[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016203878A1 - 摺動部品 - Google Patents

摺動部品 Download PDF

Info

Publication number
WO2016203878A1
WO2016203878A1 PCT/JP2016/064251 JP2016064251W WO2016203878A1 WO 2016203878 A1 WO2016203878 A1 WO 2016203878A1 JP 2016064251 W JP2016064251 W JP 2016064251W WO 2016203878 A1 WO2016203878 A1 WO 2016203878A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
fluid
dynamic pressure
pressure generating
leakage
Prior art date
Application number
PCT/JP2016/064251
Other languages
English (en)
French (fr)
Inventor
雄一郎 徳永
井上 秀行
航 木村
井口 徹哉
猛 細江
英俊 笠原
崇史 大田
啓一 千葉
壮敏 板谷
一光 香取
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP16811353.8A priority Critical patent/EP3309431B1/en
Priority to US15/736,201 priority patent/US10473220B2/en
Priority to KR1020177036074A priority patent/KR102049287B1/ko
Priority to BR112017026914-7A priority patent/BR112017026914A2/ja
Priority to JP2017524731A priority patent/JP6776232B2/ja
Priority to CN201680034239.8A priority patent/CN107735604B/zh
Publication of WO2016203878A1 publication Critical patent/WO2016203878A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3424Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with microcavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • it is used for seal rings that need to reduce the friction by interposing fluid on the sliding surface and prevent fluid from leaking from the sliding surface, such as gearboxes for turbochargers or aero engines.
  • the present invention relates to sliding parts such as oil seals or bearings.
  • a mechanical seal which is an example of a sliding component
  • its performance is evaluated by a leakage amount, a wear amount, and a torque.
  • the performance is improved by optimizing the sliding material and sliding surface roughness of the mechanical seal, and low leakage, long life, and low torque are realized.
  • further improvement in the performance of mechanical seals is required, and technical development that exceeds the framework of conventional techniques is required.
  • an oil seal device of a rotating part such as a turbocharger
  • a rotating shaft that is rotatably accommodated in a housing
  • a disk-shaped rotating body that rotates together with the rotating shaft
  • a disk-shaped fixing body that is fixed to the housing and that abuts against the end surface of the rotating body to prevent oil from leaking from the outer peripheral side to the inner peripheral side.
  • An annular groove for generating pressure is provided to prevent oil from leaking from the outer peripheral side to the inner peripheral side (see, for example, Patent Document 1).
  • the rotating ring is provided with a rotating ring and a stationary ring attached to the casing together with the rotating shaft, and the rotating ring is provided on any sliding surface of the rotating ring and the stationary ring.
  • a spiral groove that wraps the low-pressure side liquid toward the high-pressure side by rotation is provided so that the end of the high-pressure side is closed, so that the sealed fluid on the high-pressure side is prevented from leaking to the low-pressure side.
  • one of the pair of cooperating seal rings is provided in the rotating component, and the other is Provided in stationary components, these seal rings have a seal surface formed substantially radially during operation, with the outer area of the seal surface between the seal surfaces and the inner area of the seal surface.
  • a seal gap for sealing is formed, and at least one of the seal surfaces is provided with a plurality of circumferentially spaced recesses effective for feeding gas, the recesses from one peripheral edge of the seal surface to the other.
  • the inner end of the recess is provided radially away from the other periphery of the sealing surface, and the non-gas component in the gas medium containing the non-gas component is sealed. It is known in which so as to be (for example, see Patent Document 3.).
  • the sliding surfaces of a pair of sliding parts that slide relative to each other have low fluid lubrication friction during steady operation, and leakage of sealed fluid and intrusion of dust into the sliding surfaces are prevented. It is an object of the present invention to provide a sliding component that can prevent and improve both the functions of sealing and lubrication of the sliding surface.
  • the sliding component of the present invention firstly includes a pair of sliding components that slide relative to each other, one sliding component is a fixed-side sealing ring, and the other sliding component is These sealing rings have a sliding surface formed in the radial direction and seal against leakage of the sealed fluid, and are at least one of the pair of sliding parts.
  • the sliding surface of the sliding part is provided with a dynamic pressure generating groove so as to be separated from the sealed fluid side and the leakage side by the land portions of both sliding surfaces, and the dynamic pressure generating groove and the leakage are separated.
  • a plurality of independent fine concave portions are provided at positions spaced in the radial direction from the dynamic pressure generating grooves on the sliding surface between the first and second sides.
  • the sliding surface is low in fluid lubrication during steady operation, and dust mixed in the leakage side fluid is prevented from entering the sliding surface.
  • the dynamic pressure generating groove is separated from the sealed fluid side by the land portion, and the minute recesses are arranged at positions separated from the dynamic pressure generating groove in the radial direction, and are independent from each other. There is no leakage even at times.
  • the sliding component of the present invention secondly includes a pair of sliding components that slide relative to each other, one sliding component is a fixed side sealing ring, and the other sliding component is a rotation side sealing ring.
  • These sealing rings have sliding surfaces formed in the radial direction and seal against leakage of liquid or mist-like fluid to be sealed, and the pair of sliding parts
  • the sliding surface of at least one of the sliding parts is provided with a dynamic pressure generating groove so as to be separated from the sealed fluid side and the leakage side by the land portions of both sliding surfaces,
  • the slide surface between the groove and the leak side is characterized in that a plurality of independent concave portions are provided at positions separated from the dynamic pressure generating groove in the radial direction.
  • the sliding surface has low fluid lubrication friction during steady operation, and also prevents leakage of liquid, which is the fluid to be sealed, and entry of dust present in the fluid on the leakage side into the sliding surface.
  • the dynamic pressure generating groove is separated from the liquid side, which is the sealed fluid, by the land portion, and the fine concave portions are arranged at positions separated from the dynamic pressure generating groove in the radial direction, and each is independent. Therefore, no leakage occurs even when stationary.
  • the dynamic pressure generating groove has a spiral shape that sucks a fluid on a leak side and pumps it to a sealed fluid side. It is characterized by. According to this feature, the fluid on the leakage side is pumped toward the sealed fluid side during steady operation, and the sealed fluid is prevented from leaking to the leakage side.
  • the sliding component of the present invention is characterized in that, in any of the first to third features, the independent concave portion is composed of dimples. According to this feature, manufacturing can be facilitated.
  • the sliding component of the present invention is fifthly characterized in that, in any one of the first to third features, the independent concave portion is composed of a herringbone groove. According to this feature, a larger dynamic pressure effect can be obtained.
  • the sliding component according to any one of the first to third aspects, wherein the independent concave portion is formed of a groove portion that forms a Rayleigh step mechanism. Yes.
  • the groove portion can be efficiently arranged, and a larger dynamic pressure effect can be obtained.
  • the end portion on the leakage side of the dynamic pressure generating groove has a peripheral edge compared to the end portion on the sealed fluid side. It is characterized by being formed to extend in the direction and having an enlarged opening on the leakage side. According to this feature, the leak side end a of the dynamic pressure generating groove is not in communication with the leak side, and entry of dust mixed in the leak side fluid into the dynamic pressure generating groove is suppressed. Therefore, the effect of supplying the fluid to the dynamic pressure generating groove can be increased.
  • the sliding surface of at least one sliding component of the pair of sliding components communicates with the sealed fluid side. Since the fluid introduction groove configured not to communicate with the leakage side is provided, the liquid present on the outer peripheral side of the sliding surface in the low-speed rotation state of the rotation-side sealing ring such as at the time of activation is positively Introduced to the sliding surface, the sliding surface can be lubricated. In addition, since the liquid introduced from the fluid introduction groove to the sliding surface is discharged by centrifugal force when the rotation side sealing ring rotates at a high speed such as steady operation, the liquid leaks to the inner peripheral side which is the leakage side. Absent.
  • the present invention has the following excellent effects. (1) Provided with a pair of sliding parts that slide relative to each other, one sliding part is a fixed side sealing ring, the other sliding part is a rotation side sealing ring, and these sealing rings are in the radial direction.
  • the sliding surface is formed and seals leakage of the sealed fluid.
  • the sliding surface of at least one sliding component of the pair of sliding components includes both sliding surfaces.
  • a dynamic pressure generating groove is provided so as to be separated from the sealed fluid side and the leakage side by the land portion, and the dynamic pressure generating groove on the sliding surface between the dynamic pressure generating groove and the leakage side;
  • a plurality of independent concave portions are provided at positions separated from each other in the radial direction, so that the sliding surface has low fluid lubrication friction during steady operation and dust mixed in the leakage side fluid. Prevents the sliding surface from entering, and improves both functions of the sliding surface sealing and lubrication. It is possible to provide a sliding component capable of and.
  • the dynamic pressure generating groove is separated from the sealed fluid side by the land portion, and the minute recesses are arranged at positions separated from the dynamic pressure generating groove in the radial direction, and are independent from each other. There is no leakage even at times.
  • one sliding part is a fixed side sealing ring
  • the other sliding part is a rotation side sealing ring
  • these sealing rings are in the radial direction. It has a formed sliding surface and seals leakage of a liquid to be sealed or a mist-like fluid
  • the sliding surface of at least one sliding component of the pair of sliding components Are provided with a dynamic pressure generating groove so as to be separated from the sealed fluid side and the leakage side by the land portions of both sliding surfaces, and the sliding between the dynamic pressure generating groove and the leakage side is provided.
  • the surface is separated from the dynamic pressure generating groove in the radial direction by a plurality of independent fine concave portions, so that the sliding surface has low friction of fluid lubrication during normal operation and is sealed. Leakage of fluid, which is a fluid, and entry of dust present in the fluid on the leakage side into the sliding surface Preventing, it is possible to provide a sliding component capable of improving the conflicting functions of both the sealing and lubrication of the sliding surface. Further, the dynamic pressure generating groove is separated from the liquid side, which is the sealed fluid, by the land portion, and the fine concave portions are arranged at positions separated from the dynamic pressure generating groove in the radial direction, and each is independent. Therefore, no leakage occurs even when stationary.
  • the dynamic pressure generating groove has a spiral shape that sucks the fluid on the leak side and pumps it to the sealed fluid side, the fluid on the leak side is pumped toward the sealed fluid side during normal operation. The sealing fluid is prevented from leaking to the leakage side.
  • the independent concave portion is formed of dimples, it can be easily manufactured.
  • the independent concave portion is composed of the groove portion that forms the Rayleigh step mechanism, the groove portion can be efficiently arranged, and a larger dynamic pressure effect can be obtained.
  • the dynamic pressure generating groove is formed such that the end on the leak side extends longer in the circumferential direction than the end on the sealed fluid side, and the opening on the leak side is formed in an enlarged shape.
  • the leakage side end a of the dynamic pressure generating groove is not in communication with the leakage side, and entry of dust mixed in the fluid on the leakage side into the dynamic pressure generating groove is suppressed. The effect of fluid supply to the generation groove can be increased.
  • a sliding surface of at least one sliding component of the pair of sliding components is provided with a fluid introduction groove configured to communicate with the sealed fluid side and not communicate with the leakage side.
  • the liquid existing on the outer peripheral side of the sliding surface in the low-speed rotation state of the rotating side sealing ring such as at the time of starting is positively introduced into the sliding surface, and the sliding surface can be lubricated.
  • the liquid introduced from the fluid introduction groove to the sliding surface is discharged by centrifugal force when the rotation side sealing ring rotates at a high speed such as steady operation, the liquid leaks to the inner peripheral side which is the leakage side. Absent.
  • FIG. 5 is a view corresponding to FIG. 3 of the first embodiment, showing one sliding surface of the sliding component according to the second embodiment of the present invention.
  • FIG. 7 is a view corresponding to FIG. 3 of the first embodiment, showing one sliding surface of the sliding component according to the third embodiment of the present invention.
  • FIG. 7 is a view corresponding to FIG.
  • FIG. 3 of the first embodiment illustrating one sliding surface of the sliding component according to the fourth embodiment of the present invention.
  • FIG. 5 is a view corresponding to FIG. 3 of the first embodiment, showing one sliding surface of the sliding component according to the fifth embodiment of the present invention. It is explanatory drawing for demonstrating a prior art, Comprising: (a) is a longitudinal cross-sectional view, (b) is a BB arrow line view.
  • Example 1 of this invention With reference to FIG. 1 thru
  • a mechanical seal which is an example of a sliding component will be described as an example.
  • the outer peripheral side of the sliding component constituting the mechanical seal will be described as the sealed fluid side (liquid side or mist-like fluid side), and the inner peripheral side will be described as the leakage side (gas side), but the present invention is limited to this.
  • the present invention can also be applied to the case where the outer peripheral side is the leakage side (gas side) and the inner peripheral side is the sealed fluid side (liquid side or mist-like fluid side).
  • the sealed fluid side liquid side or mist-like fluid side
  • the leakage side gas side
  • both pressures may be the same.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which seals a fluid to be sealed that leaks from an outer periphery of a sliding surface toward an inner periphery, for example, a lubricant used in a bearing portion.
  • One of the types provided inside the turbocharger is rotatably provided integrally with the rotary shaft 2 via a sleeve 3 on the side of the rotary shaft 2 that drives the impeller 1 of the compressor provided in the turbocharger.
  • An annular rotation-side sealing ring 4 that is a sliding part, and an annular shape that is the other sliding part provided in the housing 5 in a non-rotating state and movable in the axial direction via the cartridge 6.
  • the fixed-side sealing ring 7 is provided, and the coiled wave spring 8 that urges the fixed-side sealing ring 7 in the axial direction causes the sliding surfaces S that are mirror-finished by lapping or the like to slide in close contact with each other.
  • the rotation-side sealing ring 4 and the stationary-side sealing ring 7 have a sliding surface S formed in the radial direction, and a fluid to be sealed, such as a liquid or mist, is formed on each sliding surface S. Is prevented from flowing out from the outer periphery of the sliding surface S to the leaking side on the inner peripheral side (hereinafter, liquid or mist-like fluid may be simply referred to as “liquid”).
  • Reference numeral 9 denotes an O-ring that seals between the cartridge 6 and the stationary-side sealing ring 7.
  • Reference numeral 10 denotes a dynamic pressure generating groove, and reference numeral 11 denotes a fine recess, which will be described in detail later.
  • the present invention is not limited to this, and the sleeve 3 and the rotation-side seal ring 4 may be integrally formed.
  • the material of the rotating side sealing ring 4 and the stationary side sealing ring 7 is selected from silicon carbide (SiC) having excellent wear resistance and carbon having excellent self-lubricating properties.
  • SiC silicon carbide
  • FIG. 2 is an enlarged view of the sliding portion of the sliding component according to the embodiment of the present invention.
  • the sliding surface S of the rotating side sealing ring 4 is separated from the sealed fluid side and the leakage side by the land portion R of the sliding surface of the rotating side sealing ring 4 and the stationary side sealing ring 7.
  • a dynamic pressure generating groove 10 is provided as shown. That is, in this example, the dynamic pressure generating groove 10 is provided only on the sliding surface S of the rotation-side sealing ring 4, and the land portion R is provided on the leakage side and the non-sealed fluid side in the radial direction of the dynamic pressure generating groove 10.
  • the land portion R of the sliding surface S of the stationary seal ring 7 is in sliding contact with the land portion R of the rotation side seal ring 4 so that the dynamic pressure generating groove 10 is connected to the sealed fluid side and the leak side. And isolated from non-communication. More specifically, the outer diameter of the sliding surface S of the fixed side sealing ring 7 on the sealed fluid side is larger in the radial direction than the end of the dynamic pressure generating groove 10 of the rotating side sealing ring 4 on the sealed fluid side, The leak-side inner diameter of the sliding surface S of the stationary seal ring 7 is set to be smaller in the radial direction than the end of the dynamic pressure generating groove 10 on the leakage side, and the land portion of the sliding surface S of the stationary seal ring 7 is fixed.
  • a plurality of independent concave portions 11 are provided on the sliding surface IS between the leak side end portion 10 a of the dynamic pressure generating groove 10 and the leak side.
  • the minute concave portion 11 is disposed at a position separated from the end portion 10a on the leakage side of the dynamic pressure generating groove 10 in the radial direction, and is not in communication with the dynamic pressure generating groove 10.
  • the fine recess 11 is constituted by a substantially circular dimple 111.
  • the dimples 111 are randomly arranged, and the size, for example, the diameter thereof may or may not be the same.
  • the “fine recess” is a recess formed in the flat sliding surface S, and the shape thereof is not particularly limited.
  • the planar shape of the depression includes various shapes such as a circle, an ellipse, an oval, or a polygon
  • the sectional shape of the depression includes various shapes such as a bowl or a rectangle.
  • a large number of minute recesses 11 formed on the sliding surface S are used for a liquid that intervenes as a hydrodynamic lubricating liquid film between the sliding surface S and the counterpart sliding surface that relatively slides. It also has the function of holding the part and stabilizing the lubricating liquid film.
  • Each fine recess 11 can be regarded as constituting a Rayleigh step as shown in FIG.
  • a Rayleigh step 11a extending in a direction orthogonal to the cross section of the drawing is formed on the sliding surface S (R) of the rotating side sealing ring 4, and the sliding surface S of the stationary side sealing ring 7 is flat. Is formed.
  • the rotation-side seal ring 4 moves relative to the direction indicated by the arrow, the fluid interposed between the two sliding surfaces tends to follow in the direction of the arrow due to its viscosity. Pressure). Due to the generation of the dynamic pressure, the distance between both sliding surfaces is slightly widened, and the fluid on the leakage side is easily sucked into the dynamic pressure generating groove 10.
  • the dynamic pressure generating groove 10 is for sucking in the fluid on the leak side and pumping it to the sealed fluid side, and has, for example, a spiral shape. That is, the dynamic pressure generating groove 10 is separated from the sealed fluid side and the leakage side in a non-communication manner because the land portion R exists on the leakage side and the non-sealing fluid side in the radial direction of the spiral dynamic pressure generation groove 10. Has been. And, by the relative sliding of the rotation-side sealing ring 4 and the stationary-side sealing ring 7, it is inclined in a spiral shape so as to exert a pumping action from the leakage-side end portion 10a toward the sealed fluid-side end portion 10b, A dynamic pressure (positive pressure) is generated at the end 10b.
  • the spiral-shaped dynamic pressure generating groove 10 sucks gas from the leakage side while being aided by the action of the dimple 111 in the high-speed rotation state of the rotation-side sealing ring 4 such as steady operation, and near the end portion 10b on the sealed fluid side Since a dynamic pressure (positive pressure) is generated, a slight gap is formed on the sliding surface S between the rotating side sealing ring 4 and the stationary side sealing ring 7, and the sliding surface S becomes in a state of gas lubrication and is very Low friction.
  • the substantially circular dimple 111 has a diameter equal to that of the leakage side end 10a of the dynamic pressure generation groove 10 on the sliding surface IS between the leakage side end 10a of the dynamic pressure generation groove 10 and the leakage side. Since they are disposed at positions separated from each other in the direction and each has an independent shape, the end portion 10a on the leakage side of the dynamic pressure generating groove 10 and the leakage side are not directly communicated with each other. For this reason, it is possible to suppress entry of dust mixed in the fluid on the leakage side into the dynamic pressure generating groove 10.
  • the sliding surface S (sliding surface S of the rotating side sealing ring 4) of at least one sliding component of the pair of sliding components is a fluid to be sealed by the land portion R of both sliding surfaces S.
  • a dynamic pressure generating groove 10 is provided so as to be separated from the liquid side and the leak side, and is separated from the dynamic pressure generation groove 10 of the sliding surface IS between the dynamic pressure generating groove 10 and the leak side in the radial direction.
  • a plurality of independent dimples 111 constituting the minute recesses 11 are provided, so that the sliding surface has a low friction of fluid lubrication during steady operation and a liquid that is a sealed fluid.
  • the dynamic pressure generating groove 10 is separated from the liquid side which is a sealed fluid by the land portion R, and the dimples 111 are arranged at positions separated from the dynamic pressure generating groove 10 in the radial direction. Therefore, no leakage occurs even when stationary.
  • the dynamic pressure generating groove 10 has a spiral shape that sucks the fluid on the leak side and pumps it to the liquid side that is the sealed fluid, so that the fluid on the leak side is the sealed fluid during steady operation. The liquid that is the sealed fluid is prevented from leaking to the leakage side.
  • the independent concave portion 11 is composed of the substantially circular dimple 111, the manufacturing can be facilitated.
  • the sliding component which concerns on Example 2 of this invention is demonstrated.
  • the configuration of the minute concave portion 11 having an independent shape provided at a position separated from the dynamic pressure generating groove on the sliding surface between the dynamic pressure generating groove and the leakage side in the radial direction is provided.
  • the other basic configuration is the same as that of the first embodiment, the same members are denoted by the same reference numerals, and a duplicate description is omitted.
  • a plurality of herringbone grooves 112 constituting a minute recess 11 having an independent shape are provided on the sliding surface IS between the leak-side end portion 10a of the dynamic pressure generating groove 10 and the leak side.
  • the herringbone groove 112 is disposed at a position separated from the end 10a on the leakage side of the dynamic pressure generating groove 10 in the radial direction.
  • the herringbone grooves 112 are substantially L-shaped with a planar shape bent at a right angle, and are arranged to open toward the upstream side of the sliding surface, and a plurality of herringbone grooves 112 are provided in the circumferential direction.
  • Each fine herringbone groove 112 constitutes a Rayleigh step as shown in FIG. 4, and when the rotation-side sealing ring 4 is relatively moved in the direction indicated by the arrow, the fluid interposed between the sliding surfaces becomes viscous.
  • dynamic pressure positive pressure
  • Due to the generation of the dynamic pressure the distance between both sliding surfaces is slightly widened, and the fluid on the leakage side is easily sucked into the dynamic pressure generating groove 10.
  • the sliding surface S (sliding surface S of the rotating side sealing ring 4) of at least one sliding component of the pair of sliding components is a fluid to be sealed by the land portion R of both sliding surfaces S.
  • a dynamic pressure generating groove 10 is provided so as to be separated from the liquid side and the leak side, and is separated from the dynamic pressure generation groove 10 of the sliding surface IS between the dynamic pressure generating groove 10 and the leak side in the radial direction.
  • a plurality of independently shaped herringbone grooves 112 that constitute the minute recesses 11 are provided, so that the sliding surface has a low friction of fluid lubrication during steady operation, and a sealed fluid is used.
  • a sliding component capable of preventing the leakage of a certain liquid and the entry of dust existing in the fluid on the leakage side into the sliding surface and improving both functions of the sealing and lubrication of the sliding surface. be able to.
  • the dynamic pressure generating groove 10 is separated from the liquid side which is the fluid to be sealed by the land portion R, and the herringbone groove 112 is arranged at a position separated from the dynamic pressure generating groove 10 in the radial direction. Since it is independent, no leakage occurs even when stationary.
  • the dynamic pressure generating groove 10 has a spiral shape that sucks the fluid on the leak side and pumps it to the liquid side that is the sealed fluid, so that the fluid on the leak side is the sealed fluid during steady operation. The liquid that is the sealed fluid is prevented from leaking to the leakage side.
  • the independent concave portion 11 is composed of the herringbone groove 112, a larger dynamic pressure effect can be obtained.
  • the sliding component which concerns on Example 3 of this invention is demonstrated.
  • the configuration of the minute concave portion 11 having an independent shape provided in a position separated from the dynamic pressure generating groove on the sliding surface between the dynamic pressure generating groove and the leakage side in the radial direction is provided.
  • the other basic configuration is the same as that of the first embodiment, the same members are denoted by the same reference numerals, and a duplicate description is omitted.
  • a plurality of groove portions 113 a that form independent concave portions are provided on the sliding surface IS between the leak-side end portion 10 a of the dynamic pressure generating groove 10 and the leak side.
  • the groove 113a is disposed at a position separated from the end 10a on the leakage side of the dynamic pressure generating groove 10 in the radial direction.
  • the groove portion 113 a has a constant width in the radial direction and has an arc shape extending in the circumferential direction, and forms the Rayleigh step mechanism 113 together with the radial deep groove 12.
  • the depth of the groove 113a is shallower than the depth of the radial deep groove 12.
  • Each fine groove portion 113a constitutes a Rayleigh step as shown in FIG. 4, and when the rotation-side sealing ring 4 moves relatively in the direction indicated by the arrow, the fluid is sucked from the leakage side through the radial deep groove 12, The sucked fluid tends to follow in the direction of the arrow due to its viscosity, and dynamic pressure (positive pressure) is generated due to the presence of the Rayleigh step 113b of the Rayleigh step mechanism 113. Due to the generation of the dynamic pressure, the distance between both sliding surfaces is slightly widened, and the fluid on the leakage side is easily sucked into the dynamic pressure generating groove 10.
  • the sliding surface S (sliding surface S of the rotating side sealing ring 4) of at least one sliding component of the pair of sliding components is a fluid to be sealed by the land portion R of both sliding surfaces S.
  • a dynamic pressure generating groove 10 is provided so as to be separated from the liquid side and the leak side, and is separated from the dynamic pressure generation groove 10 of the sliding surface IS between the dynamic pressure generating groove 10 and the leak side in the radial direction.
  • a plurality of independent-shaped groove portions 113a constituting the minute recesses 11 are provided, so that the sliding surface has low friction of fluid lubrication during steady operation and is a sealed fluid.
  • the dynamic pressure generating groove 10 is separated from the liquid side, which is the fluid to be sealed, by the land portion R, and the groove 113a is arranged at a position separated from the dynamic pressure generating groove 10 in the radial direction. Therefore, no leakage occurs even when stationary.
  • the dynamic pressure generating groove 10 has a spiral shape that sucks the fluid on the leak side and pumps it to the liquid side that is the sealed fluid, so that the fluid on the leak side is the sealed fluid during steady operation. The liquid that is the sealed fluid is prevented from leaking to the leakage side.
  • the independent concave portion is constituted by the substantially arc-shaped groove portion 113a that forms the Rayleigh step mechanism 113, the groove portion 113a can be efficiently arranged, and a greater dynamic pressure effect is obtained. be able to.
  • the sliding component according to the fourth embodiment is different from the sliding component according to the first embodiment in the shape of the dynamic pressure generating groove, but the other basic configuration is the same as that of the first embodiment. In addition, overlapping explanation is omitted.
  • the dynamic pressure generating groove 15 is the same as the dynamic pressure generating groove 10 of the first embodiment, and since the land portion R exists on the leakage side and the non-sealed fluid side in the radial direction of the dynamic pressure generating groove 15, Separated from the sealed fluid side and the leak side. And, by the relative sliding of the rotation side sealing ring 4 and the stationary side sealing ring 7, it is inclined in a spiral shape so as to exert a pumping action from the leakage side end 15a toward the sealed fluid side end 15b, A dynamic pressure (positive pressure) is generated at the end 15b.
  • the spiral-shaped dynamic pressure generating groove 15 sucks gas from the leakage side while being aided by the action of the dimple 111 in the high-speed rotation state of the rotation-side sealing ring 4 such as in steady operation. Since a dynamic pressure (positive pressure) is generated in the vicinity of the portion 15b, a slight gap is formed on the sliding surface S between the rotating side sealing ring 4 and the stationary side sealing ring 7, and the sliding surface S is in a state of gas lubrication. And very low friction.
  • a substantially circular dimple 111 having an independent shape is disposed apart from the end 15a and the leakage side.
  • the portion 15a is not in direct communication with the leakage side, and the entry of dust mixed in the fluid on the leakage side into the dynamic pressure generation groove 15 can be suppressed.
  • the fluid supply on the leakage side is also suppressed.
  • the dynamic pressure generating groove 15 shown in FIG. 7 is formed such that the end 15a on the leak side extends longer in the circumferential direction than the end 15b on the sealed fluid side, and the opening on the leak side is enlarged. The fluid supply effect to the dynamic pressure generating groove 15 is increased.
  • the end 15a on the leakage side of the dynamic pressure generating groove 15 is preferably formed to extend upstream in the sense of increasing the fluid supply effect. Further, the radial width of the end 15a on the leakage side may be approximately the same as the width of the end 15b on the sealed fluid side.
  • Example 4 in addition to the effect of an above-described Example, there exist the following effects.
  • the end 15a on the leakage side of the dynamic pressure generating groove 15 and the leakage side are not in communication and the entry of dust mixed in the fluid on the leakage side into the dynamic pressure generating groove 15 is suppressed,
  • the effect of fluid supply to the generation groove 15 can be increased.
  • the sliding component according to the fifth embodiment is different from the above-described embodiment in that a fluid introduction groove and a positive pressure generating mechanism are provided on the sealed fluid side of the sliding surface of at least one sliding component of the pair of sliding components.
  • the other basic configuration is the same as that of the above-described embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
  • the sliding surface S of the rotation-side sealing ring 4 communicates with the sealed fluid side of the sliding surface S, that is, the outer peripheral edge, and the leakage side, that is, the inner peripheral side.
  • a fluid introduction groove 16 configured not to communicate with the periphery is provided.
  • One or more fluid introduction grooves 16 are arranged along the outer peripheral side periphery, the planar shape is formed in a substantially rectangular shape, communicates with the sealed fluid side at the outer peripheral side periphery of the sliding surface S, and It is isolated from the peripheral side by a land portion R.
  • a positive pressure generating mechanism 17 that includes a positive pressure generating groove 17 a that communicates with the downstream side in the circumferential direction of the fluid introducing groove 16 and is shallower than the fluid introducing groove 16.
  • the positive pressure generating mechanism 17 increases the fluid film between the sliding surfaces by generating a positive pressure (dynamic pressure), thereby improving the lubrication performance.
  • the positive pressure generating groove 17a communicates with the fluid introduction groove 16 on the upstream side and is isolated from the outer peripheral side by the land portion R.
  • the positive pressure generating mechanism 17 includes a Rayleigh step mechanism including a positive pressure generating groove 17a and a Rayleigh step 17b communicating with the fluid introduction groove 16 on the upstream side, but is not limited thereto. In short, any mechanism that generates positive pressure may be used.
  • the planar shape formed by the fluid introduction groove 16 and the positive pressure generating mechanism 17 is substantially L-shaped.
  • the rotation-side sealing ring 4 When the rotation-side sealing ring 4 is rotated counterclockwise, the liquid on the outer peripheral side is introduced from the substantially rectangular fluid introduction groove 16 to the sliding surface, and the sliding surface S can be lubricated. At that time, since positive pressure (dynamic pressure) is generated by the positive pressure generating mechanism 17, the fluid film between the sliding surfaces is increased, and the lubricating performance can be further improved. Further, when the rotation-side seal ring 4 is rotated at a high speed such as steady operation, the liquid introduced from the fluid introduction groove 16 to the sliding surface is discharged by centrifugal force, so that the liquid leaks to the inner peripheral side which is the leakage side. There is nothing.
  • FIG. 8 (b) is different from FIG. 8 (a) in that the shape of the fluid introduction groove is different, but the other is the same as FIG. 8 (a).
  • the sliding surface S of the rotation-side sealing ring 4 communicates with the sealed fluid side of the sliding surface S, that is, the outer peripheral side, and the leakage side, that is, the inner peripheral side.
  • a fluid introduction groove 18 configured not to communicate with the peripheral edge is provided.
  • the fluid introduction groove 18 is disposed along the outer peripheral edge, and is connected to only the outer peripheral edge of the sliding surface S.
  • the fluid introduction part 18a and the fluid lead-out part 18b are provided at a constant distance in the circumferential direction and extend linearly in the radial direction, so that the planar shape of the fluid introduction groove 18 is substantially U-shaped. ing.
  • a positive pressure generating mechanism 17 having a positive pressure generating groove 17a shallower than the fluid introducing groove 18 is provided in a portion surrounded by the fluid introducing groove 18 and the outer peripheral side.
  • the positive pressure generating mechanism 17 increases the fluid film between the sliding surfaces by generating a positive pressure (dynamic pressure), thereby improving the lubrication performance.
  • the positive pressure generating groove 17a communicates with the fluid introducing portion 18a on the upstream side, and is separated from the fluid outlet portion 18b and the outer peripheral side by the land portion R.
  • the positive pressure generating mechanism 17 is configured by a Rayleigh step mechanism including a positive pressure generating groove 17a and a Rayleigh step 17b communicating with the fluid introducing portion 18a of the fluid introducing groove 18 on the upstream side. In short, any mechanism that generates positive pressure may be used.
  • the liquid on the outer peripheral side is introduced from the fluid introduction part 18a of the substantially U-shaped fluid introduction groove 18 to the sliding surface, and from the fluid outlet part 18b to the outer peripheral side.
  • the liquid existing on the outer peripheral side of the sliding surface S in the low-speed rotation state of the rotating side sealing ring 4 at the time of starting or the like is positively introduced into the sliding surface S, and the sliding surface S Can be lubricated.
  • positive pressure dynamic pressure
  • the fluid film between the sliding surfaces is increased, and the lubricating performance can be further improved.
  • the planar shape of the fluid introduction groove 18 is substantially U-shaped.
  • the shape is not limited to this, and the shape in which the fluid introduction portion 18a and the fluid outlet portion 18b intersect on the inner diameter side, that is, It may be formed in a substantially V-shape.
  • the sliding surface S of the rotation-side sealing ring 4 communicates with the sealed fluid side of the sliding surface S, that is, the outer peripheral edge, and does not communicate with the leakage side, that is, the inner peripheral edge.
  • the liquid existing on the outer peripheral side of the sliding surface S in the low-speed rotation state of the rotation-side sealing ring 4 at the time of startup or the like is positively applied to the sliding surface S.
  • the sliding surface S can be lubricated.
  • positive pressure dynamic pressure
  • the fluid film between the sliding surfaces is increased, and the lubricating performance can be further improved.
  • the liquid introduced into the sliding surface from the fluid introduction groove 16 or 18 is discharged by centrifugal force when the rotation-side seal ring 4 is rotated at a high speed such as steady operation, the liquid is discharged on the inner peripheral side which is the leakage side. There is no leakage.
  • the outer peripheral side of the sliding component has been described as the sealed fluid side (liquid side or mist-like fluid side), and the inner peripheral side is described as the leak side (gas side).
  • the present invention is also applicable to the case where the outer peripheral side is the leakage side (gas side) and the inner peripheral side is the sealed fluid side (liquid side or mist-like fluid side).
  • the sealed fluid side (liquid side or mist-like fluid side) has a high pressure.
  • the leakage side (gas side) may be low pressure or vice versa, and both pressures may be the same.
  • the dynamic pressure generating groove 10 is a spiral groove.
  • the present invention is not limited to this, and a combination of a Rayleigh step and a reverse Rayleigh step may be used. Any mechanism that sucks fluid and generates dynamic pressure (positive pressure) may be used.
  • the dimple 111, the herringbone groove 112, and the Rayleigh step 113b of the Rayleigh step mechanism 113 have been described for the fine concave portion 11.
  • the present invention is not limited to this example. It may be a groove.
  • the case where the shape of the dimple 111 is substantially circular has been described. *
  • the case where the dynamic pressure generating groove 15 in which the opening on the leakage side is expanded is described as being applied to the first embodiment. Needless to say, this can also be applied.
  • the fluid introduction groove and the positive pressure generating mechanism provided on the sealed fluid side of the sliding surface have been described as applied to the first embodiment.
  • the present invention is not limited thereto. Needless to say, the present invention can also be applied to the second, third, and fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Sealing (AREA)
  • Sliding-Contact Bearings (AREA)
  • Sealing Devices (AREA)

Abstract

定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体の漏れ及び摺動面へのダストの進入を防止する。 一対の摺動部品(4、7)の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部(R)により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝(10)が設けられ、動圧発生溝(10)と漏れ側との間の摺動面(IS)の動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部(11)が複数設けられていることを特徴としている。

Description

摺動部品
 本発明は、例えば、メカニカルシール、軸受、その他、摺動部に適した摺動部品に関する。特に、摺動面に流体を介在させて摩擦を低減させるとともに、摺動面から流体が漏洩するのを防止する必要のある密封環、例えば、ターボチャージャー用あるいは航空エンジン用のギアボックスに使用されるオイルシール、または軸受などの摺動部品に関する。
 摺動部品の一例である、メカニカルシールにおいて、その性能は、漏れ量、摩耗量、及びトルクによって評価される。従来技術ではメカニカルシールの摺動材質や摺動面粗さを最適化することにより性能を高め、低漏れ、高寿命、低トルクを実現している。しかし、近年の環境問題に対する意識の高まりから、メカニカルシールの更なる性能向上が求められており、従来技術の枠を超える技術開発が必要となっている。
 そのような中で、例えば、ターボチャージャーのような回転部品のオイルシール装置に利用されるものとして、ハウジングに回転可能に収納された回転軸と、回転軸とともに回転する円盤状の回転体と、ハウジングに固定され、回転体の端面に当接して外周側から内周側へオイルの漏れるのを防止する円盤状の固定体とを備え、固定体の当接面には流体の遠心力により正圧を発生する環状の溝が設けられ、オイルが外周側から内周側へ漏れるのを防止するようにしたものが知られている(例えば、特許文献1参照。)。
 また、例えば、有毒の流体をシールする回転軸の軸封装置において、回転軸とともに回転リングとケーシングに取付けられた静止リングとを備え、回転リング及び静止リングのいずれかの摺動面に回転リングの回転により低圧側の液体を高圧側に向かって巻き込むスパイラル溝が高圧側の端部が行止まり形状であるように設けられ、高圧側の被密封流体が低圧側へ漏れるのを防止するようにしたものが知られている(例えば、特許文献2参照。)。
 また、例えば、ターボチャージャーの駆動軸を圧縮機ハウジングに対してシールするのに適した面シール構造として、協働する1対のシールリングのうち、その一方は回転構成要素に設けられ、他方は静止構成要素に設けられ、これらのシールリングは、作動中に実質的に半径方向に形成されたシール面を有して、シール面同士の間に、シール面の外側区域をシール面の内側区域に対してシールするためのシールギャップが形成され、シール面の少なくとも一方に、ガスを送り込むのに有効な周方向に離間した複数の凹部が設けられ、該凹部はシール面の一方の周縁から他方の周縁に向かって延びているとともに、凹部の内端は前記シール面の他方の周縁から半径方向に離間して設けられ、非ガス成分を含むガス媒体中の非ガス成分がシールされるようにしたものが知られている(例えば、特許文献3参照。)。
実開昭62-117360号公報 特開昭62-31775号公報 特開2001-12610号公報
 しかしながら、上記の特許文献1ないし3に記載の従来技術においては、例えば図9に示すように、静止リング51の摺動面51aに回転リング52の回転により低圧流体側(以下、「漏れ側」ということがある。)の流体を被密封流体側(高圧流体側)に向かって巻き込むスパイラル溝53の漏れ側の端部53aが漏れ側に直接開口しているため、開口部近傍において、静止リング51の摺動面と回転リング52の摺動面との相対摺動によりダストが強制的に摺動面に引きずり込まれる場合がある。また、引きずり込まれたダストは両摺動面の相対摺動により粉砕され、微細化され、両摺動面の間にさらに進入しやすくなり、両摺動面の摩耗等の表面損傷を促進するという問題があった。
 本発明は、相対摺動する一対の摺動部品の摺動面において、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体の漏れ及び摺動面へのダストの進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することを目的とする。
 上記目的を達成するため本発明の摺動部品は、第1に、互いに相対摺動する一対の摺動部品を備え、一方の摺動部品は固定側密封環であり、他方の摺動部品は回転側密封環であり、これらの密封環は半径方向に形成された摺動面を有し、被密封流体が漏洩するのをシールするものであって、前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝が設けられ、前記動圧発生溝と前記漏れ側との間の摺動面の前記動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部が複数設けられていることを特徴としている。
 この特徴によれば、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、漏れ側の流体中に混在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝は被密封流体側とはランド部により隔離され、また、微細な凹部は動圧発生溝と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
 また、本発明の摺動部品は、第2に、互いに相対摺動する一対の摺動部品を備え、一方の摺動部品は固定側密封環であり、他方の摺動部品は回転側密封環であり、これらの密封環は半径方向に形成された摺動面を有し、被密封流体である液体又はミスト状の流体が漏洩するのをシールするものであって、前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝が設けられ、前記動圧発生溝と前記漏れ側との間の摺動面の前記動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部が複数設けられていることを特徴としている。
 この特徴によれば、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体である液体の漏れ及び漏れ側の流体中に存在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝は被密封流体である液体側とはランド部により隔離され、また、微細な凹部は動圧発生溝と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
 また、本発明の摺動部品は、第3に、第1又は第2の特徴において、前記動圧発生溝は、漏れ側の流体を吸い込み被密封流体側にポンピングするスパイラル形状をなしていることを特徴としている。
 この特徴によれば、定常運転時には漏れ側の流体が被密封流体側に向けてポンピングされ、被密封流体が漏れ側へ漏洩することが防止される。
 また、本発明の摺動部品は、第4に、第1ないし第3のいずれかの特徴において、前記独立形状の微細な凹部は、ディンプルから構成されることを特徴としている。
 この特徴によれば、製作を容易にすることができる。
 また、本発明の摺動部品は、第5に、第1ないし第3のいずれかの特徴において、前記独立形状の微細な凹部は、ヘリングボーン溝から構成されることを特徴としている。
 この特徴によれば、より大きな動圧効果を得ることができる。
 また、本発明の摺動部品は、第6に、第1ないし3のいずれかの特徴において、前記独立形状の微細な凹部は、レイリーステップ機構を形成するグルーブ部から構成されることを特徴としている。
 この特徴によれば、グルーブ部を効率的に配置することができ、より大きな動圧効果を得ることができる。
 また、本発明の摺動部品は、第7に、第1ないし6のいずれかの特徴において、前記動圧発生溝は、漏れ側の端部が被密封流体側の端部に比較して周方向に長く延びて形成され、漏れ側の開口部が拡大された形状に形成されることを特徴としている。
 この特徴によれば、動圧発生溝の漏れ側の端部aと漏れ側とが非連通であって、漏れ側の流体中に混在するダストの動圧発生溝への進入が抑制されたものにおいて、動圧発生溝への流体供給の効果を増大することができる。
 また、本発明の摺動部品は、第8に、第1ないし7のいずれかの特徴において、一対の摺動部品の少なくとも一方の摺動部品の摺動面には、被密封流体側に連通し、漏れ側には連通しないように構成された流体導入溝が設けられることにより、起動時などの回転側密封環の低速回転状態において摺動面の外周側に存在する液体が、積極的に摺動面に導入され、摺動面の潤滑を行うことができる。
 また、回転側密封環が定常運転等の高速回転時において流体導入溝から摺動面に導入された液体は遠心力により排出されるため、漏れ側である内周側に液体が漏洩することはない。
 本発明は、以下のような優れた効果を奏する。
(1)互いに相対摺動する一対の摺動部品を備え、一方の摺動部品は固定側密封環であり、他方の摺動部品は回転側密封環であり、これらの密封環は半径方向に形成された摺動面を有し、被密封流体が漏洩するのをシールするものであって、前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝が設けられ、前記動圧発生溝と前記漏れ側との間の摺動面の前記動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部が複数設けられていることにより、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、漏れ側の流体中に混在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝は被密封流体側とはランド部により隔離され、また、微細な凹部は動圧発生溝と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
(2)互いに相対摺動する一対の摺動部品を備え、一方の摺動部品は固定側密封環であり、他方の摺動部品は回転側密封環であり、これらの密封環は半径方向に形成された摺動面を有し、被密封流体である液体又はミスト状の流体が漏洩するのをシールするものであって、前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝が設けられ、前記動圧発生溝と前記漏れ側との間の摺動面の前記動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部が複数設けられていることにより、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体である液体の漏れ及び漏れ側の流体中に存在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝は被密封流体である液体側とはランド部により隔離され、また、微細な凹部は動圧発生溝と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
(3)動圧発生溝は、漏れ側の流体を吸い込み被密封流体側にポンピングするスパイラル形状をなしていることにより、定常運転時には漏れ側の流体が被密封流体側に向けてポンピングされ、被密封流体が漏れ側へ漏洩することが防止される。
(4)独立形状の微細な凹部は、ディンプルから構成されることにより、製作を容易にすることができる。
(5)独立形状の微細な凹部は、ヘリングボーン溝から構成されることにより、より大きな動圧効果を得ることができる。
(6)独立形状の微細な凹部は、レイリーステップ機構を形成するグルーブ部から構成されることにより、グルーブ部を効率的に配置することができ、より大きな動圧効果を得ることができる。
(7)動圧発生溝は、漏れ側の端部が被密封流体側の端部に比較して周方向に長く延びて形成され、漏れ側の開口部が拡大された形状に形成されることにより、動圧発生溝の漏れ側の端部aと漏れ側とが非連通であって、漏れ側の流体中に混在するダストの動圧発生溝への進入が抑制されたものにおいて、動圧発生溝への流体供給の効果を増大することができる。
(8)一対の摺動部品の少なくとも一方の摺動部品の摺動面には、被密封流体側に連通し、漏れ側には連通しないように構成された流体導入溝が設けられることにより、起動時などの回転側密封環の低速回転状態において摺動面の外周側に存在する液体が、積極的に摺動面に導入され、摺動面の潤滑を行うことができる。
 また、回転側密封環が定常運転等の高速回転時において流体導入溝から摺動面に導入された液体は遠心力により排出されるため、漏れ側である内周側に液体が漏洩することはない。
本発明の実施例1に係るメカニカルシールの一例を示す縦断面図である。 本発明の実施例1に係る摺動部品の摺動部分を拡大して示したものであって、紙面下方の水平方向に回転中心が存在する。 図1のA-A矢視図である 微細な凹部の有する機能を説明する説明図である。 本発明の実施例2に係る摺動部品の一方の摺動面を示すもので、実施例1の図3に対応する図である。 本発明の実施例3に係る摺動部品の一方の摺動面を示すもので、実施例1の図3に対応する図である。 本発明の実施例4に係る摺動部品の一方の摺動面を示すもので、実施例1の図3に対応する図である。 本発明の実施例5に係る摺動部品の一方の摺動面を示すもので、実施例1の図3に対応する図である。 従来技術を説明するための説明図であって、(a)は縦断面図、(b)はB-B矢視図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。 
 図1ないし図4を参照して、本発明の実施例1に係る摺動部品について説明する。
 なお、以下の実施例においては、摺動部品の一例であるメカニカルシールを例にして説明する。また、メカニカルシールを構成する摺動部品の外周側を被密封流体側(液体側あるいはミスト状の流体側)、内周側を漏れ側(気体側)として説明するが、本発明はこれに限定されることなく、外周側が漏れ側(気体側)、内周側が被密封流体側(液体側あるいはミスト状の流体側)である場合も適用可能である。また、被密封流体側(液体側あるいはミスト状の流体側)と漏れ側(気体側)との圧力の大小関係については、例えば、被密封流体側(液体側あるいはミスト状の流体側)が高圧、漏れ側(気体側)が低圧、あるいは、その逆のいずれでもよく、また、両方の圧力が同一であってもよい。
 図1は、メカニカルシールの一例を示す縦断面図であって、摺動面の外周から内周方向に向かって漏れようとする被密封流体、例えば、軸受部に使用された潤滑油を密封する形式のインサイド形式のものであり、ターボチャージャに備えられたコンプレッサのインペラー1を駆動させる回転軸2側にスリーブ3を介してこの回転軸2と一体的に回転可能な状態に設けられた一方の摺動部品である円環状の回転側密封環4と、ハウジング5にカートリッジ6を介して非回転状態で、かつ、軸方向移動可能な状態で設けられた他方の摺動部品である円環状の固定側密封環7とが設けられ、固定側密封環7を軸方向に付勢するコイルドウェーブスプリング8によって、ラッピング等によって鏡面仕上げされた摺動面S同士で密接摺動するようになっている。すなわち、このメカニカルシールは、回転側密封環4及び固定側密封環7は半径方向に形成された摺動面Sを有し、互いの摺動面Sにおいて、被密封流体、例えば、液体あるいはミスト状の流体(以下、液体あるいはミスト状の流体を、単に「液体」ということがある。)が摺動面Sの外周から内周側の漏れ側へ流出するのを防止するものである。
 なお、符号9はOリングを示しており、カートリッジ6と固定側密封環7との間をシールするものである。
 また、符号10は動圧発生溝、符号11は微細な凹部を示すものであり、これらについては後記において詳細に説明する。
 また、本例では、スリーブ3と回転側密封環4とは別体の場合について説明しているが、これに限らず、スリーブ3と回転側密封環4とを一体に形成してもよい。
 回転側密封環4及び固定側密封環7の材質は、耐摩耗性に優れた炭化ケイ素(SiC)及び自己潤滑性に優れたカーボンなどから選定されるが、例えば、両者がSiC、あるいは、いずれか一方がSiCであって他方がカーボンの組合せが可能である。
 図2は、本発明の実施例に係る摺動部品の摺動部分を拡大して示したものである。
 図2において、回転側密封環4の摺動面Sには、回転側密封環4及び固定側密封環7の摺動面のランド部Rにより被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝10が設けられている。すなわち、本例においては、動圧発生溝10は、回転側密封環4の摺動面Sにのみ設けられ、動圧発生溝10の径方向における漏れ側及び非密封流体側にはランド部Rが存在し、この回転側密封環4のランド部Rに対して固定側密封環7の摺動面Sのランド部Rが摺接することにより、動圧発生溝10を被密封流体側及び漏れ側と非連通に隔離している。詳述すると、固定側密封環7の摺動面Sの被密封流体側の外径は、回転側密封環4の動圧発生溝10の被密封流体側の端部より径方向に大きく、また、固定側密封環7の摺動面Sの漏れ側の内径は、動圧発生溝10の漏れ側の端部より径方向に小さく設定され、固定側密封環7の摺動面Sのランド部Rと回転側密封環4の動圧発生溝10の内径側及び外径側のランド部Rとが摺接することにより動圧発生溝10が被密封流体側及び漏れ側と非連通に隔離されているのである。
 図3にも示すように、動圧発生溝10の漏れ側の端部10aと漏れ側との間の摺動面ISには独立形状の微細な凹部11が複数設けられている。微細な凹部11は、動圧発生溝10の漏れ側の端部10aと径方向において離隔された位置に配設され、動圧発生溝10とは非連通である。
 図3においては、微細な凹部11は、ほぼ円形のディンプル111から構成されている。ディンプル111は、ランダムに配設されており、その大きさ、例えば、径は同一でもよく、同一でなくてもよい。
 本発明において、「微細な凹部」とは、平坦な摺動面Sに形成されるくぼみのことであり、その形状は特に限定されるものではない。例えば、くぼみの平面形状は円形、楕円形、長円形、もしくは多角形など種々の形が包含され、くぼみの断面形状もお椀状、または、方形など種々の形が包含される。
 そして、摺動面Sに形成された多数の微細な凹部11は、この摺動面Sと相対摺動する相手側摺動面との間に流体力学的な潤滑液膜として介入する液体の一部を保持して、潤滑液膜を安定化させる機能も有するものである。
 個々の微細な凹部11は、図4に示すようなレイリーステップを構成するものとみなすことができる。
  図4において、回転側密封環4の摺動面S(R)には図の断面と直交する方向に延びるレイリーステップ11aが形成されており、固定側密封環7の摺動面Sは平坦に形成されている。回転側密封環4が矢印で示す方向に相対移動すると、両摺動面間に介在する流体が、その粘性によって矢印方向に追随移動しようとし、その際、レイリーステップ11aの存在によって動圧(正圧)を発生する。この動圧の発生により両摺動面の間隔がわずかに広げられ、漏れ側の流体が動圧発生溝10に吸い込まれやすくなるものである。
 図3に示すように、動圧発生溝10は、漏れ側の流体を吸い込み被密封流体側にポンピングするためのものであり、例えば、スパイラル形状をなしている。
 すなわち、 動圧発生溝10は、スパイラル形状の動圧発生溝10の径方向における漏れ側及び非密封流体側にはランド部Rが存在するため、被密封流体側及び漏れ側と非連通に隔離されている。そして、回転側密封環4と固定側密封環7の相対摺動により、漏れ側の端部10aから被密封流体側の端部10bに向けてポンピング作用を発揮するようにスパイラル状に傾斜され、端部10bにおいて動圧(正圧)を発生するものである。
 スパイラル形状の動圧発生溝10は、定常運転等の回転側密封環4の高速回転状態において、ディンプル111の作用に助けられながら、漏れ側から気体を吸い込み、被密封流体側の端部10b付近で動圧(正圧)を発生するため、回転側密封環4と固定側密封環7との摺動面Sには僅かな間隙が形成され、摺動面Sは気体潤滑の状態となり非常に低摩擦となる。
 上記したように、ほぼ円形のディンプル111は、動圧発生溝10の漏れ側の端部10aと漏れ側との間の摺動面ISの動圧発生溝10の漏れ側の端部10aと径方向において離隔された位置に配設され、それぞれが独立した形状であるため、動圧発生溝10の漏れ側の端部10aと漏れ側との間が直接連通されることはない。このため、漏れ側の流体中に混在するダストの動圧発生溝10への進入を抑制することができる。
 以上説明した実施例1の構成によれば、以下のような効果を奏する。
(1)一対の摺動部品の少なくとも一方の摺動部品の摺動面S(回転側密封環4の摺動面S)には、両摺動面Sのランド部Rにより被密封流体である液体側及び漏れ側と非連通に隔離されるように動圧発生溝10が設けられ、動圧発生溝10と漏れ側との間の摺動面ISの動圧発生溝10と径方向において離隔された位置には、微細な凹部11を構成する、独立形状のディンプル111が複数設けられていることにより、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体である液体の漏れ及び漏れ側の流体中に存在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝10は被密封流体である液体側とはランド部Rにより隔離され、また、ディンプル111は動圧発生溝10と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
(2)動圧発生溝10は、漏れ側の流体を吸い込み被密封流体である液体側にポンピングするスパイラル形状をなしていることにより、定常運転時には漏れ側の流体が被密封流体である液体側に向けてポンピングされ、被密封流体である液体が漏れ側へ漏洩することが防止される。
(3)独立形状の微細な凹部11がほぼ円形のディンプル111から構成されるため、製作を容易にすることができる。
 図5を参照して、本発明の実施例2に係る摺動部品について説明する。
 実施例2に係る摺動部品は、動圧発生溝と漏れ側との間の摺動面の動圧発生溝と径方向において離隔された位置に設けられる独立形状の微細な凹部11の構成が実施例1の摺動部品と相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図5において、動圧発生溝10の漏れ側の端部10aと漏れ側との間の摺動面ISには独立形状の微細な凹部11を構成するヘリングボーン溝112が複数設けられている。ヘリングボーン溝112は、動圧発生溝10の漏れ側の端部10aと径方向において離隔された位置に配設される。
 ヘリングボーン溝112は、平面形状が直角に曲げられた略L字状をなしており、摺動面の上流側に向けて開くように配列され、周方向に複数設けられている。
 個々の微細なヘリングボーン溝112は、図4に示すようなレイリーステップを構成し、回転側密封環4が矢印で示す方向に相対移動すると、両摺動面間に介在する流体が、その粘性によって矢印方向に追随移動しようとし、その際、ヘリングボーン溝112のレイリーステップ112aの存在によって動圧(正圧)を発生する。この動圧の発生により両摺動面の間隔がわずかに広げられ、漏れ側の流体が動圧発生溝10に吸い込まれやすくなるものである。
 以上説明した実施例2の構成によれば、以下のような効果を奏する。
(1)一対の摺動部品の少なくとも一方の摺動部品の摺動面S(回転側密封環4の摺動面S)には、両摺動面Sのランド部Rにより被密封流体である液体側及び漏れ側と非連通に隔離されるように動圧発生溝10が設けられ、動圧発生溝10と漏れ側との間の摺動面ISの動圧発生溝10と径方向において離隔された位置には、微細な凹部11を構成する、独立形状のヘリングボーン溝112が複数設けられていることにより、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体である液体の漏れ及び漏れ側の流体中に存在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝10は被密封流体である液体側とはランド部Rにより隔離され、また、ヘリングボーン溝112は動圧発生溝10と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
(2)動圧発生溝10は、漏れ側の流体を吸い込み被密封流体である液体側にポンピングするスパイラル形状をなしていることにより、定常運転時には漏れ側の流体が被密封流体である液体側に向けてポンピングされ、被密封流体である液体が漏れ側へ漏洩することが防止される。
(3)独立形状の微細な凹部11がヘリングボーン溝112から構成されるため、より大きな動圧効果を得ることができる。
 図6を参照して、本発明の実施例3に係る摺動部品について説明する。
 実施例3に係る摺動部品は、動圧発生溝と漏れ側との間の摺動面の動圧発生溝と径方向において離隔された位置に設けられる独立形状の微細な凹部11の構成が実施例1の摺動部品と相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図6において、動圧発生溝10の漏れ側の端部10aと漏れ側との間の摺動面ISには独立形状の微細な凹部を構成するグルーブ部113aが複数設けられている。グルーブ部113aは、動圧発生溝10の漏れ側の端部10aと径方向において離隔された位置に配設される。また、グルーブ部113aは、半径方向に一定の幅を有し、周方向に延びた円弧状をなしており、半径方向深溝12とともにレイリーステップ機構113を形成する。グルーブ部113aの深さは半径方向深溝12の深さに比べて浅い。
 個々の微細なグルーブ部113aは、図4に示すようなレイリーステップを構成し、回転側密封環4が矢印で示す方向に相対移動すると、半径方向深溝12を介して漏れ側から流体を吸い込み、吸い込まれた流体が、その粘性によって矢印方向に追随移動しようとし、その際、レイリーステップ機構113のレイリーステップ113bの存在によって動圧(正圧)を発生する。この動圧の発生により両摺動面の間隔がわずかに広げられ、漏れ側の流体が動圧発生溝10に吸い込まれやすくなるものである。
 以上説明した実施例3の構成によれば、以下のような効果を奏する。
(1)一対の摺動部品の少なくとも一方の摺動部品の摺動面S(回転側密封環4の摺動面S)には、両摺動面Sのランド部Rにより被密封流体である液体側及び漏れ側と非連通に隔離されるように動圧発生溝10が設けられ、動圧発生溝10と漏れ側との間の摺動面ISの動圧発生溝10と径方向において離隔された位置には、微細な凹部11を構成する、独立形状のグルーブ部113aが複数設けられていることにより、定常運転時には摺動面を流体潤滑の低摩擦とすると共に、被密封流体である液体の漏れ及び漏れ側の流体中に存在するダストの摺動面への進入を防止し、摺動面の密封と潤滑との相反する両機能を向上させることのできる摺動部品を提供することができる。また、動圧発生溝10は被密封流体である液体側とはランド部Rにより隔離され、また、グルーブ部113aは動圧発生溝10と径方向において離隔された位置に配列され、それぞれが独立しているため、静止時においても漏れが発生することがない。
(2)動圧発生溝10は、漏れ側の流体を吸い込み被密封流体である液体側にポンピングするスパイラル形状をなしていることにより、定常運転時には漏れ側の流体が被密封流体である液体側に向けてポンピングされ、被密封流体である液体が漏れ側へ漏洩することが防止される。
(3)独立形状の微細な凹部がレイリーステップ機構113を形成する略円弧状のグルーブ部113aから構成されるため、グルーブ部113aを効率的に配置することができ、より大きな動圧効果を得ることができる。
 図7を参照して、本発明の実施例4に係る摺動部品について説明する。
 実施例4に係る摺動部品は、動圧発生溝の形状が実施例1の摺動部品と相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図7において、動圧発生溝15は、実施例1の動圧発生溝10と同じく、動圧発生溝15の径方向における漏れ側及び非密封流体側にはランド部Rが存在するため、被密封流体側及び漏れ側と非連通に隔離されている。そして、回転側密封環4と固定側密封環7の相対摺動により、漏れ側の端部15aから被密封流体側の端部15bに向けてポンピング作用を発揮するようにスパイラル状に傾斜され、端部15bにおいて動圧(正圧)を発生するものである。その際、スパイラル形状の動圧発生溝15は、定常運転等の回転側密封環4の高速回転状態において、ディンプル111の作用に助けられながら、漏れ側から気体を吸い込み、被密封流体側の端部15b付近で動圧(正圧)を発生するため、回転側密封環4と固定側密封環7との摺動面Sには僅かな間隙が形成され、摺動面Sは気体潤滑の状態となり非常に低摩擦となる。
 動圧発生溝15の漏れ側の端部15aと漏れ側との間には、独立した形状のほぼ円形のディンプル111が端部15aと漏れ側と離間しては配設されているため、端部15aと漏れ側と直接連通されることはなく、漏れ側の流体中に混在するダストの動圧発生溝15への進入を抑制することができるものであるが、同時に、動圧発生溝15への漏れ側の流体供給も抑制されたものとなっている。
 このため、図7に示す動圧発生溝15は、漏れ側の端部15aが被密封流体側の端部15bに比較して周方向に長く延びて形成され、漏れ側の開口部が拡大された形状に形成され、動圧発生溝15へ流体供給効果が増大されている。
 動圧発生溝15の漏れ側の端部15aは、流体供給効果を増大する意味では上流側に延びて形成される方が好ましい。また、漏れ側の端部15aの径方向の幅は被密封流体側の端部15bの幅と同程度でよい。
 以上説明した実施例4の構成によれば、前記した実施例の効果に加えて以下のような効果を奏する。
 動圧発生溝15の漏れ側の端部15aと漏れ側とが非連通であって、漏れ側の流体中に混在するダストの動圧発生溝15への進入が抑制されたものにおいて、動圧発生溝15への流体供給の効果を増大することができる。
 次に、図8を参照して、本発明の実施例5に係る摺動部品について説明する。
 実施例5に係る摺動部品は、一対の摺動部品の少なくとも一方の摺動部品の摺動面の被密封流体側に流体導入溝及び正圧発生機構が設けられる点で前記実施例と相違するが、その他の基本構成は前記実施例と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図8(a)において、回転側密封環4の摺動面Sには、該摺動面Sの被密封流体側、すなわち、外周側の周縁に連通し、漏れ側、すなわち、内周側の周縁には連通しないように構成された流体導入溝16が設けられている。
 流体導入溝16は、外周側の周縁に沿うように1個以上配設され、平面形状は略矩形状に形成され、摺動面Sの外周側の周縁において被密封流体側と連通し、内周側とはランド部Rにより隔離されている。
 また、流体導入溝16の円周方向の下流側に連通して流体導入溝16より浅い正圧発生溝17aを備える正圧発生機構17が設けられている。正圧発生機構17は、正圧(動圧)を発生することにより摺動面間の流体膜を増加させ、潤滑性能を向上させるものである。
 正圧発生溝17aは、上流側が流体導入溝16に連通し、外周側とはランド部Rにより隔離されている。
 本例では、正圧発生機構17は、上流側において流体導入溝16に連通する正圧発生溝17a及びレイリーステップ17bを備えたレイリーステップ機構から構成されるが、これに限定されることなく、要は、正圧を発生する機構であればよい。
 図8(a)において、流体導入溝16及び正圧発生機構17のなす平面形状は略L字状をなしている。
 今、回転側密封環4が反時計方向に回転するとした場合、外周側の液体は略矩形状の流体導入溝16から摺動面に導入され、摺動面Sの潤滑を行うことができる。その際、正圧発生機構17により正圧(動圧)が発生されるため、摺動面間の流体膜が増大され、潤滑性能をさらに向上させることができる。
 また、回転側密封環4が定常運転等の高速回転時において流体導入溝16から摺動面に導入された液体は遠心力により排出されるため、漏れ側である内周側に液体が漏洩することはない。
 図8(b)は、流体導入溝の形状が異なる点で図8(a)と相違するが、その他は図8(a)と同じである。
 図8(b)において、回転側密封環4の摺動面Sには、該摺動面Sの被密封流体側、すなわち、外周側の周縁に連通し、漏れ側、すなわち、内周側の周縁には連通しないように構成された流体導入溝18が設けられている。
 流体導入溝18は、外周側の周縁に沿うように配設され、摺動面Sの外周側の周縁にのみ連通する流体導入部18a及び流体導出部18b、並びにこれらを周方向に連通する流体連通部18cから構成され、内周側とはランド部Rにより隔離されている。
 本例では、流体導入部18a及び流体導出部18bは周方向において一定距離隔てて設けられ、それぞれ、径方向に直線状に延びているため、流体導入溝18の平面形状は略U字形をなしている。
 また、流体導入溝18と外周側とで囲まれる部分に流体導入溝18より浅い正圧発生溝17aを備える正圧発生機構17が設けられている。正圧発生機構17は、正圧(動圧)を発生することにより摺動面間の流体膜を増加させ、潤滑性能を向上させるものである。
 正圧発生溝17aは、上流側が流体導入部18aに連通し、流体導出部18b及び外周側とはランド部Rにより隔離されている。
 本例では、正圧発生機構17は、上流側において流体導入溝18の流体導入部18aに連通する正圧発生溝17a及びレイリーステップ17bを備えたレイリーステップ機構から構成されるが、これに限定されることなく、要は、正圧を発生する機構であればよい。
 今、回転側密封環4が時計方向に回転するとした場合、外周側の液体は略U字形の流体導入溝18の流体導入部18aから摺動面に導入され、流体導出部18bから外周側に排出されるが、その際、起動時などの回転側密封環4の低速回転状態において摺動面Sの外周側に存在する液体が、積極的に摺動面Sに導入され、摺動面Sの潤滑を行うことができる。その際、正圧発生機構17により正圧(動圧)が発生されるため、摺動面間の流体膜が増大され、潤滑性能をさらに向上させることができる。
 また、回転側密封環4が定常運転等の高速回転時において流体導入溝18から摺動面に導入された液体は遠心力により排出されるため、漏れ側である内周側に液体が漏洩することはない。
  図8(b)では、流体導入溝18の平面形状は略U字形に形成されているが、これに限らず、流体導入部18aと流体導出部18bとが内径側において交叉する形状、すなわち、略V字でに形成されてもよい。
 以上説明した実施例5の構成によれば、実施例1の効果に加えて以下のような効果を奏する。
  回転側密封環4の摺動面Sには、該摺動面Sの被密封流体側、すなわち、外周側の周縁に連通し、漏れ側、すなわち、内周側の周縁には連通しないように構成された流体導入溝16または18が設けられることにより、起動時などの回転側密封環4の低速回転状態において摺動面Sの外周側に存在する液体が、積極的に摺動面Sに導入され、摺動面Sの潤滑を行うことができる。その際、正圧発生機構17により正圧(動圧)が発生されるため、摺動面間の流体膜が増大され、潤滑性能をさらに向上させることができる。
 また、回転側密封環4が定常運転等の高速回転時において流体導入溝16または18から摺動面に導入された液体は遠心力により排出されるため、漏れ側である内周側に液体が漏洩することはない。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、摺動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状摺動面の軸方向一方側に潤滑油を密封しながら回転軸と摺動する軸受の摺動部品として利用することも可能である。
 また、例えば、前記実施例では、摺動部品の外周側を被密封流体側(液体側あるいはミスト状の流体側)、内周側を漏れ側(気体側)として説明したが、本発明はこれに限定されることなく、外周側が漏れ側(気体側)、内周側が被密封流体側(液体側あるいはミスト状の流体側)である場合も適用可能である。また、被密封流体側(液体側あるいはミスト状の流体側)と漏れ側(気体側)との圧力の大小関係については、例えば、被密封流体側(液体側あるいはミスト状の流体側)が高圧、漏れ側(気体側)が低圧、あるいは、その逆のいずれでもよく、また、両方の圧力が同一であってもよい。
 また、例えば、前記実施例では、動圧発生溝10がスパイラルグルーブである場合について説明したが、これに限定されることなく、レイリーステップと逆レイリーステップの組み合わせでもよく、要は、漏れ側の流体を吸い込んで動圧(正圧)を発生する機構であればよい。
 また、例えば、前記実施例では、微細な凹部11について、ディンプル111、ヘリングボーン溝112及びレイリーステップ機構113のレイリーステップ113bを説明したが、これに限定されることなく、例えば、平行溝、直交溝でもよい。また、前記実施例では、ディンプル111の形状についてほぼ円形である場合について説明したが、これに限らず、例えば、楕円形、長円形あるいは矩形状でもよい。 
 また、例えば、前記実施例4では、漏れ側の開口部が拡大された動圧発生溝15について実施例1に適用する場合について説明したが、これに限定されることなく、実施例2及び3にも適用できることはいうまでもない。
 また、例えば、前記実施例5では、摺動面の被密封流体側に設けられる流体導入溝及び正圧発生機構について実施例1に適用する場合について説明したが、これに限定されることなく、実施例2、3及び4にも適用できることはいうまでもない。
  1            インペラー
  2            回転軸
  3            スリーブ
  4            回転側密封環
  5            ハウジング
  6            カートリッジ
  7            回転側密封環
  8            コイルドウェーブスプリング
 10            動圧発生溝
 10a           漏れ側の端部 
 10b           被密封流体側の端部
 11            微細な凹部
 111           ディンプル
 112           ヘリングボーン溝(微細な凹部)
 112a          レイリーステップ
 113           レイリーステップ機構
 113a          グルーブ部
 113b          レイリーステップ
 12            半径方向深溝
 15            動圧発生溝
 16            流体導入溝
 17            正圧発生機構
 18            流体導入溝
 S             摺動面
 IS            動圧発生溝の漏れ側の端部と漏れ側との間の摺動面
 R             ランド部
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (8)

  1.  互いに相対摺動する一対の摺動部品を備え、一方の摺動部品は固定側密封環であり、他方の摺動部品は回転側密封環であり、これらの密封環は半径方向に形成された摺動面を有し、被密封流体が漏洩するのをシールするものであって、前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝が設けられ、前記動圧発生溝と前記漏れ側との間の摺動面の前記動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部が複数設けられていることを特徴とする摺動部品。
  2.  互いに相対摺動する一対の摺動部品を備え、一方の摺動部品は固定側密封環であり、他方の摺動部品は回転側密封環であり、これらの密封環は半径方向に形成された摺動面を有し、被密封流体である液体又はミスト状の流体が漏洩するのをシールするものであって、前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、両摺動面のランド部により被密封流体側及び漏れ側と非連通に隔離されるように動圧発生溝が設けられ、前記動圧発生溝と前記漏れ側との間の摺動面の前記動圧発生溝と径方向において離隔された位置には独立形状の微細な凹部が複数設けられていることを特徴とする摺動部品。
  3.  前記動圧発生溝は、漏れ側の流体を吸い込み被密封流体側にポンピングするスパイラル形状をなしていることを特徴とする請求項1又は請求項2に記載の摺動部品。 
  4.  前記独立形状の微細な凹部は、ディンプルから構成されることを特徴とする請求項1ないし請求項3のいずれか1項に記載の摺動部品。
  5.  前記独立形状の微細な凹部は、ヘリングボーン溝から構成されることを特徴とする請求項1ないし請求項3のいずれか1項に記載の摺動部品。
  6.  前記独立形状の微細な凹部は、レイリーステップ機構を形成するグルーブ部から構成されることを特徴とする請求項1ないし請求項3のいずれか1項に記載の摺動部品。
  7.  前記動圧発生溝は、漏れ側の端部が被密封流体側の端部に比較して周方向に長く延びて形成され、漏れ側の開口部が拡大された形状に形成されることを特徴とする請求項1ないし請求項6のいずれか1項に記載の摺動部品。
  8.  前記一対の摺動部品の少なくとも一方の摺動部品の摺動面には、被密封流体側に連通し、漏れ側には連通しないように構成された流体導入溝が設けられることを特徴とする請求項1ないし請求項7のいずれか1項に記載の摺動部品。 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2016/064251 2015-06-15 2016-05-13 摺動部品 WO2016203878A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16811353.8A EP3309431B1 (en) 2015-06-15 2016-05-13 Slide component
US15/736,201 US10473220B2 (en) 2015-06-15 2016-05-13 Slide component
KR1020177036074A KR102049287B1 (ko) 2015-06-15 2016-05-13 슬라이딩 부품
BR112017026914-7A BR112017026914A2 (ja) 2015-06-15 2016-05-13 Sliding component
JP2017524731A JP6776232B2 (ja) 2015-06-15 2016-05-13 摺動部品
CN201680034239.8A CN107735604B (zh) 2015-06-15 2016-05-13 滑动部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-119942 2015-06-15
JP2015119942 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016203878A1 true WO2016203878A1 (ja) 2016-12-22

Family

ID=57545592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064251 WO2016203878A1 (ja) 2015-06-15 2016-05-13 摺動部品

Country Status (7)

Country Link
US (1) US10473220B2 (ja)
EP (1) EP3309431B1 (ja)
JP (1) JP6776232B2 (ja)
KR (1) KR102049287B1 (ja)
CN (1) CN107735604B (ja)
BR (1) BR112017026914A2 (ja)
WO (1) WO2016203878A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163133A4 (en) * 2014-06-26 2018-04-11 Eagle Industry Co., Ltd. Sliding component
WO2018139231A1 (ja) * 2017-01-30 2018-08-02 イーグル工業株式会社 摺動部品
WO2018139232A1 (ja) * 2017-01-30 2018-08-02 イーグル工業株式会社 摺動部品
WO2018212144A1 (ja) * 2017-05-19 2018-11-22 イーグル工業株式会社 しゅう動部品
WO2019013233A1 (ja) * 2017-07-13 2019-01-17 イーグル工業株式会社 摺動部材
KR20190132528A (ko) * 2017-05-19 2019-11-27 이구루코교 가부시기가이샤 슬라이딩 부품
KR20200008160A (ko) * 2017-07-07 2020-01-23 이구루코교 가부시기가이샤 슬라이딩 부재
WO2020162348A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
WO2020162352A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
WO2020166589A1 (ja) * 2019-02-14 2020-08-20 イーグル工業株式会社 摺動部品
US11035411B2 (en) * 2017-07-14 2021-06-15 Eagle Industry Co., Ltd. Sliding parts
CN113260797A (zh) * 2019-02-04 2021-08-13 伊格尔工业股份有限公司 滑动部件
CN113508238A (zh) * 2019-03-22 2021-10-15 伊格尔工业股份有限公司 滑动部件
US11221071B2 (en) 2017-09-05 2022-01-11 Eagle Industry Co., Ltd. Sliding component
US11320052B2 (en) 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US12013040B2 (en) 2019-02-21 2024-06-18 Eagle Industry Co., Ltd. Sliding components
US12049962B2 (en) 2019-02-04 2024-07-30 Eagle Industry Co., Ltd. Sliding component
US12104598B2 (en) 2020-07-06 2024-10-01 Eagle Industry Co., Ltd. Eccentric sliding assembly with a plurality of dynamic pressure generation mechanisms
US12135030B2 (en) 2020-07-06 2024-11-05 Eagle Industry Co., Ltd. Sliding component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051867A1 (ja) 2016-09-14 2018-03-22 イーグル工業株式会社 メカニカルシール
US11125334B2 (en) * 2016-12-21 2021-09-21 Eaton Intelligent Power Limited Hydrodynamic sealing component and assembly
TWI640704B (zh) * 2017-06-06 2018-11-11 祥景精機股份有限公司 具有反曲點溝槽之非接觸式氣體軸封
US11221074B2 (en) * 2017-09-20 2022-01-11 Eagle Industry Co., Ltd. Mechanical seal
EP3757432B1 (en) 2018-02-21 2023-10-18 Eagle Industry Co., Ltd. Mechanical seal
CN109058156A (zh) * 2018-08-17 2018-12-21 浙江工业大学 一种似梳子动静压组合型机械密封端面结构
CN109185461A (zh) * 2018-10-26 2019-01-11 清华大学 旋转机械设备的密封端面结构
DE102020007800A1 (de) 2020-12-15 2022-06-15 Kaco Gmbh + Co. Kg Dichtring einer Gleitringdichtung sowie Gleitringdichtung mit einem Dichtring
DE102021003139A1 (de) * 2021-06-18 2022-12-22 Kaco Gmbh + Co. Kg Dichtring einer Gleitringdichtung sowie Gleitringdichtung mit einem solchen Dichtring
CN113530973B (zh) * 2021-06-28 2022-01-04 中国地质大学(北京) 耐高温止推轴承及轴向动密封和润滑结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152452A (en) * 1997-10-17 2000-11-28 Wang; Yuming Face seal with spiral grooves
WO2014050920A1 (ja) * 2012-09-29 2014-04-03 イーグル工業株式会社 摺動部品
WO2014103631A1 (ja) * 2012-12-25 2014-07-03 イーグル工業株式会社 摺動部品
WO2014174725A1 (ja) * 2013-04-24 2014-10-30 イーグル工業株式会社 摺動部品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231269A (ja) * 1983-06-14 1984-12-25 Arai Pump Mfg Co Ltd メカニカルシ−ル
JPS6231775A (ja) 1985-07-31 1987-02-10 Ebara Res Co Ltd 軸封装置
JPS62117360U (ja) 1986-01-17 1987-07-25
JPH0771618A (ja) * 1993-08-30 1995-03-17 Mitsubishi Heavy Ind Ltd メカニカルシール
JPH08303606A (ja) * 1995-04-28 1996-11-22 Mitsubishi Heavy Ind Ltd 軸封装置
JPH10281299A (ja) * 1997-04-11 1998-10-23 Mitsubishi Heavy Ind Ltd メカニカルシール装置
CN1069750C (zh) * 1997-10-17 2001-08-15 王玉明 螺旋槽端面密封
DE29908918U1 (de) 1999-05-20 1999-07-29 Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen Gleitringdichtungsanordnung
JP4205910B2 (ja) * 2002-04-02 2009-01-07 イーグル工業株式会社 摺動部品
US7438476B2 (en) * 2002-10-21 2008-10-21 Seiko Instruments Inc. Hydraulic dynamic bearing and spindle motor
JP4316956B2 (ja) * 2002-10-23 2009-08-19 イーグル工業株式会社 摺動部品
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
JP2010133496A (ja) * 2008-12-04 2010-06-17 Eagle Ind Co Ltd 摺動部品
US8814433B2 (en) * 2010-10-06 2014-08-26 Eagle Industry Co., Ltd. Sliding component
CN104285088B (zh) * 2012-08-04 2016-09-21 伊格尔工业股份有限公司 滑动部件
WO2015125950A1 (ja) * 2014-02-24 2015-08-27 イーグル工業株式会社 摺動部品および摺動部品の加工方法
US9765892B2 (en) * 2014-06-26 2017-09-19 Eagle Industry Co., Ltd. Sliding component
AU2015281105B2 (en) * 2014-06-26 2017-08-31 Eagle Industry Co., Ltd. Sliding component
CN106574725B (zh) * 2014-09-04 2019-04-16 伊格尔工业股份有限公司 机械密封件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152452A (en) * 1997-10-17 2000-11-28 Wang; Yuming Face seal with spiral grooves
WO2014050920A1 (ja) * 2012-09-29 2014-04-03 イーグル工業株式会社 摺動部品
WO2014103631A1 (ja) * 2012-12-25 2014-07-03 イーグル工業株式会社 摺動部品
WO2014174725A1 (ja) * 2013-04-24 2014-10-30 イーグル工業株式会社 摺動部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309431A4 *

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163133A4 (en) * 2014-06-26 2018-04-11 Eagle Industry Co., Ltd. Sliding component
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
CN110168264A (zh) * 2017-01-30 2019-08-23 伊格尔工业股份有限公司 滑动部件
CN110168264B (zh) * 2017-01-30 2021-06-15 伊格尔工业股份有限公司 滑动部件
JP7036748B2 (ja) 2017-01-30 2022-03-15 イーグル工業株式会社 摺動部品
JPWO2018139231A1 (ja) * 2017-01-30 2019-12-12 イーグル工業株式会社 摺動部品
CN110168240A (zh) * 2017-01-30 2019-08-23 伊格尔工业股份有限公司 滑动部件
KR20190108568A (ko) * 2017-01-30 2019-09-24 이구루코교 가부시기가이샤 슬라이딩 부품
KR20190108569A (ko) * 2017-01-30 2019-09-24 이구루코교 가부시기가이샤 슬라이딩 부품
WO2018139232A1 (ja) * 2017-01-30 2018-08-02 イーグル工業株式会社 摺動部品
EP3575621A4 (en) * 2017-01-30 2020-10-28 Eagle Industry Co., Ltd. SLIDING COMPONENT
JP2022097663A (ja) * 2017-01-30 2022-06-30 イーグル工業株式会社 摺動部品
JPWO2018139232A1 (ja) * 2017-01-30 2019-11-14 イーグル工業株式会社 摺動部品
JP7139067B2 (ja) 2017-01-30 2022-09-20 イーグル工業株式会社 摺動部品
EP3575621B1 (en) * 2017-01-30 2022-01-12 Eagle Industry Co., Ltd. Sliding component
WO2018139231A1 (ja) * 2017-01-30 2018-08-02 イーグル工業株式会社 摺動部品
US11125335B2 (en) 2017-01-30 2021-09-21 Eagle Industry Co., Ltd. Sliding component
KR102276081B1 (ko) * 2017-01-30 2021-07-13 이구루코교 가부시기가이샤 슬라이딩 부품
KR102276083B1 (ko) * 2017-01-30 2021-07-13 이구루코교 가부시기가이샤 슬라이딩 부품
JP7224745B2 (ja) 2017-01-30 2023-02-20 イーグル工業株式会社 摺動部品
EP3575643A4 (en) * 2017-01-30 2020-10-21 Eagle Industry Co., Ltd. SLIDING COMPONENT
US11009072B2 (en) 2017-01-30 2021-05-18 Eagle Industry Co., Ltd Sliding component
KR102346395B1 (ko) 2017-05-19 2022-01-03 이구루코교 가부시기가이샤 슬라이딩 부품
KR20190133261A (ko) * 2017-05-19 2019-12-02 이구루코교 가부시기가이샤 슬라이딩 부품
CN110691931A (zh) * 2017-05-19 2020-01-14 伊格尔工业股份有限公司 滑动部件
JP7102086B2 (ja) 2017-05-19 2022-07-19 イーグル工業株式会社 しゅう動部品
US11053975B2 (en) 2017-05-19 2021-07-06 Eagle Industry Co., Ltd Sliding component
EP3627011A4 (en) * 2017-05-19 2021-01-20 Eagle Industry Co., Ltd. SLIDING COMPONENT
US11248707B2 (en) 2017-05-19 2022-02-15 Eagle Industry Co., Ltd Sliding component
CN110691931B (zh) * 2017-05-19 2022-02-01 伊格尔工业股份有限公司 滑动部件
KR20190132528A (ko) * 2017-05-19 2019-11-27 이구루코교 가부시기가이샤 슬라이딩 부품
KR102346413B1 (ko) 2017-05-19 2022-01-03 이구루코교 가부시기가이샤 슬라이딩 부품
WO2018212144A1 (ja) * 2017-05-19 2018-11-22 イーグル工業株式会社 しゅう動部品
JPWO2018212144A1 (ja) * 2017-05-19 2020-03-26 イーグル工業株式会社 しゅう動部品
KR102302877B1 (ko) * 2017-07-07 2021-09-17 이구루코교 가부시기가이샤 슬라이딩 부재
KR20200008160A (ko) * 2017-07-07 2020-01-23 이구루코교 가부시기가이샤 슬라이딩 부재
JPWO2019013233A1 (ja) * 2017-07-13 2020-07-09 イーグル工業株式会社 摺動部材
WO2019013233A1 (ja) * 2017-07-13 2019-01-17 イーグル工業株式会社 摺動部材
US11035411B2 (en) * 2017-07-14 2021-06-15 Eagle Industry Co., Ltd. Sliding parts
US11221071B2 (en) 2017-09-05 2022-01-11 Eagle Industry Co., Ltd. Sliding component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
US11619308B2 (en) 2018-02-01 2023-04-04 Eagle Industry Co., Ltd. Sliding components
US11320052B2 (en) 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
US11821462B2 (en) 2018-08-24 2023-11-21 Eagle Industry Co., Ltd. Sliding member
US11815184B2 (en) 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
WO2020162352A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
JPWO2020162348A1 (ja) * 2019-02-04 2021-12-09 イーグル工業株式会社 摺動部品
JPWO2020162352A1 (ja) * 2019-02-04 2021-12-09 イーグル工業株式会社 摺動部品
CN113260797B (zh) * 2019-02-04 2023-02-14 伊格尔工业股份有限公司 滑动部件
US12018757B2 (en) 2019-02-04 2024-06-25 Eagle Industry Co., Ltd. Sliding components
KR20230026544A (ko) * 2019-02-04 2023-02-24 이구루코교 가부시기가이샤 슬라이딩 부품
KR102647265B1 (ko) * 2019-02-04 2024-03-14 이구루코교 가부시기가이샤 슬라이딩 부품
KR102655679B1 (ko) * 2019-02-04 2024-04-09 이구루코교 가부시기가이샤 슬라이딩 부품
CN113330225A (zh) * 2019-02-04 2021-08-31 伊格尔工业股份有限公司 滑动部件
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
CN113260797A (zh) * 2019-02-04 2021-08-13 伊格尔工业股份有限公司 滑动部件
JP7313788B2 (ja) 2019-02-04 2023-07-25 イーグル工業株式会社 摺動部品
CN113330225B (zh) * 2019-02-04 2023-08-22 伊格尔工业股份有限公司 滑动部件
US12049962B2 (en) 2019-02-04 2024-07-30 Eagle Industry Co., Ltd. Sliding component
US11852241B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
WO2020162348A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
JP7538920B2 (ja) 2019-02-04 2024-08-22 イーグル工業株式会社 摺動部品
KR20210111855A (ko) * 2019-02-04 2021-09-13 이구루코교 가부시기가이샤 슬라이딩 부품
JP7307102B2 (ja) 2019-02-04 2023-07-11 イーグル工業株式会社 摺動部品
WO2020166589A1 (ja) * 2019-02-14 2020-08-20 イーグル工業株式会社 摺動部品
JP7366945B2 (ja) 2019-02-14 2023-10-23 イーグル工業株式会社 摺動部品
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
KR102682943B1 (ko) * 2019-02-14 2024-07-08 이구루코교 가부시기가이샤 슬라이딩 부품
KR20210121229A (ko) * 2019-02-14 2021-10-07 이구루코교 가부시기가이샤 슬라이딩 부품
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component
JPWO2020166589A1 (ja) * 2019-02-14 2021-12-09 イーグル工業株式会社 摺動部品
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
US12013040B2 (en) 2019-02-21 2024-06-18 Eagle Industry Co., Ltd. Sliding components
CN113508238A (zh) * 2019-03-22 2021-10-15 伊格尔工业股份有限公司 滑动部件
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US12104598B2 (en) 2020-07-06 2024-10-01 Eagle Industry Co., Ltd. Eccentric sliding assembly with a plurality of dynamic pressure generation mechanisms
US12135030B2 (en) 2020-07-06 2024-11-05 Eagle Industry Co., Ltd. Sliding component

Also Published As

Publication number Publication date
JPWO2016203878A1 (ja) 2018-03-29
EP3309431B1 (en) 2022-07-20
CN107735604A (zh) 2018-02-23
US20180172162A1 (en) 2018-06-21
BR112017026914A2 (ja) 2018-08-14
KR102049287B1 (ko) 2019-11-27
US10473220B2 (en) 2019-11-12
JP6776232B2 (ja) 2020-10-28
EP3309431A4 (en) 2019-02-27
KR20180039021A (ko) 2018-04-17
EP3309431A1 (en) 2018-04-18
CN107735604B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2016203878A1 (ja) 摺動部品
JP6678170B2 (ja) 摺動部品
JP6678169B2 (ja) 摺動部品
JP6444492B2 (ja) 摺動部品
JP7036748B2 (ja) 摺動部品
JP6595589B2 (ja) 摺動部品
US11143232B2 (en) Sliding component
WO2018139232A1 (ja) 摺動部品
JP6881882B2 (ja) メカニカルシール
KR102498751B1 (ko) 슬라이딩 부품
JPWO2019044671A1 (ja) 摺動部品
JPWO2018088350A1 (ja) しゅう動部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524731

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736201

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177036074

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811353

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026914

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026914

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171213