WO2016136022A1 - Forming method for disk-shaped component and forming device for disk-shaped component - Google Patents
Forming method for disk-shaped component and forming device for disk-shaped component Download PDFInfo
- Publication number
- WO2016136022A1 WO2016136022A1 PCT/JP2015/079956 JP2015079956W WO2016136022A1 WO 2016136022 A1 WO2016136022 A1 WO 2016136022A1 JP 2015079956 W JP2015079956 W JP 2015079956W WO 2016136022 A1 WO2016136022 A1 WO 2016136022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- disk
- molding
- forming
- roll
- retaining device
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H1/00—Making articles shaped as bodies of revolution
- B21H1/02—Making articles shaped as bodies of revolution discs; disc wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/14—Spinning
- B21D22/16—Spinning over shaping mandrels or formers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/06—Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
Definitions
- the present invention relates to a method and an apparatus for forming a disk-shaped part such as an impeller disk.
- This application claims priority based on Japanese Patent Application No. 2015-037212 for which it applied on February 26, 2015, and uses the description.
- an impeller (compressor impeller) 1 provided in various hydraulic machines and pneumatic machines such as a liquid pump and a generator includes a blade 2 and an impeller disk 3 disposed so as to sandwich the blade 2. And the impeller cover 4.
- the impeller disk and impeller cover are formed into a truncated cone shape (disk shape) using die forging or roll forging.
- the material taken out of the furnace is placed on the table of the molding apparatus, the material is pressurized with the molding roll, and the table is rotated to gradually spread the material in the radial direction. It will be molded into. Further, by moving the forming roll in the radial direction relative to the table, reheating and roll forging of the further lowered temperature material into the furnace are repeated to finish the material in a desired shape (for example, Patent Document 1). reference).
- die forging has the great advantages of high molding accuracy and high material yield, but on the other hand, there are many reheating and striking operations (number of heats), and molding takes time, and the shape of the molded product A mold corresponding to the shape is required every time.
- roll forging has relatively high forming accuracy and high material yield, and requires fewer heats than die forging and has a short forming time.
- a method for forming a disk-shaped component includes placing a heated material on a table, rotating the table to rotate the material, and loading the material with a forming roll.
- the disk-shaped component molding apparatus places a heated material on a table, rotates the table to rotate the material, and applies a load to the material with a molding roll.
- a disk-shaped component forming apparatus for forming the material into a disk shape by roll forging, and is provided with a heat retaining device for suppressing a temperature drop of the material during forming.
- the temperature reduction of the material being formed can be suppressed by heating or insulating the rotating material with a heat retaining device. As a result, it is possible to suppress / prevent the generation of molding load and the generation of shape defects exceeding the equipment capacity due to the temperature drop of the material.
- a burner is used as the heat retaining device, and a flame is emitted toward the rotating material to heat the material. You may shape
- an electric heater or an IH heater is used as the heat retaining device, and the rotating material is externally applied. You may shape
- an electric heater or an IH heater is used as a heat retaining device, and the temperature of the material during molding can be suppressed by heating the material. Even in this case, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity during molding or the occurrence of a defective shape of the molded product.
- the material that rotates using at least one of a heat insulating material and a radiation material as the heat retaining device may be formed by disposing at least one of the heat insulating material and the radiation material on the outside of the material.
- a circumferential direction of 20 ° to 180 around the rotation axis of the material may be arranged in a range of °, and the temperature range of 20 ° to 180 ° of the rotating material in the circumferential direction may be heated or insulated by the heat retention device to suppress the temperature drop of the material.
- the range of 20 ° to 180 ° in the circumferential direction of the rotating material is heated or thermally insulated by the heat retaining device, thereby preventing the loading load on the material by the forming roll from being hindered.
- the apparatus can sufficiently suppress the temperature drop of the material.
- the inner peripheral side and the outer peripheral side and the outer periphery of the upper surface of the rotating material are formed.
- the temperature may be suppressed by heating / insulating the side surface with the heat retaining device.
- the temperature of the material can be sufficiently reduced by heating or insulating the inner peripheral side of the upper surface of the material, the outer peripheral side of the upper surface of the material, and the side surface forming the outer periphery of the material with the heat retaining device. It becomes possible to deter.
- the rotating material when forming a disk-shaped part such as an impeller disk by roll forging, the rotating material is heated / insulated by a heat retaining device, and the material being molded The temperature drop can be suppressed. As a result, it is possible to suppress / prevent the generation of molding load and the generation of shape defects exceeding the equipment capacity due to the temperature drop of the material.
- the disk-shaped component molding method and the disk-shaped component molding apparatus of the present invention for example, it is the existing equipment for roll forging that has been difficult to be applied to molding of a large size exceeding 1350 mm in outer diameter.
- FIG. 1 It is a figure which shows the shaping
- FIG. 4 is a diagram ((a) a plan view and (b) a side view) showing an example of a range in which a material is heated (heat-retained) by a heat-retaining device in the disk-shaped component molding method according to an embodiment of the present invention. It is a figure which shows the measurement temperature of the raw material when not heating a raw material with the burner as a heat retention apparatus (heat retention), and not using a burner. It is a figure which shows a raw material (impeller disk). It is a figure which shows the setting conditions of the simulation at the time of using the shaping
- a disk-shaped component molding method and a disk-shaped component molding apparatus will be described below with reference to FIGS. In this embodiment, the description will be made assuming that the impeller disk is formed.
- the disk-shaped component forming method and the disk-shaped component forming apparatus of the present invention are not limited to the impeller disk, and are formed using roll forging. It can be applied to the production of all possible disc-shaped parts.
- the disk-shaped component molding apparatus (disk roll apparatus) A of this embodiment includes a molding table (table) 5, a clamp 6, and a molding processing unit 7. .
- the molding table 5 includes a table base 5a and a circular table plate 5b that is rotatably mounted on the table base 5a via a bearing.
- the table plate 5b is made of a metal that is harder and has higher heat resistance than the material S to be formed on the impeller disk (disk-shaped part) 3, and a ring-shaped gear is provided on the peripheral edge thereof.
- the gear of the forming table 5 is engaged with the output gear of the table driver 10 using an electric motor or the like as a drive source.
- the table plate 5b drives the table driver 10 and rotates in one direction around the central axis O1 extending in the vertical direction at a desired speed.
- the clamp 6 is disposed above the molding table 5 so as to face the upper surface of the molding table 5.
- the clamp 6 includes a clamp shaft 11, a holder 12, and a clamp shaft elevator 13.
- the clamp shaft 11 is provided coaxially with the central axis O1 of the molding table 5.
- the clamp shaft 11 passes through the holder 12, and is supported by the holder 12 so as to be rotatable around the axis O1 and slidable in the direction of the axis O1.
- the clamp shaft elevator 13 is driven by an electric motor, a hydraulic cylinder, or the like.
- the clamp shaft elevator 13 is connected to the upper portion of the clamp shaft 11.
- the clamp shaft 11 moves up and down by driving the clamp shaft elevator 13.
- the forming section 7 is for placing the material S placed on the forming table 5 and holding the clamp 6 under pressure to cause plastic deformation and forming it into a predetermined disk shape.
- the forming unit 7 includes a forming roll 15, a forming roll moving device 16, and a control unit 17.
- the forming roll 15 is made of a metal harder than the material S and is formed in a substantially ring shape.
- the forming roll 15 has a roll circumferential surface 15a as a material pressing surface, a roll end surface 15b, and a roll shoulder surface 15c on the outer peripheral surface side in contact with the material S.
- the roll circumferential surface 15a is a portion having a substantially constant outer diameter, and when the inclined surface 3a of the impeller disc 3 is formed, the expanding portion to the periphery of the material S and the outer peripheral portion 3b of the impeller disc 3 are pressurized. Press against the molding table 5.
- the roll circumferential surface 15a prevents a tensile stress from acting on the outer peripheral portion 3b along the circumferential direction when the outer peripheral portion is expanded when the material S is formed.
- the roll circumferential surface 15a has an appropriate width dimension F that can press the outer peripheral portion 3b that is being expanded in the radial direction against the molding table 5 to apply a compressive stress.
- the roll shoulder surface 15c is a curved surface that smoothly connects the roll end surface 15b and the roll circumferential surface 15a, which are positioned facing the center side of the forming table 5.
- the radius of curvature of the roll shoulder surface 15c is set to be smaller than the radius of curvature of the oblique surface 3a of the impeller disk 3.
- the forming roll 15 configured as described above is connected to one end of a rotating shaft 18 extending in the horizontal direction.
- the rotary shaft 18 is supported by a tip (lower end) portion of a movable roll support 19 extending in the vertical direction via a bearing 20 so as to be rotatable around an axis O2.
- the roll end surface 15 b of the forming roll 15 faces the center side of the forming table 5.
- the forming roll 15 is rotatable around an axis O2 extending in the horizontal direction integrally with the rotary shaft 18.
- the movable roll support 19 can be moved in the vertical and horizontal directions by the forming roll moving device 16.
- the forming roll moving device 16 includes a vertical guide and a horizontal guide for independently guiding the movement of the movable roll support 19 in the vertical direction and the horizontal direction, and a movable roll support along the guide using a servo motor or the like as a drive source.
- the vertical direction moving part and the horizontal direction moving part which move 19 are provided.
- Control unit 17 controls driving of forming roll moving device 16.
- the control unit 17 moves the molding roll 15 relative to the table 5 along the target shape of the impeller disk 3 while maintaining a state where the tangential speed is constant when the molding roll 15 is in contact with the material S.
- a drive source such as a servo motor is controlled so that the
- the forming unit 7, the table driver 10, and the clamp shaft elevator 13 are each controlled by the control device 25.
- An input device 26 such as a keyboard is connected to the control device 25.
- the rotation and stop of the molding table 5 are controlled according to the input information about the specifications such as the shape and size of the impeller disk 3 given by the input device 26, the elevation of the clamp shaft 11 is controlled, and the molding roll The movement of the forming roll 15 by the moving device 16 is controlled.
- the impeller disk 3 When the impeller disk 3 is formed into a target shape using the disk-shaped part forming apparatus A of the present embodiment having the above-described configuration, first, a material S1 cut out from a forging round bar to an appropriate size is prepared. Then, the material S1 is processed to produce a cylindrical material S (S2) having a predetermined shape.
- the material S made into a predetermined shape is heated to a predetermined temperature, and this high-temperature material S is placed on the central portion of the table plate 5 b of the molding table 5.
- the clamp shaft 11 is lowered by driving the clamp shaft elevator 13.
- the pressing end portion 11 a is pressed into the center portion of the material S from above, and the material S is sandwiched between the forming table 5 and the clamp 6.
- the molding table 5 is rotated by the drive of the table driver 10.
- the forming roll 15 is pressed against the material S from above through the movable roll support 19 by driving the forming roll moving device 16.
- the forming roll 15 that can freely rotate rotates in accordance with the rotation direction of the material S.
- the pressing to the material S by the forming roll 15 in the pressed state is performed from the center of the forming table 5 while gradually moving the forming roll 15 closer to the forming table 5 while keeping the tangential speed of the forming roll 15 constant. This is done by moving toward the outer periphery.
- the forming roller 15 is controlled to move two-dimensionally along the target shape of the impeller disk 3 by the control unit 17.
- the impeller disk 3 is formed by forming the envelope surface along the movement locus G of the forming roll 15, that is, the oblique surface 3 a on the material S, by the plastic deformation of the material S in the hot state by the forming roll 15. .
- the disk-shaped component molding apparatus A of the present embodiment includes a heat retaining device 30 for retaining the material so that the temperature of the material S does not drop below a predetermined temperature during molding.
- a burner (gas burner) 31 is used as the heat retaining device 30.
- the burner 31 as the heat retaining device 30 has an angular range ⁇ of 20 ° to 180 ° in the circumferential direction around the rotation axis O1 of the material S rotating with the forming table 5, preferably A flame is radiated and heated to an angle range ⁇ of 90 °.
- the burner 31 is disposed so that a flame is emitted to the upstream portion in the rotation direction with respect to the forming roll 15 and the heated material S is pressed by the forming roll 15 at an early stage. Yes.
- the upstream portion in the rotational direction with respect to the forming roll 15 of the rotating material S is divided into the inner peripheral side ((1), (4)) and the outer peripheral side of the upper surface. ((2), (5)), divided into side surfaces (outer peripheral surfaces) ((3), (6)) forming the outer periphery of the material S, and further divided into 90 ° angular range ⁇ in the circumferential direction into two at 45 ° Then, the 90 ° angle range ⁇ of the material S is divided into a total of 6 sections ((1) to (6)). Of the six sections ((1) to (6)) divided in this way, for example, each section (total of three places) on the inner peripheral side (1), outer peripheral side (5), and side surface (3) is heated. A burner 31 is provided.
- FIG. 5 shows a case where the forming apparatus A having a maximum loading load of about 600 tons is used, and the material S is formed while being heated (insulated) by the burner 31 as the heat retaining apparatus 30 as described above, and the heat retaining apparatus 30.
- molding without using is shown.
- 5A is the side surface of the central portion of the material S (the inclined surface 3a of the impeller disk 3)
- FIG. 5B is the outer peripheral side of the upper surface of the material S
- FIG. 5C is the outer surface of the material S.
- the peripheral part (d) shows the temperature measurement result of the side surface of the material S (see FIG. 6).
- FIG. 8 shows the molding analysis results of Case 1, Case 2, and Case 3 shown in Table 1.
- a 1500 mm impeller does not reach a maximum load of 600 tons. It was confirmed that the disk 3 can be formed.
- a test with an actual machine was performed under the same conditions, and it was confirmed that the molding analysis result was within a load accuracy of 7.5% with respect to the actual machine test.
- the large impeller disk 3 with an outer diameter of 1500 mm can be suitably manufactured by roll forging.
- the rotating material S is heated by the heat retaining device 30 when the disk-shaped component 3 such as an impeller disk is formed by roll forging ( It is possible to suppress a decrease in temperature of the material S during molding by keeping / insulating). As a result, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity due to the temperature drop of the material S and the occurrence of a shape defect.
- the burner 31 is used as the heat retaining device 30 and a flame is radiated toward the material S to suppress a temperature drop of the material S during molding.
- a flame is radiated toward the material S to suppress a temperature drop of the material S during molding.
- the apparatus 30 can sufficiently suppress the temperature drop of the material S.
- the temperature decrease of the material S is more sufficiently suppressed. It becomes possible to do.
- the burner 31 is used as the heat retaining device 30, but as shown in FIG. 9, an electric heater or an IH (Induction Heating) heater 32 is used as the heat retaining device 30, and the rotating material S is placed outside.
- the material S may be molded while being heated by the heater 32.
- at least one of the heat insulating material 33 and the radiating material 34 is used as the heat retaining device 30, and at least one of the heat insulating material 33 and the radiating material 34 is disposed outside the rotating material S.
- the material S may be molded.
- the heater 32, the heat insulating material 33, and the radiation material 34 can also suppress the temperature drop of the material S during molding as in the present embodiment. Therefore, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity during molding and the occurrence of a defective shape of the molded product. In other words, even in the existing roll forging equipment, which has a maximum loading load of about 600 tons and is difficult to be applied to a large size molding having an outer diameter exceeding 1350 mm, these heater 32, heat insulating material 33, and radiation material By adding 34 as the heat retaining device 30, it becomes possible to apply (correspond) to the production of a large-sized molded product exceeding 1350 mm.
- the heat retaining device 30 it is possible to perform molding by selectively (using) a plurality of burners 31, heaters 32, heat insulating materials 33, and radiation materials 34 as appropriate.
- the rotating material when forming a disk-shaped part such as an impeller disk by roll forging, the rotating material is heated / insulated by a heat retaining device, and the material being molded The temperature drop can be suppressed. As a result, it is possible to suppress / prevent the generation of molding load and the generation of shape defects exceeding the equipment capacity due to the temperature drop of the material. Therefore, according to the disk-shaped component molding method and the disk-shaped component molding apparatus of the present invention, for example, it is the existing equipment for roll forging that has been difficult to be applied to molding of a large size exceeding 1350 mm in outer diameter. However, it is possible to apply (correspond) to the production of a large-sized molded article simply by adding a heat retaining device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
Abstract
A forming method for a disk-shaped component in which heated material (S) is mounted on a table (5), the table (5) is rotated and a load is applied to the material (S) by a forming roll (15)while the material (S) is rotated so as to form the material (S) into a disk shape by roll forging, wherein decreases in the temperature of the material (S) during forming are suppressed using a temperature maintaining device (30).
Description
本発明は、例えばインペラディスクなどのディスク状部品を成形する方法及び装置に関する。
本願は、2015年2月26日に出願された特願2015-037212に基づいて優先権を主張し、その記載を援用する。 The present invention relates to a method and an apparatus for forming a disk-shaped part such as an impeller disk.
This application claims priority based on Japanese Patent Application No. 2015-037212 for which it applied on February 26, 2015, and uses the description.
本願は、2015年2月26日に出願された特願2015-037212に基づいて優先権を主張し、その記載を援用する。 The present invention relates to a method and an apparatus for forming a disk-shaped part such as an impeller disk.
This application claims priority based on Japanese Patent Application No. 2015-037212 for which it applied on February 26, 2015, and uses the description.
液体用ポンプや発電機等、各種の水力機械や空気機械が備えるインペラ(圧縮機インペラ)1は、図11に示すように、ブレード2と、ブレード2を挟み込むように配設されるインペラディスク3及びインペラカバー4とを備えて構成されている。
As shown in FIG. 11, an impeller (compressor impeller) 1 provided in various hydraulic machines and pneumatic machines such as a liquid pump and a generator includes a blade 2 and an impeller disk 3 disposed so as to sandwich the blade 2. And the impeller cover 4.
インペラディスクやインペラカバーは、金型鍛造やロール鍛造などを用い、円錐台状(ディスク状)に成形される。
The impeller disk and impeller cover are formed into a truncated cone shape (disk shape) using die forging or roll forging.
具体的に、金型鍛造を用いてインペラディスクなどを成形する場合には、例えば、所定形状の金型の中央穴に、炉から出した素材(荒地鍛造材)を挿入して叩き、低温化した素材を炉に入れて再加熱する。これら金型への挿入と、叩きとを繰り返し行って素材を半径方向に徐々に押し広げ、所望の形状に仕上げる。
Specifically, when molding an impeller disk or the like using die forging, for example, insert the material (waste ground forging material) from the furnace into the center hole of a mold with a predetermined shape and beat it to lower the temperature. Place the material in a furnace and reheat. By repeatedly inserting and hitting these dies, the material is gradually spread in the radial direction to finish it in a desired shape.
ロール鍛造を用いる場合には、例えば、成形装置のテーブル上に炉から出した素材を載せ、成形ロールで素材を加圧するとともにテーブルを回転させて素材を半径方向に徐々に押し広げ、円錐台状に成形してゆく。また、成形ロールをテーブルに対して半径方向に相対移動させることにより、さらに低温化した素材を炉に入れる再加熱とロール鍛造とを繰り返し行って素材を所望の形状に仕上げる(例えば、特許文献1参照)。
When roll forging is used, for example, the material taken out of the furnace is placed on the table of the molding apparatus, the material is pressurized with the molding roll, and the table is rotated to gradually spread the material in the radial direction. It will be molded into. Further, by moving the forming roll in the radial direction relative to the table, reheating and roll forging of the further lowered temperature material into the furnace are repeated to finish the material in a desired shape (for example, Patent Document 1). reference).
ここで、金型鍛造は、成形精度が高く、材料歩留まりが高いという大きな利点を有する反面、再加熱と叩きの繰り返し作業(ヒート回数)が多く、成形に時間を要し、また成形品の形状ごとにその形状に応じた金型が必要になる。
Here, die forging has the great advantages of high molding accuracy and high material yield, but on the other hand, there are many reheating and striking operations (number of heats), and molding takes time, and the shape of the molded product A mold corresponding to the shape is required every time.
これに対し、ロール鍛造は、成形精度が比較的高く、材料歩留まりも高い上、金型鍛造と比較しヒート回数が少なくて済み、成形時間が短い。
On the other hand, roll forging has relatively high forming accuracy and high material yield, and requires fewer heats than die forging and has a short forming time.
一方で、ロール鍛造では、大気中への直接的な放熱に加え、テーブルへの伝熱によって素材の温度低下が生じやすい。このため、例えば外径1350mmを超えるような大型サイズのインペラディスクなどをロール鍛造で成形しようとすると、素材の温度低下によって、テーブルの回転力(トルク)、ロールの加圧力が、設備の能力を超えてしまう。また、テーブルへの伝熱によって素材の下面側が上面側よりも早期に低温化することで素材の上面側と下面側の変形量に大きな差が生じ、成形品の形状不良が発生しやすくなってしまう。
On the other hand, in roll forging, the temperature of the material tends to decrease due to heat transfer to the table in addition to direct heat release to the atmosphere. For this reason, for example, when trying to form a large-sized impeller disk having an outer diameter exceeding 1350 mm by roll forging, the rotational force (torque) of the table and the applied pressure of the roll will affect the capacity of the equipment due to the temperature drop of the material. It will exceed. In addition, heat transfer to the table lowers the temperature of the lower surface of the material earlier than the upper surface, resulting in a large difference in the amount of deformation between the upper surface and the lower surface of the material. End up.
すなわち、ロール鍛造の現有設備では、成形中の放冷により素材、特に素材の外周側と下面側の温度低下が生じることで鍛造可能な製品サイズに限界があり、この成形中の素材の温度低下に起因して設備容量を超える成形荷重(反力)が発生したり、形状不良(精度低下)が発生したりしてしまう。
In other words, with the existing equipment for roll forging, there is a limit to the product size that can be forged because the temperature of the material, particularly the outer and lower surfaces of the material, decreases due to cooling during molding. As a result, a molding load (reaction force) exceeding the equipment capacity occurs, or a shape defect (decrease in accuracy) occurs.
このため、外径1350mmを超えるような大型サイズのインペラディスクなどは、その都度金型を製作して金型鍛造で成形している。上記のように多くの利点を有するロール鍛造で大きなサイズの成形品を製造できるようにする技術が望まれている。
For this reason, a large-sized impeller disk having an outer diameter exceeding 1350 mm is produced by die forging each time a die is produced. As described above, there is a demand for a technique that enables a large-sized molded product to be manufactured by roll forging having many advantages.
なお、成形ロールによる素材への載荷重(加圧力)を大きくすれば、現有設備で大型サイズの成形品を製造することもでき得るが、より大きな載荷重を付加できるようにするには多額の設備投資が必要になってしまう。
このため、ロール鍛造の現有設備を使用して大きなサイズの製品にも対応できるようにすることが強く望まれている。 If the loading load (pressing force) on the material by the forming roll is increased, large-sized molded products can be manufactured with the existing facilities. However, a large amount of load can be applied to add a larger loading load. Capital investment is required.
For this reason, it is strongly desired to be able to deal with large-size products using the existing equipment for roll forging.
このため、ロール鍛造の現有設備を使用して大きなサイズの製品にも対応できるようにすることが強く望まれている。 If the loading load (pressing force) on the material by the forming roll is increased, large-sized molded products can be manufactured with the existing facilities. However, a large amount of load can be applied to add a larger loading load. Capital investment is required.
For this reason, it is strongly desired to be able to deal with large-size products using the existing equipment for roll forging.
本発明の第一の態様によれば、ディスク状部品の成形方法は、加熱された素材をテーブル上に載置し、前記テーブルを回転させて前記素材を回転させつつ成形ロールで前記素材に荷重を加え、ロール鍛造によって前記素材をディスク状に成形するディスク状部品の成形方法であって、
保温装置を用いて成形中に前記素材の温度低下を抑止することを特徴とする。 According to the first aspect of the present invention, a method for forming a disk-shaped component includes placing a heated material on a table, rotating the table to rotate the material, and loading the material with a forming roll. A method for forming a disk-shaped part in which the material is formed into a disk shape by roll forging,
It is characterized in that a temperature decrease of the material is suppressed during molding using a heat retaining device.
保温装置を用いて成形中に前記素材の温度低下を抑止することを特徴とする。 According to the first aspect of the present invention, a method for forming a disk-shaped component includes placing a heated material on a table, rotating the table to rotate the material, and loading the material with a forming roll. A method for forming a disk-shaped part in which the material is formed into a disk shape by roll forging,
It is characterized in that a temperature decrease of the material is suppressed during molding using a heat retaining device.
本発明の他の態様によれば、ディスク状部品の成形装置は、加熱された素材をテーブル上に載置し、前記テーブルを回転させて前記素材を回転させつつ成形ロールで前記素材に荷重を加え、ロール鍛造によって前記素材をディスク状に成形するためのディスク状部品の成形装置であって、成形中の前記素材の温度低下を抑止するための保温装置を備えていることを特徴とする。
According to another aspect of the present invention, the disk-shaped component molding apparatus places a heated material on a table, rotates the table to rotate the material, and applies a load to the material with a molding roll. In addition, it is a disk-shaped component forming apparatus for forming the material into a disk shape by roll forging, and is provided with a heat retaining device for suppressing a temperature drop of the material during forming.
これらの構成によれば、ロール鍛造でインペラディスクなどのディスク状部品を成形するにあたり、回転する素材を保温装置によって加熱又は断熱することで成形中の素材の温度低下を抑止することができる。これにより、素材の温度低下に起因した設備容量を超える成形荷重の発生や形状不良の発生を抑止/防止することが可能になる。
According to these configurations, when forming a disk-shaped part such as an impeller disk by roll forging, the temperature reduction of the material being formed can be suppressed by heating or insulating the rotating material with a heat retaining device. As a result, it is possible to suppress / prevent the generation of molding load and the generation of shape defects exceeding the equipment capacity due to the temperature drop of the material.
本発明の第二の態様によれば、上記第一の態様に係るディスク状部品の成形方法において、前記保温装置としてバーナを用い、回転する前記素材に向けて火炎を放射して前記素材を加熱しながら成形してもよい。
According to a second aspect of the present invention, in the method for forming a disk-shaped part according to the first aspect, a burner is used as the heat retaining device, and a flame is emitted toward the rotating material to heat the material. You may shape | mold.
この構成によれば、保温装置としてバーナを用い、素材に向けて火炎を放射することで成形中の素材の温度低下を抑止することができる。これにより、成形中に設備容量を超える成形荷重が発生したり、成形品の形状不良が発生したりすることを十分に抑止/防止することができる。
According to this configuration, it is possible to suppress a temperature drop of the material during molding by using a burner as a heat retaining device and emitting a flame toward the material. Thereby, it is possible to sufficiently inhibit / prevent the occurrence of a molding load exceeding the equipment capacity during molding or the occurrence of a shape defect of the molded product.
さらに、本発明の第三の態様によれば、上記第一又は第二の態様に係るディスク状部品の成形方法において、前記保温装置として電気ヒーター又はIHヒーターを用い、回転する前記素材を外側から前記ヒーターで加熱しながら前記素材を成形してもよい。
Furthermore, according to the third aspect of the present invention, in the disk-shaped component molding method according to the first or second aspect, an electric heater or an IH heater is used as the heat retaining device, and the rotating material is externally applied. You may shape | mold the said raw material, heating with the said heater.
この構成によれば、保温装置として電気ヒーター又はIHヒーターを用い、素材を加熱することで成形中の素材の温度低下を抑止することができる。この場合においても、成形中に設備容量を超える成形荷重が発生したり、成形品の形状不良が発生したりすることを抑止/防止することができる。
According to this configuration, an electric heater or an IH heater is used as a heat retaining device, and the temperature of the material during molding can be suppressed by heating the material. Even in this case, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity during molding or the occurrence of a defective shape of the molded product.
また、本発明の第四の態様によれば、上記第一から第三の態様に係るディスク状部品の成形方法において、前記保温装置として断熱材及び輻射材の少なくとも一方を用い、回転する前記素材の外側に前記断熱材及び前記輻射材の少なくとも一方を配設して前記素材を成形してもよい。
Moreover, according to the fourth aspect of the present invention, in the method for forming a disk-shaped part according to the first to third aspects, the material that rotates using at least one of a heat insulating material and a radiation material as the heat retaining device. The material may be formed by disposing at least one of the heat insulating material and the radiation material on the outside of the material.
この構成によれば、素材の外側に保温装置としての断熱材及び輻射材の少なくとも一方を配設することで成形中の素材の温度低下を抑止することができる。この場合においても、成形中に設備容量を超える成形荷重が発生したり、成形品の形状不良が発生したりすることを抑止/防止することができる。
According to this configuration, it is possible to suppress a temperature drop of the material during molding by disposing at least one of a heat insulating material and a radiant material as a heat retaining device outside the material. Even in this case, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity during molding or the occurrence of a defective shape of the molded product.
さらに、本発明の第五の態様によれば、上記第一から第四のいずれか一態様に係るディスク状部品の成形方法において、前記素材の回転軸線を中心とした周方向の20°~180°の範囲に前記保温装置を配設し、回転する前記素材の前記周方向の20°~180°の範囲を前記保温装置で加熱又は断熱して前記素材の温度低下を抑止してもよい。
Furthermore, according to a fifth aspect of the present invention, in the method for forming a disk-shaped part according to any one of the first to fourth aspects, a circumferential direction of 20 ° to 180 around the rotation axis of the material. The heat retention device may be arranged in a range of °, and the temperature range of 20 ° to 180 ° of the rotating material in the circumferential direction may be heated or insulated by the heat retention device to suppress the temperature drop of the material.
この構成によれば、回転する素材の周方向の20°~180°の範囲を保温装置で加熱又は断熱することによって、成形ロールによる素材への載荷重に支障が生じることを防止しつつ、保温装置で素材の温度低下を十分に抑止することができる。
According to this configuration, the range of 20 ° to 180 ° in the circumferential direction of the rotating material is heated or thermally insulated by the heat retaining device, thereby preventing the loading load on the material by the forming roll from being hindered. The apparatus can sufficiently suppress the temperature drop of the material.
本発明の第六の態様によれば、上記第一から第五のいずれか一態様に係るディスク状部品の成形方法において、回転する前記素材の上面の内周側及び外周側と外周を形成する側面とを前記保温装置で加熱/断熱して前記素材の温度低下を抑止してもよい。
According to the sixth aspect of the present invention, in the disk-shaped component molding method according to any one of the first to fifth aspects, the inner peripheral side and the outer peripheral side and the outer periphery of the upper surface of the rotating material are formed. The temperature may be suppressed by heating / insulating the side surface with the heat retaining device.
この構成によれば、素材の上面の内周側と、素材の上面の外周側と、素材の外周を形成する側面とを保温装置で加熱又は断熱することにより、より十分に素材の温度低下を抑止することが可能になる。
According to this configuration, the temperature of the material can be sufficiently reduced by heating or insulating the inner peripheral side of the upper surface of the material, the outer peripheral side of the upper surface of the material, and the side surface forming the outer periphery of the material with the heat retaining device. It becomes possible to deter.
上述のディスク状部品の成形方法及びディスク状部品の成形装置においては、ロール鍛造でインペラディスクなどのディスク状部品を成形するにあたり、回転する素材を保温装置によって加熱/断熱することで成形中の素材の温度低下を抑止することができる。これにより、素材の温度低下に起因した設備容量を超える成形荷重の発生や形状不良の発生を抑止/防止することが可能になる。
In the above-mentioned disk-shaped part molding method and disk-shaped part molding apparatus, when forming a disk-shaped part such as an impeller disk by roll forging, the rotating material is heated / insulated by a heat retaining device, and the material being molded The temperature drop can be suppressed. As a result, it is possible to suppress / prevent the generation of molding load and the generation of shape defects exceeding the equipment capacity due to the temperature drop of the material.
よって、本発明のディスク状部品の成形方法及びディスク状部品の成形装置によれば、例えば、外径1350mmを超えるような大型サイズの成形への適用が困難であったロール鍛造の現有設備であっても、保温装置を付加するだけで大型サイズの成形品の製造に適用(対応)することが可能になる。
Therefore, according to the disk-shaped component molding method and the disk-shaped component molding apparatus of the present invention, for example, it is the existing equipment for roll forging that has been difficult to be applied to molding of a large size exceeding 1350 mm in outer diameter. However, it is possible to apply (correspond) to the production of a large-sized molded article simply by adding a heat retaining device.
以下、図1から図8、図11を参照し、本発明の一実施形態に係るディスク状部品の成形方法及びディスク状部品の成形装置について説明する。
なお、本実施形態では、インペラディスクを成形するものとして説明を行うが、本発明のディスク状部品の成形方法及びディスク状部品の成形装置は、インペラディスクに限定されず、ロール鍛造を用いて成形可能なあらゆるディスク状の部品の製造に適用することが可能である。 A disk-shaped component molding method and a disk-shaped component molding apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
In this embodiment, the description will be made assuming that the impeller disk is formed. However, the disk-shaped component forming method and the disk-shaped component forming apparatus of the present invention are not limited to the impeller disk, and are formed using roll forging. It can be applied to the production of all possible disc-shaped parts.
なお、本実施形態では、インペラディスクを成形するものとして説明を行うが、本発明のディスク状部品の成形方法及びディスク状部品の成形装置は、インペラディスクに限定されず、ロール鍛造を用いて成形可能なあらゆるディスク状の部品の製造に適用することが可能である。 A disk-shaped component molding method and a disk-shaped component molding apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
In this embodiment, the description will be made assuming that the impeller disk is formed. However, the disk-shaped component forming method and the disk-shaped component forming apparatus of the present invention are not limited to the impeller disk, and are formed using roll forging. It can be applied to the production of all possible disc-shaped parts.
本実施形態のディスク状部品の成形装置(ディスクロール装置)Aは、図1及び図2に示すように、成形テーブル(テーブル)5と、クランプ6と、成形加工部7と、を備えている。
As shown in FIGS. 1 and 2, the disk-shaped component molding apparatus (disk roll apparatus) A of this embodiment includes a molding table (table) 5, a clamp 6, and a molding processing unit 7. .
成形テーブル5は、テーブルベース5aと、テーブルベース5a上に軸受を介して回転自在に取り付けられた平面視円形のテーブル板5bと、を有している。テーブル板5bは、インペラディスク(ディスク状部品)3に成形する素材Sよりも硬質で且つ耐熱性が高い金属等から形成され、その周縁部にはリング状の歯車が設けられている。
The molding table 5 includes a table base 5a and a circular table plate 5b that is rotatably mounted on the table base 5a via a bearing. The table plate 5b is made of a metal that is harder and has higher heat resistance than the material S to be formed on the impeller disk (disk-shaped part) 3, and a ring-shaped gear is provided on the peripheral edge thereof.
成形テーブル5の歯車には、電動モータ等を駆動源とするテーブル駆動器10の出力歯車が噛み合されている。これにより、テーブル板5bがテーブル駆動器10を駆動するとともに所望の速度で上下方向に延びる中心軸O1回りの一方向に回転する。
The gear of the forming table 5 is engaged with the output gear of the table driver 10 using an electric motor or the like as a drive source. Thus, the table plate 5b drives the table driver 10 and rotates in one direction around the central axis O1 extending in the vertical direction at a desired speed.
クランプ6は、成形テーブル5の上面と対向して成形テーブル5の上方に配設されている。クランプ6は、クランプ軸11と、ホルダ12と、クランプ軸昇降器13とを備えている。
The clamp 6 is disposed above the molding table 5 so as to face the upper surface of the molding table 5. The clamp 6 includes a clamp shaft 11, a holder 12, and a clamp shaft elevator 13.
クランプ軸11は、成形テーブル5の中心軸O1と同軸に設けられている。また、このクランプ軸11は、ホルダ12を貫通し、このホルダ12によって軸線O1回りに回転自在、且つ軸線O1方向に摺動自在に支持されている。クランプ軸昇降器13は、電動モータや油圧シリンダ等によって駆動される。クランプ軸昇降器13は、クランプ軸11の上部に連結されている。クランプ軸昇降器13の駆動によってクランプ軸11が上下に昇降する。
The clamp shaft 11 is provided coaxially with the central axis O1 of the molding table 5. The clamp shaft 11 passes through the holder 12, and is supported by the holder 12 so as to be rotatable around the axis O1 and slidable in the direction of the axis O1. The clamp shaft elevator 13 is driven by an electric motor, a hydraulic cylinder, or the like. The clamp shaft elevator 13 is connected to the upper portion of the clamp shaft 11. The clamp shaft 11 moves up and down by driving the clamp shaft elevator 13.
成形加工部7は、成形テーブル5上に載置され、クランプ6によって保持された素材Sを加圧して塑性変形させ、所定のディスク形状に成形するためのものである。成形加工部7は、成形ロール15と、成形ロール移動装置16と、制御部17とを備えている。
The forming section 7 is for placing the material S placed on the forming table 5 and holding the clamp 6 under pressure to cause plastic deformation and forming it into a predetermined disk shape. The forming unit 7 includes a forming roll 15, a forming roll moving device 16, and a control unit 17.
成形ロール15は、素材Sより硬質な金属製で、略リング状に形成されている。成形ロール15は、素材Sに当接する外周面側に素材押さえ面としてのロール円周面15aと、ロール端面15bと、ロール肩面15cと、を有している。
The forming roll 15 is made of a metal harder than the material S and is formed in a substantially ring shape. The forming roll 15 has a roll circumferential surface 15a as a material pressing surface, a roll end surface 15b, and a roll shoulder surface 15c on the outer peripheral surface side in contact with the material S.
ロール円周面15aは、略一定の外径を有する部分であり、インペラディスク3の斜状面3aの成形時に、素材Sの周辺への広がり部及びインペラディスク3の外周部3bを加圧して成形テーブル5に押さえ付ける。このロール円周面15aは、素材Sの成形時の外周部拡張時に外周部3bに円周方向に沿って引張り応力が作用しないようにする。さらにロール円周面15aは、径方向に押し広げられつつある外周部3bを成形テーブル5に押さえ付けて圧縮応力を作用させることができる適当な幅寸法Fを有している。
The roll circumferential surface 15a is a portion having a substantially constant outer diameter, and when the inclined surface 3a of the impeller disc 3 is formed, the expanding portion to the periphery of the material S and the outer peripheral portion 3b of the impeller disc 3 are pressurized. Press against the molding table 5. The roll circumferential surface 15a prevents a tensile stress from acting on the outer peripheral portion 3b along the circumferential direction when the outer peripheral portion is expanded when the material S is formed. Further, the roll circumferential surface 15a has an appropriate width dimension F that can press the outer peripheral portion 3b that is being expanded in the radial direction against the molding table 5 to apply a compressive stress.
ロール肩面15cは、成形テーブル5の中心側を向いて位置されるロール端面15bとロール円周面15aとを滑らかに繋ぐ曲面である。このロール肩面15cの曲率半径は、インペラディスク3の斜状面3aの曲率半径より小さく設定されている。
The roll shoulder surface 15c is a curved surface that smoothly connects the roll end surface 15b and the roll circumferential surface 15a, which are positioned facing the center side of the forming table 5. The radius of curvature of the roll shoulder surface 15c is set to be smaller than the radius of curvature of the oblique surface 3a of the impeller disk 3.
上記のように構成された成形ロール15は、水平方向に延びる回転軸18の一端部に連結されている。回転軸18は上下方向に延びる可動ロール支え19の先端(下端)部に軸受20を介して軸線O2回りに回転自在に支持されている。成形ロール15のロール端面15bは、成形テーブル5の中心側に向いている。成形ロール15は、回転軸18と一体に水平方向に延びる軸線O2回りに回転自在である。
The forming roll 15 configured as described above is connected to one end of a rotating shaft 18 extending in the horizontal direction. The rotary shaft 18 is supported by a tip (lower end) portion of a movable roll support 19 extending in the vertical direction via a bearing 20 so as to be rotatable around an axis O2. The roll end surface 15 b of the forming roll 15 faces the center side of the forming table 5. The forming roll 15 is rotatable around an axis O2 extending in the horizontal direction integrally with the rotary shaft 18.
可動ロール支え19は、成形ロール移動装置16によって鉛直方向及び水平方向に移動可能である。成形ロール移動装置16は、可動ロール支え19の鉛直方向及び水平方向への移動をそれぞれ独立して案内する鉛直方向ガイド及び水平方向ガイドと、サーボモータ等を駆動源としてガイドに沿って可動ロール支え19を移動させる鉛直方向移動部及び水平方向移動部とを備えている。
The movable roll support 19 can be moved in the vertical and horizontal directions by the forming roll moving device 16. The forming roll moving device 16 includes a vertical guide and a horizontal guide for independently guiding the movement of the movable roll support 19 in the vertical direction and the horizontal direction, and a movable roll support along the guide using a servo motor or the like as a drive source. The vertical direction moving part and the horizontal direction moving part which move 19 are provided.
制御部17は、成形ロール移動装置16の駆動を制御する。制御部17は、成形ロール15が素材Sに接しているときに、その接線速度が一定となる状態を保持しつつインペラディスク3の目標形状に沿って成形ロール15をテーブル5に対して相対移動させるようにサーボモータ等の駆動源を制御する。
Control unit 17 controls driving of forming roll moving device 16. The control unit 17 moves the molding roll 15 relative to the table 5 along the target shape of the impeller disk 3 while maintaining a state where the tangential speed is constant when the molding roll 15 is in contact with the material S. A drive source such as a servo motor is controlled so that the
成形加工部7、テーブル駆動器10、及びクランプ軸昇降器13はそれぞれ、制御装置25によって制御される。この制御装置25にはキーボード等の入力装置26が接続されている。入力装置26により与えられるインペラディスク3の形状・大きさ等の仕様についての入力情報に従って、成形テーブル5の回転と停止とが制御されるとともに、クランプ軸11の昇降が制御され、且つ、成形ロール移動装置16による成形ロール15の移動が制御される。
The forming unit 7, the table driver 10, and the clamp shaft elevator 13 are each controlled by the control device 25. An input device 26 such as a keyboard is connected to the control device 25. The rotation and stop of the molding table 5 are controlled according to the input information about the specifications such as the shape and size of the impeller disk 3 given by the input device 26, the elevation of the clamp shaft 11 is controlled, and the molding roll The movement of the forming roll 15 by the moving device 16 is controlled.
上記構成からなる本実施形態のディスク状部品の成形装置Aを用いてインペラディスク3を成形目標形状に成形する際には、まず、鍛造用丸棒から適当寸法に切出された素材S1を用意し、素材S1を加工して所定形状の円柱状の素材S(S2)を造る。
When the impeller disk 3 is formed into a target shape using the disk-shaped part forming apparatus A of the present embodiment having the above-described configuration, first, a material S1 cut out from a forging round bar to an appropriate size is prepared. Then, the material S1 is processed to produce a cylindrical material S (S2) having a predetermined shape.
続いて、所定形状に作られた素材Sを所定温度に加熱し、この高温の素材Sを成形テーブル5のテーブル板5bの中央部に載置する。次に、クランプ軸昇降器13の駆動によってクランプ軸11を下降させる。これにより、押さえ端部11aを素材Sの中心部に上方から食い込むように押し付け、成形テーブル5とクランプ6との間で素材Sを挟持する。上記のように素材Sをセットした状態で、成形テーブル5をテーブル駆動器10の駆動によって回転駆動させる。
Subsequently, the material S made into a predetermined shape is heated to a predetermined temperature, and this high-temperature material S is placed on the central portion of the table plate 5 b of the molding table 5. Next, the clamp shaft 11 is lowered by driving the clamp shaft elevator 13. As a result, the pressing end portion 11 a is pressed into the center portion of the material S from above, and the material S is sandwiched between the forming table 5 and the clamp 6. With the material S set as described above, the molding table 5 is rotated by the drive of the table driver 10.
次に、成形ロール移動装置16の駆動によって、可動ロール支え19を介して成形ロール15が素材Sに上方から押し付けられる。この押し付け(加圧、載荷)により自由回転可能な成形ロール15が素材Sの回転方向にしたがって回転する。押付けられた状態下での成形ロール15による素材Sへの加圧は、成形ロール15の接線速度を一定に保持しつつ、成形ロール15を成形テーブル5に漸次近付けながら成形テーブル5の中央部から外周部に向けて移動させて行う。このとき、制御部17によって成形ロール15はインペラディスク3の目標形状に沿って二次元的に移動制御される。
Next, the forming roll 15 is pressed against the material S from above through the movable roll support 19 by driving the forming roll moving device 16. By this pressing (pressing, loading), the forming roll 15 that can freely rotate rotates in accordance with the rotation direction of the material S. The pressing to the material S by the forming roll 15 in the pressed state is performed from the center of the forming table 5 while gradually moving the forming roll 15 closer to the forming table 5 while keeping the tangential speed of the forming roll 15 constant. This is done by moving toward the outer periphery. At this time, the forming roller 15 is controlled to move two-dimensionally along the target shape of the impeller disk 3 by the control unit 17.
そして、成形ロール15による熱間での素材Sの塑性変形により、成形ロール15の移動軌跡Gに沿った包絡面、すなわち、素材Sに斜状面3aを形成してインペラディスク3が成形される。
The impeller disk 3 is formed by forming the envelope surface along the movement locus G of the forming roll 15, that is, the oblique surface 3 a on the material S, by the plastic deformation of the material S in the hot state by the forming roll 15. .
ここで、本実施形態のディスク状部品の成形装置Aは、成形中に、素材Sの温度が所定の温度より低下しないように素材を保温するための保温装置30を備えている。
Here, the disk-shaped component molding apparatus A of the present embodiment includes a heat retaining device 30 for retaining the material so that the temperature of the material S does not drop below a predetermined temperature during molding.
また、本実施形態では、図3に示すように、保温装置30としてバーナ(ガスバーナ)31が用いられている。さらに、この保温装置30としてのバーナ31は、図4に示すように、成形テーブル5とともに回転する素材Sの回転軸線O1を中心とした周方向の20°~180°の角度範囲θ、好ましくは90°の角度範囲θに火炎を放射して加熱する。加えて、本実施形態では、成形ロール15に対して回転方向上流側の部位に火炎を放射し、加熱した素材Sが早期に成形ロール15で加圧されるようにバーナ31が配設されている。
In the present embodiment, as shown in FIG. 3, a burner (gas burner) 31 is used as the heat retaining device 30. Further, as shown in FIG. 4, the burner 31 as the heat retaining device 30 has an angular range θ of 20 ° to 180 ° in the circumferential direction around the rotation axis O1 of the material S rotating with the forming table 5, preferably A flame is radiated and heated to an angle range θ of 90 °. In addition, in the present embodiment, the burner 31 is disposed so that a flame is emitted to the upstream portion in the rotation direction with respect to the forming roll 15 and the heated material S is pressed by the forming roll 15 at an early stage. Yes.
さらに、本実施形態では、図4に示すように、回転する素材Sの成形ロール15に対して回転方向上流側の部位を、上面の内周側((1)、(4))と外周側((2)、(5))、素材Sの外周を形成する側面(外周面)((3)、(6))に分け、さらに周方向に90°の角度範囲θを45°で2分割し、素材Sの90°の角度範囲θを計6区画((1)~(6))に分割する。このように分割した6区画((1)~(6))のうち、例えば内周側(1)と外周側(5)と側面(3)の各1区画(計3か所)を加熱するようにバーナ31が設けられる。
Furthermore, in this embodiment, as shown in FIG. 4, the upstream portion in the rotational direction with respect to the forming roll 15 of the rotating material S is divided into the inner peripheral side ((1), (4)) and the outer peripheral side of the upper surface. ((2), (5)), divided into side surfaces (outer peripheral surfaces) ((3), (6)) forming the outer periphery of the material S, and further divided into 90 ° angular range θ in the circumferential direction into two at 45 ° Then, the 90 ° angle range θ of the material S is divided into a total of 6 sections ((1) to (6)). Of the six sections ((1) to (6)) divided in this way, for example, each section (total of three places) on the inner peripheral side (1), outer peripheral side (5), and side surface (3) is heated. A burner 31 is provided.
ここで、図5は、最大載荷重が約600トンの成形装置Aを用い、上記のように保温装置30としてのバーナ31で素材Sを加熱(保温)しながら成形した場合と、保温装置30を用いずに成形した場合の素材Sの温度計測結果を示している。
なお、図5中の(a)は素材Sの中心部の側面(インペラディスク3の斜状面3a)、(b)は素材Sの上面の外周側、(c)は素材Sの上面の外周縁部、(d)は素材Sの側面の温度計測結果を示している(図6参照)。 Here, FIG. 5 shows a case where the forming apparatus A having a maximum loading load of about 600 tons is used, and the material S is formed while being heated (insulated) by theburner 31 as the heat retaining apparatus 30 as described above, and the heat retaining apparatus 30. The temperature measurement result of the raw material S at the time of shape | molding without using is shown.
5A is the side surface of the central portion of the material S (theinclined surface 3a of the impeller disk 3), FIG. 5B is the outer peripheral side of the upper surface of the material S, and FIG. 5C is the outer surface of the material S. The peripheral part (d) shows the temperature measurement result of the side surface of the material S (see FIG. 6).
なお、図5中の(a)は素材Sの中心部の側面(インペラディスク3の斜状面3a)、(b)は素材Sの上面の外周側、(c)は素材Sの上面の外周縁部、(d)は素材Sの側面の温度計測結果を示している(図6参照)。 Here, FIG. 5 shows a case where the forming apparatus A having a maximum loading load of about 600 tons is used, and the material S is formed while being heated (insulated) by the
5A is the side surface of the central portion of the material S (the
この図5に示すように、素材Sを炉から出し、成形し始めてから成形が完了するまでの間に、保温装置30を用いずに成形した場合には、大気中への放熱、テーブル5を通じての放熱などにより、成形中の素材Sの温度が1050°程度から900°以下、素材Sの側面においては700°程度まで低下することが確認された。
As shown in FIG. 5, when the raw material S is taken out from the furnace and molded without using the heat retaining device 30 from the start of molding to the completion of molding, heat is released to the atmosphere, through the table 5. It was confirmed that the temperature of the raw material S during molding decreased from about 1050 ° to 900 ° or lower and the side surface of the raw material S to about 700 ° due to heat dissipation.
これに対し、保温装置30としてのバーナ31を用いて素材Sを加熱しながら成形した場合には、成形開始から成形完了までの間、すなわち成形中に大きな温度低下が生じないことが確認された。
さらに、保温装置30としてのバーナ31を用いて素材Sを加熱しながら成形した場合には、保温装置30を用いずに成形した場合と比較して、成形途中の荷重(成形荷重、反力)が100~150トン低減することが確認されている。 On the other hand, when the material S was molded while being heated using theburner 31 as the heat retaining device 30, it was confirmed that there was no significant temperature drop from the start of molding to the completion of molding, that is, during molding. .
Further, when the material S is molded while being heated using theburner 31 as the heat retaining device 30, compared to the case where the material S is molded without using the heat retaining device 30, the load during the molding (molding load, reaction force). Has been confirmed to reduce by 100 to 150 tons.
さらに、保温装置30としてのバーナ31を用いて素材Sを加熱しながら成形した場合には、保温装置30を用いずに成形した場合と比較して、成形途中の荷重(成形荷重、反力)が100~150トン低減することが確認されている。 On the other hand, when the material S was molded while being heated using the
Further, when the material S is molded while being heated using the
次に、表1に示すように、保温装置30としてのバーナ31を用いるとともに、成形ロール15やテーブル5、クランプ6の素材Sに対する熱伝達係数、素材Sの初期温度を変化させた各条件(Case1、Case2、Case3)でシミュレーションを行い、成形解析結果の比較検討を行った。
Next, as shown in Table 1, while using the burner 31 as the heat retaining device 30, each condition (the heat transfer coefficient with respect to the raw material S of the forming roll 15, the table 5, and the clamp 6 and the initial temperature of the raw material S was changed). Case 1, Case 2, and Case 3) were simulated, and the molding analysis results were compared.
このシミュレーションでは、素材SとしてSUS630を用い、外径1500mmのインペラディスク3を成形するものとした。さらに、初期の素材形状は直径660mm、厚さ320mmとした(図7参照)。
In this simulation, SUS630 was used as the material S, and the impeller disk 3 having an outer diameter of 1500 mm was formed. Furthermore, the initial material shape was 660 mm in diameter and 320 mm in thickness (see FIG. 7).
図8は、表1に示したCase1、Case2、Case3の成形解析結果である。この図に示すように、保温装置30としてのバーナ31を用いた本実施形態のディスク状部品の成形方法を模擬した場合(Case2、Case3)、最大載荷重600トンに達することなく、1500mmのインペラディスク3を成形できることが確認された。なお、同条件で実機での試験を行い、成形解析結果が実機試験に対して荷重精度7.5%以内であることが確認されている。
FIG. 8 shows the molding analysis results of Case 1, Case 2, and Case 3 shown in Table 1. As shown in this figure, when the disc-shaped component molding method of the present embodiment using a burner 31 as a heat retaining device 30 is simulated (Case 2 and Case 3), a 1500 mm impeller does not reach a maximum load of 600 tons. It was confirmed that the disk 3 can be formed. In addition, a test with an actual machine was performed under the same conditions, and it was confirmed that the molding analysis result was within a load accuracy of 7.5% with respect to the actual machine test.
このように、保温装置30としてのバーナ31を用いて素材Sを加熱しながら成形することによって素材Sの温度低下が抑えられ、成形荷重を大幅に低減させることができる。これにより、外径1500mmの大型のインペラディスク3を好適にロール鍛造で製造できることが確認された。
Thus, by forming the material S while heating it using the burner 31 as the heat retaining device 30, the temperature drop of the material S can be suppressed, and the molding load can be greatly reduced. Thereby, it was confirmed that the large impeller disk 3 with an outer diameter of 1500 mm can be suitably manufactured by roll forging.
したがって、本実施形態のディスク状部品の成形方法及びディスク状部品の成形装置Aにおいては、ロール鍛造でインペラディスクなどのディスク状部品3を成形するにあたり、回転する素材Sを保温装置30によって加熱(保温/断熱)することで成形中の素材Sの温度低下を抑止することができる。これにより、素材Sの温度低下に起因した設備容量を超える成形荷重の発生や形状不良の発生を抑止/防止することが可能になる。
Therefore, in the disk-shaped component forming method and the disk-shaped component forming apparatus A of the present embodiment, the rotating material S is heated by the heat retaining device 30 when the disk-shaped component 3 such as an impeller disk is formed by roll forging ( It is possible to suppress a decrease in temperature of the material S during molding by keeping / insulating). As a result, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity due to the temperature drop of the material S and the occurrence of a shape defect.
よって、例えば、最大載荷重が600トン程度で、外径1350mmを超えるような大型サイズの成形への適用が困難であったロール鍛造の現有設備であっても、保温装置30を付加するだけで、1350mmを超えるような大型サイズの成形品の製造に適用(対応)することが可能になる。
Therefore, for example, even with the existing equipment for roll forging, which has been difficult to apply to large-size molding with a maximum loading load of about 600 tons and an outer diameter exceeding 1350 mm, it is only necessary to add the heat retaining device 30. It becomes possible to apply (correspond) to the production of a large-sized molded product exceeding 1350 mm.
また、本実施形態のディスク状部品の成形方法においては、保温装置30としてバーナ31を用い、素材Sに向けて火炎を放射することで成形中の素材Sの温度低下を抑止することができる。これにより、成形中に設備容量を超える成形荷重が発生したり、成形品の形状不良が発生することを確実に抑止/防止することができる。
さらに、保温装置30としてのバーナ31で加熱することにより、素材Sの変形抵抗をロール鍛造に適した所定の値、例えば20kgf/mm2以下にすることができる。これにより、素材Sを変形させやすくすることができ、効率的に成形を行うことが可能になる。 Further, in the method for molding a disk-shaped part according to the present embodiment, theburner 31 is used as the heat retaining device 30 and a flame is radiated toward the material S to suppress a temperature drop of the material S during molding. As a result, it is possible to reliably suppress / prevent the occurrence of a molding load exceeding the equipment capacity during molding or the occurrence of a defective shape of the molded product.
Furthermore, by heating with theburner 31 as the heat retaining device 30, the deformation resistance of the material S can be set to a predetermined value suitable for roll forging, for example, 20 kgf / mm 2 or less. Thereby, the material S can be easily deformed, and the molding can be performed efficiently.
さらに、保温装置30としてのバーナ31で加熱することにより、素材Sの変形抵抗をロール鍛造に適した所定の値、例えば20kgf/mm2以下にすることができる。これにより、素材Sを変形させやすくすることができ、効率的に成形を行うことが可能になる。 Further, in the method for molding a disk-shaped part according to the present embodiment, the
Furthermore, by heating with the
さらに、回転する素材Sの周方向の20°~90°の角度範囲θを保温装置30で加熱することによって、成形ロール15による素材Sへの載荷重に支障が生じることを防止しつつ、保温装置30で素材Sの温度低下を十分に抑止することができる。
Further, by heating the rotating material S in the circumferential direction θ of 20 ° to 90 ° in the circumferential direction with the heat retaining device 30, it is possible to prevent the load from being applied to the material S by the forming roll 15 from being disturbed. The apparatus 30 can sufficiently suppress the temperature drop of the material S.
また、素材Sの上面の内周側と、素材Sの上面の外周側と、素材Sの外周を形成する側面とを保温装置30で加熱することにより、より十分に素材Sの温度低下を抑止することが可能になる。
Further, by heating the inner peripheral side of the upper surface of the material S, the outer peripheral side of the upper surface of the material S, and the side surface forming the outer periphery of the material S with the heat retaining device 30, the temperature decrease of the material S is more sufficiently suppressed. It becomes possible to do.
以上、本発明に係るディスク状部品の成形方法及びディスク状部品の成形装置の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
As mentioned above, although one Embodiment of the shaping | molding method of the disk-shaped component which concerns on this invention, and the shaping | molding apparatus of a disk-shaped component was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning. It can be changed as appropriate.
例えば、本実施形態では、保温装置30としてバーナ31を用いるものとしたが、図9に示すように、保温装置30として電気ヒーターあるいはIH(Induction Heating)ヒーター32を用い、回転する素材Sを外側からヒーター32で加熱しながら素材Sを成形してもよい。
さらに、図9及び図10に示すように、保温装置30として断熱材33及び輻射材34の少なくとも一方を用い、回転する素材Sの外側に断熱材33及び輻射材34の少なくとも一方を配設して素材Sを成形してもよい。 For example, in this embodiment, theburner 31 is used as the heat retaining device 30, but as shown in FIG. 9, an electric heater or an IH (Induction Heating) heater 32 is used as the heat retaining device 30, and the rotating material S is placed outside. The material S may be molded while being heated by the heater 32.
Further, as shown in FIGS. 9 and 10, at least one of theheat insulating material 33 and the radiating material 34 is used as the heat retaining device 30, and at least one of the heat insulating material 33 and the radiating material 34 is disposed outside the rotating material S. The material S may be molded.
さらに、図9及び図10に示すように、保温装置30として断熱材33及び輻射材34の少なくとも一方を用い、回転する素材Sの外側に断熱材33及び輻射材34の少なくとも一方を配設して素材Sを成形してもよい。 For example, in this embodiment, the
Further, as shown in FIGS. 9 and 10, at least one of the
これらヒーター32や断熱材33、輻射材34によっても本実施形態と同様に成形中の素材Sの温度低下を抑止することができる。よって、成形中に設備容量を超える成形荷重が発生したり、成形品の形状不良が発生することを抑止/防止することができる。すなわち、最大載荷重が600トン程度で、外径1350mmを超えるような大型サイズの成形への適用が困難であったロール鍛造の現有設備であっても、これらヒーター32や断熱材33、輻射材34を保温装置30として付加することにより、1350mmを超えるような大型サイズの成形品の製造に適用(対応)することが可能になる。
The heater 32, the heat insulating material 33, and the radiation material 34 can also suppress the temperature drop of the material S during molding as in the present embodiment. Therefore, it is possible to suppress / prevent the occurrence of a molding load exceeding the equipment capacity during molding and the occurrence of a defective shape of the molded product. In other words, even in the existing roll forging equipment, which has a maximum loading load of about 600 tons and is difficult to be applied to a large size molding having an outer diameter exceeding 1350 mm, these heater 32, heat insulating material 33, and radiation material By adding 34 as the heat retaining device 30, it becomes possible to apply (correspond) to the production of a large-sized molded product exceeding 1350 mm.
また、保温装置30として、バーナ31、ヒーター32、断熱材33、輻射材34を適宜選択的に複数設けて(使用して)成形を行うことも可能である。
Further, as the heat retaining device 30, it is possible to perform molding by selectively (using) a plurality of burners 31, heaters 32, heat insulating materials 33, and radiation materials 34 as appropriate.
さらに、本実施形態では、成形装置Aの最大載荷重が600トン程度で、外径1350mmを超えるサイズの成形品を製造するものとして説明を行ったが、最大載荷重が600トンより大きい成形装置A、600トンより小さい成形装置Aに本発明を適用することも可能である。加えて、本発明を適用して成形するディスク状部品のサイズも限定されない。
Furthermore, in the present embodiment, the description has been made on the assumption that the maximum loading load of the molding apparatus A is about 600 tons and a molded product having a size exceeding the outer diameter of 1350 mm is manufactured. A. It is also possible to apply the present invention to a molding apparatus A smaller than 600 tons. In addition, the size of the disk-shaped part formed by applying the present invention is not limited.
上述のディスク状部品の成形方法及びディスク状部品の成形装置においては、ロール鍛造でインペラディスクなどのディスク状部品を成形するにあたり、回転する素材を保温装置によって加熱/断熱することで成形中の素材の温度低下を抑止することができる。これにより、素材の温度低下に起因した設備容量を超える成形荷重の発生や形状不良の発生を抑止/防止することが可能になる。よって、本発明のディスク状部品の成形方法及びディスク状部品の成形装置によれば、例えば、外径1350mmを超えるような大型サイズの成形への適用が困難であったロール鍛造の現有設備であっても、保温装置を付加するだけで大型サイズの成形品の製造に適用(対応)することが可能になる。
In the above-mentioned disk-shaped part molding method and disk-shaped part molding apparatus, when forming a disk-shaped part such as an impeller disk by roll forging, the rotating material is heated / insulated by a heat retaining device, and the material being molded The temperature drop can be suppressed. As a result, it is possible to suppress / prevent the generation of molding load and the generation of shape defects exceeding the equipment capacity due to the temperature drop of the material. Therefore, according to the disk-shaped component molding method and the disk-shaped component molding apparatus of the present invention, for example, it is the existing equipment for roll forging that has been difficult to be applied to molding of a large size exceeding 1350 mm in outer diameter. However, it is possible to apply (correspond) to the production of a large-sized molded article simply by adding a heat retaining device.
1 インペラ
2 ブレード
3 インペラディスク(ディスク状部品)
3a 斜状面
3b 外周部
4 インペラカバー(ディスク状部品)
5 成形テーブル(テーブル)
5a テーブルベース
5b テーブル板
6 クランプ
7 成形加工部
10 テーブル駆動器
11 クランプ軸
11a 押さえ端部
12 ホルダ
13 クランプ軸昇降器
15 成形ロール
15a ロール円周面
15b ロール端面
15c ロール肩面
16 成形ロール移動装置
17 制御部
18 回転軸
19 可動ロール支え
20 軸受
25 制御装置
26 入力装置
30 保温装置
31 バーナ
32 ヒーター
33 断熱材
34 輻射材
A ディスク状部品の成形装置(ディスクロール装置)
O1 中心軸(軸線)
O2 軸線
S 素材
1Impeller 2 Blade 3 Impeller disk (disc-shaped part)
3aOblique surface 3b Outer peripheral part 4 Impeller cover (disc-shaped part)
5 Molding table (table)
5a Table base 5b Table plate 6 Clamp 7 Molding section 10 Table driver 11 Clamp shaft 11a Holding end 12 Holder 13 Clamp shaft elevator 15 Forming roll 15a Roll circumferential surface 15b Roll end surface 15c Roll shoulder surface 16 Forming roll moving device 17 Controller 18 Rotating Shaft 19 Movable Roll Support 20 Bearing 25 Control Device 26 Input Device 30 Heat Keeping Device 31 Burner 32 Heater 33 Heat Insulating Material 34 Radiation Material A Disc-shaped Part Molding Device (Disk Roll Device)
O1 Center axis (axis)
O2 axis S material
2 ブレード
3 インペラディスク(ディスク状部品)
3a 斜状面
3b 外周部
4 インペラカバー(ディスク状部品)
5 成形テーブル(テーブル)
5a テーブルベース
5b テーブル板
6 クランプ
7 成形加工部
10 テーブル駆動器
11 クランプ軸
11a 押さえ端部
12 ホルダ
13 クランプ軸昇降器
15 成形ロール
15a ロール円周面
15b ロール端面
15c ロール肩面
16 成形ロール移動装置
17 制御部
18 回転軸
19 可動ロール支え
20 軸受
25 制御装置
26 入力装置
30 保温装置
31 バーナ
32 ヒーター
33 断熱材
34 輻射材
A ディスク状部品の成形装置(ディスクロール装置)
O1 中心軸(軸線)
O2 軸線
S 素材
1
3a
5 Molding table (table)
O1 Center axis (axis)
O2 axis S material
Claims (7)
- 加熱された素材をテーブル上に載置し、前記テーブルを回転させて前記素材を回転させつつ成形ロールで前記素材に荷重を加え、ロール鍛造によって前記素材をディスク状に成形するディスク状部品の成形方法であって、
保温装置を用いて成形中に前記素材の温度低下を抑止することを特徴とするディスク状部品の成形方法。 The heated material is placed on a table, the table is rotated to apply a load to the material with a forming roll while rotating the material, and the material is formed into a disk shape by roll forging. A method,
A method for molding a disk-shaped component, wherein a temperature decrease of the material is suppressed during molding using a heat retaining device. - 請求項1記載のディスク状部品の成形方法において、
前記保温装置としてバーナを用い、回転する前記素材に向けて火炎を放射して前記素材を加熱しながら成形することを特徴とするディスク状部品の成形方法。 The method for molding a disk-shaped part according to claim 1,
A method of forming a disk-shaped part, wherein a burner is used as the heat retaining device, and the material is formed while radiating a flame toward the rotating material and heating the material. - 請求項1または請求項2に記載のディスク状部品の成形方法において、
前記保温装置として電気ヒーター又はIHヒーターを用い、回転する前記素材を外側から前記ヒーターで加熱しながら前記素材を成形することを特徴とするディスク状部品の成形方法。 In the method for forming a disk-shaped part according to claim 1 or 2,
A method for forming a disk-shaped part, wherein an electric heater or an IH heater is used as the heat retaining device, and the material is formed while the rotating material is heated from the outside by the heater. - 請求項1から請求項3のいずれか一項に記載のディスク状部品の成形方法において、
前記保温装置として断熱材及び輻射材の少なくとも一方を用い、回転する前記素材の外側に前記断熱材及び前記輻射材の少なくとも一方を配設して前記素材を成形することを特徴とするディスク状部品の成形方法。 In the molding method of the disk-shaped component according to any one of claims 1 to 3,
A disk-shaped component characterized in that at least one of a heat insulating material and a radiant material is used as the heat retaining device, and at least one of the heat insulating material and the radiant material is disposed outside the rotating material, and the material is molded. Molding method. - 請求項1から請求項4のいずれか一項に記載のディスク状部品の成形方法において、
前記素材の回転軸線を中心とした周方向の20°~180°の範囲に前記保温装置を配設し、回転する前記素材の前記周方向の20°~180°の範囲を前記保温装置で加熱又は断熱して前記素材の温度低下を抑止することを特徴とするディスク状部品の成形方法。 In the molding method of the disk-shaped component according to any one of claims 1 to 4,
The heat retaining device is arranged in a range of 20 ° to 180 ° in the circumferential direction around the rotation axis of the material, and the range of 20 ° to 180 ° in the circumferential direction of the rotating material is heated by the heat retaining device. Alternatively, a method for forming a disk-shaped part, wherein the temperature reduction of the material is suppressed by heat insulation. - 請求項1から請求項5のいずれか一項に記載のディスク状部品の成形方法において、
回転する前記素材の上面の内周側及び外周側と外周を形成する側面とを前記保温装置で加熱/断熱して前記素材の温度低下を抑止するようにしたことを特徴とするディスク状部品の成形方法。 In the method for forming a disk-shaped part according to any one of claims 1 to 5,
A disk-shaped part characterized in that the inner peripheral side and outer peripheral side of the upper surface of the rotating material and the side surface forming the outer periphery are heated / insulated by the heat retaining device to suppress a temperature drop of the material. Molding method. - 加熱された素材をテーブル上に載置し、前記テーブルを回転させて前記素材を回転させつつ成形ロールで前記素材に荷重を加え、ロール鍛造によって前記素材をディスク状に成形するためのディスク状部品の成形装置であって、
成形中の前記素材の温度低下を抑止するための保温装置を備えていることを特徴とするディスク状部品の成形装置。 A disk-shaped part for placing a heated material on a table, rotating the table to apply a load to the material with a forming roll while rotating the material, and forming the material into a disk shape by roll forging The molding apparatus of
A disk-shaped component molding apparatus comprising a heat retaining device for suppressing a temperature drop of the material during molding.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/553,496 US10300522B2 (en) | 2015-02-26 | 2015-10-23 | Forming method for disk-shaped component and forming device for disk-shaped component |
EP15883312.9A EP3251772A4 (en) | 2015-02-26 | 2015-10-23 | Forming method for disk-shaped component and forming device for disk-shaped component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015037212A JP6687326B2 (en) | 2015-02-26 | 2015-02-26 | Impeller disk molding method and impeller disk molding apparatus |
JP2015-037212 | 2015-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016136022A1 true WO2016136022A1 (en) | 2016-09-01 |
Family
ID=56788116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079956 WO2016136022A1 (en) | 2015-02-26 | 2015-10-23 | Forming method for disk-shaped component and forming device for disk-shaped component |
Country Status (4)
Country | Link |
---|---|
US (1) | US10300522B2 (en) |
EP (1) | EP3251772A4 (en) |
JP (1) | JP6687326B2 (en) |
WO (1) | WO2016136022A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB300230A (en) * | 1927-08-09 | 1928-11-09 | John William Smith | Means for rolling disk wheels and the like |
JPS62207525A (en) * | 1986-03-06 | 1987-09-11 | Nippon Kokan Kk <Nkk> | Ring mill rolling mill |
JPH05285581A (en) * | 1992-04-14 | 1993-11-02 | Kobe Steel Ltd | Device for warm spinning |
JPH0623637U (en) * | 1992-08-24 | 1994-03-29 | 株式会社神戸製鋼所 | Vehicle wheel molding equipment |
JP2002263767A (en) * | 2001-03-07 | 2002-09-17 | Mitsubishi Heavy Ind Ltd | Method and device for forming disk-like parts |
JP2012030234A (en) * | 2010-07-28 | 2012-02-16 | Nippon Spindle Mfg Co Ltd | Rotational plastic working apparatus and operation method for rotational plastic working apparatus |
JP2013220464A (en) * | 2012-04-19 | 2013-10-28 | Asahi Tec Corp | Method of manufacturing vehicular wheel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0818210B2 (en) * | 1992-05-15 | 1996-02-28 | 健 柳沢 | Two-dimensional movement mechanism |
RU2031753C1 (en) * | 1992-07-21 | 1995-03-27 | Всероссийский научно-исследовательский институт технической физики | Device to roll out |
DE19545177B4 (en) * | 1995-12-04 | 2005-11-17 | Leifeld Metal Spinning Gmbh | Method for spin forming a workpiece |
US20040134249A1 (en) * | 2003-01-09 | 2004-07-15 | Utiashev Farid Zaynullaevich | Method and device for making intricately-shaped axisymmetric parts from hardly deformable polyphase alloys |
JP2008018446A (en) * | 2006-07-12 | 2008-01-31 | Toyota Motor Corp | Method and apparatus for rotary sequential hot forging |
WO2012151385A2 (en) | 2011-05-03 | 2012-11-08 | Inductoheat, Inc. | Forging of an annular article with electric induction heating |
-
2015
- 2015-02-26 JP JP2015037212A patent/JP6687326B2/en not_active Expired - Fee Related
- 2015-10-23 US US15/553,496 patent/US10300522B2/en not_active Expired - Fee Related
- 2015-10-23 EP EP15883312.9A patent/EP3251772A4/en not_active Withdrawn
- 2015-10-23 WO PCT/JP2015/079956 patent/WO2016136022A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB300230A (en) * | 1927-08-09 | 1928-11-09 | John William Smith | Means for rolling disk wheels and the like |
JPS62207525A (en) * | 1986-03-06 | 1987-09-11 | Nippon Kokan Kk <Nkk> | Ring mill rolling mill |
JPH05285581A (en) * | 1992-04-14 | 1993-11-02 | Kobe Steel Ltd | Device for warm spinning |
JPH0623637U (en) * | 1992-08-24 | 1994-03-29 | 株式会社神戸製鋼所 | Vehicle wheel molding equipment |
JP2002263767A (en) * | 2001-03-07 | 2002-09-17 | Mitsubishi Heavy Ind Ltd | Method and device for forming disk-like parts |
JP2012030234A (en) * | 2010-07-28 | 2012-02-16 | Nippon Spindle Mfg Co Ltd | Rotational plastic working apparatus and operation method for rotational plastic working apparatus |
JP2013220464A (en) * | 2012-04-19 | 2013-10-28 | Asahi Tec Corp | Method of manufacturing vehicular wheel |
Non-Patent Citations (1)
Title |
---|
See also references of EP3251772A4 * |
Also Published As
Publication number | Publication date |
---|---|
US10300522B2 (en) | 2019-05-28 |
JP6687326B2 (en) | 2020-04-22 |
US20180056366A1 (en) | 2018-03-01 |
EP3251772A1 (en) | 2017-12-06 |
EP3251772A4 (en) | 2018-03-21 |
JP2016159299A (en) | 2016-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101148379B1 (en) | Stir forming apparatus and method | |
CN104726678B (en) | Pressure heat treatment equipment of ultrathin circular saw web and application method of pressure heat treatment equipment | |
JP2017515689A (en) | Method of forming parts from sheet metal alloy | |
KR100968213B1 (en) | Apparatus for forging billet and method of the same | |
CN104864721B (en) | Industrial Stoves | |
WO2016136022A1 (en) | Forming method for disk-shaped component and forming device for disk-shaped component | |
US20170001229A1 (en) | Spinning forming device and spinning forming method | |
JP2012192414A (en) | Method and device for molding | |
CN101569898B (en) | Manufacture method of target material | |
US9744578B2 (en) | Crystal growth crucible re-shaper | |
US10549468B2 (en) | Spinning forming method and spinning forming apparatus | |
WO2014129591A1 (en) | Device for manufacturing molded glass body and method for manufacturing molded glass body | |
JP6047802B2 (en) | Glass molded body manufacturing apparatus and glass molded body manufacturing method | |
JP2507868B2 (en) | Method and device for manufacturing stepped cylindrical part | |
KR102041853B1 (en) | Friction stir forging apparatus and method | |
JP3680001B2 (en) | Disc-shaped part molding method and molding apparatus | |
CN112779382B (en) | Heat treatment method for hot work die steel | |
KR102162180B1 (en) | Ring mill for continuous forming and method thereof | |
JP6216894B1 (en) | Cylindrical member forming device | |
JP5627663B2 (en) | Press machine | |
KR101625790B1 (en) | Pre-heating device for press forming high strength steel | |
JP2007131903A (en) | Method and device for die quenching of ring-shaped article | |
WO2023106184A1 (en) | Flow forming system | |
KR101615030B1 (en) | Hole processing apparatus and controling method thereof | |
Mulyukov et al. | Technological features of a process and equipment for superplastic rolling of axially symmetric heat-resistant alloy components of rotors for modern aircraft engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883312 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15553496 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015883312 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |