WO2016132694A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2016132694A1 WO2016132694A1 PCT/JP2016/000553 JP2016000553W WO2016132694A1 WO 2016132694 A1 WO2016132694 A1 WO 2016132694A1 JP 2016000553 W JP2016000553 W JP 2016000553W WO 2016132694 A1 WO2016132694 A1 WO 2016132694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- hydrogen gas
- hermetic chamber
- generated
- insulating film
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 236
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 57
- 238000010438 heat treatment Methods 0.000 claims abstract description 54
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 46
- 238000009792 diffusion process Methods 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 238000007599 discharging Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 22
- 239000012535 impurity Substances 0.000 claims description 8
- 230000000630 rising effect Effects 0.000 claims description 5
- 238000005304 joining Methods 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000007872 degassing Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C3/00—Assembling of devices or systems from individually processed components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5783—Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Definitions
- the present disclosure relates to a method for manufacturing a semiconductor device in which a first substrate and a second substrate are joined so that an airtight chamber is formed between the first substrate and the second substrate.
- the following has been proposed as a semiconductor device in which an airtight chamber is configured between a first substrate and a second substrate (see, for example, Patent Document 1). That is, in this semiconductor device, a sensing unit that detects angular velocity is formed on the first substrate. In addition, the second substrate has a recess formed in a portion of one surface of the first substrate facing the sensing unit. And this 2nd board
- the hermetic chamber is at a vacuum pressure.
- Such a semiconductor device is manufactured as follows. That is, first, a sensing unit that detects angular velocity is formed on the first substrate, and a recess is formed on the second substrate. And it manufactures by joining a 1st board
- OH groups are formed on the bonding surfaces of the first substrate and the second substrate, and the bonding strength is improved by covalently bonding the OH groups on each bonding surface. It has been known. However, in such a bonding method, although the bonding strength between the first substrate and the second substrate can be improved, hydrogen gas (that is, degas) is generated in the hermetic chamber by the OH group, and the pressure of the hermetic chamber is generated by the hydrogen gas. Is higher than the desired pressure.
- hydrogen gas that is, degas
- the hydrogen gas is diffused (ie, passed through the first substrate or the second substrate) by increasing the diffusion distance (ie, diffusion coefficient) of the hydrogen gas in the hermetic chamber by performing heat treatment. ) To be discharged outside.
- this heating step is simply performed, the pressure in the hermetic chamber may not be a desired pressure. That is, the pressure in the hermetic chamber may fluctuate.
- the airtight chamber is formed by joining the first substrate and the second substrate, and the airtight chamber is used as a reference pressure. The same occurs in a pressure sensor or the like serving as a chamber.
- An object of the present disclosure is to provide a method for manufacturing a semiconductor device capable of suppressing fluctuations in pressure in an airtight chamber.
- a first substrate having one surface, one surface and the other surface opposite to the one surface, a recess is formed on the one surface side, and the one surface faces one surface of the first substrate.
- a second substrate bonded to the first substrate in a state, and a hermetic chamber is formed including a space between the first substrate and the recess of the second substrate, and the hermetic chamber is vacuumed
- the first substrate containing silicon is prepared, and the second substrate containing silicon is prepared by forming the depression on the one surface of the second substrate.
- OH groups generated on the one surface of the first substrate and OH groups generated on the one surface of the second substrate are covalently bonded.
- the heat treatment by heating at a temperature rising rate of 1 ° C./sec or less so that the portion where the OH group is generated in the first substrate and the second substrate is 700 ° C. or more.
- an OH group is generated on the first substrate and the second substrate, the first substrate and the second substrate are joined, and then the hermetic chamber is heated at a rate of 1 ° C./sec or less. Is heated so that the wall surface constituting the temperature becomes 700 ° C. or higher. Thereby, all the OH groups remaining in the hermetic chamber can be converted into hydrogen gas. Since the heating temperature and the heating time are adjusted so that the diffusion distance of the hydrogen gas is equal to or greater than the distance between the bottom surface of the recess in the second substrate and the other surface of the second substrate, the hydrogen gas is removed. It can be discharged from a closed room. For this reason, the pressure in an airtight chamber can be made into a desired pressure, and it can suppress that the pressure in an airtight chamber fluctuates.
- FIG. 1 is a cross-sectional view of a pressure sensor according to a first embodiment of the present disclosure.
- 2 (a) to 2 (d) are cross-sectional views showing the manufacturing process of the pressure sensor shown in FIG.
- FIG. 3A to FIG. 3C are cross-sectional views showing the manufacturing process of the pressure sensor following FIG.
- FIG. 4 is a diagram showing the relationship between the amount of hydrogen gas generated and the sample surface temperature.
- FIG. 5 is a diagram showing the relationship between the heating temperature and the pressure in the hermetic chamber
- FIG. 6 is a cross-sectional view of a pressure sensor according to a second embodiment of the present disclosure.
- FIG. 1 is a cross-sectional view of a pressure sensor according to a first embodiment of the present disclosure.
- 2 (a) to 2 (d) are cross-sectional views showing the manufacturing process of the pressure sensor shown in FIG.
- FIG. 3A to FIG. 3C are cross-sectional views showing the manufacturing process of the pressure sensor following FIG.
- FIG. 4
- FIG. 7 is a cross-sectional view of a pressure sensor according to another embodiment of the present disclosure
- FIG. 8 is a cross-sectional view of a pressure sensor according to another embodiment of the present disclosure
- FIG. 9 is a cross-sectional view of a pressure sensor according to another embodiment of the present disclosure.
- the pressure sensor includes a first substrate 10 having one surface 10a and another surface 10b.
- the first substrate 10 is configured by an SOI (Silicon on Insulator) substrate in which a support substrate 11, an insulating film 12, and a semiconductor layer 13 are sequentially stacked. Then, one surface 10a of the first substrate 10 is formed on one surface of the semiconductor layer 13 opposite to the insulating film 12 side, and the first substrate is formed on one surface of the support substrate 11 opposite to the insulating film 12 side.
- the other surface 10b of 10 is comprised.
- the support substrate 11 and the semiconductor layer 13 are made of a silicon substrate or the like, and the insulating film 12 is made of SiO 2 or SiN.
- the diaphragm part 15 is comprised in the 1st board
- the recess 14 is formed so as to reach the insulating film 12 from the other surface 10 b of the first substrate 10.
- the diaphragm portion 15 is configured by the insulating film 12 and the semiconductor layer 13 located between the bottom surface of the recess 14 and the one surface 10 a of the first substrate 10.
- each gauge resistor 16 is appropriately connected by a connection wiring layer (not shown) so as to form a bridge circuit.
- the gauge resistor 16 is a diffusion layer configured by heat treatment after impurities are ion-implanted.
- the surface concentration of impurities constituting the gauge resistor 16 is set to 1.0 ⁇ 10 ⁇ 18 to 1.0 ⁇ 10 ⁇ 21 cm ⁇ 3, and the gauge resistor 16 is diffused according to the present disclosure.
- a lead wiring layer or the like that is connected to the first substrate 10 as appropriate with each gauge resistor 16 and connected to an external circuit through a through electrode (not shown) formed on the second substrate 20. Is also formed.
- the second substrate 20 is disposed on the one surface 10a of the first substrate 10 as described above.
- the second substrate 20 includes a bonded substrate 21 and an insulating film 22 formed on the one surface 21 a side facing the first substrate 10 of the bonded substrate 21.
- 20a is constituted by one surface of the insulating film 22 opposite to the bonded substrate 21 side.
- the bonded substrate 21 is made of a silicon substrate or the like, and the insulating film 22 is made of SiO 2 or SiN.
- the other surface 20 b of the second substrate 20 is configured by the other surface 21 b on the opposite side to the one surface 21 a of the bonded substrate 21.
- a recess 21c is formed at a portion facing the gauge resistor 16, and the insulating film 22 is also formed on the wall surface of the recess 21c.
