WO2016206548A1 - 一种锂电池高电压改性负极材料的制备方法 - Google Patents
一种锂电池高电压改性负极材料的制备方法 Download PDFInfo
- Publication number
- WO2016206548A1 WO2016206548A1 PCT/CN2016/085617 CN2016085617W WO2016206548A1 WO 2016206548 A1 WO2016206548 A1 WO 2016206548A1 CN 2016085617 W CN2016085617 W CN 2016085617W WO 2016206548 A1 WO2016206548 A1 WO 2016206548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphite
- lithium titanate
- lithium
- lithium battery
- high voltage
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the field of lithium battery anode materials, in particular to a method for preparing a high voltage lithium ion battery anode material which can be quickly charged.
- Lithium-ion battery has the characteristics of high specific capacity, small self-discharge, wide operating temperature range, high voltage platform, long cycle life, no memory effect, and environmental friendliness. It has been widely used in mobile phones, notebook computers, power tools and other fields. And gradually promoted in the field of electric vehicles. At present, China, Beijing, Tianjin, Shenzhen, Shanghai and other important cities have been built as charging stations for hybrid vehicles and pure electric vehicles. However, according to the current charging method of lithium batteries, electric vehicles often need 7-8 hours for one charge; while consumer electronics such as mobile phones, laptop batteries and electric bicycles are generally charged at 0.5C, and charging for 50% takes 1 hour. Left and right, fast charging performance is poor. With the accelerated pace of life, people hope that lithium-ion batteries have a very fast charging capability to shorten battery charging time.
- the object of the present invention is to provide a method for preparing a high voltage modified anode material for a lithium battery.
- the lithium battery obtained by the invention can be quickly charged and discharged, and the charge cutoff voltage is increased to 4.35V, which greatly improves the energy of the battery. density.
- the invention is characterized in that the high-voltage lithium ion battery anode material capable of fast charging is composed of graphite and a coating layer coated on the graphite surface, the coating layer is composed of lithium titanate and a conductive agent to form graphite as a core and graphite.
- the surface is uniformly coated with a layer of lithium titanate, and the surface of the lithium titanate is further coated with a three-layer composite structure anode material of a conductive agent.
- the conductive agent may be one or a combination of carbon nanotubes and vapor-grown carbon fibers, wherein the lithium titanate accounts for 1 to 10% of the total weight; and the conductive agent accounts for 1 to 5 of the total weight. %.
- the lithium titanate of the invention has a spinel structure, has small cell volume change and large lithium ion diffusion coefficient during charging cycle, can realize rapid charging, and has good safety performance, but poor conductivity; carbon nanotube layer The spacing is slightly larger than the layer spacing of the spherical graphite, and the tubular structure of the carbon nanotube does not collapse after multiple charge-discharge cycles, and the cycle performance is good, and at the same time Carbon nanotubes have a large aspect ratio and good axial one-dimensional conductivity, and are considered to be ideal conductive materials.
- Vapor-grown carbon fibers have large aspect ratio and specific surface area and are favorable for lithium ion implantation and The mesoporous structure that is removed can improve the conductivity of the electrode and also improve the adhesion between the active material and the current collector.
- the invention adopts graphite as the core, the graphite surface is uniformly coated with a layer of lithium titanate, and the three-layer composite structural material coated with a layer of conductive agent on the surface of the lithium titanate is used as the battery anode material, and the lithium titanate is coated on the one hand.
- the lithium ion diffusion coefficient of the negative electrode material is increased, so that the lithium ion can be rapidly inserted/extracted during the large-rate charge and discharge process; the thickness expansion of the battery is reduced due to the small change of the unit cell volume of the lithium titanate;
- the coating of lithium titanate on the surface of the graphite particles can significantly improve the safety performance of the battery.
- the layer spacing of the carbon nanotubes is slightly larger than the layer spacing of the spherical graphite, and the tubular structure of the carbon nanotubes does not collapse after multiple charge-discharge cycles;
- Carbon fiber (VGCF) has a large aspect ratio and specific surface area to facilitate the intercalation and deintercalation of lithium ions. Both of them are beneficial to the rapid insertion/extraction of lithium ions on the surface of the negative electrode material, and the cycle performance of the battery is also greatly improved. improve.
- the conductivity of carbon nanotubes/VGCF is strong, which makes the DC internal resistance of the fabricated cell smaller, and the cell's rate and high and low temperature performance are obviously improved; and the good thermal conductivity of carbon nanotubes/VGCF is greatly improved. The safety of the battery.
- a preparation method of a lithium battery high voltage modified anode material the preparation steps are as follows:
- the lithium battery prepared by the invention can be quickly charged and discharged, and the charging cut-off voltage is raised to 4.35V, and the energy density is high, and the current is charged at 5C, and can be charged to 85% of the battery capacity in 10 minutes, and discharged at a current of 10C. It discharges 98.15% of the battery capacity, and has a capacity retention rate of 96.8% or more after 1000 cycles, and has excellent rapid charge and discharge performance.
- the invention has simple manufacturing process, low cost and easy industrial production.
- the lithium titanate material is weighed 5% of the total weight of the graphite and lithium titanate materials, and the graphite is stirred and mixed thoroughly, and the mixing time is stirred for 3 hours, so that the lithium titanate material is uniformly wrapped on the graphite surface; then at 1500 ° C Heat treatment for 1 hour to make titanium
- the lithium acid material is melt-wrapped on the surface of the graphite particles to form a stable lithium titanate coating layer; finally, the carbon nanotubes are added in a proportion of 2% of the total weight of the negative electrode material, and the graphite material coated with the lithium titanate is passed through a ball mill. 8 hours, a graphite/lithium titanate/conductive three-layer anode material was obtained.
- the lithium titanate material is weighed 1% of the total weight of the graphite and lithium titanate materials, and the graphite is stirred and mixed thoroughly, and the mixing time is stirred for 5 hours, so that the lithium titanate material is uniformly wrapped on the graphite surface; then at 1800 ° C After heat treatment for 1 hour, the lithium titanate material is melt-wrapped on the surface of the graphite particles to form a stable lithium titanate coating layer; finally, the vapor-grown carbon fiber is added at a ratio of 1% of the total weight of the negative electrode material, and coated with lithium titanate.
- the graphite material was ball milled for 24 hours to obtain a graphite/lithium titanate/conductive three-layer anode material.
- the lithium titanate material is weighed 10% of the total weight of the graphite and lithium titanate materials, and the graphite is stirred and mixed thoroughly, and the mixing time is stirred for 5 hours, so that the lithium titanate material is uniformly wrapped on the graphite surface; then at 1600 ° C After heat treatment for 1 hour, the lithium titanate material is melt-wrapped on the surface of the graphite particles to form a stable lithium titanate coating layer; finally, the carbon nanotubes are added at a ratio of 5% of the total weight of the negative electrode material, and coated with lithium titanate.
- the graphite material was ball milled for 20 hours to obtain a graphite/lithium titanate/conductive three-layer anode material.
- the lithium titanate material is weighed 8% of the total weight of the graphite and lithium titanate materials, and the graphite is stirred and mixed thoroughly, and the mixing time is stirred for 4 hours, so that the lithium titanate material is uniformly wrapped on the graphite surface; then at 1700 ° C Heat treatment for 1 hour, the lithium titanate material is melt-wrapped on the surface of the graphite particles to form a stable lithium titanate coating layer; finally, the vapor-grown carbon fiber is added at a ratio of 4% of the total weight of the negative electrode material, and coated with lithium titanate.
- the graphite material was ball milled for 16 hours to obtain a graphite/lithium titanate/conductive three-layer anode material.
- the negative electrode material prepared in the examples and the comparative examples, superconducting carbon black, sodium carboxymethylcellulose, and styrene-butadiene rubber were prepared by using N-methylpyrrolidone as a solvent, and copper foil was used as a current collector. The slurry was coated on a copper foil and dried; the pole piece was rolled to form a negative electrode sheet.
- the positive and negative electrode sheets and the separator are wound together, placed in a battery can, and the electrolyte is injected and sealed, and chemical conversion treatment is performed.
- the charge and discharge voltages were 3.0 to 4.2 V and 3.0 to 4.35 V, respectively, and the battery performance was tested.
- the test results are shown in Table 1.
- the anode material with a charge-discharge voltage of 3.0 to 4.35 V is lower in efficiency than the battery of normal voltage of 3.0 to 4.2 V, because the surface of the material prepared by the present invention is coated with a conductive agent, and the specific surface area of the conductive agent is biased. High, leading to the first time The reverse capacity increases, so the first efficiency is low.
- the 1000 cycle retention rate of the material of the present invention at high voltage charge and discharge is lower than that of the normal voltage, and is much higher than that of the comparative example, because the high voltage charge and discharge leads to the internal structure of the material. A large change has occurred, resulting in a sharp drop in battery cycle performance. Therefore, the high voltage material prepared by the present invention has high capacity performance while still maintaining good cycle performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
一种锂电池高电压改性负极材料的制备方法,制得的锂电池可快速充放电且充电截止电压提升至4.35V,极大的提高了电池的能量密度。制备的负极材料以石墨为核心,石墨表面均匀包覆一层钛酸锂,再在包覆有钛酸锂的石墨颗粒表面包覆一层导电剂,形成石墨-钛酸锂-导电剂三层复合结构。制成的电池具有很好的快速充放电性能,且高低温性能有了非常大的提高,同时安全性能也得到很大提高。
Description
本发明涉及锂电池负极材料领域,具体涉及一种可快速充电的高电压锂离子电池负极材料的制备方法。
锂离子电池具有比容量高、自放电小、工作温度范围宽、电压平台高、循环寿命长、无记忆效应、对环境友好等特点,已广泛应用于移动电话、笔记本电脑、电动工具等领域,并逐步在电动汽车领域进行推广。目前,我国北京、天津、深圳、上海等重要城市已建成为混合动力汽车以及纯电动汽车充电的充电站。但是,按照目前锂电池的充电方式,电动汽车一次充电经常需要7-8小时;而消费类电子产品如手机、笔记本电脑电池以及电动自行车等充电一般在0.5C,充电50%就需要1个小时左右,快速充电性能较差。随着生活节奏的加快,人们更希望锂离子电池具有很好的快速充电能力,以缩短电池充电时间。
近年来,有研究通过在正极片上设置若干规则的小孔从而达到快速充电的目的,但是该方法实际运用比较耗费材料与时间;有研究用亚微米级钛酸锂、锂金属氧化物包覆石墨、复合型锂金属氧化物包覆石墨、石墨包覆钛酸锂等材料作为负极来达到快速充电效果的,但是却存在钛酸锂能量密度低,锂金属氧化物导电性低等问题,而钛酸锂的倍率性能差,制成的电芯容易产气,高温性能差。且目前有关快速充电的研究,电芯的充电截止电压仅为4.2V,能量密度低。因此迫切需要一种可快速充电的高电压锂离子电池负极材料。
发明内容
本发明的目的在于提供一种锂电池高电压改性负极材料的制备方法,采用本发明所制得的锂电池可快速充放电且充电截止电压提升至4.35V,极大的提高了电池的能量密度。
本发明的特征在于可快速充电的高电压锂离子电池负极材料由石墨以及包裹在石墨表面的包覆层构成,所述包覆层由钛酸锂以及导电剂组成,形成以石墨为内核,石墨表面均匀包覆一层钛酸锂,在钛酸锂表面再包覆一层导电剂的三层复合结构的负极材料。所述的导电剂可以是碳纳米管、气相生长碳纤维中的一种或两种的组合,所述负极材料中钛酸锂占总重量的1~10%;导电剂占总重量的1~5%。
本发明所述钛酸锂具有尖晶石结构,在充电循环过程中晶胞体积变化小且锂离子扩散系数大,可实现快速充电,且安全性能好,但是导电性能差;碳纳米管的层间距略大于球形石墨的层间距,而且碳纳米管的筒状结构在多次充-放电循环后不会塌陷,循环性能好,同时
碳纳米管具有较大的长径比和良好的轴向一维导电能力,被认为是理想的导电材料;气相生长碳纤维(VGCF)具有大的长径比和比表面积和有利于锂离子嵌入和脱出的介孔结构,既可以提高电极的导电性,同时还可以提高活性材料与集流体之间的粘结力。
本发明将以石墨为内核,石墨表面均匀包覆一层钛酸锂,在钛酸锂表面再包覆一层导电剂的三层复合结构材料作为电池负极材料,一方面钛酸锂包覆于石墨表面,负极材料的锂离子扩散系数增大,使得电池在大倍率充放电过程中锂离子可快速的嵌入/脱出;由于钛酸锂的晶胞体积变化小,使得电池的厚度膨胀减小;同时钛酸锂包覆于石墨颗粒表面能明显提升电池的安全性能。另一方面,碳纳米管或VGCF包覆层中,碳纳米管的层间距略大于球形石墨的层间距,而且碳纳米管的筒状结构在多次充-放电循环后不会塌陷;气相生长碳纤维(VGCF)具有大的长径比和比表面积有利于锂离子嵌入和脱出的介孔结构,两者均有利于锂离子在负极材料表面的快速嵌入/脱出,电池的循环性能也得到极大改善。碳纳米管/VGCF的导电能力强,使得制成的电芯直流内阻更小,同时电芯的倍率和高低温性能均有明显提升;而碳纳米管/VGCF良好的导热能力极大的改善了电池的安全性能。
一种锂电池高电压改性负极材料的制备方法,其制备步骤如下:
1)将纳米级钛酸锂材料与石墨进行搅拌使其充分混合,搅拌混合时间3~5小时,使得钛酸锂材料均匀包裹在石墨表面;所述钛酸锂材料占石墨和钛酸锂材料总重量的1~10%;
2)将混合均匀的包覆着钛酸锂材料的石墨在1500~1800℃热处理0.5~2小时,使钛酸锂材料熔融包裹在石墨颗粒表面,从而形成稳定的钛酸锂包覆层;
3)将导电剂与经过钛酸锂包覆的石墨材料,通过球磨8~24小时,得到石墨/钛酸锂/导电剂三层负极材料;其中导电剂占负极材料总重量的1~5%。
采用本发明所制得的锂电池可快速充放电且充电截止电压提升至4.35V,且能量密度高,以5C的电流充电,10min可充电至电池容量的85%,以10C的电流放电,可放出电池容量的98.15%以上,循环1000周后容量保持率96.8%以上,具有很好的快速充放电性能。本发明制作工艺简单,成本低,易于工业化生产。
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1
将钛酸锂材料占石墨和钛酸锂材料总重量的5%称取,和石墨进行搅拌使其充分混合,搅拌混合时间3小时,使得钛酸锂材料均匀包裹在石墨表面;然后在1500℃热处理1小时,使钛
酸锂材料熔融包裹在石墨颗粒表面,从而形成稳定的钛酸锂包覆层;最后按负极材料总重量的2%的比例加入碳纳米管,与经过钛酸锂包覆的石墨材料,通过球磨8小时,得到石墨/钛酸锂/导电剂三层负极材料。
实施例2
将钛酸锂材料占石墨和钛酸锂材料总重量的1%称取,和石墨进行搅拌使其充分混合,搅拌混合时间5小时,使得钛酸锂材料均匀包裹在石墨表面;然后在1800℃热处理1小时,使钛酸锂材料熔融包裹在石墨颗粒表面,从而形成稳定的钛酸锂包覆层;最后按负极材料总重量的1%的比例加入气相生长碳纤维,与经过钛酸锂包覆的石墨材料,通过球磨24小时,得到石墨/钛酸锂/导电剂三层负极材料。
实施例3
将钛酸锂材料占石墨和钛酸锂材料总重量的10%称取,和石墨进行搅拌使其充分混合,搅拌混合时间5小时,使得钛酸锂材料均匀包裹在石墨表面;然后在1600℃热处理1小时,使钛酸锂材料熔融包裹在石墨颗粒表面,从而形成稳定的钛酸锂包覆层;最后按负极材料总重量的5%的比例加入碳纳米管,与经过钛酸锂包覆的石墨材料,通过球磨20小时,得到石墨/钛酸锂/导电剂三层负极材料。
实施例4
将钛酸锂材料占石墨和钛酸锂材料总重量的8%称取,和石墨进行搅拌使其充分混合,搅拌混合时间4小时,使得钛酸锂材料均匀包裹在石墨表面;然后在1700℃热处理1小时,使钛酸锂材料熔融包裹在石墨颗粒表面,从而形成稳定的钛酸锂包覆层;最后按负极材料总重量的4%的比例加入气相生长碳纤维,与经过钛酸锂包覆的石墨材料,通过球磨16小时,得到石墨/钛酸锂/导电剂三层负极材料。
对比例1
未经处理的原料纳米钛酸锂。
对比例2
未经处理的原料石墨。
半电池检测
为检验本发明方法制备的负极材料的电性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装
成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
全电池测试
称取正极活性物质钴酸锂(96%质量比,以下同)、超级导电炭黑、粘结剂聚偏氟乙烯,以N-甲基吡咯烷酮作溶剂,制成浆料,以铝箔作为集流体,将浆料涂覆在铝箔上并干燥;将极片碾压、制成正极片。
将实施例和比较例中所制备的负极材料、超级导电炭黑、羧甲基纤维素钠以及丁苯橡胶,以N-甲基吡咯烷酮作溶剂,制成浆料,以铜箔作为集流体,将浆料涂覆在铜箔上并干燥;将极片碾压、制成负极片。
采用锂离子电池专用隔膜作为电池隔膜,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1。
将正负极片及隔膜一起卷绕后放入电池壳内,注入电解液并封口,并进行化成处理。
充放电电压分别为3.0~4.2V、3.0~4.35V,对电池性能进行能测试,测试结果见表1。
表1.比较例和实施例的电性能检测结果
从上述数据可以看出,充放电电压为3.0~4.35V的负极材料,首次效率较正常电压3.0~4.2V的电池低,因为本发明制备的材料表面包覆有导电剂,导电剂比表面积偏高,导致首次不可
逆容量增大,故首次效率偏低。在循环性能方面,本发明材料的在高电压充放电的1000次循环保持率较正常电压的低,而较比较例的材料明细高出很多,其原因在于,高电压充放电导致材料内部的结构发生较大变化,导致电池循环性能急剧下降。因此,本发明所制备的高电压材料,具有高容量性能的同时,依然保持良好的循环性能。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (6)
- 一种锂电池高电压改性负极材料的制备方法,其制备步骤如下:1)将纳米级钛酸锂材料与石墨进行搅拌使其充分混合,搅拌混合时间3~5小时,使得钛酸锂材料均匀包裹在石墨表面;2)将混合均匀的包覆着钛酸锂材料的石墨在1500~1800℃热处理0.5~2小时,使钛酸锂材料熔融包裹在石墨颗粒表面,从而形成稳定的钛酸锂包覆层;3)将导电剂与经过钛酸锂包覆的石墨材料,通过球磨8~24小时,得到石墨/钛酸锂/导电剂三层负极材料。
- 根据权利要求1所述的一种锂电池高电压改性负极材料的制备方法,其特征在于,步骤1)中所述石墨包括人造石墨、天然石墨、人造与天然复合石墨,平均粒径D50在1~30μm。
- 根据权利要求1所述的一种锂电池高电压改性负极材料的制备方法,其特征在于,步骤1)中所述钛酸锂为纳米级钛酸锂材料。
- 根据权利要求1所述的一种锂电池高电压改性负极材料的制备方法,其特征在于,步骤1)中钛酸锂材料占石墨和钛酸锂材料总重量的1~10%。
- 根据权利要求1所述的一种锂电池高电压改性负极材料的制备方法,其特征在于,步骤3)中所述导电剂为碳纳米管、气相生长碳纤维中的一种或两种的组合。
- 根据权利要求1所述的一种锂电池高电压改性负极材料的制备方法,其特征在于,步骤3)中导电剂占负极材料总重量的1~5%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510356925.4A CN104916825A (zh) | 2015-06-26 | 2015-06-26 | 一种锂电池高电压改性负极材料的制备方法 |
CN201510356925.4 | 2015-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016206548A1 true WO2016206548A1 (zh) | 2016-12-29 |
Family
ID=54085679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/085617 WO2016206548A1 (zh) | 2015-06-26 | 2016-06-13 | 一种锂电池高电压改性负极材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104916825A (zh) |
WO (1) | WO2016206548A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10468674B2 (en) | 2018-01-09 | 2019-11-05 | South Dakota Board Of Regents | Layered high capacity electrodes |
CN111599995A (zh) * | 2020-04-28 | 2020-08-28 | 惠州锂威新能源科技有限公司 | 负极材料及其制备方法、高电压锂离子电池 |
CN113363444A (zh) * | 2021-06-15 | 2021-09-07 | 广东凯金新能源科技股份有限公司 | 一种纳米钛酸锂包覆改性石墨负极材料、其制备方法及其应用 |
CN114122318A (zh) * | 2021-11-19 | 2022-03-01 | 湖北亿纬动力有限公司 | 一种负极极片及其制备方法和应用 |
CN114914421A (zh) * | 2022-05-20 | 2022-08-16 | 广东凯金新能源科技股份有限公司 | 一种聚合物包覆的天然石墨负极材料及其制备方法和应用 |
CN115425203A (zh) * | 2022-09-21 | 2022-12-02 | 惠州锂威新能源科技有限公司 | 一种负极材料及其制备方法、负极极片和二次电池 |
US11626584B2 (en) | 2014-04-25 | 2023-04-11 | South Dakota Board Of Regents | High capacity electrodes |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104916825A (zh) * | 2015-06-26 | 2015-09-16 | 田东 | 一种锂电池高电压改性负极材料的制备方法 |
CN108232175B (zh) * | 2018-02-06 | 2020-09-22 | 安徽科达铂锐能源科技有限公司 | 一种锂离子电池用石墨/钛酸锂复合负极材料及制备方法 |
CN110943208A (zh) * | 2019-12-13 | 2020-03-31 | 成都爱敏特新能源技术有限公司 | 一种高温锂离子电池石墨负极材料及其制备方法 |
CN113745489B (zh) * | 2021-09-15 | 2022-08-05 | 河北坤天新能源股份有限公司 | 一种低膨胀硅碳复合负极材料及其制备方法 |
CN115000373A (zh) * | 2022-06-08 | 2022-09-02 | 万向一二三股份公司 | 一种钛酸锂/石墨复合负极材料的制备方法 |
CN117810450B (zh) * | 2024-02-29 | 2024-04-30 | 中国科学院山西煤炭化学研究所 | 一种锂离子电池改性石墨负极材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683705A (zh) * | 2012-04-24 | 2012-09-19 | 合肥国轩高科动力能源有限公司 | 一种钛酸锂包覆改性的石墨复合负极材料及其制备方法与应用 |
CN102881883A (zh) * | 2012-10-17 | 2013-01-16 | 中国东方电气集团有限公司 | 一种锂电池三元复合负极材料及其制备方法 |
CN102903952A (zh) * | 2012-10-17 | 2013-01-30 | 中国东方电气集团有限公司 | 一种三元复合负极材料锂离子电池及其制备方法 |
CN104681860A (zh) * | 2015-02-09 | 2015-06-03 | 惠州市豪鹏科技有限公司 | 一种可快速充放电的高电压锂离子电池及其制备方法 |
CN104916825A (zh) * | 2015-06-26 | 2015-09-16 | 田东 | 一种锂电池高电压改性负极材料的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101031920B1 (ko) * | 2008-04-29 | 2011-05-02 | 쇼와 덴코 가부시키가이샤 | 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를음극으로 포함하는 리튬 이차 전지 |
CN104638267A (zh) * | 2013-11-12 | 2015-05-20 | 赵宽 | 石墨烯包覆钛酸锂负极及其制备方法 |
-
2015
- 2015-06-26 CN CN201510356925.4A patent/CN104916825A/zh active Pending
-
2016
- 2016-06-13 WO PCT/CN2016/085617 patent/WO2016206548A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683705A (zh) * | 2012-04-24 | 2012-09-19 | 合肥国轩高科动力能源有限公司 | 一种钛酸锂包覆改性的石墨复合负极材料及其制备方法与应用 |
CN102881883A (zh) * | 2012-10-17 | 2013-01-16 | 中国东方电气集团有限公司 | 一种锂电池三元复合负极材料及其制备方法 |
CN102903952A (zh) * | 2012-10-17 | 2013-01-30 | 中国东方电气集团有限公司 | 一种三元复合负极材料锂离子电池及其制备方法 |
CN104681860A (zh) * | 2015-02-09 | 2015-06-03 | 惠州市豪鹏科技有限公司 | 一种可快速充放电的高电压锂离子电池及其制备方法 |
CN104916825A (zh) * | 2015-06-26 | 2015-09-16 | 田东 | 一种锂电池高电压改性负极材料的制备方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11626584B2 (en) | 2014-04-25 | 2023-04-11 | South Dakota Board Of Regents | High capacity electrodes |
US10468674B2 (en) | 2018-01-09 | 2019-11-05 | South Dakota Board Of Regents | Layered high capacity electrodes |
US11824189B2 (en) | 2018-01-09 | 2023-11-21 | South Dakota Board Of Regents | Layered high capacity electrodes |
CN111599995A (zh) * | 2020-04-28 | 2020-08-28 | 惠州锂威新能源科技有限公司 | 负极材料及其制备方法、高电压锂离子电池 |
CN113363444A (zh) * | 2021-06-15 | 2021-09-07 | 广东凯金新能源科技股份有限公司 | 一种纳米钛酸锂包覆改性石墨负极材料、其制备方法及其应用 |
CN114122318A (zh) * | 2021-11-19 | 2022-03-01 | 湖北亿纬动力有限公司 | 一种负极极片及其制备方法和应用 |
CN114914421A (zh) * | 2022-05-20 | 2022-08-16 | 广东凯金新能源科技股份有限公司 | 一种聚合物包覆的天然石墨负极材料及其制备方法和应用 |
CN114914421B (zh) * | 2022-05-20 | 2024-05-03 | 广东凯金新能源科技股份有限公司 | 一种聚合物包覆的天然石墨负极材料及其制备方法和应用 |
CN115425203A (zh) * | 2022-09-21 | 2022-12-02 | 惠州锂威新能源科技有限公司 | 一种负极材料及其制备方法、负极极片和二次电池 |
Also Published As
Publication number | Publication date |
---|---|
CN104916825A (zh) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016206548A1 (zh) | 一种锂电池高电压改性负极材料的制备方法 | |
WO2022166059A1 (zh) | 一种硼掺杂树脂包覆人造石墨材料 | |
CN108155351B (zh) | 锂离子电池及其负极材料 | |
CN102544502B (zh) | 用于锂二次电池的正极负极导电添加剂及其制备方法和相关锂二次电池的制备方法 | |
CN110010903B (zh) | 正极极片及电池 | |
CN102522530B (zh) | 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法 | |
CN110739427B (zh) | 电池隔膜材料及其制备方法与应用 | |
CN109713215B (zh) | 补锂负极片及其制备方法、锂离子电池 | |
CN113258031B (zh) | 电池 | |
CN103855431B (zh) | 一种提高锂离子电池循环性能的化成方法 | |
CN105742613A (zh) | 一种负极极片和锂离子电池 | |
CN112467118B (zh) | 一种石墨复合材料及其制备方法、锂电池负极 | |
CN104810504A (zh) | 一种柔性石墨烯集流体与活性材料一体化电极极片及其制备方法 | |
US9023521B2 (en) | Nonaqueous electrolyte secondary battery | |
CN104681860B (zh) | 一种可快速充放电的高电压锂离子电池及其制备方法 | |
WO2014032407A1 (zh) | 一种锂离子电池硅负极极片及其制备方法和锂离子电池 | |
JP2015201388A (ja) | 非水系二次電池用正極活物質及びその製造方法 | |
CN104022278A (zh) | 一种圆柱锂离子电池电芯及其制备方法 | |
CN107069014A (zh) | 一种锂离子电池石墨负极材料的制备方法 | |
CN105633454A (zh) | 一种3c数码用高电压、宽温幅聚合物锂电及其制造方法 | |
CN113555539A (zh) | 一种高能量密度快充石墨复合负极材料及其制备方法、锂离子电池 | |
CN108878893B (zh) | 一种快充锂离子电池负极用改性集流体及其制备方法 | |
CN104600246A (zh) | 一种基于石墨烯的锂离子电池电极及其制备方法 | |
EP4145476A1 (en) | Positive electrode of hybrid capacitor and manufacturing method therefor and use thereof | |
CN106684340A (zh) | 一种锂离子电池正极浆料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16813664 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16813664 Country of ref document: EP Kind code of ref document: A1 |