[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017043072A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2017043072A1
WO2017043072A1 PCT/JP2016/004067 JP2016004067W WO2017043072A1 WO 2017043072 A1 WO2017043072 A1 WO 2017043072A1 JP 2016004067 W JP2016004067 W JP 2016004067W WO 2017043072 A1 WO2017043072 A1 WO 2017043072A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
food
refrigerator
rapid cooling
cooling
Prior art date
Application number
PCT/JP2016/004067
Other languages
French (fr)
Japanese (ja)
Inventor
桂 南部
森 貴代志
健一 柿田
上迫 豊志
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16843940.4A priority Critical patent/EP3348940A4/en
Priority to CN201680051323.0A priority patent/CN108027193A/en
Publication of WO2017043072A1 publication Critical patent/WO2017043072A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing

Definitions

  • the present invention relates to a refrigerator that freezes food in a short time.
  • partial storage involves freezing foods such as meat and fish at -3 ° C, which can extend the shelf life of food compared to refrigerated (about 4 ° C) and chilled (about 1 ° C). .
  • partial storage does not solidify the entire food as in freezing, and therefore has the advantage that the partially stored food can be separated with a small force without thawing the solidified food during cooking.
  • Patent Document 1 As an operation method for rapidly cooling food, there is a method of switching to a normal operation for maintaining the storage temperature after performing a rapid cooling operation with a large cooling power (Patent Document 1).
  • the operation is usually performed by changing the flow rate of introducing cool air cooled by the evaporator into the storage room or changing the frequency of introduction of cool air. Therefore, when rapidly cooling, cold air lower than the final reached temperature of the food is introduced into the storage room at a relatively large flow rate.
  • the present invention has been made in view of the above-described conventional problems, and provides a refrigerator capable of shortening the time until fine freezing of the food and deeply storing the food without deep freezing the food. provide.
  • a refrigerator includes a storage room, a blower that blows cool air from a cooler to the storage room, and a control unit that controls the blower.
  • the control unit includes a first quenching operation that introduces cold air below the freezing point of the food into the storage room, a second quenching operation that introduces cooler air at a higher temperature than the first quenching operation after the first quenching operation, and after the second quenching operation.
  • the blower is controlled so as to perform a normal cooling operation in which cool air having a higher temperature than that of the second rapid cooling operation is introduced, and the blower is controlled so that food is stored at 0 ° C. or lower.
  • the temperature difference between the food and the cold air can be increased to increase the cooling rate.
  • freezing can be accelerated
  • the normal partial preservation cooling operation the ultimate temperature of the food after completion of the fine freezing and the hardness of the food can be made equal to those of the normal fine frozen food.
  • Such a configuration can shorten the time until fine freezing without solidifying the food more than normal fine frozen food. Further, with such a configuration, it is possible to approach the final temperature in multiple stages, so that deep freeze can be reliably prevented regardless of the amount and conditions of food. Thereby, the food can be slightly frozen in a short time without deep freezing the food.
  • the second quenching operation time may be set longer than the first quenching operation time.
  • the refrigerator according to an example of the embodiment of the present invention may be set such that at least the amount of cool air during the first quench operation and the second quench operation is larger than the amount of cool air during normal operation. .
  • stimulation with respect to a foodstuff can be enlarged more. As a result, fine freezing in a shorter time can be realized.
  • the blower unit includes a blower that blows cool air from the cooler to the storage chamber, a duct, and a damper provided in the duct.
  • the control unit may be configured to control operations of the blower and the damper.
  • a forced non-cooling time may be set between the first quenching operation and the second quenching operation.
  • the refrigerator according to an example of the embodiment of the present invention may be provided with a high thermal conductivity member on the bottom surface in the storage chamber.
  • a high thermal conductivity member on the bottom surface in the storage chamber.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view taken along line 2-2 of FIG.
  • FIG. 3 is an enlarged view of a main part of the refrigerator compartment in the first embodiment of the present invention.
  • FIG. 4 is a control block diagram of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a control flowchart of rapid cooling operation from detection of the input load of the refrigerator in the first embodiment of the present invention.
  • FIG. 6 is a sequence diagram for detecting the input load of the refrigerator in the first embodiment of the present invention.
  • FIG. 7 is a sequence diagram of the rapid cooling operation of the refrigerator in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the micro freezing start time of the refrigerator and the POV value after 3 days in Embodiment 1 of the present invention.
  • FIG. 9A is a diagram showing changes in the temperature in the storage room of the refrigerator and the surface temperature of the food in Embodiment 1 of the present invention.
  • FIG. 9B is a diagram showing a cooling state of the storage room of the refrigerator in the first embodiment of the present invention.
  • FIG. 10A is a diagram showing the relationship between the temperature gradient ⁇ T of the refrigerator and the compressor rotation speed of the rapid cooling 1 in Embodiment 2 of the present invention.
  • FIG. 10B is a diagram showing a relationship between the temperature gradient ⁇ T of the refrigerator and the operation time of the rapid cooling 2 in Embodiment 2 of the present invention.
  • FIG. 11A is a diagram showing changes in the internal temperature of the refrigerator storage room and the surface temperature of the food in Embodiment 3 of the present invention.
  • FIG. 11B is a diagram showing a cooling state of the storage room of the refrigerator in the third embodiment of the present invention.
  • FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention
  • FIG. 2 is a sectional view taken along the line 2-2 of FIG. 1
  • FIG. 3 is an enlarged view of a main part of a refrigerator compartment according to Embodiment 1 of the present invention.
  • FIG. FIG. 4 is a control block diagram of the refrigerator in the embodiment of the present invention
  • FIG. 5 is a control flowchart of the rapid cooling operation from detection of the input load of the refrigerator in the embodiment of the present invention.
  • the refrigerator 101 is divided into an upper stage, a middle stage, and a lower stage, and includes a plurality of storage rooms.
  • the upper stage includes a refrigerator compartment 102 having a double door (cold compartment door 102a) on the front, and a first freezer compartment 103 having a drawer door (first freezer door) below the compartment.
  • an ice making chamber 105 having a drawer door (ice making chamber door 105a) arranged in parallel therewith.
  • the middle stage includes a second freezer compartment 104 having a drawer door (second freezer compartment door 104a) disposed below the freezer compartment 103 and the ice making chamber 105.
  • the lower stage includes a vegetable compartment 106 having a drawer door (vegetable compartment door 106a) arranged at the bottom.
  • the refrigerator compartment 102, the ice making room 105 and the first freezing room 103 arranged side by side are partitioned by a heat insulating partition wall 111 in the vertical direction.
  • the side-by-side ice making chamber 105 and the first freezing chamber 103 and the second freezing chamber 104 are also partitioned by a heat insulating partition wall 111 in the vertical direction.
  • the second freezer compartment 104 and the vegetable compartment 106 are similarly partitioned in the vertical direction by the heat insulating partition wall 111.
  • the refrigerator 101 is configured such that a heat insulating wall 110 is filled between an outer box 108 and an inner box 109.
  • a variable temperature chamber 107 is defined as a storage room independent of the refrigerator compartment 102 in the lower part of the refrigerator compartment 102 provided in the upper part.
  • the changing greenhouse 107 is configured as a switching room.
  • the variable temperature chamber 107 is located between the first temperature zone (chilled) of the refrigeration temperature zone near 0 ° C. and the first temperature zone and the freezing temperature zone of about ⁇ 6 ° C. or less. It can be set to a second temperature zone (fine freezing) of about ⁇ 3 ° C. that is the temperature zone.
  • a cooling chamber 114 is formed behind the second freezing chamber 104 and has a cooler 115 therein.
  • the cooler 115 constitutes a refrigeration cycle for cooling the refrigerator 101 together with the compressor 112 installed in the upper machine room 113.
  • the cooling chamber 114 is provided with a blower fan 116 that forcibly circulates the cool air heat-exchanged by the cooler 115.
  • a damper device 117a that distributes the cold air flowing into the refrigerating chamber 102 and a damper device 117b that distributes the cold air flowing into the variable temperature chamber 107 are arranged.
  • Each storage room can be used with a separate temperature zone.
  • the refrigerator compartment 102 is set to a temperature range of about 2 to 3 ° C.
  • the vegetable compartment 106 is set to a temperature range of about 2 to 5 ° C. for use.
  • the first freezer compartment 103 and the second freezer compartment 104 can be used with the internal temperature set in a temperature range of about ⁇ 18 to ⁇ 20 ° C.
  • save of a foodstuff is selected in each store room, and higher freshness and long-term preservation
  • the temperature change chamber 107 has a top cover 122 made of synthetic resin that can be used as a shelf 118 positioned at the bottom of the refrigerator compartment 102, and a front and rear direction below the top cover 122. It is composed of a synthetic resin storage case 123 that can be pulled out and an opening / closing door 124 that can be opened and closed at the front opening of the upper surface cover 122 of the variable temperature chamber 107.
  • the open / close door 124 is configured to be in close contact with the front wall 123b of the storage case 123 when closed, so that the inside of the variable temperature chamber 107 becomes a substantially sealed space.
  • the open / close door 124 is made of a highly transparent synthetic resin so that food stored in the interior can be visually recognized.
  • a door opening / closing detection unit 127 is provided on the back wall surface of the variable temperature chamber 107 so that the opening / closing door 124 is fitted to the rear wall 123a of the storage case 123 when the opening / closing door 124 is closed.
  • an aluminum bottom plate 128 is fitted on the bottom surface of the storage case 123 to improve the cooling performance and improve the visibility by diffusing the illumination from the lighting device 121. Is not particularly essential.
  • a rear side duct 125 for changing the temperature of the greenhouse which guides the cold air distributed by the damper device 117 to the temperature changing room 107, is formed behind the rear wall surface of the temperature changing room 107.
  • a variable temperature ceiling top duct 126 that is downstream of the variable temperature greenhouse rear duct 125 is disposed on the top surface of the variable temperature greenhouse 107.
  • the variable temperature ceiling top duct 126 includes a heat insulating duct member 126a formed of a heat insulating foam heat insulating member, and a synthetic resin duct cover 126b serving as a decorative plate covering the outer periphery of the heat insulating duct member 126a.
  • variable temperature ceiling top duct 126 forms a duct together with the upper surface cover 122, and a cold air outlet 129 for discharging the cold air into the variable temperature chamber 107 is formed at a position that becomes the upper surface portion of the storage case 123.
  • a lighting device 121 for irradiating the room is installed in the duct cover 126a on the opening door side in front of the depth center position of the variable temperature ceiling duct 126.
  • the refrigerator compartment 102 is provided with a refrigerator compartment door switch 130 for detecting the open / closed state of the refrigerator compartment door 102a, and the temperature zone and the operation mode of the variable temperature chamber 107 can be set at an arbitrary location inside or outside the refrigerator 101.
  • a setting unit 131 for switching is installed. Further, a signal S 1 from the refrigerator door switch 130, a signal S 2 from the setting unit 131, and a signal S 3 from the door opening / closing detection unit 127 are input to the control microcomputer 132.
  • control microcomputer 132 outputs a signal S4 to the compressor 112, a signal S5 to the blower fan 116, a signal S6 to the damper device 117a, and a signal S7 to the damper device 117b, thereby performing a predetermined cooling operation. Done.
  • the opening / closing door 124 is closed and the refrigeration room door switch 130 is refrigerated room door in a state in which the setting unit 131 sets the temperature range of the variable temperature room 107 to the second temperature range (partial).
  • the closing of 102a is detected (STEP 1).
  • the food supply presence / absence determination unit 134 determines the presence or absence of load application. Specifically, when the compressor 112 has been running for 5 minutes or more after starting and is operated at a predetermined number of rotations determined by the outside air temperature (STEP 2), it is determined whether or not the inside of the variable temperature chamber 107 is to be rapidly cooled. Rapid cooling start determination is started (STEP 3). If the time after starting the compressor 112 does not reach 5 minutes in STEP2, the process proceeds to STEP3 when 5 minutes have passed.
  • STEP 4 When it is determined in STEP 3 that there is no load, normal fine freezing control is performed (STEP 4). On the other hand, when it is determined in STEP 3 that the load is applied, a predetermined rapid cooling operation is started. Although details of the rapid cooling operation will be described later, the outline is the rapid cooling 1 (first rapid cooling operation) of STEP 5 and then the rapid cooling 2 (second rapid cooling operation) of STEP 6 is performed. Further, after completion of the predetermined rapid cooling operation, the deep freeze protection operation of STEP 7 is performed.
  • a rapid cooling release determination (STEP 8) is performed between the rapid cooling 1 of STEP 5 and the rapid cooling 2 of STEP 6 to determine again whether or not a load is applied.
  • the rapid cooling release determination (STEP 8) is the same as the rapid cooling start determination in STEP 2 to STEP 3, which will be described later.
  • the rapid cooling release determination is determined based on the temperature gradient (degree of temperature change) of the variable temperature chamber temperature sensor 133 when the damper device 117b for the variable temperature chamber (partial room) 107 is forcibly closed for a predetermined time. It may be configured.
  • the damper device 117a for the refrigerator compartment is forcibly opened, and the damper device 117b for the variable temperature chamber (partial chamber) 107 is forcibly closed. Further, the compressor 112 is operated for 3 minutes with the discharge cold air flow rate being a predetermined amount while maintaining the predetermined rotation speed. After 3 minutes, the damper device 117a for the refrigerator compartment is forcibly closed, and the damper device 117b for the variable temperature chamber (partial chamber) 107 is forcibly opened. Temperatures at 4 minutes and 5 minutes after the start of the input load detection sequence are detected by the variable temperature sensor 133, and a temperature gradient ⁇ T is calculated. When the temperature gradient ⁇ T value is larger than a predetermined threshold value determined by the partial chamber temperature after 4 minutes, it is determined that there is an input load, and the rapid cooling operation is started.
  • the cooling of the temperature changing room 107 is stopped for 3 minutes from the start of detection, so that the temperature change state of the temperature changing room 107 can be stabilized and the temperature gradient ⁇ T can be stabilized.
  • the rotation speed of the compressor 112 the flow rate of the discharged cold air, and the load amount already stored in the variable temperature chamber 107 are not constant, and the internal temperature is constantly increasing or decreasing. It is in. Even when these conditions immediately before detection are different, it is required to be able to determine with a certain threshold value.
  • the temperature gradient ⁇ T value can mainly reflect the input heat load by continuing the operation under the above-mentioned predetermined conditions for 3 minutes prior to the start of cooling of the temperature changing chamber 107. As a result, the correct determination can be made stably regardless of the driving situation immediately before detection.
  • the absolute value of the temperature gradient ⁇ T can be made larger than immediately when the cooling is started. This expands the temperature gradient ⁇ T value and the S / N ratio of the measurement variation of the variable temperature sensor 133. As a result, the accuracy of determination based on the temperature gradient ⁇ T value can be increased.
  • the temperature of the refrigerator compartment 102 is lower than that during normal operation. Therefore, when the temperature of the refrigerator compartment 102 is adjusted again, the damper device 117a is closed longer than usual. As will be described later, in order to speed up the surface micro freezing of food, it is important that the damper device 117a is closed and only the damper device 117b is opened after the rapid cooling is started.
  • the above-described preliminary cooling of the refrigerator compartment 102 has an effect of extending the continuous opening time of the damper device 117b, and promotes surface microfrozen.
  • the damper device 117a is closed and the damper device 117b is opened, so that the temperature changing room 107 is cooled at the maximum speed.
  • the temperature gradient may be affected by the timing of opening and closing, etc., so the determination is made using the temperature gradient ⁇ T value between 4 minutes and 5 minutes after the temperature in the variable temperature chamber 107 is stabilized as an index. Done.
  • the threshold value of the temperature gradient ⁇ T is changed and set according to the following various conditions.
  • the absolute value of the threshold value of the temperature gradient ⁇ T is set to be relatively large.
  • the absolute value of the threshold value of the temperature gradient ⁇ T is set relatively small.
  • the cooling capacity for the latter half 2 minutes tends to be relatively low, so the absolute value of the threshold value of the temperature gradient ⁇ T is set to be relatively small.
  • the rotational speed of the compressor 112 is relatively high, the cooling capacity is relatively high, and thus the absolute value of the threshold value of the temperature gradient ⁇ T is set to be relatively large.
  • the threshold value of the temperature gradient ⁇ T may be set so that the probability of the first misjudgment and the second misjudgment are equal.
  • the threshold value of the temperature gradient ⁇ T is larger than the case of the above equal probability so that the first erroneous determination is minimized. Is set. On the contrary, when it is disadvantageous that the object to be cooled already cooled in the variable temperature chamber 107 is excessively cooled, the above-mentioned equal probability is set so that the second misjudgment is minimized. It is also possible to set the threshold value of the temperature gradient ⁇ T smaller than the case.
  • variable temperature chamber 107 In order to improve the probability of correct determination, it is effective to make the amount of heat intrusion from the wall surface into the temperature change chamber 107 constant.
  • the configuration in which the variable temperature chamber 107 is provided in the refrigerating room 102 can keep the temperature change of the refrigerating room 102 within a predetermined range regardless of the change in the outside air temperature. It is effective.
  • the following rapid cooling or normal partial operation is performed regardless of the detection sequence of FIG. Cooling may be initiated.
  • the room temperature of the partial room (conversion room 107) can be immediately lowered without spending time in the detection operation, and deterioration of freshness due to an increase in food temperature can be prevented.
  • the rapid cooling operation includes rapid cooling 1 (first rapid cooling operation) having a relatively large cooling capacity and rapid cooling 2 (second rapid cooling operation) in which the cooling capacity is larger than the normal partial operation and smaller than the rapid cooling 1.
  • rapid cooling 1 operation the rotational speed of the compressor 112 is higher than that in the normal operation, and the flow rate (air volume) for introducing cold air into the variable temperature chamber 107 is set to be large.
  • the damper device 117b to the variable temperature chamber 107 is forcibly set to an open state, and the damper device 117a to the refrigerator compartment 102 is set to be more difficult to open.
  • the compressor 112 is set so as not to be stopped.
  • the temperature of the temperature changing greenhouse 107 is adjusted so that the food does not cool above the predetermined temperature.
  • the rapid cooling 2 is operated under some of the operating conditions during the rapid cooling 1 operation. Or you may drive
  • the rapid cooling 1 is completed in 30 minutes, and the rapid cooling 2 having a lower rotational speed is started.
  • the rotational speed of the compressor 112 is set so as to prevent the temperature of the cooler 115 from falling below a predetermined level even when continuously operating.
  • the damper device 117a may be configured to be forcibly opened.
  • the quick cooling 2 having a cooling capacity lower than that of the quick cooling 1, the food which has already been slightly frozen in the variable temperature chamber 107 is deep-frozen to be hardened, frosted in the variable temperature chamber 107, There is also an effect of avoiding that the food placed adjacent to 107 is slightly frozen unexpectedly.
  • the micro-freezing layer grows to such an extent that the micro-freezing layer itself exhibits a latent heat storage effect and exhibits a heat insulation effect so that the heat inside the food does not transfer to the outermost layer. It is necessary to make it.
  • the fine frozen layer is grown to a thickness of about 1 mm. In this way, a finely frozen layer can be reliably formed on the food surface layer.
  • the time until the micro frozen layer is generated is not affected easily by the supercooling phenomenon or the like and is relatively stable.
  • Foods such as meat and fish contain phospholipids in the cell membrane and neutral fat in the subcutaneous tissue, but their constituent unsaturated fatty chains are auto-oxidized by contact with oxygen to produce hydroxyperoxide. Arise. Ingestion of hydroxyperoxide is harmful because DNA is damaged by the radical reaction in the body and the physiologically active substance is oxidized.
  • the ice of the extracellular fluid is substantially smaller than the water because the diffusion coefficient of oxygen is two orders of magnitude or less.
  • the inside of food can be shielded from oxygen. Since oxygen is essential for the above-mentioned auto-oxidation, the production of hydroxyperoxide can be prevented by blocking the cells and the inside of food from oxygen. In this way, by facilitating surface freezing, the oxidation of foods containing fats and oils is suppressed, and values such as oxidation index AV (Acid Value), POV (Peroxide Value), and TBA (Thiobarbitur Acid) Rise is suppressed.
  • AV Acid Value
  • POV Peroxide Value
  • TBA Thiobarbitur Acid
  • FIG. 8 is a diagram showing the relationship between the surface micro-freezing time when the food is micro-frozen and the POV value after 3 days.
  • the POV value on the vertical axis is shown relative to the POV value on day 0 as 1.0. It is found in the two fish foods that the oxidation index value increases during the storage days of 3 days when the surface micro freezing time exceeds a predetermined time. In order to suppress the increase in the POV value during the storage period of 3 days and to substantially prevent oxidation, it is effective that the food surface is slightly frozen within 8 hours and the contact between oxygen and fats and oils is blocked. To be found. Similarly, it is found that if the food is microfrozen within 8 hours, the K value does not rise in 3 days.
  • the cooling capacity during the rapid cooling operation is set so that the food surface is slightly frozen within 8 hours.
  • the rapid cooling 1 may be set so that during the rapid cooling 1, the rapid cooling release determination for determining again the continuation of the rapid cooling operation is performed.
  • the cancellation determination is basically the same as the detection sequence shown in FIG. 6, but the threshold value of the temperature gradient ⁇ T is separately determined.
  • the rapid cooling cancellation determination may be set to be performed a plurality of times. Even if the second misjudgment is made by the detection sequence, the rapid cooling operation is stopped halfway due to the rapid cooling cancellation determination, so that unnecessary rapid cooling operation is stopped and the energy consumption is not increased more than necessary. Can be.
  • a protection time is provided for continuing the normal partial operation without starting the rapid cooling operation for a predetermined time. If there is a food that has been slightly frozen in the variable temperature chamber 107 before the heat load is applied, the temperature of the food temporarily decreases due to the rapid cooling operation, and the food may become harder than the slight freezing. By providing the protection time, during the protection time, the food temperature approaches substantially the same temperature as during normal partial operation, and the food hardness also returns. If the protection time is not provided, when the heat load is continuously applied, the existing microfrozen food approaches freezing from microfrozen, and the merit of microfrozen is reduced. Can be prevented.
  • the longer the protection time is set the easier the temperature of the existing microfrozen food will return to the microfrozen temperature.
  • the length of protection time taking into account the temperature rise during the protection time and the temperature rise during regular defrost operation, the temperature of the food is within the range of the freezing temperature during the standard storage period of food. Is set to fit. Or during the preservation
  • FIG. 7 shows an example in which the rapid cooling operation (rapid cooling 1 and rapid cooling 2) time is set to 2.5 hours and the protection time is set to 3 hours.
  • one quench cycle is 5.5 hours, which is approximately equal to the general breakfast, lunch and dinner preparation time cycle. Therefore, even if the partial room temperature rises at a certain meal preparation time and the rapid cooling operation is started, the rapid cooling can be performed similarly at the next meal preparation time, and the freshness of the existing microfrozen food is reliably maintained. be able to.
  • the refrigerator 101 controls the storage room (transformer 107), the air blowing unit (blower fan 116) that blows cool air from the cooler 115 to the storage room, and the air blowing unit. And a control unit (control microcomputer 132).
  • control microcomputer 132 By controlling the air volume (flow rate) of the cool air blown by the control unit, the surface of the food stored in the storage room is slightly frozen, and the food is stored at the slightly freezing temperature.
  • the contact between the food and oxygen is blocked by the micro-frozen layer to prevent oxidation, and the food can be easily separated and separated, and the flavor of the food is not deteriorated.
  • the food can be stored fresh.
  • a ventilation part is a duct (refrigeration room duct 120) which ventilates the cold air from the cooler 115 to a storage room, a damper (damper device 117a) provided in the duct, A temperature sensor that detects the temperature in the storage chamber (temperature change temperature sensor 133).
  • the control unit forcibly opens the damper device for a predetermined time, rapidly micro-freezes the surface of the food stored in the storage chamber, and the temperature sensor detects the temperature so that the food is stored at the micro-freezing temperature.
  • the damper device is controlled to open and close based on the above. With this configuration, rapid cooling starts immediately after the food is added, and the contact between oxygen and the food can be prevented in a shorter time, preventing oxidation of the food. Can be saved.
  • the refrigerator 101 of the present embodiment is configured such that the damper device is forcibly opened for a predetermined time and the compressor is continuously operated. With such a configuration, contact with oxygen can be blocked in a shorter time to prevent oxidation, and stored food can be stored fresh.
  • the refrigerator 101 of the present embodiment includes a storage room, a blower unit 116 that blows cool air from the cooler 115 to the storage room, a temperature sensor 133 that detects the temperature in the storage room, and food input into the storage room And a food input presence / absence determination unit 134 for determining presence / absence.
  • the food supply presence / absence determination unit 134 is configured to forcibly stop the air blowing unit 116 for a predetermined time and determine whether or not food is input into the storage room based on the temperature gradient (degree of temperature change) of the temperature sensor 133. . With such a configuration, it is possible to determine whether or not food is put into the storage chamber with a simple configuration.
  • the food input presence / absence determining unit 134 forcibly stops the air blowing unit 116 for a predetermined time, and then forcibly operates the air blowing unit 116 for a predetermined time so that the temperature of the temperature sensor 133 during the forced operation of the air blowing unit 116 is reached. Based on the inclination, it is configured to determine whether or not food is put into the storage chamber. With such a configuration, it is possible to reliably determine whether or not food is put into the storage chamber with a simple configuration.
  • the food input presence / absence determination unit 134 may be configured to be executed a plurality of times and determine whether or not food is input into the storage chamber. With such a configuration, it is possible to more reliably determine whether or not food is put into the storage chamber with a simple configuration.
  • the refrigerator 101 of this Embodiment may be provided with the storage room opening / closing detection part 127 which detects opening / closing of the storage room (transformer 107).
  • the control unit 132 since the control unit 132 is executed starting from the opening / closing detection of the storage chamber opening / closing detection unit 127, it is possible to more reliably prevent the food from being oxidized and to store the stored food freshly. Can do.
  • the storage room may be configured to be built in a part of another storage room (refrigerated room 102) and temperature-controlled independently of the other storage room.
  • the finely frozen layer once generated can be stably maintained, and the antioxidant effect can be maintained.
  • both the optimal cooling rate and the stimulus for releasing supercooling are utilized to control the temperature in the storage room by the controller.
  • FIG. 9A is a diagram showing a change in the internal temperature of the refrigerator storage chamber and the surface temperature of the food in Embodiment 1 of the present invention
  • FIG. 9B is the refrigerator storage chamber in Embodiment 1 of the present invention. It is a figure which shows the cooling state.
  • the rapid cooling 1 aims at rapid cooling until the surface temperature of the food is near or below the freezing point.
  • the rotational speed of the compressor 112 is increased from R2 to R3, for example, or the heat transfer coefficient is increased.
  • Various conditions are set so that the rotational speed of the blower fan 116 is increased from VF2 to VF6, for example, and the air volume is increased.
  • R2, R3, VF2, and VF6 mean arbitrary rotational speeds, and in this embodiment, as shown in FIGS. 7 and 10A, they have a magnitude relationship of R2 ⁇ R3 and VF2 ⁇ VF6. .
  • the purpose is to release the supercooling rather than the rapid cooling 1.
  • the set temperature is set to be gradually higher than the rapid cooling 1 so that the final reached temperature of the whole food is from the solidification temperature to the standard fine freezing temperature.
  • the internal temperature fluctuates up and down across the set temperature by opening and closing the damper device 117a. If the food is unfrozen at this point, this temperature fluctuation will be a stimulus and the supercooling release will be accelerated. By continuing normal control operation, the food temperature approaches the standard micro freezing temperature.
  • the food that has been microfrozen in the refrigerator 101 does not deep freeze at any point in time. For this reason, it is possible to maintain good handling properties such as easy cutting of food stored during cooking.
  • FIG. 10A is a diagram showing the relationship between the temperature gradient ⁇ T of the refrigerator in Embodiment 2 of the present invention and the compressor rotation speed of the rapid cooling 1
  • FIG. 10B is the temperature gradient of the refrigerator in Embodiment 2 of the present invention. It is a figure which shows the relationship between (DELTA) T and the driving
  • DELTA the driving
  • the magnitude of the temperature gradient ⁇ T value is substantially proportional to the input heat load.
  • operation control for increasing the cooling amount in proportion to the input heat load amount is performed.
  • FIG. 10A when the absolute value of the temperature gradient ⁇ T is larger than ⁇ T0, rapid cooling is performed, and the rotation speed is increased from R2 to R3.
  • the absolute value is larger than the temperature gradient ⁇ T1, the rotational speed is further increased to R4.
  • R2, R3, and R4 represent arbitrary rotational speeds, and in the present embodiment, as shown in FIG. 10A, there is a magnitude relationship of R2 ⁇ R3 ⁇ R4.
  • the time until the surface layer micro freezing is reliably shortened by lowering the temperature of the cooler 115 and increasing the cooling capacity.
  • the time of the rapid cooling 1 is extended, adverse effects such as frosting in the variable temperature greenhouse 107 and freezing of food in the adjacent storage room are produced, so it is desirable that the time is not extended.
  • the time of the rapid cooling 2 is set to t1, but at the temperature gradient ⁇ T1 or more, it is proportional to the value of the temperature gradient ⁇ T. Time is extended. However, even if a thermal load having a temperature gradient ⁇ T2 or more is applied, the rapid cooling 2 time is not set to be extended to t2 or more.
  • the upper limit time t2 of the rapid cooling 2 is appropriately set so as not to adversely affect frost formation and food freezing.
  • the refrigerator 101 according to the present embodiment is configured such that the rapid cooling operation condition is adjusted in accordance with the input heat load, so that it is possible to reliably shorten the time until the surface layer micro freezing.
  • adverse effects due to excessive cooling and unnecessary increase in operating costs can be prevented.
  • FIG. 11A is a diagram showing changes in the internal temperature of the refrigerator storage chamber and the surface temperature of the food in Embodiment 3 of the present invention
  • FIG. 11B is the refrigerator storage chamber in Embodiment 3 of the present invention. It is a figure which shows the cooling state.
  • description of the same part as Embodiment 1 is abbreviate
  • this embodiment is provided with a forced non-cooling time between the rapid cooling 1 and the rapid cooling 2, and the water surface temperature is raised and lowered to promote the release of the supercooling of water. It is configured as follows. Specifically, the operation of the compressor 112 is stopped for about 10 minutes, or the damper device 117a is set to be forcibly closed, so that the cooling of the storage room (conversion room 107) is stopped. When the surface temperature of the food is below the freezing point at the end of the rapid cooling 1, the temperature rise during the stop is a stimulus and the surface layer is intended to be slightly frozen. With such a configuration, it is possible to prevent oxidative degradation by promoting fine freezing of the food while preventing the temperature from becoming deep frozen.
  • the present invention provides a refrigerator capable of slightly freezing food in a short time without deep freezing the food. Therefore, the present invention can be applied not only to household use but also to commercial refrigerators, and can be widely used for showcases, prefabricated refrigerators, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

This refrigerator is provided with a storage chamber (107), a blower unit (116) for blowing cool air from a cooling device (115) to the storage chamber (107), and a control unit for controlling the blower unit (116). Due to the blowing of cool air being controlled by the control unit, cool air at a relatively low temperature equal to or less than the freezing point of a food product is guided into the storage chamber (107), and then cool air at a higher temperature is guided in, whereby surface moisture of the food product preserved in the storage chamber (107) is frozen and the entire food product is finally preserved at near-freezing temperature.

Description

冷蔵庫refrigerator
 本発明は、食品を短時間で微凍結させる冷蔵庫に関する。 The present invention relates to a refrigerator that freezes food in a short time.
 一般に、パーシャル保存は、-3℃で肉および魚などの食品を微凍結するものであり、食品の保存期間を冷蔵(約4℃)およびチルド(約1℃)に比べて延長することができる。また、パーシャル保存は、冷凍のように食品全体が固化しないため、調理時に固化した食品を解凍させることなく、パーシャル保存された食品を小さな力で切り分けることができるという長所がある。 In general, partial storage involves freezing foods such as meat and fish at -3 ° C, which can extend the shelf life of food compared to refrigerated (about 4 ° C) and chilled (about 1 ° C). . In addition, partial storage does not solidify the entire food as in freezing, and therefore has the advantage that the partially stored food can be separated with a small force without thawing the solidified food during cooking.
 また、食品を家庭用冷蔵庫のパーシャル室に入れて微凍結させる際に、食品を短時間で微凍結させると、食品の酸化および酵素による分解を抑制できるので、より鮮度の高い保存ができる。 In addition, when food is put into a partial room of a household refrigerator and fine-frozen, if the food is fine-frozen in a short time, the food can be prevented from being oxidized and decomposed by enzymes, so that it can be preserved with a higher freshness.
 食品を急速冷却する運転方法として、冷却力の大きい急冷運転をおこなった後に、保存温度に維持するための通常運転に切り替える方法がある(特許文献1)。運転の強弱は、通常、蒸発器で冷却された冷気を収納室に導入する流量を変える、または、冷気の導入の頻度を変えることにより行われる。したがって、急冷する際には、食品の最終到達温度よりも低い冷気を比較的大きな流量で収納室に導入することになる。 As an operation method for rapidly cooling food, there is a method of switching to a normal operation for maintaining the storage temperature after performing a rapid cooling operation with a large cooling power (Patent Document 1). The operation is usually performed by changing the flow rate of introducing cool air cooled by the evaporator into the storage room or changing the frequency of introduction of cool air. Therefore, when rapidly cooling, cold air lower than the final reached temperature of the food is introduced into the storage room at a relatively large flow rate.
 しかしながら、上記のような急速冷却方法をパーシャル室に適用する場合、「急冷運転」から「通常運転」に切り替えられた後に、食品の温度が目標保存温度よりも低い温度になって凍結固化(ディープフリーズ)する可能性がある。また、保存された食品を小さな力で切断できるという長所を損ねないためには、急冷運転時の冷却能力を上げすぎないことが重要である。家庭用冷蔵庫で種々様々な大きさ、初期温度および包装状態の食品が投入される場合に、急冷およびディープフリーズ防止という微妙なバランスを取ることは非常に困難である。 However, when the rapid cooling method as described above is applied to a partial chamber, after switching from “rapid cooling operation” to “normal operation”, the temperature of the food becomes lower than the target storage temperature and freeze-solidifies (deep There is a possibility of freezing). Also, in order not to impair the advantage that stored food can be cut with a small force, it is important not to increase the cooling capacity during the rapid cooling operation. When a variety of sizes, initial temperatures, and packaged foods are introduced into a household refrigerator, it is very difficult to achieve a delicate balance between rapid cooling and prevention of deep freeze.
特許第4121197号公報Japanese Patent No. 4121197
 本発明は、上記のような従来の課題に鑑みてなされたものであり、食品をディープフリーズさせることなく、食品の微凍結までの時間を短縮し、食品を微凍結保存することができる冷蔵庫を提供する。 The present invention has been made in view of the above-described conventional problems, and provides a refrigerator capable of shortening the time until fine freezing of the food and deeply storing the food without deep freezing the food. provide.
 具体的には、本発明の実施の形態の一例による冷蔵庫は、貯蔵室と、冷却器からの冷気を貯蔵室に送風する送風部と、送風部を制御する制御部とを備える。制御部は、食品の凝固点以下の冷気を貯蔵室に導入する第一急冷運転と、第一急冷運転後に第一急冷運転より温度の高い冷気を導入する第二急冷運転と、第二急冷運転後に第二急冷運転より温度の高い冷気を導入する通常冷却運転とが行われるよう送風部を制御するとともに、食品が0℃以下で保存されるよう送風部を制御するよう構成されている。 Specifically, a refrigerator according to an example of an embodiment of the present invention includes a storage room, a blower that blows cool air from a cooler to the storage room, and a control unit that controls the blower. The control unit includes a first quenching operation that introduces cold air below the freezing point of the food into the storage room, a second quenching operation that introduces cooler air at a higher temperature than the first quenching operation after the first quenching operation, and after the second quenching operation. The blower is controlled so as to perform a normal cooling operation in which cool air having a higher temperature than that of the second rapid cooling operation is introduced, and the blower is controlled so that food is stored at 0 ° C. or lower.
 このような構成により、第一急冷運転では、比較的低温の冷風を導入することにより、食品と冷風との温度差を大きくして冷却速度を高められる。また、第二急冷運転で、より高温の冷風が導入されることにより、過冷却状態の食品中の水分に温度変化刺激を与えることで過冷却状態の解除を促しつつ凍結を促進することができる。さらに、通常のパーシャル保存の冷却運転により、微凍結完了後の食品の到達温度および食品の固さは、通常の微凍結食品と同等にすることができる。 With such a configuration, in the first rapid cooling operation, by introducing a relatively low temperature cold air, the temperature difference between the food and the cold air can be increased to increase the cooling rate. Moreover, freezing can be accelerated | stimulated, encouraging cancellation | release of a supercooled state by giving a temperature change stimulus to the water | moisture content in the supercooled foodstuff by introduce | transducing a higher temperature cold wind by 2nd rapid cooling operation. . Furthermore, by the normal partial preservation cooling operation, the ultimate temperature of the food after completion of the fine freezing and the hardness of the food can be made equal to those of the normal fine frozen food.
 このような構成により、通常の微凍結食品以上に食品を固化させることなく、微凍結までの時間を短縮することができる。また、このような構成により、多段階で、最終到達温度に近づけることができるため、食品の量および条件によらず、確実にディープフリーズを防ぐことができる。これにより、食品をディープフリーズさせることなく、短時間で食品を微凍結させることができる。 Such a configuration can shorten the time until fine freezing without solidifying the food more than normal fine frozen food. Further, with such a configuration, it is possible to approach the final temperature in multiple stages, so that deep freeze can be reliably prevented regardless of the amount and conditions of food. Thereby, the food can be slightly frozen in a short time without deep freezing the food.
 また、本発明の実施の形態の一例による冷蔵庫は、第二急冷運転時間は、第一急冷運転時間より長く設定されていてもよい。このような構成により、過冷却解除後の食品の温度を比較的短時間で最終到達温度に近づけることができるため、短時間での微凍結完了を確実に行うことができる。 In the refrigerator according to the example of the embodiment of the present invention, the second quenching operation time may be set longer than the first quenching operation time. With such a configuration, the temperature of the food after cancellation of supercooling can be brought close to the final temperature in a relatively short time, so that the completion of fine freezing in a short time can be reliably performed.
 また、本発明の実施の形態の一例による冷蔵庫は、少なくとも第一急冷運転時および第二急冷運転時のいずれかの冷気風量は、通常運転時の冷気風量より大きくなるよう設定されていてもよい。このような構成により、食品の冷却および微凍結の進行を促進することができる。また、食品に対する温度変化刺激をより大きくすることができる。その結果、より短時間での微凍結を実現できる。 Further, the refrigerator according to an example of the embodiment of the present invention may be set such that at least the amount of cool air during the first quench operation and the second quench operation is larger than the amount of cool air during normal operation. . With such a configuration, it is possible to promote the progress of cooling and fine freezing of food. Moreover, the temperature change irritation | stimulation with respect to a foodstuff can be enlarged more. As a result, fine freezing in a shorter time can be realized.
 また、本発明の実施の形態の一例による冷蔵庫は、送風部が、冷却器からの冷気を貯蔵室に送風する送風機と、ダクトと、ダクト内に設けられたダンパとを備える。制御部は、送風機およびダンパの動作を制御するよう構成されていてもよい。このような構成により、冷却能力を即座に変更することができるので、食品に対して急激な温度変化刺激を与えることができて、過冷却状態の解除をより確実に行える。その結果、より確実に短時間での微凍結を実現できる。 Further, in the refrigerator according to an example of the embodiment of the present invention, the blower unit includes a blower that blows cool air from the cooler to the storage chamber, a duct, and a damper provided in the duct. The control unit may be configured to control operations of the blower and the damper. With such a configuration, since the cooling capacity can be changed immediately, a sudden temperature change stimulus can be given to the food, and the supercooled state can be released more reliably. As a result, fine freezing in a short time can be realized more reliably.
 また、本発明の実施の形態の一例による冷蔵庫は、第一急冷運転と第二急冷運転との間に強制非冷却時間が設定されていてもよい。このような構成により、食品に対して大きな温度変化刺激を与えることができて、過冷却状態の解除をより確実に行える。その結果、より確実に短時間での微凍結を実現できる。 In the refrigerator according to the example of the embodiment of the present invention, a forced non-cooling time may be set between the first quenching operation and the second quenching operation. With such a configuration, a large temperature change stimulus can be given to the food, and the supercooled state can be released more reliably. As a result, fine freezing in a short time can be realized more reliably.
 また、本発明の実施の形態の一例による冷蔵庫は、貯蔵室内の底面に高熱伝導性部材が設けられていてもよい。このような構成により、食品の冷気に暴露する面からの冷却に加えて、高熱伝導性部材からの熱伝導による底面からの冷却を加えることができるため、より急速な冷却ができる。また、底面からの温度変化刺激が加わることにより、食品に対してより大きな温度刺激を与えることができ、過冷却状態の解除をより確実に行え、より短時間により確実に微凍結を実現できる。 Further, the refrigerator according to an example of the embodiment of the present invention may be provided with a high thermal conductivity member on the bottom surface in the storage chamber. With such a configuration, in addition to cooling from the surface exposed to the cold air of the food, cooling from the bottom surface due to heat conduction from the high thermal conductivity member can be added, so that more rapid cooling can be achieved. In addition, by applying a temperature change stimulus from the bottom surface, it is possible to give a greater temperature stimulus to the food, more reliably release the supercooled state, and realize a fine freeze in a shorter time.
図1は、本発明の実施の形態1における冷蔵庫の正面図である。FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention. 図2は、図1の2-2断面図である。2 is a cross-sectional view taken along line 2-2 of FIG. 図3は、本発明の実施の形態1における冷蔵室の要部拡大図である。FIG. 3 is an enlarged view of a main part of the refrigerator compartment in the first embodiment of the present invention. 図4は、本発明の実施の形態1における冷蔵庫の制御ブロック図である。FIG. 4 is a control block diagram of the refrigerator in the first embodiment of the present invention. 図5は、本発明の実施の形態1における冷蔵庫の投入負荷検知から急冷運転の制御フローチャートである。FIG. 5 is a control flowchart of rapid cooling operation from detection of the input load of the refrigerator in the first embodiment of the present invention. 図6は、本発明の実施の形態1における冷蔵庫の投入負荷検知のシーケンス図である。FIG. 6 is a sequence diagram for detecting the input load of the refrigerator in the first embodiment of the present invention. 図7は、本発明の実施の形態1における冷蔵庫の急冷運転のシーケンス図である。FIG. 7 is a sequence diagram of the rapid cooling operation of the refrigerator in the first embodiment of the present invention. 図8は、本発明の実施の形態1における冷蔵庫の微凍結開始時間と3日後のPOV値との関係を示す図である。FIG. 8 is a diagram showing the relationship between the micro freezing start time of the refrigerator and the POV value after 3 days in Embodiment 1 of the present invention. 図9Aは、本発明の実施の形態1における冷蔵庫の貯蔵室の庫内温度および食品の表面温度の変化を示す図である。FIG. 9A is a diagram showing changes in the temperature in the storage room of the refrigerator and the surface temperature of the food in Embodiment 1 of the present invention. 図9Bは、本発明の実施の形態1における冷蔵庫の貯蔵室の冷却状態を示す図である。FIG. 9B is a diagram showing a cooling state of the storage room of the refrigerator in the first embodiment of the present invention. 図10Aは、本発明の実施の形態2における冷蔵庫の温度勾配ΔTと急冷1の圧縮機回転数との関係を示す図である。FIG. 10A is a diagram showing the relationship between the temperature gradient ΔT of the refrigerator and the compressor rotation speed of the rapid cooling 1 in Embodiment 2 of the present invention. 図10Bは、本発明の実施の形態2における冷蔵庫の温度勾配ΔTと急冷2の運転時間との関係を示す図である。FIG. 10B is a diagram showing a relationship between the temperature gradient ΔT of the refrigerator and the operation time of the rapid cooling 2 in Embodiment 2 of the present invention. 図11Aは、本発明の実施の形態3における冷蔵庫の貯蔵室の庫内温度および食品の表面温度の変化を示す図である。FIG. 11A is a diagram showing changes in the internal temperature of the refrigerator storage room and the surface temperature of the food in Embodiment 3 of the present invention. 図11Bは、本発明の実施の形態3における冷蔵庫の貯蔵室の冷却状態を示す図である。FIG. 11B is a diagram showing a cooling state of the storage room of the refrigerator in the third embodiment of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1による冷蔵庫の正面図、図2は、図1の2-2断面図、および、図3は、本発明の実施の形態1による冷蔵室の要部拡大図である。また、図4は、本発明の実施の形態における冷蔵庫の制御ブロック図、および、図5は、本発明の実施の形態における冷蔵庫の投入負荷検知から急冷運転の制御フローチャートである。
(Embodiment 1)
1 is a front view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a sectional view taken along the line 2-2 of FIG. 1, and FIG. 3 is an enlarged view of a main part of a refrigerator compartment according to Embodiment 1 of the present invention. FIG. FIG. 4 is a control block diagram of the refrigerator in the embodiment of the present invention, and FIG. 5 is a control flowchart of the rapid cooling operation from detection of the input load of the refrigerator in the embodiment of the present invention.