- a recess 20 c formed by the insulating film 22 formed on the wall surface of the recess 21 c is formed in a portion facing the gauge resistor 16.
- the recess 20c has a regular octagonal planar shape, and the length of the diagonal line passing through the center is 350 ⁇ m.
- the recess 20c is configured such that the distance between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20 is 10 to 200 ⁇ m.
- the second substrate 20 has one surface 20a (that is, the insulating film 22) joined to one surface 10a (that is, the semiconductor layer 13) of the first substrate 10.
- the hermetic chamber 30 is formed between the first substrate 10 and the second substrate 20 by the recess 20 c, and the gauge resistor 16 is sealed in the hermetic chamber 30.
- the airtight chamber 30 since a predetermined pressure is applied from the airtight chamber 30 to the one surface 10a side of the diaphragm portion 15, the airtight chamber 30 functions as a reference pressure chamber.
- the first substrate 10 and the second substrate 20 are so-called direct bonding that activates and bonds the bonding surfaces of the first substrate 10 and the second substrate 20 as will be described later. It is joined.
- the second substrate 20 is formed with a through-hole that penetrates in the stacking direction of the first substrate 10 and the second substrate 20 and exposes the lead wiring layer formed in the first substrate 10.
- a through electrode is formed so as to be appropriately electrically connected to the lead wiring layer and to be connected to an external circuit.
- a first substrate 10 in which a support substrate 11, an insulating film 12, and a semiconductor layer 13 are sequentially laminated is prepared. Then, after forming a mask (not shown) on one surface 10a, an impurity is ion-implanted and heat treatment is performed to thermally diffuse the impurity, thereby appropriately forming a gauge resistor 16, a connection wiring layer (not shown), a lead-out wiring layer, and the like. Note that the heat treatment in this step is performed, for example, by heat-treating the first substrate 10 at 800 to 1100 ° C. so that impurities are thermally diffused.
- a bonded substrate 21 is prepared as shown in FIG. 2B, and a recess 21c is formed on one surface 21a of the bonded substrate 21 by dry etching or the like.
- the insulating film 22 is formed on the one surface 21a of the substrate 21 by a chemical vapor deposition (ie, chemical vapor deposition (CVD)) method or the like.
- CVD chemical vapor deposition
- the first substrate 10 semiconductor layer 13
- the second substrate 20 insulating film 22
- OH groups are generated on the one surface 10 a side of the first substrate 10 and the one surface 20 a side of the second substrate 20.
- the first substrate 10 and the second substrate 20 are disposed in a chamber (not shown), and the one surface 10a (that is, the semiconductor layer 13) side of the first substrate 10 and the one surface 20a (that is, insulating) of the second substrate 20 are disposed.
- Irradiation with O 2 plasma, N 2 plasma, Ar ion beam or the like is performed from the film 22) side to remove impurities adhering to the bonding surface and to activate each bonding surface.
- the activation of the bonding surface means that a part of the bond in the atom exposed on the bonding surface has lost the bonding partner. Further, when the bonding surface is activated, O 2 plasma or the like is irradiated from the one surface 10a side of the first substrate 10 and the one surface 20a side of the second substrate 20, so that the second substrate on the one surface 10a of the first substrate 10 is activated. The region on the inner edge side of the region bonded to 20, the wall surface of the recess 20 c of the second substrate 20, and the like are also activated.
- OH groups are generated on the one surface 10 a side of the first substrate 10 and the one surface 20 a side of the second substrate 20.
- the OH group is generated in the activated region of the first substrate 10 and the second substrate 20, the region closer to the inner edge than the region bonded to the second substrate 20 on the one surface 10 a of the first substrate 10. , And on the wall surface of the recess 20c of the second substrate 20 and the like. Further, when generating OH groups on the surfaces 10a and 20a of the first substrate 10 and the second substrate 20, instead of taking out the first substrate 10 and the second substrate 20 from the chamber, for example, in the chamber OH groups may be generated on the first substrate 10 and the second substrate 20 by introducing the atmosphere.
