WO2017042681A1 - Orodispersible films having fast disaggregation time for therapeutic or food use. - Google Patents
Orodispersible films having fast disaggregation time for therapeutic or food use. Download PDFInfo
- Publication number
- WO2017042681A1 WO2017042681A1 PCT/IB2016/055298 IB2016055298W WO2017042681A1 WO 2017042681 A1 WO2017042681 A1 WO 2017042681A1 IB 2016055298 W IB2016055298 W IB 2016055298W WO 2017042681 A1 WO2017042681 A1 WO 2017042681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copolymer
- weight ratio
- plasticizer
- films according
- orodispersible films
- Prior art date
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 8
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 8
- 229920001577 copolymer Polymers 0.000 claims abstract description 33
- 239000004480 active ingredient Substances 0.000 claims abstract description 22
- 239000004014 plasticizer Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000003839 salts Chemical group 0.000 claims abstract description 11
- 229920002959 polymer blend Polymers 0.000 claims abstract description 9
- 150000001768 cations Chemical class 0.000 claims abstract description 7
- 150000002148 esters Chemical class 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 47
- 238000004519 manufacturing process Methods 0.000 claims description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 10
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229920002521 macromolecule Polymers 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 238000003892 spreading Methods 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 230000003381 solubilizing effect Effects 0.000 claims description 2
- 159000000000 sodium salts Chemical class 0.000 claims 4
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims 2
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 230000002829 reductive effect Effects 0.000 abstract description 2
- 229920005615 natural polymer Polymers 0.000 abstract 1
- 238000009472 formulation Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 8
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 229920003139 Eudragit® L 100 Polymers 0.000 description 5
- 229920003141 Eudragit® S 100 Polymers 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 210000000214 mouth Anatomy 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000902 placebo Substances 0.000 description 3
- 229940068196 placebo Drugs 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- FELGMEQIXOGIFQ-CYBMUJFWSA-N (3r)-9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-1h-carbazol-4-one Chemical compound CC1=NC=CN1C[C@@H]1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-CYBMUJFWSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 239000000120 Artificial Saliva Substances 0.000 description 1
- 102100032392 Circadian-associated transcriptional repressor Human genes 0.000 description 1
- 101710130150 Circadian-associated transcriptional repressor Proteins 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 229920003135 Eudragit® L 100-55 Polymers 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 229960004538 alprazolam Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940035678 anti-parkinson drug Drugs 0.000 description 1
- 230000002882 anti-plaque Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940124433 antimigraine drug Drugs 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 229940005530 anxiolytics Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008376 breath freshener Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- 229960001193 diclofenac sodium Drugs 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- MJJALKDDGIKVBE-UHFFFAOYSA-N ebastine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(=O)CCCN1CCC(OC(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 MJJALKDDGIKVBE-UHFFFAOYSA-N 0.000 description 1
- 229960001971 ebastine Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 208000019016 inability to swallow Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 229940080439 ketoprofen 25 mg Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 1
- 229960005017 olanzapine Drugs 0.000 description 1
- 229940080132 olanzapine 2.5 mg Drugs 0.000 description 1
- 229960005343 ondansetron Drugs 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000002590 phosphodiesterase V inhibitor Substances 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003763 resistance to breakage Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- TXHZXHICDBAVJW-UHFFFAOYSA-N rizatriptan Chemical compound C=1[C]2C(CCN(C)C)=CN=C2C=CC=1CN1C=NC=N1 TXHZXHICDBAVJW-UHFFFAOYSA-N 0.000 description 1
- 229960000425 rizatriptan Drugs 0.000 description 1
- 229960002052 salbutamol Drugs 0.000 description 1
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 1
- 229960003946 selegiline Drugs 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- JGMJQSFLQWGYMQ-UHFFFAOYSA-M sodium;2,6-dichloro-n-phenylaniline;acetate Chemical compound [Na+].CC([O-])=O.ClC1=CC=CC(Cl)=C1NC1=CC=CC=C1 JGMJQSFLQWGYMQ-UHFFFAOYSA-M 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- 229940102893 tadalafil 2.5 mg Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7007—Drug-containing films, membranes or sheets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/196—Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
Definitions
- the present invention relates to quick disintegration orodispersible films for therapeutic or food use.
- Oral soluble (orodispersible) films are part of the broader category of oral pharmaceutical films, complex polymeric matrices that can be used efficiently as pharmaceutical deliver ⁇ - forms.
- orodispersible films are solid enteral pharmaceutical forms designed to quickly disintegrate in the oral cavity and reach the systemic circulation through gastro-intestinal absorption.
- orodispersible films offer an excellent alternative to solid and liquid oral formulations of the conventional type: the ease of administration greatly increases the patient's compliance, even in those cases in which there is difficulty in swallowing; when compared with quick disintegration tablets, which are fragile and easily susceptible to breakage, oral soluble films are more stable and resistant than the others, offering mechanical properties, i.e. flexibility and handling, which facilitate the production thereof.
- oral soluble films allow for a more accurate dosage of the active ingredient and an improved stability over time compared to formulations in solution or suspension.
- the choice of the polymer forming the film is certainly the critical step of the production of an orodispersible film, not only because it is the component at a higher concentration, but also because the physical-chemical profile of the polymer is decisive in the realization of an effective pharmaceutical formulation, which respects critical quality parameters such as mechanical strength; stability; drug release profile; residual water content; appearance; organoleptic features.
- polysaccharides structurally consist of the repetition of saccharide units, responsible for the physical-chemical incompatibility of the above polymers and of the oral pharmaceutical forms they constitute with some active ingredients.
- copolymers of acrylic acid are among the biocompatible materials most frequently used in the pharmaceutical field for the production of formulations for oral administration; however, their applications are to date limited to the manufacture of gastroresistant pharmaceutical forms.
- orodispersible films comprising:
- a polymer mixture comprising a copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester in salt form with an alkaline metal cation and a plasticizer, wherein the weight ratio between said polymer and the plasticizer is comprised between 9.5: 0.5 and 5.5: 4.5.
- TS tensile stress
- orodispersible film refers to a solid dosage form that dissolves in the oral cavity in less than 3 minutes, without it being necessary to chew or drink and which can be in variable shape or thickness depending on the formulation requirements.
- copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester refers to the polymer consisting of alternating units of acrylic acid or methacrylic acid and acrylic or methacrylic acid ester, wherein the chain of the alkoxy group may have a variable length between 1 and 5 carbon atoms.
- the above copolymer is in the form of a salt with an alkaline metal cation, wherein salt refers to the ionic complex formed between the alkaline metal cation and the acid groups of the macromolecule.
- the alkaline metal cation used in the oral soluble films of the present application is preferably selected from those of sodium and potassium.
- the copolymer of mixture b) is the alkaline metal salt of the copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester wherein the co-monomers constituting the macromolecule are combined in a weight ratio comprised between 1 : 1 and 1 :2.
- the copolymer of mixture b) is the alkaline metal salt of the methacrylic acid-methyl methacrylate copolymer wherein the co-monomers constituting the macromolecule are combined in a weight ratio comprised between 1 : 1 and 1 :2.
- These types of polymers are commercially available under the trademark Eudragit ® L 100 and Eudragit ® S 100.
- the copolymer of mixture b) is the alkaline metal salt of the methacrylic acid-ethyl acrylate copolymer wherein the co-monomers constituting the macromolecule are combined in a weight ratio of 1 : 1 and is commercially available under the trademark Eudragit® L 100-55.
- the plasticizer of mixture b) is selected from glycerin and PEG 400.
- the active ingredient for food use can be selected from breath freshener compounds, plant extracts or other active ingredients with nutritional or healthy activity such as vitamins, minerals or probiotics.
- the active ingredient for therapeutic use contained in the pharmaceutical forms of the present invention can have local activity and therefore have anti-inflammatory, analgesic, antibacterial, antifungal, antiviral, anti-plaque or disinfectant activity.
- the active ingredient may also carry out a systemic activity and be selected from anti- inflammatory drugs, analgesics, antipsychotics, hypnotics, anxiolytics, antiemetics, anti-migraine drugs, muscle relaxing drugs, antiparkinson drugs, anti-kinetosis drugs, antihistamines, anti-asthmatics, cough drugs, antihypertensives, phosphodiesterase-5 inhibitors.
- Active ingredients contained in such formulations are preferably selected from the group consisting of: Ketoprofen, diclofenac, olanzapine, tadalafil, alprazolam, selegiline, ebastine, nifedipine, metoclopramide, ondansetron, rizatriptan, salbutamol.
- the film may be prepared using flavor masking agents, such as sweeteners and/or flavoring agents.
- flavor masking agents such as sweeteners and/or flavoring agents.
- the films object of the invention can be produced by known processes, such as that described in EP1689374 and which is briefly described by the following steps:
- step e) Adding the plasticizer to the solution obtained in step b) at a temperature of 40°,
- the oral soluble films obtained according to the recipe of the present invention have specific chemical-physical features which make them superior to the more common orodispersible films based on polysaccharides.
- the polymeric films of the present invention have in vitro disintegration times of less than 140 s, well below the 3 minutes mentioned in the relevant monographs of the Pharmacopoeia; they have an elongation at break of less than 140%, which allows a controlled ductility of the material without deformations in the production steps; they have a tensile stress ( ⁇ ) higher than 1 MPa and an elastic modulus higher than 0.3 MPa, indices of a good toughness and resistance to breakage, without adversely affecting the flexibility of the material.
- percent elongation at break is the degree of deformation (ductility) of the polymer film upon the application of a tension force, before said film breaks. Elongation is an important feature for purposes of production, since the higher the ⁇ %, the easier it is that there is a stretching of the polymeric material in the cutting steps of the final dosage forms.
- the tensile stress ( ⁇ ) instead represents the tenacity of the polymeric film, or the stress necessary to move from a reversible deformation to an irreversible deformation of the orodispersible film itself.
- the toughness of the material is of great importance for the stability of the final product, since it must be sufficient to prevent accidental breakage of the solid dosage form during the various production, packaging, storage and distribution steps.
- the flexibility of the polymeric films of the present invention is determined by the elastic modulus (or Young's modulus), characteristic quantity of a polymeric material that measures the resistance of the structure to tensile stress.
- Very low elastic modulus values are indicative of a too flexible material for proper handling by the patient.
- the elastic modulus (E) is described as the ratio of tension ( ⁇ ) and deformation of the material in the case of uniaxial load conditions ( ⁇ ) and is therefore measured in Pascal (Pa).
- a thermostated bath is prepared at about 50-60 °C in which the dissolution of the alkaline metal hydroxide is carried out in fresh deionized water.
- the copolymer Eudragit L 100 or the copolymer Eudragit S 100 is added under magnetic stirring until complete salification of the polymer and until the mixture formed is homogeneous, without aggregates.
- the plasticizer is added and the mixture is left to stand overnight at room temperature and without stirring, in order to aid the disappearance of the bubbles.
- the polymeric mixture thus prepared is spread and subsequently dried on a silicone paper liner, through the use of a Laboratory-coating unit Mathis LTE-S (M) (CH); the instrument's process parameters have been adapted to the individual formulations in order to obtain films with a thickness of about 100 microns and qualitatively acceptable from a visual and handling point of view.
- M Mathis LTE-S
- Table 1 Percent weight/total weight compositions of mixture b).
- the analysis of tensile properties was performed using an electronic dynamometer Instron 5965, equipped with a load cell of 50 N. The test is performed in accordance with the ASTM standards (International Test Method for Thin Plastic Sheeting) (D882-02) .
- the films were cut into strips sized 6 cm 2 (3 cm x 2 cm), packed in aluminum envelopes hermetically sealed and stored in an oven at 25 °C.
- the films were subjected to tensile tests for the determination of mechanical properties such as Tensile Stress ( ⁇ ), Percent Elongation at Break ( ⁇ %) and Elastic Modulus (E).
- test results are expressed as mean ⁇ standard deviation of 5 measurements for each formulation.
- the film samples were longitudinally positioned between two pneumatic grips spaced apart by 40 mm and programmed in such a way to move away at a speed of 12.5 mm/min. The test is concluded upon the break of the film.
- the disintegration assay was performed according to the specifications given in the European Pharmacopoeia, in the monograph "DISINTEGRATION OF TABLETS AND CAPSULES", using 6 cm 2 samples. Three tests were performed for each formulation and the results of the disintegration time (T D ) were expressed as the average of the three.
- the disintegration medium used is artificial saliva at 37 °C, the composition of which in water comprises:
- the test was considered finished upon the complete disintegration of the film samples, which must not exceed 3 minutes based on the specifications of the Pharmacopoeia.
- Table 2 shows that formulations 1-3, 8-1 1, 12-13, 18-19, 22-23 and 24-26 allow obtaining orodispersible films with excellent mechanical properties and competitive disintegration times.
- compositions allow obtaining oral soluble forms which disintegrate very quickly in contact with saliva, making the disintegration time (T D ) significantly lower than the three minutes given by the Pharmacopoeia.
- T D disintegration time
- the Tensile Stress ( ⁇ ) much higher than 1 MPa suggests that films 1-3, 8-11, 12-13, 18-19, 22-23 and 24-26 have considerable toughness, especially if we take into account the thickness obtained for some of these films.
- the oral soluble formulations that meet these requirements are those whose weight ratios are between 9.5: 0.5 and 5.5: 4.5.
- Example 2 Preparation of the orodispersible films containing active ingredients.
- Formulation 2 comprising Eudragit L 100 salified with NaOH and PEG-400 in a weight ratio of 1 :4, was selected to make orodispersible films delivering the active ingredient.
- formulation 2 is not the best among the optimal formulations mentioned in Example 1, the above was chosen to assess to what extent the addition of the active ingredient could affect the mechanical properties of the film.
- the films obtained all have good tensile properties, with percent elongation in the ranges object of the invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Medicinal Preparation (AREA)
Abstract
Orodispersible films comprising: a) An active ingredient for food or therapeutic use, b) A polymer mixture comprising a copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester in salt form with an alkaline metal cation and a plasticizer, wherein the weight ratio between said polymer and the plasticizer is comprised between 9.5: 0.5 and 5.5: 4.5. and characterized by: a disaggregation time lower than 140 s a percent elongation at break (ε%) lower than 140%, a tensile stress (TS) higher than 1 MPa, an elastic modulus (or Young's modulus) higher than 0.3 MPa. These films have much superior mechanical properties compared to oral soluble films prepared with natural polymers, as well as a better stability over time due to a reduced sensitivity to humidity.
Description
Title: "Orodispersible films having fast disaggregation time for therapeutic or food use."
DESCRIPTION
FIELD OF THE INVENTION The present invention relates to quick disintegration orodispersible films for therapeutic or food use.
PRIOR ART
Oral soluble (orodispersible) films are part of the broader category of oral pharmaceutical films, complex polymeric matrices that can be used efficiently as pharmaceutical deliver}- forms. (1)
Specifically, orodispersible films are solid enteral pharmaceutical forms designed to quickly disintegrate in the oral cavity and reach the systemic circulation through gastro-intestinal absorption.
The above features make the oral soluble films particularly interesting in pediatrics and geriatrics, where inability to swallow, dysphagia or chrono-induced digestive malfunction may be responsible for poor patient's adherence to therapy and a difficulty in identifying the dosage form suitable for the administration of the drug.
In this sense, orodispersible films offer an excellent alternative to solid and liquid oral formulations of the conventional type: the ease of administration greatly increases the patient's compliance, even in those cases in which there is difficulty in swallowing; when compared with quick disintegration tablets, which are fragile and easily susceptible to breakage, oral soluble films are more stable and resistant than the others, offering mechanical properties, i.e. flexibility and handling, which facilitate the production thereof.
Compared to liquid dosage forms, widely used both in pediatrics and in geriatrics, oral soluble films allow for a more accurate dosage of the active ingredient and an improved stability over time compared to formulations in solution or suspension. (1 , 2)
Despite the many advantages, orodispersible films are enteral pharmaceutical forms still relatively new and which have, especially at the production and storage level, several drawbacks. (2)
The most common limitation of oral pharmaceutical films is instability over time, linked to a greater or lesser sensitivity of the formulation to the environmental humidity; an excess or a deficiency of water within the composition can change the mechanical properties of the polymer, causing the formation of films difficult to be handled by the patient because sticky or too fragile. (1 )
Moreover, the interposition of water molecules between the polymeric chains of the formulation can also alter the chemical properties of the film, leading to a premature disintegration of the pharmaceutical form or to an instability of the active ingredient contained therein.
The choice of the polymer forming the film is certainly the critical step of the production of an orodispersible film, not only because it is the component at a higher concentration, but also because the physical-chemical profile of the polymer is decisive in the realization of an effective pharmaceutical formulation, which respects critical quality parameters such as mechanical strength; stability; drug release profile; residual water content; appearance; organoleptic features.
The most commonly used materials for the production of orodispersible films, alone or in combination with synthetic materials, are polysaccharides; however, in contact with the saliva, said polymers tend to swell, causing an unpleasant sensation in the mouth, very little appreciated by the patient.
Moreover, even in the high structural variability, polysaccharides structurally consist of the repetition of saccharide units, responsible for the physical-chemical incompatibility of the above polymers and of the oral pharmaceutical forms they constitute with some active ingredients.
The need is therefore felt to have new orodispersible films available consisting of film-forming materials other than polysaccharides.
The copolymers of acrylic acid are among the biocompatible materials most frequently used in the pharmaceutical field for the production of formulations for oral administration; however, their applications are to date limited to the manufacture of gastroresistant pharmaceutical forms.
SUMMARY OF THE INVENTION
The applicant has now surprisingly found that orodispersible films comprising:
a) An active ingredient for food or therapeutic use
b) A polymer mixture comprising a copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester in salt form with an alkaline metal cation and a plasticizer, wherein the weight ratio between said polymer and the plasticizer is comprised between 9.5: 0.5 and 5.5: 4.5.
and characterized by:
A disaggregation time lower than 140 s
A percent elongation at break (ε%) lower than 140%
A tensile stress (TS) higher than 1 MPa
An elastic modulus (or Young's modulus) higher than 0.3 MPa.
possess satisfactory tensile properties to ensure the packaging and handling procedures by the patient, as well as a better stability over time due to a reduced sensitivity to environmental humidity.
DETAILED DESCRIPTION OF THE INVENTION
The term orodispersible film refers to a solid dosage form that dissolves in the oral cavity in less than 3 minutes, without it being necessary to chew or drink and which can be in variable shape or thickness depending on the formulation requirements. (3). The term copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester refers to the polymer consisting of alternating units of acrylic acid or methacrylic acid and acrylic or methacrylic acid ester, wherein the chain of the alkoxy group may have a variable length between 1 and 5 carbon atoms.
In the formulation of the present invention, the above copolymer is in the form of a salt with an alkaline metal cation, wherein salt refers to the ionic complex formed between the alkaline metal cation and the acid groups of the macromolecule.
The alkaline metal cation used in the oral soluble films of the present application is preferably selected from those of sodium and potassium.
Preferably, the copolymer of mixture b) is the alkaline metal salt of the copolymer of (meth)acrylic acid- (meth)acrylic acid C1-C5 ester wherein the co-monomers constituting the macromolecule are combined in a weight ratio comprised between 1 : 1 and 1 :2.
Preferably, the copolymer of mixture b) is the alkaline metal salt of the methacrylic acid-methyl methacrylate copolymer wherein the co-monomers constituting the macromolecule are combined in a weight ratio comprised between 1 : 1 and 1 :2. These types of polymers are commercially available under the trademark Eudragit ® L 100 and Eudragit ® S 100.
More preferably, the copolymer of mixture b) is the alkaline metal salt of the methacrylic acid-ethyl acrylate copolymer wherein the co-monomers constituting the macromolecule are combined in a weight ratio of 1 : 1 and is commercially available under the trademark Eudragit® L 100-55.
Preferably, the plasticizer of mixture b) is selected from glycerin and PEG 400.
The active ingredient for food use can be selected from breath freshener compounds, plant extracts or other active ingredients with nutritional or healthy activity such as vitamins, minerals or probiotics.
The active ingredient for therapeutic use contained in the pharmaceutical forms of the present invention can have local activity and therefore have anti-inflammatory, analgesic, antibacterial, antifungal, antiviral, anti-plaque or disinfectant activity. The active ingredient may also carry out a systemic activity and be selected from anti- inflammatory drugs, analgesics, antipsychotics, hypnotics, anxiolytics, antiemetics, anti-migraine drugs, muscle relaxing drugs, antiparkinson drugs, anti-kinetosis drugs, antihistamines, anti-asthmatics, cough drugs, antihypertensives, phosphodiesterase-5 inhibitors.
Active ingredients contained in such formulations are preferably selected from the group consisting of: Ketoprofen, diclofenac, olanzapine, tadalafil, alprazolam, selegiline, ebastine, nifedipine, metoclopramide, ondansetron, rizatriptan, salbutamol.
Moreover, depending on the organoleptic features of the ingredient, the film may be prepared using flavor masking agents, such as sweeteners and/or flavoring agents. The films object of the invention can be produced by known processes, such as that described in EP1689374 and which is briefly described by the following steps:
c) Solubilizing NaOH or KOH in water, in a thermostated bath at a temperature comprised between 50°-60°.
d) Adding the copolymer of (meth)acrylic acid-(meth)acrylic acid C1-C5 ester to the solution obtained in step a),
e) Adding the plasticizer to the solution obtained in step b) at a temperature of 40°,
f) Adding the active ingredient to the mixture obtained from c)
g) Spreading and drying the mixture obtained from d) on a silicone paper liner h) Cutting the films obtained from e) to the desired size.
The oral soluble films obtained according to the recipe of the present invention have specific chemical-physical features which make them superior to the more common orodispersible films based on polysaccharides. Specifically, the polymeric films of the present invention have in vitro disintegration times of less than 140 s, well below the 3 minutes mentioned in the relevant monographs of the Pharmacopoeia; they have an elongation at break of less than 140%, which allows a controlled ductility of the material without deformations in the production steps; they have a tensile stress (σ) higher than 1 MPa and an elastic modulus higher than 0.3 MPa, indices of a good toughness and resistance to breakage, without adversely affecting the flexibility of the material.
For the purposes of the present invention, percent elongation at break (ε%) is the degree of deformation (ductility) of the polymer film upon the application of a tension force, before said film breaks.
Elongation is an important feature for purposes of production, since the higher the ε%, the easier it is that there is a stretching of the polymeric material in the cutting steps of the final dosage forms.
The percent elongation is defined as the percentage ratio between the extension of the film at the time of breaking (L - L0) and the initial length of the sample (L0), according to the equation: ε /0 = -__ -— ILL * loo
The tensile stress (σ) instead represents the tenacity of the polymeric film, or the stress necessary to move from a reversible deformation to an irreversible deformation of the orodispersible film itself.
The toughness of the material is of great importance for the stability of the final product, since it must be sufficient to prevent accidental breakage of the solid dosage form during the various production, packaging, storage and distribution steps.
This index is calculated by dividing the maximum load applied along the main axis of the sample (F) by the initial cross-sectional area of the polymeric film produced (Ao) and is therefore measured in Pascal (Pa), as a force on unit area: σ = F/A0
The flexibility of the polymeric films of the present invention is determined by the elastic modulus (or Young's modulus), characteristic quantity of a polymeric material that measures the resistance of the structure to tensile stress.
Very low elastic modulus values are indicative of a too flexible material for proper handling by the patient.
The elastic modulus (E) is described as the ratio of tension (σ) and deformation of the material in the case of uniaxial load conditions (ε) and is therefore measured in Pascal (Pa).
The formula for the calculation of E is as follows:
σ
E = - ε
EXAMPLE 1: Preparation of placebo orodispersible films
A thermostated bath is prepared at about 50-60 °C in which the dissolution of the alkaline metal hydroxide is carried out in fresh deionized water. When completely dissolved, the copolymer Eudragit L 100 or the copolymer Eudragit S 100 is added
under magnetic stirring until complete salification of the polymer and until the mixture formed is homogeneous, without aggregates.
Once the temperature of the bath has been lowered to 40 °C, the plasticizer is added and the mixture is left to stand overnight at room temperature and without stirring, in order to aid the disappearance of the bubbles.
The polymeric mixture thus prepared is spread and subsequently dried on a silicone paper liner, through the use of a Laboratory-coating unit Mathis LTE-S (M) (CH); the instrument's process parameters have been adapted to the individual formulations in order to obtain films with a thickness of about 100 microns and qualitatively acceptable from a visual and handling point of view.
Films which may prove difficult to handle (difficulty of spreading the mixture on a support, strong shrinkage before or after drying, inability to drying, obtaining a product not definable as film) were excluded a priori for impossibility of production.
The formulations from which it was possible to produce films are those given in Table 1.
EuLNa EuLK EuSNa EuSK PEG Gly
Formulation
(%) (%) (%) (%) (%) (%)
1 90 - - - 10 -
2 80 - - - 20 - ar 3 70 _ _ _ 30 _
4 60 40
5 50 - - - 50 - 6 40 60
7 30 70
8 - 90 - - 10 -
9
ar - 80 - - 20 - o
10 - 70 - - 30 -
11 - 60 - - 40 -
12 - - 90 - 10 -
13 - - 80 - 20 - ar
o 14 - - 70 - 30 -
Table 1: Percent weight/total weight compositions of mixture b). EuL = Eudragit L 100; EuS = Eudragit S 100; Na = salification obtained by NaOH; K = salification obtained by KOH. PEG = Polyethylene glycol (PEG 400); Gly = Glycerin.
1.1. Methodology - Determination of tensile properties.
The analysis of tensile properties was performed using an electronic dynamometer Instron 5965, equipped with a load cell of 50 N. The test is performed in accordance with the ASTM standards (International Test Method for Thin Plastic Sheeting) (D882-02) .
To perform the characterization tests, the films were cut into strips sized 6 cm2 (3 cm x 2 cm), packed in aluminum envelopes hermetically sealed and stored in an oven at 25 °C.
After a period of 13 days in these conditions, the films were subjected to tensile tests for the determination of mechanical properties such as Tensile Stress (σ), Percent Elongation at Break (ε%) and Elastic Modulus (E).
The test results are expressed as mean ± standard deviation of 5 measurements for each formulation.
Once the absence of imperfections in the matrix had been verified, the film samples were longitudinally positioned between two pneumatic grips spaced apart by 40 mm and programmed in such a way to move away at a speed of 12.5 mm/min. The test is concluded upon the break of the film.
1.2.Methodology - Determination of the disintegration time.
The disintegration assay was performed according to the specifications given in the European Pharmacopoeia, in the monograph "DISINTEGRATION OF TABLETS AND CAPSULES", using 6 cm2 samples.
Three tests were performed for each formulation and the results of the disintegration time (TD) were expressed as the average of the three.
The disintegration medium used is artificial saliva at 37 °C, the composition of which in water comprises:
- Na2HP04 2.38 g/L
- KH2PO4 0.19 g/L,
- NaCl 8 g/L
The test was considered finished upon the complete disintegration of the film samples, which must not exceed 3 minutes based on the specifications of the Pharmacopoeia.
1.3.Results
The formulations 1-26 in Table 1 were subjected to tensile tests and to the disintegration test, using the methodologies described at points 1.1 and 1.2.
The results of these tests are reported hereinafter in Table 2.
TD
Formulati Tensile Properties of Films Thicknes
(second s on σ (MPa) ε (%) E (MPa)
s) (μιη)
14.687±1.05 18.676±3.896 4.037±0.12 71.0±3.2
1 30
3 5
1.132±0.33 80.6±5.3
2 20 3.397±0.645 37.833±13.590
4
3.492±0.29 92.2±21.
3 30 9.286±0.318 5.776±0.938
7 2
273.768±37.26 0.399±0.13 109.4±7.
4 30 1.538±0.127
1 0 1
144.870±34.19 1.235±0.41 100.8±1
5 30 3.706±0.274
6 6 OJ.
378.818±111.6 0.048±0.01 134.4±5.
6 30 0.289±0.061
62 7 0
254.042±40.24 0.094±0.01 107.8±1
7 30 0.782±0.073
6 5 08
3.125±0.20 88.8±8.9
8 15 9.804±0.852 18.348±1.282
6
2.931±0.39 102.2±7.
9 15 8.191±1.667 21.369±7.977
4 4
1.848±0.25 93.6±8.3
10 40 5.327±0.481 47.242±18.054
5
11 20 5.875±1.628 55.676±24.793 2.669±0.80 108.0±3.
0 5
0.335±0.17 121.4±1
12 120 1.498±0.446 44.220±13.645
6 32
2.607±0.38 80.0±5.8
13 30 9.038±1.127 31.239±5.244
8
120.223±65.47 0.083±0.02 133.8±2
14 90 0.568±0.1 12
0 2 4J,
510.084±80.1 1 0.455±0.16 107.2±2
15 40 0.462±0.046
2 0 05
958.407±45.41 0.121±0.03 113.6±3.
16 120 0.541±0.046
5 3 6
208.024±69.71 0.145±0.04 121.0±8.
17 60 0.205±0.026
2 2 7
0.311±0.14 110.4±1
18 90 1.208±0.154 69.074±26.442
8 H9
130.039±21.44 0.643±0.21 95.2±16.
12 20 1.997±0.231
4 6 5
379.074±100.7 0.076±0.01 118.4±1
20 40 0.578±0.121
06 3 3
0.132±0.03 73.2±6.5
21 60 0.627±0.022 900.000±0.000
7
12.942±3.15 3.882±0.63 75±5
22 24 9.206±4.069
6 6
2.203±0.17 70±6
23 35 9.371±0.404 43.327±7.554
6
2.378±1.32 25±4
24 14 9.005±2.341 8.001±2.150
7
10.123±1.40 2.016±0.45 26±5
25 11 24.565±4.245
0 3
1.168±0.31 33±9
26 8 6.691±2.000 25.682±7.573
3
Table 2.
Table 2 shows that formulations 1-3, 8-1 1, 12-13, 18-19, 22-23 and 24-26 allow obtaining orodispersible films with excellent mechanical properties and competitive disintegration times.
The above compositions allow obtaining oral soluble forms which disintegrate very quickly in contact with saliva, making the disintegration time (TD) significantly lower than the three minutes given by the Pharmacopoeia.
The Tensile Stress (σ) much higher than 1 MPa suggests that films 1-3, 8-11, 12-13, 18-19, 22-23 and 24-26 have considerable toughness, especially if we take into account the thickness obtained for some of these films.
High values of σ ensure that the resulting oral soluble film is less subject to accidental breakage during the various handling steps of the pharmaceutical form (from the production to the patient).
The high toughness does not affect the flexibility of the polymeric films of the above compositions, where the elastic modulus values remain above 0.3 MPa. Lower values lead to too "soft" films hardly applicable to the oral cavity by the patient. Finally, formulations 1-3, 8-11, 12-13, 18-19, 22-23 and 24-26 have also shown to have low values of percent elongation and in particular lower than 140%; values exceeding this limit leads to production difficulties, with particular reference to uniformity of dosage, related to the stretching of the polymeric material in the cutting step.
The oral soluble formulations that meet these requirements are those whose weight ratios are between 9.5: 0.5 and 5.5: 4.5.
Example 2 - Preparation of the orodispersible films containing active ingredients.
Formulation 2, comprising Eudragit L 100 salified with NaOH and PEG-400 in a weight ratio of 1 :4, was selected to make orodispersible films delivering the active ingredient.
The choice of the above formulation was made at a preliminary level on the basis of the best disintegration time, limited to the group of formulations a.
While formulation 2 is not the best among the optimal formulations mentioned in Example 1, the above was chosen to assess to what extent the addition of the active ingredient could affect the mechanical properties of the film.
The four active ingredients intended to be delivered by means of the film are reported in Table 3; the amounts to be loaded were selected on the basis of preparations available on the market.
Active ingredient Amount delivered (mg)
12.5 mg
Diclofenac sodium
25 mg
Ketoprofen 25 mg
Olanzapine 2.5 mg
Tadalafil 2.5 mg
Table 3.
The preparation of the above orodispersible films delivering the drug was conducted as described in Example 1 for the placebo formulations, with the only exception that the active ingredient was added just after the plasticizer, before the mixture was left to rest.
With each of the selected active ingredients it was possible to make non-adhesive films that could be handled and with the active ingredient uniformly distributed.
The characterization of the tensile properties and of the disintegration time allowed verifying that the addition of an active component to the starting polymeric mixture does not alter the chemical- hysical profile of the oral form (Table 4).
As can be seen in Table 4, the disintegration times of the film with active ingredient are consistent with those originally obtained from the placebo film and still lower than the 3 minutes indicated in the monograph of the Pharmacopoeia.
The films obtained all have good tensile properties, with percent elongation in the ranges object of the invention.
BIBLIOGRAPHIC REFERENCES MENTIONED IN THE DESCRIPTION:
1. Oral Films: current status and future perspective I - Galenical development and quality attributes; Ana Filipa Borges, Claudia Silva, Jorge F.J. Coelho, Sergio Simoes; Journal of Controlled Release 206 (2015) 1-19
2. Advances in orodispersibile films for drug delivery; Eva Maria Hoffmann, Armin Breitenbach, Jorg Breitkreutz; Expert Opinion on Drug Delivery 2011 8(3).
3. Orodispersible Film: A Novel Approach for Patient Compliance; Rajesh Asija*, Manmohan Sharma, Avinash Gupta, Shailendra Bhatt; International Journal of Medicine and Pharmaceutical Research, 2013: Vol.1(4): 386-392
Claims
1. Orodispersible films comprising:
a) An active ingredient for food or therapeutic use
b) A polymer mixture comprising a copolymer of (meth)acrylic acid-
(meth)acrylic acid C1-C5 ester in salt form with an alkaline metal cation and a plasticizer, wherein the weight ratio between said polymer and the plasticizer is comprised between 9.5: 0.5 and 5.5: 4.5.
and characterized by:
- a disaggregation time lower than 140 s
a percent elongation at break (ε%) lower than 140%
a tensile stress (TS) higher than 1 MPa
an elastic modulus (or Young's modulus) higher than 0.3 MPa.
2. Orodispersible films according to claim 1, wherein said alkaline metal cation is selected from that of sodium or potassium.
3. Orodispersible films according to claim 1 or 2, wherein the copolymer of mixture b) is the alkaline metal salt of the (meth)acrylic acid-(meth)acrylic acid C1-C5 ester copolymer wherein the above co-monomers are in a weight ratio comprised between 1 : 1 and 1 :2 with respect to each other.
4. Orodispersible films according to claim 3, wherein the copolymer of mixture b) is the alkaline metal salt of the methacrylic acid-methyl methacrylate copolymer wherein the co-monomers constituting the macromolecule are combined in a weight ratio comprised between 1 : 1 and 1 :2.
5. Orodispersible films according to claim 3, wherein the copolymer of mixture b) is the alkaline metal salt of the methacrylic acid-ethyl acrylate copolymer wherein the co-monomers constituting the macromolecule are combined in a weight ratio of 1 : 1.
6. Orodispersible films according to any one of claims 1-5, wherein the plasticizer of mixture b) is selected from glycerin and PEG 400.
7. Orodispersible films according to claims 1, 2, 3, 4 and 6, wherein the polymer mixture b) comprises the sodium salt of the methacrylic acid-methyl
methacrylate copolymer in a weight ratio of 1 : 1 and PEG 400, wherein
copolymer and plasticizer are in a weight ratio comprised between 9.5: 0.5 and 6.5: 3.5.
8. Orodispersible films according to claim 1, 2, 3, 4 and 6, wherein the polymer mixture b) comprises the potassium salt of the methacrylic acid-methyl methacrylate copolymer in a weight ratio of 1 : 1 and PEG 400, wherein the copolymer and the plasticizer are in a weight ratio comprised between 9.5: 0.5 and 5.5: 4.5.
9. Orodispersible films according to claim 1, 2, 3, 4 and 6, wherein the polymer mixture b) comprises the sodium salt of the methacrylic acid-methyl
methacrylate copolymer in a weight ratio of 1 :2 and PEG 400, wherein copolymer and plasticizer are in a weight ratio comprised between 9.5: 0.5 and 7.5: 2.5
10. Orodispersible films according to claims 1, 2, 3, 4 and 6, wherein the polymer mixture b) comprises the potassium salt of the methacrylic acid-methyl methacrylate copolymer in a weight ratio of 1 :2 and PEG 400, wherein copolymer and plasticizer are in a weight ratio comprised between 9.5: 0.5 and 7.5: 2.5
11. Orodispersible films according to claim 1, 2, 3, 4 and 6, wherein the polymer mixture b) comprises the sodium salt of the methacrylic acid-methyl
methacrylate copolymer in a weight ratio of 1 :2 and glycerin, wherein copolymer and plasticizer are in a weight ratio comprised between 8.5: 1.5 and 5.5: 4.5
12. Orodispersible films according to claim 1, 2, 3, 4 and 6, wherein the polymer mixture b) comprises the sodium salt of the methacrylic acid-methyl
methacrylate copolymer in a weight ratio of 1 : 1 and glycerin, wherein copolymer and plasticizer are in a weight ratio comprised between 7.5: 2.5 and 5.5: 4.5
13. Orodispersible films according to each of claims from 1 to 12 for therapeutic or food use.
14. Process for the production of orodispersible films according to claims 1-13, comprising the following stages:
c) Solubilizing NaOH or KOH in water, in a thermostated bath at a temperature comprised between 50°-60°.
d) Adding the copolymer of methacrylic acid C1-C5 ester/methacrylic acid to the solution obtained in stage c),
e) Adding the plasticizer to the solution obtained in stage d) at a temperature of
40°,
f) Adding the active ingredient to the mixture obtained from e)
g) Spreading and drying the mixture obtained from f) on a silicone paper liner h) Cutting the films obtained from g) to the desired size.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUB2015A003446A ITUB20153446A1 (en) | 2015-09-07 | 2015-09-07 | Rapid-disintegrating orodispersible films for therapeutic or food use |
IT102015000049087 | 2015-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017042681A1 true WO2017042681A1 (en) | 2017-03-16 |
Family
ID=54884162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2016/055298 WO2017042681A1 (en) | 2015-09-07 | 2016-09-05 | Orodispersible films having fast disaggregation time for therapeutic or food use. |
Country Status (2)
Country | Link |
---|---|
IT (1) | ITUB20153446A1 (en) |
WO (1) | WO2017042681A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116785238A (en) * | 2023-05-25 | 2023-09-22 | 北京诺康达医药科技股份有限公司 | Photosensitive medicine oral solution and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001054674A1 (en) * | 2000-01-26 | 2001-08-02 | F.T. Holdings S.A. | Patch for local and transdermal administration of active ingredients containing anionic or electron-attracting groups |
WO2002003955A1 (en) * | 2000-07-10 | 2002-01-17 | F.T. Holding S.A. | Fast release bioadhesive microspheres for the sublingual administration of proximate principles |
WO2005009386A2 (en) * | 2003-07-24 | 2005-02-03 | Smithkline Beecham Corporation | Orally dissolving films |
EP1955689A1 (en) * | 2007-02-12 | 2008-08-13 | McNeil-PPC, Inc. | Positioning feature for aiding use of film or strip product |
-
2015
- 2015-09-07 IT ITUB2015A003446A patent/ITUB20153446A1/en unknown
-
2016
- 2016-09-05 WO PCT/IB2016/055298 patent/WO2017042681A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001054674A1 (en) * | 2000-01-26 | 2001-08-02 | F.T. Holdings S.A. | Patch for local and transdermal administration of active ingredients containing anionic or electron-attracting groups |
WO2002003955A1 (en) * | 2000-07-10 | 2002-01-17 | F.T. Holding S.A. | Fast release bioadhesive microspheres for the sublingual administration of proximate principles |
WO2005009386A2 (en) * | 2003-07-24 | 2005-02-03 | Smithkline Beecham Corporation | Orally dissolving films |
EP1955689A1 (en) * | 2007-02-12 | 2008-08-13 | McNeil-PPC, Inc. | Positioning feature for aiding use of film or strip product |
Non-Patent Citations (2)
Title |
---|
CILURZO F ET AL: "Polymethacrylate salts as new low-swellable mucoadhesive materials", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 88, no. 1, 14 February 2003 (2003-02-14), pages 43 - 53, XP004409396, ISSN: 0168-3659, DOI: 10.1016/S0168-3659(02)00459-5 * |
PRASANTH V V ET AL: "Effect of permeation enhancers in the mucoadhesive buccal patches of salbutamol sulphate for unidirectional buccal drug delivery.", RESEARCH IN PHARMACEUTICAL SCIENCES 2014 JUL-AUG, vol. 9, no. 4, July 2014 (2014-07-01), pages 259 - 268, XP002754746, ISSN: 1735-5362 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116785238A (en) * | 2023-05-25 | 2023-09-22 | 北京诺康达医药科技股份有限公司 | Photosensitive medicine oral solution and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
ITUB20153446A1 (en) | 2017-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bala et al. | Formulation optimization and evaluation of fast dissolving film of aprepitant by using design of experiment | |
Wasilewska et al. | How to assess orodispersible film quality? A review of applied methods and their modifications | |
MX2015006399A (en) | Composition for immediate and extended release. | |
US20210253291A1 (en) | Orodispersible films having quick dissolution times for therapeutic and food use | |
Padamwar et al. | Formulation and evaluation of fast dissolving oral film of bisoprololfumarate | |
Naimish et al. | SUBLINGUAL DELIVERY: A PROMISING APPROACH TO IMPROVE BIOAVAILABILITY. | |
Sadeq et al. | Studying the effect of different variables on the formulation of mucoadhesive buccal patches of captopril | |
WO2017042681A1 (en) | Orodispersible films having fast disaggregation time for therapeutic or food use. | |
Sadique et al. | Preparation and evaluation of fast dissolving oral film of Losartan Potassium | |
JP2022123274A (en) | Enteric coated hard capsule | |
Bin et al. | Orally disintegrating film: a revisit of its two decades development | |
Suhaitamy et al. | Formulation and Characterization Transdermal Patches of Meloxicam | |
RU2665370C2 (en) | Orodispersible films having quick dissolution times for therapeutic and food use | |
Patange et al. | A Review on Mouth Dissolving Film | |
Narayanan et al. | Curcumin intra-oral controlled release films for oral candidiasis: a comparative study with fluconazole, elucidation of release mechanism | |
Singh et al. | Formulation of oral mucoadhesive tablets using mucilage isolated from buchanania lanzan spreng seeds | |
Esim | Preparation and in vitro evaluation of methylene blue films for treatment of oral mucosal diseases | |
Patil et al. | Formulation and evaluation of fast dissolving buccal film of curcumin as promising route of buccal delivery | |
Sultana et al. | Formulation and evaluation of herbal fast dissolving buccal film containing curcumin | |
Abd El Razek et al. | Metoclopramide hydrochloride loaded oral wafers for postoperative care of children: In vitro and in vivo evaluation | |
Almurisi et al. | Development and In Vitro Evaluation of Aceclofenac Buccal Film | |
AU2021103981A4 (en) | Method and Process for the Developments of Sago Starch Buccal Film for Buccal Delivery of Antidiabetic Drug | |
Kumari et al. | FORMULATION, FABRICATION AND IN-VITRO EVALUATION OF FAST DISSOLVING ORAL FILM OFCILNIDIPINE | |
Uddin et al. | Future drug delivery technologies: benchtop to industry | |
Smairat | Formulation and Characterization of Bilastine Fast Dissolving Oral Film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16787560 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/06/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16787560 Country of ref document: EP Kind code of ref document: A1 |