 図1および図2において、冷蔵庫101は、上段、中段、および下段に区画され、複数の貯蔵室を備える。具体的には、上段には、前面に観音開き式扉(冷蔵室扉102a)を有する冷蔵室102を備え、その下方に、引出し扉(第一の冷凍室扉)を有する第一の冷凍室103と、これと並行に配設された引出し扉(製氷室扉105a)を有する製氷室105を備える。中段には、冷凍室103および製氷室105の下方に配設された引出し扉(第二の冷凍室扉104a)を有する第二の冷凍室104を備える。下段には、最下部に配置される引出し扉(野菜室扉106a)を有する野菜室106を備える。 1 and 2, the refrigerator 101 is divided into an upper stage, a middle stage, and a lower stage, and includes a plurality of storage rooms. Specifically, the upper stage includes a refrigerator compartment 102 having a double door (cold compartment door 102a) on the front, and a first freezer compartment 103 having a drawer door (first freezer door) below the compartment. And an ice making chamber 105 having a drawer door (ice making chamber door 105a) arranged in parallel therewith. The middle stage includes a second freezer compartment 104 having a drawer door (second freezer compartment door 104a) disposed below the freezer compartment 103 and the ice making chamber 105. The lower stage includes a vegetable compartment 106 having a drawer door (vegetable compartment door 106a) arranged at the bottom.
 冷蔵室102と、互いに横並びに配設された製氷室105および第一の冷凍室103とは、上下方向において、断熱区画壁111により区画される。また、横並びの製氷室105および第一の冷凍室103と、第二の冷凍室104との間も、同様に、上下方向において、断熱区画壁111により区画される。さらに、第二の冷凍室104と野菜室106との間も、同様に断熱区画壁111により上下方向において区画される。 The refrigerator compartment 102, the ice making room 105 and the first freezing room 103 arranged side by side are partitioned by a heat insulating partition wall 111 in the vertical direction. Similarly, the side-by-side ice making chamber 105 and the first freezing chamber 103 and the second freezing chamber 104 are also partitioned by a heat insulating partition wall 111 in the vertical direction. Further, the second freezer compartment 104 and the vegetable compartment 106 are similarly partitioned in the vertical direction by the heat insulating partition wall 111.
 冷蔵庫101は、外箱108と内箱109との間に断熱壁110が充填されて構成されている。冷蔵庫101は、上部に設けられた冷蔵室102内の下部に、冷蔵室102とは独立した貯蔵室として、変温室107が区画形成されている。変温室107は、切替え室として構成されている。本実施の形態の場合は、変温室107は、0℃付近の冷蔵温度帯の第一の温度帯(チルド)と、第一の温度帯と約-6℃以下の冷凍温度帯との間の温度帯となる約-3℃の第二の温度帯(微凍結)に設定可能である。 The refrigerator 101 is configured such that a heat insulating wall 110 is filled between an outer box 108 and an inner box 109. In the refrigerator 101, a variable temperature chamber 107 is defined as a storage room independent of the refrigerator compartment 102 in the lower part of the refrigerator compartment 102 provided in the upper part. The changing greenhouse 107 is configured as a switching room. In the case of the present embodiment, the variable temperature chamber 107 is located between the first temperature zone (chilled) of the refrigeration temperature zone near 0 ° C. and the first temperature zone and the freezing temperature zone of about −6 ° C. or less. It can be set to a second temperature zone (fine freezing) of about −3 ° C. that is the temperature zone.
 次に、冷却システムの構成について説明する。第二の冷凍室104の背面後方には、冷却室114が形成され、その内部に冷却器115を有する。冷却器115は、上部機械室113に設置された圧縮機112とともに、冷蔵庫101を冷却する冷凍サイクルを構成する。また、冷却室114には、冷却器115で熱交換された冷気を強制循環させる送風ファン116が配置されている。送風ファン116の上方には、冷蔵室102に流入する冷気を分配するダンパ装置117aと、変温室107に流入する冷気を分配するダンパ装置117bとが配置されている。各貯蔵室は、温度帯が分けられて使用可能である。具体的には、例えば、冷蔵室102は、庫内温度が約2~3℃の温度帯に設定され、野菜室106は、庫内温度が約2~5℃の温度帯に設定されて使用可能である。また、第一の冷凍室103及び第二の冷凍室104は、それぞれ庫内温度が約-18~-20℃の温度帯に設定されて使用可能である。このような構成とすることにより、各貯蔵室において食品の保存に適した温度帯が選択されて、食品が貯蔵されることによって、より高い保鮮性および長期保存を実現することができる。 Next, the configuration of the cooling system will be described. A cooling chamber 114 is formed behind the second freezing chamber 104 and has a cooler 115 therein. The cooler 115 constitutes a refrigeration cycle for cooling the refrigerator 101 together with the compressor 112 installed in the upper machine room 113. The cooling chamber 114 is provided with a blower fan 116 that forcibly circulates the cool air heat-exchanged by the cooler 115. Above the blower fan 116, a damper device 117a that distributes the cold air flowing into the refrigerating chamber 102 and a damper device 117b that distributes the cold air flowing into the variable temperature chamber 107 are arranged. Each storage room can be used with a separate temperature zone. Specifically, for example, the refrigerator compartment 102 is set to a temperature range of about 2 to 3 ° C., and the vegetable compartment 106 is set to a temperature range of about 2 to 5 ° C. for use. Is possible. The first freezer compartment 103 and the second freezer compartment 104 can be used with the internal temperature set in a temperature range of about −18 to −20 ° C. By setting it as such a structure, the temperature range suitable for preservation | save of a foodstuff is selected in each store room, and higher freshness and long-term preservation | save can be implement | achieved by storing a foodstuff.
 次に、変温室107、および、変温室107の天面に設置される照明装置121の構成について、図3および図4を用いて説明する。 Next, the structure of the changing room 107 and the lighting device 121 installed on the top surface of the changing room 107 will be described with reference to FIGS. 3 and 4.
 図3に示すように、変温室107は、その上部が冷蔵室102の最下段に位置する棚板118としても利用できる合成樹脂製の上面カバー122と、上面カバー122の下方に、前後方向に引き出し可能に収納された合成樹脂製の収納ケース123と、変温室107の上面カバー122の前面開口部に開閉自在に設けられた開閉扉124とで構成されている。開閉扉124は、閉時には収納ケース123の前面壁123bと密着し、変温室107内が略密閉空間となるよう構成されている。また、開閉扉124は、内部に収納された食品が視認できるように、透明性の高い合成樹脂製で構成されている。 As shown in FIG. 3, the temperature change chamber 107 has a top cover 122 made of synthetic resin that can be used as a shelf 118 positioned at the bottom of the refrigerator compartment 102, and a front and rear direction below the top cover 122. It is composed of a synthetic resin storage case 123 that can be pulled out and an opening / closing door 124 that can be opened and closed at the front opening of the upper surface cover 122 of the variable temperature chamber 107. The open / close door 124 is configured to be in close contact with the front wall 123b of the storage case 123 when closed, so that the inside of the variable temperature chamber 107 becomes a substantially sealed space. Moreover, the open / close door 124 is made of a highly transparent synthetic resin so that food stored in the interior can be visually recognized.
 さらに、変温室107の奥壁面には、開閉扉124が閉時に収納ケース123の後面壁123aと嵌合するように、扉開閉検知部127が設けられている。また、本実施の形態では、収納ケース123の底面には、アルミ製の底板128が嵌め込まれ、冷却性能向上、および、照明装置121からの照明拡散による視認性向上が図られているが、これらは特に必須のものではない。 Furthermore, a door opening / closing detection unit 127 is provided on the back wall surface of the variable temperature chamber 107 so that the opening / closing door 124 is fitted to the rear wall 123a of the storage case 123 when the opening / closing door 124 is closed. Further, in the present embodiment, an aluminum bottom plate 128 is fitted on the bottom surface of the storage case 123 to improve the cooling performance and improve the visibility by diffusing the illumination from the lighting device 121. Is not particularly essential.
 また、変温室107の奥壁面後方には、ダンパ装置117で分配された冷気を変温室107に導く変温室背面ダクト125が形成されている。また、変温室107の天面には、変温室背面ダクト125の下流となる変温室天面ダクト126が配置されている。変温室天面ダクト126は、断熱性を有する発泡断熱部材で形成された断熱ダクト部材126aと、その外周を覆う化粧板となる合成樹脂製のダクトカバー126bとで構成されている。変温室天面ダクト126は、上面カバー122とともにダクトを構成し、収納ケース123の上面部となる位置に、変温室107内へ冷気を吐出する冷気吹出し口129が形成されている。 Further, a rear side duct 125 for changing the temperature of the greenhouse, which guides the cold air distributed by the damper device 117 to the temperature changing room 107, is formed behind the rear wall surface of the temperature changing room 107. Further, a variable temperature ceiling top duct 126 that is downstream of the variable temperature greenhouse rear duct 125 is disposed on the top surface of the variable temperature greenhouse 107. The variable temperature ceiling top duct 126 includes a heat insulating duct member 126a formed of a heat insulating foam heat insulating member, and a synthetic resin duct cover 126b serving as a decorative plate covering the outer periphery of the heat insulating duct member 126a. The variable temperature ceiling top duct 126 forms a duct together with the upper surface cover 122, and a cold air outlet 129 for discharging the cold air into the variable temperature chamber 107 is formed at a position that becomes the upper surface portion of the storage case 123.
 また、変温室107内には、室内を照射する照明装置121が、変温室天面ダクト126の奥行中心位置よりも前方の開閉扉側に、ダクトカバー126aに埋め込まれて設置されている。 Also, in the variable temperature chamber 107, a lighting device 121 for irradiating the room is installed in the duct cover 126a on the opening door side in front of the depth center position of the variable temperature ceiling duct 126.
 次に、冷蔵室102には、冷蔵室扉102aの開閉状態を検知する冷蔵室扉スイッチ130が設置され、冷蔵庫101の庫内外の任意の場所には、変温室107の温度帯および運転モードを切替える設定部131が設置されている。また、冷蔵室扉スイッチ130から信号S1、設定部131から信号S2、および、扉開閉検知部127から信号S3が、それぞれ制御マイコン132へ入力される。さらに、制御マイコン132からは、信号S4が圧縮機112へ、信号S5が送風ファン116へ、信号S6がダンパ装置117aへ、および、信号S7がダンパ装置117bへ出力されて、所定の冷却動作が行われる。 Next, the refrigerator compartment 102 is provided with a refrigerator compartment door switch 130 for detecting the open / closed state of the refrigerator compartment door 102a, and the temperature zone and the operation mode of the variable temperature chamber 107 can be set at an arbitrary location inside or outside the refrigerator 101. A setting unit 131 for switching is installed. Further, a signal S 1 from the refrigerator door switch 130, a signal S 2 from the setting unit 131, and a signal S 3 from the door opening / closing detection unit 127 are input to the control microcomputer 132. Further, the control microcomputer 132 outputs a signal S4 to the compressor 112, a signal S5 to the blower fan 116, a signal S6 to the damper device 117a, and a signal S7 to the damper device 117b, thereby performing a predetermined cooling operation. Done.
 以上のように構成された冷蔵庫について、以下その動作および作用について図5~図7を用いて説明する。 The operation and action of the refrigerator configured as described above will be described below with reference to FIGS.
 まず、設定部131により、変温室107の温度帯が、第二の温度帯(パーシャル)に設定されている状態で、開閉扉124が閉扉されて、かつ、冷蔵室扉スイッチ130が冷蔵室扉102aの閉を検知する(STEP1)。そして、冷蔵室扉スイッチ130が冷蔵室扉102aの閉を検知した(STEP1)ことを起点として、食品投入有無判定部134により、負荷投入の有無が判定される。具体的には、圧縮機112が始動後5分以上経過していて、外気温により定められる所定の回転数で運転されている場合(STEP2)、変温室107内を急冷するかどうかを判定する急冷開始判定が開始される(STEP3)。STEP2で、圧縮機112の始動後の時間が5分に達していない場合は、5分を経過した時点でSTEP3に移行する。 First, the opening / closing door 124 is closed and the refrigeration room door switch 130 is refrigerated room door in a state in which the setting unit 131 sets the temperature range of the variable temperature room 107 to the second temperature range (partial). The closing of 102a is detected (STEP 1). Then, starting from the fact that the refrigeration room door switch 130 detects the closing of the refrigeration room door 102a (STEP 1), the food supply presence / absence determination unit 134 determines the presence or absence of load application. Specifically, when the compressor 112 has been running for 5 minutes or more after starting and is operated at a predetermined number of rotations determined by the outside air temperature (STEP 2), it is determined whether or not the inside of the variable temperature chamber 107 is to be rapidly cooled. Rapid cooling start determination is started (STEP 3). If the time after starting the compressor 112 does not reach 5 minutes in STEP2, the process proceeds to STEP3 when 5 minutes have passed.
 STEP3で、無負荷と判定された場合は、通常の微凍結制御を行う(STEP4)。一方、STEP3で、負荷投入有りと判定された場合は、所定の急冷運転が開始される。急冷運転の詳細は後述するが、概要は、STEP5の急冷1(第一急冷運転)が行われ、その後、STEP6の急冷2(第二急冷運転)が行われる。また、所定の急冷運転終了後は、STEP7のディープフリーズ保護運転が行われる。 When it is determined in STEP 3 that there is no load, normal fine freezing control is performed (STEP 4). On the other hand, when it is determined in STEP 3 that the load is applied, a predetermined rapid cooling operation is started. Although details of the rapid cooling operation will be described later, the outline is the rapid cooling 1 (first rapid cooling operation) of STEP 5 and then the rapid cooling 2 (second rapid cooling operation) of STEP 6 is performed. Further, after completion of the predetermined rapid cooling operation, the deep freeze protection operation of STEP 7 is performed.
 なお、STEP5の急冷1とSTEP6の急冷2との間に、負荷投入の有無を再度判定する急冷解除判定(STEP8)が行われることが望ましい。急冷解除判定(STEP8)は、後述するSTEP2からSTEP3での急冷開始判定と同様である。 In addition, it is desirable that a rapid cooling release determination (STEP 8) is performed between the rapid cooling 1 of STEP 5 and the rapid cooling 2 of STEP 6 to determine again whether or not a load is applied. The rapid cooling release determination (STEP 8) is the same as the rapid cooling start determination in STEP 2 to STEP 3, which will be described later.
 また、上記急冷解除判定は、変温室(パーシャル室)107用のダンパ装置117bが所定時間強制的に閉じられたときの変温室温度センサ133の温度傾き(温度変化の度合い)によって判定されるよう構成されていてもよい。 The rapid cooling release determination is determined based on the temperature gradient (degree of temperature change) of the variable temperature chamber temperature sensor 133 when the damper device 117b for the variable temperature chamber (partial room) 107 is forcibly closed for a predetermined time. It may be configured.
 次に、図6において、上記STEP2からSTEP3での急冷開始判定である食品投入有無判定部134の検知シーケンスを説明する。 Next, in FIG. 6, a detection sequence of the food input presence / absence determination unit 134 which is the rapid cooling start determination in STEP 2 to STEP 3 will be described.
 急冷開始判定が始まると、冷蔵室用のダンパ装置117aは、強制的に開かれ、変温室(パーシャル室)107用のダンパ装置117bは、強制的に閉じられる。また、圧縮機112は、上記所定の回転数のままで、吐出冷気の流量が所定量で、3分間運転する。3分経過後、冷蔵室用のダンパ装置117aは、強制的に閉じられ、変温室(パーシャル室)107用のダンパ装置117bは、強制的に開かれる。投入負荷検知シーケンス開始から4分後および5分後の温度が、変温室温度センサ133により検知され、温度勾配ΔTが算出される。温度勾配ΔT値が、4分後のパーシャル室温度によって定められる所定の閾値よりも大きい場合は、投入負荷ありと判定され、急冷運転が開始される。 When the rapid cooling start determination is started, the damper device 117a for the refrigerator compartment is forcibly opened, and the damper device 117b for the variable temperature chamber (partial chamber) 107 is forcibly closed. Further, the compressor 112 is operated for 3 minutes with the discharge cold air flow rate being a predetermined amount while maintaining the predetermined rotation speed. After 3 minutes, the damper device 117a for the refrigerator compartment is forcibly closed, and the damper device 117b for the variable temperature chamber (partial chamber) 107 is forcibly opened. Temperatures at 4 minutes and 5 minutes after the start of the input load detection sequence are detected by the variable temperature sensor 133, and a temperature gradient ΔT is calculated. When the temperature gradient ΔT value is larger than a predetermined threshold value determined by the partial chamber temperature after 4 minutes, it is determined that there is an input load, and the rapid cooling operation is started.
 上記検知シーケンスにおいて、検知開始から3分間、変温室107の冷却が停止されることにより、変温室107の温度変化状況を安定化させて温度勾配ΔTを安定化させることができる。通常、パーシャル運転中は、圧縮機112の回転数、吐出冷気の流量、および、変温室107内に既に収納されている負荷量が一定ではなく、また庫内温度は、常に上昇中、または下降中である。検知の直前のこれら条件が異なる場合でも、一定の閾値で判定できることが求められる。変温室107の冷却開始に先立って、上記所定条件での運転を3分間継続することによって、温度勾配ΔT値は、主に投入熱負荷を反映することができる。その結果、検知直前の運転状況にかかわらず、安定して正しい判定が行われることができる。 In the above detection sequence, the cooling of the temperature changing room 107 is stopped for 3 minutes from the start of detection, so that the temperature change state of the temperature changing room 107 can be stabilized and the temperature gradient ΔT can be stabilized. Normally, during the partial operation, the rotation speed of the compressor 112, the flow rate of the discharged cold air, and the load amount already stored in the variable temperature chamber 107 are not constant, and the internal temperature is constantly increasing or decreasing. It is in. Even when these conditions immediately before detection are different, it is required to be able to determine with a certain threshold value. The temperature gradient ΔT value can mainly reflect the input heat load by continuing the operation under the above-mentioned predetermined conditions for 3 minutes prior to the start of cooling of the temperature changing chamber 107. As a result, the correct determination can be made stably regardless of the driving situation immediately before detection.
 加えて、前半3分間で変温室107内の温度が高められてから冷却が開始されることにより、直ちに冷却が開始されるよりも、温度勾配ΔTの絶対値を大きくすることができる。これは、温度勾配ΔT値と変温室温度センサ133の測定バラツキのS/N比とを拡大することになる。その結果、温度勾配ΔT値に基づいた判定の精度を高めることができる。 In addition, since the cooling is started after the temperature in the temperature change chamber 107 is increased in the first three minutes, the absolute value of the temperature gradient ΔT can be made larger than immediately when the cooling is started. This expands the temperature gradient ΔT value and the S / N ratio of the measurement variation of the variable temperature sensor 133. As a result, the accuracy of determination based on the temperature gradient ΔT value can be increased.
 また、前半3分間に冷蔵室102を集中的に強制冷却することによって、冷蔵室102の温度は、通常運転時よりも低下する。そのため、冷蔵室102が再度温度調整されるようになった際、ダンパ装置117aは、通常よりも長く閉じられることになる。後述するように、食品の表層微凍結を速めるためには、急冷開始後、ダンパ装置117aが閉じられてダンパ装置117bのみが開かれる状態が継続することが重要である。上述の冷蔵室102の予備冷却は、ダンパ装置117bの連続開時間を延長する効果があり、表層微凍結を促進する。 In addition, by intensively cooling the refrigerator compartment 102 in the first three minutes, the temperature of the refrigerator compartment 102 is lower than that during normal operation. Therefore, when the temperature of the refrigerator compartment 102 is adjusted again, the damper device 117a is closed longer than usual. As will be described later, in order to speed up the surface micro freezing of food, it is important that the damper device 117a is closed and only the damper device 117b is opened after the rapid cooling is started. The above-described preliminary cooling of the refrigerator compartment 102 has an effect of extending the continuous opening time of the damper device 117b, and promotes surface microfrozen.
 3分後に、ダンパ装置117aが閉じられてダンパ装置117bが開かれることにより、変温室107が最大限の速度で冷却される。ダンパ装置開閉の直後は、開閉タイミングなどによって温度勾配が左右されることがあるため、変温室107内の温度が安定する4分後から5分後の間の温度勾配ΔT値を指標として判定が行われる。 3 minutes later, the damper device 117a is closed and the damper device 117b is opened, so that the temperature changing room 107 is cooled at the maximum speed. Immediately after the damper device is opened and closed, the temperature gradient may be affected by the timing of opening and closing, etc., so the determination is made using the temperature gradient ΔT value between 4 minutes and 5 minutes after the temperature in the variable temperature chamber 107 is stabilized as an index. Done.
 変温室107に熱負荷の投入がない場合(図6のb)に比べて、ある程度大きな熱負荷が投入された場合(図6のa)には、変温室温度センサ133で測定される庫内温度の低下は遅くなり、温度勾配ΔT値は小さくなる。 When a certain amount of heat load is applied (a in FIG. 6) compared to the case where no heat load is applied to the temperature change chamber 107 (b in FIG. 6), the inside of the cabinet measured by the temperature change temperature sensor 133 is measured. The decrease in temperature becomes slower and the temperature gradient ΔT value becomes smaller.
 温度勾配ΔTの閾値については、次のような様々な条件によって変えられて設定される。3分後の庫内温度が比較的高いときには、後半2分間の冷却時に温度が降下しやすいために、温度勾配ΔTの閾値の絶対値は比較的大きく設定される。一方、3分後の庫内温度が比較的低いときには、逆に温度勾配ΔTの閾値の絶対値は比較的小さく設定される。外気温が比較的高い場合には、後半2分間の冷却能力が比較的低くなりがちであるため、温度勾配ΔTの閾値の絶対値は、比較的小さく設定される。圧縮機112の回転数が比較的高いときには、冷却能力が比較的高くなるために、温度勾配ΔTの閾値の絶対値は比較的大きく設定される。 The threshold value of the temperature gradient ΔT is changed and set according to the following various conditions. When the internal temperature after 3 minutes is relatively high, the temperature is likely to drop during the latter 2 minutes of cooling, so the absolute value of the threshold value of the temperature gradient ΔT is set to be relatively large. On the other hand, when the internal temperature after 3 minutes is relatively low, the absolute value of the threshold value of the temperature gradient ΔT is set relatively small. When the outside air temperature is relatively high, the cooling capacity for the latter half 2 minutes tends to be relatively low, so the absolute value of the threshold value of the temperature gradient ΔT is set to be relatively small. When the rotational speed of the compressor 112 is relatively high, the cooling capacity is relatively high, and thus the absolute value of the threshold value of the temperature gradient ΔT is set to be relatively large.
 検知シーケンスで投入熱負荷の有無を判定するとき、特に温度勾配ΔT値が閾値に近い場合には、正しく判定できるかどうかは正規分布に従って確率的に定まる。誤判定には、投入熱負荷があるにも関わらず無い(急冷しない)と判定する第一の誤判定と、投入負荷が無いにも関わらずある(急冷する)と判定する第二の誤判定とがある。第一の誤判定および第二の誤判定の確率が等しくなるように、温度勾配ΔTの閾値が設定されてもよい。投入熱負荷がより確実に急冷されることが、使用上、理にかなう場合には、第一の誤判定が極力小さくなるように、上記の等しい確率の場合よりも温度勾配ΔTの閾値が大きく設定される。逆に、既に変温室107内で冷却されている被冷却物が過度に冷却されることが不利益である場合などには、第二の誤判定が極力小さくなるように、上記の等しい確率の場合よりも温度勾配ΔTの閾値が小さく設定されることも可能である。 When determining the presence or absence of the input heat load in the detection sequence, especially when the temperature gradient ΔT value is close to the threshold value, whether it can be correctly determined is determined stochastically according to the normal distribution. The first misjudgment that determines that there is no input load (does not cool rapidly) in the misjudgment and the second misjudgment that determines that there is no input load (quickly cools). There is. The threshold value of the temperature gradient ΔT may be set so that the probability of the first misjudgment and the second misjudgment are equal. If it is reasonable in use that the input heat load can be cooled more reliably, the threshold value of the temperature gradient ΔT is larger than the case of the above equal probability so that the first erroneous determination is minimized. Is set. On the contrary, when it is disadvantageous that the object to be cooled already cooled in the variable temperature chamber 107 is excessively cooled, the above-mentioned equal probability is set so that the second misjudgment is minimized. It is also possible to set the threshold value of the temperature gradient ΔT smaller than the case.
 正しく判定する確率を向上させるためには、壁面から変温室107内への熱侵入量を一定とすることが効果的である。変温室107が冷蔵室102内に設けられる構成は、外気温の変化に関わらず冷蔵室102の温度変化を所定範囲に収めることができるため、熱侵入量を一定化しやすく、判定精度の向上に効果的である。 In order to improve the probability of correct determination, it is effective to make the amount of heat intrusion from the wall surface into the temperature change chamber 107 constant. The configuration in which the variable temperature chamber 107 is provided in the refrigerating room 102 can keep the temperature change of the refrigerating room 102 within a predetermined range regardless of the change in the outside air temperature. It is effective.
 変温室107内の温度が所定の温度以上になった場合、および、開閉扉124が所定時間以上開かれた場合には、図6の検知シーケンスによらず、下記の急冷または通常のパーシャル運転の冷却が開始されてもよい。その結果、検知運転に時間を費やすことなく直ぐにパーシャル室(変温室107)の室温を下げることができて、食品の温度上昇による鮮度劣化を防ぐことができる。 When the temperature in the temperature changing chamber 107 becomes equal to or higher than a predetermined temperature, and when the door 124 is opened for a predetermined time or longer, the following rapid cooling or normal partial operation is performed regardless of the detection sequence of FIG. Cooling may be initiated. As a result, the room temperature of the partial room (conversion room 107) can be immediately lowered without spending time in the detection operation, and deterioration of freshness due to an increase in food temperature can be prevented.
 次に、図7に示す急冷運転シーケンスについて説明する。本実施の形態において、急冷運転は、冷却能力の比較的大きな急冷1(第一急冷運転)と冷却能力が通常のパーシャル運転よりは大きく急冷1より小さい急冷2(第二急冷運転)からなる。急冷1運転時は、通常運転時と比べて圧縮機112の回転数がより高く、変温室107への冷気導入の流量(風量)は大きく設定される。また、変温室107へのダンパ装置117bは、強制的に開状態に設定され、冷蔵室102へのダンパ装置117aは、より開きにくく設定される。また、圧縮機112は、停止されないよう設定される。 Next, the rapid cooling operation sequence shown in FIG. 7 will be described. In the present embodiment, the rapid cooling operation includes rapid cooling 1 (first rapid cooling operation) having a relatively large cooling capacity and rapid cooling 2 (second rapid cooling operation) in which the cooling capacity is larger than the normal partial operation and smaller than the rapid cooling 1. In the rapid cooling 1 operation, the rotational speed of the compressor 112 is higher than that in the normal operation, and the flow rate (air volume) for introducing cold air into the variable temperature chamber 107 is set to be large. Further, the damper device 117b to the variable temperature chamber 107 is forcibly set to an open state, and the damper device 117a to the refrigerator compartment 102 is set to be more difficult to open. The compressor 112 is set so as not to be stopped.
 急冷2運転時は、変温室107の温度調整が行われて食品が所定温度以上に冷えないようにする。急冷2は、上記急冷1運転時の運転条件のいずれか一部の条件で運転される。または、上記急冷1運転時の運転条件と通常運転時の運転条件の間の条件で運転されてもよい。 During the second rapid cooling operation, the temperature of the temperature changing greenhouse 107 is adjusted so that the food does not cool above the predetermined temperature. The rapid cooling 2 is operated under some of the operating conditions during the rapid cooling 1 operation. Or you may drive | operate on the conditions between the driving | running conditions at the time of the said rapid cooling 1 driving | operation, and the driving | running conditions at the time of normal driving | operation.
 本実施の形態においては、冷却能力の大きな急冷1によって食品の微凍結を促進する効果がある。一方、急冷1を継続すると、容量の限られた変温室107が主に冷却されるために、冷却器115の冷熱が庫内に完全に放冷しきれず、冷却器115の温度が低下し続ける傾向がある。その結果、低圧保護のため、圧縮機112の運転を停止せざるを得なくなる。後述するように、微凍結を促進するためには、連続して冷却が継続されることが必要であるので、冷却器115の所定以上の温度低下が避ける必要がある。このため、本実施の形態においては、急冷1は30分間で終了し、回転数のより低い急冷2が開始される。急冷2において、圧縮機112の回転数は、連続運転される場合でも冷却器115の温度が所定以上に低下することを防ぐように設定される。また、それでも冷却器115の温度が低下する場合には、ダンパ装置117aが強制的に開かれるよう構成されていてもよい。 In the present embodiment, there is an effect of promoting the fine freezing of food by the rapid cooling 1 having a large cooling capacity. On the other hand, if the rapid cooling 1 is continued, the variable temperature greenhouse 107 having a limited capacity is mainly cooled. Therefore, the cooling heat of the cooler 115 cannot be completely discharged into the chamber, and the temperature of the cooler 115 continues to decrease. Tend. As a result, the operation of the compressor 112 must be stopped for low-pressure protection. As will be described later, in order to promote fine freezing, it is necessary to continue cooling continuously. Therefore, it is necessary to avoid a temperature drop of the cooler 115 beyond a predetermined level. For this reason, in the present embodiment, the rapid cooling 1 is completed in 30 minutes, and the rapid cooling 2 having a lower rotational speed is started. In the rapid cooling 2, the rotational speed of the compressor 112 is set so as to prevent the temperature of the cooler 115 from falling below a predetermined level even when continuously operating. In addition, when the temperature of the cooler 115 still decreases, the damper device 117a may be configured to be forcibly opened.
 また、急冷1よりも冷却能力の低い急冷2が設けられることにより、変温室107内で既に微凍結済みの食品をディープフリーズさせて硬化させたり、変温室107内に着霜したり、変温室107に隣接して置かれる食品を想定外に微凍結させたりすることを避ける効果もある。 Further, by providing the quick cooling 2 having a cooling capacity lower than that of the quick cooling 1, the food which has already been slightly frozen in the variable temperature chamber 107 is deep-frozen to be hardened, frosted in the variable temperature chamber 107, There is also an effect of avoiding that the food placed adjacent to 107 is slightly frozen unexpectedly.
 食品を急速に微凍結するためには、所定時間の間、食品が連続して冷却され続けることが下記の理由により必要である。食品が微凍結する際、表層が微凍結すると食品内部の未凍結部に比べて比熱が約半分となり、熱伝導率が約4倍となる。この状況で冷却が一時停止されると、未凍結部の熱が微凍結部に熱伝導により伝わりやすいために、微凍結部の温度が再上昇しやすい。その結果、いったん微凍結した部分の温度が容易に0℃まで上昇し、融解が始まる。微凍結および融解が繰り返されることは、食品を物理的に劣化させて質を落とすため好ましくない。 In order to rapidly freeze food, it is necessary to keep the food continuously cooled for a predetermined time for the following reasons. When the food is slightly frozen, if the surface layer is slightly frozen, the specific heat is about half that of the unfrozen portion inside the food, and the thermal conductivity is about four times. If the cooling is temporarily stopped in this situation, the heat of the unfrozen part is easily transmitted to the finely frozen part by heat conduction, so that the temperature of the finely frozen part is likely to rise again. As a result, the temperature of the microfrozen portion once easily rises to 0 ° C., and melting begins. Repeated micro freezing and thawing is not preferable because the food is physically deteriorated and the quality is lowered.
 表層微凍結を急速に実現させるためには、微凍結層自体が潜熱蓄熱効果を発揮して食品内部の熱が最表層まで伝熱しないように断熱効果を発揮する程度まで、微凍結層を成長させることが必要である。例えば、本実施の形態では、微凍結層を1mm程度の厚みまで成長させている。このようにして、食品表層に確実に微凍結層を作ることができる。また、このように微凍結層が生成される場合、微凍結層生成までの時間は、過冷却現象などによって左右されにくく比較的安定する。 In order to realize surface micro-freezing rapidly, the micro-freezing layer grows to such an extent that the micro-freezing layer itself exhibits a latent heat storage effect and exhibits a heat insulation effect so that the heat inside the food does not transfer to the outermost layer. It is necessary to make it. For example, in the present embodiment, the fine frozen layer is grown to a thickness of about 1 mm. In this way, a finely frozen layer can be reliably formed on the food surface layer. In addition, when the micro frozen layer is generated in this way, the time until the micro frozen layer is generated is not affected easily by the supercooling phenomenon or the like and is relatively stable.
 肉および魚などの食品は、細胞膜にリン脂質を含み、皮下組織に中性脂肪を含むが、それらの構成要素である不飽和脂肪鎖は、酸素と接触することにより自動酸化されてヒドロキシペルオキシドを生じる。ヒドロキシペルオキシドを摂食すると、体内でラジカル反応によってDNAが損傷したり生理活性物質が酸化されたりするために有害である。 Foods such as meat and fish contain phospholipids in the cell membrane and neutral fat in the subcutaneous tissue, but their constituent unsaturated fatty chains are auto-oxidized by contact with oxygen to produce hydroxyperoxide. Arise. Ingestion of hydroxyperoxide is harmful because DNA is damaged by the radical reaction in the body and the physiologically active substance is oxidized.
 上記のような急冷運転によって食品の表層全体にむらなく微凍結層が作られると、細胞外液の氷は、水に比べて酸素の拡散係数が2桁以上小さいために、実質的に細胞および食品内部を酸素から遮断することができる。酸素は上記の自動酸化に必須であるため、細胞および食品内部を酸素から遮断することにより、ヒドロキシペルオキシドの生成を防ぐことができる。このようにして、表層微凍結を促進させることにより、油脂を含む食品の酸化が抑制され、酸化指標であるAV(Acid Value)、POV(Peroxide Value)、および、TBA(Thiobarbituric Acid)などの値の上昇が抑制される。 When the micro freezing layer is uniformly formed on the entire surface layer of the food by the rapid cooling operation as described above, the ice of the extracellular fluid is substantially smaller than the water because the diffusion coefficient of oxygen is two orders of magnitude or less. The inside of food can be shielded from oxygen. Since oxygen is essential for the above-mentioned auto-oxidation, the production of hydroxyperoxide can be prevented by blocking the cells and the inside of food from oxygen. In this way, by facilitating surface freezing, the oxidation of foods containing fats and oils is suppressed, and values such as oxidation index AV (Acid Value), POV (Peroxide Value), and TBA (Thiobarbitur Acid) Rise is suppressed.
 図8は、食品を微凍結させた際の表層微凍結時間と3日後のPOV値との関係を示す図である。縦軸のPOV値は、0日目のPOV値を1.0として相対化して示されている。表層微凍結時間が所定時間を超えると、3日の保存日数の間に酸化指標値が上昇することが2種の魚食品で見出される。3日の保存日数の間のPOV値の上昇を抑制し、酸化を実質的に防止するためには、食品表面が8時間以内に微凍結され、酸素と油脂との接触を遮断することが効果的であることが見出される。同様に、食品が8時間以内に表層微凍結された場合には、K値も3日間で上昇しないことが見出される。 FIG. 8 is a diagram showing the relationship between the surface micro-freezing time when the food is micro-frozen and the POV value after 3 days. The POV value on the vertical axis is shown relative to the POV value on day 0 as 1.0. It is found in the two fish foods that the oxidation index value increases during the storage days of 3 days when the surface micro freezing time exceeds a predetermined time. In order to suppress the increase in the POV value during the storage period of 3 days and to substantially prevent oxidation, it is effective that the food surface is slightly frozen within 8 hours and the contact between oxygen and fats and oils is blocked. To be found. Similarly, it is found that if the food is microfrozen within 8 hours, the K value does not rise in 3 days.
 また、牛肉および豚肉などの場合は、8時間以内に表層微凍結が行われた場合には、7日後の酸化指標値が上昇しないことが分かっている。 In addition, in the case of beef and pork, it is known that the oxidation index value after 7 days does not increase if surface freezing is performed within 8 hours.
 これらを考慮し、本実施の形態においては、食品表面が8時間以内に微凍結するように急冷運転時の冷却能力が設定されている。 In consideration of these, in this embodiment, the cooling capacity during the rapid cooling operation is set so that the food surface is slightly frozen within 8 hours.
 なお、急冷1は、急冷1の最中において、急冷運転の継続を再度判断する急冷解除判定が行われるよう設定されていてもよい。解除判定は、図6に示した検知シーケンスと基本的に同じであるが、温度勾配ΔTの閾値は別途定められる。急冷解除判定は、複数回行われるよう設定されてもよい。検知シーケンスによって第二の誤判定がされた場合でも、急冷解除判定が行われることにより、急冷運転が途中で停止されることによって、不要な急冷運転を止めてエネルギ使用量を必要以上に増やさないようにすることができる。 It should be noted that the rapid cooling 1 may be set so that during the rapid cooling 1, the rapid cooling release determination for determining again the continuation of the rapid cooling operation is performed. The cancellation determination is basically the same as the detection sequence shown in FIG. 6, but the threshold value of the temperature gradient ΔT is separately determined. The rapid cooling cancellation determination may be set to be performed a plurality of times. Even if the second misjudgment is made by the detection sequence, the rapid cooling operation is stopped halfway due to the rapid cooling cancellation determination, so that unnecessary rapid cooling operation is stopped and the energy consumption is not increased more than necessary. Can be.
 急冷2が終了すると、通常のパーシャル運転が行われる。運転移行の際に、冷却器115の温度が所定温度よりも低いと、冷却不要と判断されて圧縮機112が停止することがある。通常、圧縮機112が停止している間は、冷却器115の冷気を冷蔵庫101内に送風する送風ファン116は停止されるが、運転移行の際は送風ファン116を稼働させてもよい。このことによって、冷却器115の温度上昇を促進して、圧縮機112の停止時間を通常よりも短くすることができる。圧縮機112の停止時間が短いほど、上記の理由で微凍結までの時間が短縮できて、鮮度保持上好ましい結果を得ることができる。 When rapid cooling 2 is completed, normal partial operation is performed. If the temperature of the cooler 115 is lower than a predetermined temperature during the operation transition, it may be determined that cooling is unnecessary and the compressor 112 may stop. Usually, while the compressor 112 is stopped, the blower fan 116 that blows the cool air of the cooler 115 into the refrigerator 101 is stopped. However, the blower fan 116 may be operated when the operation is shifted. As a result, the temperature rise of the cooler 115 can be promoted, and the stop time of the compressor 112 can be made shorter than usual. The shorter the stop time of the compressor 112, the shorter the time until fine freezing for the above-mentioned reason, and a favorable result can be obtained for maintaining freshness.
 通常のパーシャル運転に復帰した後は、図7に示すように、所定時間の間、急冷運転を開始させず、通常パーシャル運転を継続させる保護時間が設けられる。熱負荷投入前から変温室107で微凍結されていた食品があった場合、急冷運転によって一時的に食品の温度が低下し、微凍結よりも食品が硬くなる可能性がある。保護時間が設けられることによって、保護時間の間に食品温度は、通常のパーシャル運転時と実質的に同じ温度に近づき、食品の硬度も戻る。保護時間が設けられないと、連続して熱負荷が投入された場合には、既存微凍結食品が微凍結から凍結に近づいて、微凍結のメリットが減少することになるが、そのような不都合を防ぐことができる。 After returning to the normal partial operation, as shown in FIG. 7, a protection time is provided for continuing the normal partial operation without starting the rapid cooling operation for a predetermined time. If there is a food that has been slightly frozen in the variable temperature chamber 107 before the heat load is applied, the temperature of the food temporarily decreases due to the rapid cooling operation, and the food may become harder than the slight freezing. By providing the protection time, during the protection time, the food temperature approaches substantially the same temperature as during normal partial operation, and the food hardness also returns. If the protection time is not provided, when the heat load is continuously applied, the existing microfrozen food approaches freezing from microfrozen, and the merit of microfrozen is reduced. Can be prevented.
 保護時間が長く設けられるほど、確実に既存微凍結食品の温度は微凍結温度に戻りやすい。保護時間の長さについては、保護時間中の温度上昇および定期的に行われるデフロスト運転中の温度上昇を考慮して、食品の標準的な保存期間中に食品の温度が微凍結温度の範囲内に収まるように設定される。或いは、標準的な食品の保存期間中に、食品を切断する際に要する力が所定値以上に上がらないように設定されてもよい。 ¡The longer the protection time is set, the easier the temperature of the existing microfrozen food will return to the microfrozen temperature. Regarding the length of protection time, taking into account the temperature rise during the protection time and the temperature rise during regular defrost operation, the temperature of the food is within the range of the freezing temperature during the standard storage period of food. Is set to fit. Or during the preservation | save period of a standard foodstuff, you may set so that the force required when cutting a foodstuff may not rise beyond a predetermined value.
 一例として、図7には、急冷運転(急冷1および急冷2)時間が2.5時間に設定され、保護時間が3時間に設定された例を示す。この場合、1回の急冷周期が5.5時間となり、一般的な朝食、昼食および夕食の準備時間のサイクルにほぼ等しい。従って、ある食事準備時間にパーシャル室温が上昇して急冷運転が開始された場合でも、次の食事準備時間に同様に急冷が行われることができて、既存微凍結食品の鮮度維持を確実に行うことができる。 As an example, FIG. 7 shows an example in which the rapid cooling operation (rapid cooling 1 and rapid cooling 2) time is set to 2.5 hours and the protection time is set to 3 hours. In this case, one quench cycle is 5.5 hours, which is approximately equal to the general breakfast, lunch and dinner preparation time cycle. Therefore, even if the partial room temperature rises at a certain meal preparation time and the rapid cooling operation is started, the rapid cooling can be performed similarly at the next meal preparation time, and the freshness of the existing microfrozen food is reliably maintained. be able to.
 保護時間中に熱負荷が投入された場合には、検知シーケンスのみ作動させて急冷開始判定がされ、急冷必要と判定された際は、保護時間終了後に直ぐに急冷が開始される。 If a thermal load is applied during the protection time, only the detection sequence is activated and a rapid cooling start determination is made. If it is determined that rapid cooling is required, the rapid cooling starts immediately after the protection time is over.
 以上説明したように、本実施の形態の冷蔵庫101は、貯蔵室(変温室107)と、冷却器115からの冷気を貯蔵室に送風する送風部(送風ファン116)と、送風部を制御する制御部(制御マイコン132)とを備える。制御部により冷気の送風の風量(流量)が制御されることで、貯蔵室に保存された食品の表面を微凍結させ、微凍結温度で食品が保存される。このような構成により、微凍結層により食品と酸素との接触が遮断されて酸化が防止され、また、食品の取分けおよび切分けが容易に行われ、食品の風味を劣化させないので、保存された食品を新鮮に保存することができる。 As described above, the refrigerator 101 according to the present embodiment controls the storage room (transformer 107), the air blowing unit (blower fan 116) that blows cool air from the cooler 115 to the storage room, and the air blowing unit. And a control unit (control microcomputer 132). By controlling the air volume (flow rate) of the cool air blown by the control unit, the surface of the food stored in the storage room is slightly frozen, and the food is stored at the slightly freezing temperature. With such a configuration, the contact between the food and oxygen is blocked by the micro-frozen layer to prevent oxidation, and the food can be easily separated and separated, and the flavor of the food is not deteriorated. The food can be stored fresh.
 また、本実施の形態の冷蔵庫101において、送風部は、冷却器115からの冷気を貯蔵室に送風するダクト(冷蔵室ダクト120)と、ダクト内に設けられたダンパ(ダンパ装置117a)と、貯蔵室内の温度を検知する温度センサ(変温室温度センサ133)とを備える。また、制御部は、ダンパ装置を所定時間、強制的に開放させ、貯蔵室に保存された食品の表面を急速に微凍結させ、食品が微凍結温度で保存されるよう、温度センサの検知温度に基づいてダンパ装置を開閉制御する。このような構成により、食品の投入後、即座に急冷が開始されて、より短時間で酸素と食品との接触が遮断されて食品の酸化を防止することができ、さらに保存された食品を新鮮に保存することができる。 Moreover, in the refrigerator 101 of this Embodiment, a ventilation part is a duct (refrigeration room duct 120) which ventilates the cold air from the cooler 115 to a storage room, a damper (damper device 117a) provided in the duct, A temperature sensor that detects the temperature in the storage chamber (temperature change temperature sensor 133). In addition, the control unit forcibly opens the damper device for a predetermined time, rapidly micro-freezes the surface of the food stored in the storage chamber, and the temperature sensor detects the temperature so that the food is stored at the micro-freezing temperature. The damper device is controlled to open and close based on the above. With this configuration, rapid cooling starts immediately after the food is added, and the contact between oxygen and the food can be prevented in a shorter time, preventing oxidation of the food. Can be saved.
 また、本実施の形態の冷蔵庫101は、ダンパ装置が所定時間強制的に開放されるとともに、圧縮機が連続運転されるよう構成されている。このような構成により、より短時間で酸素との接触を遮断して酸化を防止することができ、さらに保存された食品を新鮮に保存することができる。 Further, the refrigerator 101 of the present embodiment is configured such that the damper device is forcibly opened for a predetermined time and the compressor is continuously operated. With such a configuration, contact with oxygen can be blocked in a shorter time to prevent oxidation, and stored food can be stored fresh.
 また、本実施の形態の冷蔵庫101は、貯蔵室と、冷却器115からの冷気を貯蔵室に送風する送風部116と、貯蔵室内の温度を検知する温度センサ133と、貯蔵室内への食品投入有無を判定する食品投入有無判定部134とを備える。食品投入有無判定部134は、送風部116を所定時間強制的に停止させ、温度センサ133の温度傾き(温度変化の度合い)に基づいて貯蔵室内への食品投入有無を判定するよう構成されている。このような構成により、貯蔵室内への食品投入有無の判定を簡素な構成で行うことができる。 In addition, the refrigerator 101 of the present embodiment includes a storage room, a blower unit 116 that blows cool air from the cooler 115 to the storage room, a temperature sensor 133 that detects the temperature in the storage room, and food input into the storage room And a food input presence / absence determination unit 134 for determining presence / absence. The food supply presence / absence determination unit 134 is configured to forcibly stop the air blowing unit 116 for a predetermined time and determine whether or not food is input into the storage room based on the temperature gradient (degree of temperature change) of the temperature sensor 133. . With such a configuration, it is possible to determine whether or not food is put into the storage chamber with a simple configuration.
 また、食品投入有無判定部134は、送風部116を所定時間強制的に停止させた後、送風部116を所定時間強制的に運転させて、送風部116の強制運転中における温度センサ133の温度傾きに基づいて貯蔵室内への食品投入有無を判定するよう構成されている。このような構成により、貯蔵室内への食品投入有無の判定を簡素な構成で確実に行うことができる。 In addition, the food input presence / absence determining unit 134 forcibly stops the air blowing unit 116 for a predetermined time, and then forcibly operates the air blowing unit 116 for a predetermined time so that the temperature of the temperature sensor 133 during the forced operation of the air blowing unit 116 is reached. Based on the inclination, it is configured to determine whether or not food is put into the storage chamber. With such a configuration, it is possible to reliably determine whether or not food is put into the storage chamber with a simple configuration.
 また、食品投入有無判定部134は、複数回実行されて貯蔵室内への食品投入有無の判定を行うよう構成されていてもよい。このような構成により、貯蔵室内への食品投入有無の判定を簡素な構成でより確実に行うことができる。 Further, the food input presence / absence determination unit 134 may be configured to be executed a plurality of times and determine whether or not food is input into the storage chamber. With such a configuration, it is possible to more reliably determine whether or not food is put into the storage chamber with a simple configuration.
 また、本実施の形態の冷蔵庫101は、貯蔵室(変温室107)の開閉を検知する貯蔵室開閉検知部127を備えていてもよい。このような構成により、貯蔵室開閉検知部127の開閉検知を起点に制御部132が実行されるため、より確実に食品の酸化を防止することができ、保存された食品を新鮮に保存することができる。 Moreover, the refrigerator 101 of this Embodiment may be provided with the storage room opening / closing detection part 127 which detects opening / closing of the storage room (transformer 107). With such a configuration, since the control unit 132 is executed starting from the opening / closing detection of the storage chamber opening / closing detection unit 127, it is possible to more reliably prevent the food from being oxidized and to store the stored food freshly. Can do.
 また、貯蔵室(変温室107)は、別の貯蔵室(冷蔵室102)内の一画に内蔵され、別の貯蔵室とは独立して温度制御されるよう構成されていてもよい。このような構成により、一度生成された微凍結層が安定に維持されて酸化防止効果が維持されることができる。 Further, the storage room (transformer room 107) may be configured to be built in a part of another storage room (refrigerated room 102) and temperature-controlled independently of the other storage room. With such a configuration, the finely frozen layer once generated can be stably maintained, and the antioxidant effect can be maintained.
 ディープフリーズを防止しつつ食品の微凍結を促進させるために、最適な冷却速度、および、過冷却の解除のための刺激の両方の要素が活用されて、制御部により貯蔵室内の温度が制御される。 In order to promote deep freezing of food while preventing deep freeze, both the optimal cooling rate and the stimulus for releasing supercooling are utilized to control the temperature in the storage room by the controller. The
 図9Aは、本発明の実施の形態1における冷蔵庫の貯蔵室の庫内温度と食品の表面温度との変化を示す図であり、図9Bは、本発明の実施の形態1における冷蔵庫の貯蔵室の冷却状態を示す図である。 FIG. 9A is a diagram showing a change in the internal temperature of the refrigerator storage chamber and the surface temperature of the food in Embodiment 1 of the present invention, and FIG. 9B is the refrigerator storage chamber in Embodiment 1 of the present invention. It is a figure which shows the cooling state.
 図9Aおよび図9Bにおいて、急冷1は、食品の表面温度が凝固点付近または凝固点以下になるまで急冷することを目的とする。急冷1では、図7に示すように、食品と冷気との温度差を大きくするために、圧縮機112の回転数が例えば、R2からR3に高められたり、熱伝達率を大きくするために、送風ファン116の回転数が例えば、VF2からVF6に高められて風量が大きくなるよう、各種条件が設定される。なお、R2、R3、VF2およびVF6は、任意の回転数を意味し、本実施の形態においては、図7および図10Aに示すように、R2<R3、および、VF2<VF6という大小関係を有する。 9A and 9B, the rapid cooling 1 aims at rapid cooling until the surface temperature of the food is near or below the freezing point. In the rapid cooling 1, as shown in FIG. 7, in order to increase the temperature difference between the food and the cold air, the rotational speed of the compressor 112 is increased from R2 to R3, for example, or the heat transfer coefficient is increased. Various conditions are set so that the rotational speed of the blower fan 116 is increased from VF2 to VF6, for example, and the air volume is increased. Note that R2, R3, VF2, and VF6 mean arbitrary rotational speeds, and in this embodiment, as shown in FIGS. 7 and 10A, they have a magnitude relationship of R2 <R3 and VF2 <VF6. .
 また、食品の表面温度が凝固温度を下回った場合には、急速に冷却すること自体が、緩慢冷却に比べて過冷却解除を引き起こしやすくなる側面も持つ。 Also, when the food surface temperature is below the solidification temperature, rapid cooling itself has a side that tends to cause overcooling cancellation compared to slow cooling.
 一方、急冷2以降は、急冷1よりも過冷却解除が目的とされる。また、急冷2以降は、食品全体の最終到達温度が凝固温度~標準的な微凍結温度となるように、急冷1よりも徐々に設定温度が高められて設定されている。急冷2以降では、ダンパ装置117aの開閉によって、庫内温度は設定温度を挟んで上下に変動する。この時点で食品が未凍結の場合は、この温度変動が刺激になって過冷却解除が促進される。通常制御運転が継続されることによって、食品温度は標準的な微凍結温度に近づく。このように、本実施の形態における構成によれば、冷蔵庫101において微凍結保存された食品は、いずれの時点でもディープフリーズすることはない。このため、調理時に保存された食品を切断しやすいなど良好な取り扱い性が維持されることが可能となる。 On the other hand, after the rapid cooling 2, the purpose is to release the supercooling rather than the rapid cooling 1. Further, after the rapid cooling 2, the set temperature is set to be gradually higher than the rapid cooling 1 so that the final reached temperature of the whole food is from the solidification temperature to the standard fine freezing temperature. After the rapid cooling 2, the internal temperature fluctuates up and down across the set temperature by opening and closing the damper device 117a. If the food is unfrozen at this point, this temperature fluctuation will be a stimulus and the supercooling release will be accelerated. By continuing normal control operation, the food temperature approaches the standard micro freezing temperature. Thus, according to the configuration of the present embodiment, the food that has been microfrozen in the refrigerator 101 does not deep freeze at any point in time. For this reason, it is possible to maintain good handling properties such as easy cutting of food stored during cooking.
 (実施の形態2)
 図10Aは、本発明の実施の形態2における冷蔵庫の温度勾配ΔTと急冷1の圧縮機回転数との関係を示す図であり、図10Bは、本発明の実施の形態2における冷蔵庫の温度勾配ΔTと急冷2の運転時間との関係を示す図である。なお、実施の形態1と同一部分の説明は省略し、異なる部分のみ説明する。
(Embodiment 2)
FIG. 10A is a diagram showing the relationship between the temperature gradient ΔT of the refrigerator in Embodiment 2 of the present invention and the compressor rotation speed of the rapid cooling 1, and FIG. 10B is the temperature gradient of the refrigerator in Embodiment 2 of the present invention. It is a figure which shows the relationship between (DELTA) T and the driving | running time of the rapid cooling 2. FIG. In addition, description of the same part as Embodiment 1 is abbreviate | omitted, and only a different part is demonstrated.
 図6における急冷判定シーケンスで、一定の条件においては、温度勾配ΔT値の大きさは、投入熱負荷量にほぼ比例する。本実施の形態の冷蔵庫101では、投入熱負荷量に比例して、冷却量を増やす運転制御が行われる。図10Aに示すように、温度勾配ΔTの絶対値がΔT0よりも大きい場合に、急冷が行われ、回転数がR2からR3に増加される。温度勾配ΔT1よりも絶対値が大きい場合には、回転数がさらにR4に増加される。なお、R2、R3及びR4は、任意の回転数を意味し、本実施の形態においては、図10Aに示すように、R2<R3<R4の大小関係を有する。このようにして、投入熱負荷量が多い場合には、冷却器115の温度を下げて冷却能力を増やすことにより、表層微凍結までの時間を確実に短縮させる。この際、急冷1の時間を延ばすと、変温室107内の着霜および隣接する貯蔵室の食品の凍結などの悪影響が出るため、時間の延長は行われないことが望ましい。 In the rapid cooling determination sequence in FIG. 6, under a certain condition, the magnitude of the temperature gradient ΔT value is substantially proportional to the input heat load. In the refrigerator 101 of the present embodiment, operation control for increasing the cooling amount in proportion to the input heat load amount is performed. As shown in FIG. 10A, when the absolute value of the temperature gradient ΔT is larger than ΔT0, rapid cooling is performed, and the rotation speed is increased from R2 to R3. When the absolute value is larger than the temperature gradient ΔT1, the rotational speed is further increased to R4. Note that R2, R3, and R4 represent arbitrary rotational speeds, and in the present embodiment, as shown in FIG. 10A, there is a magnitude relationship of R2 <R3 <R4. In this way, when the input heat load is large, the time until the surface layer micro freezing is reliably shortened by lowering the temperature of the cooler 115 and increasing the cooling capacity. At this time, if the time of the rapid cooling 1 is extended, adverse effects such as frosting in the variable temperature greenhouse 107 and freezing of food in the adjacent storage room are produced, so it is desirable that the time is not extended.
 また、図10Bに示すように、温度勾配ΔTの絶対値がΔT0~ΔT1の間では、急冷2の時間はt1に設定されるが、温度勾配ΔT1以上では、温度勾配ΔTの値と比例して時間が延長される。ただし、温度勾配ΔT2以上の熱負荷が投入されても、急冷2の時間がt2以上に延長されるよう設定されることはない。急冷2の上限時間t2は、着霜および食品凍結などの悪影響が出ないように適宜設定される。このように、本実施の形態の冷蔵庫101は、投入熱負荷量に合わせて急冷運転条件が調整されるよう構成されていることにより、確実に表層微凍結までの時間を短縮できる。一方で、過大な冷却による悪影響および運転コストの不要な増大を防止することができる。 Further, as shown in FIG. 10B, when the absolute value of the temperature gradient ΔT is between ΔT0 and ΔT1, the time of the rapid cooling 2 is set to t1, but at the temperature gradient ΔT1 or more, it is proportional to the value of the temperature gradient ΔT. Time is extended. However, even if a thermal load having a temperature gradient ΔT2 or more is applied, the rapid cooling 2 time is not set to be extended to t2 or more. The upper limit time t2 of the rapid cooling 2 is appropriately set so as not to adversely affect frost formation and food freezing. As described above, the refrigerator 101 according to the present embodiment is configured such that the rapid cooling operation condition is adjusted in accordance with the input heat load, so that it is possible to reliably shorten the time until the surface layer micro freezing. On the other hand, adverse effects due to excessive cooling and unnecessary increase in operating costs can be prevented.
 (実施の形態3)
 図11Aは、本発明の実施の形態3における冷蔵庫の貯蔵室の庫内温度と食品の表面温度との変化を示す図であり、図11Bは、本発明の実施の形態3における冷蔵庫の貯蔵室の冷却状態を示す図である。なお、実施の形態1と同一部分の説明は省略し、異なる部分のみ説明する。
(Embodiment 3)
FIG. 11A is a diagram showing changes in the internal temperature of the refrigerator storage chamber and the surface temperature of the food in Embodiment 3 of the present invention, and FIG. 11B is the refrigerator storage chamber in Embodiment 3 of the present invention. It is a figure which shows the cooling state. In addition, description of the same part as Embodiment 1 is abbreviate | omitted, and only a different part is demonstrated.
 本実施の形態は、実施の形態1と異なって、急冷1と急冷2との間に、強制非冷却時間が設けられており、食品表面の温度を上下させて水の過冷却解除が促進するよう構成されている。具体的には、圧縮機112の運転が10分程度停止されたり、ダンパ装置117aを強制閉に設定されたりして、貯蔵室(変温室107)の冷却が止められる。急冷1の最後に食品の表層温度が凝固点以下になっている場合には、停止中の温度上昇が刺激になって表層が微凍結することを狙ったものである。このような構成により、ディープフリーズするほどの低温化を防止しつつ食品の微凍結を促進させて酸化劣化を防止することができる。 Unlike the first embodiment, this embodiment is provided with a forced non-cooling time between the rapid cooling 1 and the rapid cooling 2, and the water surface temperature is raised and lowered to promote the release of the supercooling of water. It is configured as follows. Specifically, the operation of the compressor 112 is stopped for about 10 minutes, or the damper device 117a is set to be forcibly closed, so that the cooling of the storage room (conversion room 107) is stopped. When the surface temperature of the food is below the freezing point at the end of the rapid cooling 1, the temperature rise during the stop is a stimulus and the surface layer is intended to be slightly frozen. With such a configuration, it is possible to prevent oxidative degradation by promoting fine freezing of the food while preventing the temperature from becoming deep frozen.
 以上述べたとおり、本発明は、食品をディープフリーズさせることなく、短時間で食品を微凍結できる冷蔵庫を提供する。よって、本発明は、家庭用のみならず業務用の冷蔵庫においても適用することができ、ショーケースおよびプレハブ冷蔵庫等にも幅広く利用できる。 As described above, the present invention provides a refrigerator capable of slightly freezing food in a short time without deep freezing the food. Therefore, the present invention can be applied not only to household use but also to commercial refrigerators, and can be widely used for showcases, prefabricated refrigerators, and the like.
 101  冷蔵庫
 102  冷蔵室(貯蔵室)
 107  変温室(貯蔵室、パーシャル室)
 112  圧縮機
 115  冷却器
 116  送風ファン(送風部)
 117,117a,117b  ダンパ装置(ダンパ)
 120  冷蔵室ダクト(ダクト)
 121  照明装置
 122  上面カバー
 123  収納ケース
 123a  後面壁
 123b  前面壁
 124  開閉扉
 125  変温室背面ダクト
 126  変温室天面ダクト
 126a  断熱ダクト部材
 126b  ダクトカバー
 127  扉開閉検知部(貯蔵室開閉検知部)
 128  底板
 129  冷気吹出し口
 130  冷蔵室扉スイッチ
 131  設定部
 132  制御マイコン(制御部)
 133  変温室温度センサ(温度センサ)
 134  食品投入有無判定部
101 refrigerator 102 refrigerator compartment (storage room)
107 Changing greenhouse (storage room, partial room)
112 Compressor 115 Cooler 116 Blower Fan (Blower Unit)
117, 117a, 117b Damper device (damper)
120 Cold room duct (duct)
REFERENCE SIGNS LIST 121 Illuminating device 122 Top cover 123 Storage case 123a Rear wall 123b Front wall 124 Open / close door 125 Changing room rear duct 126 Changing room top duct 126a Thermal insulation duct member 126b Duct cover 127 Door opening / closing detection part (storage room opening / closing detection part)
128 Bottom plate 129 Cold air outlet 130 Cold room door switch 131 Setting unit 132 Control microcomputer (control unit)
133 Temperature change sensor (temperature sensor)
134 Food input presence / absence determination unit

Claims (6)

  1. 貯蔵室と、冷却器からの冷気を前記貯蔵室に送風する送風部と、前記送風部を制御する制御部とを備え、前記制御部は、食材の凝固点以下の冷気を前記貯蔵室に導入する第一急冷運転と、前記第一急冷運転後に前記第一急冷運転より温度の高い冷気を導入する第二急冷運転と、前記第二急冷運転後に前記第二急冷運転より温度の高い冷気を導入する通常冷却運転とが行われるよう前記送風部を制御するよう構成され、前記制御部により前記食材が0℃以下で保存される冷蔵庫。 A storage room, a blower that blows cool air from a cooler to the storage room, and a control unit that controls the blower, wherein the control part introduces cold air below the freezing point of the food into the storage room A first quenching operation, a second quenching operation that introduces cooler air than the first quenching operation after the first quenching operation, and a cooler air that is hotter than the second quenching operation after the second quenching operation A refrigerator configured to control the air blowing unit so that a normal cooling operation is performed, and the food is stored at 0 ° C. or less by the control unit.
  2. 前記第二急冷運転時間は、前記第一急冷運転時間より長く設定された請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the second quenching operation time is set longer than the first quenching operation time.
  3. 少なくとも前記第一急冷運転時および前記第二急冷運転時のいずれかの冷気風量は、前記通常冷却運転時の冷気風量より大きく設定された請求項1または2に記載の冷蔵庫。 3. The refrigerator according to claim 1, wherein at least the amount of cold air during the first quenching operation and the second quenching operation is set larger than the amount of cold air during the normal cooling operation.
  4. 前記送風部は、前記冷却器からの前記冷気を前記貯蔵室に送風する送風機と、ダクトと、前記ダクト内に設けられたダンパと、を備え、前記制御部は、前記送風機および前記ダンパの動作を制御するよう構成された請求項1から3のいずれか一項に記載の冷蔵庫。 The blower unit includes a blower that blows the cool air from the cooler to the storage chamber, a duct, and a damper provided in the duct, and the control unit operates the blower and the damper. The refrigerator as described in any one of Claim 1 to 3 comprised so that control might be carried out.
  5. 前記第一急冷運転と前記第二急冷運転との間に強制非冷却時間が設定された請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein a forced non-cooling time is set between the first quenching operation and the second quenching operation.
  6. 前記貯蔵室内の底面に高熱伝導性部材が設けられた請求項1から5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein a high thermal conductivity member is provided on a bottom surface of the storage chamber.
PCT/JP2016/004067 2015-09-11 2016-09-07 Refrigerator WO2017043072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16843940.4A EP3348940A4 (en) 2015-09-11 2016-09-07 Refrigerator
CN201680051323.0A CN108027193A (en) 2015-09-11 2016-09-07 Freezer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-179179 2015-09-11
JP2015179179A JP2017053583A (en) 2015-09-11 2015-09-11 refrigerator

Publications (1)

Publication Number Publication Date
WO2017043072A1 true WO2017043072A1 (en) 2017-03-16

Family

ID=58240758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004067 WO2017043072A1 (en) 2015-09-11 2016-09-07 Refrigerator

Country Status (4)

Country Link
EP (1) EP3348940A4 (en)
JP (1) JP2017053583A (en)
CN (1) CN108027193A (en)
WO (1) WO2017043072A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685170B2 (en) * 2016-04-19 2020-04-22 日立グローバルライフソリューションズ株式会社 refrigerator
JP6800083B2 (en) * 2017-04-21 2020-12-16 日立グローバルライフソリューションズ株式会社 refrigerator
JP6999293B2 (en) * 2017-06-13 2022-01-18 東芝ライフスタイル株式会社 refrigerator
JP6995511B2 (en) * 2017-07-03 2022-02-04 三菱電機株式会社 Refrigerator and refrigerator temperature control method
JP7185000B2 (en) * 2017-07-03 2022-12-06 三菱電機株式会社 Refrigerator and refrigerator temperature control method
JP7117604B2 (en) * 2019-02-06 2022-08-15 パナソニックIpマネジメント株式会社 refrigerator
CN111076470A (en) * 2019-12-25 2020-04-28 珠海格力电器股份有限公司 Fresh-keeping device
JP7351762B2 (en) * 2020-02-07 2023-09-27 日立グローバルライフソリューションズ株式会社 refrigerator
TWI750971B (en) * 2020-12-24 2021-12-21 台灣松下電器股份有限公司 refrigerator
CN112964019A (en) * 2021-02-24 2021-06-15 珠海格力电器股份有限公司 Food preservation control method and device and refrigerator
CN114304246B (en) * 2021-11-29 2024-05-07 新疆农垦科学院 Breathing type pressure-assisted shallow freezing and thawing integrated equipment and application method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022335A (en) * 2000-07-13 2002-01-23 Toshiba Corp Refrigerator
JP2010035484A (en) * 2008-08-05 2010-02-18 Mitsubishi Electric Corp Method for deep-freezing food and refrigerator-freezer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033362A (en) * 2001-10-22 2003-05-01 엘지전자 주식회사 Driving control method for parrllel refrigerator
JP4364098B2 (en) * 2004-09-24 2009-11-11 株式会社東芝 refrigerator
JP3805351B1 (en) * 2005-05-19 2006-08-02 シャープ株式会社 refrigerator
CN101093124B (en) * 2006-06-23 2011-11-02 海尔集团公司 Icebox without temperature tunable clapboard, and having snapchill cabinet and air return port turnable to open /close positiones, and control method
JP4595972B2 (en) * 2007-07-30 2010-12-08 三菱電機株式会社 refrigerator
JP5401889B2 (en) * 2008-08-07 2014-01-29 パナソニック株式会社 refrigerator
JP2010043806A (en) * 2008-08-18 2010-02-25 Panasonic Corp Refrigerator
JP4837019B2 (en) * 2008-11-04 2011-12-14 三菱電機株式会社 refrigerator
CN104487791A (en) * 2012-07-25 2015-04-01 松下知识产权经营株式会社 Refrigerator
CN103968631B (en) * 2013-01-28 2016-04-13 珠海格力电器股份有限公司 Automatic ice coating device of refrigerator, refrigerator and running method of refrigerator
JP6120367B2 (en) * 2013-05-17 2017-04-26 シャープ株式会社 refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022335A (en) * 2000-07-13 2002-01-23 Toshiba Corp Refrigerator
JP2010035484A (en) * 2008-08-05 2010-02-18 Mitsubishi Electric Corp Method for deep-freezing food and refrigerator-freezer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348940A4 *

Also Published As

Publication number Publication date
EP3348940A1 (en) 2018-07-18
CN108027193A (en) 2018-05-11
JP2017053583A (en) 2017-03-16
EP3348940A4 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
WO2017043072A1 (en) Refrigerator
JP4595972B2 (en) refrigerator
CN101636625B (en) Refrigerator and freezing preservation method
JP4744567B2 (en) Freezer refrigerator
KR20040068784A (en) Refrigerator Having Temperature- Controlled Chamber
CN102770728A (en) Refrigerator
CN114279164B (en) Control method of refrigerator and refrigerator with food fresh-keeping and freezing functions
JP2008164273A (en) Refrigerator
JP5178808B2 (en) Freezer refrigerator
JP2017026184A (en) refrigerator
JP4879209B2 (en) refrigerator
CN114264102B (en) Refrigerator control method and refrigerator
JP2018004228A (en) Refrigerator
JP2019082324A (en) refrigerator
JP4179328B2 (en) Freezer refrigerator
JP2017026185A (en) refrigerator
US2529734A (en) Defrosting system in refrigerated locker
WO2017013859A1 (en) Refrigerator
JP2008145027A (en) Refrigerator
JP7217758B2 (en) refrigerator
JP7387036B2 (en) refrigerator
JP2007309530A (en) Refrigerator
JP2007192446A (en) Refrigerator
CN114264103A (en) Refrigerator and control method thereof
JP6837423B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE