WO2017056405A1 - コーティング膜付きガラス板及びその製造方法 - Google Patents
コーティング膜付きガラス板及びその製造方法 Download PDFInfo
- Publication number
- WO2017056405A1 WO2017056405A1 PCT/JP2016/004080 JP2016004080W WO2017056405A1 WO 2017056405 A1 WO2017056405 A1 WO 2017056405A1 JP 2016004080 W JP2016004080 W JP 2016004080W WO 2017056405 A1 WO2017056405 A1 WO 2017056405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating film
- glass plate
- forming
- porous layer
- fine particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1212—Zeolites, glasses
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1254—Sol or sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1262—Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
- C23C18/127—Preformed particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1283—Control of temperature, e.g. gradual temperature increase, modulation of temperature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0247—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/425—Coatings comprising at least one inhomogeneous layer consisting of a porous layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/732—Anti-reflective coatings with specific characteristics made of a single layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/107—Porous materials, e.g. for reducing the refractive index
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a glass plate with a coating film and a method for producing the same.
- a functional coating film is formed on the surface of a substrate such as glass or ceramic for the purpose of improving the function of the substrate.
- a low-reflective coating film is formed on the surface of the substrate in order to transmit more light to the substrate or prevent glare due to reflection.
- a glass plate provided with a low-reflection coating film is used for vehicle glass, show windows, photoelectric conversion devices, and the like.
- a thin-film solar cell that is a type of photoelectric conversion device, a photoelectric conversion layer composed of a base film, a transparent conductive film, amorphous silicon, and the like, and a back surface thin-film electrode are laminated in this order on one main surface of a glass substrate. Furthermore, a low-reflection coating film is formed on the other main surface opposite to one main surface of the glass plate.
- a so-called crystalline solar cell which is another type of photoelectric conversion device, a cover glass is installed on the sunlight incident side, and a low reflection coating film is formed on the surface of the cover glass.
- a low-reflection coating film is formed on the surface on the sunlight incident side in this way, so that more sunlight is guided to the photoelectric conversion layer or the solar cell element and the power generation thereof. The amount will be improved.
- the most commonly used low-reflective coating film is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD) or the like, but a fine particle-containing film containing fine particles such as silica fine particles is a low-reflective coating.
- a fine particle-containing film containing fine particles such as silica fine particles is a low-reflective coating.
- the fine particle-containing film is formed by applying a coating liquid containing fine particles on a transparent substrate by dipping, flow coating, spraying, or the like.
- Patent Document 1 a reflection suppressing film containing fine particles and a binder is formed on a glass plate having surface irregularities, and a single layer of silica fine particles is formed on the top of the surface irregularities, and A cover glass for a photoelectric conversion device is disclosed which is uniformly arranged so that the filling rate is within a predetermined range. With the antireflection film applied to the cover glass, the average transmittance of light having a wavelength of 380 to 1100 nm can be improved by at least 2.37%.
- the function of the coating film is reduced due to insufficient durability of the coating film, and further coating is performed.
- the surface of the glass plate is deteriorated by water that has entered the coating film from the outside of the film, and the performance of the glass plate with the coating film is deteriorated.
- the present invention is a glass plate with a coating film in which a porous low reflection coating film is formed on the main surface of the glass plate. The purpose is to obtain.
- the present invention A glass plate, A coating film provided on at least one main surface of the glass plate;
- a glass plate with a coating film containing The coating film includes a dense layer and a porous layer, The dense layer is located between the porous layer and the glass plate, A glass plate with a coating film is provided.
- the coating film includes a dense layer, and the dense layer is located between the porous layer and the glass plate. Due to the presence of such a dense layer, the durability of the coating film is improved and its function is maintained for a long period of time. Further, since water entering the coating film from the outside of the coating film can be reduced, deterioration of the surface of the glass plate is also suppressed. As a result, a glass plate with a coating film having high durability can be provided.
- the glass plate with a coating film of the present embodiment includes a glass plate and a coating film provided on at least one main surface of the glass plate.
- the glass plate is not particularly limited, but in order to smooth the surface of the coating film provided on the main surface, a glass plate having excellent microscopic surface smoothness is preferable.
- the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
- the glass plate may be a glass plate in which another coating including a transparent conductive film is applied to the main surface opposite to the main surface on which the coating film specified in the present embodiment is provided in the float plate glass.
- the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
- the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye.
- the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order.
- the average interval Sm of the unevenness on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly It is preferably 2.0 mm or less, particularly 1.5 mm or less.
- the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
- the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
- the average interval Sm and the maximum height Ry in the present specification are values defined in JIS (Japanese Industrial Standards) B0601-1994.
- a template glass Even with such a template glass, microscopically (for example, in the surface roughness measurement in which the evaluation length in the roughness curve is several hundreds of nanometers, such as observation with an atomic force microscope (AFM)), The arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even a template glass can be suitably used as the glass plate of the glass plate with a coating film of the present embodiment as a glass plate excellent in microscopic surface smoothness.
- AFM atomic force microscope
- the surface roughness of the template glass plate is 0.3 ⁇ m to 5.0 ⁇ m, especially 0.4 ⁇ m to 2.0 ⁇ m, and further 0.5 ⁇ m to 1.2 ⁇ m, with the average interval Sm and the maximum height Ry in the above range. It is preferable to have an average roughness Ra.
- a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
- the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
- the coating film includes a dense layer and a porous layer.
- the dense layer is located between the porous layer and the glass plate.
- the dense layer is disposed on the glass plate side with respect to the porous layer.
- the coating film in the present embodiment only needs to satisfy the above-described positional relationship between the dense layer and the porous layer, and may further include layers other than the dense layer and the porous layer.
- the case where the coating film is composed of a dense layer and a porous layer in the case of a two-layer structure
- the dense layer is a layer that does not substantially have voids. Specifically, when the cross section of the film is observed with a scanning electron microscope (SEM), it is preferable that there are no pores having a diameter of 10 nm or more in the visual field, and the smooth surface has an arithmetic average roughness Ra. Is preferably 5 nm or less.
- the physical thickness of the dense layer is, for example, 10 to 40 nm, 10 to 20 nm, or 20 to 40 nm.
- the presence or absence of a dense layer does not significantly affect the optical properties of the coating.
- the refractive index of the dense layer is preferably in the range of 1.4 to 2.0, more preferably 1.55 or less, and even more preferably 1.50 or less.
- any dense layer can be used as long as it does not have voids.
- a transparent inorganic amorphous material is preferable, and it is a continuous layer mainly composed of silicon oxide (especially silica). It is more preferable.
- a dense layer has silicon oxide as a main component means that the content of silicon oxide in the dense layer is 50% by mass or more.
- Silicon oxide is an amorphous material with a low refractive index.
- a silicon oxide-based material when used for the porous layer described later, it has a high affinity with them, so that it does not affect the optical properties. Even with a thin film thickness, durability as a low reflection coating is improved.
- the dense layer preferably contains a metal compound other than silicon oxide.
- the dense layer may further include at least one oxide selected from the group consisting of oxides of aluminum, zirconium, and titanium in addition to silicon oxide.
- the content of aluminum oxide is preferably 10% by mass or less based on silica contained in the dense layer in terms of Al 2 O 3 .
- the zirconium oxide content is preferably 10% by mass or less based on the silica contained in the dense layer in terms of ZrO 2 .
- the content of titanium oxide is preferably 10% by mass or less with respect to silica contained in the dense layer in terms of TiO 2 .
- a hydrolyzable metal compound typified by silicon alkoxide can be used as a source of the dense layer containing silicon oxide as a main component.
- the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
- the hydrolyzable metal compound may be formed into a dense film by hydrolysis and condensation polymerization by a so-called sol-gel method.
- the dense layer does not substantially contain an organic compound.
- the dense layer substantially not containing an organic compound means that the organic compound content in the dense layer is less than 5% by mass.
- the porous layer includes isolated closed pores included in the porous layer and a matrix. From another viewpoint, it can be said that the closed vacancies in the porous layer are vacancies isolated within the membrane by being surrounded by the matrix, and air is present inside the closed vacancies. Conceivable. By including such closed pores in the film, the effective refractive index of the coating film is reduced, so that a low reflection effect by the coating film can be obtained. That is, the coating film in the present embodiment can function as a low reflection coating film that can realize high low reflectivity. As described above, the glass plate with a coating film of the present embodiment can achieve a high transmittance gain of 2.5% or more even if the surface does not have an uneven shape.
- the transmittance gain means that the coating film is not provided on the surface from the average transmittance when light with a wavelength of 380 to 1100 nm is incident on the glass plate with the coating film from the surface on the coating film side. It is a value obtained by subtracting the average transmittance when light having the above wavelength is incident on the glass plate (before being provided).
- the transmittance gain can be increased to 2.6% or more by adjusting the shape and size of the closed pores and the porosity of the coating film to an appropriate range according to the following description. It can be increased to 9% or more.
- the glass plate with a coating film of the present embodiment can realize the transmittance gain as described above, it can have high light transmittance.
- the porous layer does not substantially have pores (open pores) opened on the surface of the porous layer.
- the fact that the porous layer has substantially no open pores means that the surface density of the number of open pores on the surface of the porous layer is less than 0.2 / ⁇ m 2 , preferably Is less than 0.16 / ⁇ m 2 , more preferably less than 0.01 / ⁇ m 2 .
- the porous layer preferably has no open pores.
- the surface density of the number of open vacancies means that the number of open vacancies is measured by observing with a SEM at a field of view of 2.5 ⁇ m square on the surface of the porous layer, and the measured value is divided by the area of one field of view.
- the porous layer does not contain open vacancies, the surface of the porous layer has a field of view of 2.5 ⁇ m square, and when the field of view is changed three times within the same sample, no open vacancies are confirmed.
- the open hole is a hole having an opening having a diameter of 5 nm or more, which is confirmed when the surface of the porous layer is observed with an SEM.
- the closed pores may have a substantially elliptical shape when observed in a cross section along the thickness direction of the porous layer.
- the closed hole is formed by connecting two or more substantially elliptical holes and a first closed hole which is a substantially elliptical isolated hole when observed in the cross section. A second closed hole.
- the first closed holes and the substantially elliptic holes forming the second closed holes have, for example, a major axis length of 30 to 80 nm and a minor axis length of 20 to 30 nm.
- the major axis length is the longest diameter of the substantially elliptical hole observed in the cross section
- the minor axis length is the length of the diameter in the direction perpendicular to the major axis.
- the major axis length may be 20 to 80 nm or 30 to 70 nm.
- the minor axis length may be 10 to 40 nm or 15 to 30 nm.
- the first closed hole and each of the substantially elliptic holes forming the second closed hole may be arranged so that the long axis is substantially along the film surface of the coating film. That is, in this case, the three-dimensional shape of the first closed hole and the three-dimensional shape of each of the substantially elliptical holes forming the second closed hole are flat, substantially spheroids and rotate. It can be considered that the axis is along the thickness direction of the porous layer.
- the porous layer has a porous structure including closed pores inside the membrane.
- the porosity exceeds the limit the durability of the coating film decreases.
- the porosity of the porous layer is preferably 10 to 40%, more preferably 15 to 30%.
- the thickness of the porous layer is, for example, 50 to 300 nm, preferably 100 to 250 nm.
- the porous layer may have particulates on the surface. However, if there are too many particulates on the surface, the light transmittance of the glass plate with a coating film may be reduced, or the removability of deposits may be reduced. Therefore, when the porous layer is observed from the surface side by SEM, the number of particles having a diameter of 20 to 100 nm confirmed on the surface of the porous layer is preferably 100 / ⁇ m 2 or less, and 75 / ⁇ m 2. More preferably, it is more preferably 50 / ⁇ m 2 or less.
- the surface roughness of the portion excluding the opening portion of the open pores (the portion excluding the particulate matter when the above-described particulate matter is present) with an evaluation length of 300 nm is, for example, Arithmetic average roughness Ra of 3 nm or less.
- the porous layer contains a matrix as described above.
- the matrix can contain a metal oxide containing an element such as silicon, titanium, aluminum, zirconium and / or tantalum, but preferably contains silicon oxide (particularly silica) as a main component.
- the main component of a matrix here is a component contained most in a matrix.
- the matrix may contain a metal compound other than an oxide of silicon in order to exhibit effects such as further improvement in durability.
- a hydrolyzable metal compound typified by silicon alkoxide can be used as a matrix supply source (matrix raw material).
- the hydrolyzable metal compound can form a matrix by hydrolysis and condensation polymerization by a so-called sol-gel method.
- the porous layer matrix contains silica
- a hydrolyzable silicon compound is used as the matrix raw material. That is, in this case, the silica forming the matrix is derived from the hydrolysis condensation product of the hydrolyzable silicon compound.
- the hydrolyzable silicon compound for example, silicon alkoxide is used.
- the silicon alkoxide includes a silicon alkoxide in which one or two organic groups are directly bonded to a silicon atom because it is easy to obtain a coating film having the above structural characteristics.
- the organic alkoxide is composed of silicon alkoxide in which one or two organic groups are directly bonded to silicon atoms.
- the organic group is preferably hydrophobic. In other words, a silicon alkoxide having 1 or 2 non-hydrolyzable functional groups is preferably used.
- the hydrolyzable silicon compound is made of silicon alkoxide in which one or two organic groups are directly bonded to silicon atoms, so that the coating film effectively forms a porous structure including closed pores inside the film. It is because it can produce.
- the organic group directly bonded to the silicon atom is, for example, a linear alkyl group having 1 to 5 carbon atoms.
- Specific examples of such silicon alkoxide include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane.
- a part of the silicon alkoxide in which the one or two organic groups are directly bonded to the silicon atom can include those in which the organic group is crosslinkable.
- This organic group is preferably an organic group containing an epoxy group or a vinyl group.
- An example of a silicon alkoxide in which such a crosslinkable organic group is directly bonded to a silicon atom is 3-glycidoxypropyltrimethoxysilane (GPTMS).
- the hydrolyzable condensation product of the hydrolyzable silicon compound contains an organic group derived from a non-hydrolyzable functional group.
- the matrix in the porous layer may contain organic groups, but preferably the matrix does not contain organic groups. This is because the matrix containing no organic group has better durability and wear resistance.
- the matrix of the porous layer is mainly composed of silica
- the matrix may further contain an oxide of at least one element selected from the group consisting of aluminum, titanium, and zirconium.
- the matrix further contains these oxides, the durability of the coating film is improved.
- water-soluble inorganic compounds such as a metal chloride and an oxychloride, are added to a matrix raw material.
- the matrix of the porous layer preferably contains 90 to 100% by mass of silica, more preferably 94 to 100% by mass.
- the matrix of the coating film contains an oxide of at least one element selected from the group consisting of aluminum, titanium and zirconium, the oxide is preferably contained in the coating film in an amount of 2 to 7% by mass. More preferably 3 to 6% by mass is contained.
- the porous layer may contain, for example, solid fine particles in addition to the closed vacancies, the open vacancies and the matrix.
- the durability of the porous layer is improved.
- Solid particulates are fixed by a matrix.
- the solid fine particles have an average particle diameter of, for example, 10 to 100 nm, and even if they are substantially spherical primary particles having a particle size in this range, the secondary particles having a particle size in this range are aggregated by smaller primary particles. Secondary particles may also be used.
- the larger the average particle diameter the better from the viewpoint of improving the durability of the porous layer. However, if the average particle size is too large, the surface roughness of the porous layer becomes large.
- silica fine particles can be used as the solid fine particles.
- the average particle size of the solid fine particles is determined by observing the cross section of the porous layer using SEM. Specifically, for any 50 particles that can observe the entire particle, the maximum and minimum diameters are measured and the average value is taken as the particle size of each particle, and the average value of the particle size of the 50 particles is “Average particle size”.
- the closed vacancies contained in the porous layer and the open vacancies that may be contained can be formed by any method, but are included as a pore-generating agent in the coating liquid for forming the porous layer, Moreover, it is preferably derived from fine particles that disappear by heat treatment at a predetermined temperature or higher. Such fine particles are used as a so-called template, and finally disappear by heat treatment, so that the portions occupied by the fine particles remain in the coating film as pores. The hole formed in this way becomes a closed hole or an open hole.
- fine particles used as the pore-generating agent fine particles that disappear due to volatilization, thermal decomposition, or burning by heat treatment at 400 ° C. or higher, preferably 600 ° C. or higher can be used.
- the fine particles used as the pore generating agent are, for example, organic polymer fine particles.
- the organic polymer fine particles preferably have a hydrophilic group on the surface thereof. Examples of hydrophilic groups include, but are not limited to, hydroxy groups, carbonyl groups, and carboxyl groups.
- This preferable organic polymer fine particle is difficult to separate in the coating liquid, and is suitable for effectively producing a porous coating film having closed pores inside the film.
- the average particle diameter of the organic polymer fine particles is preferably 10 to 200 nm, more preferably 20 to 150 nm, and particularly preferably 30 to 100 nm.
- the average particle size of the organic polymer fine particles is a value determined by light scattering particle size distribution measurement.
- the glass plate with a coating film of this embodiment is, for example, Including a coating film forming step of forming a coating film on one main surface of the glass plate;
- the coating film forming step includes (A) forming a dense layer-forming coating film using a dense layer-forming coating solution, and drying the dense layer-forming coating film; (B) forming a coating film for forming a porous layer using a coating liquid for forming a porous layer containing a matrix raw material and a pore-generating agent, and drying the coating film for forming a porous layer; (C) firing the dried coating film for forming a dense layer; (D) baking the dried coating film for forming a porous layer; It can manufacture with the manufacturing method containing.
- the coating liquid for forming a dense layer includes a supply source that supplies a material for forming the dense layer.
- the material for forming the dense layer is as described above.
- a hydrolyzable metal compound typified by silicon alkoxide is used as the supply source as described above. it can.
- the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
- the hydrolyzable metal compound is hydrolyzed and condensed by a so-called sol-gel method to form a dense film.
- the dense layer further contains an oxide of at least one element selected from the group consisting of oxides of aluminum, zirconium and titanium in addition to the oxide of silicon
- An oxide source is added to the dense layer coating solution.
- the dense layer contains aluminum oxide (Al 2 O 3 ), for example, aluminum halide (eg, aluminum chloride) can be used as the supply source.
- the pore generating agent contained in the coating liquid for forming a porous layer is as described above.
- the matrix material is a hydrolyzable metal compound that can be hydrolyzed and polycondensed by a so-called sol-gel method to form a matrix, and details thereof are as described above.
- the coating liquid for forming a porous layer contains a hydrolyzable silicon compound as a matrix material and contains fine particles (for example, organic polymer fine particles) that disappear by heat treatment at a predetermined temperature or more as a pore-generating agent
- the hydrolyzable silicon compound The amount of the fine particles is preferably 12 to 38 parts by mass, more preferably 15 to 35 parts by mass, and particularly preferably 17 to 25 parts by mass with respect to 100 parts by mass of the hydrolysis condensation product.
- the coating liquid for forming the porous layer contains fine particles in such a ratio, it becomes easy to form closed pores in the coating film so as to realize a transmittance gain of 2.5% or more.
- the hydrolyzable silicon compound contained in the matrix raw material is a hydrolyzable silicon compound in which one or two crosslinkable organic groups are directly bonded to silicon atoms (crosslinkable hydrolyzable silicon compound)
- the content of the crosslinkable hydrolyzable silicon compound in the matrix raw material is preferably 0.1 to 5% by mass, and more preferably 0.2 to 2.5%.
- this content rate is the mass% of the hydrolysis-condensation product of a crosslinkable hydrolysable silicon compound with respect to the whole mass of the hydrolysis-condensation product of the hydrolyzable silicon compound used as a matrix raw material.
- the mass of the hydrolysis condensate of the crosslinkable hydrolyzable silicon compound is 0.2 to 10 parts by mass with respect to 100 parts by mass of the pore-generating agent. It is preferably 1 to 6 parts by mass.
- the porous layer forming coating solution contains the crosslinkable hydrolyzable silicon compound in such a ratio, closed pores are more easily formed inside the coating film, and open pores and particulate matter on the surface are formed. Even when an adherent such as a resin adheres to the surface of the coating film, it can be more easily removed.
- the coating solution for forming the dense layer and the coating solution for forming the porous layer include a hydrolysis catalyst and a leveling agent, respectively, in addition to the source of the dense layer forming material, the matrix raw material for forming the porous layer, and the pore generating agent.
- a hydrolysis catalyst is used to promote hydrolysis of the hydrolyzable metal compound.
- Leveling agents and surfactants are used to improve the leveling property of the coating film formed by applying the coating liquid, to improve the wettability of the coating liquid to the substrate such as a glass plate, and to reduce the coating unevenness of the coating liquid. .
- the solid content concentration of the dense layer forming coating liquid and the porous layer forming coating liquid is not particularly limited. No coating unevenness of the coating liquid occurs, no defects such as cracks occur in the coating film in the drying and baking processes, and the solid content concentration is such that the coating film can have a thickness within a predetermined range.
- the coating solution can be prepared by appropriately diluting with a solvent.
- the coating liquid for forming a porous layer contains a hydrolyzable metal compound as a matrix material
- the coating liquid contains a hydrolysis product of the hydrolyzable metal compound. Therefore, in a state where the hydrolyzable metal compound and the pore-generating agent are mixed, the hydrolyzable metal compound may be hydrolyzed to prepare a coating solution for forming a porous layer containing the hydrolyzed product.
- a hydrolyzable liquid obtained by previously hydrolyzing the hydrolyzable metal compound may be prepared, and the hydrolyzate and the pore-generating agent may be mixed to prepare a porous layer forming coating liquid.
- a dense layer forming coating liquid is applied to a predetermined thickness on one main surface of a glass plate to form a dense layer forming coating film.
- a porous layer-forming coating solution is supplied thereon to form a porous layer-forming coating film. And let it dry.
- the dense layer-forming coating film and the porous layer-forming coating film are baked at a time to obtain a dense layer and a porous layer.
- the steps (A) to (D) are (A) ⁇ (B) ⁇ (C), (D) (step (C) and step (D) in the coating film forming step. Are performed in the order of simultaneous implementation.
- a porous layer-forming coating solution is applied onto the dense layer to form a porous layer-forming coating.
- any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, etc. can be used for applying these coating solutions.
- roll coating and bar coating can be easily applied to a large glass plate, and are more suitable in terms of productivity.
- the coating liquid for forming a porous layer contains a hydrolyzable metal compound as a matrix material
- the hydrolyzable metal compound is composed of a hydrolyzable silicon compound having 1 or 2 hydrophobic organic groups directly bonded to silicon atoms, and the organic polymer fine particles contained as a pore-generating agent are hydrophilic on the surface.
- the hydrolysis product since the hydrolysis product has a hydrophobic group, it gathers in the vicinity of the opposite side of the strongly hydrophilic glass plate (that is, the free surface side of the coating film) and forms a smooth surface due to the surface tension.
- the organic polymer fine particles since the organic polymer fine particles have a hydrophilic group, they tend to collect on the surface of the glass plate and hardly protrude on the free surface of the coating film. Thereby, the porous structure which does not have an open void
- the hydrolyzable metal compound comprises a hydrolyzable silicon compound having 1 or 2 hydrophobic organic groups directly bonded to the silicon atom, and the above-mentioned predetermined amount of the crosslinkable hydrolyzable silicon compound.
- the hydrolysis product of the crosslinkable hydrolyzable silicon compound works to crosslink the surface of the organic polymer fine particles and the surface of the glass plate.
- organic polymer fine particles gather more on the glass plate surface, and it is suppressed more effectively that it protrudes on the free surface of a coating film.
- the drying temperature and drying time of the coating film are not particularly limited, but can be held in a heating furnace set at 300 to 400 ° C. for 20 to 120 seconds, for example. At this time, the surface temperature of the coating film reaches 100 to 150 ° C. In this drying step, it is considered that most of the pore forming agent remains without disappearing.
- the coating film obtained in the drying process is baked.
- the pore-forming agent disappears due to volatilization, thermal decomposition or burning, and voids are formed.
- the firing temperature and firing time are not particularly limited, and examples include firing at 400 to 500 ° C. for 1 to 5 minutes. Another example is firing at 600 ° C. or higher for 1 minute or longer.
- the pore-forming agent disappears, but most of the organic groups contained in the matrix remain without disappearing.
- the baking of the latter example since the pore-generating agent and the organic group of the matrix disappear together, a matrix containing no organic group is obtained, and the coating film has high durability and wear resistance.
- the heating conditions of the glass plate at the time of carrying out air-cooling strengthening of a commercially available soda-lime glass plate are mentioned.
- the coating film may be held in a heating furnace set at 640 to 780 ° C. for 1 to 3 minutes. At this time, the surface temperature of the coating film reaches 630 to 690 ° C.
- the coating film shrinks in the film thickness direction, and the holes already formed at that time also shrink in the film thickness direction, thereby forming the first closed void and the second closed void. It is considered that the holes are formed so as to have a substantially elliptical shape as described above.
- the glass plate with a coating film of this embodiment can be manufactured.
- the glass plate with a coating film of the present invention has the same configuration as the glass plate with a coating film of Embodiment 1 except that it further includes a contact angle improving film disposed on the coating film. Therefore, in this embodiment, only the contact angle improving film will be described.
- the contact angle improving film is a film having a high contact angle when a liquid adheres.
- the water repellency and oil repellency of the surface of the glass plate with the coating film are improved as compared with the case where the film is not provided. Therefore, the glass plate with a coating film of the present embodiment has excellent dirt removal properties, and for example, dirt attached to the surface during processing can be easily removed. As a result, problems such as poor appearance due to the adhesion of dirt can be solved, and the yield in the manufacturing process can be improved.
- a laminated glass structure may be formed by sealing with an intermediate film made of a thermoplastic resin.
- the photoelectric conversion element is effectively protected from the external environment, and durability and weather resistance as the photoelectric conversion element are improved.
- the coating film is disposed on the outside, that is, the side not in contact with the intermediate film.
- the thermoplastic resin used for producing the intermediate film may unintentionally adhere to the coating film.
- the glass plate since there is a difference in appearance between a portion where the thermoplastic resin is unintentionally attached in this way and a portion where the thermoplastic resin is not attached, it is considered that the appearance is poor as it is. On the other hand, even if it tries to remove the attached thermoplastic resin, the attached thermoplastic resin penetrates deep into the porous layer of the coating film and is very difficult to remove. The yield may be reduced. However, in the glass plate with a coating film of this embodiment, since the contact angle improving film is provided, dirt such as thermoplastic resin adhering to the surface does not penetrate to the inside of the coating film. The attached deposits can be easily removed.
- the contact angle improving film may be any film that can increase the contact angle of the liquid on the surface of the coating film, and its material is not particularly limited.
- hydrolyzable silicon having a hydrophobic group directly bonded to silicon A hydrolyzate of the compound is preferably used.
- the number of hydrophobic groups bonded to silicon is 1 or 2, and the hydrolyzable group is preferably an alkoxyl group, an acetone group, an alkenyloxy group, an amino group, or a halogen group.
- the hydrophobic group an alkyl group, a fluoroalkyl group and an alkenyl group are preferable, and the carbon number thereof is preferably 1 to 30, more preferably 1 to 6.
- the hydrophobic group is preferably a methyl group, an ethyl group or a vinyl group, and the hydrolyzable group is preferably a methoxy group or an ethoxy group.
- it is marketed as a fluorine-type surface antifouling processing agent, A fluoroalkyl group containing silane compound and a perfluoro polyether containing silane compound can be mentioned.
- the thickness of the contact angle improving film is preferably determined as appropriate according to the function of the material used, such as water repellency, but can be, for example, 1 nm to 50 nm.
- the glass plate with a coating film of the present embodiment is prepared by, for example, preparing a glass plate with a coating film obtained by the method for manufacturing a glass plate with a coating film described in the first embodiment, It can manufacture by apply
- the treatment liquid can be prepared by adding a solvent or the like to the material forming the contact angle improving film.
- the contact angle of the contact angle improving film is not particularly limited as long as it has a higher contact angle than the coating film surface.
- the contact angle of water is 50 to 110 °, preferably the contact angle of water. 70 to 110 °.
- the glass plate with a coating film of this embodiment has the same configuration as the glass plate with a coating film of Embodiments 1 and 2 except that the configuration of the porous layer is different. Therefore, in this embodiment, the porous layer will be described in detail.
- the glass plate and dense layer described in Embodiment 1 can be applied to the glass plate and dense layer in the glass plate with a coating film of this embodiment.
- the porous layer includes silica fine particles and a binder of silica fine particles.
- Silica fine particles constitute the skeleton of the porous layer.
- the average particle diameter of the silica fine particles is, for example, 50 to 200 nm, preferably 75 to 150 nm, and more preferably 75 to 120 nm.
- the “average particle size” means a particle size (D50) corresponding to 50% volume accumulation in the particle size distribution measured by the laser diffraction particle size distribution measurement method.
- silica fine particles it is possible to use hollow silica fine particles. However, when importance is attached to the durability of the porous layer, it is preferable to use solid (non-hollow) silica fine particles.
- the binder of the silica fine particles is interposed between the silica fine particles and the base layer (for example, a dense layer) and between the adjacent silica fine particles, and plays a role of increasing the bonding strength between them.
- the binder silicon oxide (silica) and metal oxides such as titanium, aluminum, zirconium and tantalum are suitable, but silicon oxide is most suitable.
- Silicon oxide (silica) is excellent as a reinforcing agent because of its high affinity with silica fine particles, and does not inhibit the antireflection effect of the coating film because of its low refractive index. Therefore, it is preferable that the binder of the silica fine particles is mainly composed of silicon oxide (silica).
- the main component of the binder here is a component most contained in the binder.
- the binder of the porous layer contains silicon oxide (silica) as a main component
- the binder may further contain an oxide of at least one element selected from the group consisting of titanium and zirconium.
- the alkali resistance of a porous layer improves by adding a zirconium oxide.
- the binder of the porous layer by containing titanium oxide (titania, TiO 2), it is possible to improve the alkali resistance of the porous layer.
- the binder containing silica as a main component further contains an oxide of at least one element selected from the group consisting of titanium and zirconium
- the zirconium oxide content is converted to ZrO 2 and the binder preferably 5 wt% or less of the silica contained in the content of titanium oxide, in terms of TiO 2, preferably 5 mass% or less with respect to silica contained in the binder.
- a hydrolyzable metal compound represented by silicon alkoxide can be used as a binder supply source.
- the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
- the hydrolyzable metal compound may be converted into a binder oxide by hydrolysis and condensation polymerization by a so-called sol-gel method.
- the hydrolysis of the hydrolyzable metal compound is preferably carried out in a solution containing silica fine particles. Because the condensation polymerization reaction between silanol groups present on the surface of silica fine particles and silanol groups produced by hydrolysis of metal compounds such as silicon alkoxide is promoted, and the proportion of the binder that contributes to improving the binding power of silica fine particles is increased. It is. Specifically, it is preferable to prepare a coating liquid for forming a porous layer by sequentially adding a hydrolysis catalyst and silicon alkoxide while stirring a solution containing silica fine particles.
- the ratio of silica fine particles to binder (silica fine particles: binder) in the porous layer is, for example, 65:35 to 93: 7, preferably 80:20 to 93: 7, based on mass.
- a porous layer composed of silica fine particles and a binder having a ratio within this range ensures an appropriate gap between the skeletons of the silica fine particles, so that the transmittance gain of the glass plate with a coating film can be increased. it can. Further, voids are secured between the skeletons of the silica fine particles, the apparent refractive index of the porous layer is lowered, the reflection suppressing effect is increased, and the binder contributes to maintaining the strength of the skeleton of the silica fine particles. If the binder ratio is too high, voids between the silica fine particles will be lost. On the other hand, when the binder ratio is too low, the strength of the skeleton of the silica fine particles decreases.
- a glass film with a coating film including a porous layer containing silica fine particles and a binder as described above will be described with a more specific example.
- the example of the glass plate with a coating film shown below can be used suitably as a cover glass arrange
- one main surface of the glass plate has surface irregularities, and the average interval Sm where the surface irregularities of the glass plate is 0.4 mm or more and 2.5 mm or less. And an arithmetic average roughness Ra of 0.5 ⁇ m to 5 ⁇ m.
- the coating film is formed on the surface irregularities of the glass plate.
- the coating film includes the dense layer and the porous layer, and the positional relationship between the dense layer and the porous layer is as described in the first embodiment.
- the silica fine particles are arranged in one layer at the top of the surface unevenness, and the silica fine particles are laminated in a thickness corresponding to at least three layers at the bottom of the surface unevenness. Has been.
- the coating film is provided on the surface from the average transmittance when light with a wavelength of 380 to 1100 nm is incident on the glass plate with the coating film from the surface on the coating film side.
- the silica fine particles are arranged on the top of the surface irregularities of the glass plate so as to form a single layer (in other words, without being stacked on each other).
- the silica fine particles are arranged so as to have a thickness corresponding to 3 layers or more, preferably 4 layers or more, at the bottom of the surface unevenness. Due to the thickness distribution of the porous layer caused by the difference in the number of laminated silica fine particles, the reflectance curve from the glass plate with a coating film in the visible region is flattened, and the limit of 1.5 to 3% in the wavelength region of 380 to 1100 nm. The difference between the maximum value and the minimum value of the reflectance in this wavelength range can be reduced to 1% or less.
- the average particle diameter of the silica fine particles is r
- the thickness of the porous layer at the bottom of the surface irregularities is 3r or more
- the porous layer has a thickness equivalent to or more than three silica fine particles.
- the number of laminated silica particles and the film thickness can be confirmed by actually observing the cross section of the antireflection film using SEM or the like.
- the range of the average particle diameter r of the silica fine particles is as described above.
- one main surface of the glass plate has surface unevenness, and the surface interval unevenness of the glass plate is 0.3 mm to 2.5 mm in average interval Sm. And an arithmetic mean roughness Ra of 0.3 ⁇ m to 5 ⁇ m.
- the arithmetic average roughness Ra of the surface irregularities of the glass plate is preferably 0.4 ⁇ m to 2 ⁇ m, and more preferably 0.5 ⁇ m to 1.5 ⁇ m.
- the coating film is formed on the surface irregularities of the glass plate.
- the coating film includes the dense layer and the porous layer, and the positional relationship between the dense layer and the porous layer is as described in the first embodiment.
- the silica fine particles are in one layer and the filling rate F defined by the following formula (1) is 35 to 65%. It is arranged uniformly so as to be.
- F A / B ⁇ 100
- A The number of silica fine particles contained in a square region whose side is 10 times the average particle size of the silica fine particles
- B The sphere having the same diameter as the average particle size of the silica fine particles is the largest in the square region.
- the number of fillings of the sphere when it is assumed that it is densely packed.
- the values of A and B are counted only for those in which the whole of the sphere is completely included in the square area, and for the sphere that is partially included. Ask without.
- the coating film is not provided on the surface from the average transmittance when light with a wavelength of 380 to 1100 nm is incident on the glass plate with the coating film from the surface on the coating film side.
- the transmittance gain obtained by subtracting the average transmittance when light having a wavelength of 380 to 1100 nm is incident on the glass plate is 2.2% or more.
- the silica fine particles are arranged on the top of the surface irregularities of the glass plate so as to be a single layer (in other words, without being stacked on each other).
- the silica fine particles are laminated so as to have a thickness corresponding to, for example, 1.5 to 2.1 times the average particle diameter of the silica fine particles at the bottom of the surface irregularities.
- the film thickness of the silica fine particles can be confirmed by actually observing the cross section of the porous layer using SEM or the like. Due to the thickness distribution of the porous layer caused by the difference in the number of laminated silica fine particles, the reflectance curve from the glass plate with a coating film in the visible region is flattened. For this reason, it is possible to suppress deterioration in appearance (color unevenness) due to uneven reflection.
- the range of the average particle diameter of the silica fine particles is as described above.
- the silica fine particles have a filling rate F defined by the above formula (1) of 35 to 65% at the top of the surface unevenness.
- F filling rate defined by the above formula (1) of 35 to 65% at the top of the surface unevenness.
- uniformly arranged means the distance between the silica fine particles compared to other portions of the top of the surface irregularities when the arrangement state of the silica fine particles in the porous layer at the top of the surface irregularities is observed by SEM.
- This refers to a state in which silica fine particles are arranged so that a portion having an extremely large (distance between the center tubes of adjacent silica fine particles) is not observed.
- it refers to a state in which the silica fine particles are arranged so that the interval between the silica fine particles is within 1.1 to 1.6 times the average particle size of the silica fine particles.
- the filling rate F indicates a dense state of silica fine particle arrangement. If the filling rate F is larger than 65% and the silica fine particles arranged on the top of the surface irregularities are excessively dense, it is difficult to increase the transmittance gain. On the other hand, when the filling rate F is less than 35%, it is difficult to arrange the silica fine particles uniformly, and it is difficult to increase the transmittance gain.
- the filling factor F is preferably 40 to 60%, more preferably 45 to 55%.
- ⁇ tan ⁇ 1 (4Ra / Sm)
- ⁇ tan ⁇ 1 (4Ra / Sm)
- It is preferably 0 °, particularly 0.1 to 0.5 °.
- the average inclination angle ⁇ decreases, the irregularities on the glass surface become gentler, and when the film is formed, it is difficult to form a sufficient film thickness distribution, which may cause poor appearance.
- the unevenness of the glass surface becomes steeper, the film is not formed on the top of the convex part, and the glass plate may be exposed, so that the reflectance tends to increase.
- the glass plate with a coating film of this embodiment is, for example, Including a coating film forming step of forming a coating film on one main surface of the glass plate;
- the coating film forming step includes (A) forming a dense layer forming coating film using the dense layer forming coating liquid, and drying the dense layer forming coating film; (B) forming a porous layer forming coating film using a porous layer forming coating liquid containing a binder raw material and silica fine particles, and drying the porous layer forming coating film; (C) baking the dried coating film for forming a dense layer; (D) baking the dried coating film for forming a porous layer; It can manufacture with the manufacturing method containing.
- step (a) and (c)) are the same as the steps (A) and (C) described in the first embodiment. Only the step of forming the porous layer will be described in detail.
- the porous layer which is a fine particle-containing layer, is coated with a porous forming coating solution containing a compound (binder raw material) serving as a binder supply source and silica fine particles (for example, It can be prepared by forming a porous layer-forming coating film on a dense layer-forming coating film or a dense layer), then drying and further heating.
- the porous forming coating liquid can be supplied by, for example, immersing (dipping) a glass plate having a dense layer forming coating film or a dense layer provided on the surface thereof in the porous forming coating liquid.
- a method of spraying a coating solution for forming a porous layer onto a glass plate on which a dense layer-forming coating film or a dense layer is provided has excellent production efficiency and is suitable for mass production.
- the spray method is suitable for mass production in terms of production efficiency, but has a problem that non-uniformity in film thickness tends to occur when applied to mass production. This non-uniformity is caused by the overlapping of the mist-like coating liquid released from the spray gun and the distribution of the mist (spray pattern), and appears as color unevenness of a reflection color tone having a diameter of about several millimeters.
- Color unevenness due to the spray method can be visually recognized regardless of whether the surface of the glass plate on which the porous layer is formed is smooth or uneven, but when the shape of the surface unevenness is within the above range. As a result.
- a method for forming a porous layer by a spray method will be described.
- a case where the porous layer is directly formed on the dense layer will be described as an example.
- a glass plate provided with a dense layer-forming coating film or dense layer on the surface is prepared.
- a porous forming coating liquid containing silica fine particles and a binder raw material of silica fine particles is sprayed onto the dense layer forming coating film or dense layer formed on the glass plate.
- the spraying of the porous forming coating liquid is performed using, for example, a spray gun that keeps the distance from the glass plate constant above the horizontally held glass plate.
- the glass plate sprayed with the coating liquid for forming the porous layer is placed in an electric furnace at 300 to 400 ° C. for 30 to 90 seconds, for example, and the coating liquid is dried to remove the solvent and the like contained in the coating liquid. . Further, the glass plate is placed in an electric furnace at, for example, 700 to 800 ° C. for 3 to 5 minutes to generate an oxide from the metal compound contained in the coating solution, thereby generating a binder of silica fine particles.
- a surfactant may be added to the porous forming coating solution.
- a silicon-based surfactant or a fluorine-based surfactant is suitable.
- the concentration of the surfactant in the porous forming coating solution is preferably 0.005% by mass or more and 0.5% by mass or less, and particularly preferably 0.01% by mass or more and 0.3% by mass or less.
- the glass plate is a template glass having surface irregularities, and the shape of the surface irregularities is also reflected on the surface of the dense layer, fine particles are deposited in the concave portions, so that a preferable porous layer is formed. It is thought that it is done.
- the durability of the glass plate with a coating film was evaluated by a high temperature and high humidity test.
- the test piece of the glass plate with a coating film was placed in a thermostatic bath set at a temperature of 85 ° C. and a relative humidity of 85%, and left for 1000 hours. Then, the test piece was taken out from the thermostat, washed with running water, and then dried. The change in average transmittance before and after this high-temperature and high-humidity test was measured, and if it was within ⁇ 0.8%, it was judged that the durability was excellent.
- the average transmittance before and after the high-temperature and high-humidity test was the same spectrophotometer as in the case of the above “transmission characteristics and transmittance gain”, but the high-temperature relative to the surface of the glass plate on the side where the coating film was not applied.
- the side where the coating film was not applied was measured by covering with a cover glass using dipropylene glycol as an immersion liquid.
- Adhesive removal 1 A commercially available laminated glass interlayer film for solar cells (ethylene / vinyl alcohol copolymer, EVA SKY, manufactured by Bridgestone Corporation) is cut into 20 ⁇ 30 mm, and placed on a coating film of a glass plate with a coating film at 150 ° C. It was put into the oven set to, and held for 5 minutes. Thereafter, the glass plate with the coating film was taken out of the oven and allowed to cool to room temperature, and the intermediate film was peeled off.
- EVA SKY ethylene / vinyl alcohol copolymer
- the portion of the glass plate with the coating film that was placed on the intermediate film was rubbed with a cellulose-based nonwoven fabric (Bencot (R), manufactured by Asahi Kasei Fibers Co., Ltd.) impregnated with ethanol, and adhered to the coating film when peeled off
- a cellulose-based nonwoven fabric (Bencot (R), manufactured by Asahi Kasei Fibers Co., Ltd.) impregnated with ethanol, and adhered to the coating film when peeled off
- the remaining interlayer film material was wiped off. With this wiping, the intermediate film material remaining on the surface of the coating film can be removed, but the intermediate film material soaked into the coating film cannot be removed.
- Adhesive removal 2 Except that the intermediate film was placed on the coating film of the glass plate with the coating film and was put in an oven set at 150 ° C. and the holding time was changed to 30 minutes, the above “removability of deposits 1 The removal property of the deposits was tested in the same manner as ".” The criteria for evaluating the adhesion dirtiness were also the same as the above “deposit removal property 1”.
- Example 1 Preparation of dense layer forming coating solution> 10.4 parts by mass of tetraethoxysilane (normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.), 15.7 parts by mass of isopropyl alcohol (IPA), 0.3 parts by mass of 1N nitric acid, and 3.6 parts by mass of purified water are mixed with stirring. Then, a hydrolysis reaction was performed at 40 ° C. for 8 hours to obtain a hydrolyzate having a silica solid content concentration of 10% by mass. The obtained hydrolyzate was diluted with isopropyl alcohol to obtain a solid content concentration of 3% by mass in terms of SiO 2 to obtain hydrolyzate A.
- tetraethoxysilane normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.
- IPA isopropyl alcohol
- 1N nitric acid 0.3 parts by mass of 1N nitric acid
- purified water purified water
- Hydrolyzed liquid A 2.0 g, isopropyl alcohol 5.46 g, TiO 2 source (1 mass% IPA diluted solution of 75% isopropyl alcohol solution of titanium (diisopropoxide) bis (2,4-pentadionate)), 0.71 g of an Al 2 O 3 source (1% by mass aqueous solution of AlCl 3 .6H 2 O) was stirred and mixed to obtain a dense layer forming coating solution of Example 1.
- an Al 2 O 3 source 1% by mass aqueous solution of AlCl 3 .6H 2 O
- Example 1 the porous layer contained in the coating film of the glass plate with a coating film of Embodiments 1 and 2 was formed. That is, a porous layer including closed pores and a matrix included in the layer was formed.
- Methyltriethoxysilane (MTES, manufactured by Tama Chemical Industry Co., Ltd.) was used as a matrix material for the coating film for forming a porous layer. Therefore, first, an MTES hydrolyzate was prepared.
- IPA solvent 64.38 g
- purified water 8.05 g
- 1N nitric acid hydrolysis catalyst
- MTES 26.57 g were weighed into a glass bottle and subjected to a hydrolysis reaction at 40 ° C. for 8 hours to obtain a solid content of 10
- a mass% hydrolysis solution was obtained.
- the content rate of the pore forming agent shown in Table 1 is 100 parts by mass of the mass of the matrix raw material contained in the coating liquid (the mass of the hydrolytic condensation product of the material used as the matrix raw material). It is a part by mass of the pore-forming agent.
- Example 1 the template glass was used as the glass plate.
- This template glass is composed of a normal soda lime silicate composition, the arithmetic average roughness Ra of the surface irregularities evaluated at an evaluation length of 1 cm is 0.76 ⁇ m, the average interval Sm is 1120 ⁇ m (based on the provisions of JIS B0601-1994), It was made by Nippon Sheet Glass Co., Ltd. with a thickness of 3.2 mm.
- This template glass is cut into 100 ⁇ 100 mm, immersed in an alkaline solution (KOH 25 wt% aqueous solution), washed with an ultrasonic cleaner, washed with deionized water, and dried at room temperature to form a coating film.
- KOH 25 wt% aqueous solution alkaline solution
- washed with an ultrasonic cleaner washed with deionized water, and dried at room temperature to form a coating film.
- the average transmittance was 91.7%.
- the coating liquid for forming the dense layer and the coating liquid for forming the porous layer were applied by spin coating.
- the prepared glass plate is held horizontally on a spin coater, a dense layer forming coating solution is dropped on the center of the glass plate, the glass plate is rotated at a rotation speed of 1000 rpm, and the rotation speed is maintained for 10 seconds. Then, the rotation of the glass plate was stopped. Thereby, the coating film for dense layer formation was formed on one main surface of the glass plate. Next, the solvent was removed from the dense layer-forming coating film and dried. Drying is performed by holding a glass plate having a dense layer-forming coating film formed on one main surface in an electric furnace set at 350 ° C.
- a glass plate having a dried dense layer-forming coating film formed on one main surface is horizontally held on a spin coater, and a porous layer is formed in the center of the dense layer-forming coating film on the glass plate.
- the coating solution for forming a layer was dropped, and the glass plate was rotated at a rotation speed of 650 rpm. After maintaining the rotation speed for 10 seconds, the rotation of the glass plate was stopped. Thereby, the coating film for porous layer formation was formed on the coating film for dense layer formation. Subsequently, the solvent was removed from the coating film for forming a porous layer and dried.
- Drying is performed after holding a glass plate on which one of the main surfaces of the dense layer-forming coating film and the porous layer-forming coating film is held in an electric furnace set at 350 ° C. for 60 seconds.
- the product was taken out of the product and allowed to cool to room temperature.
- the laminated body of the coating film for dense layer formation, and the coating film for porous layer formation was baked.
- Firing was performed by holding the coating film in an electric furnace set at 760 ° C. for 5 minutes. Thereby, the coating film by which the dense layer and the porous layer were arrange
- Example 2 ⁇ Preparation of dense layer forming coating solution> Hydrolyzate A2.0g prepared in Example 1, isopropyl alcohol 6.79 g, ZrO 2 source (ZrOCl 1% by weight aqueous solution of 2 ⁇ 8H 2 O aqueous solution) 0.78g, Al 2 O 3 source (AlCl 3 ⁇ 6H 0.43 g of a 1% by mass aqueous solution of 2 O) was mixed with stirring to obtain a dense layer forming coating solution of Example 2. The mass part of the aluminum compound converted to Al 2 O 3 was 1.5 parts by mass, and the mass part of the zirconium compound converted to ZrO 2 was 5 parts by mass with respect to 100 parts by mass of silicon oxide converted to SiO 2 .
- ZrO 2 source ZrOCl 1% by weight aqueous solution of 2 ⁇ 8H 2 O aqueous solution
- Al 2 O 3 source AlCl 3 ⁇ 6H 0.43 g of a 1% by mass aqueous solution of 2 O
- Example 2 ⁇ Preparation of coating liquid for forming porous layer>
- Example 2 the same coating liquid for forming a porous layer as Example 1 was prepared.
- Example 2 the same glass plate as in Example 1 was prepared.
- Example 2 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 3 Preparation of dense layer forming coating solution>
- the hydrolyzate A2.0 g prepared in Example 1, 7.29 g of isopropyl alcohol, and 0.71 g of an Al 2 O 3 source (a 1% by mass aqueous solution of AlCl 3 .6H 2 O) were stirred and mixed.
- a coating liquid for layer formation was obtained.
- the mass part of the aluminum compound converted to Al 2 O 3 with respect to 100 parts by mass of silicon oxide converted to SiO 2 was 2.5 parts by mass.
- Example 3 ⁇ Preparation of coating liquid for forming porous layer>
- Example 3 the same coating liquid for forming a porous layer as Example 1 was prepared.
- Example 3 the same glass plate as in Example 1 was prepared.
- Example 3 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 4 Preparation of dense layer forming coating solution> Hydrolyzate A2.0g prepared in Example 1, isopropyl alcohol 7.22 g, ZrO 2 source (ZrOCl 2 ⁇ 8H 2 1 wt% aqueous solution of O solution) 0.78 g were mixed and stirred, dense layer of Example 4 A forming coating solution was obtained. The mass part of the zirconium compound converted to ZrO 2 with respect to 100 parts by mass of silicon oxide converted to SiO 2 was 5 parts by mass.
- Example 4 ⁇ Preparation of coating liquid for forming porous layer>
- Example 4 the same coating liquid for forming a porous layer as Example 1 was prepared.
- Example 4 the same glass plate as in Example 1 was prepared.
- Example 4 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 5 ⁇ Preparation of dense layer forming coating solution> Hydrolyzed liquid A 2.0 g prepared in Example 1, 6.91 g of isopropyl alcohol, TiO 2 source (titanium (diisopropoxide) bis (2,4 pentadionate) 75% isopropyl alcohol solution diluted by 1 mass% IPA Liquid) 1.09 g was mixed with stirring to obtain a dense layer forming coating liquid of Example 5. The mass part of the titanium compound converted to TiO 2 with respect to 100 parts by mass of silicon oxide converted to SiO 2 was 4 parts by mass.
- Example 5 ⁇ Preparation of coating liquid for forming porous layer>
- Example 5 the same porous layer forming coating solution as in Example 1 was prepared.
- Example 5 ⁇ Preparation of glass plate> In Example 5, the same glass plate as in Example 1 was prepared.
- Example 5 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 6 ⁇ Preparation of dense layer forming coating solution> The hydrolyzed liquid A2.0 g prepared in Example 1 and isopropyl alcohol 8.00 g were mixed with stirring to obtain a dense layer forming coating liquid of Example 6.
- Example 6 ⁇ Preparation of coating liquid for forming porous layer>
- Example 6 the same porous layer forming coating solution as in Example 1 was prepared.
- Example 6 the same glass plate as in Example 1 was prepared.
- Example 6 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 7 the coating film of the glass plate with a coating film produced in Example 1 was further provided with a contact angle improving film prepared using the following coating liquid for forming a contact angle improving film. A glass plate was produced.
- MTES hydrolyzate having a solid content concentration of 3% by mass, 8.83 g of IPA, 0.26 g of a 1% by mass aqueous solution of zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O), aluminum chloride hexahydrate 0.24 g of a 1% by weight aqueous solution of Japanese (AlCl 3 .6H 2 O) was mixed to obtain a coating liquid for forming a contact angle enhancement film.
- ZrOCl 2 .8H 2 O zirconium oxychloride octahydrate
- AlCl 3 .6H 2 O Japanese
- the same glass plate with a coating film as the glass plate with a coating film of Example 1 was prepared.
- the prepared glass plate with a coating film is held horizontally on a spin coater, and a coating liquid for forming a contact angle film is dropped on the center of the coating film, and the glass plate is rotated at a rotation speed of 1000 rpm for 10 seconds. After maintaining the number of rotations, the rotation of the glass plate was stopped. Thereby, the coating film for contact angle improvement film
- the solvent was removed from the coating film for forming a contact angle improving film and dried. The drying was performed by holding the glass plate with the coating film on which the coating film for forming the contact angle improving film was formed in an electric furnace set at 350 ° C. for 60 seconds, and then taking it out from the electric furnace and allowing to cool to room temperature. .
- Example 8 the coating film of the glass plate with the coating film prepared in Example 1 was further provided with a contact angle improving film prepared using the following coating liquid for forming a contact angle improving film. A glass plate was produced.
- Example 7 ⁇ Preparation of coating liquid for forming contact angle improving film>
- the MTES hydrolyzate having a solid content concentration of 3% by mass used in Example 7 was directly used as a coating solution for forming a contact angle enhancement film.
- Example 8 a contact angle improving film was produced by the same method as in Example 7.
- Example 9 Preparation of dense layer forming coating solution>
- Example 9 the same dense layer forming coating solution as in Example 1 was prepared.
- Example 9 ⁇ Preparation of coating liquid for forming porous layer>
- Example 9 the same coating liquid for forming a porous layer as Example 1 was prepared.
- Example 9 the same glass plate as in Example 1 was prepared.
- a dense layer forming coating solution was applied on one main surface of the prepared glass plate by a spray method.
- Application by the spray method was performed by spraying a coating solution for forming a dense layer from above one main surface of a horizontally held glass plate using a commercially available spray gun. Thereby, the coating film for dense layer formation was formed on one main surface of the glass plate.
- the solvent was removed from the dense layer-forming coating film and dried. Drying is performed by holding a glass plate having a dense layer-forming coating film formed on one main surface in an electric furnace set at 350 ° C. for 60 seconds, then removing it from the electric furnace and allowing to cool to room temperature. It was.
- a glass plate having a dried dense layer-forming coating film formed on one main surface is horizontally held on a spin coater, and a porous layer is formed in the center of the dense layer-forming coating film on the glass plate.
- the coating solution for forming a layer was dropped, and the glass plate was rotated at a rotation speed of 650 rpm. After maintaining the rotation speed for 10 seconds, the rotation of the glass plate was stopped. Thereby, the coating film for porous layer formation was formed on the coating film for dense layer formation. Subsequently, the solvent was removed from the coating film for forming a porous layer and dried.
- FIG. 1 shows the result of observation of the coating film of Example 9 with a field emission scanning electron microscope.
- Example 9 ⁇ Preparation of coating liquid for forming contact angle improving film>
- the same coating liquid for forming a contact angle film as in Example 7 was prepared.
- Example 9 a contact angle enhancement film was produced by the same method as in Example 7.
- Example 10 ⁇ Preparation of dense layer forming coating solution> 20.4 parts by mass of tetraethoxysilane (normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.), 24.2 parts by mass of isopropyl alcohol (IPA), 0.6 parts by mass of 1N nitric acid, and 14.4 parts by mass of purified water are mixed with stirring. Then, a hydrolysis reaction was performed at 40 ° C. for 8 hours to obtain a hydrolyzate having a silica solid content concentration of 10% by mass. The obtained hydrolyzed solution was diluted with isopropyl alcohol to obtain a solid content concentration of 6% by mass in terms of SiO 2 to obtain hydrolyzed solution B.
- tetraethoxysilane normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.
- IPA isopropyl alcohol
- 1N nitric acid 1N nitric acid
- purified water purified water
- the hydrolyzed solution B50.0G, isopropyl alcohol 949.2g, ZrO 2 source (ZrOCl 2 ⁇ 8H 2 50 wt% aqueous solution of O solution) 0.80 g were mixed by stirring, a dense layer forming coating solution of Example 10 Obtained.
- the mass part of the zirconium compound converted to ZrO 2 with respect to 100 parts by mass of silicon oxide converted to SiO 2 was 9.2 parts by mass.
- the GPTMS content in the matrix raw material shown in Table 2 is the mass% of the GPTMS hydrolysis-condensation product relative to the total mass of the hydrolysis-condensation product of the material used as the matrix raw material. It is. Moreover, the mass of the hydrolysis condensate of GPTMS was 3.45 parts by mass when the mass of the pore-generating agent contained in the coating liquid was 100 parts by mass.
- Example 10 ⁇ Preparation of glass plate> In Example 10, the same glass plate as in Example 1 was prepared.
- Example 10 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 11 ⁇ Preparation of dense layer forming coating solution>
- Example 11 the same dense layer forming coating solution as in Example 10 was prepared.
- Example 11 a coating liquid for forming a porous layer was prepared in the same manner as in Example 10 except that the pore-forming agent was 8.20 g and GPTMS was 0.04 g.
- the hydrolysis condensate of GPTMS in the coating solution was 3.45 parts by mass.
- Example 11 the same glass plate as in Example 1 was prepared.
- Example 11 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 12 ⁇ Preparation of dense layer forming coating solution>
- Example 12 the same dense layer forming coating solution as in Example 10 was prepared.
- Example 12 a coating solution for forming a porous layer was prepared in the same manner as in Example 10, except that the pore-forming agent was 14.35 g and GPTMS 0.12 g.
- the hydrolysis condensate of GPTMS in the coating solution was 5.92 parts by mass.
- Example 12 the same glass plate as in Example 1 was prepared.
- Example 12 a glass plate with a coating film was produced by the same method as in Example 1.
- Example 13 ⁇ Preparation of dense layer forming coating solution>
- Example 13 the same dense layer forming coating solution as in Example 10 was prepared.
- Example 13 a coating liquid for forming a porous layer was prepared in the same manner as in Example 10 except that the pore-forming agent was 8.20 g and GPTMS was 0.02 g.
- the hydrolysis condensate of GPTMS in the coating solution was 1.72 parts by mass.
- Example 13 the same glass plate as in Example 1 was prepared.
- Example 13 a glass plate with a coating film was produced by the same method as in Example 1.
- Comparative Example 1 A glass plate with a coating film was produced in the same manner as in Example 1 except that the dense layer was not formed. That is, the coating film of Comparative Example 1 is composed only of a porous layer, and is produced by directly applying the porous layer forming layer coating liquid of Example 1 onto one main surface of the glass plate. It was. The method for preparing the porous layer forming layer coating liquid and the method for producing the porous layer were the same as those in Example 1.
- Example 14 ⁇ Preparation of dense layer forming coating solution>
- Example 14 the same dense layer forming coating solution as in Example 1 was prepared.
- Example 14 the porous layer contained in the coating film of the glass plate with a coating film of Embodiment 3 was formed. That is, a porous layer containing silica fine particles and a binder of silica fine particles was formed.
- Silica fine particle dispersion (Fuso Chemical Co., Ltd., PL-7, average particle size 100 nm, solid content concentration 23% by mass) 39.1 parts by mass, ethyl cellosolve 56.4 parts by mass, 1N hydrochloric acid (hydrolysis catalyst) 1 A mass part was stirred and mixed, and further 3.5 parts by mass of tetraethoxysilane was added with stirring, followed by stirring for 8 hours while keeping the temperature at 40 ° C. to obtain a stock solution.
- the solid content concentration in this undiluted solution was 9% by mass, and the ratio of the fine particles in the solid content to the binder (as oxide) was 90:10 on a mass basis.
- the silica fine particles were solid (in other words, not hollow) fine particles.
- Example 14 the same glass plate as in Example 1 was prepared.
- a dense layer-forming coating film was formed by the same method as in Example 1, and this coating film was dried by the same method as in Example 1. Next, it apply
- Application by the spray method was performed by spraying a coating liquid for forming a porous layer from above a coating film for forming a dense layer on a horizontally held glass plate using a commercially available spray gun.
- the glass plate on which the laminate of the dense layer-forming coating film and the porous layer-forming coating film was formed was placed in an electric furnace at 350 ° C. for 60 seconds to remove the solvent of the porous-forming coating film.
- the laminated body of the coating film for dense layer formation, and the coating film for porous layer formation was baked. Firing was performed by holding the coating film in an electric furnace set at 760 ° C. for 5 minutes. Thereby, the coating film by which the dense layer and the porous layer were arrange
- Example 15 ⁇ Preparation of dense layer forming coating solution>
- Example 15 the same dense layer forming coating solution as in Example 2 was prepared.
- Example 15 ⁇ Preparation of coating liquid for forming porous layer>
- Example 15 the same dense layer forming coating solution as in Example 14 was prepared.
- Example 15 the same glass plate as in Example 1 was prepared.
- Example 15 a glass plate with a coating film was produced by the same method as in Example 14.
- Example 16 ⁇ Preparation of dense layer forming coating solution>
- Example 16 the same dense layer forming coating solution as in Example 3 was prepared.
- Example 16 ⁇ Preparation of coating liquid for forming porous layer>
- Example 16 the same coating solution for forming a dense layer as in Example 14 was prepared.
- Example 16 the same glass plate as in Example 1 was prepared.
- Example 16 a glass plate with a coating film was produced by the same method as in Example 14.
- Example 17 ⁇ Preparation of dense layer forming coating solution>
- Example 17 the same dense layer forming coating solution as in Example 4 was prepared.
- Example 17 ⁇ Preparation of coating liquid for forming porous layer>
- Example 17 the same coating solution for forming a dense layer as in Example 14 was prepared.
- Example 17 the same glass plate as in Example 1 was prepared.
- Example 17 a glass plate with a coating film was produced by the same method as in Example 14.
- Example 18 ⁇ Preparation of dense layer forming coating solution>
- Example 18 the same dense layer forming coating solution as in Example 5 was prepared.
- Example 18 ⁇ Preparation of coating liquid for forming porous layer>
- Example 18 the same dense layer-forming coating solution as in Example 14 was prepared.
- Example 18 the same glass plate as in Example 1 was prepared.
- Example 18 a glass plate with a coating film was produced by the same method as in Example 14.
- Example 19 ⁇ Preparation of dense layer forming coating solution>
- Example 19 the same dense layer-forming coating solution as in Example 6 was prepared.
- Example 19 ⁇ Preparation of coating liquid for forming porous layer>
- Example 19 the same dense layer forming coating solution as in Example 14 was prepared.
- Example 19 the same glass plate as in Example 1 was prepared.
- Example 19 a glass plate with a coating film was produced by the same method as in Example 14.
- Table 1 shows the evaluation results (average transmittance, transmittance gain, durability, and deposit removal results).
- evaluation results for the glass plates with coating films of Examples 10 to 13 having the same configuration as the glass plate with coating films of Embodiment 1 Is shown in Table 2.
- Table 3 shows the evaluation results (average transmittance, transmittance gain, and durability results) for the glass plates with coating films of Examples 14 to 19 having the same configuration as the glass plate with coating film of Embodiment 3. .
- Table 3 also shows the content (mass%) of fine particles, SiO 2 binder, and ZrO 2 in the porous layer.
- the glass plates with coating films of Examples 1 to 13 have a transmittance gain of 2.8% or more, and the transmittance change after the high-temperature and high-humidity test is small and high. Shows durability.
- the glass plate with the coating film of Comparative Example 1 in which the dense layer is not provided has a greater change in transmittance after the high-temperature and high-humidity test than the glass plates with the coating film of Examples 1 to 13, and is thus more durable. It was inferior.
- the glass plates with the coating film of Examples 7 to 9 in which the contact angle improving film is provided on the coating film showed very excellent results in both tests in the tests 1 and 2 for removing deposits. Indicated.
- the glass plates with coating films of Examples 1 to 6 and 10 to 13 in which the contact angle improving film is not provided are more than the cases of Examples 7 to 9 in the tests for the removal of deposits 1 and 2. The results were inferior.
- the glass plates with coating films of Examples 7 to 9 showed very good results as in the test for deposit removal 1.
- the glass plates with the coating films of Examples 1 to 6 were further deteriorated in the adhesion soiling property as compared with the test of the deposit removal property 1. Thus, under more severe conditions, it was confirmed that the difference in effect due to the presence / absence of the contact angle improving film becomes large.
- the glass plates with coating films of Examples 14 to 19 having different porous layer structures from the glass plates with coating films of Examples 1 to 9 satisfy the transmittance gain of 2.3% or more as shown in Table 3. Furthermore, the change in transmittance after the high-temperature and high-humidity test is small, and it has been confirmed that high durability is exhibited.
- the glass plate with a coating film of the present invention has high light transmittance and high durability, it can be used in various fields such as glass for vehicles, glass windows for show windows or glass plates for photoelectric conversion devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Nanotechnology (AREA)
- Surface Treatment Of Glass (AREA)
- Optical Elements Other Than Lenses (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Photovoltaic Devices (AREA)
- Laminated Bodies (AREA)
Abstract
Description
ガラス板と、
前記ガラス板の少なくとも一方の主面上に設けられたコーティング膜と、
を含むコーティング膜付きガラス板であって、
前記コーティング膜は、緻密層と多孔質層とを含み、
前記緻密層は、前記多孔質層と前記ガラス板との間に位置している、
コーティング膜付きガラス板を提供する。
本発明のコーティング膜付きガラス板の一実施形態について説明する。
ガラス板の一方の主面上にコーティング膜を形成するコーティング膜形成工程を含み、
前記コーティング膜形成工程が、
(A)緻密層形成用コーティング液を用いて緻密層形成用塗膜を形成し、前記緻密層形成用塗膜を乾燥させる工程と、
(B)マトリクス原料及び空孔生成剤を含む多孔質層形成用コーティング液を用いて多孔質層形成用塗膜を形成し、前記多孔質層形成用塗膜を乾燥させる工程と、
(C)乾燥させた前記緻密層形成用塗膜を焼成する工程と、
(D)乾燥させた前記多孔質層形成用塗膜を焼成する工程と、
を含む製造方法によって製造することができる。
本発明のコーティング膜付きガラス板の別の実施形態について説明する。なお、本実施形態のコーティング膜付きガラス板は、コーティング膜上に配置された接触角向上膜をさらに含むことを除き、実施形態1のコーティング膜付きガラス板と同じ構成を有する。したがって、本実施形態では、接触角向上膜についてのみ説明する。
本発明のコーティング膜付きガラス板のさらに別の実施形態について説明する。本実施形態のコーティング膜付きガラス板は、多孔質層の構成が異なる点を除き、実施形態1及び2のコーティング膜付きガラス板と同じ構成を有する。したがって、本実施形態では、特に多孔質層について詳しく説明する。
F=A/B×100 (1)
A:1辺が前記シリカ微粒子の平均粒径の10倍である正方領域に含まれている前記シリカ微粒子の個数
B:前記正方領域に前記シリカ微粒子の平均粒径と同一の直径の球を最密に充填したと仮定したときの当該球の充填数
ここで、A及びBの値は、正方領域に球の全体が完全に含まれるもののみをカウントし、部分的に含まれる球をカウントせずに求める。
ガラス板の一方の主面上にコーティング膜を形成するコーティング膜形成工程を含み、
前記コーティング膜形成工程が、
(a)緻密層形成用コーティング液を用いて緻密層形成用塗膜を形成し、前記緻密層形成用塗膜を乾燥させる工程と、
(b)バインダ原料及びシリカ微粒子を含む多孔質層形成用コーティング液を用いて多孔質層形成用塗膜を形成し、前記多孔質層形成用塗膜を乾燥させる工程と、
(c)乾燥させた前記緻密層形成用塗膜を焼成する工程と、
(d)乾燥させた前記多孔質層形成用塗膜を焼成する工程と、
を含む製造方法によって製造することができる。
分光光度計(島津製作所製 紫外可視分光光度計UV-3100)を用い、コーティング膜の形成前後におけるガラス板の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長380~1100nmにおける透過率を平均化して算出した。コーティング膜が設けられたガラス板の平均透過率の、当該コーティング膜が設けられる前のガラス板の平均透過率に対する増分を透過率ゲインとした。
コーティング膜付きガラス板の耐久性を、高温高湿試験により評価した。コーティング膜付きガラス板の試験片を、温度85℃、相対湿度85%に設定した恒温槽内に設置し、1000時間放置した。その後、試験片を恒温槽から取り出し、流水洗浄した後、乾燥させた。この高温高湿試験前後の平均透過率の変化を測定し、±0.8%以内であれば耐久性に優れていると判断した。なお、高温高湿試験前後の平均透過率は、上記の「透過特性及び透過率ゲイン」の場合と同じ分光光度計を用いたが、コーティング膜が施されていない側のガラス板の表面に対する高温高湿試験の影響を除去するため、コーティング膜が施されていない側を、ジプロピレングリコールを浸液としてカバーガラスで覆って測定した。
市販の太陽電池用合せガラス中間膜(エチレン・ビニルアルコール共重合体、EVA SKY、株式会社ブリヂストン製)を20×30mmに切断し、それをコーティング膜付きガラス板のコーティング膜上に置き、150℃に設定したオーブン中へ投入し5分間保持した。その後、コーティング膜付きガラス板をオーブンから取り出して室温まで放冷し、中間膜を剥ぎ取った。
◎:付着部と未付着部との反射色の差が、ほとんど認められない。
○:付着部と未付着部との反射色の差が認められるが、その差はわずかである。
△:付着部と未付着部との反射色の差が認められる。
×:付着部と未付着部との反射色の差が、明らかに認められる。
中間膜をコーティング膜付きガラス板のコーティング膜上に置いて、150℃に設定したオーブン中に投入して保持する時間を30分に変更した点を除いて、上記の「付着物の除去性1」と同じ方法で付着物の除去性の試験を行った。付着汚れ性の評価の判断基準も、上記の「付着物の除去性1」と同じとした。
<緻密層形成用コーティング液の調製>
テトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製)10.4質量部、イソプロピルアルコール(IPA)15.7質量部、1N硝酸0.3質量部、精製水3.6質量部を攪拌混合し、40℃にて8時間加水分解反応を行い、シリカ固形分濃度10質量%の加水分解液を得た。得られた加水分解液をイソプロピルアルコールで希釈してSiO2に換算した固形分濃度を3質量%とし、加水分解液Aを得た。
実施例1では、実施形態1及び2のコーティング膜付きガラス板のコーティング膜に含まれる多孔質層を形成した。すなわち、層の内部に含まれる閉鎖空孔とマトリクスとを含む多孔質層を形成した。多孔質層形成用コーティング膜のマトリクス原料として、メチルトリエトキシシラン(MTES、多摩化学工業株式会社製)を用いた。したがって、まずMTES加水分解液を調製した。IPA(溶媒)64.38g、精製水8.05g、1N硝酸(加水分解触媒)1.0g、MTES26.57gをガラス瓶に秤量し、40℃にて8時間加水分解反応を行い、固形分濃度10質量%の加水分解液(MTES加水分解液)を得た。次に、このMTES加水分解液3.0g、IPA(溶媒)6.25g、3-メトキシ-1-ブタノール(溶媒)0.30g、有機ポリマー微粒子分散液(空孔生成剤)(ポリメタクリル酸メチル系架橋物、株式会社日本触媒製「エポスターMX-050」、微粒子の平均粒子径0.05~0.10μm、固形分濃度10.0質量%)0.75gをガラス製容器に入れ、コーティング液を得た。コーティング液において、表1に示されている空孔生成剤の含有率とは、コーティング液に含まれるマトリクス原料の質量(マトリクス原料として用いた材料の加水分解縮合生成物の質量)を100質量部としたときの空孔生成剤の質量部のことである。
実施例1では、型板ガラスをガラス板として用いた。この型板ガラスは、通常のソーダライムシリケート組成からなり、評価長さ1cmで評価した表面凹凸の算術平均粗さRaが0.76μm、平均間隔Smが1120μm(JIS B0601-1994の規定に基づく)、厚さ3.2mmの日本板硝子株式会社製であった。この型板ガラスを100×100mmに切断し、アルカリ溶液(KOH 25wt%水溶液)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させてコーティング膜を形成するためのガラス板とした。コーティング膜を形成する前のこのガラス板の透過特性を前述のとおり評価したところ、平均透過率91.7%であった。
緻密層形成用コーティング液及び多孔質層形成用コーティング液の塗布は、スピンコート法で行なった。
準備された上記ガラス板をスピンコート装置上で水平に保持し、ガラス板の中央部に緻密層形成用コーティング液を滴下し、ガラス板を回転数1000rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、ガラス板の一方の主面上に緻密層形成用塗膜が形成された。次いで、この緻密層形成用塗膜から溶媒を除去して乾燥させた。乾燥は、緻密層形成用塗膜が一方の主面上に形成されたガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行った。
次に、乾燥した緻密層形成用塗膜が一方の主面上に形成されたガラス板をスピンコート装置上で水平に保持し、ガラス板上の緻密層形成用塗膜上の中央部に多孔質層形成用コーティング液を滴下し、ガラス板を回転数650rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、緻密層形成用塗膜上に、多孔質層形成用塗膜が形成された。次いで、この多孔質層形成用塗膜から溶媒を除去して乾燥させた。乾燥は、緻密層形成用塗膜及び多孔質層形成用塗膜の積層体が一方の主面上に形成されたガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行なった。
次に、緻密層形成用塗膜及び多孔質層形成用塗膜の積層体を焼成した。焼成は、塗膜を760℃に設定した電気炉内で5分間保持することによって行った。これにより、ガラス板上に緻密層及び多孔質層がこの順に配置されたコーティング膜が得られた。
<緻密層形成用コーティング液の調製>
実施例1で準備した加水分解液A2.0g、イソプロピルアルコール6.79g、ZrO2源(ZrOCl2・8H2O水溶液の1質量%水溶液)0.78g、Al2O3源(AlCl3・6H2Oの1質量%水溶液)0.43gを攪拌混合し、実施例2の緻密層形成用コーティング液を得た。SiO2に換算したケイ素酸化物100質量部に対する、Al2O3に換算したアルミニウム化合物の質量部は1.5質量部、ZrO2に換算したジルコニウム化合物の質量部は5質量部であった。
実施例2においては、実施例1と同じ多孔質層形成用コーティング液を調製した。
実施例2においては、実施例1と同じガラス板を準備した。
実施例2においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例1で準備した加水分解液A2.0g、イソプロピルアルコール7.29g、Al2O3源(AlCl3・6H2Oの1質量%水溶液)0.71gを攪拌混合し、実施例3の緻密層形成用コーティング液を得た。SiO2に換算したケイ素酸化物100質量部に対する、Al2O3に換算したアルミニウム化合物の質量部は2.5質量部であった。
実施例3においては、実施例1と同じ多孔質層形成用コーティング液を調製した。
実施例3においては、実施例1と同じガラス板を準備した。
実施例3においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例1で準備した加水分解液A2.0g、イソプロピルアルコール7.22g、ZrO2源(ZrOCl2・8H2O水溶液の1質量%水溶液)0.78gを攪拌混合し、実施例4の緻密層形成用コーティング液を得た。SiO2に換算したケイ素酸化物100質量部に対する、ZrO2に換算したジルコニウム化合物の質量部は5質量部であった。
実施例4においては、実施例1と同じ多孔質層形成用コーティング液を調製した。
実施例4においては、実施例1と同じガラス板を準備した。
実施例4においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例1で準備した加水分解液A2.0g、イソプロピルアルコール6.91g、TiO2源(チタニウム(ジイソプロポキシド)ビス(2,4ペンタジオネート)75%イソプロピルアルコール溶液の1質量%IPA希釈液)1.09gを攪拌混合し、実施例5の緻密層形成用コーティング液を得た。SiO2に換算したケイ素酸化物100質量部に対する、TiO2に換算したチタン化合物の質量部は4質量部であった。
実施例5においては、実施例1と同じ多孔質層形成用コーティング液を調製した。
実施例5においては、実施例1と同じガラス板を準備した。
実施例5においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例1で準備した加水分解液A2.0g、イソプロピルアルコール8.00gを攪拌混合し、実施例6の緻密層形成用コーティング液を得た。
実施例6においては、実施例1と同じ多孔質層形成用コーティング液を調製した。
実施例6においては、実施例1と同じガラス板を準備した。
実施例6においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
実施例7では、実施例1で作製したコーティング膜付きガラス板のコーティング膜上に、以下の接触角向上膜形成用コーティング液を用いて作製された接触角向上膜がさらに設けられたコーティング膜付きガラス板を作製した。
実施例1で多孔質層形成用コーティング液を調製する際に用いたMTES加水分解液と同じMTES加水分解液(固形分濃度10質量%)を調製し、このMTES加水分解液をIPAで固形分濃度が3質量%となるように希釈した。得られた固形分濃度3質量%のMTES加水分解液0.67g、IPA8.83g、オキシ塩化ジルコニウム八水和物(ZrOCl2・8H2O)の1質量%水溶液0.26g、塩化アルミニウム六水和物(AlCl3・6H2O)の1質量%水溶液0.24gを混合し、接触角向上膜形成用コーティング液を得た。
実施例1のコーティング膜付きガラス板と同じコーティング膜付きガラス板を準備した。準備されたコーティング膜付きガラス板をスピンコート装置上で水平に保持し、コーティング膜上の中央部に接触角向上膜形成用コーティング液を滴下し、ガラス板を回転数1000rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、コーティング膜上に接触角向上膜形成用塗膜が形成された。次いで、この接触角向上膜形成用塗膜から溶媒を除去して乾燥させた。乾燥は、接触角向上膜形成用塗膜が形成されたコーティング膜付きガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行った。
実施例8では、実施例1で作製したコーティング膜付きガラス板のコーティング膜上に、以下の接触角向上膜形成用コーティング液を用いて作製された接触角向上膜がさらに設けられたコーティング膜付きガラス板を作製した。
実施例7で用いた固形分濃度3質量%のMTES加水分解液をそのまま接触角向上膜形成用コーティング液とした。
実施例8においては、実施例7と同じ方法により、接触角向上膜を作製した。
<緻密層形成用コーティング液の調製>
実施例9においては、実施例1と同じ緻密層形成用コーティング液を調製した。
実施例9においては、実施例1と同じ多孔質層形成用コーティング液を調製した。
実施例9においては、実施例1と同じガラス板を準備した。
スプレー法により、緻密層形成用コーティング液を、準備された上記ガラス板の一方の主面上に塗布した。スプレー法による塗布は、市販のスプレーガンを用い、水平に保持されたガラス板の一方の主面の上方から緻密層形成用コーティング液を噴霧して行った。これにより、ガラス板の一方の主面上に緻密層形成用塗膜が形成された。次いで、この緻密層形成用塗膜から溶媒を除去して乾燥させた。乾燥は、緻密層形成用塗膜が一方の主面上に形成されたガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行った。
次に、乾燥した緻密層形成用塗膜が一方の主面上に形成されたガラス板をスピンコート装置上で水平に保持し、ガラス板上の緻密層形成用塗膜上の中央部に多孔質層形成用コーティング液を滴下し、ガラス板を回転数650rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、緻密層形成用塗膜上に、多孔質層形成用塗膜が形成された。次いで、この多孔質層形成用塗膜から溶媒を除去して乾燥させた。乾燥は、緻密層形成用塗膜及び多孔質層形成用塗膜の積層体が一方の主面上に形成されたガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行なった。
次に、緻密層形成用塗膜及び多孔質層形成用塗膜の積層体を焼成した。焼成は、塗膜を760℃に設定した電気炉内で5分間保持することによって行った。これにより、ガラス板上に緻密層及び多孔質層がこの順に配置されたコーティング膜が得られた。得られたコーディング膜を電界放射型走査型電子顕微鏡(S-4500、株式会社日立製作所製)によって観察した。図1に、実施例9のコーティング膜を電界放射型走査型電子顕微鏡で観察した結果を示す。
実施例9においては、実施例7と同じ接触角向上膜形成用コーティング液を調製した。
実施例9においては、実施例7と同じ方法により、接触角向上膜を作製した。
<緻密層形成用コーティング液の調製>
テトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製)20.4質量部、イソプロピルアルコール(IPA)24.2質量部、1N硝酸0.6質量部、精製水14.4質量部を攪拌混合し、40℃にて8時間加水分解反応を行い、シリカ固形分濃度10質量%の加水分解液を得た。得られた加水分解液をイソプロピルアルコールで希釈してSiO2に換算した固形分濃度を6質量%とし、加水分解液Bを得た。
この加水分解液B50.0g、イソプロピルアルコール949.2g、ZrO2源(ZrOCl2・8H2O水溶液の50質量%水溶液)0.80gを攪拌混合し、実施例10の緻密層形成用コーティング液を得た。SiO2に換算したケイ素酸化物100質量部に対する、ZrO2に換算したジルコニウム化合物の質量部は9.2質量部であった。
多孔質層形成用コーティング膜のマトリクス原料として、メチルトリエトキシシラン(MTES、多摩化学工業株式会社製)及び3-グリシドキシプロピルトリメトキシシラン(GPTMS)(信越化学工業製)を用いた。つまり、有機ポリマー微粒子分散液(空孔生成剤)(実施例1と同じ)10.25g、GPTMS0.05g、実施例1と同じMTES加水分解液41.0g、3-メトキシ-1-ブタノール(溶媒)3.00gを秤量し、IPA(溶媒)を加えて全量を100gとした。この液をよく攪拌し、コーティング液を得た。コーティング液において、表2に示されているマトリクス原料におけるGPTMSの含有率とは、マトリクス原料として用いた材料の加水分解縮合生成物の質量全体に対する、GPTMSの加水分解縮合生成物の質量%のことである。
また、コーティング液に含まれる空孔生成剤の質量を100質量部としたときの、GPTMSの加水分解縮合物の質量は3.45質量部であった。
実施例10においては、実施例1と同じガラス板を準備した。
実施例10においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例11においては、実施例10と同じ緻密層形成用コーティング液を調製した。
実施例11においては、空孔生成剤8.20g、GPTMS0.04gとしたことを除き、実施例10と同様にして多孔質層形成用コーティング液を調製した。コーティング液におけるGPTMSの加水分解縮合物は3.45質量部であった。
実施例11においては、実施例1と同じガラス板を準備した。
実施例11においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例12においては、実施例10と同じ緻密層形成用コーティング液を調製した。
実施例12においては、空孔生成剤14.35g、GPTMS0.12gとしたことを除き、実施例10と同様にして多孔質層形成用コーティング液を調製した。コーティング液におけるGPTMSの加水分解縮合物は5.92質量部であった。
実施例12においては、実施例1と同じガラス板を準備した。
実施例12においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例13においては、実施例10と同じ緻密層形成用コーティング液を調製した。
実施例13では、空孔生成剤8.20g、GPTMS0.02gとしたことを除き、実施例10と同様にして多孔質層形成用コーティング液を調製した。コーティング液におけるGPTMSの加水分解縮合物は1.72質量部であった。
実施例13においては、実施例1と同じガラス板を準備した。
実施例13においては、実施例1と同じ方法により、コーティング膜付きガラス板を作製した。
緻密層を形成しない点を除き、実施例1と同じ方法で、コーティング膜付きガラス板を作製した。すなわち、比較例1のコーティング膜は、多孔質層のみから構成されたものであり、実施例1の多孔質層形成層コーティング液をガラス板の一方の主面上に直接塗布することによって作製された。なお、多孔質層形成層コーティング液の調製方法、及び多孔質層の作製方法は、実施例1と同じであった。
<緻密層形成用コーティング液の調製>
実施例14においては、実施例1と同じ緻密層形成用コーティング液を調製した。
実施例14では、実施形態3のコーティング膜付きガラス板のコーティング膜に含まれる多孔質層を形成した。すなわち、シリカ微粒子とシリカ微粒子のバインダとを含む多孔質層を形成した。シリカ微粒子分散液(扶桑化学工業(株)、PL-7、平均粒径100nm、固形分濃度23質量%)39.1質量部、エチルセロソルブ56.4質量部、1N塩酸(加水分解触媒)1質量部を攪拌混合し、さらに攪拌しながらテトラエトキシシラン3.5質量部を添加し、引き続き40℃に保温しながら8時間撹拌して原液を得た。この原液における固形分濃度は9質量%であり、固形分中の微粒子とバインダ(酸化物換算)との比率は、質量基準で90:10であった。なお、上記シリカ微粒子は、中実の(言い換えれば中空ではない)微粒子であった。次に、得られた原液11質量部、3-メトキシ-1-ブタノール10.0質量部、2-プロパノール78.8質量部、シリコン系界面活性剤(東レ・ダウコーニング社製、L7001)0.02質量部、オキシ塩化ジルコニウム八水和物(特級、関東化学株式会社)の50質量%水溶液0.34質量部を攪拌混合し、多孔質層形成用コーティング液を得た。
実施例14においては、実施例1と同じガラス板を準備した。
まず、実施例1と同じ方法により緻密層形成用塗膜を形成し、この塗膜を実施例1と同じ方法で乾燥させた。
次に、スプレー法により、多孔質層形成用コーティング液を乾燥させた緻密層形成用塗膜上に塗布した。スプレー法による塗布は、市販のスプレーガンを用い、水平に保持されたガラス板上の緻密層形成用塗膜の上方から多孔質層形成用コーティング液を噴霧して行った。次いで、緻密層形成用塗膜及び多孔質層形成用塗膜の積層体が形成されたガラス板を350℃の電気炉に60秒間入れて、多孔質形成用塗膜の溶媒を除去した。
次に、緻密層形成用塗膜及び多孔質層形成用塗膜の積層体を焼成した。焼成は、塗膜を760℃に設定した電気炉内で5分間保持することによって行った。これにより、ガラス板上に緻密層及び多孔質層がこの順に配置されたコーティング膜が得られた。
<緻密層形成用コーティング液の調製>
実施例15においては、実施例2と同じ緻密層形成用コーティング液を調製した。
実施例15においては、実施例14と同じ緻密層形成用コーティング液を調製した。
実施例15においては、実施例1と同じガラス板を準備した。
実施例15においては、実施例14と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例16においては、実施例3と同じ緻密層形成用コーティング液を調製した。
実施例16においては、実施例14と同じ緻密層形成用コーティング液を調製した。
実施例16においては、実施例1と同じガラス板を準備した。
実施例16においては、実施例14と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例17においては、実施例4と同じ緻密層形成用コーティング液を調製した。
実施例17においては、実施例14と同じ緻密層形成用コーティング液を調製した。
実施例17においては、実施例1と同じガラス板を準備した。
実施例17においては、実施例14と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例18においては、実施例5と同じ緻密層形成用コーティング液を調製した。
実施例18においては、実施例14と同じ緻密層形成用コーティング液を調製した。
実施例18においては、実施例1と同じガラス板を準備した。
実施例18においては、実施例14と同じ方法により、コーティング膜付きガラス板を作製した。
<緻密層形成用コーティング液の調製>
実施例19においては、実施例6と同じ緻密層形成用コーティング液を調製した。
実施例19においては、実施例14と同じ緻密層形成用コーティング液を調製した。
実施例19においては、実施例1と同じガラス板を準備した。
実施例19においては、実施例14と同じ方法により、コーティング膜付きガラス板を作製した。
Claims (38)
- ガラス板と、
前記ガラス板の少なくとも一方の主面上に設けられたコーティング膜と、
を含むコーティング膜付きガラス板であって、
前記コーティング膜は、緻密層と多孔質層とを含み、
前記緻密層は、前記多孔質層と前記ガラス板との間に位置している、
コーティング膜付きガラス板。 - 前記コーティング膜は、前記緻密層と前記多孔質層とからなる、
請求項1に記載のコーティング膜付きガラス板。 - 前記緻密層は、シリカを主成分として含む、
請求項1又は2に記載のコーティング膜付きガラス板。 - 前記緻密層は、アルミニウム、ジルコニウム及びチタンの酸化物からなる群から選ばれた少なくともいずれか1種の酸化物をさらに含み、
前記緻密層において、
アルミニウム酸化物の含有率は、Al2O3に換算して、前記緻密層に含まれるシリカに対して10質量%以下であり、
ジルコニウム酸化物の含有率は、ZrO2に換算して、前記緻密層に含まれるシリカに対して10質量%以下であり、
チタン酸化物の含有率は、TiO2に換算して、前記緻密層に含まれるシリカに対して10質量%以下である、
請求項3に記載のコーティング膜付きガラス板。 - 前記緻密層は、10~40nmの厚さを有する、
請求項1~4のいずれか1項に記載のコーティング膜付きガラス板。 - 前記緻密層は、10~20nmの厚さを有する、
請求項5に記載のコーティング膜付きガラス板。 - 前記多孔質層は、前記多孔質層の内部に含まれる孤立した閉鎖空孔と、マトリクスとを含んでおり、
前記多孔質層は、前記多孔質層の表面に開口している開放空孔を実質的に有しておらず、
前記コーティング膜側の面から前記コーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、前記コーティング膜が表面に設けられていない前記ガラス板に前記波長の光を入射したときの平均透過率を差し引いた透過率ゲインが2.5%以上である、
請求項1~6のいずれか1項に記載のコーティング膜付きガラス板。 - 前記コーティング膜上に配置された接触角向上膜をさらに含む、
請求項1~7のいずれか1項に記載のコーティング膜付きガラス板。 - 前記閉鎖空孔が、前記多孔質層の厚さ方向に沿った断面で観察された場合に、略楕円形の孤立した空孔である第1閉鎖空孔と、略楕円形の空孔が2つ以上連結することによって形成されている第2閉鎖空孔とを含んでいる、
請求項7に記載のコーティング膜付きガラス板。 - 前記第1閉鎖空孔と、前記第2閉鎖空孔を形成している前記略楕円形の各空孔とが、長軸長さ30~80nm、及び、短軸長さ20~30nmを有しており、且つ
前記長軸が前記コーティング膜の膜面に沿うように配列されている、
請求項9に記載のコーティング膜付きガラス板。 - 前記多孔質層が、100~250nmの厚さを有し、且つ10~40%の空孔率を有する、
請求項7~10のいずれか1項に記載のコーティング膜付きガラス板。 - 前記多孔質層の表面において、評価長さ300nmで、前記開放空孔の開口部分を除いた部分の表面が3nm以下の算術平均粗さRaを有する、
請求項7~11のいずれか1項に記載のコーティング膜付きガラス板。 - 前記多孔質層の前記マトリクスは、シリカを主成分として含む、
請求項7~12のいずれか1項に記載のコーティング膜付きガラス板。 - 前記シリカは、加水分解性シリコン化合物の加水分解縮合生成物に由来する、
請求項13に記載のコーティング膜付きガラス板。 - 前記加水分解性シリコン化合物は、シリコンアルコキシドである、
請求項14に記載のコーティング膜付きガラス板。 - 前記シリコンアルコキシドは、1又は2の有機基がシリコン原子に直接結合しているシリコンアルコキシドを含む、
請求項15に記載のコーティング膜付きガラス板。 - 前記有機基は、炭素数1~5の直鎖アルキル基である、
請求項16に記載のコーティング膜付きガラス板。 - 前記閉鎖空孔及び前記開放空孔が、前記多孔質層を形成するためのコーティング液に空孔生成剤として含まれ、且つ所定温度以上の熱処理によって消失する微粒子に由来する、請求項7~17のいずれか1項に記載のコーティング膜付きガラス板。
- 前記微粒子は、有機ポリマー微粒子である、
請求項18に記載のコーティング膜付きガラス板。 - 前記有機ポリマー微粒子の平均粒径が10~200nmである、
請求項19に記載のコーティング膜付きガラス板。 - 前記コーティング液が、加水分解性シリコン化合物をさらに含んでおり、
前記コーティング液において、前記加水分解性シリコン化合物の加水分解縮合生成物100質量部に対し、前記微粒子が12~38質量部である、
請求項18~20のいずれか1項に記載のコーティング膜付きガラス板。 - 前記多孔質層は、平均粒径が50~200nmであるシリカ微粒子と前記シリカ微粒子のバインダとを含み、
前記シリカ微粒子と前記バインダのとの比(シリカ微粒子:バインダ)が、質量基準で、65:35~93:7である、
請求項1~6のいずれか1項に記載のコーティング膜付きガラス板。 - 前記ガラス板の前記一方の主面は、表面凹凸を有しており、
前記ガラス板の表面凹凸が0.4mm以上2.5mm以下の平均間隔Sm、及び0.5μm~5μmの算術平均粗さRaを有し、
前記コーティング膜は、前記ガラス板の前記表面凹凸上に形成されており、
前記多孔質層において、前記表面凹凸の頂部では前記シリカ微粒子が1層に配置され、前記表面凹凸の底部では前記シリカ微粒子が少なくとも3層に相当する厚さに積層して配置されており、
前記コーティング膜側の面から前記コーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、前記コーティング膜が表面に設けられていない前記ガラス板に前記波長の光を入射したときの平均透過率を差し引いた透過率ゲインが1.5%以上である、
請求項22に記載のコーティング膜付きガラス板。 - 前記ガラス板の前記一方の主面は、表面凹凸を有しており、
前記ガラス板の表面凹凸が0.3mm以上2.5mm以下の平均間隔Sm、及び0.3μm~5μmの算術平均粗さRaを有し、
前記コーティング膜は、前記ガラス板の前記表面凹凸上に形成されており、
前記多孔質層において、前記表面凹凸の頂部では、前記シリカ微粒子は、1層に、且つ、以下の式で定義される充填率Fが35~65%となるように、均一に配置されており、
前記コーティング膜側の面から前記コーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、前記コーティング膜が表面に設けられていない前記ガラス板に前記波長の光を入射したときの平均透過率を差し引いた透過率ゲインが2.2%以上である、
請求項22に記載のコーティング膜付きガラス板。
F=A/B×100
A:1辺が前記シリカ微粒子の平均粒径の10倍である正方領域に含まれている前記シリカ微粒子の個数
B:前記正方領域に前記シリカ微粒子の平均粒径と同一の直径の球を最密に充填したと仮定したときの当該球の充填数 - 前記多孔質層において、前記表面凹凸の底部では、前記シリカ微粒子の平均粒径の1.5~2.1倍に相当する高さに前記シリカ微粒子が積層されている、
請求項24に記載のコーティング膜付きガラス板。 - 前記ガラス板の前記表面凹凸が、0.05~1.0度の平均傾斜角θを有する、
請求項22~25のいずれか1項に記載のコーティング膜付きガラス板。 - 前記多孔質層の前記バインダは、シリカを主成分として含む、
請求項22~26のいずれか1項に記載のコーティング膜付きガラス板。 - 前記多孔質層の前記バインダは、チタン及びジルコニウムの酸化物からなる群から選ばれた少なくともいずれか1種の酸化物をさらに含み、
前記多孔質層の前記バインダにおいて、
ジルコニウム酸化物の含有率は、ZrO2に換算して、前記バインダに含まれるシリカに対して5質量%以下であり、
チタン酸化物の含有率は、TiO2に換算して、前記バインダに含まれるシリカに対して5質量%以下である、
請求項27に記載のコーティング膜付きガラス板。 - 請求項7~21のいずれか1項に記載のコーティング膜付きガラス板を製造する方法であって、
ガラス板の一方の主面上にコーティング膜を形成するコーティング膜形成工程を含み、
前記コーティング膜形成工程は、
(A)緻密層形成用コーティング液を用いて緻密層形成用塗膜を形成し、前記緻密層形成用塗膜を乾燥させる工程と、
(B)マトリクス原料及び空孔生成剤を含む多孔質層形成用コーティング液を用いて多孔質層形成用塗膜を形成し、前記多孔質層形成用塗膜を乾燥させる工程と、
(C)乾燥させた前記緻密層形成用塗膜を焼成する工程と、
(D)乾燥させた前記多孔質層形成用塗膜を焼成する工程と、
を含む、コーティング膜付きガラス板の製造方法。 - 前記多孔質層形成用コーティング液が、マトリクス原料として加水分解性シリコン化合物を含み、前記加水分解性シリコン化合物を加水分解縮合させることにより前記多孔質層の前記マトリクスを形成する、
請求項29に記載のコーティング膜付きガラス板の製造方法。 - 前記加水分解性シリコン化合物は、シリコンアルコキシドである、
請求項30に記載のコーティング膜付きガラス板の製造方法。 - 前記シリコンアルコキシドは、1又は2の有機基がシリコン原子に直接結合しているシリコンアルコキシドを含む、
請求項31に記載のコーティング膜付きガラス板の製造方法。 - 前記有機基は、炭素数1~5の直鎖アルキル基である、
請求項32に記載のコーティング膜付きガラス板の製造方法。 - 前記空孔生成剤が、所定温度以上の熱処理によって消失する微粒子である、
請求項29~33のいずれか1項に記載のコーティング膜付きガラス板の製造方法。 - 前記微粒子は、有機ポリマー微粒子である、
請求項34に記載のコーティング膜付きガラス板の製造方法。 - 前記有機ポリマー微粒子の平均粒径が10~200nmである、
請求項35に記載のコーティング膜付きガラス板の製造方法。 - 前記多孔質層形成用コーティング液が、前記マトリクス原料として加水分解性シリコン化合物を含み、前記空孔形成剤として所定温度以上の熱処理によって消失する微粒子を含んでおり、
前記多孔質層形成用コーティング液において、前記加水分解性シリコン化合物の加水分解縮合生成物100質量部に対し、前記微粒子が12~38質量部である、
請求項29に記載のコーティング膜付きガラス板の製造方法。 - 請求項22~28のいずれか1項に記載のコーティング膜付きガラス板を製造する方法であって、
ガラス板の一方の主面上にコーティング膜を形成するコーティング膜形成工程を含み、
前記コーティング膜形成工程は、
(a)緻密層形成用コーティング液を用いて緻密層形成用塗膜を形成し、前記緻密層形成用塗膜を乾燥させる工程と、
(b)バインダ原料及びシリカ微粒子を含む多孔質層形成用コーティング液を用いて多孔質層形成用塗膜を形成し、前記多孔質層形成用塗膜を乾燥させる工程と、
(c)乾燥させた前記緻密層形成用塗膜を焼成する工程と、
(d)乾燥させた前記多孔質層形成用塗膜を焼成する工程と、
を含む、コーティング膜付きガラス板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018005853A BR112018005853A2 (pt) | 2015-10-01 | 2016-09-07 | folha de vidro revestida e meio de fornecimento |
JP2017542700A JP6826985B2 (ja) | 2015-10-01 | 2016-09-07 | コーティング膜付きガラス板及びその製造方法 |
US15/765,408 US10908320B2 (en) | 2015-10-01 | 2016-09-07 | Coated glass sheet and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-196052 | 2015-10-01 | ||
JP2015196052 | 2015-10-01 | ||
JP2015-233102 | 2015-11-30 | ||
JP2015233102 | 2015-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056405A1 true WO2017056405A1 (ja) | 2017-04-06 |
Family
ID=58422881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004080 WO2017056405A1 (ja) | 2015-10-01 | 2016-09-07 | コーティング膜付きガラス板及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10908320B2 (ja) |
JP (2) | JP6826985B2 (ja) |
BR (1) | BR112018005853A2 (ja) |
CL (2) | CL2018000814A1 (ja) |
WO (1) | WO2017056405A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019209592A (ja) * | 2018-06-05 | 2019-12-12 | リソテック ジャパン株式会社 | 複合材料 |
CN110914890A (zh) * | 2017-07-20 | 2020-03-24 | 日本电气硝子株式会社 | 罩部件和信息设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10800700B2 (en) * | 2015-03-06 | 2020-10-13 | Nippon Sheet Glass Company, Limited | Coated glass sheet and method for producing same |
US12023896B2 (en) * | 2019-04-16 | 2024-07-02 | Corning Incorporated | Filled-pore decorative layer for ion exchange and automotive glass |
FR3099475B1 (fr) * | 2019-08-01 | 2021-10-29 | Univ Aix Marseille | Revêtement multicouche pour vitrage, procédé de réalisation d’un tel revêtement et vitrage pourvu dudit revêtement |
CN112062477B (zh) * | 2019-11-22 | 2022-09-16 | 焕澄(上海)新材料科技发展有限公司 | 一种可透视的高反射镀膜玻璃及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006215542A (ja) * | 2005-01-07 | 2006-08-17 | Pentax Corp | 反射防止膜及びこれを有する撮像系光学素子 |
WO2008001675A1 (fr) * | 2006-06-27 | 2008-01-03 | Nikon Corporation | mince film MULTICOUCHE OPTIQUE, élément optique et procédé de fabrication de mince film multicouche optique |
JP2009237551A (ja) * | 2008-03-03 | 2009-10-15 | Keio Gijuku | 反射防止膜及びその形成方法 |
JP2010038948A (ja) * | 2008-07-31 | 2010-02-18 | Keio Gijuku | 反射防止膜及びこれを有する光学部品、交換レンズ及び撮像装置 |
JP2014214063A (ja) * | 2013-04-26 | 2014-11-17 | 旭硝子株式会社 | シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法 |
JP2015075707A (ja) * | 2013-10-10 | 2015-04-20 | 旭硝子株式会社 | 透明基材と防汚性反射防止膜とを備える物品およびその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5605609A (en) * | 1988-03-03 | 1997-02-25 | Asahi Glass Company Ltd. | Method for forming low refractive index film comprising silicon dioxide |
US20060154044A1 (en) * | 2005-01-07 | 2006-07-13 | Pentax Corporation | Anti-reflection coating and optical element having such anti-reflection coating for image sensors |
JP5313587B2 (ja) * | 2008-07-31 | 2013-10-09 | 学校法人慶應義塾 | 反射防止膜及びこれを有する光学部品、交換レンズ及び撮像装置 |
JP2010132485A (ja) * | 2008-12-03 | 2010-06-17 | Keio Gijuku | メソポーラスシリカ多孔質膜の形成方法、その多孔質膜、反射防止膜及び光学素子 |
EP2511738B1 (en) * | 2009-12-11 | 2017-12-27 | Nippon Sheet Glass Company, Limited | Cover glass for photoelectric converter and process for producing same |
BR112012032375A2 (pt) * | 2010-06-18 | 2016-11-08 | Dsm Ip Assets Bv | revestimento de óxido inorgânico |
FR2976577B1 (fr) * | 2011-06-17 | 2014-03-28 | Saint Gobain | Procede de fabrication d'un vitrage comprenant une couche poreuse |
JP5942140B2 (ja) * | 2011-12-08 | 2016-06-29 | パナソニックIpマネジメント株式会社 | 被覆部材 |
JP6039962B2 (ja) * | 2012-08-01 | 2016-12-07 | 日本板硝子株式会社 | 光電変換装置用カバーガラス |
US10800700B2 (en) * | 2015-03-06 | 2020-10-13 | Nippon Sheet Glass Company, Limited | Coated glass sheet and method for producing same |
-
2016
- 2016-09-07 BR BR112018005853A patent/BR112018005853A2/pt not_active Application Discontinuation
- 2016-09-07 WO PCT/JP2016/004080 patent/WO2017056405A1/ja active Application Filing
- 2016-09-07 JP JP2017542700A patent/JP6826985B2/ja active Active
- 2016-09-07 US US15/765,408 patent/US10908320B2/en active Active
-
2018
- 2018-03-28 CL CL2018000814A patent/CL2018000814A1/es unknown
-
2020
- 2020-07-31 CL CL2020002015A patent/CL2020002015A1/es unknown
-
2021
- 2021-01-18 JP JP2021006001A patent/JP7242720B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006215542A (ja) * | 2005-01-07 | 2006-08-17 | Pentax Corp | 反射防止膜及びこれを有する撮像系光学素子 |
WO2008001675A1 (fr) * | 2006-06-27 | 2008-01-03 | Nikon Corporation | mince film MULTICOUCHE OPTIQUE, élément optique et procédé de fabrication de mince film multicouche optique |
JP2009237551A (ja) * | 2008-03-03 | 2009-10-15 | Keio Gijuku | 反射防止膜及びその形成方法 |
JP2010038948A (ja) * | 2008-07-31 | 2010-02-18 | Keio Gijuku | 反射防止膜及びこれを有する光学部品、交換レンズ及び撮像装置 |
JP2014214063A (ja) * | 2013-04-26 | 2014-11-17 | 旭硝子株式会社 | シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法 |
JP2015075707A (ja) * | 2013-10-10 | 2015-04-20 | 旭硝子株式会社 | 透明基材と防汚性反射防止膜とを備える物品およびその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110914890A (zh) * | 2017-07-20 | 2020-03-24 | 日本电气硝子株式会社 | 罩部件和信息设备 |
JP2019209592A (ja) * | 2018-06-05 | 2019-12-12 | リソテック ジャパン株式会社 | 複合材料 |
JP7214374B2 (ja) | 2018-06-05 | 2023-01-30 | リソテック ジャパン株式会社 | 複合材料 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017056405A1 (ja) | 2018-07-19 |
JP7242720B2 (ja) | 2023-03-20 |
US10908320B2 (en) | 2021-02-02 |
JP2021075455A (ja) | 2021-05-20 |
US20180292577A1 (en) | 2018-10-11 |
BR112018005853A2 (pt) | 2018-10-16 |
CL2018000814A1 (es) | 2018-08-17 |
JP6826985B2 (ja) | 2021-02-10 |
CL2020002015A1 (es) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7242720B2 (ja) | コーティング膜付きガラス板及びその製造方法 | |
JP5718825B2 (ja) | 光電変換装置用カバーガラスおよびその製造方法 | |
JP6039962B2 (ja) | 光電変換装置用カバーガラス | |
US11442200B2 (en) | Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate | |
US10478803B2 (en) | Glass article provided with photocatalyst film, process for producing glass article, and coating liquid | |
US10600923B2 (en) | Low-reflection coating, glass sheet, glass substrate, and photoelectric conversion device | |
US20200399170A1 (en) | Coated glass sheet and method for producing same | |
US10329430B2 (en) | Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate | |
JP5989808B2 (ja) | 低反射コーティング付きガラス板の製造方法とそれに用いるコーティング液 | |
WO2016002223A1 (ja) | 低反射コーティング付きガラス板 | |
JP6487933B2 (ja) | 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、光電変換装置、及び低反射コーティングを製造する方法 | |
WO2018198936A1 (ja) | 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法 | |
WO2018198935A1 (ja) | 低反射コーティング付きガラス物品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850586 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017542700 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15765408 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018005853 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112018005853 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180323 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16850586 Country of ref document: EP Kind code of ref document: A1 |