[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017026184A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2017026184A
JP2017026184A JP2015142675A JP2015142675A JP2017026184A JP 2017026184 A JP2017026184 A JP 2017026184A JP 2015142675 A JP2015142675 A JP 2015142675A JP 2015142675 A JP2015142675 A JP 2015142675A JP 2017026184 A JP2017026184 A JP 2017026184A
Authority
JP
Japan
Prior art keywords
temperature
food
refrigerator
storage
rapid cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015142675A
Other languages
Japanese (ja)
Inventor
桂 南部
Katsura Nanbu
桂 南部
森 貴代志
Kiyoshi Mori
貴代志 森
健一 柿田
Kenichi Kakita
健一 柿田
上迫 豊志
Toyoshi Kamisako
豊志 上迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015142675A priority Critical patent/JP2017026184A/en
Priority to EP16827426.4A priority patent/EP3327377A4/en
Priority to PCT/JP2016/003326 priority patent/WO2017013859A1/en
Priority to CN201680040752.8A priority patent/CN107850366A/en
Publication of JP2017026184A publication Critical patent/JP2017026184A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a household refrigerator preventing oxidation by blocking contact between food materials and oxygen without fastening the food materials or lowering flavor.SOLUTION: In a refrigerator which includes a storage chamber 107, blowing means 116 for blowing cool air from a cooler 115 to the storage chamber 107, and control means for controlling the blowing means 116: blow of the cool air is controlled by the control means to slightly freeze the surfaces of foods preserved in the storage chamber 107, and then the food is preserved at a slight-freezing temperature to block contact between food materials and oxygen by a slight-frozen layer, thereby preventing oxidation; separating and cutting the food materials are easily performed; and the preserved foods can be freshly preserved without lowering flavor.SELECTED DRAWING: Figure 2

Description

本発明は、食品を新鮮に保存することができる冷蔵庫に関するものである。   The present invention relates to a refrigerator capable of storing food freshly.

近年、共働きや高齢化などの社会動向を背景に食品の買い物頻度は減少傾向が続き、すぐに喫食されない予定の食材が家庭で保存される割合が増えている。一方で、鮮度の高い食材をおいしく食べたいという要望は変わらないため、結果的に家庭用冷蔵庫の鮮度維持性能に対する要求は高まっている。   In recent years, the frequency of food purchases has continued to decrease against the background of social trends such as working together and aging, and the proportion of ingredients that will not be eaten immediately is increasing at home. On the other hand, the desire to eat delicious foods with high freshness does not change, and as a result, the demand for freshness maintenance performance of household refrigerators is increasing.

食材の劣化要因としては、微生物の増殖による腐敗、食材の酵素による自己分解、酸化による劣化が大きい。これまで家庭用冷蔵庫では、低温保存によって上記3要因による変化速度を抑制することを目的としてきた。しかし、冷凍保存(−18℃以下)すると調理前の取り分けに解凍が必要であるなど調理の手間との兼ね合いの課題が生じ、冷蔵(4℃)と冷凍の中間の新温度帯が比較的短期間の保存に用いられる。特に、パーシャル温度(−1〜―5℃)保存は、細胞外液のみを凍結するものであり、チルド(1〜4℃)よりも低温による保存性と取分けの容易さを両立するものである。しかし、脂肪分を比較的多く含む鮮魚や精肉の保存については、油脂の酸化による変化が完全に抑制されるとは言えない。   As a cause of deterioration of foodstuffs, there are large deterioration due to the growth of microorganisms, self-degradation of foodstuffs by enzymes, and oxidation. Up to now, household refrigerators have been aimed at suppressing the rate of change due to the above three factors by low-temperature storage. However, when it is stored frozen (below -18 ° C), there is a problem of balancing with the labor of cooking, such as the need to defrost before cooking, and the new temperature zone between refrigeration (4 ° C) and freezing is relatively short. Used for storage between. In particular, partial temperature storage (-1 to -5 ° C) freezes only the extracellular fluid, and achieves both storage stability at low temperatures and ease of sorting than chilled (1 to 4 ° C). . However, regarding the preservation of fresh fish and meat with a relatively high fat content, it cannot be said that changes due to oxidation of fats and oils are completely suppressed.

油脂の酸化を抜本的に解決する方法の一つとして、流通業界で用いられるグレージング技術が挙げられる。グレージングとは食材を酸素に接触させないことを目的に、食材の表面に氷衣を作る技術である。具体的にはいったん凍らせた食材の表面に低温水を吹き付けた後に再度冷凍して、食材の外側に1mm程度の氷の層を作る技術である。グレージングを家庭用冷蔵庫で実現することを目的に、冷蔵庫内に浸漬槽を設けて食材を浸漬し、表面に水を付着させてから凍結する技術(例えば特許文献1)がある。   One of the methods for drastically solving the oxidation of fats and oils is a glazing technique used in the distribution industry. Glazing is a technique for creating ice coats on the surface of foods so that they do not come into contact with oxygen. Specifically, it is a technique in which low-temperature water is sprayed on the surface of the frozen food material and then frozen again to form an ice layer of about 1 mm on the outside of the food material. For the purpose of realizing glazing in a household refrigerator, there is a technique (for example, Patent Document 1) in which a dipping tank is provided in the refrigerator to immerse food, and water is attached to the surface and then frozen.

特開平3−170765号公報Japanese Patent Laid-Open No. 3-170765

しかしながら、上記特許文献1の技術では使用者が食材を無作為に並べて凍らせれば氷衣同士が凍結により固着して食材の取り出し時に分離の手間の課題が生じる。また、浸漬槽を定期的に洗浄するなど、別の手間が生じる。加えて、水の付着により食材によっては味が水っぽくなるという課題が生じ、対象食材が限られる。   However, in the technique of the above-mentioned Patent Document 1, if the user randomly arranges and freezes the ingredients, the ice garments adhere to each other due to freezing, which causes a problem of separation when the ingredients are taken out. In addition, another labor is required such as periodically cleaning the immersion bath. In addition, there is a problem that the taste of the food becomes watery due to the adhesion of water, and the target food is limited.

本発明は、家庭用冷蔵庫において、食材同士を固着させたり、風味を低下させたりすることなく、食材と酸素の接触を遮断して酸化を防止することを目的とする。   An object of the present invention is to prevent oxidation in a household refrigerator by blocking contact between the food and oxygen without causing the food to adhere to each other or reducing the flavor.

上記従来の課題を解決するために、本発明の冷蔵庫は、収納室と、冷却器からの冷気を前記収納室に送風する送風手段と、前記送風手段を制御する制御手段とを備えた冷蔵庫において、前記制御手段により前記冷気の送風を制御することで前記収納室に保存された食品の表面を微凍結させ、その後、微凍結温度で保存することを特徴とするものである。   In order to solve the above-described conventional problems, a refrigerator according to the present invention is a refrigerator including a storage chamber, a blowing unit that blows cool air from a cooler to the storage chamber, and a control unit that controls the blowing unit. The surface of the food stored in the storage chamber is finely frozen by controlling the blowing of the cold air by the control means, and then stored at a fine freezing temperature.

これにより、微凍結層により食材と酸素の接触を遮断して酸化を防止し、また食材の取
分けや切分けが容易に行われ、風味を劣化させることなく、保存食品を新鮮に保存することができる。
As a result, the micro-frozen layer blocks the contact between the ingredients and oxygen to prevent oxidation, and the ingredients can be easily separated and separated, and the preserved food can be stored fresh without deteriorating the flavor. it can.

本発明の冷蔵庫は、家庭用冷蔵庫において、食材同士を固着させたり、風味を低下させたりすることなく、食材と酸素の接触を遮断して酸化を防止することができ、保存食品を新鮮に保存することができる。   The refrigerator of the present invention can prevent oxidation by blocking the contact between the ingredients and oxygen without sticking the ingredients together or lowering the flavor in the refrigerator for home use. can do.

本発明の実施の形態1における冷蔵庫の正面図Front view of the refrigerator in Embodiment 1 of the present invention 図1のA−A断面図AA sectional view of FIG. 本発明の実施の形態1における冷蔵室の要部拡大図The principal part enlarged view of the refrigerator compartment in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の制御ブロック図Control block diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の投入負荷検知から急冷運転の制御フローチャートControl flow chart of rapid cooling operation from detection of input load of refrigerator in embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の投入負荷検知のシーケンス図Sequence diagram of detecting the input load of the refrigerator in the first embodiment of the present invention 本発明の実施の形態1における冷蔵庫の急冷運転のシーケンス図Sequence diagram of rapid cooling operation of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の微凍結開始時間と3日後のPOV値 との関係を示す図The figure which shows the relationship between the slightly freezing start time of the refrigerator in Embodiment 1 of this invention, and the POV value after 3 days 本発明の実施の形態2における冷蔵庫のΔTと急冷1の圧縮機回転数の関 係を示す図The figure which shows the relationship between (DELTA) T of the refrigerator in Embodiment 2 of this invention, and the compressor rotation speed of the rapid cooling 1 本発明の実施の形態2における冷蔵庫のΔTと急冷2の運転時間の関係を 示す図The figure which shows the relationship of (DELTA) T of the refrigerator in Embodiment 2 of this invention, and the operation time of the rapid cooling 2

第1の発明は、収納室と、冷却器からの冷気を前記収納室に送風する送風手段と、前記送風手段を制御する制御手段とを備えた冷蔵庫において、前記制御手段により前記冷気の送風を制御することで前記収納室に保存された食品の表面を微凍結させ、その後、微凍結温度で保存することを特徴とする冷蔵庫である。これにより、微凍結層により食材と酸素の接触を遮断して酸化を防止し、また食材の取分けや切分けが容易に行われ、風味を劣化させない。   1st invention is a refrigerator provided with the storage room, the ventilation means which ventilates the cool air from a cooler to the storage room, and the control means which controls the ventilation means, The ventilation of the cold air by the control means The refrigerator is characterized in that the surface of the food stored in the storage room is finely frozen by being controlled, and then stored at a fine freezing temperature. Thus, the contact between the food and oxygen is blocked by the finely frozen layer to prevent oxidation, and the food is easily separated and separated, and the flavor is not deteriorated.

第2の発明は、第1の発明において、前記送風手段は、前記冷却器からの冷気を前記収納室に送風するダクトと、前記ダクト内に設けたダンパー装置と、前記収納室内の温度を検知する温度センサとを備え、前記制御手段は、前記ダンパー装置を所定時間強制的に開放し、前記収納室に保存された食品の表面を急速に微凍結させ、その後、前記温度センサの検知温度に基づいて前記ダンパー装置を開閉制御して微凍結温度で保存することを特徴とする冷蔵庫である。これにより、食材の投入後、即座に急冷を開始してより短時間で酸素との接触を遮断して酸化を防止可能になる。   In a second aspect based on the first aspect, the air blowing means detects a duct for blowing cool air from the cooler to the storage chamber, a damper device provided in the duct, and a temperature in the storage chamber. And the control means forcibly opens the damper device for a predetermined time, rapidly finely freezes the surface of the food stored in the storage chamber, and then sets the detected temperature to the temperature sensor. On the basis of this, the damper device is controlled to open and close and stored at a micro freezing temperature. As a result, rapid cooling is started immediately after the food is introduced, and contact with oxygen can be cut off in a shorter time to prevent oxidation.

第3の発明は、第2の発明において、前記ダンパー装置を所定時間強制的に開放するとともに、圧縮機を連続運転することを特徴とする冷蔵庫である。これにより、食材の表面を急速に微凍結させて、短時間で酸素との接触を遮断して酸化を防止可能になる。   A third invention is the refrigerator according to the second invention, wherein the damper device is forcibly opened for a predetermined time and the compressor is continuously operated. As a result, the surface of the food can be finely frozen rapidly, and contact with oxygen can be blocked in a short time to prevent oxidation.

第4の発明は、第1から第3のいずれか1つの発明において、前記収納室の開閉を検知する収納室開閉検知手段を備え、収納室開閉検知手段の開閉検知を起点に前記制御手段を実行することを特徴とする冷蔵庫である。これにより、使用者による食材の投入操作をより短時間で検知可能になり、食材と酸素との接触時間を短縮して酸化を防止可能になる。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the storage unit opening / closing detection means for detecting opening / closing of the storage chamber is provided, and the control unit is started from the opening / closing detection of the storage chamber opening / closing detection unit. It is a refrigerator characterized by performing. Thereby, it becomes possible to detect the input operation of the food by the user in a shorter time, and the contact time between the food and oxygen can be shortened to prevent oxidation.

第5の発明は、第1から第4のいずれか1つの発明において、前記収納室は貯蔵室内の
一画に内蔵され、前記収納室は前記貯蔵室とは独立して温度制御されることを特徴とする冷蔵庫である。これにより、一度生成した微凍結層が安定に維持されて酸化防止効果を維持できる。
According to a fifth invention, in any one of the first to fourth inventions, the storage chamber is built in a section of the storage chamber, and the temperature of the storage chamber is controlled independently of the storage chamber. It is a featured refrigerator. Thereby, the micro freezing layer once produced | generated can be maintained stably, and the antioxidant effect can be maintained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の正面図、図2は図1のA−A断面図、図3は同実施の形態1による冷蔵室の要部拡大図、図4は同実施の形態における冷蔵庫の制御ブロック図、図5は同実施の形態における冷蔵庫の投入負荷検知から急冷運転の制御フローチャートである。
(Embodiment 1)
1 is a front view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, FIG. 3 is an enlarged view of a main part of the refrigerator compartment according to Embodiment 1, and FIG. FIG. 5 is a control flowchart of the rapid cooling operation from detection of the input load of the refrigerator in the same embodiment.

図1及び図2において、冷蔵庫101は上段、中段、及び下段の5つに区画された貯蔵室を備える。具体的には、上段の貯蔵室は冷蔵室102で前面に観音開き式扉を有し、下方に引出し扉を備える第一の冷凍室103と、それと並行に引出し扉を備える製氷室105があり、最下部に配置される引出し扉を備えた野菜室106と、製氷室105と野菜室106の間に配置した第二の冷凍室104とから構成される。   1 and 2, the refrigerator 101 includes a storage room divided into five parts, an upper stage, a middle stage, and a lower stage. Specifically, the upper storage room is a refrigerating room 102 having a double door at the front, a first freezing room 103 having a drawer door below, and an ice making room 105 having a drawer door in parallel therewith, The vegetable compartment 106 is provided with a drawer door disposed at the bottom, and the ice compartment 105 and the second freezer compartment 104 disposed between the vegetable compartment 106.

各扉は、それぞれ、冷蔵室扉102a、第一の冷凍室扉103a、第二の冷凍室扉104a、製氷室扉105a、野菜室扉106aとして図示する。冷蔵室102と、横並びの製氷室105と第一の冷凍室103とは、上下に断熱区画壁111により区画される。さらに、横並びの製氷室105及び第一の冷凍室103と第二の冷凍室104、第二の冷凍室104と野菜室106も、同様に断熱区画壁111により上下に区画される。   Each door is illustrated as a refrigerator door 102a, a first freezer door 103a, a second freezer door 104a, an ice making door 105a, and a vegetable door 106a. The refrigerator compartment 102, the side-by-side ice making compartments 105, and the first freezing compartment 103 are partitioned vertically by a heat insulating partition wall 111. Further, the side-by-side ice making chamber 105, the first freezing chamber 103 and the second freezing chamber 104, and the second freezing chamber 104 and the vegetable chamber 106 are similarly partitioned vertically by the heat insulating partition wall 111.

また、外箱108と内箱109の間に充填された断熱壁110で形成された冷蔵庫101は、上部に設けた冷蔵室102内の下部に独立した貯蔵室としての変温室107を区画形成している。変温室107は切替え室として構成され、本実施の形態の場合は、0℃付近の冷蔵温度帯の第一の温度帯(チルド)と、第一の温度帯と約−6℃以下の冷凍温度帯との間の温度帯となる約−3℃の第二の温度帯(パーシャル)に設定可能である。   In addition, the refrigerator 101 formed by the heat insulating wall 110 filled between the outer box 108 and the inner box 109 partitions and forms a variable temperature chamber 107 as an independent storage room in the lower part of the refrigerator room 102 provided at the upper part. ing. The temperature changing room 107 is configured as a switching room. In the case of the present embodiment, the first temperature zone (chilled) in the refrigeration temperature zone near 0 ° C., the first temperature zone, and the freezing temperature of about −6 ° C. or less. It can be set to a second temperature zone (partial) of about −3 ° C., which is a temperature zone between the zone.

次に冷却システムの構成について説明する。第二の冷凍室104の背面後方には、冷却室114が形成され、内部に冷却器115を有し、上部機械室113に設置された圧縮機112とともに、冷蔵庫101を冷却する冷凍サイクルを構成する。また、冷却室114には、冷却器115で熱交換された冷気を強制循環させる送風ファン116が配置され、その上方には冷蔵室102に流入する冷気を分配するダンパー装置117aと、変温室107に流入する冷気を分配するダンパー装置117bを配置している。各貯蔵室において、冷蔵室102の庫内温度は約2〜3℃であり、野菜室106の庫内温度は約2〜5℃であり、第一の冷凍室103、第二の冷凍室104の庫内温度は約−18〜−20℃と温度帯を分けて使用可能である。それにより、食品の保存に適した温度帯を選択し、食品を貯蔵することによって、より高い保鮮性と長期保存を実現することができる。   Next, the configuration of the cooling system will be described. A cooling chamber 114 is formed on the rear rear side of the second freezing chamber 104, has a cooler 115 inside, and constitutes a refrigeration cycle for cooling the refrigerator 101 together with the compressor 112 installed in the upper machine chamber 113. To do. The cooling chamber 114 is provided with a blower fan 116 that forcibly circulates the cool air exchanged by the cooler 115, and a damper device 117 a that distributes the cool air flowing into the refrigerating chamber 102, and a variable temperature chamber 107. A damper device 117b that distributes the cold air flowing in is disposed. In each storage room, the internal temperature of the refrigerator compartment 102 is about 2 to 3 ° C., the internal temperature of the vegetable compartment 106 is about 2 to 5 ° C., and the first freezer room 103 and the second freezer room 104. The internal temperature can be divided into about -18 to -20 ° C and the temperature zone. Thereby, by selecting a temperature range suitable for the preservation of food and storing the food, higher freshness and long-term preservation can be realized.

次に変温室107と変温室107の天面に設置される照明装置121の構成について、図3、図4を用いて説明する。変温室107は、その上部が冷蔵室102の最下段に位置する棚板118としても利用できる合成樹脂製の上面カバー122と、上面カバー122の下方に、前後方向に引き出し可能に収納された合成樹脂製の収納ケース123と、変温室107の上面カバー122の前面開口部に開閉自在に設けられた開閉扉124で構成されており、開閉扉124は閉時には収納ケース123の前面壁123bと密着し、変温室107内を略密閉空間としている。また、開閉扉124は内部に収納した食品が視認できるように、透明性の高い合成樹脂製としている。   Next, the structure of the changing room 107 and the illumination device 121 installed on the top surface of the changing room 107 will be described with reference to FIGS. The variable temperature chamber 107 has a synthetic resin upper surface cover 122 that can also be used as a shelf 118 located at the bottom of the refrigerator compartment 102, and a synthetic resin housed below the upper surface cover 122 so that it can be pulled out in the front-rear direction. It is composed of a resin storage case 123 and an open / close door 124 that can be freely opened and closed at the front opening of the top cover 122 of the variable temperature chamber 107. The open / close door 124 is in close contact with the front wall 123b of the storage case 123 when closed. In addition, the inside of the variable temperature room 107 is a substantially sealed space. The open / close door 124 is made of a highly transparent synthetic resin so that the food stored inside can be visually recognized.

さらに、変温室107の奥壁面には、開閉扉124が閉時に収納ケース123の後面壁123aと嵌合するように、扉開閉検知手段127が設けられている。また本実施の形態では、収納ケース123の底面にはアルミ製の底板128を嵌め込み、冷却性能向上や、照明装置121からの照明拡散による視認性向上を図っているが、特に必須のものではない。   Further, a door open / close detection means 127 is provided on the back wall surface of the variable temperature chamber 107 so that the open / close door 124 is fitted to the rear wall 123a of the storage case 123 when the open / close door 124 is closed. Further, in the present embodiment, an aluminum bottom plate 128 is fitted on the bottom surface of the storage case 123 to improve cooling performance and visibility by diffusing illumination from the lighting device 121, but this is not essential. .

また変温室107の奥壁面後方には、ダンパー装置117bで分配された冷気を変温室107に導く変温室背面ダクト125が形成され、変温室107の天面には変温室背面ダクト125の下流となる変温室天面ダクト126が配置されている。変温室天面ダクト126は、断熱性を有する発泡断熱部材で形成された断熱ダクト部材126aと、その外周を覆う化粧板となる合成樹脂製のダクトカバー126bとで構成されている。変温室天面ダクト126は上面カバー122とともにダクトを構成し、収納ケース123の上面部となる位置に変温室107内へ冷気を吐出する冷気吹出し口129を形成している。   Further, a rear wall 125 of the variable temperature chamber that guides the cold air distributed by the damper device 117b to the variable temperature chamber 107 is formed behind the rear wall surface of the variable temperature chamber 107. A variable temperature ceiling top duct 126 is arranged. The variable temperature ceiling top duct 126 includes a heat insulating duct member 126a formed of a heat insulating foam heat insulating member, and a synthetic resin duct cover 126b serving as a decorative plate covering the outer periphery of the heat insulating duct member 126a. The variable temperature ceiling top duct 126 constitutes a duct together with the upper surface cover 122, and a cold air outlet 129 for discharging cold air into the variable temperature chamber 107 is formed at a position to be the upper surface portion of the storage case 123.

また、変温室107内には室内を照射する照明装置121が、変温室天面ダクト126の奥行中心位置よりも前方の開閉扉側に、ダクトカバー126aに埋め込まれて設置されている。   In addition, a lighting device 121 for irradiating the room is installed in the variable temperature chamber 107 so as to be embedded in the duct cover 126 a on the open / close door side in front of the depth center position of the variable temperature ceiling top duct 126.

次に、冷蔵室102には冷蔵室扉102aの開閉状態を検知する冷蔵室扉スイッチ130が設置され、冷蔵庫101の庫内外の任意の場所には変温室107の温度帯や運転モードを切替える設定手段131が設置されている。また、冷蔵室扉スイッチ130から信号S1、設定手段131から信号S2、扉開閉検知手段127から信号S3が、それぞれ制御マイコン132へ入力され、さらに制御マイコン132からは信号S4が圧縮機112へ、信号S5が送風ファン116へ、信号S6がダンパー装置117aへ、信号S7がダンパー装置117bへ出力されて、所定の冷却動作をおこなう。   Next, a refrigerating room door switch 130 for detecting the open / closed state of the refrigerating room door 102a is installed in the refrigerating room 102, and a setting for switching the temperature zone and operation mode of the variable temperature chamber 107 at any location inside or outside the refrigerator 101 is installed. Means 131 are installed. Further, a signal S 1 from the refrigerator door switch 130, a signal S 2 from the setting means 131, and a signal S 3 from the door opening / closing detection means 127 are respectively input to the control microcomputer 132, and further, the signal S 4 is input from the control microcomputer 132 to the compressor 112. The signal S5 is output to the blower fan 116, the signal S6 is output to the damper device 117a, and the signal S7 is output to the damper device 117b to perform a predetermined cooling operation.

以上のように構成された冷蔵庫について、以下その動作、作用について図5〜図7を用いて説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated using FIGS. 5-7 below.

まず、設定手段131により変温室107の温度帯が、第二の温度帯(パーシャル)に設定されている状態で開閉扉124が閉扉されて、かつ冷蔵室扉スイッチ130が冷蔵室扉102aの閉を検知する(STEP1)。そして、蔵室扉スイッチ130が冷蔵室扉102aの閉を検知した(STEP1)ことを起点として、食品投入有無判定手段134により負荷投入の有無を判定する。具体的には、圧縮機112が始動後5分以上経過していて、外気温により定められる所定の回転数で運転されている場合(STEP2)、変温室107内を急冷するかどうかを判定する急冷開始判定が開始される(STEP3)。STEP2で、圧縮機112の始動後の時間が5分に達していない場合は、5分を経過した時点でSTEP3に移行する。   First, the open / close door 124 is closed while the temperature zone of the temperature changing chamber 107 is set to the second temperature zone (partial) by the setting means 131, and the refrigerator compartment door switch 130 is closed to the refrigerator compartment door 102a. Is detected (STEP 1). Then, starting from the fact that the storage room door switch 130 detects the closing of the refrigerating room door 102a (STEP 1), the food input presence / absence determination means 134 determines whether or not a load is applied. Specifically, when the compressor 112 has been running for 5 minutes or more after starting and is operated at a predetermined number of rotations determined by the outside air temperature (STEP 2), it is determined whether or not the inside of the variable temperature chamber 107 is to be rapidly cooled. Rapid cooling start determination is started (STEP 3). If the time after starting the compressor 112 does not reach 5 minutes in STEP2, the process proceeds to STEP3 when 5 minutes have passed.

STEP3で、無負荷と判定された場合は、通常のパーシャル制御を行う(STEP4)。一方、STEP3で、負荷投入有りと判定された場合は、所定の急冷運転を開始する。急冷運転の詳細は後述するが、概要は、STEP5の急冷1を行い、その後、STEP6の急冷2を行う。また、所定の急冷運転終了後は、STEP7のディープフリーズ保護運転を行う。   If it is determined in STEP 3 that there is no load, normal partial control is performed (STEP 4). On the other hand, if it is determined in STEP 3 that a load has been applied, a predetermined rapid cooling operation is started. Although the details of the rapid cooling operation will be described later, in summary, the rapid cooling 1 of STEP 5 is performed, and then the rapid cooling 2 of STEP 6 is performed. Further, after completion of the predetermined rapid cooling operation, the deep freeze protection operation of STEP 7 is performed.

なお、STEP5の急冷1とSTEP6の急冷2の間に負荷投入の有無を再度判定する急冷解除判定(STEP8)を行うことが望ましい。急冷解除判定(STEP8)は、後述するSTEP2からSTEP3での急冷開始判定と同様である。   In addition, it is desirable to perform the rapid cooling cancellation | release determination (STEP8) which determines again the presence or absence of load injection between the rapid cooling 1 of STEP5 and the rapid cooling 2 of STEP6. The rapid cooling release determination (STEP 8) is the same as the rapid cooling start determination in STEP 2 to STEP 3, which will be described later.

また、上記急冷解除判定は、変温室(パーシャル室)107用のダンパー装置117bを所定時間強制的に閉じたときの変温室温度センサ133の温度傾きによって判定してもよい。   Further, the rapid cooling release determination may be performed based on the temperature gradient of the variable temperature chamber temperature sensor 133 when the damper device 117b for the variable temperature chamber (partial room) 107 is forcibly closed for a predetermined time.

図6において、STEP2からSTEP3での急冷開始判定である食品投入有無判定手段134のシーケンスを説明する。   In FIG. 6, the sequence of the food input presence / absence determination means 134, which is the rapid cooling start determination in STEP2 to STEP3, will be described.

急冷開始判定が始まると、冷蔵室用のダンパー装置117aは強制的に開かれ、変温室(パーシャル室)107用のダンパー装置117bは強制的に閉じられ、圧縮機112は前記の所定の回転数のまま、吐出冷気の流量は所定量で3分間運転される。3分経過後、冷蔵室用のダンパー装置117aは強制的に閉じられ、変温室(パーシャル室)107用のダンパー装置117bは強制的に開かれる。投入負荷検知シーケンス開始から4分後と5分後の温度を変温室温度センサ133により検知し、温度勾配ΔTを算出する。ΔT値が、4分後のパーシャル室温度によって定められる所定の閾値よりも大きい場合は、投入負荷ありと判定され、急冷運転が開始される。   When the rapid cooling start determination is started, the damper device 117a for the refrigerator compartment is forcibly opened, the damper device 117b for the variable temperature chamber (partial chamber) 107 is forcibly closed, and the compressor 112 has the predetermined rotational speed. In this state, the discharge cold air is operated at a predetermined amount for 3 minutes. After 3 minutes, the damper device 117a for the refrigerator compartment is forcibly closed, and the damper device 117b for the variable temperature chamber (partial chamber) 107 is forcibly opened. Temperatures at 4 minutes and 5 minutes after the start of the input load detection sequence are detected by the variable temperature sensor 133, and a temperature gradient ΔT is calculated. When the ΔT value is larger than a predetermined threshold value determined by the partial chamber temperature after 4 minutes, it is determined that there is an input load, and the rapid cooling operation is started.

上記シーケンスにおいて、検知開始から3分間、変温室107の冷却を停止することにより、変温室107の温度変化状況を安定化させて温度勾配ΔTを安定化させることができる。通常、パーシャル運転中は、圧縮機112の回転数、吐出冷気の風量、変温室107内に既に収納されている負荷量が一定ではなく、また庫内温度は、常に上昇中、または下降中である。検知の直前のこれら条件が異なっても一定の閾値で判定できなければならない。変温室107の冷却開始に先立って、上記所定条件での運転を3分間継続することによって、ΔT値は主に投入熱負荷を反映することができることを見い出した。その結果、検知直前の運転状況にかかわらず、安定して正しい判定を行えるようになった。   In the above sequence, by stopping the cooling of the temperature-changing room 107 for 3 minutes from the start of detection, the temperature change state of the temperature-changing room 107 can be stabilized and the temperature gradient ΔT can be stabilized. Normally, during the partial operation, the rotational speed of the compressor 112, the air volume of the discharged cold air, and the load amount already stored in the variable temperature chamber 107 are not constant, and the internal temperature is constantly increasing or decreasing. is there. Even if these conditions immediately before detection are different, it must be possible to determine with a certain threshold. It was found that the ΔT value can mainly reflect the input heat load by continuing the operation under the above-mentioned predetermined conditions for 3 minutes prior to the start of cooling of the temperature changing room 107. As a result, the correct judgment can be made stably regardless of the driving situation immediately before detection.

加えて、前半3分間で変温室内温度を高めてから冷却を開始することにより、直ちに冷却するよりもΔTの絶対値を大きくすることが出来る。これは、ΔT値と変温室温度センサ133の測定バラツキのS/N比を拡大することになり、結果的にΔT値に基づいた判定の精度を高めることができる。   In addition, the absolute value of ΔT can be made larger than immediately by starting the cooling after raising the temperature in the variable temperature chamber in the first half 3 minutes. This increases the S / N ratio between the ΔT value and the measurement variation of the variable temperature sensor 133, and as a result, the accuracy of determination based on the ΔT value can be increased.

また、前半3分間に冷蔵室102を集中的に強制冷却することによって、冷蔵室102の温度は通常運転時よりも低下する。そのため、冷蔵室102が再度温度調整されるようになった際、ダンパー装置117aは通常よりも長く閉じることになる。後述するように、食材の表層微凍結を速めるためには、急冷開始後、ダンパー装置117aが閉じてダンパー装置117bのみが開く状態が継続することが重要である。前述の冷蔵室102の予備冷却は、ダンパー装置117bの連続開時間を延長する効果があり、表層微凍結を促進する。   Further, by intensively forcibly cooling the refrigerator compartment 102 in the first three minutes, the temperature of the refrigerator compartment 102 is lower than that during normal operation. Therefore, when the temperature of the refrigerator compartment 102 is adjusted again, the damper device 117a is closed longer than usual. As will be described later, in order to speed up the surface freezing of the food, it is important that after the start of rapid cooling, the damper device 117a is closed and only the damper device 117b is opened. The above-described preliminary cooling of the refrigerator compartment 102 has an effect of extending the continuous opening time of the damper device 117b, and promotes surface micro freezing.

3分後に、ダンパー装置117aを閉じてダンパー装置117bを開けることにより、変温室107が最大限の速度で冷却される。ダンパー装置開閉の直後は、開閉タイミングなどによって温度勾配が左右されることがあるため、安定の終了した4分後から5分後の間のΔT値を指標として判定する。   Three minutes later, the variable temperature chamber 107 is cooled at the maximum speed by closing the damper device 117a and opening the damper device 117b. Immediately after the damper device is opened and closed, the temperature gradient may be affected by the opening and closing timing or the like. Therefore, the ΔT value between 4 minutes and 5 minutes after the end of the stability is determined as an index.

変温室107に熱負荷の投入がない場合(図6のb)に比べて、ある程度大きな熱負荷が投入された場合には、変温室温度センサ133で測定される庫内温度の低下は遅くなり(図6のa)、ΔT値は小さくなる。   Compared with the case where no heat load is applied to the temperature changing greenhouse 107 (b in FIG. 6), when the heat load is increased to some extent, the drop in the internal temperature measured by the temperature changing temperature sensor 133 is delayed. (A in FIG. 6), the ΔT value becomes smaller.

ΔTの閾値については次の様々な条件によって変えて設定される。3分後の庫内温度が比較的高い時には後半2分間の冷却時に温度が降下しやすいためにΔTの閾値の絶対値は比較的大きく、3分後の庫内温度が比較的低い時には逆にΔTの閾値の絶対値は比較的小
さく設定される。外気温が比較的高い場合には後半2分間の冷却能力が比較的低くなりがちであるため、ΔTの閾値の絶対値は比較的小さく設定される。圧縮機112の回転数が比較的高い時には冷却能力が比較的高くなるために、ΔTの閾値の絶対値は比較的大きく設定される。
The threshold value of ΔT is set by changing according to the following various conditions. When the internal temperature after 3 minutes is relatively high, the absolute value of the ΔT threshold is relatively large because the temperature tends to drop during the second half cooling, and conversely when the internal temperature after 3 minutes is relatively low The absolute value of the threshold value of ΔT is set to be relatively small. When the outside air temperature is relatively high, the cooling capacity for the latter half 2 minutes tends to be relatively low, so the absolute value of the threshold value of ΔT is set to be relatively small. Since the cooling capacity becomes relatively high when the rotation speed of the compressor 112 is relatively high, the absolute value of the threshold value of ΔT is set to be relatively large.

検知シーケンスで投入熱負荷の有無を判定する時、特にΔT値が閾値に近い場合には、正しく判定できるかどうかは正規分布に従って確率的に定まる。誤判定には、投入熱負荷があるにも関わらず無い(急冷しない)と判定する第一の誤判定と、投入負荷が無いにも関わらずある(急冷する)と判定する第二の誤判定がある。第一の誤判定と第二の誤判定の確率が等しくなるようにΔTの閾値を設定してもよい。投入熱負荷がより確実に急冷されることが使用上理にかなう場合には、第一の誤判定が極力小さくなるように、上記の等しい確率の場合よりもΔTの閾値を大きく設定する。逆に、既に変温室107内で冷却されている被冷却物が過度に冷却されることが不利益であると考えて、第二の誤判定が極力小さくなるように、上記の等しい確率の場合よりもΔTの閾値を小さく設定する使い方もできる。   When determining the presence or absence of the input heat load in the detection sequence, particularly when the ΔT value is close to the threshold value, whether it can be correctly determined is determined stochastically according to the normal distribution. The first misjudgment that determines that there is no input load (does not cool rapidly) in the misjudgment and the second misjudgment that determines that there is no input load (quickly cools). There is. You may set the threshold value of (DELTA) T so that the probability of a 1st misjudgment and a 2nd misjudgment may become equal. When it is reasonable for the input heat load to be cooled more reliably, the threshold of ΔT is set larger than the case of the above equal probability so that the first erroneous determination is minimized. On the contrary, considering that it is disadvantageous that the object to be cooled already cooled in the variable temperature chamber 107 is excessively cooled, the above-mentioned equal probability so that the second misjudgment is minimized It is also possible to use the threshold of ΔT smaller than the above.

正しく判定する確率を向上するためには、壁面から変温室107内への熱侵入量を一定とすることが効果的である。変温室107を冷蔵室102内に設けると、外気温の変化に関わらず冷蔵室102の温度変化は所定範囲に収まるため熱侵入量を一定化しやすく、判定精度の向上に効果的である。   In order to improve the probability of correct determination, it is effective to make the amount of heat intrusion from the wall surface into the variable temperature chamber 107 constant. When the variable temperature chamber 107 is provided in the refrigerating room 102, the temperature change of the refrigerating room 102 is within a predetermined range regardless of the change in the outside air temperature, so that the amount of heat intrusion can be easily made constant, which is effective in improving the determination accuracy.

変温室温度が所定の温度以上になった場合や開閉扉124が所定時間以上開いた場合には、図6の検知シーケンスによらず下記の急冷または通常のパーシャル運転の冷却を開始してもよい。その結果、検知運転に時間を費やすことなく直ぐにパーシャル室温を下げることが出来て、食材の温度上昇による鮮度劣化を防ぐことが出来る。   When the temperature of the changing greenhouse reaches a predetermined temperature or when the open / close door 124 is opened for a predetermined time or longer, the following rapid cooling or normal partial operation cooling may be started regardless of the detection sequence of FIG. . As a result, the partial room temperature can be immediately lowered without spending time in the detection operation, and freshness deterioration due to the temperature rise of the food can be prevented.

次に図7に示す急冷運転シーケンスについて説明する。急冷運転は、冷却能力の比較的大きな急冷1と冷却能力が通常のパーシャル運転よりは大きく急冷1より小さい急冷2からなる。急冷1運転時は、通常運転時と比べて圧縮機112の回転数がより高く、変温室107への冷気導入の風量を大きく、変温室107へのダンパー装置117bは強制的に開状態に、冷蔵室102へのダンパー装置117aはより開きにくく、また圧縮機112は停止することなく設定される。   Next, the rapid cooling operation sequence shown in FIG. 7 will be described. The rapid cooling operation includes rapid cooling 1 having a relatively large cooling capacity and rapid cooling 2 having a cooling capacity larger than that of the normal partial operation and smaller than the rapid cooling 1. In the rapid cooling 1 operation, the rotation speed of the compressor 112 is higher than that in the normal operation, the air volume for introducing cold air into the variable temperature chamber 107 is large, and the damper device 117b to the variable temperature chamber 107 is forcibly opened. The damper device 117a to the refrigerator compartment 102 is more difficult to open, and the compressor 112 is set without stopping.

急冷2運転時は、変温室107の温度調整をおこなって食材が所定温度以上に冷えないようにする。急冷2は、上記急冷1運転時の運転条件のいずれか一部の条件で運転される。または、上記急冷1運転時の運転条件と通常運転時の運転条件の間の条件で運転してもよい。   During the rapid cooling 2 operation, the temperature of the temperature changing greenhouse 107 is adjusted so that the food material does not cool to a predetermined temperature or higher. The rapid cooling 2 is operated under some of the operating conditions during the rapid cooling 1 operation. Or you may drive | operate on the conditions between the driving | running conditions at the time of the said rapid cooling 1 driving | operation, and the driving | running conditions at the time of normal driving | operation.

冷却能力の大きな急冷1によって食材の微凍結を促進する効果がある。一方、急冷1を継続すると、容量の限られた変温室107が主に冷却されるために、蒸発器115の冷熱が庫内に完全に放冷しきれず、蒸発器115の温度が低下し続けがちである。結果、低圧保護のため圧縮機112の運転を停止せざるを得なくなる。後述するように、微凍結を促進するためには連続して冷却を継続することが必須であるので、蒸発器115の所定以上の温度低下を避ける必要がある。そのために、急冷1は30分間で終了し、回転数のより低い急冷2を開始する。急冷2において、圧縮機112の回転数は、連続運転した場合でも蒸発器温度が所定以上に低下することを防ぐように設定する。また、それでも蒸発器温度が低下する場合には、ダンパー装置117aを強制的に開いてもよい。   The rapid cooling 1 having a large cooling capacity has an effect of promoting fine freezing of the food material. On the other hand, if the rapid cooling 1 is continued, the variable temperature greenhouse 107 having a limited capacity is mainly cooled, so that the cold heat of the evaporator 115 cannot be completely discharged into the chamber, and the temperature of the evaporator 115 continues to decrease. Tend to. As a result, the compressor 112 must be stopped for low pressure protection. As will be described later, since continuous cooling is essential to promote fine freezing, it is necessary to avoid a temperature drop of the evaporator 115 beyond a predetermined level. Therefore, the rapid cooling 1 is completed in 30 minutes, and the rapid cooling 2 having a lower rotational speed is started. In the rapid cooling 2, the rotation speed of the compressor 112 is set so as to prevent the evaporator temperature from being lowered more than a predetermined value even when continuously operated. If the evaporator temperature still decreases, the damper device 117a may be forcibly opened.

また、急冷1よりも冷却能力の低い急冷2を設けることにより、変温室107内で既に微凍結済みの食材をディープフリーズさせて硬化させたり、変温室107内に着霜したり
、変温室107に隣接して置かれる食材を想定外に微凍結させたりすることを避ける効果もある。
Further, by providing the quenching 2 having a cooling capacity lower than that of the quenching 1, the food that has already been slightly frozen in the modified greenhouse 107 is deep-frozen and hardened, frosted in the transformed greenhouse 107, There is also an effect of avoiding unexpectedly microfrozen foods placed adjacent to the foodstuff.

食材を急速に微凍結するためには、所定時間の間、連続して冷却され続けることが下記の理由により必要である。食材が微凍結する際、表層が微凍結すると食材内部の未凍結部に比べて比熱が約半分、熱伝導率が約4倍となる。この状況で冷却が一時停止すると、未凍結部の熱が微凍結部に熱伝導により伝わりやすいために、微凍結部の温度が再上昇しやすい。その結果、いったん微凍結した部分の温度が容易に0℃まで上昇し、融解が始まる。微凍結、融解が繰り返されることは食材を物理的に劣化させて質を落とすため好ましくない。   In order to rapidly freeze the food material, it is necessary to continue cooling for a predetermined time for the following reason. When the food is slightly frozen, when the surface layer is slightly frozen, the specific heat is about half that of the unfrozen portion inside the food, and the thermal conductivity is about four times. When the cooling is temporarily stopped in this situation, the heat of the unfrozen part is easily transferred to the finely frozen part by heat conduction, so that the temperature of the finely frozen part is likely to rise again. As a result, the temperature of the microfrozen portion once easily rises to 0 ° C., and melting begins. Repeated micro-freezing and thawing is not preferable because the food is physically degraded and the quality is lowered.

表層微凍結を急速に実現するためには、微凍結層が1mm程度の厚みまで成長させて、微凍結層自体が潜熱蓄熱効果を発揮して食材内部の熱が最表層まで伝熱しないように断熱効果を発揮することが必要である。このようにして、食材表層に確実に微凍結層を作ることが出来る。また、その場合、微凍結層生成までの時間は、過冷却現象などによって左右されにくく比較的安定する。   In order to realize surface micro-freezing rapidly, the micro-freezing layer is grown to a thickness of about 1 mm so that the micro-freezing layer itself exhibits a latent heat storage effect so that the heat inside the food does not transfer to the outermost layer. It is necessary to exert a heat insulating effect. In this way, a finely frozen layer can be reliably formed on the surface of the food material. In this case, the time until the fine frozen layer is generated is not affected by a supercooling phenomenon or the like and is relatively stable.

肉や魚などの食材は、細胞膜にリン脂質、皮下組織に中性脂肪を含むが、それらの構成要素である不飽和脂肪鎖は、酸素と接触することにより自動酸化されてヒドロキシペルオキシドを生じる。ヒドロキシペルオキシドを摂食すると、体内でラジカル反応によってDNAが損傷したり生理活性物質が酸化されたりするために有害である。   Food materials such as meat and fish contain phospholipids in the cell membrane and neutral fat in the subcutaneous tissue, but the unsaturated fatty chains that are their constituents are auto-oxidized by contact with oxygen to produce hydroxy peroxide. Ingestion of hydroxyperoxide is harmful because DNA is damaged by the radical reaction in the body and the physiologically active substance is oxidized.

上記の急冷によって食材の表層全体にむらなく微凍結層を作ると、細胞外液の氷は水に比べて酸素の拡散係数が2桁以上小さいために実質的に細胞および食材内部を酸素から遮断することが出来る。酸素は上記の自動酸化に必須であるため、ヒドロキシペルオキシドの生成を防ぐことが出来る。このようにして、表層微凍結を促進すると油脂を含む食材の酸化を抑制し、酸化指標であるAV、POV、TBAなどの値の上昇が抑制されることにより確認できる。   When the micro-freezing layer is uniformly formed on the entire surface of the food by the rapid cooling described above, the cell and the inside of the food are substantially shielded from oxygen because the ice in the extracellular fluid has an oxygen diffusion coefficient more than two orders of magnitude smaller than that of water. I can do it. Since oxygen is essential for the above-mentioned auto-oxidation, the production of hydroxy peroxide can be prevented. In this way, it can be confirmed by facilitating the surface freezing and suppressing the oxidation of the food material containing fats and oils, and suppressing the increase of values such as AV, POV, and TBA that are oxidation indexes.

図8は食材を微凍結させた際の微凍結開始時間と3日後のPOV値との関係を示す図である。縦軸のPOV値は、0日目のPOV値を1.0として相対化して示す。微凍結開始時間が所定時間を超えると、3日の保存日数の間に酸化指標値が上昇することを2種の魚食材で見出した。3日間の間のPOV値の上昇を抑制し、酸化を実質的に止めるためには食材表面を8時間以内に微凍結し、酸素と油脂の接触を遮断することが効果的であることを見出した。同様に、8時間以内に表層微凍結した場合にはK値も3日間で上昇しないことを見出した。加えて、牛肉や豚肉の場合は、8時間以内に表層微凍結をおこなった場合には、7日後の酸化指標値が上昇しないことを見出した。本発明の急冷運転時の冷却能力は、食材表面が8時間以内に微凍結するように設定した。   FIG. 8 is a diagram showing the relationship between the fine freezing start time when the food is finely frozen and the POV value after 3 days. The POV value on the vertical axis is shown relative to the POV value on the 0th day as 1.0. It was found with two types of fish foods that the oxidation index value increases during the storage days of 3 days when the fine freezing start time exceeds a predetermined time. In order to suppress the increase in POV value for 3 days and to stop oxidation substantially, it was found that it is effective to finely freeze the surface of the food within 8 hours and block the contact between oxygen and oil. It was. Similarly, when the surface layer was slightly frozen within 8 hours, it was found that the K value did not increase in 3 days. In addition, in the case of beef and pork, it was found that the oxidation index value after 7 days did not increase when surface freezing was performed within 8 hours. The cooling capacity during the rapid cooling operation of the present invention was set so that the surface of the food material was slightly frozen within 8 hours.

急冷1の最中において、急冷運転の継続を再度判断する急冷解除判定をおこなってもよい。解除判定は、図6に示した検知シーケンスと基本的に同じであるが、ΔTの閾値は別途定められる。急冷解除判定は複数回行ってもよい。検知シーケンスによって第二の誤判定がされた場合でも、急冷解除判定をおこなうことにより急冷運転を途中で停止することによって不要な急冷運転を止めてエネルギー使用量を必要以上に増やさないようにできる。   In the middle of the rapid cooling 1, a rapid cooling cancellation determination may be performed to determine again the continuation of the rapid cooling operation. The cancellation determination is basically the same as the detection sequence shown in FIG. 6, but the threshold value of ΔT is separately determined. The rapid cooling cancellation determination may be performed a plurality of times. Even when the second erroneous determination is made by the detection sequence, the rapid cooling operation is stopped halfway by performing the rapid cooling cancellation determination, so that the unnecessary rapid cooling operation can be stopped and the amount of energy used can be prevented from increasing more than necessary.

急冷2が終了すると、通常のパーシャル運転に復帰する。運転移行の際に、冷却器温度が所定温度よりも低いと、冷却不要と判断されて圧縮機112が停止することがある。通常、圧縮機112が停止している間は蒸発器115の冷気を冷蔵庫内に送風する送風ファン116は停止するが、運転移行の際はファンを稼働させてもよい。このことによって、
蒸発器115の温度上昇を促進して、圧縮機112の停止時間を通常よりも短くすることが出来る。圧縮機112の停止時間が短いほど、上記の理由で微凍結までの時間が短縮できて、鮮度保持上好ましい結果を得ることが出来る。
When the rapid cooling 2 is completed, the normal partial operation is resumed. If the cooler temperature is lower than a predetermined temperature during the operation transition, it is determined that cooling is not necessary, and the compressor 112 may stop. Usually, while the compressor 112 is stopped, the blower fan 116 that blows the cool air of the evaporator 115 into the refrigerator is stopped, but the fan may be operated at the time of operation transition. By this,
The temperature rise of the evaporator 115 can be promoted, and the stop time of the compressor 112 can be made shorter than usual. The shorter the stop time of the compressor 112, the shorter the time until fine freezing for the above-mentioned reason, and a favorable result can be obtained in terms of maintaining freshness.

通常運転復帰後は、図7に示す通り所定時間の間、急冷運転を開始せず通常パーシャル運転とする保護時間を設ける。熱負荷投入の以前から変温室107で微凍結していた食材があった場合、急冷運転によって一時的に食材の温度が低下し、微凍結よりも食材が硬くなる可能性がある。保護時間を設けることによって、保護時間の間に食材温度は通常のパーシャル運転時と同じ温度に近づき、食材の硬度も戻る。保護時間を設けないと連続して熱負荷が投入された場合には既存微凍結食材が微凍結から凍結に近づいて微凍結のメリットが減少することになるが、そのような不都合を防ぐことができる。   After returning to normal operation, a protection time is set for normal partial operation without starting the rapid cooling operation for a predetermined time as shown in FIG. When there is food that has been slightly frozen in the variable temperature chamber 107 before the heat load is applied, the temperature of the food may be temporarily lowered by the rapid cooling operation, and the food may be harder than the slight freezing. By providing the protection time, the food temperature approaches the same temperature as during normal partial operation during the protection time, and the hardness of the food also returns. If there is no protection time and the heat load is continuously applied, the existing fine frozen food will approach the freezing from the fine freezing, and the merit of fine freezing will decrease, but such inconvenience can be prevented. it can.

保護時間を長く設けるほど確実に既存微凍結食材の温度は微凍結温度に戻りやすい。保護時間の長さについては、保護時間中の温度上昇および定期的に行われるデフロスト運転中の温度上昇を考慮して、食材の標準的な保存期間中に温度が微凍結の範囲内に収まるように設定する。あるいは標準的な食材の保存期間中に、食材の切断力が所定値以上に上がらないように設定してもよい。   The longer the protection time is set, the more reliably the temperature of the existing microfrozen food will return to the microfrozen temperature. Regarding the length of protection time, considering the temperature increase during the protection time and the temperature increase during the defrost operation that is performed regularly, the temperature should be within the range of slight freezing during the standard storage period of foodstuffs Set to. Or you may set so that the cutting force of a foodstuff may not raise more than a predetermined value during the preservation | save period of a standard foodstuff.

一例として、図7には急冷運転時間が2.5時間で保護時間を3時間とした例を示す。この場合、1回の急冷周期が5.5時間となり、一般的な朝食、昼食、夕食の準備時間のサイクルにほぼ等しい。従って、ある食事準備時間にパーシャル室温が上昇して急冷運転が開始された場合でも、次の食事準備時間に同様に急冷をおこなうことができて、既存微凍結食材の鮮度維持を確実に行うことが出来る。   As an example, FIG. 7 shows an example in which the rapid cooling operation time is 2.5 hours and the protection time is 3 hours. In this case, one quench cycle is 5.5 hours, which is almost equal to a general breakfast, lunch and dinner preparation time cycle. Therefore, even if the partial room temperature rises at a certain meal preparation time and a rapid cooling operation is started, it can be rapidly cooled at the next meal preparation time, and the freshness of the existing microfrozen food can be maintained reliably. I can do it.

保護時間中に熱負荷が投入された場合には、検知シーケンスのみ作動させて急冷の判定をしておく。急冷必要と判定された際は、保護時間終了後に直ぐに急冷する。   When a thermal load is applied during the protection time, only the detection sequence is activated and a rapid cooling determination is made. If it is determined that rapid cooling is required, cool immediately after the protection time.

以上説明したように、本実施の形態では、収納室(変温室107)と、冷却器115からの冷気を収納室に送風する送風手段(送風ファン116)と、送風手段を制御する制御手段(制御マイコン132)とを備えた冷蔵庫において、制御手段により冷気の送風を制御することで収納室に保存された食品の表面を微凍結させ、その後、微凍結温度で保存するものであり、微凍結層により食材と酸素の接触を遮断して酸化を防止し、また食材の取分けや切分けが容易に行われ、風味を劣化させないので、保存食品を新鮮に保存することができる。   As described above, in the present embodiment, the storage room (transformer 107), the air blowing means (air blowing fan 116) for blowing the cool air from the cooler 115 to the storage room, and the control means (the fan means 116). In a refrigerator equipped with a control microcomputer 132), the surface of the food stored in the storage room is finely frozen by controlling the ventilation of the cold air by the control means, and then stored at a fine freezing temperature. The layer prevents contact between the food and oxygen to prevent oxidation, and the food is easily separated and separated, and the flavor is not deteriorated, so the stored food can be stored fresh.

また、送風手段は、冷却器からの冷気を収納室に送風するダクト(冷蔵室ダクト120)と、ダクト内に設けたダンパ(ダンパー装置117a)と、収納室内の温度を検知する温度センサ(変温室温度センサ133)とを備え、制御手段は、ダンパー装置を所定時間強制的に開放し、収納室に保存された食品の表面を急速に微凍結させ、その後、温度センサの検知温度に基づいてダンパー装置を開閉制御して微凍結温度で保存するものであり、食材の投入後、即座に急冷を開始してより短時間で酸素との接触を遮断して酸化を防止することができ、さらに保存食品を新鮮に保存することができる。   Further, the blowing means includes a duct (refrigeration chamber duct 120) for blowing cool air from the cooler to the storage room, a damper (damper device 117a) provided in the duct, and a temperature sensor (variable) for detecting the temperature in the storage room. Greenhouse temperature sensor 133), and the control means forcibly opens the damper device for a predetermined time, rapidly finely freezes the surface of the food stored in the storage room, and then based on the detection temperature of the temperature sensor The damper device is controlled to open and close and stored at a micro freezing temperature. After the food is added, it can be immediately cooled immediately to prevent contact with oxygen and prevent oxidation in a shorter time. Preserved food can be stored fresh.

また、ダンパー装置を所定時間強制的に開放するとともに、圧縮機を連続運転するものであり、より短時間で酸素との接触を遮断して酸化を防止することができ、さらに保存食品を新鮮に保存することができる。   In addition, the damper device is forcibly opened for a predetermined time, and the compressor is operated continuously, so that contact with oxygen can be cut off in a shorter time to prevent oxidation, and the stored food can be freshened. Can be saved.

また、収納室107と、冷却器からの冷気を収納室に送風する送風手段116と、収納室内の温度を検知する温度センサ133と、収納室内への食品投入有無を判定する食品投入有無判定手段134と、を備えた冷蔵庫において、食品投入有無判定手段134は、送
風手段116を所定時間強制的に停止し、温度センサ133の温度傾きに基づいて収納室内への食品投入有無を判定するものであり、収納室内への食品投入有無の判定を簡素な仕様で行うことができる。
Further, the storage chamber 107, the air blowing means 116 for blowing cool air from the cooler into the storage chamber, the temperature sensor 133 for detecting the temperature in the storage chamber, and the food input presence / absence determination means for determining whether or not the food is input into the storage chamber 134, the food input presence / absence determining means 134 forcibly stops the air blowing means 116 for a predetermined time, and determines whether food is input into the storage room based on the temperature gradient of the temperature sensor 133. Yes, it is possible to determine whether or not food is put into the storage room with a simple specification.

また、食品投入有無判定手段134は、送風手段116を所定時間強制的に停止した後、送風手段116を所定時間強制的に運転して、送風手段116の強制運転中における温度センサ133の温度傾きに基づいて収納室内への食品投入有無を判定するものであり、収納室内への食品投入有無の判定を簡素な仕様で確実に行うことができる。   Further, the food input presence / absence determining means 134 forcibly stops the air blowing means 116 for a predetermined time, and then forcibly operates the air blowing means 116 for a predetermined time, so that the temperature gradient of the temperature sensor 133 during the forced operation of the air blowing means 116 is obtained. Based on the above, it is determined whether or not food is put into the storage room, and whether or not food is put into the storage room can be reliably determined with a simple specification.

また、食品投入有無判定手段134は複数回実行して収納室内への食品投入有無の判定を行うものであり、収納室内への食品投入有無の判定を簡素な仕様でより確実に行うことができる。   Also, the food input presence / absence determination means 134 is executed a plurality of times to determine whether or not food has been input into the storage room, and the determination of whether or not food has been input into the storage room can be more reliably performed with a simple specification. .

また、収納室107の開閉を検知する収納室開閉検知手段127を備え、収納室開閉検知手段127の開閉検知を起点に制御手段132を実行することにより、より確実に食品の酸化を防止することができ、保存食品を新鮮に保存することができる。   In addition, storage room opening / closing detection means 127 for detecting opening / closing of the storage room 107 is provided, and the control means 132 is executed based on the opening / closing detection of the storage room opening / closing detection means 127, thereby preventing food oxidation more reliably. The stored food can be stored fresh.

また、収納室107は貯蔵室内の一画に内蔵され、収納室107は貯蔵室102とは独立して温度制御されることにより、一度生成した微凍結層が安定に維持されて酸化防止効果を維持することができる。   In addition, the storage chamber 107 is built in a section of the storage chamber, and the storage chamber 107 is temperature-controlled independently of the storage chamber 102, so that the finely frozen layer once generated is stably maintained and has an antioxidant effect. Can be maintained.

(実施の形態2)
図9aは本発明の実施の形態2における冷蔵庫のΔTと急冷1の圧縮機回転数の関係を示す図、図9bは本発明の実施の形態2における冷蔵庫のΔTと急冷2の運転時間の関係を示す図である。なお、実施の形態1と同一部分の説明は省略し、異なる部分のみ説明する。
(Embodiment 2)
FIG. 9a is a diagram showing the relationship between ΔT of the refrigerator and the compressor rotation speed of the rapid cooling 1 in Embodiment 2 of the present invention, and FIG. 9b is the relationship between ΔT of the refrigerator and the operation time of the rapid cooling 2 in Embodiment 2 of the present invention. FIG. In addition, description of the same part as Embodiment 1 is abbreviate | omitted, and only a different part is demonstrated.

図6の急冷判定シーケンスで、一定の条件においてはΔT値の大きさは投入熱負荷量に略比例する。本実施の形態の冷蔵庫では、投入熱負荷量に比例して、冷却量を増やす運転制御をおこなう。図9aは第2の実施の形態におけるΔTと急冷1における圧縮機112の回転数との関係を示すグラフである。ΔTの絶対値がΔT0よりも大きい場合に、急冷をおこない、回転数をR2からR3に増やす。ΔT1よりも絶対値が大きい場合に、回転数をさらにR4に増やす。このようにして、投入熱負荷量が多い場合には蒸発器115の温度を下げて冷却能力を増やすことにより、表層微凍結までの時間を確実に短縮する。この際、急冷1の時間を延ばすと変温室内の着霜や隣接する室の食材の凍結などの悪影響が出るため、時間の延長はおこなわない。   In the rapid cooling determination sequence of FIG. 6, under a certain condition, the magnitude of the ΔT value is substantially proportional to the input heat load. In the refrigerator of the present embodiment, operation control is performed to increase the cooling amount in proportion to the input heat load. FIG. 9 a is a graph showing the relationship between ΔT and the rotational speed of the compressor 112 in the rapid cooling 1 in the second embodiment. When the absolute value of ΔT is larger than ΔT0, rapid cooling is performed to increase the rotational speed from R2 to R3. When the absolute value is larger than ΔT1, the rotational speed is further increased to R4. In this way, when the input heat load is large, the time until the surface layer micro freezing is reliably shortened by lowering the temperature of the evaporator 115 and increasing the cooling capacity. At this time, if the time of the rapid cooling 1 is extended, adverse effects such as frost formation in the variable temperature chamber and freezing of foods in the adjacent rooms will occur, so the time will not be extended.

また、図9bは第2の実施の形態におけるΔTと急冷2の時間を示すグラフである。ΔTの絶対値がΔT0〜ΔT1の間では急冷2の時間はt1であるが、ΔT1以上ではΔT値と比例して時間を延長する。ただし、ΔT2以上の熱負荷が投入されても、時間t2以上に延長することはしない。上限時間t2は、着霜や食材凍結などの悪影響が出ないように設定する。このように投入熱負荷量に合わせて急冷運転条件を調整することにより、確実に表層微凍結までの時間を短縮できる一方で、過大な冷却による悪影響や運転コストの不要な増大を防止することができる。   FIG. 9B is a graph showing ΔT and the time of rapid cooling 2 in the second embodiment. When the absolute value of ΔT is between ΔT0 and ΔT1, the time of the rapid cooling 2 is t1, but when ΔT1 or more, the time is extended in proportion to the ΔT value. However, even if a thermal load of ΔT2 or more is applied, the time does not extend beyond time t2. The upper limit time t2 is set so that there is no adverse effect such as frost formation or freezing of ingredients. By adjusting the rapid cooling operation conditions according to the input heat load in this way, it is possible to reliably reduce the time to surface freezing, while preventing adverse effects due to excessive cooling and unnecessary increase in operating costs. it can.

本発明の冷蔵庫は、家庭用のみならず業務用においても適用することができ、例えば業務用冷蔵庫、ショーケースやクーラーボックスの保存性の向上に対しても利用できる。   The refrigerator of the present invention can be applied not only for home use but also for business use. For example, it can be used for improving the storage stability of commercial refrigerators, showcases and cooler boxes.

102 冷蔵室(貯蔵室)
107 変温室(収納室、パーシャル室)
112 圧縮機
115 冷却器(蒸発器)
116 送風ファン(送風手段)
117a、117b ダンパー装置(ダンパー)
120 冷蔵室ダクト(ダクト)
127 扉開閉検知手段(収納室開閉検知手段)
132 制御マイコン(制御手段)
133 変温室温度センサ(温度センサ)
134 食品投入有無判定手段
102 Cold room (storage room)
107 Changing room (storage room, partial room)
112 Compressor 115 Cooler (evaporator)
116 Blower fan (Blower unit)
117a, 117b Damper device (damper)
120 Cold room duct (duct)
127 Door open / close detection means (storage room open / close detection means)
132 Control microcomputer (control means)
133 Temperature change sensor (temperature sensor)
134 Means for determining whether or not to add food

Claims (5)

収納室と、冷却器からの冷気を前記収納室に送風する送風手段と、前記送風手段を制御する制御手段とを備えた冷蔵庫において、前記制御手段により前記冷気の送風を制御することで前記収納室に保存された食品の表面を微凍結させ、その後、微凍結温度で保存することを特徴とする冷蔵庫。 In a refrigerator including a storage chamber, a blower for blowing cool air from a cooler to the storage chamber, and a control unit for controlling the blower, the storage is performed by controlling the blowing of the cold air by the control unit. A refrigerator characterized in that the surface of food stored in a room is slightly frozen and then stored at a slightly freezing temperature. 前記送風手段は、前記冷却器からの冷気を前記収納室に送風するダクトと、前記ダクト内に設けたダンパと、前記収納室内の温度を検知する温度センサとを備え、前記制御手段は、前記ダンパを所定時間強制的に開放し、前記収納室に保存された食品の表面を急速に微凍結させ、その後、前記温度センサの検知温度に基づいて前記ダンパを開閉制御して微凍結温度で保存することを特徴とする請求項1に記載の冷蔵庫。 The air blowing means includes a duct that blows cool air from the cooler to the storage chamber, a damper provided in the duct, and a temperature sensor that detects a temperature in the storage chamber, and the control means includes the The damper is forcibly opened for a predetermined time, the surface of the food stored in the storage room is rapidly microfrozen, and then the damper is opened and closed based on the temperature detected by the temperature sensor and stored at the microfrozen temperature. The refrigerator according to claim 1. 前記ダンパを所定時間強制的に開放するとともに、圧縮機を連続運転することを特徴とする請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the damper is forcibly opened for a predetermined time and the compressor is continuously operated. 前記収納室の開閉を検知する収納室開閉検知手段を備え、収納室開閉検知手段の開閉検知を起点に前記制御手段を実行することを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The storage unit opening / closing detection means for detecting opening / closing of the storage room is provided, and the control unit is executed based on the opening / closing detection of the storage room opening / closing detection unit. Refrigerator. 前記収納室は貯蔵室内の一画に内蔵され、前記収納室は前記貯蔵室とは独立して温度制御されることを特徴とする請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the storage room is built in a part of a storage room, and the temperature of the storage room is controlled independently of the storage room.
JP2015142675A 2015-07-17 2015-07-17 refrigerator Pending JP2017026184A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015142675A JP2017026184A (en) 2015-07-17 2015-07-17 refrigerator
EP16827426.4A EP3327377A4 (en) 2015-07-17 2016-07-14 Refrigerator
PCT/JP2016/003326 WO2017013859A1 (en) 2015-07-17 2016-07-14 Refrigerator
CN201680040752.8A CN107850366A (en) 2015-07-17 2016-07-14 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142675A JP2017026184A (en) 2015-07-17 2015-07-17 refrigerator

Publications (1)

Publication Number Publication Date
JP2017026184A true JP2017026184A (en) 2017-02-02

Family

ID=57950334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142675A Pending JP2017026184A (en) 2015-07-17 2015-07-17 refrigerator

Country Status (1)

Country Link
JP (1) JP2017026184A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151109A (en) * 2017-03-13 2018-09-27 パナソニックIpマネジメント株式会社 Cooling method and refrigerator
JP2019211155A (en) * 2018-06-05 2019-12-12 東芝ライフスタイル株式会社 refrigerator
JP2020094711A (en) * 2018-12-10 2020-06-18 東芝ライフスタイル株式会社 refrigerator
CN114909848A (en) * 2022-05-13 2022-08-16 珠海格力电器股份有限公司 Control device of refrigerator, refrigerator and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473582A (en) * 1990-07-11 1992-03-09 Murata Mfg Co Ltd Control device for food storage in chilled partial region
JPH05272854A (en) * 1992-03-27 1993-10-22 Sanyo Electric Co Ltd Quenching controller for refrigerator
JP2010025532A (en) * 2008-06-17 2010-02-04 Panasonic Corp Refrigerator
JP2010060258A (en) * 2008-08-07 2010-03-18 Panasonic Corp Refrigerator
JP2011069605A (en) * 2009-08-26 2011-04-07 Panasonic Corp Refrigerator
WO2014017050A1 (en) * 2012-07-25 2014-01-30 パナソニック株式会社 Refrigerator
JP2014043982A (en) * 2012-08-27 2014-03-13 Hitachi Appliances Inc Refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473582A (en) * 1990-07-11 1992-03-09 Murata Mfg Co Ltd Control device for food storage in chilled partial region
JPH05272854A (en) * 1992-03-27 1993-10-22 Sanyo Electric Co Ltd Quenching controller for refrigerator
JP2010025532A (en) * 2008-06-17 2010-02-04 Panasonic Corp Refrigerator
JP2010060258A (en) * 2008-08-07 2010-03-18 Panasonic Corp Refrigerator
JP2011069605A (en) * 2009-08-26 2011-04-07 Panasonic Corp Refrigerator
WO2014017050A1 (en) * 2012-07-25 2014-01-30 パナソニック株式会社 Refrigerator
JP2014043982A (en) * 2012-08-27 2014-03-13 Hitachi Appliances Inc Refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151109A (en) * 2017-03-13 2018-09-27 パナソニックIpマネジメント株式会社 Cooling method and refrigerator
JP2019211155A (en) * 2018-06-05 2019-12-12 東芝ライフスタイル株式会社 refrigerator
JP2020094711A (en) * 2018-12-10 2020-06-18 東芝ライフスタイル株式会社 refrigerator
JP6998292B2 (en) 2018-12-10 2022-01-18 東芝ライフスタイル株式会社 refrigerator
CN114909848A (en) * 2022-05-13 2022-08-16 珠海格力电器股份有限公司 Control device of refrigerator, refrigerator and control method

Similar Documents

Publication Publication Date Title
WO2017043072A1 (en) Refrigerator
JP3066010B2 (en) Freezer refrigerator
JP3930206B2 (en) Refrigerated refrigerator, cold air circulation method of refrigerator
KR100889821B1 (en) Refrigerator Having Temperature- Controlled Chamber
CN101636625B (en) Refrigerator and freezing preservation method
JP6080385B2 (en) refrigerator
JP2017026184A (en) refrigerator
KR20040067643A (en) Refrigerator Having Temperature- Controlled Chamber
CN114279164B (en) Control method of refrigerator and refrigerator with food fresh-keeping and freezing functions
JP2008286516A (en) Freezer/refrigerator
JP4845930B2 (en) Frozen storage device and frozen storage method
KR20180122494A (en) One unit food storage cold warehouse with multi-function of refrigeration, freezing, maturing, defrosting
CN114264102B (en) Refrigerator control method and refrigerator
JP4670689B2 (en) refrigerator
JP4879209B2 (en) refrigerator
JP2018004228A (en) Refrigerator
JP4179328B2 (en) Freezer refrigerator
JP2017026185A (en) refrigerator
JP2015038409A (en) Refrigerator
WO2017013859A1 (en) Refrigerator
JP6298982B2 (en) refrigerator
CN114264103B (en) Refrigerator and control method thereof
JP5840154B2 (en) refrigerator
CN105143797A (en) Refrigerator
JP2018151109A (en) Cooling method and refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001