DCI format is allocated to the L-PDCCH region and the UL-only DCI.
  • the SS for the format is allocated to the E-PDCCH region in the 2nd slot, and the SS may not be configured in the E-PDCCH region in the 1st slot.
  • Methods 1 to 3 can be generalized as follows. Specifically, according to the CCE level (method 1), PDCCH candidate partitioning (method 2), and DCI format (method 3), the corresponding SS may be distributedly allocated to the L / E-PDCCH region combination (eg, options 1 to 7). have. For example, SSs for different CCE levels / PDCCH candidate partitions / DCI formats may be distributedly allocated to different PDCCH regions according to options 1 to 7.
  • SS allocation proposed in the present invention may be configured UE-specifically and / or independently for each CC. Through this, the PDCCH loads for the plurality of terminals and the plurality of CCs can be more efficiently and flexibly distributed (in a direction of minimizing unused resources). In addition, PDCCH transmission can be more stably and efficiently considered in consideration of interference effects in a specific L / E-PDCCH region according to each UE and each CC situation.
  • the SS for the UL-Undedicated DCI Format (i.e., DL / UL-Common DCI Format or DL-Dedicated DCI Format) is allocated to the L-PDCCH region in consideration of the decoding latency for the DL Grant PDCCH. Only the SS for the UL-only DCI format may be allocated to the 2nd slot E-PDCCH region (method 3 based). Even for option 6, the SS for the UL-Undedicated DCI format (i.e., DL / UL-Common DCI format or DL-Dedicated DCI format) is considered in the 1st slot E-PDCCH region in consideration of the decoding latency for the DL Grant PDCCH. Allocated and only the SS for the UL-only DCI format may be allocated to the 2nd slot E-PDCCH region (method 3 based).
  • FIG. 15 illustrates a downlink signal processing process according to an embodiment of the present invention. The figure is illustrated from the viewpoint of the terminal, and a corresponding operation may be performed at the base station.
  • the UE may receive a subframe having an L-PDCCH region and an E-PDCCH region (S1502).
  • the L-PDCCH region is set on the control region of the subframe
  • the E-PDCCH region is set on the data region of the subframe (see Fig. 4).
  • the number of OFDM symbols used in the L-PDCCH region is the same as the number of OFDM symbols used in the control region and may be indicated in every subframe through the PCFICH.
  • the position of the first OFDM symbol at which the E-PDCCH region starts can be confirmed using PCFICH or through RRC signaling.
  • the frequency resource of the E-PDCCH region may be given as an RB set allocated by higher layer signaling (see FIG.
  • the UE may monitor one or more search spaces in the L-PDCCH region and / or the E-PDCCH region for PDCCH reception (S1504). Monitoring includes blind decoding PDCCH candidates in the search space.
  • the UE may perform an operation according to the detected PDCCH (S1506). For example, the UE may receive a PDSCH corresponding to the PDCCH or transmit a PUSCH corresponding to the PDCCH.
  • each search space may be allocated to the L-PDCCH region and / or the E-PDCCH region according to a predetermined criterion (eg, methods 1 to 3).
  • ACK / Semi-static in advance through RRC signaling or the like. It may be necessary to reserve NACK resources (ie, explicit ACK / NACK resources). In this case, a plurality of ACK / NACK resources may be reserved, and the ACK / NACK resources to be actually used may be indicated through the DL grant PDCCH. This is because, according to the existing ACK / NACK resource allocation method, ACK / NACK resources for a corresponding PDSCH are implicitly inferred from the first CCE index used for PDCCH transmission, but CCE is not defined in the E-PDCCH region.
  • the ACK / NACK information for the PDSCH scheduled by the corresponding PDCCH is linked to the CCE (preferably the first CCE index) of the corresponding PDCCH. It may be transmitted using dynamic ACK / NACK resources (ie, implicit ACK / NACK resources).
  • the ACK / NACK information for the PDSCH corresponding to the DL grant PDCCH may be transmitted using an explicit ACK / NACK resource.
  • one CC may receive DL / UL scheduling only from one specific CC (ie, scheduling CC). That is, the scheduled CC may receive the DL / UL grant PDCCH for the corresponding scheduled CC only from the scheduling CC.
  • the scheduling CC can basically perform DL / UL scheduling for itself. Therefore, all SSs for the PDCCH scheduling the scheduling / picched CCs exist in the control channel region of the scheduling CC.
  • cross-CC scheduling is configured, the following may be considered for SS distribution.
  • the cross-CC scheduling operation may be suitable when the control channel region, that is, the L-PDCCH region, of the scheduled CC (in the terminal view) is not suitable for PDCCH transmission due to interference effects and channel conditions.
  • -It is additionally to utilize available resources in the RB or RBG region to which the E-PDCCH scheduling the scheduled CC on the scheduling CC (ie, resources other than the region where the corresponding E-PDCCH is detected) for PDSCH scheduling of another UE. It may not be easy without signaling.
  • each The SS to be allocated to the E-PDCCH region for each CC may be considered to be configured on the E-PDCCH region of each CC (see FIG. 16).
  • the DCI format transmitted through the SS allocated to the E-PDCCH region may not include the CIF field (even when cross-CC scheduling is configured).
  • RRC is configured to configure the SS for each CC (either only in the L-PDCCH region, only in the E-PDCCH region, or a combination of the L / E-PDCCH regions in which the above methods are applied). It can be set independently for each CC through signaling. Even in this case, all SSs to be allocated to the L-PDCCH region for each CC are configured on the L-PDCCH region of the scheduling CC, and SSs to be allocated to the E-PDCCH region for each CC (CIF for the DCI format transmitted through this). Field may be omitted) may be configured on the E-PDCCH region of each CC (see FIG. 17).
  • FIG. 18 illustrates a base station, a relay, and a terminal applicable to the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • the wireless communication system includes a relay
  • the base station or the terminal may be replaced with a relay.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • embodiments of the present invention have been mainly described based on a signal transmission / reception relationship between a relay and a base station. This transmission / reception relationship is extended to the same / similarly for signal transmission / reception between the terminal and the base station or the terminal and the relay.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system. Specifically, the present invention can be applied to a method for transmitting uplink control information and an apparatus therefor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 무선 통신 시스템에서 하향링크 신호를 수신하는 방법 및 이를 위한 장치에 있어서, 복수의 OFDM 심볼을 포함하는 서브프레임을 수신하는 단계; 상기 단말에게 지시된 PDCCH 수신을 위해, 상기 서브프레임 상에 구성된 복수의 검색 공간을 모니터링 하는 단계; 및 상기 단말에게 지시된 PDCCH가 검출된 경우, 검출된 PDCCH에 따른 동작을 수행하는 단계를 포함하고, 각각의 검색 공간은 소정 조건에 따라 제1 자원 영역 및 제2 자원 영역 중 적어도 하나에 구성되며, 상기 제1 자원 영역과 상기 제2 자원 영역은 시간 도메인 상에서 특정 OFDM 심볼을 경계로 분리되는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 제어 정보를 전송하는 방법 및 장치에 관한 것이다. 무선 통신 시스템은 캐리어 병합(Carrier Aggregation, CA)을 지원할 수 있다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 통신 시스템에서 제어 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 제어 정보를 효율적으로 전송하기 위한 채널 포맷, 자원 할당, 신호 처리, 및 이를 위한 장치를 제공하는데 있다. 본 발명의 또 다른 목적은 제어 정보를 전송하기 위한 자원을 효율적으로 할당하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법에 있어서, 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하는 서브프레임(subframe)을 수신하는 단계; 상기 단말에게 지시된 PDCCH(Physical Downlink Control CHannel) 수신을 위해, 상기 서브프레임 상에 구성된 복수의 검색 공간(Search Space)을 모니터링(monitoring) 하는 단계; 및 상기 단말에게 지시된 PDCCH가 검출된 경우, 검출된 PDCCH에 따른 동작을 수행하는 단계를 포함하고, 각각의 검색 공간은 소정 조건에 따라 제1 자원 영역 및 제2 자원 영역 중 적어도 하나에 구성되며, 상기 제1 자원 영역과 상기 제2 자원 영역은 시간 도메인(time domain) 상에서 특정 OFDM 심볼을 경계로 분리되는 방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용하기 위한 단말에 있어서, 무선 주파수(Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하는 서브프레임을 수신하고, 상기 단말에게 지시된 PDCCH(Physical Downlink Control CHannel) 수신을 위해, 상기 서브프레임 상에 구성된 복수의 검색 공간을 모니터링 하며, 상기 단말에게 지시된 PDCCH가 검출된 경우, 검출된 PDCCH에 따른 동작을 수행하도록 구성되고, 각각의 검색 공간은 소정 조건에 따라 제1 자원 영역 및 제2 자원 영역 중 적어도 하나에 구성되며, 상기 제1 자원 영역과 상기 제2 자원 영역은 시간 도메인 상에서 특정 OFDM 심볼을 경계로 분리되는 단말이 제공된다.
바람직하게, CCE 병합 레벨(Control Channel Element aggregation level)이 제1 값 이하인 복수의 PDCCH 후보(candidate)를 위한 검색 공간은 상기 제1 자원 영역에 구성되고, 상기 CCE 병합 레벨이 제2 값 이상인 복수의 PDCCH 후보를 위한 검색 공간은 상기 제2 자원 영역에 구성된다.
바람직하게, 각 CCE 병합 레벨에서 복수의 PDCCH 후보는 두 개의 후보 세트로 분할되고, 상기 두 개의 후보 세트 중 제1 후보 세트를 위한 검색 공간은 상기 제1 자원 영역에 구성되며, 제2 후보 세트를 위한 검색 공간은 상기 제2 자원 영역에 구성된다.
바람직하게, 제1 타입 DCI(Downlink Control Information) 포맷(format)을 위한 검색 공간은 상기 제1 자원 영역에 구성되고, 제2 타입 DCI 포맷을 위한 검색 공간은 상기 제2 자원 영역에 구성되며, 상기 제1 타입 DCI는 상향링크 스케줄링에 사용되는 DCI 포맷을 포함하고, 상기 제2 타입 DCI는 하향링크 스케줄링에만 사용되는 DCI 포맷을 포함한다.
바람직하게, 상기 제1 자원 영역은 상기 특정 OFDM 심볼을 기준으로 상기 서브프레임의 앞 부분에 위치하고, 상기 제2 자원 영역은 상기 특정 OFDM 심볼을 기준으로 상기 서브프레임의 뒷 부분에 위치하며, 상기 제2 자원 영역은 하향링크 공유 채널을 위한 자원과 FDM(Frequency Division Multiplexing) 방식으로 다중화 된다.
바람직하게, 상기 제1 자원 영역의 기본 자원 단위는 REG(Resource Element Group)이고, 상기 제2 자원 영역의 기본 자원 단위는 RB(Resource Block)이다.
바람직하게, 상기 OFDM 심볼은 PCFICH(Physical Control Format Indicator CHannel) 신호 또는 RRC(Radio Resource Control) 시그널링을 통해 지시된다.
본 발명에 의하면, 무선 통신 시스템에서 제어 정보를 효율적으로 전송할 수 있다. 또한, 제어 정보를 효율적으로 전송하기 위한 채널 포맷, 자원 할당, 신호 처리 방법을 제공할 수 있다. 또한, 제어 정보 전송을 위한 자원을 효율적으로 할당할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯(downlink slot)의 자원 그리드(resource grid)를 예시한다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 기지국에서 PDCCH를 구성하는 과정을 예시한다.
도 6은 단말이 PDCCH를 처리하는 과정을 예시한다.
도 7은 상향링크 서브프레임의 구조를 예시한다.
도 8은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 9는 크로스-캐리어 스케줄링(cross-carrier scheduling)을 예시한다.
도 10는 서브프레임의 데이터 영역에 PDCCH를 할당하는 예를 나타낸다.
도 11은 E-PDCCH를 위한 자원 할당과 PDSCH 수신 과정을 예시한다.
도 12~14는 본 발명의 실시예에 따른 검색 공간(Search Space, SS) 분산 방안을 예시한다.
도 15는 본 발명의 실시예에 따른 하향링크 신호 처리 방안을 예시한다.
도 16~17은 본 발명의 실시예에 따른 검색 공간 구성 방안을 예시한다.
도 18은 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID (cell identity)등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향/하향링크 데이터 패킷 전송은 서브프레임 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 도메인(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDM을 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 지칭될 수 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장 CP(extended CP)와 보통 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 보통 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 보통 CP인 경우보다 적다. 예를 들어, 확장 CP의 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다.
보통 CP가 사용되는 경우, 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호 구간(Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성된다. 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯을 위한 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 여기에서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 도메인에서 12개의 부반송파를 포함하는 것으로 예시되었다. 그러나, 본 발명이 이로 제한되는 것은 아니다. 자원 그리드 상에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12 7 RE들을 포함한다. 하향링크 슬롯에 포함된 RB의 개수 NDL는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임 내에서 첫 번째 슬롯의 앞에 위치한 최대 3(4)개의 OFDM 심볼이 제어 채널이 할당되는 제어 영역에 해당한다. 남은 OFDM 심볼은 PDSCH(physical downlink shared chancel)가 할당되는 데이터 영역에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(physical control format indicator channel), PDCCH(physical downlink control channel), PHICH(physical hybrid ARQ indicator channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되며 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답이고 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 DCI(downlink control information)라고 지칭된다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 단말 그룹을 위한 상향링크 전송 전력 제어 명령(Transmit Power Control Command)를 포함한다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷(format)은 상향링크용으로 포맷 0, 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등의 포맷이 정의되어 있다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 예를 들어, DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당(assignment), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), HARQ 프로세스 번호, PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다. 따라서, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈(size)가 달라진다. 한편, 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다. 예를 들어, DCI 포맷 0/1A는 DCI 포맷 0 또는 DCI 포맷 1을 나르는데 사용되며, 이들은 플래그 필드(flag field)에 의해 구분된다.
PDCCH는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보(system information), PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 임의의 단말 그룹 내에서 개별 단말에 대한 전송 전력 제어 명령, VoIP(voice over IP)의 활성화(activation) 등을 나른다. 제어 영역 내에서 복수의 PDCCH가 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 CCE(consecutive control channel element)의 집합(aggregation) 상에서 전송된다. CCE는 무선 채널의 상태에 따라 소정 부호율 (coding rate)의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 REG(resource element group)에 대응한다. PDCCH의 포맷 및 가용한 PDCCH의 비트 수는 CCE의 개수와 CCE에 의해 제공되는 부호율 사이의 상관 관계에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, CRC(cyclic redundancy check)를 제어 정보에 부가한다. CRC는 PDCCH의 소유자 또는 사용 용도에 따라 유일 식별자(RNTI(radio network temporary identifier)로 지칭됨)로 마스킹 된다. PDCCH가 특정 단말을 위한 것이면, 해당 단말의 유일 식별자(예, C-RNTI (cell-RNTI))가 CRC에 마스킹 된다. 다른 예로, PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시 식별자(예, P-RNTI(paging-RNTI))가 CRC에 마스킹 된다. PDCCH가 시스템 정보 (보다 구체적으로, 후술하는 SIB(system information block))에 관한 것이면, 시스템 정보 식별자(예, SI-RNTI(system information RNTI))가 CRC에 마스킹 된다. 단말의 랜덤 접속 프리앰블의 전송에 대한 응답인, 랜덤 접속 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹 된다.
PDCCH는 DCI(Downlink Control Information)로 알려진 메시지를 나르고, DCI는 하나의 단말 또는 단말 그룹을 위한 자원 할당 및 다른 제어 정보를 포함한다. 일반적으로, 복수의 PDCCH가 하나의 서브프레임 내에서 전송될 수 있다. 각각의 PDCCH는 하나 이상의 CCE(Control Channel Element)를 이용해 전송되고, 각각의 CCE는 9세트의 4개 자원요소에 대응한다. 4개 자원요소는 REG(Resource Element Group)로 지칭된다. 4개의 QPSK 심볼이 한 REG에 맵핑된다. 참조 신호에 할당된 자원요소는 REG에 포함되지 않으며, 이로 인해 주어진 OFDM 심볼 내에서 REG의 총 개수는 셀-특정(cell-specific) 참조 신호의 존재 여부에 따라 달라진다. REG 개념(즉, 그룹 단위 맵핑, 각 그룹은 4개의 자원요소를 포함)은 다른 하향링크 제어 채널 (PCFICH 및 PHICH)에도 사용된다. 즉, REG는 제어 영역의 기본 자원 단위로 사용된다. 4개의 PDCCH 포맷이 표 1에 나열된 바와 같이 지원된다.
표 1
PDCCH 포맷 CCE의 개수 (n) REG의 개수 PDCCH 비트의 개수
0123 1248 9183672 72144288576
CCE들은 연속적으로 번호가 매겨지어 사용되고, 디코딩 프로세스를 단순화 하기 위해, n CCEs로 구성된 포맷을 갖는 PDCCH는 n의 배수와 동일한 수를 갖는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송을 위해 사용되는 CCE의 개수는 채널 조건에 따라 기지국에 의해 결정된다. 예를 들어, PDCCH가 좋은 하향링크 채널(예, 기지국에 가까움)를 갖는 단말을 위한 것인 경우, 하나의 CCE로도 충분할 수 있다. 그러나, 나쁜 채널(예, 셀 경계에 가까움)을 갖는 단말의 경우, 충분한 로버스트(robustness)를 얻기 위해 8개의 CCE가 사용될 수 있다. 또한, PDCCH의 파워 레벨이 채널 조건에 맞춰 조절될 수 있다.
LTE에 도입된 방안은 각각의 단말을 위해 PDCCH가 위치할 수 있는 제한된 세트의 CCE 위치를 정의하는 것이다. 단말이 자신의 PDCCH를 찾을 수 있는 제한된 세트의 CCE 위치는 '검색 공간(Search Space, SS)' 으로 지칭될 수 있다. LTE에서, 검색 공간은 각각의 PDCCH 포맷에 따라 다른 사이즈를 갖는다. 또한, UE-특정(UE-specific) 및 공통(common) 검색 공간이 별도로 정의된다. UE-특정 검색 공간(UE-Specific Search Space)은 각 단말을 위해 개별적으로 설정되고, 공통 검색 공간의 범위는 모든 단말에게 알려진다. UE-특정 및 공통 검색 공간은 주어진 단말에 대해 오버랩 될 수 있다. 상당히 작은 검색 공간을 가진 경우, 특정 단말을 위한 검색 공간에서 일부 CCE 위치가 할당된 경우 남는 CCE가 없기 때문에, 주어진 서브프레임 내에서 기지국은 가능한 모든 단말에게 PDCCH를 전송할 CCE 자원들을 찾지 못할 수 있다. 위와 같은 블록킹이 다음 서브프레임으로 이어질 가능성을 최소화하기 위하여 UE-특정 검색 공간의 시작 위치에 단말-특정 호핑 시퀀스가 적용된다.
표 2는 공통 및 UE-특정 검색 공간의 사이즈를 나타낸다.
표 2
PDCCH 포맷 CCE의 개수 (n) 공통 검색 공간 내에서 후보의 개수 UE-특정 검색 공간 내에서 후보의 개수
0123 1248 --42 6622
블라인드 검출(Blind Decoding, BD)의 총 회수에 따른 계산 부하를 통제 하에 두기 위해, 단말은 정의된 모든 DCI 포맷을 동시에 검색하도록 요구되지 않는다. 일반적으로, UE-특정 검색 공간 내에서 단말은 항상 포맷 0과 1A를 검색한다. 포맷 0과 1A는 동일 사이즈를 가지며 메시지 내의 플래그에 의해 구분된다. 또한, 단말은 추가 포맷을 수신하도록 요구될 수 있다 (예, 기지국에 의해 설정된 PDSCH 전송 모드에 따라 1, 1B 또는 2). 공통 검색 공간에서 단말은 포맷 1A 및 1C를 서치한다. 또한, 단말은 포맷 3 또는 3A를 서치하도록 설정될 수 있다. 포맷 3 및 3A는 포맷 0 및 1A와 동일한 사이즈를 가지며, 단말-특정 식별자 보다는, 서로 다른 (공통) 식별자로 CRC를 스크램블함으로써 구분될 수 있다. 다중-안테나 기술을 구성하기 위한 전송 모드와 DCI 포맷들의 정보 컨텐츠를 아래에 나열하였다.
전송 모드(Transmission Mode)
● 전송 모드 1: 단일 기지국 안테나포트로부터의 전송
● 전송 모드 2: 전송 다이버시티
● 전송 모드 3: 개-루프 공간 다중화
● 전송 모드 4: 폐-루프 공간 다중화
● 전송 모드 5: 다중-사용자 MIMO
● 전송 모드 6: 폐-루프 랭크-1 프리코딩
● 전송 모드 7: 단말-특정 참조 신호를 이용한 전송
DCI 포맷
● 포맷 0: PUSCH 전송 (상향링크)을 위한 자원 그랜트
● 포맷 1: 단일 코드워드 PDSCH 전송 (전송 모드 1, 2 및 7)을 위한 자원 할당
● 포맷 1A: 단일 코드워드 PDSCH (모든 모드)를 위한 자원 할당의 콤팩트 시그널링
● 포맷 1B: 랭크-1 폐-루프 프리코딩을 이용하는 PDSCH (모드 6)를 위한 콤팩트 자원 할당
● 포맷 1C: PDSCH (예, 페이징/브로드캐스트 시스템 정보)를 위한 매우 콤팩트한 자원 할당
● 포맷 1D: 다중-사용자 MIMO를 이용하는 PDSCH (모드 5)를 위한 콤팩트 자원 할당
● 포맷 2: 폐-루트 MIMO 동작의 PDSCH (모드 4)를 위한 자원 할당
● 포맷 2A: 개-루프 MIMO 동작의 PDSCH (모드 3)를 위한 자원 할당
● 포맷 3/3A: PUCCH 및 PUSCH를 위해 2-비트/1-비트 파워 조정 값을 갖는 파워 콘트롤 커맨드
상술한 내용을 고려할 때, 단말은 한 서브프레임 내에서 최대 44번의 블라인드 검출을 수행할 것이 요구된다. 동일 메시지를 서로 다른 CRC 값으로 체크하는 것은 작은 부가적 계산 복잡도만을 요구하므로, 동일 메시지를 서로 다른 CRC 값으로 체크하는 것은 블라인드 검출 회수에 포함되지 않는다.
도 5는 기지국에서 PDCCH를 구성하는 것을 나타낸 흐름도이다.
도 5를 참조하면, 기지국은 DCI 포맷에 따라 제어 정보를 생성한다. 기지국은 단말로 보내려는 제어 정보에 따라 복수의 DCI 포맷(DCI format 1, 2, , N) 중 하나의 DCI 포맷을 선택할 수 있다. 단계 S410에서, 각각의 DCI 포맷에 따라 생성된 제어 정보에 에러 검출(error detection)을 위한 CRC(Cyclic Redundancy Check)를 부착한다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 식별자(예, RNTI(Radio Network Temporary Identifier))가 마스킹 된다. 다른 말로, PDCCH는 식별자(예, RNTI)로 CRC 스크램블 된다.
표 3은 PDCCH에 마스킹 되는 식별자들의 예를 나타낸다.
표 3
타입 식별자 설명
단말-특정 C-RNTI,temporary C-RNTI, semi-persistent C-RNTI 단말의 유일(unique) 식별을 위해 사용됨
공통 P-RNTI 페이징 메시지를 위해 사용됨
SI-RNTI 시스템 정보를 위해 사용됨
RA-RNTI 랜덤 접속 응답을 위해 사용됨
C-RNTI, 임시 C-RNTI 또는 반지속적 C-RNTI가 사용되면 PDCCH는 해당하는 특정 단말을 위한 제어 정보를 나르고, 그 외 다른 RNTI가 사용되면 PDCCH는 셀 내 모든 단말이 수신하는 공용 제어 정보를 나른다. 단계 S420에서, CRC가 부가된 제어 정보에 채널 부호화(channel coding)를 수행하여 부호화된 데이터(codeword)를 생성한다. 단계 S430에서, PDCCH 포맷에 할당된 CCE 집단 레벨(aggregation level)에 따른 전송률 매칭(rate matching)을 수행한다. 단계 S440에서, 부호화된 데이터를 변조하여 변조 심볼들을 생성한다. 하나의 PDCCH를 구성하는 변조 심볼들은 CCE 집단 레벨이 1, 2, 4, 8 중 하나일 수 있다. 단계 S450에서, 변조 심볼들을 물리적인 자원요소(RE)에 맵핑(CCE to RE mapping)한다.
도 6은 단말이 PDCCH를 처리하는 것을 나타낸 흐름도이다.
도 6을 참조하면, 단계 S510에서, 단말은 물리적인 자원요소를 CCE로 디맵핑(CCE to RE demapping)한다. 단계 S520에서, 단말은 자신이 어떤 CCE 집단 레벨로 PDCCH를 수신해야 하는지 모르므로 각각의 CCE 집단 레벨에 대해서 복조(Demodulation)한다. 단계 S530에서, 단말은 복조된 데이터에 전송률 디매칭(rate dematching)을 수행한다. 단말은 자신이 어떤 DCI 포맷(또는 DCI 페이로드 사이즈)을 가진 제어 정보를 수신해야 하는지 모르기 때문에 각각의 DCI 포맷(또는 DCI 페이로드 사이즈)에 대해서 전송률 디매칭을 수행한다. 단계 S540에서, 전송률 디매칭된 데이터에 부호율에 따라 채널 복호화를 수행하고, CRC를 체크하여 에러 발생 여부를 검출한다. 에러가 발생하지 않으면, 단말은 자신의 PDCCH를 검출한 것이다. 만일, 에러가 발생하면, 단말은 다른 CCE 집단 레벨이나, 다른 DCI 포맷(또는 DCI 페이로드 사이즈)에 대해서 계속해서 블라인드 검출을 수행한다. 단계 S550에서, 자신의 PDCCH를 검출한 단말은 복호화된 데이터로부터 CRC를 제거하고 제어 정보를 획득한다.
복수의 단말에 대한 복수의 PDCCH가 동일 서브프레임의 제어 영역 내에서 전송될 수 있다. 기지국은 단말에게 해당 PDCCH가 제어 영역의 어디에 있는지에 관한 정보를 제공하지 않는다. 따라서, 단말은 서브프레임 내에서 PDCCH 후보(candidate)들의 집합을 모니터링 하여 자신의 PDCCH를 찾는다. 여기서, 모니터링(monitoring)이란 단말이 수신된 PDCCH 후보들을 각각의 DCI 포맷에 따라 복호화을 시도하는 것을 말한다. 이를 블라인드 검출(blind detection)이라 한다. 블라인드 검출을 통해, 단말은 자신에게 전송된 PDCCH의 식별(identification)과 해당 PDCCH를 통해 전송되는 제어 정보의 복호화를 동시에 수행한다. 예를 들어, C-RNTI로 PDCCH를 디마스킹(de-masking) 한 경우, CRC 에러가 없으면 단말은 자신의 PDCCH를 검출한 것이다.
한편, 블라인드 검출의 오버헤드(overhead)를 감소시키기 위하여, PDCCH를 이용하여 전송되는 제어 정보의 종류보다 DCI 포맷의 개수가 더 작게 정의된다. DCI 포맷은 복수의 서로 다른 정보 필드를 포함한다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 또한, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈가 달라진다. 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다.
표 4는 DCI 포맷 0이 전송하는 제어 정보의 예를 나타낸다. 아래에서 각 정보 필드의 비트 사이즈는 예시일 뿐, 필드의 비트 사이즈를 제한하는 것은 아니다.
표 4
Figure PCTKR2012005972-appb-T000001
플래그 필드는 포맷 0과 포맷 1A의 구별을 위한 정보 필드이다. 즉, DCI 포맷 0과 1A는 동일한 페이로드 사이즈를 가지며 플래그 필드에 의해 구분된다. 자원블록 할당 및 홉핑 자원 할당 필드는 홉핑 PUSCH 또는 논-홉핑(non-hoppping) PUSCH에 따라 필드의 비트 사이즈가 달라질 수 있다. 논-홉핑 PUSCH를 위한 자원블록 할당 및 홉핑 자원 할당 필드는
Figure PCTKR2012005972-appb-I000001
비트를 상향링크 서브프레임 내 첫 번째 슬롯의 자원 할당에 제공한다. 여기서,
Figure PCTKR2012005972-appb-I000002
은 상향링크 슬롯에 포함되는 자원블록의 수로, 셀에서 설정되는 상향링크 전송 대역폭에 종속한다. 따라서, DCI 포맷 0의 페이로드 사이즈는 상향링크 대역폭에 따라 달라질 수 있다. DCI 포맷 1A는 PDSCH 할당을 위한 정보 필드를 포함하고 DCI 포맷 1A의 페이로드 사이즈도 하향링크 대역폭에 따라 달라질 수 있다. DCI 포맷 1A는 DCI 포맷 0에 대해 기준 정보 비트 사이즈를 제공한다. 따라서, DCI 포맷 0의 정보 비트들의 수가 DCI 포맷 1A의 정보 비트들의 수보다 적은 경우, DCI 포맷 0의 페이로드 사이즈가 DCI 포맷 1A의 페이로드 사이즈와 동일해질 때까지 DCI 포맷 0에 '0'을 부가된다. 부가된 '0'은 DCI 포맷의 패딩 필드(padding field)에 채워진다.
도 7은 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 7을 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 일 예로, 보통(normal) CP의 경우 슬롯은 7개의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 제어 정보를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)(예, m=0,1,2,3)을 포함하며 슬롯을 경계로 호핑한다. 제어 정보는 HARQ ACK/NACK, CQI(Channel Quality Information), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다.
도 8은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 8을 참조하면, 복수의 상/하향링크 콤포넌트 캐리어(Component Carrier, CC)들을 모아서 더 넓은 상/하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC로 지칭하고, 나머지 CC를 세컨더리 CC로 지칭할 수 있다. 일 예로, 크로스-캐리어 스케줄링(cross-carrier scheduling) (또는 크로스-CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 용어 "콤포넌트 캐리어"는 등가의 다른 용어(예, 캐리어, 셀 등)로 대체될 수 있다.
크로스-CC 스케줄링을 위해, CIF(carrier indicator field)가 사용된다. PDCCH 내에 CIF의 존재 또는 부재를 위한 설정이 반-정적으로 단말-특정 (또는 단말 그룹-특정)하게 상위 계층 시그널링(예, RRC 시그널링)에 의해 이네이블(enable) 될 수 있다. PDCCH 전송의 기본 사항이 아래와 같이 정리될 수 있다.
■ CIF 디스에이블드(disabled): DL CC 상의 PDCCH는 동일 DL CC 상의 PDSCH 자원 및 단일의 링크된 UL CC 상에서의 PUSCH 자원을 할당한다.
● No CIF
■ CIF 이네이블드(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC들 중 한 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당할 수 있다.
● CIF를 갖도록 확장된 LTE DCI 포맷
- CIF (설정될 경우)는 고정된 x-비트 필드 (예, x=3)
- CIF (설정될 경우) 위치는 DCI 포맷 사이즈와 관계 없이 고정됨
CIF 존재 시, 기지국은 단말 측에서의 BD 복잡도를 낮추기 위해 모니터링 DL CC (세트)를 할당할 수 있다. PDSCH/PUSCH 스케줄링 위해, 단말은 해당 DL CC에서만 PDCCH의 검출/디코딩을 수행할 수 있다. 또한, 기지국은 모니터링 DL CC (세트)를 통해서만 PDCCH를 전송할 수 있다. 모니터링 DL CC 세트는 단말-특정, 단말-그룹-특정 또는 셀-특정 방식으로 세팅될 수 있다.
도 9는 3개의 DL CC가 병합되고 DL CC A가 모니터링 DL CC로 설정된 경우를 예시한다. CIF가 디스에이블 되면, LTE PDCCH 규칙에 따라 각 DL CC는 CIF 없이 각 DL CC의 PDSCH를 스케줄링 하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링에 의해 이네이블 되면, CIF를 이용하여 오직 DL CC A만이 DL CC A의 PDSCH 뿐만 아니라 다른 DL CC의 PDSCH를 스케줄링 하는 PDCCH를 전송할 수 있다. 모니터링 DL CC로 설정되지 않은 DL CC B 및 C에서는 PDCCH가 전송되지 않는다. 여기서, "모니터링 DL CC"는 모니터링 캐리어, 모니터링 셀, 스케줄링 캐리어, 스케줄링 셀, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다. PDCCH에 대응되는 PDSCH가 전송되는 DL CC, PDCCH에 대응되는 PUSCH가 전송되는 UL CC는 피스케줄링 캐리어, 피스케줄링 셀 등으로 지칭될 수 있다.
3GPP LTE/LTE-A 시스템에서 FDD DL 캐리어, TDD DL 서브프레임들은 도 4에서 기술했듯이 서브프레임의 첫 n개의 OFDM 심볼을 각종 제어 정보 전송을 위한 물리 채널인 PDCCH, PHICH, PCFICH 등의 전송에 사용하고 나머지 OFDM 심볼들을 PDSCH 전송에 사용한다. 각 서브프레임에서 제어 채널 전송에 사용되는 심볼 개수는 PCFICH 등의 물리 채널을 통해 동적으로, 혹은 RRC 시그널링을 통해 반-정적으로 단말에게 전달된다. n 값은 서브프레임 특성 및 시스템 특성(FDD/TDD, 시스템 대역 등)에 따라 1 심볼에서 최대 4심볼까지 설정될 수 있다. 한편, 기존 LTE 시스템에서 DL/UL 스케줄링 및 각종 제어 정보를 전송하기 위한 물리 채널인 PDCCH는 제한된 OFDM 심볼들을 통해 전송되는 등의 한계가 있다. 따라서, PDSCH와 FDM/TDM 방식으로 좀 더 자유롭게 다중화되는 개선된 (enhanced PDCCH, E-PDCCH)의 도입이 고려되고 있다.
도 10은 서브프레임에 하향링크 물리 채널을 할당하는 예를 나타낸다.
도 10을 참조하면, 서브프레임의 제어 영역(도 4 참조)에는 기존 LTE/LTE-A에 따른 PDCCH(편의상, legacy PDCCH)가 할당될 수 있다. 도면에서 L-PDCCH 영역은 레거시 PDCCH가 할당될 수 있는 영역을 의미한다. 문맥에 따라, L-PDCCH 영역은 제어 영역, 제어 영역 내에서 실제로 PDCCH가 할당될 수 있는 제어 채널 자원 영역(즉, CCE 자원), 또는 PDCCH 검색 공간을 의미할 수 있다. 한편, 데이터 영역(예, PDSCH를 위한 자원 영역, 도 4 참조) 내에 PDCCH가 추가 할당될 수 있다. 데이터 영역에 할당된 PDCCH를 E-PDCCH라고 지칭한다. 도면은 하나의 슬롯에 하나의 E-PDCCH가 있는 경우를 도시한다. 그러나, 이는 예시로서, E-PDCCH는 서브프레임 단위(즉, 두 개의 슬롯에 걸쳐서)로 존재할 수 있다.
이하, 도면을 참조하여, 서브프레임의 데이터 영역(예, PDSCH)을 이용하여 하향링크 제어 채널을 위한 자원을 할당하고 운용하는 방안에 대해 설명한다. 편의상, 이하의 설명은 기지국-단말의 관계를 중심으로 기술되지만, 본 발명은 기지국-릴레이(Relay), 혹은 릴레이-단말간에도 동일/유사하게 적용될 수 있다. 따라서, 이하의 설명에서 기지국-단말은 기지국-릴레이 혹은 릴레이-단말로 대체될 수 있다. 신호 수신 관점에서 릴레이 및 단말은 수신단으로 일반화될 수 있다. 릴레이가 수신단으로 동작하는 경우, E-PDCCH는 R-PDCCH(Relay-PDCCH)로 대체될 수 있다.
먼저, E-PDCCH에 대해 보다 구체적으로 설명한다. E-PDCCH는 DCI를 나른다. DCI에 관한 사항은 표 1에 관한 설명을 참조한다. 예를 들어, E-PDCCH는 하향링크 스케줄링 정보, 상향링크 스케줄링 정보를 나를 수 있다. E-PDCCH/PDSCH 과정 및 E-PDCCH/PUSCH 과정은 도 1의 단계 S107 및 S108을 참조하여 설명한 것과 동일/유사하다. 즉, 단말은 E-PDCCH를 수신하고 E-PDCCH에 대응되는 PDSCH를 통해 데이터/제어 정보를 수신할 수 있다. 또한, 단말은 E-PDCCH를 수신하고 E-PDCCH에 대응되는 PUSCH를 통해 데이터/제어 정보를 송신할 수 있다. E-PDCCH 전송 프로세싱(예, 채널 부호화, 인터리빙, 다중화 등)은 가능한 범위 내에서 기존 LTE에 정의된 프로세싱(도 5~6 참조)을 이용하여 수행될 수 있고 필요에 따라 변형될 수 있다.
한편, 기존의 LTE는 제어 영역 내에 PDCCH 후보 영역(이하, PDCCH 검색 공간)을 미리 예약하고 그곳의 일부 영역에 특정 단말의 PDCCH를 전송하는 방식을 택하고 있다. 따라서, 단말은 블라인드 검출을 통해 PDCCH 검색 공간 내에서 자신의 PDCCH를 얻어낼 수 있다. 유사하게, E-PDCCH도 사전 예약된 자원 중 일부 또는 전체에 걸쳐 전송될 수 있다.
도 11은 E-PDCCH를 위한 자원 할당과 E-PDCCH 수신 과정을 예시한다.
도 11을 참조하면, 기지국은 단말에게 E-PDCCH 자원 할당(Resource allocation, RA) 정보를 전송한다(S1210). E-PDCCH RA 정보는 RB (혹은 VRB(Virtual Resource Block)) 할당 정보를 포함할 수 있다. RB 할당 정보는 RB 단위 또는 RBG(Resource Block Group) 단위로 주어질 수 있다. RBG는 2 이상의 연속된 RB를 포함한다. E-PDCCH RA 정보는 상위 계층(예, RRC) 시그널링을 이용해 전송될 수 있다. 여기서, E-PDCCH RA 정보는 E-PDCCH 자원 (영역)을 사전 예약하기 위해 사용된다. 이 후, 기지국은 단말에게 E-PDCCH를 전송한다(S1220). E-PDCCH는 단계 S1210에서 예약된 E-PDCCH 자원(예, M개의 RB)의 일부 영역, 혹은 전 영역 내에서 전송될 수 있다. 따라서, 단말은 E-PDCCH가 전송될 수 있는 자원 (영역)(이하, E-PDCCH 검색 공간, 간단히 검색 공간)을 모니터링 한다(S1230). E-PDCCH 검색 공간은 단계 S1210에서 할당된 RB 세트의 일부로 주어질 수 있다. 여기서, 모니터링은 검색 공간 내의 복수의 E-PDCCH 후보를 블라인드 검출 하는 것을 포함한다.
제어 채널 자원을 E-PDCCH를 통해 추가 확보함으로써, L-PDCCH 영역의 제한된 제어 채널 자원으로 인한 스케줄링 제약을 완화할 수 있다. 이와 관련해, 제어 채널 부하에 따라 각 단말 별로 RRC 시그널링 등을 통하여 L-PDCCH와 E-PDCCH중 어느 방법을 적용할지를 반-정적으로 설정하여 제어 채널을 운용하는 것이 고려된 바 있다. 이와 같은 경우, 제어 채널 부하가 비교적 적어 가용한 L-PDCCH 영역이 충분히 확보될 수 있음에도, RRC 시그널링 오버헤드를 줄이기 위해 특정 단말(들)에 대해서는 PDSCH 영역을 계속 차용하여 E-PDCCH 형태로 DL/UL 스케줄링을 수행할 수 밖에 없는 상황이 연출될 수 있다. 이 경우, E-PDCCH를 통해 DL/UL 그랜트를 스케줄링 받는 단말로 인해 다른 단말에 대한 PDSCH 스케줄링 자유도가 낮아지거나, 이로 인해 E-PDCCH 또는 PDSCH로도 할당되지 못하고 버려지는 자원이 생길 수 있다.
이하, 제어 채널 부하에 적응성을 가지면서 동시에 PDSCH 영역 내 자원의 효율적 사용을 위하여 PDCCH 검색 공간(SS)을 L-PDCCH 영역과 E-PDCCH 영역에 분산 할당하는 방안에 대해 제안한다. 여기서, L-PDCCH 영역은 문맥에 따라 제어 영역, 제어 영역 내에서 실제로 PDCCH가 할당될 수 있는 제어 채널 자원 영역(즉, CCE 자원), 또는 PDCCH 검색 공간을 의미할 수 있다. 유사하게, E-PDCCH 영역은 문맥에 따라 데이터 영역(도 4 참조), 데이터 영역 내에서 실제로 PDCCH가 할당될 수 있는 제어 채널 자원 영역(즉, 상위 계층에 의해 할당된VRB 자원; 도 11참조), 또는 E-PDCCH 검색 공간을 의미할 수 있다.
본 발명은 기존 3GPP LTE/LTE-A에 정의된 PDCCH 부호화를 위한 CCE 병합 레벨, 블라인드 검출(BD)를 수행해야 할 PDCCH 후보 수, DL/UL 스케줄용 DCI 포맷 등을 기반으로 설명되지만, 추후 표준에 추가/변경되는 CCE 병합 레벨, PDCCH 후보 수, DCI 포맷 등에도 유사한 방식으로 확장/적용될 수 있음을 미리 밝혀둔다.
이하의 설명에서, 레거시(Legacy) PDCCH, E-PDCCH는 특별히 다르게 지칭하지 않는 한 PDCCH로 통칭될 수 있다.
설명의 편의를 위해 다음과 같은 가정 하에 본 발명에 대해 설명한다.
■ 4가지 CCE 병합 레벨(L=1, 2, 4, 8)이 존재하며, CCE 병합 레벨 별 PDCCH 후보 개수는 각각 6개, 6개, 2개, 2개로 정의된다고 가정한다. 편의상, 병합 레벨 L의 E-PDCCH는 L개의 RB를 통해서 전송된다고 가정한다.
■ 전송 모드에 따라 최대 3가지의 DCI 포맷이 설정될 수 있다고 가정한다. 예를 들어, 3 가지의 DCI 포맷은 (i) DL 스케줄링에만 사용되는 DL-전용 DCI 포맷(예, DCI 포맷 2), (ii) 하나의 DCI 페이로드 사이즈를 공유하면서 DL/UL 스케줄링을 선택적으로 수행하는데 사용되는 DL/UL-공통 DCI 포맷(예, DCI 포맷 0/1A), (iii) UL 스케줄링에만 사용되는 UL-전용 DCI 포맷(예, DCI 포맷 4)을 포함한다.
방법 1: CCE 병합 레벨에 따른 SS 분산(distribution)
본 방법에 따르면, SS는 CCE 병합 레벨(즉, CCE 레벨)에 따라 L-PDCCH 영역과 E-PDCCH 영역에 분산 할당될 수 있다. 예를 들어, 낮은 CCE 레벨(예, CCE 레벨 = 1, 2)에 대한 SS는 L-PDCCH 영역에 할당되고, 높은 CCE 레벨(예, CCE 레벨 = 4, 8)에 대한 SS는 E-PDCCH 영역에 할당될 수 있다. L-PDCCH 영역에서의 제어 채널 부하 부담을 고려하면, 낮은 CCE 레벨에 대한 SS를 L-PDCCH 영역에 할당하고, 높은 CCE 레벨에 대한 SS를 E-PDCCH 영역에 할당하는 것이 유용할 수 있기 때문이다. 반대로 낮은 CCE 레벨(예, CCE 레벨 = 1, 2)은 E-PDCCH 영역에 할당되고, 높은 CCE 레벨(예, CCE 레벨 = 4, 8)은 L-PDCCH 영역에 할당될 수 있다. E-PDCCH 영역에서는 단말-특정 DMRS(DeModulation Reference Signal) 및/또는 다중 안테나 전송을 통해 적은 CCE 자원으로도 안정적인 PDCCH 전송이 가능할 수 있기 때문이다. 낮은 CCE 레벨과 높은 CCE 레벨의 구분은 상황에 따라 달라질 수 있다. 이 경우, 어떤 CCE 레벨에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 또는 E-PDCCH)에 구성되는지는 RRC 시그널링 등을 통해 미리 설정될 수 있다. 또한, 서브프레임 별로 어떤 CCE 레벨에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 또는 E-PDCCH)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수도 있다.
또한, 보다 유연한 CCE 자원 사용을 위해, 각 CCE 레벨 별 PDCCH 후보 개수를 최대 BD횟수를 초과하지 않는 범위 내에서 재분배한 후, 어떤 CCE 레벨에 대한 SS가 어떤 PDCCH 영역 (L-PDCCH 또는 E-PDCCH)에 구성되는 지를 RRC 시그널링 등을 통해 설정할 수 있다. 예를 들어, CCE 레벨 = 1, 2, 4, 8에서 PDCCH 후보 개수를 8개, 8개, 0개, 0개로 재분배하고(즉, X1=X2=8, X4=X8=0), CCE 레벨 = 1에 대한 SS는 L-PDCCH 영역에 할당하고, CCE 레벨 =2에 대한 SS는 E-PDCCH 영역에 할당할 수 있다. 또한, 이와 반대로 할당될 수도 있다.
도 12에 본 예에 따른 SS 분산 할당 방안을 예시한다. 도 12를 참조하면, SS는 CCE 레벨에 따라 L-PDCCH 영역 또는 E-PDCCH 영역에 할당될 수 있다. 예를 들어, X1=X2=6, X4=X8=2일 수 있다. 또한, 도시하지는 않았지만, X1=X2=8, X4=X8=0으로 설정되고, X1과 X2는 서로 다른 PDCCH 영역에 할당될 수 있다.
방법 2: PDCCH 후보 파티션(partitioning)에 따른 SS 분배
본 방법에 따르면, CCE 병합 레벨 별로 PDCCH 후보를 2개의 세트로 분할(예, 2등분)하고, 각 세트에 대한 SS를 L-PDCCH 영역과 E-PDCCH 영역에 할당할 수 있다. 예를 들어, 각 CCE 레벨 = 1, 2, 4, 8에서 3개, 3개, 1개, 1개 PDCCH 후보에 대한 SS는 L-PDCCH 영역에 할당되고, 각 CCE 레벨에서 또 다른 3개, 3개, 1개, 1개 PDCCH 후보에 대한 SS는 E-PDCCH 영역에 할당될 수 있다. 이 경우, CCE 레벨 별로 몇 개의 PDCCH 후보에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 또는 E-PDCCH)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수 있다. 또한, 서브프레임 별로 각 CCE 레벨당 몇 개의 PDCCH 후보에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 또는 E-PDCCH)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수도 있다. PDSCH 영역 내 자원의 효율적 사용을 고려하면, CCE 레벨에 따라 L-PDCCH 영역과 E-PDCCH 영역에 SS가 구성되는 PDCCH 후보 개수를 비 균일하게 할당하는 것이 유용할 수 있다. 예를 들어, 각 CCE 레벨에서 4개, 4개, 1개, 1개 PDCCH 후보에 대해서는 L-PDCCH 영역에 할당되고, 나머지 2, 2, 1, 1개에 대해서는 E-PDCCH 영역에 할당될 수 있다.
또한, 보다 유연한 CCE 자원 사용을 위하여 각 CCE 레벨 별 PDCCH 후보 개수를 최대 BD횟수를 초과하지 않는 범위 내에서 재분배(예, CCE 레벨 = 1, 2, 4, 8에서의 PDCCH 후보 수를 8, 8, 0, 0로 재분배)한 후, CCE 레벨 별로 몇 개의 PDCCH 후보에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 영역 또는 E-PDCCH 영역)에 구성되는지를 RRC 시그널링 등을 통해 설정할 수 있다.
도 13은 본 예에 따른 SS 분산 할당 방안을 예시한다. 도 13을 참조하면, 해당 CCE 레벨에서 PDCCH 후보는 2개의 세트로 분할되고, 각 세트에 대한 SS는 L-PDCCH 영역과 E-PDCCH 영역에 할당된다. 예를 들어, X1,1+X1,2=6, X2,1+X2,2=6, X4,1+X4,2=2, X8,1+X8,2=2일 수 있다. 여기서, X1,1 ~ X8,2는 1 이상의 정수이다. 한편, 도면에서는 모든 CCE 레벨에서 PDCCH 후보가 L-PDCCH 영역 및 E-PDCCH 영역에 분산되는 것으로 도시하고 있으나, 이는 예시로서 일부 CCE 레벨에서만 PDCCH 후보(즉, SS)가 L-PDCCH 영역 및 E-PDCCH 영역 모두에 할당되고, 일부 CCE 레벨에서는 PDCCH 후보(즉, SS)가 L-PDCCH 영역 또는 E-PDCCH 영역에만 할당될 수 있다. 예를 들어, X1,1=6, X1,2=0과 같이 X1,1 ~ X8,2 중 일부는 0의 값을 가질 수 있다. 또한, 도시하지는 않았지만, X1,1+X1,2=8, X2,1+X2,2=8로 설정되고, X4,1=X4,2=X8,1=X8,2=0으로 설정될 수 있다.
방법 3: DL/UL 그랜트 DCI 포맷에 따른 SS 분배
본 방법에 따르면, DCI 포맷 용도(예, DL-전용 또는 DL/UL-공통 또는 UL-전용)에 따라 해당 DCI 포맷에 대한 SS는 L-PDCCH 영역과 E-PDCCH 영역에 분산 할당될 수 있다. 이를 위해, 어떤 DCI 포맷에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 영역 또는 E-PDCCH 영역)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수 있다. 또한, 서브프레임 별로 어떤 DCI 포맷에 대한 SS가 어떤 PDCCH 영역(예, L-PDCCH 영역 또는 E-PDCCH 영역)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수도 있다.
DL 그랜트를 스케줄링 하는 E-PDCCH의 경우, 해당 E-PDCCH가 속한 RB 혹은 RBG 영역까지 포함하여 PDSCH를 스케줄링 할 수 있다. 이 경우, 단말은 PDSCH를 위해 할당 받은 자원에서 자신의 E-PDCCH가 검출된 영역을 제외한 나머지 부분을 통해 DL 데이터(즉, PDSCH)를 수신할 수 있다. 반면, UL 그랜트를 스케줄링 하는 E-PDCCH의 경우, 해당 E-PDCCH가 속한 RB 혹은 RBG 영역 내 가용한(즉, 해당 E-PDCCH가 검출된 영역을 제외한) 자원이 다른 단말의 PDSCH 스케줄링에 활용되기 위해 별도의 추가 시그널링이 필요할 수 있다. 따라서, PDSCH 영역을 효율적으로 사용하고 부가적 시그널링 오버헤드를 억제하기 위해, DL-전용 DCI 포맷에 대한 SS는E-PDCCH 영역에 할당되고, DL-비전용 DCI 포맷(즉, DL/UL-공통 또는 UL-전용)에 대한 SS는 L-PDCCH 영역에 할당될 수 있다(방안 1). 도 14(a)는 방안 1을 예시한다. 도면에서 A~C는 해당 DCI 포맷에 대한 PDCCH 후보의 개수이다. 해당 DCI 포맷에 대한 PDCCH 후보의 개수는 설정된 전송 모드에 따라 달라질 수 있다.
한편, DL/UL-전용 DCI 포맷에 기반하여 동작하는 DL/UL MU-MIMO(Multiple User-Multiple Input Multiple Output) 상황을 가정할 경우, DL/UL-전용 DCI 포맷에 대한 제어 채널 오버헤드가 기존보다 더욱 가중될 수 있다. 이를 감안하면, DL/UL-전용 DCI 포맷에 대한 SS는 E-PDCCH 영역에 할당되고, DL/UL-공통 DCI 포맷에 대한 SS는 L-PDCCH 영역에 할당될 수 있다(방안 2). 도 14(b)는 방안 2를 예시한다. 도면에서 A~C는 해당 DCI 포맷에 대한 PDCCH 후보의 개수이다. 해당 DCI 포맷에 대한 PDCCH 후보의 개수는 설정된 전송 모드에 따라 달라질 수 있다.
다른 예로, DCI 포맷 용도에 따라, 각 DCI 포맷에 대한 SS는 L-PDCCH 영역, 첫 번째 슬롯 내 E-PDCCH 영역(이하, 1st 슬롯 E-PDCCH 영역), 또는 두 번째 슬롯 내 E-PDCCH 영역(이하, 2nd 슬롯 E-PDCCH 영역)에 할당될 수 있다(방안 3). 예를 들어, DL/UL-공통 DCI 포맷은 초기 접속, RRC 재구성 등의 각종 중요 커맨드를 스케줄링(혹은, 폴백 동작 지시)하는 용도로 사용되므로, DL/UL-공통 DCI 포맷을 위한 SS는 기지국과 단말간 오정렬(misalignment) 방지를 위해 L-PDCCH 영역에 할당될 수 있다. 또한, DL 데이터(예, PDSCH)에 대한 단말 수신 버퍼 및 프로세싱 부담을 줄이기 위해, DL-전용 DCI 포맷을 위한 SS는 1st 슬롯 E-PDCCH 영역에 할당될 수 있다. 또한, (E-PDCCH 영역 내) 대응되는 PDCCH 검출 실패 시 야기될 수 있는 DL 데이타 수신 자원에 대한 모호함 방지를 위해, UL-전용 DCI 포맷을 위한 SS는 2nd 슬롯 E-PDCCH 영역에 할당될 수 있다.
따라서, 단말에게 설정되는 전송 모드 및 이에 대응되는 DCI 포맷의 종류에 의존하여 전체 SS 구성이 달라질 수 있다. 방안 3을 예를 들면, 단말이 DL/UL-공통 DCI 포맷과 DL-전용 DCI 포맷만을 사용하는 전송 모드로 설정된 경우, DL/UL-공통 DCI 포맷에 대한 SS는 L-PDCCH 영역에 할당되고, DL-전용 DCI 포맷에 대한 SS는 1st 슬롯 E-PDCCH 영역에 할당되며, 2nd 슬롯 내 E-PDCCH 영역에는 SS가 구성되지 않을 수 있다. 다른 예로, 단말이 DL/UL-공통 DCI 포맷과 UL-전용 DCI 포맷만을 사용하는 전송 모드로 설정된 경우, DL/UL-공통 DCI 포맷에 대한 SS는 L-PDCCH 영역에 할당되고, UL-전용 DCI 포맷에 대한 SS는 2nd 슬롯 내 E-PDCCH 영역에 할당되며, 1st 슬롯 내 E-PDCCH 영역에는 SS가 구성되지 않을 수 있다.
방법 1~3은 다음과 같이 일반화 될 수 있다. 구체적으로, CCE 레벨(방법 1), PDCCH 후보 파티셔닝(방법 2), DCI 포맷(방법 3)에 따라, 해당 SS는 L/E-PDCCH 영역 조합(예, 옵션 1~7)에 분산 할당될 수 있다. 일 예로, 서로 다른 CCE 레벨/PDCCH 후보 파티션/DCI 포맷에 대한 SS는 옵션 1~7에 따라 서로 다른 PDCCH 영역에 분산 할당될 수 있다. 본 발명에서 제안하는 SS 할당은 단말-특정하게 및/또는 각 CC별로 독립적으로 설정될 수 있다. 이를 통해, 복수의 단말 및 복수의 CC에 대한 PDCCH 부하를 (미사용 자원을 최소화 하는 방향으로) 보다 효율적이고 유연하게 분산할 수 있다. 또한, 각 단말 및 각 CC 상황에 따른 특정 L/E-PDCCH 영역에서의 간섭 영향을 고려하여 보다 안정적이고 효율적으로 PDCCH 전송을 할 수 있다.
옵션 1) L-PDCCH 영역에만 SS를 할당
옵션 2) 1st 슬롯 E-PDCCH 영역에만 SS를 할당
옵션 3) 2nd 슬롯 E-PDCCH 영역에만 SS를 할당
옵션 4) L-PDCCH 영역과 1st 슬롯 E-PDCCH 영역에만 SS를 분산 할당
옵션 5) L-PDCCH 영역과 2nd 슬롯 E-PDCCH 영역에만 SS를 분산 할당
옵션 6) 1st 슬롯 E-PDCCH 영역과 2nd 슬롯 E-PDCCH 영역에만 SS를 분산 할당
옵션 7) L-PDCCH 영역과 1st 슬롯 E-PDCCH 영역, 2nd 슬롯 E-PDCCH 영역 모두에 SS를 분산 할당
옵션 5의 경우, DL 그랜트 PDCCH에 대한 디코딩 레이턴시를 고려하여 UL-미전용 DCI 포맷(즉, DL/UL-공통 DCI 포맷 또는 DL-전용 DCI 포맷)에 대한 SS는 L-PDCCH 영역에 할당되고, UL-전용 DCI 포맷에 대한 SS만이 2nd 슬롯 E-PDCCH 영역에 할당될 수 있다(방법 3 기반). 옵션 6의 경우도, DL 그랜트 PDCCH에 대한 디코딩 레이턴시를 고려하여 UL-미전용 DCI 포맷(즉, DL/UL-공통 DCI 포맷 또는 DL-전용 DCI 포맷)에 대한 SS는 1st 슬롯 E-PDCCH 영역에 할당되고, UL-전용 DCI 포맷에 대한 SS만이 2nd 슬롯 E-PDCCH 영역에 할당될 수 있다(방법 3 기반).
방법 1~3은 전체 혹은 부분적으로 결합될 수 있다. 예를 들어, CCE 레벨 = 1, 2에서, 3개 PDCCH 후보(CCE 레벨 = 1) 및 3개 PDCCH 후보(CCE 레벨 = 2)에 대한 SS는 L-PDCCH 영역에 할당되고, 나머지 모든 PDCCH 후보에 대한 SS는 E-PDCCH 영역에 할당될 수 있다. 또한, 어떤 (CCE 레벨, PDCCH 후보 파티션, DCI 포맷) 조합에 대한 SS가 어떤 PDCCH 영역 (L-PDCCH 또는 E-PDCCH)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수 있다. 또한, 서브프레임 별로 어떤 (CCE 레벨, PDCCH 후보 파티션, DCI 포맷) 조합에 대한 SS가 어떤 PDCCH 영역 (L-PDCCH 또는 E-PDCCH)에 구성되는지를 RRC 시그널링 등을 통해 미리 설정할 수도 있다.
도 15는 본 발명의 일 실시예에 따른 하향링크 신호 처리 과정을 예시한다. 도면은 단말 입장에서 예시되었으며, 대응되는 동작이 기지국에서 이뤄질 수 있다.
도 15를 참조하면, 단말은 L-PDCCH 영역 및 E-PDCCH 영역을 갖는 서브프레임을 수신할 수 있다(S1502). L-PDCCH 영역은 서브프레임의 제어 영역 상에 설정되고, E-PDCCH 영역은 서브프레임의 데이터 영역 상에 설정된다(도 4 참조). L-PDCCH 영역에 사용되는 OFDM 심볼의 개수는 제어 영역에 사용되는 OFDM 심볼의 개수와 동일하며, PCFICH를 통해 매 서브프레임마다 지시될 수 있다. 반면, E-PDCCH 영역이 시작되는 첫 번째 OFDM 심볼의 위치는 PCFICH를 이용하거나, RRC 시그널링을 통해 확인될 수 있다. 또한, E-PDCCH 영역의 주파수 자원은 상위 계층 시그널링에 의해 할당된 RB 세트로 주어질 수 있다(도 11 참조). 이후, 단말은 PDCCH 수신을 위해 L-PDCCH 영역 및/또는 E-PDCCH 영역 내에서 하나 이상의 검색 공간을 모니터링 할 수 있다(S1504). 모니터링은 검색 공간 내의 PDCCH 후보를 블라인드 디코딩 하는 것을 포함한다. 검색 결과, 자신에게 지시된 PDCCH가 검출된 경우, 단말은 검출된 PDCCH에 따라 동작을 수행할 수 있다(S1506). 예를 들어, 단말은 PDCCH에 대응되는 PDSCH를 수신하거나, PDCCH에 대응하는 PUSCH를 전송할 수 있다. 본 예에서, 각각의 검색 공간은 소정 기준(예, 방법 1~3)에 따라 L-PDCCH 영역 및/또는 E-PDCCH 영역에 할당될 수 있다.
관련 과정 1: DL PDSCH 수신을 위한 ACK/NACK 전송
방법 1~3에서 예시한 바와 같이, E-PDCCH 영역에 할당된 SS를 통해 DL 그랜트 PDCCH가 전송/검출되는 경우를 고려하면, RRC 시그널링 등을 통해 미리 반-정적(semi-static)으로 ACK/NACK 자원을 예약하는 것이 필요할 수 있다(즉, 명시적 ACK/NACK 자원). 이 경우, 복수의 ACK/NACK 자원이 예약될 수 있고, DL 그랜트 PDCCH를 통해 실제 사용될 ACK/NACK 자원이 지시될 수 있다. 기존의 ACK/NACK 자원 할당 방법에 따르면, PDCCH 전송에 사용되는 첫 번째 CCE 인덱스로부터 대응되는 PDSCH에 대한 ACK/NACK 자원이 묵시적으로 유추되지만, E-PDCCH 영역에는 CCE가 정의되어 있지 않기 때문이다.
구체적으로, DL 그랜트 PDCCH가 L-PDCCH 영역에 할당된 SS를 통해 검출되는 경우 해당 PDCCH가 스케줄링 하는 PDSCH에 대한 ACK/NACK 정보는 해당 PDCCH의 CCE (바람직하게는 첫 번째 CCE 인덱스)에 링크되어 있는 동적 ACK/NACK 자원(즉, 묵시적 ACK/NACK 자원)를 사용하여 전송될 수 있다. 반면, DL 그랜트 PDCCH가 E-PDCCH 영역에 할당된 SS를 통해 검출되는 경우, DL 그랜트 PDCCH에 대응되는 PDSCH에 대한 ACK/NACK 정보는 명시적 ACK/NACK 자원을 사용하여 전송될 수 있다.
관련 과정 2: CA 상황에서 크로스-CC 스케줄링을 위한 SS 구조
크로스-CC 스케줄링이 설정된 경우, 하나의 CC(즉, 피스케줄링 CC)는 특정 하나의 CC(즉, 스케줄링 CC)로부터만 DL/UL 스케줄링을 받을 수 있다. 즉, 피스케줄링 CC는 스케줄링 CC로부터만 해당 피스케줄링 CC에 대한 DL/UL 그랜트 PDCCH를 수신할 수 있다. 스케줄링 CC는 기본적으로 자기 자신에 대한 DL/UL 스케줄링을 수행할 수 있다. 따라서, 스케줄링/피스케줄링 CC를 스케줄링 하는 PDCCH에 대한 SS는 모두 스케줄링 CC의 제어 채널 영역에 존재한다. 크로스-CC 스케줄링이 설정된 경우, SS 분산을 위해 다음의 사항을 고려할 수 있다.
- 크로스-CC 스케줄링 동작은 (단말 관점에서) 피스케줄링 CC의 제어 채널 영역, 즉 L-PDCCH 영역이 간섭 영향 및 채널 상태 등으로 인해 PDCCH 전송에 적합하지 않은 상황에 있을 때에 적합한 동작일 수 있다.
- 스케줄링 CC 상에서 피스케줄링 CC를 스케줄링 하는 E-PDCCH가 속한 RB 혹은 RBG 영역 내 가용 자원(즉, 해당 E-PDCCH가 검출된 영역을 제외한 자원)을 다른 단말의 PDSCH 스케줄링에 활용하는 것은 별도의 추가 시그널링 없이는 용이하지 않을 수 있다.
따라서, CA 기반의 크로스-CC 스케줄링 상황에서 각 CC별로 방법 1~3을 적용하는 경우, 각 CC별로 L-PDCCH 영역에 할당되어야 할 SS는 모두 스케줄링 CC의 L-PDCCH 영역 상에 구성하고, 각 CC별로 E-PDCCH 영역에 할당되어야 할 SS는 해당 각 CC의 E-PDCCH 영역 상에 구성하는 방안을 고려할 수 있다(도 16 참조). 특히, E-PDCCH 영역에 할당된 SS를 통해 전송되는 DCI 포맷에는 (크로스-CC 스케줄링이 설정된 경우라도) CIF 필드가 포함되지 않을 수 있다. 또한, 각 CC에 대한 SS를 어떤 방식으로 구성할지 (L-PDCCH 영역에만 구성할지, 혹은 E-PDCCH 영역에만 구성할지, 혹은 상기 방법들을 적용한 L/E-PDCCH 영역의 조합으로 구성할지)를 RRC 시그널링 등을 통해 CC별로 독립적으로 설정할 수 있다. 이 경우에도 각 CC별로 L-PDCCH 영역에 할당되어야 할 SS는 모두 스케줄링 CC의 L-PDCCH 영역 상에 구성되고, 각 CC별로 E-PDCCH 영역에 할당되어야 할 SS (이를 통해 전송되는 DCI 포맷에는 CIF 필드가 생략될 수 있음)는 해당 각 CC의 E-PDCCH 영역 상에 구성될 수 있다(도 17 참조).
도 18은 본 발명에 적용될 수 있는 기지국, 릴레이 및 단말을 예시한다.
도 18을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 릴레이와 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 기지국 또는 단말과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다. 구체적으로, 본 발명은 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 적용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법에 있어서,
    복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하는 서브프레임을 수신하는 단계;
    상기 단말에게 지시된 PDCCH(Physical Downlink Control CHannel) 수신을 위해, 상기 서브프레임 상에 구성된 복수의 검색 공간을 모니터링 하는 단계; 및
    상기 단말에게 지시된 PDCCH가 검출된 경우, 검출된 PDCCH에 따른 동작을 수행하는 단계를 포함하고,
    각각의 검색 공간은 소정 조건에 따라 제1 자원 영역 및 제2 자원 영역 중 적어도 하나에 구성되며, 상기 제1 자원 영역과 상기 제2 자원 영역은 시간 도메인 상에서 특정 OFDM 심볼을 경계로 분리되는 방법.
  2. 제1항에 있어서,
    CCE 병합 레벨(Control Channel Element aggregation level)이 제1 값 이하인 복수의 PDCCH 후보를 위한 검색 공간은 상기 제1 자원 영역에 구성되고,
    상기 CCE 병합 레벨이 제2 값 이상인 복수의 PDCCH 후보를 위한 검색 공간은 상기 제2 자원 영역에 구성되는 방법.
  3. 제1항에 있어서,
    각 CCE 병합 레벨에서 복수의 PDCCH 후보는 두 개의 후보 세트로 분할되고,
    상기 두 개의 후보 세트 중 제1 후보 세트를 위한 검색 공간은 상기 제1 자원 영역에 구성되며, 제2 후보 세트를 위한 검색 공간은 상기 제2 자원 영역에 구성되는 방법.
  4. 제1항에 있어서,
    제1 타입 DCI(Downlink Control Information) 포맷을 위한 검색 공간은 상기 제1 자원 영역에 구성되고, 제2 타입 DCI 포맷을 위한 검색 공간은 상기 제2 자원 영역에 구성되며,
    상기 제1 타입 DCI는 상향링크 스케줄링에 사용되는 DCI 포맷을 포함하고, 상기 제2 타입 DCI는 하향링크 스케줄링에만 사용되는 DCI 포맷을 포함하는 방법.
  5. 제1항에 있어서,
    상기 제1 자원 영역은 상기 특정 OFDM 심볼을 기준으로 상기 서브프레임의 앞 부분에 위치하고, 상기 제2 자원 영역은 상기 특정 OFDM 심볼을 기준으로 상기 서브프레임의 뒷 부분에 위치하며,
    상기 제2 자원 영역은 하향링크 공유 채널을 위한 자원과 FDM(Frequency Division Multiplexing) 방식으로 다중화 되는 방법.
  6. 제1항에 있어서,
    상기 제1 자원 영역의 기본 자원 단위는 REG(Resource Element Group)이고, 상기 제2 자원 영역의 기본 자원 단위는 RB(Resource Block)인 방법.
  7. 제1항에 있어서,
    상기 OFDM 심볼은 PCFICH(Physical Control Format Indicator CHannel) 신호 또는 RRC(Radio Resource Control) 시그널링을 통해 지시되는 방법.
  8. 무선 통신 시스템에 사용하기 위한 단말에 있어서,
    무선 주파수(Radio Frequency, RF) 유닛; 및
    프로세서를 포함하고,
    상기 프로세서는 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하는 서브프레임을 수신하고, 상기 단말에게 지시된 PDCCH(Physical Downlink Control CHannel) 수신을 위해, 상기 서브프레임 상에 구성된 복수의 검색 공간을 모니터링 하며, 상기 단말에게 지시된 PDCCH가 검출된 경우, 검출된 PDCCH에 따른 동작을 수행하도록 구성되고,
    각각의 검색 공간은 소정 조건에 따라 제1 자원 영역 및 제2 자원 영역 중 적어도 하나에 구성되며, 상기 제1 자원 영역과 상기 제2 자원 영역은 시간 도메인 상에서 특정 OFDM 심볼을 경계로 분리되는 단말.
  9. 제8항에 있어서,
    CCE 병합 레벨(Control Channel Element aggregation level)이 제1 값 이하인 복수의 PDCCH 후보를 위한 검색 공간은 상기 제1 자원 영역에 구성되고,
    상기 CCE 병합 레벨이 제2 값 이상인 복수의 PDCCH 후보를 위한 검색 공간은 상기 제2 자원 영역에 구성되는 단말.
  10. 제8항에 있어서,
    각 CCE 병합 레벨에서 복수의 PDCCH 후보는 두 개의 후보 세트로 분할되고,
    상기 두 개의 후보 세트 중 제1 후보 세트를 위한 검색 공간은 상기 제1 자원 영역에 구성되며, 제2 후보 세트를 위한 검색 공간은 상기 제2 자원 영역에 구성되는 단말.
  11. 제8항에 있어서,
    제1 타입 DCI(Downlink Control Information) 포맷을 위한 검색 공간은 상기 제1 자원 영역에 구성되고, 제2 타입 DCI 포맷을 위한 검색 공간은 상기 제2 자원 영역에 구성되며,
    상기 제1 타입 DCI는 상향링크 스케줄링에 사용되는 DCI 포맷을 포함하고, 상기 제2 타입 DCI는 하향링크 스케줄링에만 사용되는 DCI 포맷을 포함하는 단말.
  12. 제8항에 있어서,
    상기 제1 자원 영역은 상기 특정 OFDM 심볼을 기준으로 상기 서브프레임의 앞 부분에 위치하고, 상기 제2 자원 영역은 상기 특정 OFDM 심볼을 기준으로 상기 서브프레임의 뒷 부분에 위치하며,
    상기 제2 자원 영역은 하향링크 공유 채널을 위한 자원과 FDM(Frequency Division Multiplexing) 방식으로 다중화 되는 단말.
  13. 제8항에 있어서,
    상기 제1 자원 영역의 기본 자원 단위는 REG(Resource Element Group)이고, 상기 제2 자원 영역의 기본 자원 단위는 RB(Resource Block)인 단말.
  14. 제8항에 있어서,
    상기 OFDM 심볼은 PCFICH(Physical Control Format Indicator CHannel) 신호 또는 RRC(Radio Resource Control) 시그널링을 통해 지시되는 단말.
PCT/KR2012/005972 2011-07-26 2012-07-26 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 WO2013015632A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137031634A KR101513049B1 (ko) 2011-07-26 2012-07-26 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US14/123,475 US9144070B2 (en) 2011-07-26 2012-07-26 Method and apparatus for transmitting control information in wireless communication system
US14/829,401 US9532353B2 (en) 2011-07-26 2015-08-18 Method and apparatus for transmitting control information in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161511964P 2011-07-26 2011-07-26
US61/511,964 2011-07-26
US201161554481P 2011-11-01 2011-11-01
US61/554,481 2011-11-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/123,475 A-371-Of-International US9144070B2 (en) 2011-07-26 2012-07-26 Method and apparatus for transmitting control information in wireless communication system
US14/829,401 Continuation US9532353B2 (en) 2011-07-26 2015-08-18 Method and apparatus for transmitting control information in wireless communication system

Publications (2)

Publication Number Publication Date
WO2013015632A2 true WO2013015632A2 (ko) 2013-01-31
WO2013015632A3 WO2013015632A3 (ko) 2013-04-04

Family

ID=47601667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005972 WO2013015632A2 (ko) 2011-07-26 2012-07-26 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치

Country Status (3)

Country Link
US (2) US9144070B2 (ko)
KR (1) KR101513049B1 (ko)
WO (1) WO2013015632A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884636A (zh) * 2017-05-12 2022-08-09 瑞典爱立信有限公司 搜索空间监视

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067060B1 (ko) * 2011-06-29 2020-02-11 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
WO2013100645A1 (ko) * 2011-12-27 2013-07-04 엘지전자 주식회사 무선 통신 시스템에서 데이터 수신 방법 및 장치
CN109245874B (zh) * 2012-01-09 2021-11-19 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN106788929B (zh) * 2012-01-09 2020-01-17 华为技术有限公司 一种控制信道资源映射方法、基站及用户设备
CN103781177B (zh) * 2012-10-19 2018-10-30 株式会社Ntt都科摩 一种信息传输方法、装置及基站
US9629144B1 (en) 2014-11-03 2017-04-18 Sprint Spectrum L.P. Management of time segment use for wireless communication
US9674809B1 (en) * 2014-11-17 2017-06-06 Sprint Spectrum L.P. Management of component carriers based on time segment coordination
US9974093B2 (en) * 2015-04-29 2018-05-15 Qualcomm Incorporated Slotted sub-band duplex frame structure design in a wideband time-division duplex system
WO2016186541A1 (en) * 2015-05-20 2016-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Method for managing enhanced physical downlink control channel, wireless communication network, computer programs and computer program products
US10356770B2 (en) * 2015-10-01 2019-07-16 Qualcomm Incorporated Techniques for using an enhanced physical control format indicator channel to identify characteristics of a control region including a set of physical downlink control channels
WO2017122959A1 (en) 2016-01-13 2017-07-20 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
JPWO2017130990A1 (ja) * 2016-01-29 2018-11-22 株式会社Nttドコモ ユーザ端末
KR102317012B1 (ko) * 2016-07-11 2021-10-25 삼성전자 주식회사 효과적인 랜덤 액세스를 위한 제어 메시지 전송 방법
JP6665351B2 (ja) 2016-11-02 2020-03-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線通信ネットワークにおけるサーチスペースの監視
CN109891966B (zh) * 2016-11-03 2023-05-30 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
CN109792372B (zh) * 2017-01-27 2020-06-16 Oppo广东移动通信有限公司 传输信号的方法及设备
WO2018141091A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
US11089582B2 (en) * 2018-04-05 2021-08-10 Huawei Technologies Co., Ltd. Method and system for downlink control information payload size determination
EP3609109A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Wideband operation in an unlicensed spectrum with plural separate frequency ranges
CN113056887B (zh) * 2018-11-02 2023-06-23 Lg电子株式会社 用于在无线通信系统中发送或接收无线信号的方法和装置
EP3911055B1 (en) * 2019-01-10 2024-06-12 Ntt Docomo, Inc. Terminal, radio communication method and system
CN111918397B (zh) * 2019-05-10 2023-04-28 华为技术有限公司 一种信道监听方法及装置
WO2021022736A1 (en) * 2019-08-08 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for enhanced physical downlink control channel transmission and reception
CN111064548B (zh) * 2019-12-31 2021-08-06 北京紫光展锐通信技术有限公司 下行控制信息的长度对齐方法、网元、终端及存储介质
CN112713980A (zh) * 2020-12-04 2021-04-27 成都金诺信高科技有限公司 车联网通信传输控制方法
WO2024209236A1 (en) * 2023-04-05 2024-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Nr pdcch search space configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090083269A (ko) * 2008-01-29 2009-08-03 엘지전자 주식회사 무선 통신 시스템에서 pdcch 검색 방법
WO2010131929A2 (ko) * 2009-05-14 2010-11-18 엘지전자 주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2011044755A1 (zh) * 2009-10-12 2011-04-21 中国移动通信集团公司 一种pdcch信息的发送方法、pdcch搜索空间的确定方法及装置
KR20110082485A (ko) * 2010-01-11 2011-07-19 엘지전자 주식회사 크기를 조정한 dci를 이용한 pdcch 송수신 방법 및 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675565B2 (en) 2009-05-14 2014-03-18 Lg Electronics Inc. Device and method for monitoring the control channel in a multicarrier system
KR102095724B1 (ko) * 2009-09-28 2020-04-02 삼성전자 주식회사 물리 하향링크 제어 채널의 확장
CN102934383B (zh) * 2010-04-07 2015-09-16 Lg电子株式会社 在载波接合系统中的pdcch监视方法和设备
JP5527913B2 (ja) * 2010-04-30 2014-06-25 ブラックベリー リミテッド キャリアアグリゲーションに対する制御チャネルを共有するためのシステム及び方法
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US20110292891A1 (en) * 2010-05-26 2011-12-01 Industrial Technology Research Institute Control channel allocation method, control channel searching method and communication apparatus using the same
CN105024792B (zh) * 2010-07-21 2018-09-11 太阳专利信托公司 通信装置和通信方法
CN103518415B (zh) * 2011-02-11 2017-05-24 交互数字专利控股公司 用于增强型控制信道的系统和方法
WO2012138097A2 (ko) * 2011-04-03 2012-10-11 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 장치
ES2899206T3 (es) * 2011-05-03 2022-03-10 Ericsson Telefon Ab L M Transmisión y recepción de datos de control en un sistema de comunicaciones
WO2012150823A2 (ko) * 2011-05-05 2012-11-08 엘지전자 주식회사 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
US9578652B2 (en) * 2011-07-25 2017-02-21 Lg Electronics Inc. Method and apparatus for transmitting data in a wireless communication system
WO2013025086A2 (ko) * 2011-08-18 2013-02-21 엘지전자 주식회사 제어 채널의 할당 방법 및 이를 위한 장치
KR101492380B1 (ko) * 2011-10-12 2015-02-10 엘지전자 주식회사 서브프레임에서 제어 채널의 탐색 영역을 할당하는 방법 및 장치
WO2013058623A1 (ko) * 2011-10-20 2013-04-25 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090083269A (ko) * 2008-01-29 2009-08-03 엘지전자 주식회사 무선 통신 시스템에서 pdcch 검색 방법
WO2010131929A2 (ko) * 2009-05-14 2010-11-18 엘지전자 주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2011044755A1 (zh) * 2009-10-12 2011-04-21 中国移动通信集团公司 一种pdcch信息的发送方法、pdcch搜索空间的确定方法及装置
KR20110082485A (ko) * 2010-01-11 2011-07-19 엘지전자 주식회사 크기를 조정한 dci를 이용한 pdcch 송수신 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884636A (zh) * 2017-05-12 2022-08-09 瑞典爱立信有限公司 搜索空间监视

Also Published As

Publication number Publication date
KR20140018978A (ko) 2014-02-13
KR101513049B1 (ko) 2015-04-17
US9532353B2 (en) 2016-12-27
US20140105157A1 (en) 2014-04-17
US9144070B2 (en) 2015-09-22
US20150358948A1 (en) 2015-12-10
WO2013015632A3 (ko) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2013025086A2 (ko) 제어 채널의 할당 방법 및 이를 위한 장치
WO2017146556A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013055193A2 (ko) 무선 통신 시스템에서 제어 정보의 수신 방법 및 장치
WO2016048075A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 인접 셀 신호 수신 방법 및 장치
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2012150836A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
WO2013109109A1 (ko) 제어 정보 송수신 방법 및 이를 위한 장치
WO2013055159A2 (ko) 데이터 송수신 방법 및 이를 위한 장치
WO2012150823A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2015194830A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2011053009A2 (ko) 기지국으로부터 제어정보를 수신하는 중계기 장치 및 그 방법
WO2013105832A1 (ko) 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국
WO2013176531A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2017150942A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016056876A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016021992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2014209035A1 (ko) 무선 통신 시스템에서 제어정보 획득 방법 및 장치
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2014088371A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2013169003A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2016036100A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016072705A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 전송 방법 및 장치
WO2013151339A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818148

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137031634

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12818148

Country of ref document: EP

Kind code of ref document: A2