WO2016207966A1 - 容器用鋼板及び容器用鋼板の製造方法 - Google Patents
容器用鋼板及び容器用鋼板の製造方法 Download PDFInfo
- Publication number
- WO2016207966A1 WO2016207966A1 PCT/JP2015/067963 JP2015067963W WO2016207966A1 WO 2016207966 A1 WO2016207966 A1 WO 2016207966A1 JP 2015067963 W JP2015067963 W JP 2015067963W WO 2016207966 A1 WO2016207966 A1 WO 2016207966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chemical conversion
- steel plate
- plating layer
- treatment
- coating layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
- C21D8/0284—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0483—Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/08—Tin or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/02—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
- C23C22/03—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/30—Electroplating: Baths therefor from solutions of tin
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/54—Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/623—Porosity of the layers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
- C25D5/505—After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
- Y10T428/12618—Plural oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/1266—O, S, or organic compound in metal component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12708—Sn-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12708—Sn-base component
- Y10T428/12722—Next to Group VIII metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12937—Co- or Ni-base component next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
- Y10T428/12965—Both containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
- Y10T428/12979—Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12993—Surface feature [e.g., rough, mirror]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/27—Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
Definitions
- the present invention relates to a steel plate for containers and a method for manufacturing a steel plate for containers.
- metal containers obtained by making steel plates (steel plates for containers) such as Ni-plated steel plates, Sn-plated steel plates or Sn-based alloy-plated steel plates are often used.
- steel plates steel plates for containers
- Ni-plated steel plates Ni-plated steel plates
- Sn-plated steel plates Sn-based alloy-plated steel plates
- a steel plate subjected to rust prevention (chromate treatment) with chromate using hexavalent chromate or the like is used as the base of paint or film (for example, see Patent Document 1 below).
- chromate-treated steel sheets are coated with a chromate film (chromate film layer) to improve organic solvent resistance, fingerprint resistance, scratch resistance, lubricity, etc. as necessary.
- a coating layer made of an organic resin is formed on the substrate.
- Patent Document 2 and Patent Document 3 disclose a method for cathodic electrolytic treatment of a Sn-plated steel sheet or a Sn-plated steel sheet containing an alloy Sn with a chemical conversion treatment liquid containing a Zr-containing compound and an F-containing compound. Yes.
- Patent Document 4 there is a method for performing electrolytic treatment or other chemical conversion treatment on Sn-plated steel sheet using a chemical conversion treatment solution containing at least one of phosphate ions, Ti ions, or Zr ions. It is disclosed.
- Patent Document 5 discloses a metal material having an inorganic treatment layer containing Zr ions and F and not containing phosphate ions, and an organic treatment layer, and a treatment method thereof.
- Patent Document 6 discloses a method of electrolytically treating or dipping a Ni-plated steel sheet using a chemical conversion treatment solution containing Zr ions and organic matter.
- Patent Documents 7 to 10 listed below disclose methods for electrolytically treating a steel sheet using a solution containing Zr ions, phosphate ions and nitrate ions.
- Patent Document 8 discloses a method of promoting the formation of a Zr film by adding a large amount of nitrate ions.
- Patent Documents 2 to 10 disclose techniques for forming a film containing a Zr compound on a steel sheet by performing an electrolytic treatment in a solution containing Zr ions and F ions.
- Film adhesion can be improved by using an adhesive, a primer, or the like between the film and the coating formed on the steel sheet (metal container).
- adhesives, primers, and the like increases the number of manufacturing processes such as the application process of adhesives, primers, and the like, and the baking process for ensuring adhesion.
- such a method is not necessarily economical.
- the chemical conversion treatment solution contains an organic substance such as a phenol resin
- the organic substance is decomposed on the anode, or the phenol resin is inevitably insolubilized by interaction with metal ions.
- a film containing a phenol resin may not be stably formed, so it is desirable not to contain a phenol resin.
- the steel plate for containers used for food containers is required to have sulfur blackening resistance.
- Patent Documents 2 to 8 do not disclose this anti-sulfur blackening resistance.
- the steel plate for containers is used for food containers containing high protein foods such as fish meat and beans, for example, the retort treatment after food filling (high temperature heat sterilization treatment in the presence of water vapor) At least one of the contents may rarely turn black.
- the blackening phenomenon is called blackening phenomenon.
- Sulfur contained in the food is thermally decomposed by retort treatment to generate hydrogen sulfide (H 2 S), thiols (HS ⁇ ) and the like.
- This hydrogen sulfide and thiols react with the constituent metal on the inner surface of the container to produce black metal sulfide, and this blackening of sulfide occurs.
- the appearance of the container is deteriorated due to the blackening of sulfide. Further, the consumer misunderstands the generated black metal sulfide as metal corrosion on the inner surface of the container or corrosion of the contents. Therefore, it is necessary to prevent the blackening of sulfide from occurring as much as possible.
- the steel sheet for containers is required to have weldability, paint adhesion, and corrosion resistance in addition to sulfur blackening resistance and film adhesion.
- the present invention has been made in view of the above circumstances, and provides a steel plate for containers having excellent film adhesion, sulfide blackening resistance, weldability, paint adhesion, and corrosion resistance, and a method for producing a steel plate for containers.
- the purpose is to do.
- the present invention employs the following means in order to solve the above problems and achieve the object.
- the steel plate for containers which concerns on 1 aspect of this invention is equipped with the steel plate, the Sn plating layer formed in the at least single side
- the Sn plating layer contains 300 to 5600 mg / m 2 of Sn in terms of metal Sn
- the chemical conversion coating layer contains a Zr compound of 5 to 30 mg / m 2 in terms of metal Zr.
- the average roughness Ra of the outermost surface of the chemical conversion coating layer obtained by the above is 10 to 100 nm.
- ⁇ YI the amount of change in yellowness measured for one measurement point on the outermost surface of the chemical conversion coating layer
- ⁇ YI represented by the following equation (1)
- the average absolute value of ⁇ YI obtained for the measurement points is 5.0 or less.
- a Ni plating layer containing Ni may be formed in the lower layer of the Sn plating layer.
- the Sn plating layer may contain 300 to 3000 mg / m 2 of Sn in terms of the amount of metallic Sn.
- the Ni plating layer may contain 5 to 150 mg / m 2 of Ni in terms of metal Ni.
- the Sn plating layer may contain a Sn alloy.
- the Sn plating layer may contain a Sn alloy
- the Ni plating layer may contain a Ni alloy
- the chemical conversion coating layer may further contain a phosphate compound having a P content of 2 to 20 mg / m 2. Good.
- the chemical conversion treatment film layer is subjected to cathodic electrolytic treatment in a chemical conversion treatment solution containing Zr ions and F ions. It may be formed.
- the chemical conversion treatment film layer may be formed by performing cathodic electrolysis in a chemical conversion treatment solution containing Zr ions, F ions, and P ions. .
- a method for producing a steel plate for containers includes a plating step of forming a Sn plating layer containing Sn on the surface of the steel plate, and a chemical conversion treatment solution containing at least Zr ions and F ions.
- a first cathode electrolysis treatment in which the temperature of the chemical conversion treatment solution is 10 to 40 ° C. and a second cathode electrolysis treatment in which the temperature of the chemical conversion treatment solution is 45 to 60 ° C.
- the chemical conversion treatment liquid may further contain at least one of phosphate ions, nitrate ions, and ammonium ions. Good.
- the present inventors diligently studied the use of a chemical conversion coating layer containing a Zr compound as a new coating layer replacing the chromate coating layer.
- the chemical conversion coating layer containing a Zr compound or the chemical conversion coating layer further containing a phosphate compound in the chemical conversion coating layer containing a Zr compound the surface properties and specific conditions of the chemical conversion coating layer formed on the steel sheet.
- FIG. 1 is a configuration diagram of a container steel plate 1 according to a first embodiment of the present invention.
- the container steel plate 1 includes a steel plate 2, a Sn plating layer 3 formed on the steel plate 2, and a chemical conversion treatment film layer 4 formed on the Sn plating layer 3.
- the steel plate 2 used in the present embodiment is not particularly limited, and a steel plate normally used as a container material can be used.
- the manufacturing method and material of the steel plate 2 are not particularly limited as long as the steel plate 2 is manufactured through normal steel slab manufacturing processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling. .
- the content of Sn in the Sn-plated layer 3 is 300mg / m 2 ⁇ 5600mg / m 2 of metal Sn amount.
- the “Sn plating layer” in this specification includes not only a plating layer containing metal Sn but also a plating layer made of metal Sn mixed with inevitable impurities and a plating layer made of metal Sn to which a trace element is added. Inevitable impurities mean elements that are inevitably mixed in production.
- Sn has excellent workability, weldability and corrosion resistance, but in order to exhibit these effects, Sn of 300 mg / m 2 or more is required as the amount of metal Sn.
- the effect is improved as the amount of metal Sn increases, but the effect is saturated when the amount of metal Sn exceeds 5600 mg / m 2 . Therefore, it is preferable that the Sn content is 5600 mg / m 2 or less in terms of metal Sn from an economical viewpoint.
- a more preferable range of the Sn content in the Sn plating layer 3 in the present embodiment is 560 to 5600 mg / m 2 .
- the amount of metallic Sn in the Sn plating layer 3 can be measured by, for example, a fluorescent X-ray method.
- a calibration curve related to the amount of metal Sn is specified in advance using a sample with a known amount of metal Sn, and the amount of metal Sn is relatively specified using this calibration curve.
- the Sn plating layer 3 may be formed on both surfaces of the steel plate 2 or may be formed only on one surface of the steel plate 2 from the viewpoint of manufacturing cost reduction.
- the steel plate 2 on which the Sn plating layer 3 is formed only on one surface of the steel plate 2 can be made, for example, the surface on which the Sn plating layer 3 is formed is processed to be the inner surface of the container. It is preferable.
- a molten tin treatment may be performed.
- a part of Sn contained in the Sn plating layer 3 is alloyed with Fe contained in the steel plate 2 by performing the molten tin treatment.
- the Sn plating layer 3 to which the molten tin treatment has been applied is referred to as an alloy Sn plating layer.
- the alloy Sn plating layer may contain non-alloyed Sn (free Sn).
- the alloy Sn plating layer does not only indicate the form in which Sn or the Sn alloy covers the entire surface of the steel plate 2, but partially covers the surface of the steel plate 2, and the steel plate 2 is partially exposed. It is defined to also refer to the form (referred to as island Sn).
- the steel plate 2 on which the Sn plating layer 3 is formed is heated to a melting point of Sn (232 ° C.) or higher to melt the Sn plating layer 3 and then water-cooled.
- Sn contained in the Sn plating layer 3 before performing the molten tin treatment is in the form of fine particles, relatively weak adhesion, and dull.
- Sn contained in the Sn plating layer 3 is in the form of fine particles and has a relatively weak adhesion. Therefore, in the Sn plating layer 3, there is a plating defect portion composed of a plurality of fine holes (microporosity). In that case, sulfur and Fe contained in the steel plate 2 are combined to form black FeS, Fe 2 S 3 , and Fe 2 S.
- the steel plate for containers 1 has a chemical conversion treatment film layer 4 on the Sn plating layer 3.
- Film adhesion includes mechanical adhesion (such as throwing effect), chemical adhesion (primary bond, interatomic attractive force, etc.), and physical adhesion (secondary bond, intermolecular attractive force, etc.).
- the surface roughness (specific surface area) of the surface of the chemical conversion coating layer 4 is defined as a result of focusing on mechanical adhesion.
- the Zr content of the chemical conversion coating layer 4 is 5 to 30 mg / m 2 in terms of metal Zr. If the Zr content is less than 5 mg / m 2 , the surface roughness described later cannot be stably obtained, which is not preferable. On the other hand, when the Zr content exceeds 30 mg / m 2 , the surface roughness can be stably obtained, but it is not preferable because the weldability at the time of forming a three-piece can is insufficient.
- the Zr content of the chemical conversion coating layer 4 is more preferably 6 to 15 mg / m 2 in terms of metal Zr, and still more preferably 8 to 13 mg / m 2 in terms of metal Zr.
- the Zr content in the chemical conversion coating layer 4 can be measured by, for example, a fluorescent X-ray method.
- a calibration curve related to the Zr amount is specified in advance using a sample with a known Zr amount, and the Zr content is relatively specified using the calibration curve. It is more preferable to specify a calibration curve related to the Zr amount in advance using a sample with a known Zr amount on the Sn plating layer 3.
- the average roughness (Ra) of 20 arbitrary 5 ⁇ m square planar portions per 1 m 2 is 10 nm or more and 100 nm or less.
- the average roughness is less than 10 nm, the primary adhesion of the film can be secured, but the film adhesion (secondary adhesion) after processing such as canning and end processing may not be stably secured. Yes, not preferred.
- the average roughness is more than 100 nm, it is difficult to make the Zr content of the chemical conversion coating layer 4 5 to 30 mg / m 2 , to cause poor appearance, and film adhesion effect Is not preferred because it saturates.
- the thickness of the film is 5 ⁇ m or less, the surface properties of the film attached to the surface of the steel plate 1 for containers may be affected, which is not preferable.
- the thickness of the film is preferably in the range of 5 ⁇ m to 80 ⁇ m, more preferably in the range of 10 ⁇ m to 60 ⁇ m, and even more preferably in the range of 15 ⁇ m to 45 ⁇ m.
- the measurement method of the average roughness (Ra) may be an apparatus that can measure the average roughness (Ra) on the order of nm.
- a shape measuring device such as a scanning probe microscope (Scanning Probe Microscope: SPM) represented by a scanning tunnel microscope (Scanning Tunneling Microscope: STM), an atomic force microscope (Atomic Force Microscope: AFM), or the like. it can.
- the arbitrary 20 points per 1 m 2 means “20 points on the outermost surface of the optional chemical conversion coating layer 4 on one side”, and means that 40 points are measured on both sides.
- the measurement points are preferably at least 10 cm apart. Specifically, if it is a large plate of 1 m ⁇ 1 m, it is preferable to sample a measurement point and sample and measure a point separated by 10 cm or more from that point.
- the scanning area under the measurement conditions at each point is preferably 5 ⁇ m ⁇ 5 ⁇ m.
- main measurement conditions such as the number of data points may be in accordance with the measurement conditions in Table 1.
- the definition of the average roughness (Ra) is described in the international standard ISO4287, which is the arithmetic average height of the roughness curve, and is defined as the average value of the absolute value deviation from the average line. What is necessary is just to calculate according to it.
- the roughness of the chemical conversion coating layer 4 When the roughness of the chemical conversion coating layer 4 is measured with a scanning probe microscope, the roughness of the Sn plating layer 3 or the like below the chemical conversion coating layer 4 may affect the roughness of the chemical conversion coating layer 4. is there.
- the average roughness in the present embodiment is the roughness of the outermost surface of the chemical conversion film 4 including the influence of the roughness of the Sn plating layer 3 or the like.
- the measurement surface is curved, it is preferable to appropriately perform plane correction. In addition, it is preferable to measure other portions of the curved portion outside the correction range.
- the amount of change in yellowness measured at one measurement point on the outermost surface of the chemical conversion coating layer 4 is defined as ⁇ YI.
- the amount of change in yellowness (YI value) ( ⁇ YI value) is the yellowness (YI value) of the steel plate for containers 1 and the retort treatment for 5 hours at a temperature of 130 ° C. with respect to the steel plate for containers 1. It means the difference from the YI value after application.
- the average value of absolute values of ⁇ YI obtained for a plurality of (for example, 20) measurement points included in the unit area (1 m 2 ) on the outermost surface of the chemical conversion coating layer 4 is 5.0. It is as follows.
- the retort treatment uses an apparatus (high-pressure steam sterilizer) for sterilization with high-temperature and high-pressure saturated steam (autoclave sterilization, high-pressure steam sterilization), and Sn plating layer 3 and chemical conversion film layer according to the present embodiment. 4 is to be processed.
- DOS bis (2-ethylhexyl) sebacate
- ATBC 2,3-propanetricarboxylic acid, which are generally oiled on the surface of container steel plates for the purpose of rust prevention Tributyl
- the temperature inside the apparatus is maintained at 130 ° C. for 5 hours. Note that the temperature rise time and the temperature fall time are not included in the processing time. Since the temperature rise time and the temperature fall time may vary depending on the apparatus, it is preferable to match the conditions within a range of ⁇ 20 minutes.
- Yellowness is the degree to which the hue changes from colorless or white to yellow, and is displayed as a positive amount when the hue changes from colorless or white to yellow. When the yellow degree is displayed as a negative value, it indicates that the hue changes in the blue direction.
- the yellowness is calculated by obtaining tristimulus values X, Y, and Z using a colorimetric color difference meter and substituting them into the following equation (2).
- Yellowness is a numerical value of color tristimulus values (red, blue, and yellow perceived sensitivity perceived by the human eye). The higher the YI value is, the more yellow it becomes. The higher the value on the minus side, the more bluish.
- the amount of change in yellowness (YI value) was such that the YI value of the steel plate for containers 1 and the steel plate for containers 1 were subjected to retort treatment at a temperature of 130 ° C. for 5 hours. It means the difference from the later YI value. That is, the amount of change ( ⁇ YI value) in yellowness (YI value) is calculated by the following equation (1).
- the amount of change ⁇ YI in yellowness is a positive amount, it indicates that the yellowness of the steel plate 1 for containers has increased due to the retort process.
- the yellowness change amount ⁇ YI is a negative amount, the yellowness of the container steel plate 1 is reduced by the retort treatment, and the container steel plate 1 is bluish.
- the YI value shows a higher positive value by forming the chemical conversion coating layer 4 on the Sn plating layer 3. This is because the chemical conversion coating layer 4 itself exhibits white to light yellow. Further, as the amount of Zr in the chemical conversion coating layer 4 increases, the YI value tends to show a higher value. This is because, as described above, the chemical conversion coating layer 4 itself exhibits a white to light yellow color, and the color tone of the light yellow color is enhanced as the amount of Zr is contained.
- the ⁇ YI value often shows a negative value, but the positive value is It may be shown.
- the absolute value of the ⁇ YI value is used as an index of resistance to sulfurization blackening.
- the measurement of the yellowness (YI value) of the present embodiment may be performed using a spectrocolorimeter that complies with JIS Z-8722 condition c.
- the yellowness (YI value) is measured by SCI (including regular reflection light) measurement which is not easily affected by surface properties.
- SCI including regular reflection light
- the absolute value of the ⁇ YI value which is the amount of change in yellowness (YI value) is used as an index indicating the degree of coverage of the Sn plating layer 3 and the chemical conversion treatment film layer 4.
- the ⁇ YI value which is the amount of change in yellowness (YI value)
- the ⁇ YI value which is the amount of change in yellowness (YI value)
- the ⁇ YI value which is the amount of change in yellowness (YI value)
- the case where there is a defect in the Sn plating layer 3 or the chemical conversion treatment film layer 4 is, for example, the case where the chemical conversion treatment film layer 4 is non-uniform due to microporous defects or the Sn plating layer 3 is oxidized by the retort treatment. Can be mentioned.
- the absolute value of the ⁇ YI value is calculated by the above method, and all the obtained “absolute values of the ⁇ YI value” are averaged by the number of measurement points.
- the average of the absolute values of the ⁇ YI values is 5.0 or less, a dense and uniform Sn plating layer 3 and chemical conversion treatment film layer 4 are formed.
- the average absolute value of the ⁇ YI value exceeds 5.0, it means that at least one of the dense and uniform Sn plating layer 3 and the chemical conversion coating layer 4 is not formed.
- the average absolute value of the ⁇ YI values is 5.0 or less.
- the average absolute value of ⁇ YI values is preferably 3.0 or less, more preferably 1.0 or less, and even more preferably 0.5 or less.
- the present inventors have found that the absolute value of the ⁇ YI value indicates the degree of coating of the chemical conversion coating layer 4 and that there is a correlation between the resistance to sulfurization blackening and the ⁇ YI value. That is, when the average of the absolute value of the ⁇ YI value is a high value, the container steel plate 1 does not have excellent anti-sulfur blackening resistance, and the average of the absolute value of the ⁇ YI value is a low value.
- the steel plate for containers 1 has excellent resistance to sulfur blackening.
- the ⁇ YI value represents the amount of change in yellowness of the container steel plate 1.
- the yellowness of the steel plate 1 for containers is influenced by the oxidation state of metals such as Sn and iron. Therefore, the average of absolute values of ⁇ YI values is considered to indicate the degree of coating of the chemical conversion coating layer 4.
- the ⁇ YI value indicating the amount of change in the yellowness of the steel plate for containers 1 has a correlation with the sulfurization blackening resistance.
- the chemical conversion coating layer 4 is formed with two layers having different functions in order for the steel plate 1 for containers to exhibit excellent film adhesion and excellent resistance to sulfur blackening.
- the knowledge that it was preferable was obtained.
- the chemical conversion treatment film layer 4 is formed with a uniform and dense layer on the Sn plating layer 3 in order to make it difficult to transmit foreign molecules such as water molecules and hydrogen sulfide molecules from the surface.
- a layer having a high roughness is provided on the uniform and dense layer.
- the former uniform and dense layer is referred to as a first chemical conversion coating layer
- the latter layer having a high roughness is referred to as a second chemical conversion coating layer.
- the chemical conversion treatment film layer 4 is formed in order to ensure sulfide blackening resistance, corrosion resistance, and film adhesion.
- the Zr compound contained in the chemical conversion coating layer 4 is considered to be a Zr hydrated oxide composed of Zr oxide and Zr hydroxide.
- the chemical conversion treatment solution further contains phosphate ions, it is considered to be a Zr hydrated oxide-phosphate compound.
- These Zr compounds have excellent sulfur blackening resistance, corrosion resistance, and film adhesion. Therefore, when the amount of the Zr compound in the chemical conversion coating layer 4 is increased, the resistance to sulfurization blackening, corrosion resistance, and film adhesion are improved. If the amount of the Zr compound in the chemical conversion coating layer 4 is 4 mg / m 2 or more in terms of the amount of metal Zr, the above effect is exhibited.
- the amount of the Zr compound in the first chemical conversion coating layer is preferably 4 mg / m 2 or more, more preferably 6 mg / m 2 or more, and further preferably 8 mg / m 2 or more in terms of metal Zr.
- the amount of the Zr compound in the second chemical conversion coating layer is preferably 1 mg / m 2 or more, more preferably 3 mg / m 2 or more, and further preferably 6 mg / m 2 or more in terms of the amount of metal Zr.
- the amount of Zr compound in the first chemical conversion coating layer is preferably 20 mg / m 2 or less, more preferably 15 mg / m 2 or less, and still more preferably 10 mg / m 2 or less in terms of metal Zr.
- the amount of Zr compound in the second chemical conversion coating layer is preferably 10 mg / m 2 or less, more preferably 8 mg / m 2 or less, and further preferably 5 mg / m 2 or less in terms of metal Zr.
- the total amount of Zr compounds contained in the chemical conversion coating layer 4 is 5 to 30 mg / m 2 in terms of metal Zr.
- the amount of phosphate compound such as Zr-phosphate compound in the first chemical conversion coating layer is preferably 2 mg / m 2 or more in terms of P amount, more preferably 3 mg / m 2 or more, and further preferably 4 mg / m 2. 2 or more. Further, the amount of phosphate compound such as Zr-phosphate compound in the second chemical conversion coating layer is preferably 0.5 mg / m 2 or more, more preferably 1.5 mg / m 2 or more in terms of P amount, and still more preferably. Is 3 mg / m 2 or more.
- a phosphate compound such as a Zr-phosphate compound when the amount of a phosphate compound such as a Zr-phosphate compound is increased, resistance to sulfur blackening, corrosion resistance, and film adhesion are improved.
- the amount of phosphate compound such as Zr-phosphate compound in the chemical conversion coating layer 4 exceeds 20 mg / m 2 in terms of P amount, the phosphate compound such as Zr-phosphate compound becomes too thick. Therefore, the adhesiveness of the phosphoric acid compound itself deteriorates.
- the electrical resistance of the chemical conversion treatment film layer 4 increases, the weldability of the steel plate 1 for containers deteriorates.
- the amount of phosphate compound such as Zr-phosphate compound in the chemical conversion coating layer 4 exceeds 20 mg / m 2 in terms of P amount, a powdery Zr—P compound is deposited on the surface of the chemical conversion coating layer 4. There is a case.
- the amount of phosphate compound such as Zr-phosphate compound in the first chemical conversion coating layer is preferably 15 mg / m 2 or less in terms of P amount, more preferably 10 mg / m 2 or less, and even more preferably 8 mg / m 2. m 2 or less. Further, the amount of phosphate compound such as Zr-phosphate compound in the second chemical conversion coating layer is preferably 8 mg / m 2 or less, more preferably 5 mg / m 2 or less, further preferably 3 mg / m 2 in terms of P amount. m 2 or less.
- the total amount of phosphoric acid compounds such as Zr-phosphoric acid compounds contained in the chemical conversion coating layer 4 is preferably 2 to 20 mg / m 2 in terms of P amount. More preferably, the amount of phosphate compound such as Zr-phosphate compound is 4 to 15 mg / m 2 , and still more preferably the amount of phosphate compound such as Zr-phosphate compound is 2.5 to 10 mg / m 2 . is there.
- chemical conversion liquid does not contain organic substances, such as a phenol resin. Therefore, it is preferable that the chemical conversion treatment film layer 4 does not contain organic substances, such as a phenol resin.
- the amount of metal Zr, the amount of P, and the amount of metal Sn in the Sn plating layer 3 contained in the chemical conversion coating layer 4 of the present embodiment can be measured by a quantitative analysis method such as fluorescent X-ray analysis, for example. is there.
- a quantitative analysis method such as fluorescent X-ray analysis, for example. is there.
- a calibration curve related to the metal Sn amount is specified in advance, and the metal Sn amount can be relatively specified by using this calibration curve.
- a calibration curve related to the metal Zr amount and a calibration curve related to the P amount are specified in advance, and the metal Zr amount is relatively determined using these calibration curves. And the amount of P can be specified.
- FIG. 3 is a flowchart showing an example of a method for manufacturing a steel plate for containers according to the first embodiment of the present invention.
- the Sn plating layer 3 is formed on at least one surface of the steel plate 2 (step S3).
- the method for forming the Sn plating layer 3 is not particularly limited.
- a known technique such as electroplating, vacuum deposition, or sputtering may be used in a ferrostan bath.
- the molten tin treatment may be performed after the Sn plating layer 3 is formed.
- the molten tin treatment include heat treatment at 232 ° C. (melting point of Sn) to 280 ° C. and 0.5 sec to 30 sec to melt the Sn plating layer and immediately water-cool.
- Examples of the method of forming the chemical conversion coating layer 4 include immersion treatment and cathodic electrolysis treatment.
- the immersion treatment is a method of immersing the steel plate 2 on which the Sn plating layer 3 is formed in an acidic solution in which Zr ions and F ions (phosphate ions as necessary) are dissolved.
- Zr ions and F ions phosphate ions as necessary
- the chemical conversion treatment film layer 4 is formed by etching the base (Sn plating layer 3)
- the adhesion of the chemical conversion treatment film layer 4 becomes uneven.
- the time required for formation of the chemical conversion treatment film layer 4 also becomes long, it is disadvantageous in industrial production.
- the surface of the chemical conversion treatment film layer 4 to be formed is cleaned by forced charge transfer and hydrogen generation at the interface between the steel plate 2 and the chemical conversion treatment solution. Further, in the cathodic electrolysis treatment, the adhesion of the chemical conversion treatment film layer 4 is promoted by increasing the pH of the chemical conversion treatment solution. For the above reasons, it is possible to form a uniform chemical conversion coating layer 4 by performing cathodic electrolysis on the steel plate 2 on which the Sn plating layer 3 is formed.
- the steel sheet 2 on which the Sn plating layer 3 is formed is subjected to cathodic electrolytic treatment in a chemical conversion treatment solution containing Zr ions and F ions, whereby the chemical conversion treatment film layer 4 containing a Zr oxide is formed. It is formed.
- the chemical conversion coating layer 4 containing both the Zr oxide and the Zr phosphoric acid compound is formed.
- step S7 the temperature of the chemical conversion treatment liquid is 10 ° C. to 40 ° C.
- step S9 the temperature of the chemical conversion treatment liquid is subsequently changed to 45 ° C. to 60 ° C.
- a first chemical conversion coating layer is formed on the Sn plating layer 3 by the first cathodic electrolysis described above.
- a second chemical conversion coating layer is formed on the first chemical conversion coating layer by the above-described second cathode electrolytic treatment.
- the above-mentioned patent documents disclose the technical disclosure. However, the above-mentioned patent documents do not disclose a technique for multilayering the chemical conversion coating layer 4 by changing the cathodic electrolytic treatment conditions step by step.
- the second cathodic electrolytic treatment alone is effective in promoting the formation of the chemical conversion treatment film layer 4 containing a Zr compound, but the chemical conversion treatment film layer 4 is insufficiently dense, that is, a chemical conversion having a microporous defect. It is considered that the treatment film layer 4 is obtained. For this reason, it may be difficult to ensure sulfide blackening resistance and corrosion resistance.
- the temperature of the chemical conversion solution for the first cathodic electrolysis is 10 ° C. to 40 ° C. If the temperature of the chemical conversion treatment liquid is less than 10 ° C., it is necessary to increase the capacity of the cooling device. Even if the temperature of the chemical conversion treatment liquid is lowered to less than 10 ° C., the denseness of the chemical conversion treatment film layer 4 is saturated, and thus a more dense chemical conversion treatment film layer 4 cannot be formed. If the temperature of a chemical conversion liquid is less than 10 degreeC, the formation rate of the chemical conversion treatment film layer 4 will be slow. When the temperature of the chemical conversion treatment liquid is less than 10 ° C., the solubility of the components of the chemical conversion treatment liquid is lowered, and thus insoluble matter is generated.
- the temperature of the chemical conversion treatment liquid is less than 10 ° C.
- the temperature of the chemical conversion treatment liquid exceeds 40 ° C.
- the dense chemical conversion treatment film layer 4 cannot be formed, and it becomes difficult to ensure sulfuration blackening resistance and corrosion resistance. Therefore, it becomes difficult to exhibit the function as the first chemical conversion treatment film layer described above.
- the temperature of the chemical conversion solution for the first cathodic electrolysis is preferably 20 ° C. to 35 ° C.
- the temperature of the chemical conversion solution for the second cathodic electrolysis is 45 ° C. to 60 ° C.
- the temperature of the chemical conversion treatment liquid for the second cathode electrolytic treatment is preferably 45 ° C. to 55 ° C.
- the temperature of the chemical conversion solution for the second cathode electrolytic treatment needs to be 10 ° C. or higher than the temperature of the chemical conversion solution for the first cathode electrolytic treatment. This is because, as the line speed increases, for example, the chemical conversion treatment liquid in the first cathode electrolytic treatment tank adheres to the steel plate and is mixed into the second cathode electrolytic treatment tank, thereby forming the chemical conversion treatment liquid in the second cathode electrolytic treatment tank. This is because the temperature may be lowered, and as a result, the efficient formation of the second chemical conversion coating layer having the two-layer structure of the chemical conversion coating layer 4 of the present invention may be hindered.
- the current density depends on the structure of the cathode electrolytic treatment apparatus and the sheet feeding speed of a long steel plate, but is, for example, 0.1 to 20 A / dm 2 .
- At least two or more cathodic electrolytic treatment tanks it is preferable to use at least two or more cathodic electrolytic treatment tanks. This is because at least one tank is a cathode electrolytic treatment tank for the first cathode electrolytic treatment, and at least one tank is a cathode electrolytic treatment tank for the second cathode electrolytic treatment.
- the cathode electrolytic treatment tank may be either vertical or horizontal, and is not particularly limited as long as it can cathodic electrolyze the front and back surfaces of the steel sheet.
- a known chemical conversion liquid can be used as the chemical conversion liquid.
- a chemical conversion treatment solution containing 100 ppm to 7500 ppm of Zr ions and 120 ppm to 4000 ppm of F ions can be used.
- a chemical conversion treatment liquid used for the cathode electrolytic treatment a chemical conversion treatment liquid containing 50 ppm to 5000 ppm phosphate ions, or 20000 ppm or less nitrate ions and ammonium ions in addition to the above Zr ions and F ions may be used. Good.
- the pH of the chemical conversion treatment solution is preferably in the range of 3.0 to 4.5, and it can be adjusted as appropriate by adding nitric acid or the like to lower the pH and adding ammonia or the like to increase the pH. That's fine.
- nitrate ions and ammonium ions coexist in the chemical conversion solution.
- the treatment time for the cathodic electrolysis treatment can be shortened.
- the chemical conversion treatment liquid contains the above ions, it is possible to promote the precipitation of the chemical conversion treatment film layer 4 containing a Zr oxide or a Zr-phosphate compound that contributes to improvement of corrosion resistance and film adhesion. Therefore, it is very advantageous industrially that the chemical conversion treatment liquid contains the ions. Therefore, it is desirable to use cathodic electrolysis for the formation of the chemical conversion coating layer 4 of the present embodiment, and it is particularly desirable to perform cathodic electrolysis with a chemical conversion treatment solution containing nitrate ions and ammonium ions.
- the F ions are contained in the chemical conversion treatment solution, they are taken into the chemical conversion treatment film layer 4 together with the Zr compound. F ions in the chemical conversion coating layer 4 do not affect the primary paint adhesion, but cause deterioration of the secondary paint adhesion and corrosion resistance. This is because the F ions in the chemical conversion coating layer 4 are eluted into water vapor or a corrosive liquid, so that the F ions decompose the bond between the chemical conversion coating layer 4 and an organic coating layer such as a film or paint, or It is considered that the cause is that the steel plate 2 is corroded.
- the container steel plate 1 is subjected to a cleaning treatment (step S ⁇ b> 11).
- this cleaning process include an immersion process and a spray process.
- the amount of F ions in the chemical conversion coating layer 4 can be further reduced by increasing the temperature of the cleaning water used for the cleaning process and extending the processing time of the cleaning process.
- immersion treatment or spray treatment may be performed for 0.5 seconds or more using cleaning water of 40 ° C. or higher. If the temperature of the washing water is less than 40 ° C. or the treatment time is less than 0.5 seconds, the amount of F ions in the chemical conversion coating layer 4 cannot be reduced, and the above-described characteristics are not exhibited.
- nitrate ions and ammonium ions present in the chemical conversion treatment liquid may be taken into the chemical conversion coating layer 4 together with the Zr compound. Even when these ions are reduced, the cleaning treatment may be performed by dipping or spraying using the cleaning water. Even when nitrate ions and ammonium ions in the chemical conversion coating layer 4 are reduced, the amounts of nitrate ions and ammonium ions can be further reduced by increasing the temperature of the washing water or extending the treatment time.
- F ions, nitrate ions and ammonium ions are preferably removed from the chemical conversion coating layer 4 as much as possible by the above immersion treatment or spray treatment. However, it is not always necessary to remove all of them, and they may inevitably remain.
- FIG. 2 shows a configuration diagram of the steel plate 11 for containers according to the second embodiment of the present invention.
- the container steel plate 11 includes a steel plate 12, a Ni plating layer 15 formed on the steel plate 12, a Sn plating layer 13 formed on the Ni plating layer 15, and a chemical conversion treatment formed on the Sn plating layer 13. And a coating layer 14.
- the Ni plating layer 15 is formed on at least one side of the steel plate 12.
- the Ni plating layer 15 may be made of metal Ni or may be made of Fe—Ni alloy plating. Since Ni is a metal having excellent corrosion resistance, the corrosion resistance can be ensured when the steel plate 11 for containers has the Ni plating layer 15.
- Ni content of the Ni plating layer 15 is preferably set to 5mg / m 2 ⁇ 150mg / m 2 by metal Ni.
- the Sn plating layer 13 is formed in order to ensure corrosion resistance and weldability.
- the amount of metallic Sn in the Sn plating layer 13 in the present embodiment is set to 300 mg / m 2 or more.
- the above effect is saturated when the amount of metallic Sn exceeds 5600 mg / m 2 . Therefore, Sn content shall be 5600 mg / m ⁇ 2 > or less from an economical viewpoint.
- a more preferable range of the Sn content of the Sn plating layer 13 in the present embodiment is 300 to 3000 mg / m 2 .
- the alloy Sn A plating layer is formed in an island shape.
- the molten tin treatment may be performed after the Sn plating layer 13 is formed.
- an alloy Ni plating layer containing Fe—Ni or Sn—Fe—Ni alloy is formed on the steel plate 2, and an alloy Sn plating layer is formed on the alloy Ni plating layer.
- the Ni plating layer 15 that has been subjected to the molten tin treatment is referred to as an alloy Ni plating layer.
- the alloy Ni plating layer contains Fe—Ni or Sn—Fe—Ni alloy, and may contain non-alloyed Ni (free Ni).
- the alloy Sn plating layer contains Sn—Fe alloy or Sn—Fe—Ni alloy, and may contain non-alloyed Sn (free Sn).
- Sn content of the Sn plating layer 13 is 300 to 3000 mg / m 2
- the alloy Sn plating layer is formed in an island shape as described above.
- the alloy Sn plating layer is formed in an island shape, the lower alloy Ni plating layer is exposed.
- the Ni plating layer 15 and the Sn plating layer 13 are not necessarily formed on both surfaces of the steel plate 12, as in the first embodiment.
- the chemical conversion coating layer 14 in this embodiment has the same structure and components as the chemical conversion coating layer 4 in the first embodiment, description thereof is omitted. In addition, it is the same as that of 1st Embodiment about the point that it is preferable that the chemical conversion treatment film layer 14 does not contain organic substances, such as a phenol resin.
- FIG. 4 is a flowchart showing an example of a method for manufacturing the container steel plate 11 according to the second embodiment of the present invention.
- the Ni plating layer 15 is formed on at least one surface of the steel plate 12 (step S101).
- a method of Ni plating and Fe—Ni alloy plating for example, a publicly known method (for example, cathode electrolysis method) generally performed in electroplating can be used.
- a diffusion process for forming the diffusion layer is performed in an annealing furnace.
- Nitriding treatment may be performed before or after or simultaneously with the diffusion treatment. Even when nitriding is performed, the effect of Ni as the Ni plating layer 15 and the effect of the nitriding layer in this embodiment do not interfere with each other, and these effects can be exhibited together.
- the Sn plating layer 13 is formed (step S103).
- the method for forming the Sn plating layer 13 is not particularly limited. For example, a known electroplating method or a method of immersing and plating the steel plate 12 in molten Sn may be used.
- the molten tin treatment may be performed.
- the effects of the molten tin treatment are as described above.
- Examples of the melted tin treatment include heat treatment at 232 ° C. (Sn melting point) to 280 ° C. and 0.5 sec to 30 sec to melt the Sn plating layer and immediately water-cool.
- the chemical conversion film layer 14 is formed.
- the formation method of the chemical conversion treatment film layer 14 in this embodiment is the same as the formation method of the chemical conversion treatment film layer 4 in the first embodiment, the first cathode electrolytic treatment (step S107) and the second cathode electrolytic treatment (step S109). Consists of. Since these 1st cathode electrolytic treatment and 2nd cathode electrolytic treatment are the same as 1st Embodiment, description is abbreviate
- a cleaning treatment is performed (step S111). Since the cleaning process of this embodiment is the same as the cleaning process of the first embodiment, a description thereof will be omitted. In addition, it is the same as that of 1st Embodiment that it is preferable that a chemical conversion liquid does not contain organic substances, such as a phenol resin.
- Example shown below is only an example of the manufacturing method of the steel plate for containers and the steel plate for containers which concerns on embodiment of this invention, and the manufacturing method of the steel plate for containers and the steel plate for containers which concerns on embodiment of this invention is.
- the present invention is not limited to the following examples.
- the Sn content of the obtained plated steel sheet was measured by a fluorescent X-ray method.
- the Sn content at each level is shown in Table 2.
- the Zr content and the P content at each level were adjusted.
- the YI value is measured using a spectrocolorimeter CM-2600d (manufactured by Konica Minolta) in SCI (including specular reflection light) mode, yellowness before retorting (YI 0 ) and yellowing after retorting. Each of (YI) was measured. From this value, the absolute value of the ⁇ YI value, which is the difference between YI and YI 0 , was determined, and the average was determined by dividing these total values by the number of measurement points.
- the evaluation is Excellent (no discoloration), Good (with slight discoloration), Average (with discoloration equivalent to chromate treatment material), Fair (a little discoloration degree than chromate treatment material), Poor (discoloration degree than chromate treatment material) (Large). A case where an evaluation result equal to or higher than Average was obtained was regarded as acceptable.
- the evaluation is Excellent (there is no film wrinkling, floating, and peeling), Good (the film wrinkling, floating, and peeling area ratio is more than 0% and less than 0.5%), Average (film wrinkling, floating, and peeling) Area ratio of peeling is more than 0.5% and not more than 3%), Fair (film crease, float, and peel area ratio is more than 3% and not more than 15%), Poor (film crease, float, and peel area ratio) Is over 15% or breaks and cannot be processed). A case where an evaluation result equal to or higher than Average was obtained was regarded as acceptable.
- the evaluation is Excell (peeling area ratio is 0%), Good (peeling area ratio is more than 0% and not more than 5%), Fair (peeling area ratio is more than 5% and not more than 30%), Poor (peeling area ratio is more than 30%) ). A case where an evaluation result equal to or higher than Good was obtained was regarded as acceptable.
- (H) Corrosion resistance An epoxy-phenol resin was applied to the test material, and a baking treatment was performed at a temperature of 200 ° C. for 30 minutes. Thereafter, a grid-like cut having a depth reaching the base iron was made, and immersed in a test solution composed of a 1.5% citric acid-1.5% salt solution at a temperature of 45 ° C. for 72 hours. After washing and drying, the tape was peeled off. Corrosion resistance was evaluated by observing the corrosion state under the coating film and the corrosion state of the flat plate portion at the crosscut portion, and evaluating the width of the corrosion under the coating layer and the corrosion area ratio of the flat plate portion.
- Evaluation is Excellent (corrosion width under coating is less than 0.2 mm and the corrosion area ratio of flat plate is 0%), Good (corrosion width under coating is less than 0.2 to 0.3 mm and corrosion area ratio of flat plate is Is more than 0% and less than 1%), Fair (corrosion width under the coating is less than 0.3 to 0.45 mm and the corrosion area ratio of the plate portion is more than 1% and less than 5%), Poor (corrosion width under the coating is 0 Evaluation was made in four stages, exceeding 45 mm or the corrosion area ratio of the flat plate portion exceeding 5%. A case where an evaluation result equal to or higher than Good was obtained was regarded as acceptable.
- the average roughness (Ra) was 10 to 100 nm, and the average absolute value of ⁇ YI values was 5.0 or less.
- These levels C1 to C13 had excellent resistance to sulfur blackening, weldability, primary paint adhesion, secondary paint adhesion, and corrosion resistance under the coating film.
- the levels C15 to C22 that do not satisfy the requirements of either the average roughness (Ra) or the ⁇ YI value of the present invention are film adhesion (including workability), resistance to sulfur blackening, weldability, and primary coating adhesion. It has been found that at least some of the properties such as adhesiveness, secondary paint adhesion, or corrosion resistance are inferior.
- Level C14 is a case where the amount of Ni and the amount of Sn were increased from the specified amount, but it was found that the performance of the chemical conversion coating layer was saturated.
- the annealed and pressure-regulated original sheet is degreased and pickled, and then nickel sulfate hexahydrate 75 g / L, nickel chloride hexahydrate 140 g / L, ferrous sulfate -Fe-Ni alloy plating using a sulfuric acid-hydrochloric acid bath having a composition of heptahydrate 110 g / L, boric acid 30 g / L, and citric acid 3 g / L at a bath temperature of 50 ° C and a current density of 5 A / dm 2 A layer was formed.
- PSA phenol sulfonic acid
- tin sulfate 54 g / L (30 g / L as Sn)
- additive ethoxylated ⁇ -naphthol
- additive ethoxy naphthol sulfonic acid
- An Sn plating layer was formed using a ferrostan bath having a composition of / L at a bath temperature of 50 ° C. and a current density of 7 A / dm 2 . The amount of adhesion was adjusted by electrolysis time. Thereafter, the Sn-plated steel sheet was heated at 260 ° C. to melt the Sn plating layer, and immediately water-cooled (molten tin treatment).
- the annealed and pressure-regulated original plate has a composition of nickel sulfate hexahydrate 75 g / L, nickel chloride hexahydrate 140 g / L, boric acid 40 g / L, pH 4
- Ni plating layer was formed using a Watt bath under conditions of a bath temperature of 50 ° C. and a current density of 5 A / dm 2 .
- a Ni diffusion layer is formed during annealing, and after degreasing and pickling, PSA (phenol sulfonic acid) 60 g / L, tin sulfate: 54 g / L (30 g / L as Sn), additive (ethoxylated ⁇ -naphthol) 3 g
- PSA phenol sulfonic acid
- tin sulfate 54 g / L (30 g / L as Sn
- additive ethoxylated ⁇ -naphthol
- An Sn plating layer was formed using a ferrostan bath having a composition of 3 g / L of / L and an additive (ethoxynaphtholsulfonic acid) at a bath temperature of 50 ° C. and a current density of 7 A / dm 2 . Thereafter, the Sn-plated steel sheet was heated at 260 ° C.
- PSA phenol sulfonic acid 60 g / L, tin sulfate: 54 g / L (30 g / L as Sn), additive (ethoxylated ⁇ -naphthol) 3 g / L, additive (ethoxy naphthol sulfonic acid) 3 g / L] was used to form a Sn plating layer under conditions of a bath temperature of 50 ° C. and a current density of 7 A / dm 2 .
- Ni content and the Sn content of the formed Ni plating layer and Sn plating layer were measured by a fluorescent X-ray method.
- Table 5 shows the Ni content and the Sn content at each level.
- the average roughness (Ra) was 10 to 100 nm and the average absolute value of ⁇ YI values was 5.0 or less.
- These levels D1 to D17 had excellent sulfur blackening resistance, film adhesion, weldability, primary paint adhesion, secondary paint adhesion and corrosion resistance.
- the film had better sulfurization blackening resistance, film adhesion, and corrosion resistance.
- the levels D18 to D25 that do not satisfy at least one of the requirements of the average roughness (Ra) and ⁇ YI value of the present invention are sulfur blackening resistance, film adhesion, weldability, primary paint adhesion, and secondary paint adhesion. And at least some of the properties of corrosion resistance have been found to be inferior.
- the present invention it is possible to provide a steel plate for containers having excellent film adhesion, sulfide blackening resistance, weldability, corrosion resistance and paint adhesion, and a method for producing the steel plate for containers. Therefore, the present invention has sufficient industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
この容器用鋼板は、鋼板と、前記鋼板の少なくとも片面に形成されたSnめっき層と、前記Snめっき層上に形成された化成処理皮膜層とを備え、前記Snめっき層は、金属Sn量で300~5600mg/m2のSnを含有し、前記化成処理皮膜層は、金属Zr量で5~30mg/m2のZr化合物を含有し、走査型プローブ顕微鏡により求めた、前記化成処理皮膜層の最表面の平均粗度Raが10nm~100nmである。前記化成処理皮膜層の前記最表面における1測定点について測定された黄色度の変化量を下記(1)式で表されるΔYIと定義したとき、前記最表面の単位面積に含まれる複数の前記測定点について得られた前記ΔYIの絶対値の平均値が5.0以下である。
Description
本発明は、容器用鋼板及び容器用鋼板の製造方法に関する。
飲料用又は食品用の容器として、Niめっき鋼板、Snめっき鋼板又はSn系合金めっき鋼板等の鋼板(容器用鋼板)を製缶して得られる金属容器が多く用いられている。このような金属容器を飲料用容器又は食品用容器として使用する際は、製缶前又は製缶後に金属容器表面に塗装を施すことが必要である。
しかしながら、近年、地球環境保全の観点から、廃溶剤等の塗料に起因する廃棄物及び炭酸ガス等の排ガスを低減するために、塗装を施す代わりにフィルムを金属容器の表面に貼り付けることが多く行われるようになってきている。
しかしながら、近年、地球環境保全の観点から、廃溶剤等の塗料に起因する廃棄物及び炭酸ガス等の排ガスを低減するために、塗装を施す代わりにフィルムを金属容器の表面に貼り付けることが多く行われるようになってきている。
耐食性及び塗装密着性あるいはフィルム密着性を確保するために、6価クロム酸塩等を用いたクロメートによる防錆処理(クロメート処理)を施した鋼板が、塗料又はフィルムの下地として用いられている(例えば、下記の特許文献1を参照)。これらのクロメート処理を施した鋼板は、必要に応じて、耐有機溶剤性、耐指紋性、耐傷つき性、潤滑性等を向上させるために、クロメート処理により形成された皮膜層(クロメート皮膜層)の上に有機樹脂からなる被覆層が形成される。
しかしながら、最近では、クロメート処理に用いられる6価クロムは環境上有害であるため、6価クロムの使用が敬遠されている。一方、クロメート皮膜は、鋼板に対して優れた耐食性及び塗装密着性あるいはフィルム密着性を有するため、このようなクロメート処理を行わない場合には、耐食性及び塗装密着性あるいはフィルム密着性が著しく低下してしまう。
そのため、容器用鋼板の表面にクロメートに代わる防錆処理を施し、優れた耐食性及び塗装密着性あるいはフィルム密着性を有する防錆層を形成することが要求されるようになってきている。クロメート処理に替わる防錆処理としては、以下のような方法が提案されている。
そのため、容器用鋼板の表面にクロメートに代わる防錆処理を施し、優れた耐食性及び塗装密着性あるいはフィルム密着性を有する防錆層を形成することが要求されるようになってきている。クロメート処理に替わる防錆処理としては、以下のような方法が提案されている。
例えば、下記の特許文献2及び特許文献3には、Snめっき鋼板又は合金Snを含有するSnめっき鋼板を、Zr含有化合物及びF含有化合物を含む化成処理液によって陰極電解処理する方法が開示されている。
下記の特許文献4には、リン酸イオンもしくはTiイオン又はZrイオンの少なくともいずれか1つを含む化成処理液を用い、Snめっき鋼板に対して、電解処理又はその他の化成処理を実施する方法が開示されている。
下記の特許文献5には、Zrイオン及びFを含み、リン酸イオンを含まない無機処理層と、有機処理層とを有する金属材料とその処理方法が開示されている。
下記の特許文献6には、Zrイオン及び有機物を含む化成処理液を用いて、Niめっき鋼板を電解処理又は浸漬処理する方法が開示されている。
下記の特許文献7~10には、Zrイオン、リン酸イオン及び硝酸イオンを含む溶液を用いて、鋼板を電解処理する方法が開示されている。特に、特許文献8では、硝酸イオンを多く添加することによりZr皮膜の形成を促進する方法が開示されている。
上述の通り、上記特許文献2~10には、Zrイオン及びFイオンを含む溶液中で電解処理を行うことにより鋼板上にZr化合物を含む皮膜を形成する技術が開示されている。しかしながら、これらの技術では、ポリエステル等のフィルムの金属容器の表面に対する密着性を十分に確保できない場合があった。
フィルムと鋼鈑(金属容器)に形成した皮膜との間に接着剤、プライマー等を用いることにより、フィルム密着性を向上させることができる。しかしながら、接着剤、プライマー等を用いることにより、接着剤、プライマー等の塗布工程及び密着性確保のための焼き付け工程等の製造工程が増える。また、このような方法は、必ずしも経済的ではない。
フィルムと鋼鈑(金属容器)に形成した皮膜との間に接着剤、プライマー等を用いることにより、フィルム密着性を向上させることができる。しかしながら、接着剤、プライマー等を用いることにより、接着剤、プライマー等の塗布工程及び密着性確保のための焼き付け工程等の製造工程が増える。また、このような方法は、必ずしも経済的ではない。
連続的な電解処理により皮膜形成を行う場合、化成処理液がフェノール樹脂等の有機物を含有すると、陽極上で有機物が分解される、またはフェノール樹脂が金属イオンとの相互作用で不可避的に不溶化する等、化成処理液に含まれるフェノール樹脂の濃度を適切に保つことが困難な場合がある。
上述の理由により、フェノール樹脂を含有する皮膜が安定的に形成できない場合があるので、フェノール樹脂を含有しない方が望ましい。
上述の理由により、フェノール樹脂を含有する皮膜が安定的に形成できない場合があるので、フェノール樹脂を含有しない方が望ましい。
食品用容器に用いる容器用鋼板は、耐硫化黒変性を有することが必要である。上記特許文献2~8では、この耐硫化黒変性についての開示がなされていない。
容器用鋼板を、例えば、魚肉、豆類等の高蛋白質食品を内容物とする食品用容器に用いた場合、食品充填後のレトルト処理(水蒸気存在下での高温加熱滅菌処理)により、容器内面と内容物との少なくとも一方がまれに黒色に変色する場合がある。硫化黒変とは、このような黒変現象を硫化黒変という。
容器用鋼板を、例えば、魚肉、豆類等の高蛋白質食品を内容物とする食品用容器に用いた場合、食品充填後のレトルト処理(水蒸気存在下での高温加熱滅菌処理)により、容器内面と内容物との少なくとも一方がまれに黒色に変色する場合がある。硫化黒変とは、このような黒変現象を硫化黒変という。
食品中に含まれる硫黄が、レトルト処理により熱分解して、硫化水素(H2S)及びチオール類(HS-)等が発生する。この硫化水素及びチオール類と、容器内面の構成金属とが反応を起こし、黒色の金属硫化物が生成するため、この硫化黒変が生じる。
この硫化黒変が原因で、容器の外観が悪くなる。さらに、消費者が、発生した黒色の金属硫化物を、容器内面の金属腐食又は内容物の腐食と誤解する。そのため、硫化黒変が極力発生しないようにする必要がある。
この硫化黒変が原因で、容器の外観が悪くなる。さらに、消費者が、発生した黒色の金属硫化物を、容器内面の金属腐食又は内容物の腐食と誤解する。そのため、硫化黒変が極力発生しないようにする必要がある。
容器用鋼板は、耐硫化黒変性及びフィルム密着性の他に、溶接性、塗料密着性、及び耐食性を有することが求められる。
本発明は、上記の事情に鑑みてなされたものであり、優れたフィルム密着性、耐硫化黒変性、溶接性、塗料密着性、及び耐食性を有する容器用鋼板及び容器用鋼板の製造方法を提供することを目的とする。
本発明は、上記課題を解決して、係る目的を達成するために以下の手段を採用する。
(1)本発明の一態様に係る容器用鋼板は、鋼板と、前記鋼板の少なくとも片面に形成されたSnめっき層と、前記Snめっき層上に形成された化成処理皮膜層とを備えている。前記Snめっき層は、金属Sn量で300~5600mg/m2のSnを含有し、前記化成処理皮膜層は、金属Zr量で5~30mg/m2のZr化合物を含有し、走査型プローブ顕微鏡により求めた、前記化成処理皮膜層の最表面の平均粗度Raが10~100nmである。前記化成処理皮膜層の前記最表面における1測定点について測定された黄色度の変化量を下記(1)式で表されるΔYIと定義したとき、前記最表面の単位面積に含まれる複数の前記測定点について得られた前記ΔYIの絶対値の平均値が5.0以下である。
(1)本発明の一態様に係る容器用鋼板は、鋼板と、前記鋼板の少なくとも片面に形成されたSnめっき層と、前記Snめっき層上に形成された化成処理皮膜層とを備えている。前記Snめっき層は、金属Sn量で300~5600mg/m2のSnを含有し、前記化成処理皮膜層は、金属Zr量で5~30mg/m2のZr化合物を含有し、走査型プローブ顕微鏡により求めた、前記化成処理皮膜層の最表面の平均粗度Raが10~100nmである。前記化成処理皮膜層の前記最表面における1測定点について測定された黄色度の変化量を下記(1)式で表されるΔYIと定義したとき、前記最表面の単位面積に含まれる複数の前記測定点について得られた前記ΔYIの絶対値の平均値が5.0以下である。
(2)上記(1)に記載の容器用鋼板において、前記Snめっき層の下層に、Niを含有するNiめっき層が形成されていてもよい。
(3)上記(2)に記載の容器用鋼板において、前記Snめっき層は、金属Sn量で300~3000mg/m2のSnを含有してもよい。
(4)上記(3)に記載の容器用鋼板において、前記Niめっき層は、金属Ni量で5~150mg/m2のNiを含んでもよい。
(5)上記(1)に記載の容器用鋼板において、前記Snめっき層は、Sn合金を含有してもよい。
(6)上記(2)~(4)のいずれか一態様に記載の容器用鋼板において、前記Snめっき層はSn合金を含有し、前記Niめっき層はNi合金を含有してもよい。
(7)上記(1)~(6)のいずれか一態様に記載の容器用鋼板において、前記化成処理皮膜層は、P量で2~20mg/m2のリン酸化合物を更に含有してもよい。
(8)上記(1)~(6)のいずれか一態様に記載の容器用鋼板において、前記化成処理皮膜層は、Zrイオン及びFイオンを含む化成処理液中で陰極電解処理を行うことにより形成されていてもよい。
(9)上記(7)に記載の容器用鋼板において、前記化成処理皮膜層は、Zrイオン、Fイオン及びPイオンを含む化成処理液中で陰極電解処理を行うことにより形成されていてもよい。
(10)本発明の一態様に係る容器用鋼板の製造方法は、鋼板の表面に、Snを含有するSnめっき層を形成するめっき工程と、Zrイオン及びFイオンを少なくとも含有する化成処理液を用いて行われ、前記化成処理液の温度が10~40℃である第一陰極電解処理と、前記化成処理液の温度が45~60℃である第二陰極電解処理とを行うことで、前記Snめっき層の表面に化成処理皮膜層を形成する陰極電解処理工程と、少なくとも40℃以上の洗浄水を利用して0.5秒以上の洗浄処理を行う洗浄処理工程と、を有する。
(11)上記(10)に記載の容器用鋼板の製造方法において、前記めっき工程では、前記鋼板の表面に、Niを含有するNiめっき層を形成した後、前記Niめっき層の表面に、前記Snめっき層を形成してもよい。
(12)上記(10)又は(11)に記載の容器用鋼板の製造方法において、前記めっき工程後に、前記Snめっき層に含まれる少なくとも一部のSnを合金化する溶融溶錫処理工程を有してもよい。
(13)上記(10)~(12)のいずれか一態様に記載の容器用鋼板の製造方法において、前記化成処理液は、更に、リン酸イオン、硝酸イオン及びアンモニウムイオンの少なくとも一種を含んでもよい。
上記各態様によれば、優れたフィルム密着性、耐硫化黒変性、溶接性、耐食性及び塗料密着性を有する容器用鋼板及び容器用鋼板の製造方法を提供することができる。
本発明者等は、クロメート皮膜層に代わる新たな皮膜層として、Zr化合物を含む化成処理皮膜層の活用を鋭意検討した。
その結果、Zr化合物を含む化成処理皮膜層またはZr化合物を含む化成処理皮膜層中にリン酸化合物を更に含む化成処理皮膜層に関して、鋼板上に形成された化成処理皮膜層の表面性状及び特定条件でのレトルト処理後の黄色度(YI値)の変化量(△YI値)を規定することで、従来のクロメート皮膜層以上の優れたフィルム密着性及び耐硫化黒変性、溶接性、塗料密着性及び耐食性が得られることを知見し、本発明に至った。
その結果、Zr化合物を含む化成処理皮膜層またはZr化合物を含む化成処理皮膜層中にリン酸化合物を更に含む化成処理皮膜層に関して、鋼板上に形成された化成処理皮膜層の表面性状及び特定条件でのレトルト処理後の黄色度(YI値)の変化量(△YI値)を規定することで、従来のクロメート皮膜層以上の優れたフィルム密着性及び耐硫化黒変性、溶接性、塗料密着性及び耐食性が得られることを知見し、本発明に至った。
以下に、本発明の好適な実施の形態について詳細に説明する。
Zrイオン及びFイオンを含む溶液(化成処理液)を利用して、低温に続き高温で陰極電解処理を行うことにより、Snめっき層が形成された鋼板上にZr化合物を含有する化成処理皮膜層を形成する方法について、詳細に説明する。また、この化成処理皮膜層の表面粗度及び特定条件でのレトルト処理後の黄色度(YI値)の変化量(△YI値)を規定した容器用鋼板について、詳細に説明する。
[第一実施形態]
図1は、本発明の第1実施形態に係る容器用鋼板1の構成図を示す。
容器用鋼板1は、鋼板2と、鋼板2上に形成されたSnめっき層3と、Snめっき層3上に形成された化成処理皮膜層4とを有する。
図1は、本発明の第1実施形態に係る容器用鋼板1の構成図を示す。
容器用鋼板1は、鋼板2と、鋼板2上に形成されたSnめっき層3と、Snめっき層3上に形成された化成処理皮膜層4とを有する。
本実施形態で用いられる鋼板2は、特に限定されず、通常、容器材料として使用される鋼板を用いることができる。この鋼板2の製造法及び材質なども特に限定されず、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、及び調質圧延等の工程を経て製造されていればよい。
Snめっき層3におけるSnの含有量は、金属Sn量で300mg/m2~5600mg/m2である。
なお、本明細書における「Snめっき層」とは、金属Snを含有するめっき層だけでなく、不可避的不純物が混入した金属Snによるめっき及び微量元素が添加された金属Snによるめっき層を含む。なお、不可避的不純物とは、製造上、不可避的に混入する元素を意味する。
なお、本明細書における「Snめっき層」とは、金属Snを含有するめっき層だけでなく、不可避的不純物が混入した金属Snによるめっき及び微量元素が添加された金属Snによるめっき層を含む。なお、不可避的不純物とは、製造上、不可避的に混入する元素を意味する。
Snは、優れた加工性、溶接性及び耐食性を有するが、これらの効果を発揮するためには、金属Sn量として300mg/m2以上のSnが必要である。
金属Sn量が増加するほど上記効果は向上するが、金属Sn量が5600mg/m2を越える場合、上記の効果は飽和する。そのため、経済的な観点からSnの含有量を、金属Sn量で5600mg/m2以下とすることが好ましい。
本実施形態におけるSnめっき層3におけるSnの含有量のより好ましい範囲は、560~5600mg/m2である。
金属Sn量が増加するほど上記効果は向上するが、金属Sn量が5600mg/m2を越える場合、上記の効果は飽和する。そのため、経済的な観点からSnの含有量を、金属Sn量で5600mg/m2以下とすることが好ましい。
本実施形態におけるSnめっき層3におけるSnの含有量のより好ましい範囲は、560~5600mg/m2である。
Snめっき層3中の金属Sn量は、例えば、蛍光X線法によって測定することができる。この場合、金属Sn量既知のサンプルを用いて、金属Sn量に関する検量線をあらかじめ特定しておき、この検量線を用いて相対的に金属Sn量を特定する。
Snめっき層3は、鋼板2の両面に形成されていてもよく、製造コスト削減等の観点から鋼板2の一方の面のみに形成されていてもよい。鋼板2の一方の面にのみSnめっき層3が形成されている鋼板2を製缶加工する場合には、例えば、Snめっき層3が形成されている面が容器の内面となるように加工することが好ましい。
本実施形態では、Snめっき層3の形成後に、溶融溶錫処理を行ってもよい。溶融溶錫処理が行われることにより、Snめっき層3に含まれる一部のSnは、鋼板2に含まれるFeと合金化される。本明細書では、溶融溶錫処理が施されたSnめっき層3を、合金Snめっき層と呼称する。合金Snめっき層は、合金化されていないSn(フリーSn)を含有してもよい。また、本明細書において、合金Snめっき層は、SnまたはSn合金が鋼板2の表面全体を覆う形態だけを指すのではなく、鋼板2の表面を部分的に被覆し、鋼板2が一部露出している形態(島状Snと呼称する)も指すものと定義する。
溶融溶錫処理では、Snめっき層3が形成された鋼板2を、Snの融点(232℃)以上に加熱し、Snめっき層3を溶融し、その後水冷する。
溶融溶錫処理を行う理由は次の通りである。
溶融溶錫処理を行う前のSnめっき層3に含まれるSnは、微粒子状で、付着力が比較的弱く、無光沢である。溶融溶錫処理を施すことによって、耐食性及び表面の外観品質(鏡面仕上げ品質等)をより一層向上できる。
溶融溶錫処理を行う理由は次の通りである。
溶融溶錫処理を行う前のSnめっき層3に含まれるSnは、微粒子状で、付着力が比較的弱く、無光沢である。溶融溶錫処理を施すことによって、耐食性及び表面の外観品質(鏡面仕上げ品質等)をより一層向上できる。
鋼板2の表面にSnめっき層3のみが形成されている場合(Snめっき層3の形成後に溶融溶錫処理が行われることにより、鋼板2の表面に合金Snめっき層が形成されている場合を含む)、フィルムをSnめっき層3の表面に貼り付けても、又は塗料をSnめっき層3の表面に塗布しても、飲料又は食品中に含まれる硫黄が、フィルムあるいは塗料皮膜を透過し、Snと結合し、黒色のSnS又はSnS2を形成する場合がある。
また、Snめっき層3が溶融溶錫処理されていない場合、前述したようにSnめっき層3に含まれるSnは微粒子状で、付着力が比較的弱い。そのため、Snめっき層3中には、複数の微細な孔からなる(微細孔性)めっき欠陥部位が存在する。その場合には、硫黄と鋼板2に含まれるFeとが結合し、黒色のFeS,Fe2S3,及びFe2Sが形成される。
また、Snめっき層3が溶融溶錫処理されていない場合、前述したようにSnめっき層3に含まれるSnは微粒子状で、付着力が比較的弱い。そのため、Snめっき層3中には、複数の微細な孔からなる(微細孔性)めっき欠陥部位が存在する。その場合には、硫黄と鋼板2に含まれるFeとが結合し、黒色のFeS,Fe2S3,及びFe2Sが形成される。
これらの黒変現象を低減するために、本実施形態に係る容器用鋼板1は、Snめっき層3の上層に、化成処理皮膜層4を有する。
化成処理皮膜層4の表面のうち、フィルムと密着する面(最表面)の表面粗度について説明する。
フィルムの密着には、機械的密着(投錨効果等)、化学的密着(一次結合・原子間引力等)、及び物理的密着(二次結合・分子間引力等)がある。本実施形態では、これらの中でも、特に機械的密着に主眼をおいた結果、化成処理皮膜層4表面の表面粗度(比表面積)を規定している。表面粗度(比表面積)を増大させることにより、機械的密着性が増大し、フィルムとの密着可能面積が増大することで、化学的密着及び物理的密着においても、これらの密着可能面積を増大させる効果がある。
フィルムの密着には、機械的密着(投錨効果等)、化学的密着(一次結合・原子間引力等)、及び物理的密着(二次結合・分子間引力等)がある。本実施形態では、これらの中でも、特に機械的密着に主眼をおいた結果、化成処理皮膜層4表面の表面粗度(比表面積)を規定している。表面粗度(比表面積)を増大させることにより、機械的密着性が増大し、フィルムとの密着可能面積が増大することで、化学的密着及び物理的密着においても、これらの密着可能面積を増大させる効果がある。
本実施形態では、化成処理皮膜層4のZr含有量が、金属Zr量で5~30mg/m2である。
Zr含有量が5mg/m2未満では、後述する表面粗度が安定的に得られないため、好ましくない。一方、Zr含有量が30mg/m2を越える場合、当該表面粗度は安定的に得られるが、3ピース缶成形時における溶接性が不十分であるため、好ましくない。
化成処理皮膜層4のZr含有量は、より好ましくは、金属Zr量で6~15mg/m2であり、さらに好ましくは、金属Zr量で8~13mg/m2である。
Zr含有量が5mg/m2未満では、後述する表面粗度が安定的に得られないため、好ましくない。一方、Zr含有量が30mg/m2を越える場合、当該表面粗度は安定的に得られるが、3ピース缶成形時における溶接性が不十分であるため、好ましくない。
化成処理皮膜層4のZr含有量は、より好ましくは、金属Zr量で6~15mg/m2であり、さらに好ましくは、金属Zr量で8~13mg/m2である。
ここで、上記化成処理皮膜層4中のZr含有量は、例えば、蛍光X線法によって測定することができる。この場合、Zr量既知のサンプルを用いて、Zr量に関する検量線をあらかじめ特定しておき、この検量線を用いて相対的にZr含有量を特定する。Snめっき層3上にZr量既知のサンプルを用いて、Zr量に関する検量線をあらかじめ特定することが、より好ましい。
化成処理皮膜層4の最表面において、1m2あたり任意の20点の5μm角平面部位の平均粗度(Ra)が10nm以上100nm以下である。
平均粗度が10nm未満である場合には、フィルムの一次密着性は確保できるが、製缶加工及びエンド加工等の加工後のフィルム密着性(二次密着性)が安定的に確保できない場合があり、好ましくない。また、前記平均粗度が100nm超である場合には、化成処理皮膜層4のZr含有量を5~30mg/m2とすることが困難であること、外観不良を引き起こすこと、及びフィルム密着効果としては飽和することから、好ましくない。
平均粗度が10nm未満である場合には、フィルムの一次密着性は確保できるが、製缶加工及びエンド加工等の加工後のフィルム密着性(二次密着性)が安定的に確保できない場合があり、好ましくない。また、前記平均粗度が100nm超である場合には、化成処理皮膜層4のZr含有量を5~30mg/m2とすることが困難であること、外観不良を引き起こすこと、及びフィルム密着効果としては飽和することから、好ましくない。
フィルムの厚みが5μm以下の場合には、容器用鋼板1の表面に貼り付けられたフィルムの表面性状に影響を与える場合があり、好ましくない。フィルムの厚みは、好ましくは、5μm~80μmの範囲内であり、より好ましくは、10μm~60μm、さらにより好ましくは15μm~45μmの範囲内である。
上記の平均粗度(Ra)の測定方法は、平均粗度(Ra)がnmオーダーで測定可能な装置を用いればよい。例えば、走査型トンネル顕微鏡(Scanning Tunneling Microscope:STM)、原子間力顕微鏡(Atomic Force Microscope:AFM)に代表される走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)等の形状測定装置を使用することができる。
走査型プローブ顕微鏡を用いて、化成処理皮膜層4の最表面の1m2あたり任意20点の5μm角平面部位の平均粗度(Ra)を測定する方法について説明する。
1m2あたり任意の20点とは、「片面で任意の化成処理皮膜層4の最表面部の20点」の意味であり、両面では40点を測定する事を意味する。測定点は、少なくとも10cm以上離れた点とすることが好ましい。
具体的には、1m×1mの大板であれば、測定点をサンプリングし、その点から10cm以上離れた点をサンプリングし、測定することが好ましい。
なお、各点の測定条件における走査面積は、5μm×5μmが好ましい。その他、データ点数等の主要測定条件は、表1の測定条件に準じていればよい。
平均粗度(Ra)の定義は、国際規格ISO4287に記載されており、粗さ曲線の算術平均高さであって、平均線からの絶対値偏差の平均値と定義されており、同定義に準じて算出すればよい。
1m2あたり任意の20点とは、「片面で任意の化成処理皮膜層4の最表面部の20点」の意味であり、両面では40点を測定する事を意味する。測定点は、少なくとも10cm以上離れた点とすることが好ましい。
具体的には、1m×1mの大板であれば、測定点をサンプリングし、その点から10cm以上離れた点をサンプリングし、測定することが好ましい。
なお、各点の測定条件における走査面積は、5μm×5μmが好ましい。その他、データ点数等の主要測定条件は、表1の測定条件に準じていればよい。
平均粗度(Ra)の定義は、国際規格ISO4287に記載されており、粗さ曲線の算術平均高さであって、平均線からの絶対値偏差の平均値と定義されており、同定義に準じて算出すればよい。
走査型プローブ顕微鏡で化成処理皮膜層4の粗度を測定した場合、化成処理皮膜層4の下層のSnめっき層3等の粗度が、化成処理皮膜層4の粗度に影響を及ぼす場合がある。本実施形態での平均粗度は、Snめっき層3等の粗度の影響を含めた化成処理皮膜層4の最表面の粗度とする。また、測定面が湾曲している場合には、適宜平面補正を施すことが好ましい。また、補正範囲外の湾曲部分については、他の部分を測定することが好ましい。
本実施形態では、化成処理皮膜層4の最表面における1測定点について測定された黄色度の変化量をΔYIと定義する。ここで、黄色度(YI値)の変化量(ΔYI値)とは、容器用鋼板1の黄色度(YI値)と、容器用鋼板1に対して130℃の温度下でレトルト処理を5時間施した後のYI値との差を意味する。
加えて、本実施形態では、化成処理皮膜層4の最表面の単位面積(1m2)に含まれる複数(例えば20個)の測定点について得られたΔYIの絶対値の平均値が5.0以下である。
加えて、本実施形態では、化成処理皮膜層4の最表面の単位面積(1m2)に含まれる複数(例えば20個)の測定点について得られたΔYIの絶対値の平均値が5.0以下である。
なお、レトルト処理とは、高温高圧の飽和水蒸気による滅菌(オートクレーブ滅菌、高圧蒸気滅菌)処理のための装置(高圧蒸気滅菌器)を用い、本実施形態に係るSnめっき層3と化成処理皮膜層4とを有する容器用鋼板1を処理することを意味する。
なお、防錆を目的として一般的に容器用鋼板の表面に塗油されるDOS(セバシン酸ビス(2-エチルヘキシル))、ATBC(2-(アセチルオキシ)-1,2,3-プロパントリカルボン酸トリブチル)等が、容器用鋼板1の表面に塗油されていてもよい。
レトルト処理では、上記の装置内部の温度が130℃の状態を5時間保持する。なお、昇温時間及び降温時間は処理時間に含まない。昇温時間及び降温時間は装置により異なることが考えられるため、±20分の範囲内で条件を合わせることが好ましい。
なお、防錆を目的として一般的に容器用鋼板の表面に塗油されるDOS(セバシン酸ビス(2-エチルヘキシル))、ATBC(2-(アセチルオキシ)-1,2,3-プロパントリカルボン酸トリブチル)等が、容器用鋼板1の表面に塗油されていてもよい。
レトルト処理では、上記の装置内部の温度が130℃の状態を5時間保持する。なお、昇温時間及び降温時間は処理時間に含まない。昇温時間及び降温時間は装置により異なることが考えられるため、±20分の範囲内で条件を合わせることが好ましい。
黄色度(YI値)とは、無色又は白色から色相が黄色方向に変色する度合いであり、無色または白色から色相が黄色方向に変色する場合にはプラスの量として表示される。黄色度がマイナスの値で表示される場合には、色相が青色方向へ変色することを示す。黄色度は、測色色差計を用いて、三刺激値X,Y,Zを求め、これらを下記(2)式に代入することで算出される。
YI値=100×(1.28X-1.06Z)÷Y ・・・(2)
黄色度(YI値)は、色彩の三刺激値(人の目が感じる赤・青・黄の知覚感度)を数値化した値で、YI値がプラス側に高い値を示す程黄色味を帯び、マイナス側に高い値を示す程青白味を帯びる。
黄色度(YI値)の変化量(△YI値)は、上記のように、容器用鋼板1のYI値と、容器用鋼板1に対して130℃の温度下でレトルト処理を5時間施した後のYI値との差を意味する。すなわち、黄色度(YI値)の変化量(△YI値)は、下記(1)式によって計算される。
従って、黄色度の変化量△YIがプラスの量の場合は、レトルト処理によって容器用鋼板1の黄色度が増加したことを示す。一方、黄色度の変化量△YIがマイナスの量の場合は、レトルト処理によって容器用鋼板1の黄色度が減少し、容器用鋼板1が青白味を帯びることを示す。
Snめっき層3の上層に化成処理皮膜層4を形成することにより、多くの場合、YI値はより高いプラスの値を示す。これは、化成処理皮膜層4そのものが白色~淡黄色を呈するためである。
また、化成処理皮膜層4中のZr量が増加するに従い、YI値はさらにプラスに高い値を示す傾向がある。これは、前述したように化成処理皮膜層4そのものが白色~淡黄色を呈し、Zr量が含有するに従いその淡黄色の色調程度が強調されるためである。
Snめっき層3の上層に化成処理皮膜層4を形成することにより、多くの場合、YI値はより高いプラスの値を示す。これは、化成処理皮膜層4そのものが白色~淡黄色を呈するためである。
また、化成処理皮膜層4中のZr量が増加するに従い、YI値はさらにプラスに高い値を示す傾向がある。これは、前述したように化成処理皮膜層4そのものが白色~淡黄色を呈し、Zr量が含有するに従いその淡黄色の色調程度が強調されるためである。
一方、Snめっき層3上に化成処理皮膜層4を形成し、130℃の温度下でレトルト処理を5時間行うことにより、△YI値はマイナスの値を示す場合が多いが、プラスの値を示す場合もある。後述するが、△YI値がプラスであっても、△YI値がマイナスであっても、△YI値の大きさ(つまり、黄色度の変化度合い)と、耐硫化黒変性との間には相関関係がある。そのため、本実施形態では、耐硫化黒変性の指標として、△YI値の絶対値を用いる。
なお、本実施形態の黄色度(YI値)の測定は、JIS Z-8722条件cに準拠した分光測色計を用いれば良い。黄色度(YI値)の測定方式としては表面性状の影響を受けにくいSCI(正反射光を含む)測定で行う。黄色度(YI値)の測定条件としては、光源、湿度、及び温度など、一定の条件下で測定を行う必要がある。
本実施形態では、黄色度(YI値)の変化量である△YI値の絶対値を、Snめっき層3及び化成処理皮膜層4の被覆度合いを示す指標として用いる。Snめっき層3または化成処理皮膜層4に欠陥がある場合には、黄色度(YI値)の変化量である△YI値は高い値を示す。一方、Snめっき層3及び化成処理皮膜層4に欠陥が無い場合には、黄色度(YI値)の変化量である△YI値は低い値を示す。
Snめっき層3または化成処理皮膜層4に欠陥がある場合とは、例えば、微細孔性欠陥により化成処理皮膜層4が不均一である場合またはSnめっき層3がレトルト処理により酸化される場合が挙げられる。
Snめっき層3または化成処理皮膜層4に欠陥がある場合とは、例えば、微細孔性欠陥により化成処理皮膜層4が不均一である場合またはSnめっき層3がレトルト処理により酸化される場合が挙げられる。
各測定点において、上記の方法によりΔYI値の絶対値を算出し、得られた全ての「ΔYI値の絶対値」を測定点の個数で平均化する。この値を、本実施形態では、130℃の温度下でレトルト処理を5時間施した後の1m2あたり任意の20点での黄色度(YI値)の変化量(△YI値)の絶対値の平均値とする。
上記の△YI値の絶対値の平均が5.0以下であれば、緻密かつ均一なSnめっき層3及び化成処理皮膜層4が形成されている。
△YI値の絶対値の平均が5.0を越える場合、緻密かつ均一なSnめっき層3と化成処理皮膜層4との少なくとも一方が形成されていないことを意味する。
このことにより、△YI値の絶対値の平均は5.0以下である。△YI値の絶対値の平均は、好ましくは3.0以下であり、さらに好ましくは1.0以下であり、より更に好ましくは0.5以下である。
△YI値の絶対値の平均が5.0を越える場合、緻密かつ均一なSnめっき層3と化成処理皮膜層4との少なくとも一方が形成されていないことを意味する。
このことにより、△YI値の絶対値の平均は5.0以下である。△YI値の絶対値の平均は、好ましくは3.0以下であり、さらに好ましくは1.0以下であり、より更に好ましくは0.5以下である。
本発明者らは、ΔYI値の絶対値が、化成処理皮膜層4の被覆度合いを示すとともに、耐硫化黒変性とΔYI値との間に相関関係があることを知見した。すなわち、△YI値の絶対値の平均が高い値である場合には、容器用鋼板1は優れた耐硫化黒変性を有さず、△YI値の絶対値の平均が低い値である場合には、容器用鋼板1は優れた耐硫化黒変性を有する。
レトルト処理では、化成処理皮膜層4の被覆度合いが低い部分から水分子又は酸素分子が入り込むので、化成処理皮膜層4よりも下層にあるSnめっき層3のSn、更には鋼板2中の鉄等の金属が酸化される。つまり、レトルト処理に伴うSn及び鉄等の金属の酸化状態は、Snめっき層3及び化成処理皮膜層4の被覆度合いに影響される。
一方、ΔYI値は、容器用鋼板1の黄色度の変化量を表す。ここで、容器用鋼板1の黄色度はSnや鉄等の金属の酸化状態に影響される。
そのため、ΔYI値の絶対値の平均は、化成処理皮膜層4の被覆度合いを示すと考えられる。
一方、ΔYI値は、容器用鋼板1の黄色度の変化量を表す。ここで、容器用鋼板1の黄色度はSnや鉄等の金属の酸化状態に影響される。
そのため、ΔYI値の絶対値の平均は、化成処理皮膜層4の被覆度合いを示すと考えられる。
一方、化成処理皮膜層4の被覆度合いが低い部分から硫化水素分子、チオールイオンまたは硫黄分子が入り込むので、化成処理皮膜層4よりも下層にあるSnめっき層3のSn、更には鋼板2中の鉄等の金属が硫化される。その結果、金属硫化物が形成されることにより、硫化黒変が生じる。つまり、耐硫化黒変性は、Snめっき層3及び化成処理皮膜層4の被覆度合いに影響される。
以上の理由により、容器用鋼板1の黄色度の変化量を示すΔYI値と、耐硫化黒変性とが相関関係を有するものと考えられる。
本発明者らは、容器用鋼板1が優れたフィルム密着性と優れた耐硫化黒変性とを発揮するために、化成処理皮膜層4には異なる機能を有する二層が形成されていることが好ましいとの知見を得た。
この知見に基づき、本実施形態において、化成処理皮膜層4は、表面からの水分子及び硫化水素分子等の外来分子を透過しにくくするために、Snめっき層3上に均一かつ緻密な層を有し、この均一かつ緻密な層の上には、フィルム密着性を確保するために、粗度が高い層を有する。
本明細書において、前者の均一かつ緻密な層を第一化成処理皮膜層と呼び、後者の粗度が高い層を第二化成処理皮膜層と呼ぶ。
この知見に基づき、本実施形態において、化成処理皮膜層4は、表面からの水分子及び硫化水素分子等の外来分子を透過しにくくするために、Snめっき層3上に均一かつ緻密な層を有し、この均一かつ緻密な層の上には、フィルム密着性を確保するために、粗度が高い層を有する。
本明細書において、前者の均一かつ緻密な層を第一化成処理皮膜層と呼び、後者の粗度が高い層を第二化成処理皮膜層と呼ぶ。
本実施形態において、化成処理皮膜層4は、耐硫化黒変性、耐食性及びフィルム密着性を確保するために形成される。化成処理皮膜層4に含まれるZr化合物は、酸化Zr及び水酸化Zrで構成されているZr水和酸化物であると考えられる。化成処理液が更にリン酸イオンを含有する場合にはZr水和酸化物-リン酸化合物であると考えられる。これらのZr化合物は優れた耐硫化黒変性、耐食性、及びフィルム密着性を有している。
したがって、化成処理皮膜層4中のZr化合物量が増加すると耐硫化黒変性、耐食性、及びフィルム密着性が向上する。化成処理皮膜層4中のZr化合物量が、金属Zr量で、4mg/m2以上であれば、上記の効果が発揮される。
したがって、化成処理皮膜層4中のZr化合物量が増加すると耐硫化黒変性、耐食性、及びフィルム密着性が向上する。化成処理皮膜層4中のZr化合物量が、金属Zr量で、4mg/m2以上であれば、上記の効果が発揮される。
第一化成処理皮膜層中のZr化合物量は、金属Zr量で4mg/m2以上が好ましく、より好ましくは6mg/m2以上であり、更に好ましくは8mg/m2以上である。
第二化成処理皮膜層中のZr化合物量は、金属Zr量で1mg/m2以上が好ましく、より好ましくは3mg/m2以上であり、更に好ましくは6mg/m2以上である。
第二化成処理皮膜層中のZr化合物量は、金属Zr量で1mg/m2以上が好ましく、より好ましくは3mg/m2以上であり、更に好ましくは6mg/m2以上である。
Zr化合物量の増加に応じて、耐硫化黒変性、耐食性及びフィルム密着性が向上する。しかしながら、第一化成処理皮膜層及び第二化成処理皮膜層に含まれる全Zr化合物量が金属Zr量で30mg/m2を超えると、化成処理皮膜層4が厚くなり過ぎ、化成処理皮膜層4自体の密着性が劣化する。更に、化成処理皮膜層4の電気抵抗が上昇するため、容器用鋼板1の溶接性が劣化する。
更に、第一化成処理皮膜層及び第二化成処理皮膜層に含まれる全Zr化合物量が金属Zr量で30mg/m2を超えると、化成処理皮膜層4の表面(つまり、第2化成処理皮膜層の表面)に粉状のZr化合物が析出する場合がある。
更に、第一化成処理皮膜層及び第二化成処理皮膜層に含まれる全Zr化合物量が金属Zr量で30mg/m2を超えると、化成処理皮膜層4の表面(つまり、第2化成処理皮膜層の表面)に粉状のZr化合物が析出する場合がある。
したがって、第一化成処理皮膜層のZr化合物量は、金属Zr量で20mg/m2以下が好ましく、より好ましくは15mg/m2以下であり、更に好ましくは10mg/m2以下である。
また、第二化成処理皮膜層のZr化合物量は、金属Zr量で10mg/m2以下が好ましく、より好ましくは8mg/m2以下であり、更に好ましくは5mg/m2以下である。
また、第二化成処理皮膜層のZr化合物量は、金属Zr量で10mg/m2以下が好ましく、より好ましくは8mg/m2以下であり、更に好ましくは5mg/m2以下である。
上述を鑑み、化成処理皮膜層4中に含まれる全Zr化合物量は、金属Zr量で5~30mg/m2とする。
化成処理皮膜層4中のZr-リン酸化合物等のリン酸化合物が増加すると、より優れた耐硫化黒変性、耐食性、及びフィルム密着性を発揮する。しかしながら、この効果が認識できるのは、リン酸化合物量が、P量で0.5mg/m2以上であり、はっきり認識できるのは、P量で2mg/m2以上である。
したがって、第一化成処理皮膜層におけるZr-リン酸化合物等のリン酸化合物量は、P量で2mg/m2以上が好ましく、より好ましくは3mg/m2以上であり、更に好ましくは4mg/m2以上である。
また、第二化成処理皮膜層におけるZr-リン酸化合物等のリン酸化合物量は、P量で0.5mg/m2以上が好ましく、より好ましくは1.5mg/m2以上であり、更に好ましくは3mg/m2以上である。
また、第二化成処理皮膜層におけるZr-リン酸化合物等のリン酸化合物量は、P量で0.5mg/m2以上が好ましく、より好ましくは1.5mg/m2以上であり、更に好ましくは3mg/m2以上である。
一方、Zr-リン酸化合物等のリン酸化合物量が増加すると耐硫化黒変性、耐食性、及びフィルム密着性が向上する。しかしながら、化成処理皮膜層4中のZr-リン酸化合物等のリン酸化合物量がP量で20mg/m2を超えると、Zr-リン酸化合物等のリン酸化合物が厚くなり過ぎる。そのため、リン酸化合物自体の密着性が劣化する。また、化成処理皮膜層4の電気抵抗が上昇するため、容器用鋼板1の溶接性が劣化する。更に、化成処理皮膜層4中のZr-リン酸化合物等のリン酸化合物量がP量で20mg/m2を超えると、化成処理皮膜層4の表面に粉状のZr-P化合物が析出する場合がある。
したがって、第一化成処理皮膜層中のZr-リン酸化合物等のリン酸化合物量は、P量で15mg/m2以下が好ましく、より好ましくは10mg/m2以下であり、更に好ましくは8mg/m2以下である。
また、第二化成処理皮膜層中のZr-リン酸化合物等のリン酸化合物量は、P量で8mg/m2以下が好ましく、より好ましくは5mg/m2以下であり、更に好ましくは3mg/m2以下である。
また、第二化成処理皮膜層中のZr-リン酸化合物等のリン酸化合物量は、P量で8mg/m2以下が好ましく、より好ましくは5mg/m2以下であり、更に好ましくは3mg/m2以下である。
このように、化成処理皮膜層4中に含まれるZr-リン酸化合物等の全リン酸化合物量は、P量で2~20mg/m2にすることが好ましい。より好ましくは、Zr-リン酸化合物等のリン酸化合物量が4~15mg/m2であり、さらに好ましくは、Zr-リン酸化合物等のリン酸化合物量が2.5~10mg/m2である。
なお、詳細は後述するが、化成処理皮膜層4を安定的に形成するために、化成処理液はフェノール樹脂等の有機物を含有しないことが好ましい。そのため、化成処理皮膜層4はフェノール樹脂等の有機物を含有しないことが好ましい。
なお、詳細は後述するが、化成処理皮膜層4を安定的に形成するために、化成処理液はフェノール樹脂等の有機物を含有しないことが好ましい。そのため、化成処理皮膜層4はフェノール樹脂等の有機物を含有しないことが好ましい。
なお、本実施形態の化成処理皮膜層4が含有する金属Zr量、P量及びSnめっき層3中の金属Sn量は、例えば、蛍光X線分析等の定量分析法により測定することが可能である。この場合、金属Sn量既知のSnめっき鋼板サンプルを用いて、金属Sn量に関する検量線をあらかじめ特定しておき、この検量線を用いることで相対的に金属Sn量を特定することができる。
また、金属Zr量既知のサンプル及びP量既知のサンプルを用いて、金属Zr量に関する検量線及びP量に関する検量線をあらかじめ特定しておき、これらの検量線を用いて相対的に金属Zr量及びP量を特定することができる。
以下、本実施形態に係る容器用鋼板1の製造方法について述べる。
図3は、本発明の第1実施形態に係る容器用鋼板の製造方法の一例を示すフローチャートである。
図3は、本発明の第1実施形態に係る容器用鋼板の製造方法の一例を示すフローチャートである。
本実施形態では、鋼板2の少なくとも片面にSnめっき層3が形成される(ステップS3)。Snめっき層3を形成する方法は、特に限定されない。例えば、フェロスタン浴中において、電気めっき法、真空蒸着法、またはスパッタリング法などの公知技術を用いればよい。
上述の通り、Snめっき層3形成後に溶融溶錫処理を行ってもよい。溶融溶錫処理の条件としては、232℃(Snの融点)~280℃、0.5sec~30secで加熱処理し、Snめっき層を溶融し、ただちに水冷する例が挙げられる。
化成処理皮膜層4を形成する方法の例としては、浸漬処理及び陰極電解処理がある。
浸漬処理は、Zrイオン、Fイオン(必要に応じて、リン酸イオン)を溶解した酸性溶液に、Snめっき層3を形成した鋼板2を浸漬する方法である。ただし、浸漬処理では、下地(Snめっき層3)をエッチングして化成処理皮膜層4が形成されるため、化成処理皮膜層4の付着が不均一になる。また、化成処理皮膜層4の形成に必要な時間も長くなるため、工業生産的には不利である。
浸漬処理は、Zrイオン、Fイオン(必要に応じて、リン酸イオン)を溶解した酸性溶液に、Snめっき層3を形成した鋼板2を浸漬する方法である。ただし、浸漬処理では、下地(Snめっき層3)をエッチングして化成処理皮膜層4が形成されるため、化成処理皮膜層4の付着が不均一になる。また、化成処理皮膜層4の形成に必要な時間も長くなるため、工業生産的には不利である。
一方、陰極電解処理では、強制的な電荷移動及び鋼板2と化成処理液との界面における水素発生により、形成される化成処理皮膜層4の表面が清浄化される。また、陰極電解処理では、化成処理液のpHが上昇することにより、化成処理皮膜層4の付着が促進される。
以上の理由から、Snめっき層3が形成された鋼板2に対して陰極電解処理を行うことにより、均一な化成処理皮膜層4を形成することが可能である。
以上の理由から、Snめっき層3が形成された鋼板2に対して陰極電解処理を行うことにより、均一な化成処理皮膜層4を形成することが可能である。
本実施形態では、Snめっき層3が形成された鋼板2に対して、Zrイオン及びFイオンを含む化成処理液中で陰極電解処理を行うことにより、Zr酸化物を含む化成処理皮膜層4が形成される。リン酸が添加された化成処理液中で陰極電解処理を行うことにより、Zr酸化物とZrリン酸化合物を共に含む化成処理皮膜層4が形成される。
本実施形態に係る容器用鋼板1の製造方法では、少なくとも2つ以上の陰極電解処理槽を用い、化成処理皮膜層4を陰極電解処理により形成する。この陰極電解処理では、化成処理液の温度を10℃~40℃とする第一陰極電解処理(ステップS7)を行った後、続いて、化成処理液の温度を45℃~60℃とする第二陰極電解処理(ステップS9)を行う。
上述の第一陰極電解処理により、Snめっき層3上に第一化成処理皮膜層が形成される。上述の第二陰極電解処理により、第一化成処理皮膜層上に第二化成処理皮膜層が形成される。
化成処理液の温度が10℃~40℃である第一陰極電解処理を行うことにより、緻密な第一化成処理皮膜層を形成し、耐硫化黒変性を確保するとともに、耐食性を確保する。
化成処理液の温度が45℃~60℃である第二陰極電解処理を行うことにより、第二化成処理皮膜層を形成し、主にフィルム密着性及び塗料密着性を確保する。
化成処理液の温度が10℃~40℃である第一陰極電解処理を行うことにより、緻密な第一化成処理皮膜層を形成し、耐硫化黒変性を確保するとともに、耐食性を確保する。
化成処理液の温度が45℃~60℃である第二陰極電解処理を行うことにより、第二化成処理皮膜層を形成し、主にフィルム密着性及び塗料密着性を確保する。
ZrイオンとFイオンとを少なくとも含む化成処理液中で陰極電解処理を行うことによりZr化合物を含有する化成処理皮膜層4を形成する技術に関しては、上記特許文献等で技術開示がなされている。しかしながら、上記特許文献等では、陰極電解処理条件を段階的に変更して、化成処理皮膜層4を多層化する技術については開示されていない。
一方、第二陰極電解処理のみでは、Zr化合物を含む化成処理皮膜層4の形成促進には効果的ではあるが、化成処理皮膜層4の緻密さが不十分、すなわち微細孔性欠陥を有する化成処理皮膜層4となると考えられる。そのため、耐硫化黒変性及び耐食性を確保することが困難となる場合があった。
第一陰極電解処理の化成処理液の温度は、10℃~40℃である。
化成処理液の温度が10℃未満では、冷却装置の能力増強が必要となってしまう。化成処理液の温度が10℃未満に下げても、化成処理皮膜層4の緻密さは飽和しているため、より緻密な化成処理皮膜層4は形成できない。化成処理液の温度が10℃未満では、化成処理皮膜層4の形成速度が遅い。化成処理液の温度が10℃未満では、化成処理液の成分の溶解性が低下するため、不溶物が生成する。以上の理由から、化成処理液の温度が10℃未満であると好ましくない。
一方、化成処理液の温度が40℃を越えると、緻密な化成処理皮膜層4の形成ができず、耐硫化黒変性及び耐食性を確保することが困難となる。そのため、上述した第一化成処理皮膜層としての機能を発揮するのに困難となる。
第一陰極電解処理の化成処理液の温度は、好ましくは、20℃~35℃である。
化成処理液の温度が10℃未満では、冷却装置の能力増強が必要となってしまう。化成処理液の温度が10℃未満に下げても、化成処理皮膜層4の緻密さは飽和しているため、より緻密な化成処理皮膜層4は形成できない。化成処理液の温度が10℃未満では、化成処理皮膜層4の形成速度が遅い。化成処理液の温度が10℃未満では、化成処理液の成分の溶解性が低下するため、不溶物が生成する。以上の理由から、化成処理液の温度が10℃未満であると好ましくない。
一方、化成処理液の温度が40℃を越えると、緻密な化成処理皮膜層4の形成ができず、耐硫化黒変性及び耐食性を確保することが困難となる。そのため、上述した第一化成処理皮膜層としての機能を発揮するのに困難となる。
第一陰極電解処理の化成処理液の温度は、好ましくは、20℃~35℃である。
第二陰極電解処理の化成処理液の温度は、45℃~60℃である。
化成処理液の温度が45℃未満だと、本実施形態で規定する表面粗度を確保することが困難となる。
一方、化成処理液の温度が60℃超の場合、本実施形態で規定する表面粗度を確保することはできるが、化成処理液の安定性を確保できなくなる。特に、陰極電解処理を連続的に行う場合には、ZrのF錯体成分等が徐々に分解し、不溶物となって当該処理液中に浮遊するため、化成処理皮膜層4表面に付着する等、悪影響を及ぼす。
第二陰極電解処理の化成処理液の温度は、好ましくは、45℃~55℃である。
化成処理液の温度が45℃未満だと、本実施形態で規定する表面粗度を確保することが困難となる。
一方、化成処理液の温度が60℃超の場合、本実施形態で規定する表面粗度を確保することはできるが、化成処理液の安定性を確保できなくなる。特に、陰極電解処理を連続的に行う場合には、ZrのF錯体成分等が徐々に分解し、不溶物となって当該処理液中に浮遊するため、化成処理皮膜層4表面に付着する等、悪影響を及ぼす。
第二陰極電解処理の化成処理液の温度は、好ましくは、45℃~55℃である。
ラインスピードが150m/分を越える場合には、第二陰極電解処理の化成処理液の温度は、第一陰極電解処理の化成処理液の温度よりも10℃以上高温である必要がある。これは、ラインスピードが高速になる従い、例えば第一陰極電解処理槽の化成処理液が鋼板に付着し、第二陰極電解処理槽に混入することにより、第二陰極電解処理槽の化成処理液温度の低下を招く場合があり、結果として本発明の化成処理皮膜層4の二層構造の第二化成処理皮膜層の効率的な形成を妨げる場合があるためである。
電流密度は、陰極電解処理装置の構造、また長尺の鋼板であれば通板速度に依存するが、例えば0.1~20A/dm2である。
本実施形態の容器用鋼板1の製造方法では、少なくとも2つ以上の陰極電解処理槽を用いることが好ましい。これは、少なくとも1槽は第一陰極電解処理のための陰極電解処理槽とし、少なくとも1槽は第二陰極電解処理のための陰極電解処理槽とするためである。
陰極電解処理槽は縦型でも横型でもよく、鋼板の表裏面を陰極電解処理できる構造であれば、特に限定されない。
陰極電解処理槽は縦型でも横型でもよく、鋼板の表裏面を陰極電解処理できる構造であれば、特に限定されない。
本実施形態では、化成処理液として、公知の化成処理液を用いることができる。例えば、上記特許文献9及び10に記載されているように、100ppm~7500ppmのZrイオン及び120ppm~4000ppmのFイオンを含む化成処理液を用いることができる。
また、陰極電解処理に用いる化成処理液として、上記Zrイオン及びFイオンに加えて、50ppm~5000ppmのリン酸イオン、または、20000ppm以下の硝酸イオン及びアンモニウムイオン等を含む化成処理液を用いてもよい。
また、陰極電解処理に用いる化成処理液として、上記Zrイオン及びFイオンに加えて、50ppm~5000ppmのリン酸イオン、または、20000ppm以下の硝酸イオン及びアンモニウムイオン等を含む化成処理液を用いてもよい。
なお、化成処理液のpHは3.0~4.5の範囲が好ましく、pHを下げたい場合には硝酸等を添加し、pHを上げたい場合にはアンモニア等を添加することにより適宜調整すればよい。
より優れたフィルム密着性、耐硫化黒変性、及び耐食性を確保するには、Zrイオン、Fイオンだけでなく、リン酸イオンを添加することが好ましい。
化成処理液中に硝酸イオンとアンモニウムイオンとを共存させることがより好ましい。化成処理液が上記イオンを含むことにより、陰極電解処理の処理時間を短縮することができる。また、化成処理液が上記イオンを含むことにより、耐食性及びフィルム密着性の向上に寄与するZr酸化物、Zr-リン酸化合物を含む化成処理皮膜層4の析出を促進することが可能である。よって、化成処理液が当該イオンを含むことは、工業的には極めて有利である。
従って、本実施形態の化成処理皮膜層4の形成には、陰極電解処理を用いることが望ましく、特に、硝酸イオンとアンモニウムイオンとを含む化成処理液で陰極電解処理を行うことが更に望ましい。
従って、本実施形態の化成処理皮膜層4の形成には、陰極電解処理を用いることが望ましく、特に、硝酸イオンとアンモニウムイオンとを含む化成処理液で陰極電解処理を行うことが更に望ましい。
フェノール樹脂等の有機物を含有する化成処理液を用いて、連続的な電解処理により皮膜形成を行うとき、陽極上でフェノール樹脂等の有機物が分解される場合またはフェノール樹脂等の有機物が金属イオンとの相互作用で不可避的に不溶化する場合がある。そのため、化成処理液に含まれるフェノール樹脂等の有機物の濃度を適切に保つことが困難になる。
上述の理由により、フェノール樹脂等の有機物を含有する皮膜が安定的に形成できない場合があるので、化成処理液はフェノール樹脂等の有機物を含有しない方が望ましい。
上述の理由により、フェノール樹脂等の有機物を含有する皮膜が安定的に形成できない場合があるので、化成処理液はフェノール樹脂等の有機物を含有しない方が望ましい。
Fイオンは化成処理液中に含まれることから、Zr化合物と共に化成処理皮膜層4中に取り込まれる。化成処理皮膜層4中のFイオンは、一次塗料密着性には影響を及ぼさないが、二次塗料密着性及び耐食性を劣化する原因となる。これは、水蒸気又は腐食液に化成処理皮膜層4中のFイオンが溶出することにより、Fイオンが、化成処理皮膜層4とフィルム、塗料等の有機皮膜層との結合を分解すること、または、鋼板2を腐食することが原因と考えられている。
化成処理皮膜層4中のFイオン量を減少させるため、第二陰極電解処理を行った後、容器用鋼板1に対して洗浄処理を行う(ステップS11)。この洗浄処理の例としては、浸漬処理及びスプレー処理が挙げられる。
この洗浄処理に用いる洗浄水の温度を高くし、洗浄処理の処理時間を長くすることにより、化成処理皮膜層4中のFイオン量をより減少させることができる。
化成処理皮膜層4中のFイオン量を減少するには、40℃以上の洗浄水を用いて浸漬処理またはスプレー処理を0.5秒以上行えばよい。洗浄水の温度が40℃を下回る、または処理時間が0.5秒を下回ると、化成処理皮膜層4中のFイオン量を減少させることができなくなり、上述の諸特性が発揮されなくなる。
この洗浄処理に用いる洗浄水の温度を高くし、洗浄処理の処理時間を長くすることにより、化成処理皮膜層4中のFイオン量をより減少させることができる。
化成処理皮膜層4中のFイオン量を減少するには、40℃以上の洗浄水を用いて浸漬処理またはスプレー処理を0.5秒以上行えばよい。洗浄水の温度が40℃を下回る、または処理時間が0.5秒を下回ると、化成処理皮膜層4中のFイオン量を減少させることができなくなり、上述の諸特性が発揮されなくなる。
上記のFイオンだけでなく、化成処理液中に存在する硝酸イオン、アンモニウムイオンも、Zr化合物と共に化成処理皮膜層4中に取り込まれる場合がある。これらのイオンを減少する場合も、上記洗浄水を用いて浸漬処理又はスプレー処理により洗浄処理を行えば良い。
化成処理皮膜層4中の硝酸イオン及びアンモニウムイオンを減少する場合も、洗浄水の温度を高く、あるいは処理時間を長くすることにより、硝酸イオン及びアンモニウムイオン量をより減少させることが出来る。
化成処理皮膜層4中の硝酸イオン及びアンモニウムイオンを減少する場合も、洗浄水の温度を高く、あるいは処理時間を長くすることにより、硝酸イオン及びアンモニウムイオン量をより減少させることが出来る。
Fイオン、硝酸イオン及びアンモニウムイオンは、上記の浸漬処理又はスプレー処理によって、可能な限り化成処理皮膜層4中から除去することが好ましい。しかしながら、必ずしも全て除去できなくてもよく、不可避的に残存しても構わない。
[第2実施形態]
図2は、本発明の第2実施形態に係る容器用鋼板11の構成図を示す。
この容器用鋼板11は、鋼板12と、鋼板12上に形成されたNiめっき層15と、Niめっき層15上に形成されたSnめっき層13と、Snめっき層13上に形成された化成処理皮膜層14とを有する。
図2は、本発明の第2実施形態に係る容器用鋼板11の構成図を示す。
この容器用鋼板11は、鋼板12と、鋼板12上に形成されたNiめっき層15と、Niめっき層15上に形成されたSnめっき層13と、Snめっき層13上に形成された化成処理皮膜層14とを有する。
Niめっき層15は、鋼板12の少なくとも片面に形成される。Niめっき層15は、金属Niから構成されてもよく、または、Fe-Ni合金めっきから構成されてもよい。
Niは優れた耐食性を有する金属であるため、容器用鋼板11がNiめっき層15を有することにより、耐食性を確保することができる。
Niは優れた耐食性を有する金属であるため、容器用鋼板11がNiめっき層15を有することにより、耐食性を確保することができる。
Niめっき層15のNi含有量が多いほど耐食性は向上する。Ni含有量が、金属Niで5mg/m2以上であれば、優れた耐食性を有する。一方、Ni含有量が、金属Niで150mg/m2を超えると、上記の効果が飽和する。また、Niは高価な金属であるため、Ni含有量が、金属Niで150mg/m2を超えると経済的にも不利となる。
したがって、Niめっき層15のNi含有量は、金属Niで5mg/m2~150mg/m2とすることが好ましい。
したがって、Niめっき層15のNi含有量は、金属Niで5mg/m2~150mg/m2とすることが好ましい。
Snめっき層13は、耐食性と溶接性とを確保するために形成される。
Snめっき層13におけるSnの含有量が、金属Sn量で300mg/m2以上であれば、Snによる耐食性が発揮される。従って、本実施形態におけるSnめっき層13における金属Sn量は、300mg/m2以上とする。
上記の効果は、金属Sn量が5600mg/m2を超えると飽和する。そのため、経済的な観点から、Sn含有量は、5600mg/m2以下とする。
本実施形態におけるSnめっき層13のSnの含有量のより好ましい範囲は、300~3000mg/m2である。Snめっき層13におけるSnの含有量が300~3000mg/m2の場合であって、Snめっき層13の形成後に溶融溶錫処理を行う(合金Snめっき層を形成する)場合には、合金Snめっき層が島状に形成される。合金Snめっき層が島状に形成されることにより、合金Snめっき層が鋼板2を一様に被覆する場合と比べて、より優れた耐食性及び溶接性を発揮することができる。
上記の効果は、金属Sn量が5600mg/m2を超えると飽和する。そのため、経済的な観点から、Sn含有量は、5600mg/m2以下とする。
本実施形態におけるSnめっき層13のSnの含有量のより好ましい範囲は、300~3000mg/m2である。Snめっき層13におけるSnの含有量が300~3000mg/m2の場合であって、Snめっき層13の形成後に溶融溶錫処理を行う(合金Snめっき層を形成する)場合には、合金Snめっき層が島状に形成される。合金Snめっき層が島状に形成されることにより、合金Snめっき層が鋼板2を一様に被覆する場合と比べて、より優れた耐食性及び溶接性を発揮することができる。
本実施形態では、第1実施形態と同様に、Snめっき層13形成後に溶融溶錫処理を行ってもよい。
溶融溶錫処理により、鋼板2上には、Fe-Ni又はSn-Fe-Ni合金を含有する合金Niめっき層が形成され、合金Niめっき層上には合金Snめっき層が形成される。
なお、本明細書では、溶融溶錫処理が施されたNiめっき層15を、合金Niめっき層と呼称する。合金Niめっき層は、上述のように、Fe-Ni又はSn-Fe-Ni合金を含有し、合金化されていないNi(フリーNi)を含有してもよい。
合金Snめっき層は、Sn-Fe合金又はSn-Fe-Ni合金を含有し、合金化されていないSn(フリーSn)を含有してもよい。なお、Snめっき層13のSnの含有量が300~3000mg/m2の場合には、上述のように、合金Snめっき層は島状に形成される。合金Snめっき層が島状に形成される場合には、下層の合金Niめっき層が露出する。
溶融溶錫処理により、鋼板2上には、Fe-Ni又はSn-Fe-Ni合金を含有する合金Niめっき層が形成され、合金Niめっき層上には合金Snめっき層が形成される。
なお、本明細書では、溶融溶錫処理が施されたNiめっき層15を、合金Niめっき層と呼称する。合金Niめっき層は、上述のように、Fe-Ni又はSn-Fe-Ni合金を含有し、合金化されていないNi(フリーNi)を含有してもよい。
合金Snめっき層は、Sn-Fe合金又はSn-Fe-Ni合金を含有し、合金化されていないSn(フリーSn)を含有してもよい。なお、Snめっき層13のSnの含有量が300~3000mg/m2の場合には、上述のように、合金Snめっき層は島状に形成される。合金Snめっき層が島状に形成される場合には、下層の合金Niめっき層が露出する。
製造コスト削減等の観点から、Niめっき層15及びSnめっき層13が、必ずしも鋼板12の両面に形成されていなくてもよい点については、第1実施形態と同様である。
本実施形態における化成処理皮膜層14は、第1実施形態における化成処理皮膜層4と同一の構造及び成分を有するため、説明を省略する。なお、化成処理皮膜層14がフェノール樹脂等の有機物を含有しないことが好ましい点については、第1実施形態と同様である。
以下、第2実施形態に係る容器用鋼板11の製造方法について述べる。
図4は、本発明の第2実施形態に係る容器用鋼板11の製造方法の一例を示すフローチャートである。
図4は、本発明の第2実施形態に係る容器用鋼板11の製造方法の一例を示すフローチャートである。
本実施形態では、鋼板12の少なくとも片面にNiめっき層15が形成される(ステップS101)。Niめっき及びFe-Ni合金めっきの方法としては、例えば、一般的に電気めっき法において行われている公知の方法(例えば、カソード電解法)を利用することができる。
拡散めっき法によりNiめっき層15を形成する場合には、鋼板12の表面にNiめっき層15を形成した後で、焼鈍炉において拡散層を形成するための拡散処理が行われるが、この拡散処理の前後又は拡散処理と同時に、窒化処理を行ってもよい。窒化処理を行った場合でも、本実施形態におけるNiめっき層15としてのNiの効果及び窒化処理層の効果は干渉し合うことはなく、これらの効果を共に発揮することができる。
拡散めっき法によりNiめっき層15を形成する場合には、鋼板12の表面にNiめっき層15を形成した後で、焼鈍炉において拡散層を形成するための拡散処理が行われるが、この拡散処理の前後又は拡散処理と同時に、窒化処理を行ってもよい。窒化処理を行った場合でも、本実施形態におけるNiめっき層15としてのNiの効果及び窒化処理層の効果は干渉し合うことはなく、これらの効果を共に発揮することができる。
上記のNiめっき又はFe-Niめっきの後に、Snめっき層13が形成される(ステップS103)。
Snめっき層13の形成方法は、特に限定されるわけではなく、例えば、公知の電気めっき法又は溶融したSnに鋼板12を浸漬してめっきする方法等を用いればよい。
Snめっき層13の形成方法は、特に限定されるわけではなく、例えば、公知の電気めっき法又は溶融したSnに鋼板12を浸漬してめっきする方法等を用いればよい。
上記のSnめっき層13の形成後に、溶融溶錫処理を行ってもよい。溶融溶錫処理による効果は、上述の通りである。なお、溶融溶錫処理の条件としては、232℃(Snの融点)~280℃、0.5sec~30secで加熱処理し、Snめっき層を溶融し、ただちに水冷する例が挙げられる。
Snめっき層13を形成した後、化成処理皮膜層14を形成する。
本実施形態における化成処理皮膜層14の形成方法は、第1実施形態における化成処理皮膜層4の形成方法と同様に、第一陰極電解処理(ステップS107)及び第二陰極電解処理(ステップS109)からなる。これらの第一陰極電解処理及び第二陰極電解処理は、第1実施形態と同一であるため、説明を省略する。
本実施形態における化成処理皮膜層14の形成方法は、第1実施形態における化成処理皮膜層4の形成方法と同様に、第一陰極電解処理(ステップS107)及び第二陰極電解処理(ステップS109)からなる。これらの第一陰極電解処理及び第二陰極電解処理は、第1実施形態と同一であるため、説明を省略する。
第二陰極電解処理を行った後、洗浄処理を行う(ステップS111)。本実施形態の洗浄処理は、第1実施形態の洗浄処理と同一であるため、説明を省略する。
なお、化成処理液がフェノール樹脂等の有機物を含有しない方が好ましい点については、第1実施形態と同様である。
なお、化成処理液がフェノール樹脂等の有機物を含有しない方が好ましい点については、第1実施形態と同様である。
以下に本発明の実施例及び比較例について述べる。なお、以下に示す実施例は、本発明の実施形態に係る容器用鋼板及び容器用鋼板の製造方法の一例にすぎず、本発明の実施形態に係る容器用鋼板及び容器用鋼板の製造方法が、以下に示す実施例に限定されない。
(第1実施例)
<鋼板上のめっき層>
(A1及びA2:めっき鋼板の製造方法)
以下の処理法(A1)または(A2)の方法を用いて、板厚0.17~0.23mmの鋼板上に、Snめっき層を形成した。
(A1)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7~10A/dm2の条件でSnめっき層を形成した。付着量は電解時間で調整した。
(A2)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7~10A/dm2の条件でSnめっき層を形成した。付着量は電解時間で調整した。その後、Snめっき鋼板を260℃で加熱し、Snめっき層を溶融し、ただちに水冷(溶融溶錫処理)を行った。
<鋼板上のめっき層>
(A1及びA2:めっき鋼板の製造方法)
以下の処理法(A1)または(A2)の方法を用いて、板厚0.17~0.23mmの鋼板上に、Snめっき層を形成した。
(A1)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7~10A/dm2の条件でSnめっき層を形成した。付着量は電解時間で調整した。
(A2)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7~10A/dm2の条件でSnめっき層を形成した。付着量は電解時間で調整した。その後、Snめっき鋼板を260℃で加熱し、Snめっき層を溶融し、ただちに水冷(溶融溶錫処理)を行った。
得られためっき鋼板のSn含有量は、蛍光X線法により測定した。各水準のSn含有量を表2に示した。
<化成処理皮膜層の形成>
上記(A1)又は(A2)の方法で作製しためっき鋼板を、表2に記す通電回数及び温度条件で陰極電解処理を行った。化成処理液の組成を表3に示した。なお、化成処理液は、蒸留水にヘキサフルオロジルコニウム(IV)酸アンモニウム、フッ化水素、硝酸アンモニウム及びリン酸を溶解し、pHを3.5に調整した。
上記(A1)又は(A2)の方法で作製しためっき鋼板を、表2に記す通電回数及び温度条件で陰極電解処理を行った。化成処理液の組成を表3に示した。なお、化成処理液は、蒸留水にヘキサフルオロジルコニウム(IV)酸アンモニウム、フッ化水素、硝酸アンモニウム及びリン酸を溶解し、pHを3.5に調整した。
<洗浄処理>
上記の処理により化成処理皮膜層を形成した後、鋼板を20℃~40℃の蒸留水中に0.5秒~5秒浸漬した。その後、鋼板を80℃~90℃の蒸留水中に0.5秒~3秒浸漬した。
上記の処理により化成処理皮膜層を形成した後、鋼板を20℃~40℃の蒸留水中に0.5秒~5秒浸漬した。その後、鋼板を80℃~90℃の蒸留水中に0.5秒~3秒浸漬した。
電流密度(0.1~30A/dm2)、電解時間(0.5~5秒)を調整することにより、各水準のZr含有量及びP含有量を調整した。
<性能評価>
上記の処理を行った試験材について、以下に示す(A)~(H)の各項目について性能評価を行った。評価結果を表4に示す。
上記の処理を行った試験材について、以下に示す(A)~(H)の各項目について性能評価を行った。評価結果を表4に示す。
(A)表面粗度
試験材の化成処理皮膜層側1m2あたり任意の20部位(少なくとも10cm以上離れた部位)を切り出し、Pointprobe(登録商標)NCH-10T(NanoWorld AG社製)で表1に示した条件で測定した。得られたデータを、画像処理ソフトウェアであるImageJ(アメリカ国立衛生研究所(NIH)で開発されたオープンソースでパブリックドメインの画像処理ソフトウェア)にて各表面粗度(Ra)を求め、平均粗度を求めた。
試験材の化成処理皮膜層側1m2あたり任意の20部位(少なくとも10cm以上離れた部位)を切り出し、Pointprobe(登録商標)NCH-10T(NanoWorld AG社製)で表1に示した条件で測定した。得られたデータを、画像処理ソフトウェアであるImageJ(アメリカ国立衛生研究所(NIH)で開発されたオープンソースでパブリックドメインの画像処理ソフトウェア)にて各表面粗度(Ra)を求め、平均粗度を求めた。
(B)黄色度
試験材の化成処理皮膜層側1m2あたり任意の20部位(少なくとも10cm以上離れた部位)を50mm×100mmの大きさに切り出した。評価する化成処理皮膜層側を表にして、ZクレーブS-020A(三浦工業株式会社製)を用いて、130℃の温度下で5時間レトルト処理を行った。装置内温度が60℃以下になった時点で取り出し、乾燥した上で、黄色度(YI値)を測定した。
YI値の測定は、分光測色計CM-2600d(コニカミノルタ社製)を用い、SCI(正反射光を含む)モードで、レトルト処理前の黄色度(YI0)およびレトルト処理後の黄色度(YI)のそれぞれを測定した。この値から、YIとYI0との差分である△YI値の絶対値を求め、これらの合計値を測定点数で除することにより、平均を求めた。
試験材の化成処理皮膜層側1m2あたり任意の20部位(少なくとも10cm以上離れた部位)を50mm×100mmの大きさに切り出した。評価する化成処理皮膜層側を表にして、ZクレーブS-020A(三浦工業株式会社製)を用いて、130℃の温度下で5時間レトルト処理を行った。装置内温度が60℃以下になった時点で取り出し、乾燥した上で、黄色度(YI値)を測定した。
YI値の測定は、分光測色計CM-2600d(コニカミノルタ社製)を用い、SCI(正反射光を含む)モードで、レトルト処理前の黄色度(YI0)およびレトルト処理後の黄色度(YI)のそれぞれを測定した。この値から、YIとYI0との差分である△YI値の絶対値を求め、これらの合計値を測定点数で除することにより、平均を求めた。
(C)耐硫化黒変性
試験材を55mm×55mmの大きさに切り出し、5mmの長さで端部(剪断によって鋼板端面が露出した部分)をテープでマスキングした。1質量%Na2S水溶液(乳酸でpH=7に調整)に浸漬し、125℃の温度下でレトルト処理を60分間行った。レトルト処理後の各鋼板の外観を目視で評価した。
評価は、Exellent(変色なし)、Good(若干の変色あり)、Average(クロメート処理材同等の変色あり)、Fair(クロメート処理材より若干変色度合いが大きい)、Poor(クロメート処理材より変色度合いが大きい)の5段階で評価した。
Average以上の評価結果が得られた場合を合格とした。
試験材を55mm×55mmの大きさに切り出し、5mmの長さで端部(剪断によって鋼板端面が露出した部分)をテープでマスキングした。1質量%Na2S水溶液(乳酸でpH=7に調整)に浸漬し、125℃の温度下でレトルト処理を60分間行った。レトルト処理後の各鋼板の外観を目視で評価した。
評価は、Exellent(変色なし)、Good(若干の変色あり)、Average(クロメート処理材同等の変色あり)、Fair(クロメート処理材より若干変色度合いが大きい)、Poor(クロメート処理材より変色度合いが大きい)の5段階で評価した。
Average以上の評価結果が得られた場合を合格とした。
(D)フィルム密着性
試験材の両面に、厚さ20μmの二軸延伸PETフィルムを170℃で貼り付け、絞り加工及びしごき加工による製缶加工を段階的に行った。フィルムの疵、浮き、及び剥離を観察し、それらの面積率からフィルム密着性を評価した。
評価はExcellent(フィルムの疵、浮き、及び剥離が全くない)、Good(フィルムの疵、浮き、及び剥離の面積率が0%超0.5%以下)、Average(フィルムの疵、浮き、及び剥離の面積率が0.5%超3%以下)、Fair(フィルムの疵、浮き、及び剥離の面積率が3%超15%以下)、Poor(フィルムの疵、浮き、及び剥離の面積率が15%超又は破断し加工不能)の5段階で評価した。
Average以上の評価結果が得られた場合を合格とした。
試験材の両面に、厚さ20μmの二軸延伸PETフィルムを170℃で貼り付け、絞り加工及びしごき加工による製缶加工を段階的に行った。フィルムの疵、浮き、及び剥離を観察し、それらの面積率からフィルム密着性を評価した。
評価はExcellent(フィルムの疵、浮き、及び剥離が全くない)、Good(フィルムの疵、浮き、及び剥離の面積率が0%超0.5%以下)、Average(フィルムの疵、浮き、及び剥離の面積率が0.5%超3%以下)、Fair(フィルムの疵、浮き、及び剥離の面積率が3%超15%以下)、Poor(フィルムの疵、浮き、及び剥離の面積率が15%超又は破断し加工不能)の5段階で評価した。
Average以上の評価結果が得られた場合を合格とした。
(E)溶接性
ワイヤーシーム溶接機を用いて、溶接ワイヤースピード80m/minの条件で、電流を変更して試験材を溶接した。十分な溶接強度が得られる最小電流値とチリ及び溶接スパッタなどの溶接欠陥が目立ち始める最大電流値とからなる適正電流範囲から総合的に判断し、溶接性を評価した。
評価は、Excellent(二次側の適正電流範囲が1500A以上)、Good(二次側の電流適正電流範囲が800A以上1500A未満)、Fair(二次側の電流適正電流範囲が100A以上800A未満)、Poor(二次側の電流適正電流範囲が100A未満)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
ワイヤーシーム溶接機を用いて、溶接ワイヤースピード80m/minの条件で、電流を変更して試験材を溶接した。十分な溶接強度が得られる最小電流値とチリ及び溶接スパッタなどの溶接欠陥が目立ち始める最大電流値とからなる適正電流範囲から総合的に判断し、溶接性を評価した。
評価は、Excellent(二次側の適正電流範囲が1500A以上)、Good(二次側の電流適正電流範囲が800A以上1500A未満)、Fair(二次側の電流適正電流範囲が100A以上800A未満)、Poor(二次側の電流適正電流範囲が100A未満)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
(F)一次塗料密着性
試験材にエポキシ-フェノール樹脂を塗布し、200℃の温度下で焼付け処理を30分間行った。1mm間隔で地鉄に達する深さの格子状の切れ目を入れ、テープで剥離した。剥離状況を観察し、剥離面積率から一次塗料密着性を評価した。
評価は、Excellent(剥離面積率が0%)、Good(剥離面積率が0%超5%以下)、Fair(剥離面積率が5%超30%以下)、Poor(剥離面積率が30%超)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
試験材にエポキシ-フェノール樹脂を塗布し、200℃の温度下で焼付け処理を30分間行った。1mm間隔で地鉄に達する深さの格子状の切れ目を入れ、テープで剥離した。剥離状況を観察し、剥離面積率から一次塗料密着性を評価した。
評価は、Excellent(剥離面積率が0%)、Good(剥離面積率が0%超5%以下)、Fair(剥離面積率が5%超30%以下)、Poor(剥離面積率が30%超)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
(G)二次塗料密着性
試験材にエポキシ-フェノール樹脂を塗布し、200℃の温度下で焼付け処理を30分間行った。1mm間隔で地鉄に達する深さの格子状の切れ目を入れ、その後、125℃の温度下でレトルト処理を30分間行った。乾燥後、テープで塗膜を剥離し、剥離状況を観察し、剥離面積率から二次塗料密着性を評価した。
評価は、Excellent(剥離面積率が0%)、Good(剥離面積率が0%超5%以下)、Fair(剥離面積率が5%超30%以下)、Poor(剥離面積率が30%超)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
試験材にエポキシ-フェノール樹脂を塗布し、200℃の温度下で焼付け処理を30分間行った。1mm間隔で地鉄に達する深さの格子状の切れ目を入れ、その後、125℃の温度下でレトルト処理を30分間行った。乾燥後、テープで塗膜を剥離し、剥離状況を観察し、剥離面積率から二次塗料密着性を評価した。
評価は、Excellent(剥離面積率が0%)、Good(剥離面積率が0%超5%以下)、Fair(剥離面積率が5%超30%以下)、Poor(剥離面積率が30%超)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
(H)耐食性
試験材にエポキシ-フェノール樹脂を塗布し、200℃の温度下で焼付け処理を30分間行った。その後、地鉄に達する深さの格子状の切れ目を入れ、1.5%クエン酸-1.5%食塩混合液からなる試験液に、45℃の温度下で72時間浸漬した。洗浄及び乾燥後、テープ剥離を行った。クロスカット部の塗膜下腐食状況と平板部の腐食状況とを観察し、塗膜下腐食の幅及び平板部の腐食面積率の評価から、耐食性を評価した。
評価は、Excellent(塗膜下腐食幅が0.2mm未満かつ平板部の腐食面積率が0%)、Good(塗膜下腐食幅が0.2~0.3mm未満かつ平板部の腐食面積率が0%超1%以下)、Fair(塗膜下腐食幅が0.3~0.45mm未満かつ平板部の腐食面積率が1%超5%以下)、Poor(塗膜下腐食幅が0.45mm超又は平板部の腐食面積率が5%超)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
試験材にエポキシ-フェノール樹脂を塗布し、200℃の温度下で焼付け処理を30分間行った。その後、地鉄に達する深さの格子状の切れ目を入れ、1.5%クエン酸-1.5%食塩混合液からなる試験液に、45℃の温度下で72時間浸漬した。洗浄及び乾燥後、テープ剥離を行った。クロスカット部の塗膜下腐食状況と平板部の腐食状況とを観察し、塗膜下腐食の幅及び平板部の腐食面積率の評価から、耐食性を評価した。
評価は、Excellent(塗膜下腐食幅が0.2mm未満かつ平板部の腐食面積率が0%)、Good(塗膜下腐食幅が0.2~0.3mm未満かつ平板部の腐食面積率が0%超1%以下)、Fair(塗膜下腐食幅が0.3~0.45mm未満かつ平板部の腐食面積率が1%超5%以下)、Poor(塗膜下腐食幅が0.45mm超又は平板部の腐食面積率が5%超)の4段階で評価した。
Good以上の評価結果が得られた場合を合格とした。
本発明の範囲に属する水準C1~C13は、いずれも、平均粗度(Ra)が10~100nmであり、△YI値の絶対値の平均が5.0以下であった。これらの水準C1~C13は、優れた耐硫化黒変性、溶接性、一次塗料密着性、二次塗料密着性、及び塗膜下耐食性を有していた。
一方、本発明の平均粗度(Ra)または△YI値のいずれかの要件を満たさない水準C15~C22は、フィルム密着性(加工性を含む)、耐硫化黒変性、溶接性、一次塗料密着性、二次塗料密着性、又は耐食性の少なくとも一部の特性が劣ることがわかった。
一方、本発明の平均粗度(Ra)または△YI値のいずれかの要件を満たさない水準C15~C22は、フィルム密着性(加工性を含む)、耐硫化黒変性、溶接性、一次塗料密着性、二次塗料密着性、又は耐食性の少なくとも一部の特性が劣ることがわかった。
水準C14は、Ni量及びSn量を規定量より増加させた場合であるが、化成処理皮膜層の性能は飽和していることがわかった。
(第2実施例)
<鋼板上のめっき層>
(A3~A5:めっき鋼板の製造方法)
以下の処理法(A3)~(A5)の方法を用いて、板厚0.17~0.23mmの鋼板上に、Niめっき層及びSnめっき層を形成した。
<鋼板上のめっき層>
(A3~A5:めっき鋼板の製造方法)
以下の処理法(A3)~(A5)の方法を用いて、板厚0.17~0.23mmの鋼板上に、Niめっき層及びSnめっき層を形成した。
(A3)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、硫酸ニッケル・6水和物75g/L、塩化ニッケル・6水和物140g/L、硫酸第一鉄・7水和物110g/L、ホウ酸30g/L、クエン酸3g/Lの組成を有する硫酸-塩酸浴を用いて浴温50℃、電流密度5A/dm2の条件でFe-Ni合金めっき層を形成した。次に、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7A/dm2の条件でSnめっき層を形成した。付着量は電解時間で調整した。その後、Snめっき鋼板を260℃で加熱し、Snめっき層を溶融し、ただちに水冷(溶融溶錫処理)を行った。
(A4)冷間圧延後、焼鈍及び調圧された原板を、硫酸ニッケル・6水和物75g/L、塩化ニッケル・6水和物140g/L、ホウ酸40g/L、pH4の組成を有するワット浴を用いて浴温50℃、電流密度5A/dm2の条件でNiめっき層を形成した。焼鈍時にNi拡散層を形成させ、脱脂及び酸洗後、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7A/dm2の条件でSnめっき層を形成した。その後、Snめっき鋼板を260℃で加熱し、Snめっき層を溶融し、ただちに水冷(溶融溶錫処理)を行った。
(A5)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、硫酸ニッケル・6水和物75g/L、塩化ニッケル・6水和物140g/L、硫酸第一鉄・7水和物110g/L、ホウ酸30g/L、クエン酸3g/Lの組成を有する硫酸-塩酸浴を用いて浴温50℃、電流密度5A/dm2の条件でFe-Ni合金めっき層を形成した。次に、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/L]の組成を有するフェロスタン浴を用いて浴温50℃、電流密度7A/dm2の条件でSnめっき層を形成した。
(A4)冷間圧延後、焼鈍及び調圧された原板を、硫酸ニッケル・6水和物75g/L、塩化ニッケル・6水和物140g/L、ホウ酸40g/L、pH4の組成を有するワット浴を用いて浴温50℃、電流密度5A/dm2の条件でNiめっき層を形成した。焼鈍時にNi拡散層を形成させ、脱脂及び酸洗後、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/Lの組成を有するフェロスタン浴を用いて浴温50℃、電流密度7A/dm2の条件でSnめっき層を形成した。その後、Snめっき鋼板を260℃で加熱し、Snめっき層を溶融し、ただちに水冷(溶融溶錫処理)を行った。
(A5)冷間圧延後、焼鈍及び調圧された原板を、脱脂及び酸洗した後、硫酸ニッケル・6水和物75g/L、塩化ニッケル・6水和物140g/L、硫酸第一鉄・7水和物110g/L、ホウ酸30g/L、クエン酸3g/Lの組成を有する硫酸-塩酸浴を用いて浴温50℃、電流密度5A/dm2の条件でFe-Ni合金めっき層を形成した。次に、PSA(フェノールスルフォン酸)60g/L、硫酸錫:54g/L(Snとして30g/L)、添加剤(エトキシ化-α-ナフトール)3g/L、添加剤(エトキシナフトールスルフォン酸)3g/L]の組成を有するフェロスタン浴を用いて浴温50℃、電流密度7A/dm2の条件でSnめっき層を形成した。
形成したNiめっき層及びSnめっき層のNi含有量及びSn含有量は、蛍光X線法により測定した。各水準のNi含有量及びSn含有量を表5に示した。
<化成処理皮膜層の形成>
上記(A3)~(A5)の方法で作製しためっき鋼板を、表3に示す化成処理液に浸漬し、表5に示す通電回数及び温度条件で陰極電解処理を行った。
上記(A3)~(A5)の方法で作製しためっき鋼板を、表3に示す化成処理液に浸漬し、表5に示す通電回数及び温度条件で陰極電解処理を行った。
<洗浄処理>
化成処理皮膜層の形成後、第1実施例と同様の方法で洗浄処理を行った。
化成処理皮膜層の形成後、第1実施例と同様の方法で洗浄処理を行った。
<性能評価>
上記の処理を行った試験材について、第1実施例と同様の方法で、表面粗度及び黄色度の測定、耐硫化黒変性、フィルム密着性、溶接性、一次塗料密着性、二次塗料密着性及び耐食性について性能評価を行った。評価結果を表6に示す。
上記の処理を行った試験材について、第1実施例と同様の方法で、表面粗度及び黄色度の測定、耐硫化黒変性、フィルム密着性、溶接性、一次塗料密着性、二次塗料密着性及び耐食性について性能評価を行った。評価結果を表6に示す。
本発明の範囲に属する水準D1~D17はいずれも、平均粗度(Ra)が10~100nmかつΔYI値の絶対値の平均が5.0以下であった。これらの水準D1~D17は、優れた耐硫化黒変性、フィルム密着性、溶接性、一次塗料密着性、二次塗料密着性及び耐食性を有していた。
また、化成処理皮膜中にP量として2mg/m2以上のリン酸を含有することにより、より優れた耐硫化黒変性、フィルム密着性、耐食性を有していた。
また、化成処理皮膜中にP量として2mg/m2以上のリン酸を含有することにより、より優れた耐硫化黒変性、フィルム密着性、耐食性を有していた。
一方、本発明の平均粗度(Ra)及びΔYI値の少なくとも一方の要件を満たさない水準D18~D25は、耐硫化黒変性、フィルム密着性、溶接性、一次塗料密着性、二次塗料密着性、及び耐食性の少なくとも一部の特性が劣ることが分かった。
以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属すると了解される。
本発明によれば、優れたフィルム密着性、耐硫化黒変性、溶接性、耐食性及び塗料密着性を有する容器用鋼板及び容器用鋼板の製造方法を提供することができる。従って、本発明は、産業上の利用可能性を十分に有する。
1、11 容器用鋼板
2、12 鋼板
3、13 Snめっき層
4、14 化成処理皮膜層
15 Niめっき層
2、12 鋼板
3、13 Snめっき層
4、14 化成処理皮膜層
15 Niめっき層
Claims (13)
- 鋼板と;
前記鋼板の少なくとも片面に形成されたSnめっき層と;
前記Snめっき層上に形成された化成処理皮膜層と;
を備え、
前記Snめっき層は、金属Sn量で300~5600mg/m2のSnを含有し、
前記化成処理皮膜層は、金属Zr量で5~30mg/m2のZr化合物を含有し、
走査型プローブ顕微鏡により求めた、前記化成処理皮膜層の最表面の平均粗度Raが10~100nmであり、
前記化成処理皮膜層の前記最表面における1測定点について測定された黄色度の変化量を下記(1)式で表されるΔYIと定義したとき、
前記最表面の単位面積に含まれる複数の前記測定点について得られた前記ΔYIの絶対値の平均値が5.0以下である
ことを特徴とする、容器用鋼板。
- 前記Snめっき層の下層に、Niを含有するNiめっき層が形成されている
ことを特徴とする、請求項1に記載の容器用鋼板。 - 前記Snめっき層は、金属Sn量で300~3000mg/m2のSnを含有する
ことを特徴とする、請求項2に記載の容器用鋼板。 - 前記Niめっき層は、金属Ni量で5~150mg/m2のNiを含有する
ことを特徴とする、請求項3に記載の容器用鋼板。 - 前記Snめっき層は、Sn合金を含有する
ことを特徴とする、請求項1に記載の容器用鋼板。 - 前記Snめっき層は、Sn合金を含有し、
前記Niめっき層は、Ni合金を含有する
ことを特徴とする、請求項2から請求項4の何れか1項に記載の容器用鋼板。 - 前記化成処理皮膜層は、P量で2~20mg/m2のリン酸化合物を更に含有する
ことを特徴とする、請求項1から請求項6の何れか1項に記載の容器用鋼板。 - 前記化成処理皮膜層は、Zrイオン及びFイオンを含む化成処理液中で陰極電解処理を行うことにより形成される
ことを特徴とする、請求項1から請求項6の何れか1項に記載の容器用鋼板。 - 前記化成処理皮膜層は、Zrイオン、Fイオン及びPイオンを含む化成処理液中で陰極電解処理を行うことにより形成される
ことを特徴とする、請求項7に記載の容器用鋼板。 - 鋼板の表面に、Snを含有するSnめっき層を形成するめっき工程と;
Zrイオン及びFイオンを少なくとも含有する化成処理液を用いて行われ、前記化成処理液の温度が10~40℃である第一陰極電解処理と、前記化成処理液の温度が45~60℃である第二陰極電解処理とを行うことで、前記Snめっき層の表面に化成処理皮膜層を形成する陰極電解処理工程と;
少なくとも40℃以上の洗浄水を利用して0.5秒以上の洗浄処理を行う洗浄処理工程と;
を有する
ことを特徴とする容器用鋼板の製造方法。 - 前記めっき工程では、前記鋼板の表面に、Niを含有するNiめっき層を形成した後、前記Niめっき層の表面に、前記Snめっき層を形成する
ことを特徴とする、請求項10に記載の容器用鋼板の製造方法。 - 前記めっき工程後に、前記Snめっき層に含まれる少なくとも一部のSnを合金化する溶融溶錫処理工程を有する
ことを特徴とする、請求項10又は請求項11に記載の容器用鋼板の製造方法。 - 前記化成処理液は、更に、リン酸イオン、硝酸イオン及びアンモニウムイオンの少なくとも一種を含む
ことを特徴とする、請求項10から請求項12の何れか1項に記載の容器用鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017524306A JP6540800B2 (ja) | 2015-06-23 | 2015-06-23 | 容器用鋼板及び容器用鋼板の製造方法 |
CN201580081125.4A CN107709630B (zh) | 2015-06-23 | 2015-06-23 | 容器用钢板及容器用钢板的制造方法 |
US15/739,052 US10851467B2 (en) | 2015-06-23 | 2015-06-23 | Steel sheet for containers, and method for producing steel sheet for containers |
PCT/JP2015/067963 WO2016207966A1 (ja) | 2015-06-23 | 2015-06-23 | 容器用鋼板及び容器用鋼板の製造方法 |
KR1020187001431A KR102087669B1 (ko) | 2015-06-23 | 2015-06-23 | 용기용 강판 및 용기용 강판의 제조 방법 |
EP15896288.6A EP3315636A4 (en) | 2015-06-23 | 2015-06-23 | STEEL SHEET FOR CONTAINER AND METHOD FOR PRODUCING SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/067963 WO2016207966A1 (ja) | 2015-06-23 | 2015-06-23 | 容器用鋼板及び容器用鋼板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016207966A1 true WO2016207966A1 (ja) | 2016-12-29 |
Family
ID=57584837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067963 WO2016207966A1 (ja) | 2015-06-23 | 2015-06-23 | 容器用鋼板及び容器用鋼板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10851467B2 (ja) |
EP (1) | EP3315636A4 (ja) |
JP (1) | JP6540800B2 (ja) |
KR (1) | KR102087669B1 (ja) |
CN (1) | CN107709630B (ja) |
WO (1) | WO2016207966A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021123744A (ja) * | 2020-02-04 | 2021-08-30 | 日本製鉄株式会社 | Sn系めっき鋼板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264093A (ja) * | 1998-01-06 | 1999-09-28 | Canon Inc | 酸化亜鉛膜の製造方法と光起電力素子の製造方法と半導体素子基板の製造方法 |
JP2009001851A (ja) * | 2007-06-20 | 2009-01-08 | Nippon Steel Corp | 容器用鋼板とその製造方法 |
JP2009120919A (ja) * | 2007-11-16 | 2009-06-04 | Nippon Steel Corp | 容器用鋼板とその製造方法 |
JP2010053424A (ja) * | 2008-08-29 | 2010-03-11 | Nippon Steel Corp | 塗装密着性に優れた表面処理金属板およびその製造方法 |
JP2012062519A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板 |
JP2012062520A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板およびその製造方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4920800B1 (ja) | 1970-06-16 | 1974-05-27 | ||
JPS5468734A (en) | 1977-11-11 | 1979-06-02 | Nippon Packaging Kk | Surface treatment of tin plated steel plate and can |
JPS61243192A (ja) | 1985-04-22 | 1986-10-29 | Nippon Steel Corp | 燃料容器用表面処理鋼板 |
US6379521B1 (en) | 1998-01-06 | 2002-04-30 | Canon Kabushiki Kaisha | Method of producing zinc oxide film, method of producing photovoltaic element, and method of producing semiconductor element substrate |
JP2000239855A (ja) | 1999-02-18 | 2000-09-05 | Nkk Corp | 錫めっき鋼板の化成処理方法 |
JP2005023422A (ja) | 2003-06-09 | 2005-01-27 | Nippon Paint Co Ltd | 金属表面処理方法及び表面処理金属 |
JP2005325402A (ja) | 2004-05-13 | 2005-11-24 | Nippon Paint Co Ltd | スズ又はスズ系合金めっき鋼材の表面処理方法 |
JP4492224B2 (ja) | 2004-06-22 | 2010-06-30 | 東洋製罐株式会社 | 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料 |
JP4242827B2 (ja) | 2004-12-08 | 2009-03-25 | 日本パーカライジング株式会社 | 金属の表面処理用組成物、表面処理用処理液、表面処理方法、及び表面処理金属材料 |
EP2006416B1 (en) | 2006-03-29 | 2015-08-26 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet for containers |
JP4923855B2 (ja) | 2006-08-23 | 2012-04-25 | Jfeスチール株式会社 | 表面処理金属板およびその製造方法、ならびに樹脂被覆金属板、金属缶および缶蓋 |
JP5186817B2 (ja) * | 2007-06-20 | 2013-04-24 | 新日鐵住金株式会社 | 容器用鋼板 |
JP4996409B2 (ja) | 2007-09-28 | 2012-08-08 | 新日本製鐵株式会社 | 化成処理被覆鋼板の製造方法 |
JP4886811B2 (ja) | 2008-06-05 | 2012-02-29 | 新日本製鐵株式会社 | 有機皮膜性能に優れた容器用鋼板およびその製造方法 |
CN102308026B (zh) | 2009-02-04 | 2015-02-18 | 新日铁住金株式会社 | 镀锡钢板的制造方法 |
JP2010253424A (ja) * | 2009-04-27 | 2010-11-11 | Nishimatsu Constr Co Ltd | 濁水浄化処理システム |
JP5672775B2 (ja) * | 2009-06-04 | 2015-02-18 | 新日鐵住金株式会社 | 有機皮膜性能に優れた容器用鋼板およびその製造方法 |
CN104818474B (zh) | 2010-03-23 | 2018-07-10 | 新日铁住金株式会社 | 容器用钢板的制造方法 |
TWI449813B (zh) * | 2010-06-29 | 2014-08-21 | Nippon Steel & Sumitomo Metal Corp | 容器用鋼板及其製造方法 |
JP5754099B2 (ja) * | 2010-09-15 | 2015-07-22 | Jfeスチール株式会社 | 容器用鋼板の製造方法 |
US10443141B2 (en) | 2013-05-21 | 2019-10-15 | Nippon Steel Corporation | Steel sheet for containers, and method for producing steel sheet for containers |
KR101942202B1 (ko) * | 2014-10-09 | 2019-01-24 | 신닛테츠스미킨 카부시키카이샤 | 화성 처리 강판 및 화성 처리 강판의 제조 방법 |
JP6128280B2 (ja) * | 2014-10-09 | 2017-05-17 | 新日鐵住金株式会社 | 酸性内容物貯蔵容器用化成処理鋼板及び酸性内容物貯蔵容器用化成処理鋼板の製造方法 |
EP3255180B1 (en) * | 2015-02-06 | 2022-12-28 | Nippon Steel Corporation | Method of manufacturing a chemically treated sn plated steel sheet |
JP6119930B2 (ja) * | 2015-04-16 | 2017-04-26 | 新日鐵住金株式会社 | 容器用鋼板及び容器用鋼板の製造方法 |
-
2015
- 2015-06-23 US US15/739,052 patent/US10851467B2/en active Active
- 2015-06-23 CN CN201580081125.4A patent/CN107709630B/zh active Active
- 2015-06-23 KR KR1020187001431A patent/KR102087669B1/ko active IP Right Grant
- 2015-06-23 JP JP2017524306A patent/JP6540800B2/ja active Active
- 2015-06-23 WO PCT/JP2015/067963 patent/WO2016207966A1/ja unknown
- 2015-06-23 EP EP15896288.6A patent/EP3315636A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264093A (ja) * | 1998-01-06 | 1999-09-28 | Canon Inc | 酸化亜鉛膜の製造方法と光起電力素子の製造方法と半導体素子基板の製造方法 |
JP2009001851A (ja) * | 2007-06-20 | 2009-01-08 | Nippon Steel Corp | 容器用鋼板とその製造方法 |
JP2009120919A (ja) * | 2007-11-16 | 2009-06-04 | Nippon Steel Corp | 容器用鋼板とその製造方法 |
JP2010053424A (ja) * | 2008-08-29 | 2010-03-11 | Nippon Steel Corp | 塗装密着性に優れた表面処理金属板およびその製造方法 |
JP2012062519A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板 |
JP2012062520A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021123744A (ja) * | 2020-02-04 | 2021-08-30 | 日本製鉄株式会社 | Sn系めっき鋼板 |
JP7410386B2 (ja) | 2020-02-04 | 2024-01-10 | 日本製鉄株式会社 | Sn系めっき鋼板 |
Also Published As
Publication number | Publication date |
---|---|
CN107709630A (zh) | 2018-02-16 |
US10851467B2 (en) | 2020-12-01 |
CN107709630B (zh) | 2019-05-28 |
EP3315636A4 (en) | 2019-02-13 |
US20180187324A1 (en) | 2018-07-05 |
JP6540800B2 (ja) | 2019-07-10 |
KR102087669B1 (ko) | 2020-03-11 |
JPWO2016207966A1 (ja) | 2018-04-26 |
EP3315636A1 (en) | 2018-05-02 |
KR20180019188A (ko) | 2018-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI471217B (zh) | 容器用鋼板之製造方法 | |
JP5304000B2 (ja) | 溶接性、外観、製缶加工密着性に優れた容器用鋼板 | |
TWI490369B (zh) | 容器用鋼板 | |
JP2010013728A (ja) | 有機皮膜性能に優れた容器用鋼板およびその製造方法 | |
JP6128280B2 (ja) | 酸性内容物貯蔵容器用化成処理鋼板及び酸性内容物貯蔵容器用化成処理鋼板の製造方法 | |
JP6658878B2 (ja) | 容器用鋼板 | |
JP6119930B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
WO2016207967A1 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JPWO2016056627A1 (ja) | 化成処理鋼板及び化成処理鋼板の製造方法 | |
WO2016207966A1 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP6119931B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP6098763B2 (ja) | Snめっき鋼板及び化成処理鋼板並びにこれらの製造方法 | |
JPS624879A (ja) | 耐食性、溶接性及び塗装性能にすぐれたSn系多層被覆鋼板とその製造法 | |
TWI565810B (zh) | 容器用鋼板及容器用鋼板之製造方法 | |
TWI537124B (zh) | 容器用鋼板及容器用鋼板之製造方法 | |
JP7295486B2 (ja) | Sn系めっき鋼板 | |
JP6565308B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP6468059B2 (ja) | Snめっき鋼板及びSnめっき鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15896288 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017524306 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187001431 Country of ref document: KR Kind code of ref document: A |