[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017069234A1 - Brake for vehicles - Google Patents

Brake for vehicles Download PDF

Info

Publication number
WO2017069234A1
WO2017069234A1 PCT/JP2016/081247 JP2016081247W WO2017069234A1 WO 2017069234 A1 WO2017069234 A1 WO 2017069234A1 JP 2016081247 W JP2016081247 W JP 2016081247W WO 2017069234 A1 WO2017069234 A1 WO 2017069234A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motion
brake
elastic member
rotating member
gear
Prior art date
Application number
PCT/JP2016/081247
Other languages
French (fr)
Japanese (ja)
Inventor
悠貴郎 玉田
崇 近田
陽成 佐々木
明大 岩田
善隆 石丸
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016195045A external-priority patent/JP6361715B2/en
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to CN201680056329.7A priority Critical patent/CN108138880B/en
Priority to DE112016004838.6T priority patent/DE112016004838B4/en
Publication of WO2017069234A1 publication Critical patent/WO2017069234A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D51/00Brakes with outwardly-movable braking members co-operating with the inner surface of a drum or the like
    • F16D51/46Self-tightening brakes with pivoted brake shoes, i.e. the braked member increases the braking action
    • F16D51/48Self-tightening brakes with pivoted brake shoes, i.e. the braked member increases the braking action with two linked or directly-interacting brake shoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/22Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for pressing members apart, e.g. for drum brakes

Definitions

  • This disclosure relates to a vehicle brake.
  • Patent Document 1 a vehicle brake that obtains a braking state by converting the rotation of a motor into a linear motion of a cable in a motion conversion mechanism and moving a brake shoe with the linearly moving cable.
  • the disc spring is compressed between the rotating member of the motion conversion mechanism and the housing, so that the rotational load of the motor is increased.
  • the control device can detect, for example, that the linear motion member and the cable are at a predetermined position, for example, the boundary position of the movable range, by the drive current corresponding to the rotational load of the motor.
  • one of the objects of the present invention is to obtain a vehicular brake with less inconvenience, for example, having a new configuration relating to an elastic member.
  • the vehicle brake according to the present disclosure includes, for example, an operation member that moves a braking member to brake a wheel, a motor, a rotation member that is rotated by the motor, and a linear motion that accompanies the rotation of the rotation member.
  • the vehicle brake has a configuration in which the first elastic member is elastically compressed between the rotating member and the linear motion member. Therefore, for example, a housing is used to reduce the degree of freedom in layout of parts including other parts due to the restriction of the position of the first elastic member or to increase the rigidity for receiving the compression reaction force of the first elastic member. It is possible to avoid a disadvantageous phenomenon caused by the configuration in which the first elastic member is compressed between the rotating member and the housing, such as locally increasing the thickness of the first member.
  • the first elastic member is provided so as to surround the linear motion member.
  • the linearity member and the first elastic member can be arranged relatively close to each other, so that the density of parts is likely to increase. Therefore, for example, the vehicle brake device may be configured to be smaller.
  • the first elastic member is a coil spring.
  • the coil spring is easier to handle than the leaf spring, so that the labor and cost of manufacturing the vehicle brake are easily reduced.
  • the vehicle brake includes, for example, a housing that houses at least the rotating member and the first elastic member, a thrust surface provided on the housing or a member supported by the housing, and the rotating member. A pressing member that presses against the thrust surface.
  • the pressing member is a helical gear that meshes with the rotating member and presses the rotating member against the thrust surface.
  • the pressing member is a second elastic member provided separately from the first elastic member.
  • the pressing member can be realized by a relatively simple configuration having a helical gear or a second elastic member.
  • the vehicle brake is, for example, between a first end portion of the first elastic member and a second end portion provided on the rotating member and supporting the first elastic member.
  • a sliding member is provided.
  • the vehicle brake slides with at least one of the first end of the first elastic member and the second end facing the first elastic member with the other, for example.
  • a sliding portion and a facing portion which is located radially outward of the sliding portion and faces the other with a gap are provided.
  • FIG. 1 is an exemplary and schematic rear view of a vehicle brake according to an embodiment from the rear of the vehicle.
  • FIG. 2 is an exemplary schematic side view of the vehicle brake according to the embodiment from the outside in the vehicle width direction.
  • FIG. 3 is an exemplary schematic side view of the operation of the braking member by the vehicle brake moving mechanism of the embodiment, and is a diagram in a non-braking state.
  • FIG. 4 is an exemplary and schematic side view of the operation of the braking member by the vehicle brake moving mechanism of the embodiment, and is a diagram in a braking state.
  • FIG. 5 is an exemplary and schematic cross-sectional view of the drive mechanism included in the vehicle brake of the first embodiment, and is a view in a non-braking state.
  • FIG. 6 is an exemplary schematic sectional view of a drive mechanism included in the vehicle brake according to the first embodiment, and is a diagram in a braking state.
  • 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 8 is an exemplary schematic sectional view of a drive mechanism included in the vehicle brake of the second embodiment.
  • FIG. 9 is an exemplary and schematic cross-sectional view of a drive mechanism included in a vehicle brake according to a modification of the first embodiment.
  • FIG. 10 is an exemplary and schematic cross-sectional view of a drive mechanism included in the vehicle brake of the third embodiment, and is a diagram in a non-braking state.
  • FIG. 11 is an enlarged view of a part of FIG. FIG.
  • FIG. 12 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modification of the third embodiment.
  • FIG. 13 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIG. 12 of the third embodiment.
  • FIG. 14 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 and 13 of the third embodiment.
  • FIG. 15 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 to 14 of the third embodiment.
  • FIG. 12 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 to 14 of the third embodiment.
  • FIG. 16 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 to 15 of the third embodiment.
  • FIG. 17 is an exemplary schematic graph showing the correlation between R and the relative value Tl / Tt.
  • FIG. 18 is an exemplary schematic graph showing the correlation between ⁇ e and the relative value Tl / Tt.
  • the front in the vehicle front-rear direction is indicated by an arrow X
  • the outer side in the vehicle width direction (axle direction) is indicated by an arrow Y
  • the upper side in the vehicle vertical direction is indicated by an arrow Z.
  • the brake device 2 which is an example of a vehicle brake is applied to the left rear wheel (non-drive wheel) will be exemplified, but the present invention can be similarly applied to other wheels. It is.
  • FIG. 1 is a rear view of the brake device 2 from the rear of the vehicle.
  • FIG. 2 is a side view of the brake device 2 from the outside in the vehicle width direction.
  • FIG. 3 is a side view showing the operation of the brake shoe 3 (braking member) by the moving mechanism 8 of the brake device 2 and is a view in a non-braking state.
  • FIG. 4 is a side view showing the operation of the brake shoe 3 by the moving mechanism 8 of the brake device 2 and is a diagram in a braking state.
  • the brake device 2 is accommodated inside the peripheral wall 1 a of the cylindrical wheel 1.
  • the brake device 2 is a so-called drum brake.
  • the brake device 2 includes two brake shoes 3 that are separated from each other in the front-rear direction.
  • the two brake shoes 3 extend in an arc shape along the inner peripheral surface 4 a of the cylindrical drum 4.
  • the drum 4 rotates integrally with the wheel 1 around the rotation center C along the vehicle width direction (Y direction).
  • the brake device 2 moves the two brake shoes 3 so as to contact the inner peripheral surface 4 a of the cylindrical drum 4.
  • the brake shoe 3 is an example of a braking member.
  • the brake device 2 includes a wheel cylinder 51 (see FIG. 2) that operates by hydraulic pressure, and a motor 120 (see FIG. 5) that operates by energization as actuators that move the brake shoes 3.
  • a wheel cylinder 51 (see FIG. 2) that operates by hydraulic pressure
  • a motor 120 (see FIG. 5) that operates by energization as actuators that move the brake shoes 3.
  • Each of the wheel cylinder 51 and the motor 120 can move the two brake shoes 3.
  • the wheel cylinder 51 is used, for example, for braking while traveling, and the motor 120 is used, for example, for braking during parking. That is, the brake device 2 is an example of an electric parking brake.
  • the motor 120 may be used for braking during traveling.
  • the brake device 2 includes a disc-shaped back plate 6 as shown in FIGS.
  • the back plate 6 is provided in a posture intersecting with the rotation center C. That is, the back plate 6 extends substantially along the direction intersecting the rotation center C, specifically, substantially along the direction orthogonal to the rotation center C.
  • the components of the brake device 2 are provided on both the outer side and the inner side of the back plate 6 in the vehicle width direction.
  • the back plate 6 supports each component of the brake device 2 directly or indirectly. That is, the back plate 6 is an example of a support member.
  • the back plate 6 is connected to a connection member (not shown) with the vehicle body.
  • the connection member is, for example, a part of the suspension (for example, an arm, a link, an attachment member, etc.).
  • the opening 6b provided in the back plate 6 shown in FIG. 2 is used for coupling with the connection member.
  • the brake device 2 can be used for both driving wheels and non-driving wheels.
  • an axle shaft (not shown) passes through an opening 6c provided in the back plate 6 shown in FIG.
  • the wheel cylinder 51 and the brake shoe 3 shown in FIG. 2 are arranged on the outer side of the back plate 6 in the vehicle width direction.
  • the brake shoe 3 is movably supported on the back plate 6.
  • the lower end 3a of the brake shoe 3 is supported by the back plate 6 (see FIG. 2) so as to be rotatable around the rotation center C11.
  • the rotation center C11 is substantially parallel to the rotation center C of the wheel 1.
  • the wheel cylinder 51 is supported by the upper end portion of the back plate 6.
  • the wheel cylinder 51 has two movable parts (pistons) (not shown) that can project in the vehicle front-rear direction (left-right direction in FIG. 2).
  • the wheel cylinder 51 causes the two movable parts to protrude in response to the pressurization.
  • the two projecting movable parts push the upper end 3b of the brake shoe 3, respectively.
  • the two brake shoes 3 rotate around the rotation center C11 (see FIGS. 3 and 4) and move so that the upper end parts 3b are separated from each other in the vehicle front-rear direction.
  • the two brake shoes 3 move outward in the radial direction of the rotation center C of the wheel 1.
  • a belt-like lining 31 along the cylindrical surface is provided on the outer periphery of each brake shoe 3. Therefore, the lining 31 and the inner peripheral surface 4a of the drum 4 come into contact with each other as shown in FIG.
  • the brake device 2 includes a return member 32.
  • the return member 32 moves from the position where the two brake shoes 3 come into contact with the inner peripheral surface 4a of the drum 4 (braking position Pb, see FIG. 4).
  • the drum 4 is moved to a position (non-braking position Pn, initial position, see FIG. 3) that does not contact the inner peripheral surface 4a of the drum 4.
  • the return member 32 is an elastic member such as a coil spring, for example, and gives each brake shoe 3 a force in a direction approaching the other brake shoe 3, that is, a force in a direction away from the inner peripheral surface 4 a of the drum 4. .
  • the brake device 2 includes a moving mechanism 8 shown in FIGS.
  • the moving mechanism 8 moves the two brake shoes 3 from the non-braking position Pn to the braking position Pb based on the operation of the driving mechanism 100 including the motor 120 (see FIG. 5).
  • the moving mechanism 8 is provided outside the back plate 6 in the vehicle width direction.
  • the moving mechanism 8 includes a lever 81, a cable 82, and a strut 83.
  • the lever 81 is located between one of the two brake shoes 3, for example, the left brake shoe 3 ⁇ / b> L in FIGS. 3 and 4, and the back plate 6. It is provided so as to overlap in the axial direction.
  • the lever 81 is supported by the brake shoe 3L so as to be rotatable around the rotation center C12.
  • the rotation center C12 is located at the end of the brake shoe 3L on the side away from the rotation center C11 (upper side in FIGS. 3 and 4), and is substantially parallel to the rotation center C11.
  • the cable 82 moves the lower end portion 81a of the lever 81 on the side farther from the rotation center C12, for example, in a direction approaching the right brake shoe 3R in FIGS.
  • the cable 82 moves substantially along the back plate 6.
  • the strut 83 is interposed between the lever 81 and the brake shoe 3R different from the brake shoe 3L on which the lever 81 is supported, and stretches between the lever 81 and the other brake shoe 3R.
  • the connection position P1 between the lever 81 and the strut 83 is set between the rotation center C12 and the connection position P2 between the cable 82 and the lever 81.
  • the cable 82 is an example of an operating member that moves the brake shoe 3.
  • connection position P2 between the cable 82 and the lever 81 corresponds to the power point
  • the rotation center C12 corresponds to the fulcrum
  • the connection position P1 between the lever 81 and the strut 83 corresponds to the action point.
  • the brake shoe 3R is in contact with the inner peripheral surface 4a and the lever 81 moves to the right in FIG. 4, that is, in the direction in which the strut 83 pushes the brake shoe 3R (arrow b)
  • the strut 83 is stretched.
  • the lever 81 rotates in the direction opposite to the direction in which the lever 81 moves, that is, counterclockwise in FIGS.
  • connection position P1 with the strut 83 serves as a fulcrum.
  • the brake shoe 3L rotates around the rotation center C11 from the non-braking position Pn (FIG. 3) and moves to the braking position Pb (FIG. 4) in contact with the inner peripheral surface 4a of the drum 4.
  • the brake shoes 3L and 3R are both moved from the non-braking position Pn (FIG. 3) to the braking position Pb (FIG. 4) by the operation of the moving mechanism 8.
  • the connection position P1 between the lever 81 and the strut 83 serves as a fulcrum.
  • the amount of movement of the brake shoes 3L, 3R is very small, for example, 1 mm or less.
  • FIG. 5 is a cross-sectional view of the drive mechanism 100 in a non-braking state.
  • FIG. 6 is a cross-sectional view of the driving mechanism 100 in a braking state.
  • the drive mechanism 100 shown in FIGS. 1, 5 and 6 moves the two brake shoes 3 from the non-braking position Pn to the braking position Pb via the moving mechanism 8 described above.
  • the drive mechanism 100 is positioned inward in the vehicle width direction of the back plate 6 and is fixed to the back plate 6.
  • the cable 82 shown in FIGS. 2 to 4 passes through an opening (not shown) provided in the back plate 6.
  • the drive mechanism 100 includes a housing 110, a motor 120, a speed reduction mechanism 130, and a motion conversion mechanism 140.
  • the housing 110 supports the motor 120, the speed reduction mechanism 130, and the motion conversion mechanism 140.
  • the housing 110 includes a plurality of members. The plurality of members are coupled and integrated by a coupling tool (not shown) such as a screw.
  • a housing chamber R surrounded by a wall 111 is provided in the housing 110.
  • the motor 120, the speed reduction mechanism 130, and the motion conversion mechanism 140 are accommodated in the accommodation chamber R and covered with the wall portion 111.
  • the housing 110 may be referred to as a base, a support member, a casing, or the like.
  • the structure of the housing 110 is not limited to what was illustrated here.
  • the motor 120 is an example of an actuator, and includes a case 121 and a housing component housed in the case 121.
  • the housing components include, for example, a stator, a rotor, a coil, and a magnet (not shown) in addition to the shaft 122.
  • the shaft 122 protrudes from the case 121 in the D1 direction (rightward in FIG. 5) along the first rotation center Ax1 of the motor 120.
  • the motor 120 is driven by driving power based on the control signal, and rotates the shaft 122.
  • the shaft 122 may be referred to as an output shaft.
  • the right side in FIG. 5 is referred to as the front in the D1 direction
  • the left side in FIG. 5 is referred to as the rear in the D1 direction or the opposite direction to the D1 direction.
  • the speed reduction mechanism 130 includes a plurality of gears that are rotatably supported by the housing 110.
  • the plurality of gears are, for example, a first gear 131, a second gear 132, and a third gear 133.
  • Deceleration mechanism 130 can be referred to as a rotation transmission mechanism.
  • the first gear 131 rotates integrally with the shaft 122 of the motor 120.
  • the first gear 131 can be referred to as a drive gear.
  • the second gear 132 rotates around the second rotation center Ax2 parallel to the first rotation center Ax1.
  • the second gear 132 includes an input gear 132a and an output gear 132b.
  • the input gear 132a meshes with the first gear 131.
  • the number of teeth of the input gear 132a is larger than the number of teeth of the first gear 131. Therefore, the second gear 132 is decelerated to a lower rotational speed than the first gear 131.
  • the output gear 132b is located behind the input gear 132a in the direction D1 (leftward in FIG. 5).
  • the second gear 132 can be referred to as an idler gear.
  • the third gear 133 rotates around the third rotation center Ax3 parallel to the first rotation center Ax1.
  • the third gear 133 meshes with the output gear 132b of the second gear 132.
  • the number of teeth of the third gear 133 is larger than the number of teeth of the output gear 132b. Therefore, the third gear 133 is decelerated to a lower rotational speed than the second gear 132.
  • the third gear 133 can be referred to as a driven gear. Note that the configuration of the speed reduction mechanism 130 is not limited to that illustrated here.
  • the speed reduction mechanism 130 may be a rotation transmission mechanism other than a gear mechanism, such as a rotation transmission mechanism using a belt, a pulley, or the like.
  • the motion conversion mechanism 140 includes a rotating member 141 and a linearly moving member 142.
  • the rotating member 141 rotates around the third rotation center Ax3.
  • the rotating member 141 has a small diameter portion 141a and a large diameter portion 141b having a larger outer diameter than the small diameter portion 141a.
  • the small diameter portion 141a is a portion located in the direction opposite to the D1 direction in the rotating member 141, and is configured in a cylindrical shape.
  • the large diameter portion 141b is a portion of the rotating member 141 that is positioned in the D1 direction.
  • the large diameter portion 141b has a bottom wall portion 141b1 and a side wall portion 141b2.
  • the bottom wall portion 141b1 projects in the radial direction from the end portion of the small diameter portion 141a in the D1 direction, and is configured in an annular shape and a plate shape.
  • the side wall 141b2 extends in the direction D1 from the peripheral edge of the bottom wall 141b1, and is configured in a cylindrical shape.
  • the side wall part 141b2 may be referred to as a peripheral wall part or a cylindrical wall part.
  • the large-diameter portion 141b is provided with a concave portion 141b3 that is open toward the D1 direction.
  • the teeth of the third gear 133 are provided on the side wall 141b2 of the large diameter portion 141b. That is, the rotating member 141 is also the third gear 133.
  • the part where the teeth of the third gear 133 are provided is an example of a driven part.
  • the cylindrical portion 112 of the housing 110 is accommodated in the recess 141b3.
  • the thrust bearing 143 is positioned between the end portion 112a of the cylindrical portion 112 in the direction opposite to the D1 direction and the bottom wall portion 141b1.
  • the thrust bearing 143 receives a load in the axial direction of the third rotation center Ax3.
  • the thrust bearing 143 is a thrust roller bearing in the example of FIG. 5, but is not limited to this.
  • the large-diameter portion 141b and the rotating member 141 are rotatably supported by the housing 110 via a thrust bearing 143.
  • the small diameter portion 141 a is accommodated in the first hole 113 a of the housing 110.
  • the cross section of the first hole 113a is substantially circular.
  • the first hole 113a extends along the axial direction of the third rotation center Ax3.
  • the rotating member 141 is provided with a through hole 141c having a circular cross section that penetrates the small diameter portion 141a and the bottom wall portion 141b1.
  • a female screw part 145a is provided in the through hole 141c.
  • the linear motion member 142 extends along the third rotation center Ax3 and penetrates the rotation member 141.
  • the linear motion member 142 includes a rod-like portion 142a and a connecting portion 142b.
  • the rod-like portion 142 a is inserted into the through hole 141 c of the rotating member 141, the concave portion 141 b 3 of the large-diameter portion 141 b of the rotating member 141, and the second hole 113 b provided in the cylindrical portion 112 of the housing 110.
  • the cross section of the second hole 113b is substantially circular.
  • the second hole 113b is positioned forward in the D1 direction with respect to the first hole 113a, and extends along the axial direction of the third rotation center Ax3.
  • the rod-like portion 142a has a substantially circular cross section.
  • the rod-like portion 142 a is provided with a male screw portion 145 b that meshes with the female screw portion 145 a of the rotating member 141.
  • the connecting portion 142b is connected to the end portion 82a of the cable 82 by a connecting member 146. As shown in FIG. 7, the connecting member 146 passes through the end portion 82 a and the connecting portion 142 b of the cable 82.
  • the connecting member 146 is, for example, a pin.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • a groove 113 e is provided on the inner surface of the second hole 113 b provided in the cylindrical portion 112 of the housing 110.
  • the groove 113e extends with a substantially constant width and depth along the third rotation center Ax3.
  • the groove 113e is provided at two locations across the third rotation center Ax3.
  • the end of the connecting member 146 in the longitudinal direction is inserted into the groove 113e.
  • the circumferential width of the third rotation center Ax3 of the groove 113e is set to be slightly larger than the width of the end of the connecting member 146 in the longitudinal direction.
  • connection member 146 and the circumferential surface of the groove 113e are in contact with each other, so that the rotation of the connection member 146 and thus the linear motion member 142 around the third rotation center Ax3 is limited.
  • the connecting member 146 is movable in the recess 141b3. That is, the connecting member 146 is positioned in the recess 141b3 in a state where the linear motion member 142 is positioned at the braking position Pb.
  • the surface 113d in the D1 direction of the groove 113e shown in FIG. 7 restricts the connecting member 146 from moving in the D1 direction.
  • the surface 113d can be referred to as a stopper or a position limiter.
  • bonds the linear motion member 142 and the cable 82 is not limited to the example of FIG.
  • the rotation of the shaft 122 of the motor 120 is transmitted to the rotating member 141 via the speed reduction mechanism 130, and when the rotating member 141 rotates, the female screw portion 145 a of the rotating member 141 and the male screw portion of the linear motion member 142. Due to the meshing with 145b and the limitation of the rotation of the linear motion member 142 by the housing 110 in the groove 113e, the linear motion member 142 and the non-braking position Pn (FIG. 5) are braked along the axial direction of the third rotational center Ax3. It moves between the position Pb (FIG. 6).
  • the portion of the tubular portion 112 of the housing 110 where the groove 113e is provided is an example of a rotation restricting portion that restricts the rotation of the connecting member 146 and thus the linear motion member 142 around the third rotation center Ax3.
  • the linear motion member 142 is also an example of a guide portion that guides the linear motion member 142 along the axial direction of the third rotation center Ax3.
  • a disc-shaped support member 152 is coupled to the end of the linear motion member 142 at the rear (left side in FIG. 5) in the direction D ⁇ b> 1 by a coupling tool 153 such as a screw. .
  • a coupling tool 153 such as a screw.
  • a coil spring 151 is provided between the support member 152 and the bottom wall portion 141b1 of the large diameter portion 141b.
  • the coil spring 151 is formed in a spiral shape extending along the third rotation center Ax3 so as to surround the small diameter portion 141a and the linear motion member 142.
  • the coil spring 151 is an example of a first elastic member.
  • the coil spring 151 can be referred to as a biasing member or a repulsion member.
  • the elastic member may be an elastic member other than the coil spring, such as an elastomer.
  • the coil spring 151 is sandwiched between the support member 152 integrated with the linear motion member 142 and the bottom wall portion 141b1 of the rotating member 141, and is elastically compressed. Due to the increase in the elastic compression reaction force of the coil spring 151, the force in the normal direction of the thread surface at the female screw portion 145a and the male screw portion 145b increases, so that the frictional resistance torque between the female screw portion 145a and the male screw portion 145b increases. As a result, the load torque of the motor 120 increases.
  • the control device (not shown) of the motor 120 is in a predetermined state in which the forward movement of the linear motion member 142 in the direction D1 is limited by detecting the load torque based on the drive current of the motor 120 or the like. Can be detected. That is, in the present embodiment, the motor rotation load increasing mechanism is configured mainly by the coil spring 151 as an elastic member that applies an elastic reaction force to the rotating member 141 in the axial direction.
  • the rotating member 141 and the linear motion member 142 elastically compress the coil spring 151 as the first elastic member constituting the motor rotation load increasing mechanism. Therefore, according to the present embodiment, for example, the position flexibility of the first elastic member reduces the degree of freedom in the layout of components including other components, or receives the compression reaction force of the first elastic member. Inconvenient events caused by the configuration in which the first elastic member is compressed between the rotating member 141 and the housing 110, such as locally increasing the thickness of the wall portion 111 of the housing 110 in order to increase the rigidity of the housing 110 Can be avoided.
  • the coil spring 151 is provided so as to surround the linear motion member 142, the small diameter portion 141a of the rotating member 141, and the female screw portion 145a. Therefore, according to this embodiment, for example, the linear motion member 142, the small diameter portion 141a, the female screw portion 145a, and the coil spring 151 can be arranged relatively close to each other. Therefore, for example, the density of parts in this portion tends to increase. Therefore, the drive mechanism 100 and hence the brake device 2 are easily reduced in size.
  • the labor and cost of manufacturing the first elastic member, the drive mechanism 100, and consequently the brake device 2 are more likely to be reduced.
  • the drive mechanism 100A of this embodiment shown in FIG. 8 has the same configuration as the drive mechanism 100 of the first embodiment. Therefore, also in this embodiment, the same result based on the same configuration as the first embodiment is obtained.
  • a leaf spring 151A is provided as the first elastic member.
  • the support member 152A is configured in a cup shape and includes a bottom wall portion 152a and a side wall portion 152b.
  • the bottom wall portion 152a is formed in a disc shape, and is coupled to a rear end (left side in FIG. 8) of the linear motion member 142 in the direction D1 by a coupling tool 153 such as a screw.
  • the side wall part 152b is cylindrical and extends in the direction D1 from the peripheral edge part of the bottom wall part 152a.
  • a leaf spring 151A is provided between the end portion in the D1 direction of the side wall portion 152b of the support member 152A and the bottom wall portion 141b1 of the large diameter portion 141b.
  • the side wall 152b may be provided with a slit extending in the direction opposite to the D1 direction from the end in the D1 direction, or an opening such as a through hole.
  • an effect is obtained by the configuration in which the rotating member 141 and the linear motion member 142 elastically compress the elastic member, and the elastic member is compressed between the rotating member 141 and the housing 110.
  • the inconvenient event that has been performed can be avoided.
  • the drive mechanism 100B of the modification shown in FIG. 9 has the same configuration as the drive mechanism 100 of the first embodiment. Therefore, also by this modification, the same result based on the structure similar to the said 1st Embodiment is obtained.
  • the housing 110 includes a wall portion 111 and a wall portion 114.
  • the wall 114 is detachably integrated with the wall 111.
  • the portion including the wall portion 114 can be integrated with the wall portion 111 by a coupling tool such as a screw (not shown), for example.
  • a portion including the wall portion 114 is provided with a male screw portion or a female screw portion (not shown), and is configured to be engaged with and integrated with the female screw portion or the male screw portion provided in the portion including the wall portion 111. Can be done.
  • the portion including the wall portion 111 may be referred to as a first member, a first portion, and a first divided body, and the portion including the wall portion 114 may be referred to as a second member, a second portion, and a second divided body.
  • the support member 152B coupled to the linear motion member 142 is exposed in a state where the portion including the wall portion 114 is separated from the portion including the wall portion 111.
  • the support member 152B may be provided with a fitting hole (not shown) into which a tool, a jig, or the like can be inserted, for example. Therefore, even when the rotating member 141 is locked in an emergency or the like, the operator can directly fix the rotating member 141 by inserting a tool or a jig into the fitting hole provided in the supporting member 152B.
  • the moving member 142 can be moved.
  • the support member 152B may be configured to be turned with fingers.
  • the support member 152B partially protrudes in the radial direction at a plurality of locations in the circumferential direction, and the protruding portion is formed in a groove 113e provided continuously to the wall portion 111 and the wall portion 114 of the housing 110.
  • a guide portion including a support member 152B and a rotation limiting portion are configured. That is, of the wall portion 111 and the wall portion 114 of the housing 110, the portion provided with the groove 113e is an example of a rotation limiting portion that limits the rotation of the support member 152B and thus the linear motion member 142 around the third rotation center Ax3. It is also an example of a guide portion that guides the support member 152B and thus the linear motion member 142 along the axial direction of the third rotation center Ax3.
  • FIG. 10 is a cross-sectional view of the drive mechanism 100C in the non-braking state.
  • the drive mechanism 100C of this embodiment shown in FIG. 10 has the same configuration as the drive mechanism 100 of the first embodiment. Therefore, also in this embodiment, the same result based on the same configuration as the first embodiment is obtained.
  • the configuration of the rotating member 141 is different from that of the above-described embodiment or modification.
  • the rotating member 141 rotates around the third rotation center Ax3.
  • the rotating member 141 includes a small-diameter portion 141a, a flange 141e projecting radially outward from the small-diameter portion 141a, and a peripheral wall 141d extending in the axial direction from the flange 141e.
  • the small diameter portion 141a is configured in a cylindrical shape extending in the D1 direction, and penetrates the flange 141e in the D1 direction.
  • the flange 141e protrudes from the center position in the D1 direction of the small diameter portion 141a in a disk shape in the radial direction of the third rotation center Ax3.
  • the peripheral wall 141d extends in a cylindrical shape in the D1 direction from the outer edge of the flange 141e.
  • the small diameter portion 141a can also be referred to as a hub.
  • the flange 141e functions in the same manner as the large diameter portion 141b or the bottom wall portion 141b1.
  • the teeth of the third gear 133 are provided on the outer periphery of the peripheral wall 141d. That is, the rotating member 141 is also the third gear 133.
  • the surface pressure of the output gear 132b of the third gear 133 and the second gear 132 can be reduced.
  • the part where the teeth of the third gear 133 are provided is an example of a driven part.
  • At least the teeth or all of the first gear 131, the second gear 132, and the third gear 133 can be made of a synthetic resin material. However, the present invention is not limited to this, and at least one of the first gear 131, the second gear 132, and the third gear 133 may be partially or entirely made of a metal material.
  • the small diameter portion 141 a is inserted into a cylindrical radial bearing 144 housed at the tip of the cylindrical portion 112.
  • the small-diameter portion 141a and thus the rotating member 141 are rotatably supported by the housing 110 via a radial bearing 144.
  • the radial bearing 144 is a metal bush in the example of FIG. 5, it is not limited to this.
  • the rod-like portion 142 a is inserted into the first hole 113 a of the housing 110, the through hole 141 c of the rotating member 141, and the second hole 113 b provided in the cylindrical portion 112 of the housing 110.
  • the cross section of the second hole 113b is non-circular.
  • the cross section of the second hole 113b is formed in a long hole shape that is long in the direction orthogonal to the third rotation center Ax3 (in FIG. 5, the vertical direction of the paper surface).
  • the second hole 113b is positioned forward in the D1 direction with respect to the first hole 113a, and extends along the axial direction of the third rotation center Ax3.
  • the rod-like portion 142a has a substantially circular cross section.
  • the rod-like portion 142 a is provided with a male screw portion 145 b that meshes with the female screw portion 145 a of the rotating member 141.
  • the cylindrical portion 112 is provided with a cylindrical inner surface 113c facing the second hole 113b.
  • the cross section of the inner surface 113c has a shape along the long hole cross section of the second hole 113b.
  • the inner surface 113c has two planar guide surfaces 113ca (only one guide surface 113ca is shown in FIG. 10) extending in a direction orthogonal to the third rotation center Ax3.
  • the two guide surfaces 113ca are positioned with a space therebetween, and the linear motion member 142 is positioned between the two guide surfaces 113ca.
  • a protrusion 142c protrudes from the rod-like portion 142a of the linear motion member 142 toward the outer side in the radial direction of the third rotation center Ax3.
  • the outer periphery of the protrusion 142c is formed in a shape along the inner surface 113c.
  • a gap is provided between the protrusion 142c and the inner surface 113c, and grease is provided in the gap.
  • the rotation of the shaft 122 of the motor 120 is transmitted to the rotating member 141 via the speed reduction mechanism 130, and when the rotating member 141 rotates, the female screw portion 145 a of the rotating member 141 and the male screw portion of the linear motion member 142. Due to the meshing with 145b and the limitation of the rotation of the linear motion member 142 by the guide surface 113ca, the linear motion member 142 moves along the axial direction of the third rotation center Ax3 with the non-braking position Pn (FIG. 10) and the braking position (Not shown).
  • FIG. 11 is an enlarged view of a part of FIG.
  • the output gear 132b and the third gear 133 of the second gear 132 are configured as helical gears.
  • the output gear 132b gives an axial force directed forward or rearward in the D1 direction to the third gear 133 according to the rotation direction by means of a helical tooth.
  • the output gear 132b rotates in one rotational direction, thereby giving the rotating member 141 an axial force in the forward direction in the D1 direction.
  • the output gear 132b presses the end surface 141e1 of the flange 141e of the rotating member 141 against the surface 143a of the thrust bearing 143, and the rotating member 141 and the thrust bearing 143 are connected to the rear end of the cylindrical portion 112 in the D1 direction. Press against 112a (end face).
  • the end surface 141e1 can be referred to as a pressed surface.
  • the output gear 132b rotates in the direction opposite to the one rotation direction (the other rotation direction), thereby giving the rotating member 141 a rear axial force in the D1 direction.
  • the output gear 132 b can press the end surface 141 d 1 of the peripheral wall 141 d of the rotating member 141 against the end surface 111 a of the housing 110.
  • the end surface 141d1 can be referred to as a pressed surface or a sliding surface.
  • the direction of the spiral of the output gear 132b is determined by the rotation of the output gear 132b when the linear motion member 142 moves from the braking position Pb (not shown) to the non-braking position Pn shown in FIG. Is set so as to give a forward axial force in the direction D1.
  • the surface 143a of the thrust bearing 143 and the end surface 111a of the housing 110 are examples of thrust surfaces
  • the thrust bearing 143 is an example of a member supported by the housing 110
  • the second gear 132 is
  • the output gear 132b is an example of a helical gear.
  • the output gear 132b presses the rotating member 141 against the surface 143a or the end surface 111a (thrust surface), thereby suppressing the change in the position and posture of the rotating member 141 and thus rotating. Sound and vibration based on changes in the position and orientation of the member 141 are unlikely to occur.
  • an annular and plate-shaped washer 154 is provided between the end surface 151a of the coil spring 151 and the end surface 141e2 of the flange 141e.
  • plating treatment such as molybdenum disulfide treatment, chromium plating treatment, nickel plating treatment, diamond-like carbon (
  • the washer 154 is an example of a sliding member. The principle of starting torque reduction by the friction coefficient will be described later.
  • a wave washer 161 or a spring washer 162 is provided as a pressing member.
  • a wave washer 161 is provided between the end surface 141d1 of the peripheral wall 141d and the end surface 111a of the housing 110, and in the modified example of FIG. 13, the wave washer 161 is a surface 143a of the thrust bearing 143. 14 and the end surface 141e1 of the flange 141e.
  • the spring washer 162 is provided between the surface 143a of the thrust bearing 143 and the end surface 141e1 of the flange 141e.
  • the wave washer 161 applies an axial force forward to the rotating member 141 in the D1 direction.
  • the wave washer 161 elastically presses the end surface 141e1 against the surface 143a of the thrust bearing 143.
  • the wave washer 161 or the spring washer 162 gives the rotating member 141 a rear axial force in the direction D1.
  • the wave washer 161 or the spring washer 162 elastically presses the end surface 141 d 1 against the end surface 111 a of the housing 110.
  • the wave washer 161 or the spring washer 162 is an example of a second elastic member.
  • a spring washer 162 can be provided instead of the wave washer 161.
  • other elastic members such as a cone spring, a coil spring, a leaf spring, and an elastomer (rubber) can be provided as a pressing member.
  • the flange 141e of the rotating member 141 has an end surface 141e2 (support surface) that contacts the end surface 151a of the coil spring 151, and a step surface 141e3 (bottom surface, concave surface) facing the end surface 151a with a gap. ) And are provided.
  • the end surface 151a and the end surface 141e2 slide, but the end surface 151a and the step surface 141e3 do not slide.
  • the end surface 151a is an example of a first end portion
  • the end surface 141e2 is an example of a sliding portion
  • the step surface 141e3 is an example of a facing portion
  • the end surface 141e2 and the step surface 141e3 are It is an example of a 2nd edge part.
  • an end surface 151 a that contacts the end surface 141 e 2 of the flange 141 e and an inclined surface 151 b that faces the end surface 141 e 2 with a gap are provided at the end of the coil spring 151.
  • the end surface 151a and the end surface 141e2 slide, but the inclined surface 151b and the end surface 141e2 do not slide.
  • the end surface 151a is an example of a sliding portion
  • the inclined surface 151b is an example of a facing portion
  • the end surface 151a and the inclined surface 151b are an example of a first end portion
  • the end surface 141e2 is It is an example of a 2nd edge part.
  • the torque Tt required to elastically compress the coil spring 151 by moving the linear motion member 142 forward in the direction D1 toward the non-braking position Pn can be expressed by the following equation (1).
  • F axial force
  • ⁇ s coefficient of friction of the threaded surface of the female threaded portion 145a and male threaded portion 145b
  • flank angle of the threaded surface
  • p screw pitch
  • R end surface 151a of the coil spring 151 and the flange 141e
  • ⁇ e the friction coefficient of the contact portion between the end surface 151a and the end surface 141e2 of the coil spring 151.
  • the first term is the friction torque on the thread surface
  • the second term is the fastening torque
  • the third term is the friction torque between the end surface 151a and the end surface 141e2.
  • the torque Tl required for elastically releasing the compression state by the coil spring 151 by moving the linear motion member 142 rearward in the direction D1 from the non-braking position Pn can be expressed by the following equation (2).
  • the sign of the fastening torque in the second term is negative.
  • a predetermined value of torque is detected by the drive current of the motor 120, and the motor 120 is stopped from the point of detection. That is, the torque Tt is a value overrun from a predetermined value of torque. The torque overrun increases as the friction torque decreases. Therefore, the magnitude of the torque Tl required to move the linear motion member 142 backward from the non-braking position Pn in the direction D1 should be evaluated by the relative value Tl / Tt of the torque Tl with respect to the torque Tt (formula (3)). is there.
  • FIG. 17 is a graph showing the correlation between R and the relative value Tl / Tt of equation (3)
  • FIG. 18 shows the correlation between ⁇ e and the relative value Tl / Tt of equation (3). It is a graph to show.
  • Equation (3) the smaller R and ⁇ e, the smaller the relative value Tl / Tt.
  • the stepped surface 141e3 as the facing portion is located radially outward of the end surface 141e2 as the sliding portion
  • the inclined surface 151b as the facing portion is The end face 151a serving as the sliding portion is located radially outward.
  • the torque Tt is reduced.
  • the relative value Tl / Tt of the torque Tl that is, the torque at the start of the motor 120 for starting braking (initially at the start of rotation) and the subsequent torque during rotation can be reduced.
  • an inclined surface may be provided on the flange 141e, or a step surface may be provided on the coil spring 151. Further, both the flange 141e and the coil spring 151 may be provided with facing portions.
  • the brake device 2 is configured as a leading trailing drum brake, but the present invention can also be configured as other types of brake devices. Further, the present invention can be implemented as a configuration corresponding to the other actuator of a brake device having a disc brake by one actuator and a drum brake by another actuator. Moreover, the effect by an elastic member does not presuppose the structure by which the movement of the axial direction of a linear motion member is restrict
  • the configuration in which the operating member that moves the braking member is the cable 82 is exemplified, but the operating member may be other than the cable 82 such as a rod or a lever.
  • the actuating member may move the braking member by pushing instead of pulling.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

For example, a brake for vehicles which has a novel configuration associated with an elastic member and has little disadvantages is provided. The brake for vehicles is equipped with, for example: an actuating member which can move a braking member so as to brake a wheel; a motor; a rotary member which can be rotated by the motor; a linear motion member which can move linearly in synchronization with the rotation of the rotary member to move the actuating member; and an elastic member which is arranged between the rotary member and the linear motion member and can be elastically deformed in the direction of the axis of the rotary member between the rotary member and the linear motion member as the result of the movement of the linear motion member in the direction of the axis of the rotary member.

Description

車両用ブレーキVehicle brake
 本開示は、車両用ブレーキに関する。 This disclosure relates to a vehicle brake.
 従来、運動変換機構においてモータの回転をケーブルの直動に変換し、直動するケーブルによってブレーキシューを動かすことにより制動状態を得る車両用ブレーキが知られている(例えば、特許文献1)。特許文献1では、例えば、運動変換機構の回転部材とハウジングとの間で皿ばねが圧縮されることにより、モータの回転負荷が高まるよう構成されている。この場合、制御装置は、モータの回転負荷に応じた駆動電流により、例えば、直動部材やケーブルが、所定位置、例えば可動範囲の境界位置にあることを、検知することができる。 2. Description of the Related Art Conventionally, there is known a vehicle brake that obtains a braking state by converting the rotation of a motor into a linear motion of a cable in a motion conversion mechanism and moving a brake shoe with the linearly moving cable (for example, Patent Document 1). In Patent Document 1, for example, the disc spring is compressed between the rotating member of the motion conversion mechanism and the housing, so that the rotational load of the motor is increased. In this case, the control device can detect, for example, that the linear motion member and the cable are at a predetermined position, for example, the boundary position of the movable range, by the drive current corresponding to the rotational load of the motor.
特表2014-504711号公報Special table 2014-504711 gazette
 しかしながら、従来の皿ばねを回転部材とハウジングとの間で圧縮する構成では、例えば、皿ばねの位置によっては車両用ブレーキが大型化するなどの、不都合が生じる虞もあった。そこで、本発明の課題の一つは、例えば、弾性部材に関わる新規な構成を有した、より不都合の少ない車両用ブレーキを得ることである。 However, in the configuration in which the conventional disc spring is compressed between the rotating member and the housing, there is a possibility that inconveniences such as an increase in the size of the vehicle brake may occur depending on the position of the disc spring. Accordingly, one of the objects of the present invention is to obtain a vehicular brake with less inconvenience, for example, having a new configuration relating to an elastic member.
 本開示の車両用ブレーキは、例えば、ホイールを制動すべく制動部材を移動させる作動部材と、モータと、上記モータによって回転される回転部材と、上記回転部材の回転に伴って直動し上記作動部材を移動させる直動部材と、上記回転部材と上記直動部材との間に設けられ、上記回転部材の軸方向への上記直動部材の移動により上記回転部材と上記直動部材との間で上記軸方向に弾性変形される第一の弾性部材と、を備える。 The vehicle brake according to the present disclosure includes, for example, an operation member that moves a braking member to brake a wheel, a motor, a rotation member that is rotated by the motor, and a linear motion that accompanies the rotation of the rotation member. A linear motion member that moves the member, and is provided between the rotary member and the linear motion member. Between the rotary member and the linear motion member by movement of the linear motion member in the axial direction of the rotary member. And a first elastic member elastically deformed in the axial direction.
 上記車両用ブレーキは、第一の弾性部材を回転部材と直動部材との間で弾性的に圧縮する構成を有する。よって、例えば、第一の弾性部材の位置の制約によって他の部品も含めた部品のレイアウトの自由度が低下したり、第一の弾性部材の圧縮反力を受けるための剛性を高めるためにハウジングの厚みを局所的に増大したりといった、回転部材とハウジングとの間で第一の弾性部材が圧縮される構成によって生じていた不都合な事象を、回避できる。 The vehicle brake has a configuration in which the first elastic member is elastically compressed between the rotating member and the linear motion member. Therefore, for example, a housing is used to reduce the degree of freedom in layout of parts including other parts due to the restriction of the position of the first elastic member or to increase the rigidity for receiving the compression reaction force of the first elastic member. It is possible to avoid a disadvantageous phenomenon caused by the configuration in which the first elastic member is compressed between the rotating member and the housing, such as locally increasing the thickness of the first member.
 また、上記車両用ブレーキでは、例えば、上記第一の弾性部材は、上記直動部材を囲うように設けられる。 In the vehicle brake, for example, the first elastic member is provided so as to surround the linear motion member.
 上記車両用ブレーキでは、例えば、直動部材と第一の弾性部材とを比較的近付けて配置することができる分、部品の密集度が高まりやすい。よって、例えば、車両用ブレーキ装置がより小さく構成される場合がある。 In the above vehicle brake, for example, the linearity member and the first elastic member can be arranged relatively close to each other, so that the density of parts is likely to increase. Therefore, for example, the vehicle brake device may be configured to be smaller.
 また、上記車両用ブレーキでは、例えば、上記第一の弾性部材は、コイルスプリングである。 In the vehicle brake, for example, the first elastic member is a coil spring.
 上記車両用ブレーキでは、例えば、コイルスプリングは板バネよりも取り扱いが容易であるため、車両用ブレーキの製造の手間およびコストがより低減されやすい。 In the above-described vehicle brake, for example, the coil spring is easier to handle than the leaf spring, so that the labor and cost of manufacturing the vehicle brake are easily reduced.
 また、上記車両用ブレーキは、例えば、少なくとも上記回転部材および上記第一の弾性部材を収容したハウジングと、上記ハウジングまたは上記ハウジングに支持された部材に設けられたスラスト面と、上記回転部材を上記スラスト面に押し付ける押圧部材と、を備える。 The vehicle brake includes, for example, a housing that houses at least the rotating member and the first elastic member, a thrust surface provided on the housing or a member supported by the housing, and the rotating member. A pressing member that presses against the thrust surface.
 上記車両用ブレーキでは、例えば、押圧部材によって、回転部材がスラスト面に押し付けられることにより、回転部材の位置や姿勢の変化が抑制され、ひいては回転部材の位置や姿勢の変化に基づく音や振動が生じ難い。 In the vehicular brake, for example, when the rotating member is pressed against the thrust surface by the pressing member, changes in the position and posture of the rotating member are suppressed, and as a result, sounds and vibrations based on changes in the position and posture of the rotating member are generated. It is hard to occur.
 また、上記車両用ブレーキでは、例えば、上記押圧部材は、上記回転部材と噛み合い当該回転部材を上記スラスト面に押し付けるヘリカルギヤである。 In the vehicle brake, for example, the pressing member is a helical gear that meshes with the rotating member and presses the rotating member against the thrust surface.
 また、上記車両用ブレーキでは、例えば、上記押圧部材は、上記第一の弾性部材とは別に設けられた第二の弾性部材である。 In the vehicle brake, for example, the pressing member is a second elastic member provided separately from the first elastic member.
 上記車両用ブレーキでは、例えば、ヘリカルギヤまたは第二の弾性部材を有した比較的簡素な構成によって押圧部材を実現できる。 In the vehicle brake, for example, the pressing member can be realized by a relatively simple configuration having a helical gear or a second elastic member.
 また、上記車両用ブレーキは、例えば、上記第一の弾性部材の第一の端部と、上記回転部材に設けられ上記第一の弾性部材を支持する第二の端部と、の間に、滑り部材が設けられる。 In addition, the vehicle brake is, for example, between a first end portion of the first elastic member and a second end portion provided on the rotating member and supporting the first elastic member. A sliding member is provided.
 また、上記車両用ブレーキは、例えば、上記第一の弾性部材の第一の端部、および上記第一の弾性部材と面した第二の端部、のうち少なくとも一方に、他方と摺動する摺動部と、当該摺動部の径方向外方に位置され他方と隙間をあけて面した対面部と、が設けられる。 In addition, the vehicle brake slides with at least one of the first end of the first elastic member and the second end facing the first elastic member with the other, for example. A sliding portion and a facing portion which is located radially outward of the sliding portion and faces the other with a gap are provided.
 上記車両用ブレーキでは、例えば、滑り部材または対面部が設けられたことにより、制動開始にかかるモータの回転開始当初およびこれに続く回転中における摩擦抵抗を減らすことができる。 In the above-described vehicle brake, for example, by providing a sliding member or a facing portion, it is possible to reduce frictional resistance at the beginning of rotation of the motor for starting braking and subsequent rotation.
図1は、実施形態の車両用ブレーキの車両後方からの例示的かつ模式的な背面図である。FIG. 1 is an exemplary and schematic rear view of a vehicle brake according to an embodiment from the rear of the vehicle. 図2は、実施形態の車両用ブレーキの車幅方向外方からの例示的かつ模式的な側面図である。FIG. 2 is an exemplary schematic side view of the vehicle brake according to the embodiment from the outside in the vehicle width direction. 図3は、実施形態の車両用ブレーキの移動機構による制動部材の動作の例示的かつ模式的な側面図であって、非制動状態での図である。FIG. 3 is an exemplary schematic side view of the operation of the braking member by the vehicle brake moving mechanism of the embodiment, and is a diagram in a non-braking state. 図4は、実施形態の車両用ブレーキの移動機構による制動部材の動作の例示的かつ模式的な側面図であって、制動状態での図である。FIG. 4 is an exemplary and schematic side view of the operation of the braking member by the vehicle brake moving mechanism of the embodiment, and is a diagram in a braking state. 図5は、第1実施形態の車両用ブレーキに含まれる駆動機構の例示的かつ模式的な断面図であって、非制動状態での図である。FIG. 5 is an exemplary and schematic cross-sectional view of the drive mechanism included in the vehicle brake of the first embodiment, and is a view in a non-braking state. 図6は、第1実施形態の車両用ブレーキに含まれる駆動機構の例示的かつ模式的な断面図であって、制動状態での図である。FIG. 6 is an exemplary schematic sectional view of a drive mechanism included in the vehicle brake according to the first embodiment, and is a diagram in a braking state. 図7は、図5のVII-VII断面図である。7 is a sectional view taken along line VII-VII in FIG. 図8は、第2実施形態の車両用ブレーキに含まれる駆動機構の例示的かつ模式的な断面図である。FIG. 8 is an exemplary schematic sectional view of a drive mechanism included in the vehicle brake of the second embodiment. 図9は、第1実施形態の変形例の車両用ブレーキに含まれる駆動機構の例示的かつ模式的な断面図である。FIG. 9 is an exemplary and schematic cross-sectional view of a drive mechanism included in a vehicle brake according to a modification of the first embodiment. 図10は、第3実施形態の車両用ブレーキに含まれる駆動機構の例示的かつ模式的な断面図であって、非制動状態での図である。FIG. 10 is an exemplary and schematic cross-sectional view of a drive mechanism included in the vehicle brake of the third embodiment, and is a diagram in a non-braking state. 図11は、図10の一部の拡大図である。FIG. 11 is an enlarged view of a part of FIG. 図12は、第3実施形態の変形例の車両用ブレーキに含まれる駆動機構の一部の例示的かつ模式的な断面図である。FIG. 12 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modification of the third embodiment. 図13は、第3実施形態の図12とは別の変形例の車両用ブレーキに含まれる駆動機構の一部の例示的かつ模式的な断面図である。FIG. 13 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIG. 12 of the third embodiment. 図14は、第3実施形態の図12,13とは別の変形例の車両用ブレーキに含まれる駆動機構の一部の例示的かつ模式的な断面図である。FIG. 14 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 and 13 of the third embodiment. 図15は、第3実施形態の図12~14とは別の変形例の車両用ブレーキに含まれる駆動機構の一部の例示的かつ模式的な断面図である。FIG. 15 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 to 14 of the third embodiment. 図16は、第3実施形態の図12~15とは別の変形例の車両用ブレーキに含まれる駆動機構の一部の例示的かつ模式的な断面図である。FIG. 16 is an exemplary schematic cross-sectional view of a part of a drive mechanism included in a vehicle brake according to a modified example different from FIGS. 12 to 15 of the third embodiment. 図17は、Rと相対値Tl/Ttとの相関関係を示す例示的かつ模式的なグラフである。FIG. 17 is an exemplary schematic graph showing the correlation between R and the relative value Tl / Tt. 図18は、μeと相対値Tl/Ttとの相関関係を示す例示的かつ模式的なグラフである。FIG. 18 is an exemplary schematic graph showing the correlation between μe and the relative value Tl / Tt.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 Hereinafter, exemplary embodiments of the present invention will be disclosed. The configuration of the embodiment shown below, and the operation and result (effect) brought about by the configuration are examples. The present invention can be realized by configurations other than those disclosed in the following embodiments. According to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the configuration.
 以下の実施形態や変形例には、同様の構成要素が含まれている。よって、以下では、同様の構成要素には共通の符号が付与されるとともに、重複する説明が省略される場合がある。また、本明細書において、序数は、部品や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。 The following embodiments and modifications include similar components. Therefore, in the following, the same reference numerals are given to the same components, and redundant description may be omitted. Moreover, in this specification, the ordinal number is given for convenience in order to distinguish parts, parts, and the like, and does not indicate priority or order.
 また、図1~4では、便宜上、車両前後方向の前方が矢印Xで示され、車幅方向(車軸方向)の外方が矢印Yで示され、車両上下方向の上方が矢印Zで示される。 1 to 4, for the sake of convenience, the front in the vehicle front-rear direction is indicated by an arrow X, the outer side in the vehicle width direction (axle direction) is indicated by an arrow Y, and the upper side in the vehicle vertical direction is indicated by an arrow Z. .
 また、以下では、車両用ブレーキの一例であるブレーキ装置2が、左側の後輪(非駆動輪)に適用された場合が例示されるが、本発明は、他の車輪にも同様に適用可能である。 In the following, a case where the brake device 2 which is an example of a vehicle brake is applied to the left rear wheel (non-drive wheel) will be exemplified, but the present invention can be similarly applied to other wheels. It is.
(第1実施形態)
(ブレーキ装置の構成)
 図1は、ブレーキ装置2の車両後方からの背面図である。図2は、ブレーキ装置2の車幅方向外方からの側面図である。図3は、ブレーキ装置2の移動機構8によるブレーキシュー3(制動部材)の動作を示す側面図であって、非制動状態での図である。図4は、ブレーキ装置2の移動機構8によるブレーキシュー3の動作を示す側面図であって、制動状態での図である。
(First embodiment)
(Brake device configuration)
FIG. 1 is a rear view of the brake device 2 from the rear of the vehicle. FIG. 2 is a side view of the brake device 2 from the outside in the vehicle width direction. FIG. 3 is a side view showing the operation of the brake shoe 3 (braking member) by the moving mechanism 8 of the brake device 2 and is a view in a non-braking state. FIG. 4 is a side view showing the operation of the brake shoe 3 by the moving mechanism 8 of the brake device 2 and is a diagram in a braking state.
 図1に示されるように、ブレーキ装置2は、円筒状のホイール1の周壁1aの内側に収容されている。ブレーキ装置2は、所謂ドラムブレーキである。図2に示されるように、ブレーキ装置2は、前後に離間した二つのブレーキシュー3を備えている。二つのブレーキシュー3は、図3,4に示されるように、円筒状のドラム4の内周面4aに沿って円弧状に伸びている。ドラム4は、車幅方向(Y方向)に沿う回転中心C回りに、ホイール1と一体に回転する。ブレーキ装置2は、二つのブレーキシュー3を、円筒状のドラム4の内周面4aに接触するよう移動させる。これにより、ブレーキシュー3とドラム4との摩擦によって、ドラム4ひいてはホイール1が制動される。ブレーキシュー3は、制動部材の一例である。 As shown in FIG. 1, the brake device 2 is accommodated inside the peripheral wall 1 a of the cylindrical wheel 1. The brake device 2 is a so-called drum brake. As shown in FIG. 2, the brake device 2 includes two brake shoes 3 that are separated from each other in the front-rear direction. As shown in FIGS. 3 and 4, the two brake shoes 3 extend in an arc shape along the inner peripheral surface 4 a of the cylindrical drum 4. The drum 4 rotates integrally with the wheel 1 around the rotation center C along the vehicle width direction (Y direction). The brake device 2 moves the two brake shoes 3 so as to contact the inner peripheral surface 4 a of the cylindrical drum 4. Thereby, the drum 4 and the wheel 1 are braked by the friction between the brake shoe 3 and the drum 4. The brake shoe 3 is an example of a braking member.
 ブレーキ装置2は、ブレーキシュー3を動かすアクチュエータとして、油圧によって動作するホイールシリンダ51(図2参照)と、通電によって作動するモータ120(図5参照)と、を備えている。ホイールシリンダ51およびモータ120は、それぞれ、二つのブレーキシュー3を動かすことができる。ホイールシリンダ51は、例えば、走行中の制動に用いられ、モータ120は、例えば、駐車時の制動に用いられる。すなわち、ブレーキ装置2は、電動パーキングブレーキの一例である。なお、モータ120は、走行中の制動に用いられてもよい。 The brake device 2 includes a wheel cylinder 51 (see FIG. 2) that operates by hydraulic pressure, and a motor 120 (see FIG. 5) that operates by energization as actuators that move the brake shoes 3. Each of the wheel cylinder 51 and the motor 120 can move the two brake shoes 3. The wheel cylinder 51 is used, for example, for braking while traveling, and the motor 120 is used, for example, for braking during parking. That is, the brake device 2 is an example of an electric parking brake. The motor 120 may be used for braking during traveling.
 ブレーキ装置2は、図1,2に示されるように、円盤状のバックプレート6を備えている。バックプレート6は、回転中心Cと交差した姿勢で設けられる。すなわち、バックプレート6は、回転中心Cと交差する方向に略沿って、具体的には回転中心Cと直交する方向に略沿って、広がっている。図1に示されるように、ブレーキ装置2の構成部品は、バックプレート6の車幅方向の外側および内側の双方に設けられている。バックプレート6は、ブレーキ装置2の各構成部品を直接的または間接的に支持する。すなわち、バックプレート6は、支持部材の一例である。また、バックプレート6は、車体との不図示の接続部材と接続される。接続部材は、例えば、サスペンションの一部(例えば、アーム、リンク、取付部材等)である。図2に示されるバックプレート6に設けられた開口部6bは、接続部材との結合に用いられる。なお、ブレーキ装置2は、駆動輪および非駆動輪のいずれにも用いることができる。なお、ブレーキ装置2が駆動輪に用いられる場合、図2に示されるバックプレート6に設けられた開口部6cを不図示の車軸が貫通する。 The brake device 2 includes a disc-shaped back plate 6 as shown in FIGS. The back plate 6 is provided in a posture intersecting with the rotation center C. That is, the back plate 6 extends substantially along the direction intersecting the rotation center C, specifically, substantially along the direction orthogonal to the rotation center C. As shown in FIG. 1, the components of the brake device 2 are provided on both the outer side and the inner side of the back plate 6 in the vehicle width direction. The back plate 6 supports each component of the brake device 2 directly or indirectly. That is, the back plate 6 is an example of a support member. The back plate 6 is connected to a connection member (not shown) with the vehicle body. The connection member is, for example, a part of the suspension (for example, an arm, a link, an attachment member, etc.). The opening 6b provided in the back plate 6 shown in FIG. 2 is used for coupling with the connection member. The brake device 2 can be used for both driving wheels and non-driving wheels. When the brake device 2 is used for driving wheels, an axle shaft (not shown) passes through an opening 6c provided in the back plate 6 shown in FIG.
(ホイールシリンダによるブレーキシューの作動)
 図2に示されるホイールシリンダ51や、ブレーキシュー3等は、バックプレート6の車幅方向外方に配置されている。ブレーキシュー3は、バックプレート6に移動可能に支持されている。具体的には、図3に示されるように、ブレーキシュー3の下端部3aが、回転中心C11回りに回転可能に、バックプレート6(図2参照)に支持されている。回転中心C11は、ホイール1の回転中心Cと略平行である。また、図2に示されるように、ホイールシリンダ51は、バックプレート6の上端部に支持されている。ホイールシリンダ51は、車両前後方向(図2の左右方向)に突出可能な二つの不図示の可動部(ピストン)を有する。ホイールシリンダ51は、加圧に応じて、二つの可動部を突出させる。突出した二つの可動部は、それぞれ、ブレーキシュー3の上端部3bを押す。二つの可動部の突出により、二つのブレーキシュー3は、それぞれ、回転中心C11(図3,4参照)回りに回転し、上端部3b同士が車両前後方向に互いに離間するように移動する。これにより、二つのブレーキシュー3は、ホイール1の回転中心Cの径方向外方に移動する。各ブレーキシュー3の外周部には、円筒面に沿う帯状のライニング31が設けられている。よって、二つのブレーキシュー3の、回転中心Cの径方向外方への移動により、図4に示されるように、ライニング31とドラム4の内周面4aとが接触する。ライニング31と内周面4aとの摩擦によって、ドラム4ひいてはホイール1(図1参照)が制動される。また、図2に示されるように、ブレーキ装置2は、復帰部材32を備えている。復帰部材32は、ホイールシリンダ51によるブレーキシュー3を押す動作が解除された場合に、二つのブレーキシュー3を、ドラム4の内周面4aと接触する位置(制動位置Pb、図4参照)からドラム4の内周面4aと接触しない位置(非制動位置Pn、初期位置、図3参照)へ動かす。復帰部材32は、例えば、コイルスプリング等の弾性部材であり、各ブレーキシュー3に、もう一方のブレーキシュー3に近付く方向の力、すなわち、ドラム4の内周面4aから離れる方向の力を与える。
(Brake shoe operation by wheel cylinder)
The wheel cylinder 51 and the brake shoe 3 shown in FIG. 2 are arranged on the outer side of the back plate 6 in the vehicle width direction. The brake shoe 3 is movably supported on the back plate 6. Specifically, as shown in FIG. 3, the lower end 3a of the brake shoe 3 is supported by the back plate 6 (see FIG. 2) so as to be rotatable around the rotation center C11. The rotation center C11 is substantially parallel to the rotation center C of the wheel 1. Further, as shown in FIG. 2, the wheel cylinder 51 is supported by the upper end portion of the back plate 6. The wheel cylinder 51 has two movable parts (pistons) (not shown) that can project in the vehicle front-rear direction (left-right direction in FIG. 2). The wheel cylinder 51 causes the two movable parts to protrude in response to the pressurization. The two projecting movable parts push the upper end 3b of the brake shoe 3, respectively. Due to the protrusion of the two movable parts, the two brake shoes 3 rotate around the rotation center C11 (see FIGS. 3 and 4) and move so that the upper end parts 3b are separated from each other in the vehicle front-rear direction. As a result, the two brake shoes 3 move outward in the radial direction of the rotation center C of the wheel 1. A belt-like lining 31 along the cylindrical surface is provided on the outer periphery of each brake shoe 3. Therefore, the lining 31 and the inner peripheral surface 4a of the drum 4 come into contact with each other as shown in FIG. The drum 4 and thus the wheel 1 (see FIG. 1) are braked by the friction between the lining 31 and the inner peripheral surface 4a. As shown in FIG. 2, the brake device 2 includes a return member 32. When the operation of pushing the brake shoe 3 by the wheel cylinder 51 is released, the return member 32 moves from the position where the two brake shoes 3 come into contact with the inner peripheral surface 4a of the drum 4 (braking position Pb, see FIG. 4). The drum 4 is moved to a position (non-braking position Pn, initial position, see FIG. 3) that does not contact the inner peripheral surface 4a of the drum 4. The return member 32 is an elastic member such as a coil spring, for example, and gives each brake shoe 3 a force in a direction approaching the other brake shoe 3, that is, a force in a direction away from the inner peripheral surface 4 a of the drum 4. .
(移動機構の構成および移動機構によるブレーキシューの作動)
 また、ブレーキ装置2は、図3,4に示される移動機構8を備えている。移動機構8は、モータ120を含む駆動機構100(図5参照)の作動に基づいて、二つのブレーキシュー3を非制動位置Pnから制動位置Pbに移動させる。移動機構8は、バックプレート6の車幅方向外方に設けられている。移動機構8は、レバー81と、ケーブル82と、ストラット83と、を有する。レバー81は、二つのブレーキシュー3のうち一方、例えば図3,4では左側のブレーキシュー3Lと、バックプレート6との間で、当該ブレーキシュー3Lおよびバックプレート6にホイール1の回転中心Cの軸方向に重なるように、設けられている。また、レバー81は、ブレーキシュー3Lに、回転中心C12回りに回転可能に支持されている。回転中心C12は、ブレーキシュー3Lの、回転中心C11から離れた側(図3,4では上側)の端部に位置され、回転中心C11と略平行である。ケーブル82は、レバー81の、回転中心C12から遠い側の下端部81aを、他方、例えば図3,4では右側のブレーキシュー3Rに近付く方向に、動かす。ケーブル82は、バックプレート6に略沿って移動する。また、ストラット83は、レバー81と当該レバー81が支持されるブレーキシュー3Lとは別のブレーキシュー3Rとの間に介在し、レバー81と当該別のブレーキシュー3Rとの間で突っ張る。また、レバー81とストラット83との接続位置P1は、回転中心C12と、ケーブル82とレバー81との接続位置P2と、の間に設定されている。ケーブル82は、ブレーキシュー3を移動させる作動部材の一例である。
(Configuration of moving mechanism and operation of brake shoe by moving mechanism)
Moreover, the brake device 2 includes a moving mechanism 8 shown in FIGS. The moving mechanism 8 moves the two brake shoes 3 from the non-braking position Pn to the braking position Pb based on the operation of the driving mechanism 100 including the motor 120 (see FIG. 5). The moving mechanism 8 is provided outside the back plate 6 in the vehicle width direction. The moving mechanism 8 includes a lever 81, a cable 82, and a strut 83. The lever 81 is located between one of the two brake shoes 3, for example, the left brake shoe 3 </ b> L in FIGS. 3 and 4, and the back plate 6. It is provided so as to overlap in the axial direction. The lever 81 is supported by the brake shoe 3L so as to be rotatable around the rotation center C12. The rotation center C12 is located at the end of the brake shoe 3L on the side away from the rotation center C11 (upper side in FIGS. 3 and 4), and is substantially parallel to the rotation center C11. The cable 82 moves the lower end portion 81a of the lever 81 on the side farther from the rotation center C12, for example, in a direction approaching the right brake shoe 3R in FIGS. The cable 82 moves substantially along the back plate 6. The strut 83 is interposed between the lever 81 and the brake shoe 3R different from the brake shoe 3L on which the lever 81 is supported, and stretches between the lever 81 and the other brake shoe 3R. The connection position P1 between the lever 81 and the strut 83 is set between the rotation center C12 and the connection position P2 between the cable 82 and the lever 81. The cable 82 is an example of an operating member that moves the brake shoe 3.
 このような移動機構8において、ケーブル82が引かれて図4の右方へ動くことにより、レバー81が、ブレーキシュー3Rに近付く方向へ動くと(矢印a)、レバー81はストラット83を介してブレーキシュー3Rを押す(矢印b)。これにより、ブレーキシュー3Rは、非制動位置Pn(図3)から回転中心C11回りに回転し(図4の矢印c)、ドラム4の内周面4aと接触する制動位置Pb(図4)へ動く。この状態では、ケーブル82とレバー81との接続位置P2は力点、回転中心C12は支点、レバー81とストラット83との接続位置P1は作用点に相当する。さらに、ブレーキシュー3Rが、内周面4aに接触した状態で、レバー81が図4の右方、すなわち、ストラット83がブレーキシュー3Rを押す方向へ動くと(矢印b)、ストラット83が突っ張ることにより、レバー81はストラット83との接続位置P1を支点として、レバー81の動く方向とは逆方向、すなわち、図3,4での反時計回りに回転する(矢印d)。これにより、ブレーキシュー3Lは、非制動位置Pn(図3)から回転中心C11回りに回転し、ドラム4の内周面4aと接触する制動位置Pb(図4)へ動く。このようにして、移動機構8の作動により、ブレーキシュー3L,3Rは、いずれも非制動位置Pn(図3)から制動位置Pb(図4)へ動く。なお、ブレーキシュー3Rがドラム4の内周面4aに接触した以降の状態では、レバー81とストラット83との接続位置P1が支点となる。なお、ブレーキシュー3L,3Rの移動量は微少であって、例えば、1mm以下である。 In such a moving mechanism 8, when the cable 82 is pulled and moves to the right in FIG. 4, when the lever 81 moves in a direction approaching the brake shoe 3 </ b> R (arrow a), the lever 81 passes through the strut 83. Press the brake shoe 3R (arrow b). As a result, the brake shoe 3R rotates around the rotation center C11 from the non-braking position Pn (FIG. 3) (arrow c in FIG. 4) and moves to the braking position Pb (FIG. 4) in contact with the inner peripheral surface 4a of the drum 4. Move. In this state, the connection position P2 between the cable 82 and the lever 81 corresponds to the power point, the rotation center C12 corresponds to the fulcrum, and the connection position P1 between the lever 81 and the strut 83 corresponds to the action point. Furthermore, when the brake shoe 3R is in contact with the inner peripheral surface 4a and the lever 81 moves to the right in FIG. 4, that is, in the direction in which the strut 83 pushes the brake shoe 3R (arrow b), the strut 83 is stretched. Accordingly, the lever 81 rotates in the direction opposite to the direction in which the lever 81 moves, that is, counterclockwise in FIGS. 3 and 4 with the connection position P1 with the strut 83 as a fulcrum (arrow d). Thereby, the brake shoe 3L rotates around the rotation center C11 from the non-braking position Pn (FIG. 3) and moves to the braking position Pb (FIG. 4) in contact with the inner peripheral surface 4a of the drum 4. In this way, the brake shoes 3L and 3R are both moved from the non-braking position Pn (FIG. 3) to the braking position Pb (FIG. 4) by the operation of the moving mechanism 8. In the state after the brake shoe 3R contacts the inner peripheral surface 4a of the drum 4, the connection position P1 between the lever 81 and the strut 83 serves as a fulcrum. The amount of movement of the brake shoes 3L, 3R is very small, for example, 1 mm or less.
(駆動機構)
 図5は、駆動機構100の非制動状態での断面図である。図6は、駆動機構100の制動状態での断面図である。
(Drive mechanism)
FIG. 5 is a cross-sectional view of the drive mechanism 100 in a non-braking state. FIG. 6 is a cross-sectional view of the driving mechanism 100 in a braking state.
 図1,5,6に示される駆動機構100は、上述した移動機構8を介して、二つのブレーキシュー3を、非制動位置Pnから制動位置Pbへ動かす。駆動機構100は、バックプレート6の車幅方向内方に位置され、バックプレート6に固定されている。図2~4に示されるケーブル82は、バックプレート6に設けられた不図示の開口部を貫通している。 The drive mechanism 100 shown in FIGS. 1, 5 and 6 moves the two brake shoes 3 from the non-braking position Pn to the braking position Pb via the moving mechanism 8 described above. The drive mechanism 100 is positioned inward in the vehicle width direction of the back plate 6 and is fixed to the back plate 6. The cable 82 shown in FIGS. 2 to 4 passes through an opening (not shown) provided in the back plate 6.
 図5に示されるように、駆動機構100は、ハウジング110、モータ120、減速機構130、および運動変換機構140を備えている。 As shown in FIG. 5, the drive mechanism 100 includes a housing 110, a motor 120, a speed reduction mechanism 130, and a motion conversion mechanism 140.
 ハウジング110は、モータ120、減速機構130、および運動変換機構140を支持している。ハウジング110は、複数の部材を含んでいる。複数の部材は、例えばねじ等の不図示の結合具によって結合され、一体化されている。ハウジング110内には、壁部111によって囲まれた収容室Rが設けられている。モータ120、減速機構130、および運動変換機構140は、収容室R内に収容され、壁部111によって覆われている。ハウジング110は、ベースや、支持部材、ケーシング等と称されうる。なお、ハウジング110の構成は、ここで例示されたものには限定されない。 The housing 110 supports the motor 120, the speed reduction mechanism 130, and the motion conversion mechanism 140. The housing 110 includes a plurality of members. The plurality of members are coupled and integrated by a coupling tool (not shown) such as a screw. A housing chamber R surrounded by a wall 111 is provided in the housing 110. The motor 120, the speed reduction mechanism 130, and the motion conversion mechanism 140 are accommodated in the accommodation chamber R and covered with the wall portion 111. The housing 110 may be referred to as a base, a support member, a casing, or the like. In addition, the structure of the housing 110 is not limited to what was illustrated here.
 モータ120は、アクチュエータの一例であって、ケース121と、ケース121内に収容された収容部品と、を有する。収容部品には、例えば、シャフト122の他、ステータや、ロータ、コイル、磁石(不図示)等が含まれる。シャフト122は、ケース121から、モータ120の第一の回転中心Ax1に沿ったD1方向(図5の右方)に突出している。モータ120は、制御信号に基づく駆動電力によって駆動され、シャフト122を回転させる。シャフト122は、出力シャフトと称されうる。なお、以下では、説明の便宜上、図5での右方はD1方向の前方と称され、図5での左方はD1方向の後方またはD1方向の反対方向と称される。 The motor 120 is an example of an actuator, and includes a case 121 and a housing component housed in the case 121. The housing components include, for example, a stator, a rotor, a coil, and a magnet (not shown) in addition to the shaft 122. The shaft 122 protrudes from the case 121 in the D1 direction (rightward in FIG. 5) along the first rotation center Ax1 of the motor 120. The motor 120 is driven by driving power based on the control signal, and rotates the shaft 122. The shaft 122 may be referred to as an output shaft. In the following, for convenience of explanation, the right side in FIG. 5 is referred to as the front in the D1 direction, and the left side in FIG. 5 is referred to as the rear in the D1 direction or the opposite direction to the D1 direction.
 減速機構130は、ハウジング110に回転可能に支持された複数のギヤを含む。複数のギヤは、例えば、第一ギヤ131、第二ギヤ132、および第三ギヤ133である。減速機構130は、回転伝達機構と称されうる。 The speed reduction mechanism 130 includes a plurality of gears that are rotatably supported by the housing 110. The plurality of gears are, for example, a first gear 131, a second gear 132, and a third gear 133. Deceleration mechanism 130 can be referred to as a rotation transmission mechanism.
 第一ギヤ131は、モータ120のシャフト122と一体に回転する。第一ギヤ131は、ドライブギヤと称されうる。 The first gear 131 rotates integrally with the shaft 122 of the motor 120. The first gear 131 can be referred to as a drive gear.
 第二ギヤ132は、第一の回転中心Ax1と平行な第二の回転中心Ax2周りに回転する。第二ギヤ132は、入力ギヤ132aと出力ギヤ132bとを含む。入力ギヤ132aは、第一ギヤ131と噛み合っている。入力ギヤ132aの歯数は、第一ギヤ131の歯数よりも多い。よって、第二ギヤ132は、第一ギヤ131よりも低い回転速度に減速される。出力ギヤ132bは、入力ギヤ132aに対してD1方向の後方(図5では左方)に位置されている。第二ギヤ132は、アイドラギヤと称されうる。 The second gear 132 rotates around the second rotation center Ax2 parallel to the first rotation center Ax1. The second gear 132 includes an input gear 132a and an output gear 132b. The input gear 132a meshes with the first gear 131. The number of teeth of the input gear 132a is larger than the number of teeth of the first gear 131. Therefore, the second gear 132 is decelerated to a lower rotational speed than the first gear 131. The output gear 132b is located behind the input gear 132a in the direction D1 (leftward in FIG. 5). The second gear 132 can be referred to as an idler gear.
 第三ギヤ133は、第一の回転中心Ax1と平行な第三の回転中心Ax3周りに回転する。第三ギヤ133は、第二ギヤ132の出力ギヤ132bと噛み合っている。第三ギヤ133の歯数は、出力ギヤ132bの歯数よりも多い。よって、第三ギヤ133は、第二ギヤ132よりも低い回転速度に減速される。第三ギヤ133は、ドリブンギヤと称されうる。なお、減速機構130の構成は、ここで例示されたものには限定されない。減速機構130は、例えば、ベルトやプーリ等を用いた回転伝達機構のような、ギヤ機構以外の回転伝達機構であってもよい。 The third gear 133 rotates around the third rotation center Ax3 parallel to the first rotation center Ax1. The third gear 133 meshes with the output gear 132b of the second gear 132. The number of teeth of the third gear 133 is larger than the number of teeth of the output gear 132b. Therefore, the third gear 133 is decelerated to a lower rotational speed than the second gear 132. The third gear 133 can be referred to as a driven gear. Note that the configuration of the speed reduction mechanism 130 is not limited to that illustrated here. The speed reduction mechanism 130 may be a rotation transmission mechanism other than a gear mechanism, such as a rotation transmission mechanism using a belt, a pulley, or the like.
 運動変換機構140は、回転部材141と、直動部材142とを有している。 The motion conversion mechanism 140 includes a rotating member 141 and a linearly moving member 142.
 回転部材141は、第三の回転中心Ax3回りに回転する。回転部材141は、小径部141aと、小径部141aよりも外径の大きい大径部141bと、を有する。小径部141aは、回転部材141のうちD1方向の反対方向に位置された部位であり、筒状に構成されている。大径部141bは、回転部材141のうちD1方向に位置された部位である。大径部141bは、底壁部141b1と、側壁部141b2とを有する。底壁部141b1は、小径部141aのD1方向の端部から径方向に張り出し、円環状かつ板状に構成されている。側壁部141b2は、底壁部141b1の周縁部からD1方向に延び、円筒状に構成されている。側壁部141b2は、周壁部、筒状壁部と称されうる。大径部141bには、D1方向に向けて開放された凹部141b3が設けられている。 The rotating member 141 rotates around the third rotation center Ax3. The rotating member 141 has a small diameter portion 141a and a large diameter portion 141b having a larger outer diameter than the small diameter portion 141a. The small diameter portion 141a is a portion located in the direction opposite to the D1 direction in the rotating member 141, and is configured in a cylindrical shape. The large diameter portion 141b is a portion of the rotating member 141 that is positioned in the D1 direction. The large diameter portion 141b has a bottom wall portion 141b1 and a side wall portion 141b2. The bottom wall portion 141b1 projects in the radial direction from the end portion of the small diameter portion 141a in the D1 direction, and is configured in an annular shape and a plate shape. The side wall 141b2 extends in the direction D1 from the peripheral edge of the bottom wall 141b1, and is configured in a cylindrical shape. The side wall part 141b2 may be referred to as a peripheral wall part or a cylindrical wall part. The large-diameter portion 141b is provided with a concave portion 141b3 that is open toward the D1 direction.
 大径部141bの側壁部141b2には、第三ギヤ133の歯が設けられている。すなわち、回転部材141は、第三ギヤ133でもある。第三ギヤ133の歯が設けられた部位は、被駆動部の一例である。凹部141b3内には、ハウジング110の筒状部112が収容されている。凹部141b3内では、筒状部112のD1方向の反対方向の端部112aと底壁部141b1との間に、スラストベアリング143が位置されている。スラストベアリング143は、第三の回転中心Ax3の軸方向の荷重を受ける。スラストベアリング143は、図5の例では、スラストころ軸受であるが、これには限定されない。大径部141bひいては回転部材141は、ハウジング110に、スラストベアリング143を介して回転可能に支持されている。 The teeth of the third gear 133 are provided on the side wall 141b2 of the large diameter portion 141b. That is, the rotating member 141 is also the third gear 133. The part where the teeth of the third gear 133 are provided is an example of a driven part. The cylindrical portion 112 of the housing 110 is accommodated in the recess 141b3. In the concave portion 141b3, the thrust bearing 143 is positioned between the end portion 112a of the cylindrical portion 112 in the direction opposite to the D1 direction and the bottom wall portion 141b1. The thrust bearing 143 receives a load in the axial direction of the third rotation center Ax3. The thrust bearing 143 is a thrust roller bearing in the example of FIG. 5, but is not limited to this. The large-diameter portion 141b and the rotating member 141 are rotatably supported by the housing 110 via a thrust bearing 143.
 小径部141aは、ハウジング110の第一孔部113aに収容されている。第一孔部113aの断面は略円形である。第一孔部113aは、第三の回転中心Ax3の軸方向に沿って延びている。 The small diameter portion 141 a is accommodated in the first hole 113 a of the housing 110. The cross section of the first hole 113a is substantially circular. The first hole 113a extends along the axial direction of the third rotation center Ax3.
 回転部材141には、小径部141aおよび底壁部141b1を貫通する円形断面の貫通孔141cが設けられている。貫通孔141cには、雌ねじ部145aが設けられている。 The rotating member 141 is provided with a through hole 141c having a circular cross section that penetrates the small diameter portion 141a and the bottom wall portion 141b1. A female screw part 145a is provided in the through hole 141c.
 直動部材142は、第三の回転中心Ax3に沿って延び、回転部材141を貫通している。直動部材142は、棒状部142aと、連結部142bとを有する。 The linear motion member 142 extends along the third rotation center Ax3 and penetrates the rotation member 141. The linear motion member 142 includes a rod-like portion 142a and a connecting portion 142b.
 棒状部142aは、回転部材141の貫通孔141c、回転部材141の大径部141bの凹部141b3、およびハウジング110の筒状部112に設けられた第二孔部113b内に挿入されている。第二孔部113bの断面は、略円形である。第二孔部113bは、第一孔部113aに対してD1方向の前方に位置され、第三の回転中心Ax3の軸方向に沿って延びている。棒状部142aの断面は略円形である。棒状部142aには、回転部材141の雌ねじ部145aと噛み合う雄ねじ部145bが設けられている。 The rod-like portion 142 a is inserted into the through hole 141 c of the rotating member 141, the concave portion 141 b 3 of the large-diameter portion 141 b of the rotating member 141, and the second hole 113 b provided in the cylindrical portion 112 of the housing 110. The cross section of the second hole 113b is substantially circular. The second hole 113b is positioned forward in the D1 direction with respect to the first hole 113a, and extends along the axial direction of the third rotation center Ax3. The rod-like portion 142a has a substantially circular cross section. The rod-like portion 142 a is provided with a male screw portion 145 b that meshes with the female screw portion 145 a of the rotating member 141.
 連結部142bは、連結部材146によって、ケーブル82の端部82aと連結されている。連結部材146は、図7に示されるように、ケーブル82の端部82aおよび連結部142bを貫通している。連結部材146は、例えばピンである。 The connecting portion 142b is connected to the end portion 82a of the cable 82 by a connecting member 146. As shown in FIG. 7, the connecting member 146 passes through the end portion 82 a and the connecting portion 142 b of the cable 82. The connecting member 146 is, for example, a pin.
 図7は、図5のVII-VII断面図である。図7に示されるように、ハウジング110の筒状部112に設けられた第二孔部113bの内面には、溝部113eが設けられている。溝部113eは、第三の回転中心Ax3に沿って略一定の幅および深さで延びている。溝部113eは、第三の回転中心Ax3を挟んだ二箇所に設けられている。溝部113eには、連結部材146の長手方向の端部が挿入されている。溝部113eの第三の回転中心Ax3の周方向の幅は、連結部材146の長手方向の端部の幅よりも、僅かに大きく設定されている。よって、連結部材146と溝部113eの周方向の面とが当接することにより、連結部材146ひいては直動部材142の第三の回転中心Ax3回りの回転が制限される。また、図6に示されるように、連結部材146は、凹部141b3内に移動可能である。すなわち、連結部材146は、直動部材142が制動位置Pbに位置されている状態で、凹部141b3内に位置されている。また、図7に示される溝部113eのD1方向の面113dは、連結部材146がD1方向に移動するのを制限している。面113dは、ストッパや、位置制限部と称されうる。なお、直動部材142とケーブル82とを結合する構造は、図7の例には限定されない。 FIG. 7 is a sectional view taken along line VII-VII in FIG. As shown in FIG. 7, a groove 113 e is provided on the inner surface of the second hole 113 b provided in the cylindrical portion 112 of the housing 110. The groove 113e extends with a substantially constant width and depth along the third rotation center Ax3. The groove 113e is provided at two locations across the third rotation center Ax3. The end of the connecting member 146 in the longitudinal direction is inserted into the groove 113e. The circumferential width of the third rotation center Ax3 of the groove 113e is set to be slightly larger than the width of the end of the connecting member 146 in the longitudinal direction. Therefore, the connection member 146 and the circumferential surface of the groove 113e are in contact with each other, so that the rotation of the connection member 146 and thus the linear motion member 142 around the third rotation center Ax3 is limited. Further, as shown in FIG. 6, the connecting member 146 is movable in the recess 141b3. That is, the connecting member 146 is positioned in the recess 141b3 in a state where the linear motion member 142 is positioned at the braking position Pb. Further, the surface 113d in the D1 direction of the groove 113e shown in FIG. 7 restricts the connecting member 146 from moving in the D1 direction. The surface 113d can be referred to as a stopper or a position limiter. In addition, the structure which couple | bonds the linear motion member 142 and the cable 82 is not limited to the example of FIG.
 このような構成において、モータ120のシャフト122の回転が、減速機構130を介して回転部材141に伝達され、回転部材141が回転すると、回転部材141の雌ねじ部145aと直動部材142の雄ねじ部145bとの噛み合い、および溝部113eにおけるハウジング110による直動部材142の回転の制限により、直動部材142は、第三の回転中心Ax3の軸方向に沿って非制動位置Pn(図5)と制動位置Pb(図6)との間で移動する。 In such a configuration, the rotation of the shaft 122 of the motor 120 is transmitted to the rotating member 141 via the speed reduction mechanism 130, and when the rotating member 141 rotates, the female screw portion 145 a of the rotating member 141 and the male screw portion of the linear motion member 142. Due to the meshing with 145b and the limitation of the rotation of the linear motion member 142 by the housing 110 in the groove 113e, the linear motion member 142 and the non-braking position Pn (FIG. 5) are braked along the axial direction of the third rotational center Ax3. It moves between the position Pb (FIG. 6).
 ハウジング110の筒状部112のうち、溝部113eが設けられた部位は、連結部材146ひいては直動部材142の第三の回転中心Ax3回りの回転を制限する回転制限部の一例であり、連結部材146ひいては直動部材142を第三の回転中心Ax3の軸方向に沿って案内するガイド部の一例でもある。 The portion of the tubular portion 112 of the housing 110 where the groove 113e is provided is an example of a rotation restricting portion that restricts the rotation of the connecting member 146 and thus the linear motion member 142 around the third rotation center Ax3. As a result, the linear motion member 142 is also an example of a guide portion that guides the linear motion member 142 along the axial direction of the third rotation center Ax3.
(モータ回転負荷増大機構)
 図5に示されるように、直動部材142のD1方向の後方(図5の左方)の端部には、ねじ等の結合具153によって、円板状の支持部材152が結合されている。第一孔部113aにおいて、支持部材152と大径部141bの底壁部141b1との間には、コイルスプリング151が設けられている。コイルスプリング151は、小径部141aおよび直動部材142を囲う状態で第三の回転中心Ax3に沿って延びる螺旋状に構成されている。コイルスプリング151は、第一の弾性部材の一例である。コイルスプリング151は、付勢部材や、反発部材と称されうる。弾性部材は、例えばエラストマ等、コイルスプリング以外の弾性部材であってもよい。
(Motor rotational load increasing mechanism)
As shown in FIG. 5, a disc-shaped support member 152 is coupled to the end of the linear motion member 142 at the rear (left side in FIG. 5) in the direction D <b> 1 by a coupling tool 153 such as a screw. . In the first hole portion 113a, a coil spring 151 is provided between the support member 152 and the bottom wall portion 141b1 of the large diameter portion 141b. The coil spring 151 is formed in a spiral shape extending along the third rotation center Ax3 so as to surround the small diameter portion 141a and the linear motion member 142. The coil spring 151 is an example of a first elastic member. The coil spring 151 can be referred to as a biasing member or a repulsion member. The elastic member may be an elastic member other than the coil spring, such as an elastomer.
 モータ120の回転によって、直動部材142がD1方向の前方(図5の右方)へ移動した場合において、例えば、連結部材146と図7に例示される面113dとの接触によって、直動部材142のD1方向への移動が制限されると、回転部材141は、モータ120の回転駆動によって回転しようとするのにも拘わらず、直動部材142のD1方向への移動(直動)が制限される状態となる。このため、回転部材141は、回転部材141の雌ねじ部145aと直動部材142の雄ねじ部145bとの噛み合いにより、直動部材142からD1方向の後方(図5の左方)へ反力を受ける。この場合、本実施形態では、コイルスプリング151が、直動部材142と一体化された支持部材152と回転部材141の底壁部141b1とによって挟まれ、弾性的に圧縮される。コイルスプリング151の弾性的な圧縮反力の増大により、雌ねじ部145aおよび雄ねじ部145bにおけるねじ面の法線方向の力が増大するため、雌ねじ部145aと雄ねじ部145bとの摩擦抵抗トルクが増大し、これによりモータ120の負荷トルクが増大する。したがって、例えば、モータ120の制御装置(不図示)は、モータ120の駆動電流等によって負荷トルクを検出することにより、直動部材142のD1方向の前方への移動が制限された所定状態であることを検知することができる。すなわち、本実施形態では、主として回転部材141に軸方向に弾性的な反力を与える弾性部材としてのコイルスプリング151によって、モータ回転負荷増大機構が構成されている。 When the linear motion member 142 moves forward in the direction D1 (rightward in FIG. 5) by the rotation of the motor 120, the linear motion member is brought into contact with, for example, the connection member 146 and the surface 113d illustrated in FIG. When the movement of 142 in the D1 direction is restricted, the rotation member 141 is restricted from moving in the D1 direction (linear movement) even though the rotation member 141 attempts to rotate by the rotational drive of the motor 120. It will be in a state to be. Therefore, the rotating member 141 receives a reaction force from the linear motion member 142 to the rear in the D1 direction (leftward in FIG. 5) due to the engagement between the female thread portion 145a of the rotational member 141 and the male thread portion 145b of the linear motion member 142. . In this case, in this embodiment, the coil spring 151 is sandwiched between the support member 152 integrated with the linear motion member 142 and the bottom wall portion 141b1 of the rotating member 141, and is elastically compressed. Due to the increase in the elastic compression reaction force of the coil spring 151, the force in the normal direction of the thread surface at the female screw portion 145a and the male screw portion 145b increases, so that the frictional resistance torque between the female screw portion 145a and the male screw portion 145b increases. As a result, the load torque of the motor 120 increases. Therefore, for example, the control device (not shown) of the motor 120 is in a predetermined state in which the forward movement of the linear motion member 142 in the direction D1 is limited by detecting the load torque based on the drive current of the motor 120 or the like. Can be detected. That is, in the present embodiment, the motor rotation load increasing mechanism is configured mainly by the coil spring 151 as an elastic member that applies an elastic reaction force to the rotating member 141 in the axial direction.
 以上説明したように、本実施形態では、回転部材141と直動部材142とが、モータ回転負荷増大機構を構成する第一の弾性部材としてのコイルスプリング151を、弾性的に圧縮する。よって、本実施形態によれば、例えば、第一の弾性部材の位置の制約によって他の部品も含めた部品のレイアウトの自由度が低下したり、第一の弾性部材の圧縮反力を受けるための剛性を高めるためにハウジング110の壁部111の厚みを局所的に増大したりといった、回転部材141とハウジング110との間で第一の弾性部材が圧縮される構成によって生じていた不都合な事象を、回避できる。 As described above, in this embodiment, the rotating member 141 and the linear motion member 142 elastically compress the coil spring 151 as the first elastic member constituting the motor rotation load increasing mechanism. Therefore, according to the present embodiment, for example, the position flexibility of the first elastic member reduces the degree of freedom in the layout of components including other components, or receives the compression reaction force of the first elastic member. Inconvenient events caused by the configuration in which the first elastic member is compressed between the rotating member 141 and the housing 110, such as locally increasing the thickness of the wall portion 111 of the housing 110 in order to increase the rigidity of the housing 110 Can be avoided.
 また、本実施形態では、図5に示されるように、コイルスプリング151は、直動部材142、回転部材141の小径部141a、および雌ねじ部145aを囲うように設けられている。よって、本実施形態によれば、例えば、直動部材142、小径部141a、雌ねじ部145a、およびコイルスプリング151を、比較的近付けて配置することができる。よって、例えば、この部分における部品の密集度が高まりやすい。よって、駆動機構100、ひいてはブレーキ装置2が、より小型にされやすい。 In the present embodiment, as shown in FIG. 5, the coil spring 151 is provided so as to surround the linear motion member 142, the small diameter portion 141a of the rotating member 141, and the female screw portion 145a. Therefore, according to this embodiment, for example, the linear motion member 142, the small diameter portion 141a, the female screw portion 145a, and the coil spring 151 can be arranged relatively close to each other. Therefore, for example, the density of parts in this portion tends to increase. Therefore, the drive mechanism 100 and hence the brake device 2 are easily reduced in size.
 また、本実施形態では、第一の弾性部材としてコイルスプリング151を用いることで、第一の弾性部材、駆動機構100、ひいてはブレーキ装置2の製造の手間やコストが、より低減されやすい。 Further, in the present embodiment, by using the coil spring 151 as the first elastic member, the labor and cost of manufacturing the first elastic member, the drive mechanism 100, and consequently the brake device 2 are more likely to be reduced.
(第2実施形態)
 図8に示される本実施形態の駆動機構100Aは、第1実施形態の駆動機構100と同様の構成を備えている。よって、本実施形態によっても、上記第1実施形態と同様の構成に基づく同様の結果が得られる。
(Second Embodiment)
The drive mechanism 100A of this embodiment shown in FIG. 8 has the same configuration as the drive mechanism 100 of the first embodiment. Therefore, also in this embodiment, the same result based on the same configuration as the first embodiment is obtained.
 ただし、本実施形態では、第一の弾性部材として、板バネ151Aが設けられている。また、支持部材152Aは、カップ状に構成され、底壁部152aと、側壁部152bとを有している。底壁部152aは、円板状に構成され、直動部材142のD1方向の後方(図8の左方)の端部に、ねじ等の結合具153によって結合されている。側壁部152bは、筒状であり、底壁部152aの周縁部からD1方向に延びている。第一孔部113aにおいて、支持部材152Aの側壁部152bのD1方向の端部と大径部141bの底壁部141b1との間に、板バネ151Aが設けられている。なお、側壁部152bには、D1方向の端部からD1方向の反対方向に延びるスリットや、貫通孔等の開口部が設けられてもよい。 However, in the present embodiment, a leaf spring 151A is provided as the first elastic member. The support member 152A is configured in a cup shape and includes a bottom wall portion 152a and a side wall portion 152b. The bottom wall portion 152a is formed in a disc shape, and is coupled to a rear end (left side in FIG. 8) of the linear motion member 142 in the direction D1 by a coupling tool 153 such as a screw. The side wall part 152b is cylindrical and extends in the direction D1 from the peripheral edge part of the bottom wall part 152a. In the first hole portion 113a, a leaf spring 151A is provided between the end portion in the D1 direction of the side wall portion 152b of the support member 152A and the bottom wall portion 141b1 of the large diameter portion 141b. Note that the side wall 152b may be provided with a slit extending in the direction opposite to the D1 direction from the end in the D1 direction, or an opening such as a through hole.
 本実施形態によっても、回転部材141と直動部材142とが弾性部材を弾性的に圧縮する構成による効果が得られ、回転部材141とハウジング110との間で弾性部材が圧縮される構成によって生じていた不都合な事象を、回避できる。 Also according to the present embodiment, an effect is obtained by the configuration in which the rotating member 141 and the linear motion member 142 elastically compress the elastic member, and the elastic member is compressed between the rotating member 141 and the housing 110. The inconvenient event that has been performed can be avoided.
(第1実施形態の変形例)
 図9に示される変形例の駆動機構100Bは、第1実施形態の駆動機構100と同様の構成を備えている。よって、本変形例によっても、上記第1実施形態と同様の構成に基づく同様の結果が得られる。
(Modification of the first embodiment)
The drive mechanism 100B of the modification shown in FIG. 9 has the same configuration as the drive mechanism 100 of the first embodiment. Therefore, also by this modification, the same result based on the structure similar to the said 1st Embodiment is obtained.
 ただし、本変形例では、ハウジング110が、壁部111と壁部114とを含む。壁部114は、壁部111と着脱可能に一体化されている。壁部114を含む部分は、例えば、不図示のねじ等の結合具によって、壁部111と一体化されうる。また、例えば、壁部114を含む部分には、不図示の雄ねじ部または雌ねじ部が設けられ、壁部111を含む部分に設けられた雌ねじ部または雄ねじ部と噛み合って一体化されるよう、構成されうる。壁部111を含む部分は、第一部材、第一部分、第一分割体と称され、壁部114を含む部分は、第二部材、第二部分、第二分割体と称されうる。 However, in this modification, the housing 110 includes a wall portion 111 and a wall portion 114. The wall 114 is detachably integrated with the wall 111. The portion including the wall portion 114 can be integrated with the wall portion 111 by a coupling tool such as a screw (not shown), for example. Further, for example, a portion including the wall portion 114 is provided with a male screw portion or a female screw portion (not shown), and is configured to be engaged with and integrated with the female screw portion or the male screw portion provided in the portion including the wall portion 111. Can be done. The portion including the wall portion 111 may be referred to as a first member, a first portion, and a first divided body, and the portion including the wall portion 114 may be referred to as a second member, a second portion, and a second divided body.
 そして、壁部114を含む部分が、壁部111を含む部分と分離された状態で、直動部材142に結合された支持部材152Bが露出するよう、構成されている。支持部材152Bには、例えば、工具や治具等を差し込むことが可能な不図示の嵌合穴が設けられうる。よって、緊急時等において、回転部材141がロックされているような状態にあっても、作業者は、支持部材152Bに設けられた嵌合穴に工具や治具を嵌めて回すことにより、直動部材142を動かすことができる。なお、支持部材152Bは、手指で回すことができるよう構成されてもよい。 Further, the support member 152B coupled to the linear motion member 142 is exposed in a state where the portion including the wall portion 114 is separated from the portion including the wall portion 111. The support member 152B may be provided with a fitting hole (not shown) into which a tool, a jig, or the like can be inserted, for example. Therefore, even when the rotating member 141 is locked in an emergency or the like, the operator can directly fix the rotating member 141 by inserting a tool or a jig into the fitting hole provided in the supporting member 152B. The moving member 142 can be moved. Note that the support member 152B may be configured to be turned with fingers.
 また、本変形例では、支持部材152Bが周方向の複数箇所で部分的に径方向に突出し、当該突出部分が、ハウジング110の壁部111と壁部114とに連なって設けられた溝部113eに挿入されている。すなわち、本変形例では、上記第1実施形態の図7に示された構成に替えて、支持部材152Bを含むガイド部および回転制限部が構成されている。すなわち、ハウジング110の壁部111および壁部114のうち、溝部113eが設けられた部位は、支持部材152Bひいては直動部材142の第三の回転中心Ax3回りの回転を制限する回転制限部の一例であり、支持部材152Bひいては直動部材142を第三の回転中心Ax3の軸方向に沿って案内するガイド部の一例でもある。 Further, in the present modification, the support member 152B partially protrudes in the radial direction at a plurality of locations in the circumferential direction, and the protruding portion is formed in a groove 113e provided continuously to the wall portion 111 and the wall portion 114 of the housing 110. Has been inserted. That is, in this modification, instead of the configuration shown in FIG. 7 of the first embodiment, a guide portion including a support member 152B and a rotation limiting portion are configured. That is, of the wall portion 111 and the wall portion 114 of the housing 110, the portion provided with the groove 113e is an example of a rotation limiting portion that limits the rotation of the support member 152B and thus the linear motion member 142 around the third rotation center Ax3. It is also an example of a guide portion that guides the support member 152B and thus the linear motion member 142 along the axial direction of the third rotation center Ax3.
(第3実施形態)
 図10は、駆動機構100Cの非制動状態での断面図である。図10に示される本実施形態の駆動機構100Cは、第1実施形態の駆動機構100と同様の構成を備えている。よって、本実施形態によっても、上記第1実施形態と同様の構成に基づく同様の結果が得られる。
(Third embodiment)
FIG. 10 is a cross-sectional view of the drive mechanism 100C in the non-braking state. The drive mechanism 100C of this embodiment shown in FIG. 10 has the same configuration as the drive mechanism 100 of the first embodiment. Therefore, also in this embodiment, the same result based on the same configuration as the first embodiment is obtained.
 本実施形態では、回転部材141の構成が、上記実施形態や変形例とは異なっている。回転部材141は、第三の回転中心Ax3回りに回転する。回転部材141は、小径部141aと、小径部141aから径方向外方に張り出したフランジ141eと、フランジ141eから軸方向に延びた周壁141dと、を有する。小径部141aは、D1方向に伸びた筒状に構成されており、当該D1方向にフランジ141eを貫通している。フランジ141eは、小径部141aのD1方向の中央位置から、第三の回転中心Ax3の径方向に円板状に張り出している。また、周壁141dは、フランジ141eの外縁からD1方向に円筒状に延びている。なお、小径部141aは、ハブとも称されうる。また、フランジ141eは、大径部141bまたは底壁部141b1と同様に機能する。 In the present embodiment, the configuration of the rotating member 141 is different from that of the above-described embodiment or modification. The rotating member 141 rotates around the third rotation center Ax3. The rotating member 141 includes a small-diameter portion 141a, a flange 141e projecting radially outward from the small-diameter portion 141a, and a peripheral wall 141d extending in the axial direction from the flange 141e. The small diameter portion 141a is configured in a cylindrical shape extending in the D1 direction, and penetrates the flange 141e in the D1 direction. The flange 141e protrudes from the center position in the D1 direction of the small diameter portion 141a in a disk shape in the radial direction of the third rotation center Ax3. The peripheral wall 141d extends in a cylindrical shape in the D1 direction from the outer edge of the flange 141e. The small diameter portion 141a can also be referred to as a hub. The flange 141e functions in the same manner as the large diameter portion 141b or the bottom wall portion 141b1.
 周壁141dの外周には、第三ギヤ133の歯が設けられている。すなわち、回転部材141は、第三ギヤ133でもある。第三ギヤ133を軸方向に延びた周壁141dに設けることにより、第三ギヤ133および第二ギヤ132の出力ギヤ132bの面圧を低減することができる。第三ギヤ133の歯が設けられた部位は、被駆動部の一例である。 The teeth of the third gear 133 are provided on the outer periphery of the peripheral wall 141d. That is, the rotating member 141 is also the third gear 133. By providing the third gear 133 on the peripheral wall 141d extending in the axial direction, the surface pressure of the output gear 132b of the third gear 133 and the second gear 132 can be reduced. The part where the teeth of the third gear 133 are provided is an example of a driven part.
 第一ギヤ131、第二ギヤ132、および第三ギヤ133の少なくとも歯部、あるいは全部は、合成樹脂材料によって構成することができる。ただし、これには限定されず、第一ギヤ131、第二ギヤ132、および第三ギヤ133のうち少なくとも一つは、部分的あるいは全体的に金属材料で構成されてもよい。 At least the teeth or all of the first gear 131, the second gear 132, and the third gear 133 can be made of a synthetic resin material. However, the present invention is not limited to this, and at least one of the first gear 131, the second gear 132, and the third gear 133 may be partially or entirely made of a metal material.
 小径部141aは、筒状部112の先端部に収容された円筒状のラジアルベアリング144に挿入されている。小径部141aひいては回転部材141は、ハウジング110に、ラジアルベアリング144を介して回転可能に支持されている。ラジアルベアリング144は、図5の例では、メタルブッシュであるが、これには限定されない。 The small diameter portion 141 a is inserted into a cylindrical radial bearing 144 housed at the tip of the cylindrical portion 112. The small-diameter portion 141a and thus the rotating member 141 are rotatably supported by the housing 110 via a radial bearing 144. Although the radial bearing 144 is a metal bush in the example of FIG. 5, it is not limited to this.
 棒状部142aは、ハウジング110の第一孔部113a、回転部材141の貫通孔141c、およびハウジング110の筒状部112に設けられた第二孔部113b内に挿入されている。第二孔部113bの断面は、非円形である。例えば、第二孔部113bの断面は、第三の回転中心Ax3と直交する方向(図5では、紙面の上下方向)に長い長孔状に形成されている。第二孔部113bは、第一孔部113aに対してD1方向の前方に位置され、第三の回転中心Ax3の軸方向に沿って延びている。棒状部142aの断面は略円形である。棒状部142aには、回転部材141の雌ねじ部145aと噛み合う雄ねじ部145bが設けられている。 The rod-like portion 142 a is inserted into the first hole 113 a of the housing 110, the through hole 141 c of the rotating member 141, and the second hole 113 b provided in the cylindrical portion 112 of the housing 110. The cross section of the second hole 113b is non-circular. For example, the cross section of the second hole 113b is formed in a long hole shape that is long in the direction orthogonal to the third rotation center Ax3 (in FIG. 5, the vertical direction of the paper surface). The second hole 113b is positioned forward in the D1 direction with respect to the first hole 113a, and extends along the axial direction of the third rotation center Ax3. The rod-like portion 142a has a substantially circular cross section. The rod-like portion 142 a is provided with a male screw portion 145 b that meshes with the female screw portion 145 a of the rotating member 141.
 また、筒状部112には、第二孔部113bに面した筒状の内面113cが設けられている。内面113cの断面は、第二孔部113bの長孔状の断面に沿った形状である。内面113cは、第三の回転中心Ax3と直交する方向に延びた平面状の二つのガイド面113ca(図10では、一方のガイド面113caだけが示されている)を有している。二つのガイド面113caは、互いに間隔を空けて位置され、二つのガイド面113caの間に、直動部材142が位置されている。他方、直動部材142の例えば棒状部142aからは、第三の回転中心Ax3の径方向の外方に向けて突起142cが突出している。突起142cの外周は、内面113cに沿った形状に形成されている。突起142cと内面113cとの間には、隙間が設けられ、当該隙間には、グリスが設けられている。突起142cとガイド面113caとが当接することにより、突起142cひいては直動部材142の第三の回転中心Ax3回りの回転が制限される。また、突起142cとガイド面113caとが当接した状態で、ガイド面113caは、突起142cひいては直動部材142を第三の回転中心Ax3の軸方向にガイドする。 The cylindrical portion 112 is provided with a cylindrical inner surface 113c facing the second hole 113b. The cross section of the inner surface 113c has a shape along the long hole cross section of the second hole 113b. The inner surface 113c has two planar guide surfaces 113ca (only one guide surface 113ca is shown in FIG. 10) extending in a direction orthogonal to the third rotation center Ax3. The two guide surfaces 113ca are positioned with a space therebetween, and the linear motion member 142 is positioned between the two guide surfaces 113ca. On the other hand, a protrusion 142c protrudes from the rod-like portion 142a of the linear motion member 142 toward the outer side in the radial direction of the third rotation center Ax3. The outer periphery of the protrusion 142c is formed in a shape along the inner surface 113c. A gap is provided between the protrusion 142c and the inner surface 113c, and grease is provided in the gap. When the protrusion 142c and the guide surface 113ca are in contact with each other, the protrusion 142c and thus the rotation of the linear motion member 142 around the third rotation center Ax3 is limited. Further, the guide surface 113ca guides the protrusion 142c and, consequently, the linear motion member 142 in the axial direction of the third rotation center Ax3 in a state where the protrusion 142c and the guide surface 113ca are in contact with each other.
 このような構成において、モータ120のシャフト122の回転が、減速機構130を介して回転部材141に伝達され、回転部材141が回転すると、回転部材141の雌ねじ部145aと直動部材142の雄ねじ部145bとの噛み合い、およびガイド面113caによる直動部材142の回転の制限により、直動部材142は、第三の回転中心Ax3の軸方向に沿って非制動位置Pn(図10)と制動位置(不図示)との間で移動する。 In such a configuration, the rotation of the shaft 122 of the motor 120 is transmitted to the rotating member 141 via the speed reduction mechanism 130, and when the rotating member 141 rotates, the female screw portion 145 a of the rotating member 141 and the male screw portion of the linear motion member 142. Due to the meshing with 145b and the limitation of the rotation of the linear motion member 142 by the guide surface 113ca, the linear motion member 142 moves along the axial direction of the third rotation center Ax3 with the non-braking position Pn (FIG. 10) and the braking position ( (Not shown).
 図11は、図10の一部の拡大図である。本実施形態では、第二ギヤ132の出力ギヤ132bおよび第三ギヤ133は、ヘリカルギヤとして構成されている。出力ギヤ132bは、螺旋状の歯によって、その回転方向に応じて、第三ギヤ133に、D1方向の前方または後方に向けた軸力を与える。 FIG. 11 is an enlarged view of a part of FIG. In the present embodiment, the output gear 132b and the third gear 133 of the second gear 132 are configured as helical gears. The output gear 132b gives an axial force directed forward or rearward in the D1 direction to the third gear 133 according to the rotation direction by means of a helical tooth.
 一例として、出力ギヤ132bは、一の回転方向に回転することにより、回転部材141にD1方向の前方への軸力を与える。この場合、出力ギヤ132bは、回転部材141のフランジ141eの端面141e1を、スラストベアリング143の面143aに押し付けるとともに、回転部材141およびスラストベアリング143を、筒状部112のD1方向の後方の端部112a(端面)に押し付ける。端面141e1は、被押圧面と称されうる。 As an example, the output gear 132b rotates in one rotational direction, thereby giving the rotating member 141 an axial force in the forward direction in the D1 direction. In this case, the output gear 132b presses the end surface 141e1 of the flange 141e of the rotating member 141 against the surface 143a of the thrust bearing 143, and the rotating member 141 and the thrust bearing 143 are connected to the rear end of the cylindrical portion 112 in the D1 direction. Press against 112a (end face). The end surface 141e1 can be referred to as a pressed surface.
 また、出力ギヤ132bは、上記一の回転方向とは反対の方向(他の回転方向)に回転することにより、回転部材141にD1方向の後方への軸力を与える。この場合、出力ギヤ132bは、回転部材141の周壁141dの端面141d1を、ハウジング110の端面111aに押し付けることができる。端面141d1は、被押圧面または摺動面と称されうる。 Also, the output gear 132b rotates in the direction opposite to the one rotation direction (the other rotation direction), thereby giving the rotating member 141 a rear axial force in the D1 direction. In this case, the output gear 132 b can press the end surface 141 d 1 of the peripheral wall 141 d of the rotating member 141 against the end surface 111 a of the housing 110. The end surface 141d1 can be referred to as a pressed surface or a sliding surface.
 なお、出力ギヤ132bの螺旋の方向は、例えば、直動部材142が制動位置Pb(不図示)から図10に示される非制動位置Pnへ動く場合の出力ギヤ132bの回転によって、第三ギヤ133にD1方向の前方への軸力を与えるよう、設定される。また、本実施形態では、スラストベアリング143の面143aおよびハウジング110の端面111aは、スラスト面の一例であり、スラストベアリング143は、ハウジング110に支持された部材の一例であり、第二ギヤ132は、押圧部材の一例であり、出力ギヤ132bは、ヘリカルギヤの一例である。 The direction of the spiral of the output gear 132b is determined by the rotation of the output gear 132b when the linear motion member 142 moves from the braking position Pb (not shown) to the non-braking position Pn shown in FIG. Is set so as to give a forward axial force in the direction D1. In the present embodiment, the surface 143a of the thrust bearing 143 and the end surface 111a of the housing 110 are examples of thrust surfaces, the thrust bearing 143 is an example of a member supported by the housing 110, and the second gear 132 is The output gear 132b is an example of a helical gear.
 本実施形態によれば、出力ギヤ132b(押圧部材)によって、回転部材141が面143aまたは端面111a(スラスト面)に押し付けられることにより、回転部材141の位置や姿勢の変化が抑制され、ひいては回転部材141の位置や姿勢の変化に基づく音や振動が生じ難い。 According to the present embodiment, the output gear 132b (pressing member) presses the rotating member 141 against the surface 143a or the end surface 111a (thrust surface), thereby suppressing the change in the position and posture of the rotating member 141 and thus rotating. Sound and vibration based on changes in the position and orientation of the member 141 are unlikely to occur.
 また、図11に示されるように、本実施形態では、コイルスプリング151の端面151aと、フランジ141eの端面141e2との間には、円環状かつ板状のワッシャ154が設けられている。端面151a,141e2と接するワッシャ154の面(両面、摺動面)には、例えば、リン酸マンガン処理や、二硫化モリブデン処理、クロムメッキ処理、ニッケルメッキ処理等のメッキ処理や、ダイヤモンドライクカーボン(DLC)等の硬質炭化膜を形成する処理、ショット処理のような、摩擦係数を低くする表面処理(低摩擦処理)が施されている。これにより、制動開始にかかるモータ120の起動時(回転開始当初)のトルクおよびこれに続く回転中のトルクを低減することができ、ひいては、モータ120の駆動電流を低減することができる。ワッシャ154は、滑り部材の一例である。なお、摩擦係数による起動時のトルクの低減の原理については、後述する。 In addition, as shown in FIG. 11, in this embodiment, an annular and plate-shaped washer 154 is provided between the end surface 151a of the coil spring 151 and the end surface 141e2 of the flange 141e. For the surfaces (both surfaces and sliding surfaces) of the washers 154 in contact with the end surfaces 151a and 141e2, for example, manganese phosphate treatment, plating treatment such as molybdenum disulfide treatment, chromium plating treatment, nickel plating treatment, diamond-like carbon ( A surface treatment (low friction treatment) for reducing the friction coefficient, such as a treatment for forming a hard carbonized film such as DLC) or a shot treatment, is performed. As a result, it is possible to reduce the torque at the start of the motor 120 for starting braking (the initial rotation) and the torque during the rotation that follows this, and consequently the drive current of the motor 120 can be reduced. The washer 154 is an example of a sliding member. The principle of starting torque reduction by the friction coefficient will be described later.
(第3実施形態の変形例)
 図12~14に示される変形例の駆動機構100D~100Fは、第3実施形態の駆動機構100Cと同様の構成を備えている。よって、本変形例によっても、上記第3実施形態と同様の構成に基づく同様の結果が得られる。
(Modification of the third embodiment)
The drive mechanisms 100D to 100F of the modification shown in FIGS. 12 to 14 have the same configuration as the drive mechanism 100C of the third embodiment. Therefore, also by this modification, the same result based on the same structure as the said 3rd Embodiment is obtained.
 ただし、これらの変形例では、押圧部材として、ウエーブワッシャ161またはスプリングワッシャ162が設けられている。具体的に、図12の変形例では、ウエーブワッシャ161が周壁141dの端面141d1とハウジング110の端面111aとの間に設けられ、図13の変形例では、ウエーブワッシャ161がスラストベアリング143の面143aとフランジ141eの端面141e1との間に設けられ、図14の変形例では、スプリングワッシャ162がスラストベアリング143の面143aとフランジ141eの端面141e1との間に設けられている。図12の構成によれば、ウエーブワッシャ161は、回転部材141にD1方向の前方への軸力を与える。この場合、ウエーブワッシャ161は、端面141e1を、スラストベアリング143の面143aに弾性的に押し付ける。また、図13,14の構成によれば、ウエーブワッシャ161またはスプリングワッシャ162は、回転部材141にD1方向の後方への軸力を与える。この場合、ウエーブワッシャ161またはスプリングワッシャ162は、端面141d1を、ハウジング110の端面111aに弾性的に押し付ける。ウエーブワッシャ161またはスプリングワッシャ162は、第二の弾性部材の一例である。なお、図12の変形例では、ウエーブワッシャ161に替えてスプリングワッシャ162が設けられうる。また、図12~14のウエーブワッシャ161またはスプリングワッシャ162に替えて、押圧部材として、コーンスプリングや、コイルスプリング、板ばね、エラストマ(ゴム)等、他の弾性部材が設けられうる。 However, in these modified examples, a wave washer 161 or a spring washer 162 is provided as a pressing member. Specifically, in the modified example of FIG. 12, a wave washer 161 is provided between the end surface 141d1 of the peripheral wall 141d and the end surface 111a of the housing 110, and in the modified example of FIG. 13, the wave washer 161 is a surface 143a of the thrust bearing 143. 14 and the end surface 141e1 of the flange 141e. In the modification of FIG. 14, the spring washer 162 is provided between the surface 143a of the thrust bearing 143 and the end surface 141e1 of the flange 141e. According to the configuration of FIG. 12, the wave washer 161 applies an axial force forward to the rotating member 141 in the D1 direction. In this case, the wave washer 161 elastically presses the end surface 141e1 against the surface 143a of the thrust bearing 143. 13 and 14, the wave washer 161 or the spring washer 162 gives the rotating member 141 a rear axial force in the direction D1. In this case, the wave washer 161 or the spring washer 162 elastically presses the end surface 141 d 1 against the end surface 111 a of the housing 110. The wave washer 161 or the spring washer 162 is an example of a second elastic member. In the modification of FIG. 12, a spring washer 162 can be provided instead of the wave washer 161. Further, instead of the wave washer 161 or the spring washer 162 shown in FIGS. 12 to 14, other elastic members such as a cone spring, a coil spring, a leaf spring, and an elastomer (rubber) can be provided as a pressing member.
 図15,16に示される変形例の駆動機構100G,100Hは、第3実施形態の駆動機構100Cと同様の構成を備えている。よって、本変形例によっても、上記第3実施形態と同様の構成に基づく同様の結果が得られる。 15 and 16 have the same configuration as that of the drive mechanism 100C of the third embodiment. Therefore, also by this modification, the same result based on the same structure as the said 3rd Embodiment is obtained.
 ただし、図15の変形例では、回転部材141のフランジ141eに、コイルスプリング151の端面151aと接触する端面141e2(支持面)と、端面151aと隙間をあけて面した段差面141e3(底面、凹面)と、が設けられている。回転部材141が回転した場合、端面151aと端面141e2とは摺動するが、端面151aと段差面141e3とは摺動しない。この例では、端面151aは、第一の端部の一例であり、端面141e2は、摺動部の一例であり、段差面141e3は、対面部の一例であり、端面141e2および段差面141e3は、第二の端部の一例である。 However, in the modification of FIG. 15, the flange 141e of the rotating member 141 has an end surface 141e2 (support surface) that contacts the end surface 151a of the coil spring 151, and a step surface 141e3 (bottom surface, concave surface) facing the end surface 151a with a gap. ) And are provided. When the rotating member 141 rotates, the end surface 151a and the end surface 141e2 slide, but the end surface 151a and the step surface 141e3 do not slide. In this example, the end surface 151a is an example of a first end portion, the end surface 141e2 is an example of a sliding portion, the step surface 141e3 is an example of a facing portion, and the end surface 141e2 and the step surface 141e3 are It is an example of a 2nd edge part.
 また、図16の変形例では、コイルスプリング151の端部に、フランジ141eの端面141e2と接触する端面151aと、端面141e2と隙間をあけて面した傾斜面151bと、が設けられている。回転部材141が回転した場合、端面151aと端面141e2とは摺動するが、傾斜面151bと端面141e2とは摺動しない。この例では、端面151aは、摺動部の一例であり、傾斜面151bは、対面部の一例であり、端面151aおよび傾斜面151bは、第一の端部の一例であり、端面141e2は、第二の端部の一例である。 In the modification of FIG. 16, an end surface 151 a that contacts the end surface 141 e 2 of the flange 141 e and an inclined surface 151 b that faces the end surface 141 e 2 with a gap are provided at the end of the coil spring 151. When the rotating member 141 rotates, the end surface 151a and the end surface 141e2 slide, but the inclined surface 151b and the end surface 141e2 do not slide. In this example, the end surface 151a is an example of a sliding portion, the inclined surface 151b is an example of a facing portion, the end surface 151a and the inclined surface 151b are an example of a first end portion, and the end surface 141e2 is It is an example of a 2nd edge part.
 ここで、直動部材142を非制動位置Pnへ向けてD1方向の前方へ動かすことによりコイルスプリング151を弾性的に圧縮するのに必要なトルクTtは、以下の式(1)で表せる。
 
Figure JPOXMLDOC01-appb-M000001
ここに、F:軸力、μs:雌ねじ部145aと雄ねじ部145bとのねじ面の摩擦係数、α:ねじ面のフランク角、p:ねじピッチ、R:コイルスプリング151の端面151aとフランジ141eの端面141e2との接触部分の半径の代表値(有効半径、例えば平均値)、μe:コイルスプリング151の端面151aと端面141e2との接触部分の摩擦係数である。式(1)において、第1項は、ねじ面における摩擦トルクであり、第2項は、締結トルクであり、第3項は、端面151aと端面141e2との摩擦トルクである。式(1)では、ねじを締める状態となるため、第2項の締結トルクの符号が正になる。
Here, the torque Tt required to elastically compress the coil spring 151 by moving the linear motion member 142 forward in the direction D1 toward the non-braking position Pn can be expressed by the following equation (1).

Figure JPOXMLDOC01-appb-M000001
Where F: axial force, μs: coefficient of friction of the threaded surface of the female threaded portion 145a and male threaded portion 145b, α: flank angle of the threaded surface, p: screw pitch, R: end surface 151a of the coil spring 151 and the flange 141e Typical value (effective radius, for example, average value) of the radius of the contact portion with the end surface 141e2, μe: the friction coefficient of the contact portion between the end surface 151a and the end surface 141e2 of the coil spring 151. In Expression (1), the first term is the friction torque on the thread surface, the second term is the fastening torque, and the third term is the friction torque between the end surface 151a and the end surface 141e2. In the formula (1), since the screw is tightened, the sign of the fastening torque in the second term becomes positive.
 また、直動部材142を非制動位置PnからD1方向の後方へ動かすことによりコイルスプリング151による弾性的に圧縮状態を解除するのに必要なトルクTlは、以下の式(2)で表せる。
 
Figure JPOXMLDOC01-appb-M000002
式(2)では、ねじを緩める状態となるため、第2項の締結トルクの符号が負になる。
Further, the torque Tl required for elastically releasing the compression state by the coil spring 151 by moving the linear motion member 142 rearward in the direction D1 from the non-braking position Pn can be expressed by the following equation (2).

Figure JPOXMLDOC01-appb-M000002
In the expression (2), since the screw is loosened, the sign of the fastening torque in the second term is negative.
 本実施形態では、モータ120の駆動電流によって、トルクの所定値が検知され、検知された時点から、モータ120が停止される。すなわち、トルクTtは、トルクの所定値からオーバーランした値となる。トルクのオーバーランは、摩擦トルクが小さいほど大きくなる。したがって、直動部材142を非制動位置PnからD1方向の後方へ動かすのに必要なトルクTlの大小は、トルクTtに対するトルクTlの相対値Tl/Tt(式(3))で評価すべきである。
 
Figure JPOXMLDOC01-appb-M000003
In the present embodiment, a predetermined value of torque is detected by the drive current of the motor 120, and the motor 120 is stopped from the point of detection. That is, the torque Tt is a value overrun from a predetermined value of torque. The torque overrun increases as the friction torque decreases. Therefore, the magnitude of the torque Tl required to move the linear motion member 142 backward from the non-braking position Pn in the direction D1 should be evaluated by the relative value Tl / Tt of the torque Tl with respect to the torque Tt (formula (3)). is there.

Figure JPOXMLDOC01-appb-M000003
 ここで、図17は、Rと式(3)の相対値Tl/Ttとの相関関係を示すグラフであり、図18は、μeと式(3)の相対値Tl/Ttとの相関関係を示すグラフである。図17,18からも明らかとなるように、式(3)では、Rおよびμeが小さいほど、相対値Tl/Ttが小さくなる。 Here, FIG. 17 is a graph showing the correlation between R and the relative value Tl / Tt of equation (3), and FIG. 18 shows the correlation between μe and the relative value Tl / Tt of equation (3). It is a graph to show. As is clear from FIGS. 17 and 18, in Equation (3), the smaller R and μe, the smaller the relative value Tl / Tt.
 ここで、図15の変形例では、対面部としての段差面141e3は、摺動部としての端面141e2の径方向外方に位置され、図16の変形例では、対面部としての傾斜面151bは、摺動部としての端面151aの径方向外方に位置されている。このような構成により、上記R、すなわちコイルスプリング151の端面151aとフランジ141eの端面141e2との接触部分の半径の代表値(有効半径、例えば平均値)を、より小さく設定することができる。よって、図17より、図15、16の変形例によれば、トルクTtに対するトルクTlの相対値Tl/Tt、すなわち、制動開始にかかるモータ120の起動時(回転開始当初)のトルクおよびこれに続く回転中のトルクを低減することができることが、理解できよう。 Here, in the modification of FIG. 15, the stepped surface 141e3 as the facing portion is located radially outward of the end surface 141e2 as the sliding portion, and in the modification of FIG. 16, the inclined surface 151b as the facing portion is The end face 151a serving as the sliding portion is located radially outward. With such a configuration, the representative value (effective radius, for example, average value) of the radius of the contact portion between R, that is, the end surface 151a of the coil spring 151 and the end surface 141e2 of the flange 141e can be set smaller. Accordingly, from FIG. 17, according to the modified examples of FIGS. 15 and 16, the relative value Tl / Tt of the torque Tl with respect to the torque Tt, that is, the torque at the start of the motor 120 for starting braking (initially at the start of rotation) and It will be appreciated that the torque during subsequent rotation can be reduced.
 また、図18より、上記第3実施形態のように、ワッシャ154の面(両面、摺動面)に対する摩擦係数を低くする表面処理(低摩擦処理)によって上記μeがより小さくなると、トルクTtに対するトルクTlの相対値Tl/Tt、すなわち、制動開始にかかるモータ120の起動時(回転開始当初)のトルクおよびこれに続く回転中のトルクを低減できることが、理解できよう。 Further, as shown in FIG. 18, when the μe is further reduced by the surface treatment (low friction treatment) for reducing the friction coefficient with respect to the surface (both sides, sliding surface) of the washer 154 as in the third embodiment, the torque Tt is reduced. It will be understood that the relative value Tl / Tt of the torque Tl, that is, the torque at the start of the motor 120 for starting braking (initially at the start of rotation) and the subsequent torque during rotation can be reduced.
 なお、フランジ141eに傾斜面が設けられてもよいし、コイルスプリング151に段差面が設けられてもよい。また、フランジ141eおよびコイルスプリング151の双方に、対面部が設けられてもよい。 In addition, an inclined surface may be provided on the flange 141e, or a step surface may be provided on the coil spring 151. Further, both the flange 141e and the coil spring 151 may be provided with facing portions.
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。 As mentioned above, although embodiment of this invention was illustrated, the said embodiment is an example and is not intending limiting the range of invention. The above embodiment can be implemented in various other forms, and various omissions, replacements, combinations, and changes can be made without departing from the spirit of the invention. In addition, the specifications (structure, type, direction, shape, size, length, width, thickness, height, number, arrangement, position, material, etc.) of each configuration, shape, etc. are appropriately changed. Can be implemented.
 例えば、上記実施形態では、ブレーキ装置2は、リーディングトレーリング式のドラムブレーキとして構成されたが、本発明は他の形式のブレーキ装置としても構成することができる。また、一のアクチュエータによるディスクブレーキと他のアクチュエータによるドラムブレーキとを有するブレーキ装置の、当該他のアクチュエータに対応した構成として、本発明を実施することが可能である。また、弾性部材による効果は、直動部材の軸方向の移動が制限される構成を前提とするものではない。 For example, in the above embodiment, the brake device 2 is configured as a leading trailing drum brake, but the present invention can also be configured as other types of brake devices. Further, the present invention can be implemented as a configuration corresponding to the other actuator of a brake device having a disc brake by one actuator and a drum brake by another actuator. Moreover, the effect by an elastic member does not presuppose the structure by which the movement of the axial direction of a linear motion member is restrict | limited.
 また、上記実施形態では、制動部材を移動させる作動部材がケーブル82である構成が例示されたが、作動部材は、ロッドやレバーなど、ケーブル82以外のものであってもよい。また、作動部材は、引っ張るのではなく押すことにより、制動部材を移動させてもよい。 In the above embodiment, the configuration in which the operating member that moves the braking member is the cable 82 is exemplified, but the operating member may be other than the cable 82 such as a rod or a lever. The actuating member may move the braking member by pushing instead of pulling.

Claims (8)

  1.  ホイールを制動すべく制動部材を移動させる作動部材と、
     モータと、
     前記モータによって回転される回転部材と、
     前記回転部材の回転に伴って直動し前記作動部材を移動させる直動部材と、
     前記回転部材と前記直動部材との間に設けられ、前記回転部材の軸方向への前記直動部材の移動により前記回転部材と前記直動部材との間で前記軸方向に弾性変形される第一の弾性部材と、
     を備えた、車両用ブレーキ。
    An actuating member that moves the braking member to brake the wheel;
    A motor,
    A rotating member rotated by the motor;
    A linear member that moves linearly with the rotation of the rotating member and moves the actuating member;
    Provided between the rotating member and the linear motion member, and elastically deformed in the axial direction between the rotational member and the linear motion member by the movement of the linear motion member in the axial direction of the rotational member. A first elastic member;
    Brake for vehicles equipped with.
  2.  前記第一の弾性部材は、前記直動部材を囲うように設けられた、請求項1に記載の車両用ブレーキ。 The vehicle brake according to claim 1, wherein the first elastic member is provided so as to surround the linear motion member.
  3.  前記第一の弾性部材は、コイルスプリングである、請求項1または2に記載の車両用ブレーキ。 The vehicle brake according to claim 1 or 2, wherein the first elastic member is a coil spring.
  4.  少なくとも前記回転部材および前記第一の弾性部材を収容したハウジングと、
     前記ハウジングまたは前記ハウジングに支持された部材に設けられたスラスト面と、
     前記回転部材を前記スラスト面に押し付ける押圧部材と、
     を備えた、請求項1~3のうちいずれか一つに記載の車両用ブレーキ。
    A housing containing at least the rotating member and the first elastic member;
    A thrust surface provided on the housing or a member supported by the housing;
    A pressing member that presses the rotating member against the thrust surface;
    The vehicle brake according to any one of claims 1 to 3, further comprising:
  5.  前記押圧部材は、前記回転部材と噛み合い当該回転部材を前記スラスト面に押し付けるヘリカルギヤである、請求項4に記載の車両用ブレーキ。 The vehicle brake according to claim 4, wherein the pressing member is a helical gear that meshes with the rotating member and presses the rotating member against the thrust surface.
  6.  前記押圧部材は、前記第一の弾性部材とは別に設けられた第二の弾性部材である、請求項4に記載の車両用ブレーキ。 The vehicle brake according to claim 4, wherein the pressing member is a second elastic member provided separately from the first elastic member.
  7.  前記第一の弾性部材の第一の端部と、前記第一の弾性部材と面し当該第一の弾性部材を支持する第二の端部と、の間に、滑り部材が設けられた、請求項1~6のうちいずれか一つに記載の車両用ブレーキ。 A sliding member is provided between the first end of the first elastic member and the second end facing the first elastic member and supporting the first elastic member. The vehicle brake according to any one of claims 1 to 6.
  8.  前記第一の弾性部材の第一の端部、および前記第一の弾性部材と面した第二の端部、のうち少なくとも一方に、他方と摺動する摺動部と、当該摺動部の径方向外方に位置され他方と隙間をあけて面した対面部と、が設けられた、請求項1~6のうちいずれか一つに記載の車両用ブレーキ。 At least one of the first end portion of the first elastic member and the second end portion facing the first elastic member, a sliding portion that slides with the other, and the sliding portion The vehicle brake according to any one of claims 1 to 6, further comprising a facing portion that is positioned radially outward and faces the other with a gap.
PCT/JP2016/081247 2015-10-23 2016-10-21 Brake for vehicles WO2017069234A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680056329.7A CN108138880B (en) 2015-10-23 2016-10-21 Brake for vehicle
DE112016004838.6T DE112016004838B4 (en) 2015-10-23 2016-10-21 Brakes for vehicles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015209219 2015-10-23
JP2015-209219 2015-10-23
JP2016-195045 2016-09-30
JP2016195045A JP6361715B2 (en) 2015-10-23 2016-09-30 Vehicle brake

Publications (1)

Publication Number Publication Date
WO2017069234A1 true WO2017069234A1 (en) 2017-04-27

Family

ID=58557121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081247 WO2017069234A1 (en) 2015-10-23 2016-10-21 Brake for vehicles

Country Status (1)

Country Link
WO (1) WO2017069234A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004524A1 (en) * 2018-06-29 2020-01-02 株式会社アドヴィックス Brake device
JP2020008165A (en) * 2018-06-29 2020-01-16 株式会社アドヴィックス Brake gear
WO2020175190A1 (en) * 2019-02-25 2020-09-03 株式会社アドヴィックス Brake device
JPWO2019187362A1 (en) * 2018-03-30 2021-04-08 日信工業株式会社 Electric parking brake device
CN113833780A (en) * 2021-10-21 2021-12-24 杭州速博雷尔传动机械有限公司 High-efficient two braking speed reducers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510531A (en) * 1999-09-23 2003-03-18 クノール−ブレムセ・ジステメ・フュール・シーネンファールツォイゲ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Tightening device for vehicle brakes
WO2014025010A1 (en) * 2012-08-09 2014-02-13 曙ブレーキ工業株式会社 Electric disc brake apparatus
JP2014226005A (en) * 2013-05-17 2014-12-04 Ntn株式会社 Electric linear motion actuator and electric brake device
WO2015053333A1 (en) * 2013-10-08 2015-04-16 曙ブレーキ工業株式会社 Disc brake
JP2015152044A (en) * 2014-02-12 2015-08-24 株式会社アドヴィックス electric parking brake

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510531A (en) * 1999-09-23 2003-03-18 クノール−ブレムセ・ジステメ・フュール・シーネンファールツォイゲ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Tightening device for vehicle brakes
WO2014025010A1 (en) * 2012-08-09 2014-02-13 曙ブレーキ工業株式会社 Electric disc brake apparatus
JP2014226005A (en) * 2013-05-17 2014-12-04 Ntn株式会社 Electric linear motion actuator and electric brake device
WO2015053333A1 (en) * 2013-10-08 2015-04-16 曙ブレーキ工業株式会社 Disc brake
JP2015152044A (en) * 2014-02-12 2015-08-24 株式会社アドヴィックス electric parking brake

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019187362A1 (en) * 2018-03-30 2021-04-08 日信工業株式会社 Electric parking brake device
JP7194172B2 (en) 2018-03-30 2022-12-21 日立Astemo株式会社 electric parking brake device
WO2020004524A1 (en) * 2018-06-29 2020-01-02 株式会社アドヴィックス Brake device
JP2020008165A (en) * 2018-06-29 2020-01-16 株式会社アドヴィックス Brake gear
CN112368488A (en) * 2018-06-29 2021-02-12 株式会社爱德克斯 Brake device
CN112368488B (en) * 2018-06-29 2022-06-24 株式会社爱德克斯 Brake device
JP7229810B2 (en) 2018-06-29 2023-02-28 株式会社アドヴィックス brake device
WO2020175190A1 (en) * 2019-02-25 2020-09-03 株式会社アドヴィックス Brake device
CN113833780A (en) * 2021-10-21 2021-12-24 杭州速博雷尔传动机械有限公司 High-efficient two braking speed reducers
CN113833780B (en) * 2021-10-21 2023-07-25 杭州速博雷尔传动机械有限公司 High-efficient double-brake speed reducer

Similar Documents

Publication Publication Date Title
JP6281656B2 (en) Vehicle brake
WO2017069234A1 (en) Brake for vehicles
KR102446044B1 (en) Electric disk brake
JP2010038307A (en) Disk brake
WO2019131153A1 (en) Brake device
JP2017082834A (en) Brake for vehicle
JP6565854B2 (en) Cable guide and vehicle brake
JP2018017257A (en) Vehicular brake
JP6593269B2 (en) Vehicle brake
JP2020026854A (en) Brake device
JP6756221B2 (en) Vehicle brakes
JP6972866B2 (en) Vehicle brakes
JP6641881B2 (en) Vehicle brakes
JP2018058386A (en) Brake for vehicle
US11333211B2 (en) Brake device
JP6720940B2 (en) Connection structure
JP2017133537A (en) Brake for vehicle
WO2017006956A1 (en) Device for driving power brake
JP2018141544A (en) Vehicular brake
JP2018100714A (en) Brake for vehicle
JP6715956B2 (en) Disc brake
JP2018059535A (en) Vehicular brake
WO2019189654A1 (en) Brake device
KR20200116298A (en) Actuactor and electro-mechanical brake system having the same
JP2018099985A (en) Vehicular brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004838

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857547

Country of ref document: EP

Kind code of ref document: A1