- alignment is performed by an infrared microscope or the like using alignment marks or the like appropriately provided on the first substrate 10 and the second substrate 20, and at a low temperature of room temperature to 550 ° C.
- the first substrate 10 and the second substrate 20 are bonded by so-called direct bonding.
- the first substrate 10 and the second substrate 20 are directly bonded by applying a weight of 18 kN in the stacking direction of the first substrate 10 and the second substrate 20 while maintaining the temperature at 300 ° C.
- the hermetic chamber 30 is formed including the space between the first substrate 10 and the recessed portion 20 c of the second substrate 20, and the gauge resistor 16 is sealed in the hermetic chamber 30.
- hydrogen gas 31 is generated by the covalent bonding of OH groups generated on one surface 10a of the first substrate 10 and one surface 20a of the second substrate 20. To do.
- the process up to the process of FIG. 2D is introduced into an annealing apparatus (not shown) and heat-treated.
- the OH group that has not contributed to the bonding between the first substrate 10 and the second substrate 20, that is, the region on the inner edge side of the region bonded to the second substrate 20 on the one surface 10 a of the first substrate 10 is generated.
- the OH groups and the OH groups generated on the wall surface of the recess 20c of the second substrate 20 are bonded to each other to generate water molecules.
- FIG. 4 shows experimental results obtained by performing a thermal desorption spectroscopy (TDS) method after generating OH groups by irradiating O 2 plasma, and the rate of temperature increase. Is 1 ° C./sec.
- the sample surface temperature in FIG. 4 is the surface temperature at which OH groups are generated, and the background indicated by the broken line in FIG. 4 is noise specific to the apparatus used in the experiment.
- the temperature at which hydrogen gas is not generated shifts to a low temperature side when the temperature rising rate is lower than 1 ° C./sec, and hydrogen gas is not generated when the temperature rising rate is higher than 1 ° C./sec. It is known that the temperature shifts to the high temperature side. Further, as shown in FIG. 4, when the plasma humidity is changed, the present inventors change the maximum amount of hydrogen gas generated and the temperature at the maximum amount, but the temperature at which hydrogen gas is not generated. Also found no change.
- the heating rate is set to 1 ° C./sec or less, and heating is performed so that the surface on which the OH group is generated is 700 ° C. or more. That is, the heating is performed so that the one surface 10a of the first substrate 10, the one surface 20a of the second substrate 20, and the wall surface of the recess 20c are 700 ° C. or higher.
- FIG.3 (b) has shown the state before the surface in which the OH group was produced
- OH groups generated on the bonding surfaces of the first substrate 10 and the second substrate 20 react as shown in the above reaction formula [F1]. May remain.
- the bonding surface of the first substrate 10 and the second substrate 20 is heated so as to be 700 ° C. or higher, so that no reaction occurs in the process of FIG. In the case where an OH group is present, the OH group can be converted into hydrogen gas 31.
- a gas that maintains the heating temperature that is, a temperature of 700 ° C. or higher
- a blanking process is performed.
- the diffusion distance of the hydrogen gas 31 is proportional to the diffusion coefficient (D) and the heating time (t) (that is, 2 (Dt) 1/2 ), and the diffusion coefficient (D) is proportional to the heating temperature. To do. That is, the diffusion distance of the hydrogen gas 31 is proportional to the heating time and the heating temperature.
- the inventors diffuse (i.e., pass through) the portion that becomes the shortest distance between the wall surface that forms the hermetic chamber 30 and the wall surface that is exposed to the outside air, and discharge the hydrogen gas 31.
- Experiments were conducted by adjusting the heating temperature and the heating time so that the diffusion distance of the hydrogen gas 31 was a distance equal to or longer than the shortest distance and the diffusion distance was constant, and the experimental results shown in FIG. 5 were obtained.
- the shortest distance between the wall surface constituting the hermetic chamber 30 and the wall surface exposed to the outside air is the portion between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20. Become.
- the volume in the hermetic chamber 30 is 1.0 ⁇ 10 ⁇ 3 mm ⁇ 3 and the distance between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20 is 10 to 200 ⁇ m. It is a figure at the time of temperature rising rate being 1 degree-C / sec.
- a distance equal to or greater than the distance between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20 is defined as a diffusion distance, and the diffusion distance is proportional to D 1/2 and t 1/2 . Therefore, even when the heating temperature (that is, the diffusion coefficient) and the heating time are adjusted so that the diffusion distance is constant, for example, when the heating temperature is 600 ° C., the pressure in the hermetic chamber 30 is sufficiently increased. It was found that the pressure could not be reduced. That is, it was found that when the heating temperature is 600 ° C., the hydrogen gas 31 in the hermetic chamber 30 cannot be sufficiently discharged.
- D is a diffusion coefficient
- t is a heating time.
- the heating temperature is 600 ° C.
- the diffusion time of the hydrogen gas 31 is set to the bottom surface of the recess 20 c and the other surface of the second substrate 20 by setting the heating time to a long time of 75 hours. It is set as more than the distance between 20b.
- the hermetic chamber 30 is adjusted by adjusting the heating temperature and the heating time so that the diffusion distance is equal to or greater than the distance between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20.
- the hydrogen gas 31 generated inside can be discharged from the hermetic chamber 30, and the pressure in the hermetic chamber 30 can be set to a desired pressure.
- the shortest distance between the wall surface configuring the airtight chamber 30 and the wall surface exposed to the outside air is the bottom surface of the recess 20c and the other surface 20b of the second substrate 20.
- FIG. 3C shows a state in which the hydrogen gas 31 is discharged through a portion between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20.
- hydrogen gas 31 is discharged by diffusing a portion between one surface 10a and the other surface 10b of the first substrate 10.
- the heating step is preferably performed at less than 1412 ° C.
- the diffusion distance of the hydrogen gas 31 is proportional to the heating temperature and the heating time. For this reason, for example, after heating the surface on which OH groups are generated in the step of FIG. 3B to be 700 ° C. or higher, the temperature is lowered to 600 ° C. in the step of FIG. By increasing the length, the diffusion distance may be greater than or equal to the distance between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20.
- the pressure sensor shown in FIG. 1 is manufactured by forming a mask on the other surface 10b of the first substrate 10 and forming the concave portion 14 by dry etching or the like to form the diaphragm portion 15.
- OH groups are generated on the one surface 10a side of the first substrate 10 and the one surface 20a side of the second substrate 20, and the first substrate 10 and the second substrate 20 are bonded. . And it heats so that the temperature increase rate shall be 1 degrees C / sec or less, and the surface in which the OH group is produced
- the heating temperature and the heating time are adjusted so that the diffusion distance of the hydrogen gas 31 is equal to or greater than the distance between the bottom surface of the recess 20c and the other surface 20b of the second substrate 20.
- the hydrogen gas 31 in the hermetic chamber 30 can be sufficiently discharged, and the inside of the hermetic chamber 30 can be sufficiently decompressed (that is, a vacuum state). That is, it can suppress that the pressure in the airtight chamber 30 fluctuates.
- the first substrate 10 is configured to have a thin insulating film 17 on the semiconductor layer 13. That is, the first substrate 10 is configured by laminating the support substrate 11, the insulating film 12, the semiconductor layer 13, and the thin insulating film 17 in this order, and one surface 10 a of the thin insulating film 17 on the side opposite to the semiconductor layer 13 side. It consists of one side.
- the diaphragm portion 15 includes an insulating film 12, a semiconductor layer 13, and a thin insulating film 17 positioned between the bottom surface of the recess 14 and the one surface 10 a of the first substrate 10.
- Such a pressure sensor is manufactured as follows. That is, first, in the process of FIG. 2A, after forming the gauge resistor 16 and the like, the first substrate 10 is configured by forming the thin insulating film 17 on the semiconductor layer 13 by, for example, thermal oxidation. . Thereafter, the steps after FIG. 2B are performed, and when the heating step after FIG. 3A is performed, the heat treatment is performed in a state where the thin insulating film 17 is formed on the semiconductor layer 13, The pressure sensor is manufactured.
- the degassing process is performed with the thin insulating film 17 formed on the semiconductor layer 13.
- the thin insulating film 17 can suppress the outward diffusion (out diffusion) in which the impurities constituting the gauge resistor 16 diffuse into the hermetic chamber 30, and the characteristics of the gauge resistor 16 change. Can be suppressed.
- the bonding strength may be lowered if the thin insulating film 17 is thick. For this reason, it is preferable to form the thin insulating film 17 to be about 10 nm or less.
- the present disclosure can be applied to manufacturing methods of various semiconductor devices that include the hermetic chamber 30 and the pressure of the hermetic chamber 30 is in a vacuum state, and can also be applied to manufacturing methods of angular velocity sensors and the like. it can.
- the present disclosure may be applied to a method for manufacturing a pressure sensor in which the second substrate 20 includes only the bonded substrate 21.
- the recessed portion 20c of the second substrate 20 is configured by the recessed portion 21c of the bonded substrate 21, and the portion located between the bottom surface of the recessed portion 20c and the other surface 20b of the second substrate 20 is Only the bonded substrate 21 is provided.
- the insulating film 22 may not be formed on the wall surface of the recess 21c.
- the first substrate 10 is composed only of the support substrate 11, and the bonded substrate 21 and the insulation positioned between the bottom surface of the recess 20 c and the other surface 20 b of the second substrate 20.
- the present disclosure may be applied to a method of manufacturing a pressure sensor in which the membrane 22 is the diaphragm portion 15 and the gauge resistor 16 is formed on the diaphragm portion 15.
- the manufacturing of the pressure sensor in which the first substrate 10 is configured by the support substrate 11 and the insulating film 12, and the second substrate 20 is configured only by the bonded substrate 21.
- the present disclosure may be applied to a method.
- the recessed portion 20 c of the second substrate 20 is configured by the recessed portion 21 c of the bonded substrate 21, and the bottom surface of the recessed portion 20 c and the second substrate 20 The portion located between the surface 20 b is only the bonded substrate 21.
- the diaphragm portion 15 may be composed of only the semiconductor layer 13. That is, the insulating film 12 may be removed by the recess 14. Similarly, in the second embodiment, the diaphragm portion 15 may be composed of the semiconductor layer 13 and the thin insulating film 17.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Pressure Sensors (AREA)
Abstract
第1基板(10)と第2基板(20)の窪み部(20c)との間に真空の気密室(30)が構成された半導体装置の製造方法は、シリコンを含有する前記第1及び第2基板を用意し、前記第1および第2基板を接合し、前記気密室内の水素ガス(31)を排出する加熱処理し、前記接合の前に、前記第1および第2基板の窪み部の壁面にOH基を生成することを備える。前記接合では、前記第1および第2基板のOH基を共有結合させる。前記加熱処理では、1℃/sec以下の昇温速度で、前記第1および第2基板の前記OH基が生成された部分が700℃以上となるように加熱して水素ガスを発生させ、前記水素ガスの拡散距離が前記気密室の壁面と外気との間の最短距離以上となるように加熱温度および加熱時間を調整し前記水素ガスを前記気密室から排出する。
Description
本出願は、2015年2月16日に出願された日本特許出願番号2015-27738号および2015年12月11日に出願された日本特許出願番号2015―242400号に基づくもので、ここにその記載内容を援用する。
本開示は、第1基板と第2基板との間に気密室が構成されるように第1基板と第2基板とを接合してなる半導体装置の製造方法に関するものである。
従来より、第1基板と第2基板との間に気密室が構成された半導体装置として、次のものが提案されている(例えば、特許文献1参照)。すなわち、この半導体装置では、第1基板に角速度を検出するセンシング部が形成されている。また、第2基板は、第1基板の一面のうちのセンシング部と対向する部分に窪み部が形成されている。そして、この第2基板は、第1基板と窪み部との間を含む空間にてセンシング部を封止する気密室が構成されるように、第1基板に接合されている。なお、気密室は真空圧とされている。
このような半導体装置は、次のように製造される。すなわち、まず、第1基板に角速度を検出するセンシング部を形成すると共に、第2基板に窪み部を形成する。そして、第1基板と窪み部との間を含む空間にてセンシング部を封止する気密室が構成されるように、第1基板と第2基板とを接合することにより、製造される。
ところで、第1基板と第2基板との接合では、第1基板と第2基板の接合面にOH基を形成し、各接合面のOH基同士を共有結合させることで接合強度を向上させることが知られている。しかしながら、このような接合方法では、第1基板と第2基板との接合強度を向上できるものの、OH基によって気密室内に水素ガス(すなわち、デガス)が生成され、当該水素ガスによって気密室の圧力が所望の圧力より高くなるという問題がある。
この問題を解決するため、加熱処理を行うことによって気密室内の水素ガスの拡散距離(すなわち、拡散係数)を大きくすることにより、水素ガスを第1基板または第2基板内を拡散(すなわち、通過)させて外部に排出することが考えられる。しかしながら、この加熱工程を単純に行うと、気密室内の圧力を所望の圧力にすることができない場合がある。つまり、気密室内の圧力が変動してしまう場合がある。
なお、このような問題は、センシング部を封止する気密室のみに発生する問題ではなく、例えば、第1基板と第2基板とを接合して気密室を構成し、当該気密室を基準圧力室とする圧力センサ等においても同様に発生する。
本開示は、気密室内の圧力が変動することを抑制できる半導体装置の製造方法を提供することを目的とする。
本開示の態様において、一面を有する第1基板と、一面および前記一面と反対側の他面を有し、前記一面側に窪み部が形成され、当該一面が前記第1基板の一面と対向する状態で前記第1基板に接合される第2基板と、を備え、前記第1基板と前記第2基板の窪み部との間の空間を含んで気密室が構成され、前記気密室が真空とされた半導体装置の製造方法は、シリコンを含有する前記第1基板を用意することと、前記第2基板の前記一面に前記窪み部が形成され、シリコンを含有する前記第2基板を用意することと、前記気密室が構成されるように、前記第1基板の一面と前記第2基板の一面とを接合することと、前記気密室内の水素ガスを排出するための加熱処理することと、前記第1基板の一面と前記第2基板の一面とを接合することの前に、前記第1基板の一面側および前記第2基板の窪み部の壁面を含む一面側にOH基を生成することを備える。前記第1基板の一面と前記第2基板の一面とを接合することでは、前記第1基板の一面に生成されたOH基と前記第2基板の一面に生成されたOH基を共有結合させる。前記加熱処理することでは、1℃/sec以下の昇温速度で、前記第1基板および前記第2基板のうちの前記OH基が生成された部分が700℃以上となるように加熱することによって水素ガスを発生させると共に、前記水素ガスの拡散距離が前記気密室を構成する壁面と外気に曝される壁面との間の最短距離以上となるように加熱温度および加熱時間を調整することによって前記水素ガスを前記気密室から排出する。
上記の半導体装置の製造方法によれば、第1基板および第2基板にOH基を生成し、第1基板と第2基板とを接合した後、1℃/sec以下の昇温速度で気密室を構成する壁面が700℃以上となるように加熱する。これにより、気密室内に残存するOH基を全て水素ガスに変換できる。そして、水素ガスの拡散距離が第2基板における窪み部の底面と当該第2基板の他面との間の距離以上となるように加熱温度および加熱時間を調整しているため、水素ガスを気密室から排出することができる。このため、気密室内の圧力を所望の圧力とすることができ、気密室内の圧力が変動することを抑制できる。
また、加熱処理にて気密室内に残存するOH基を全て水素ガスに変換させるため、半導体装置の使用中等において、気密室内で水素ガスが生成し、当該水素ガスによって気密室内の圧力が変動してしまうことを抑制できる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態における圧力センサの断面図であり、
図2(a)から図2(d)は、図1に示す圧力センサの製造工程を示す断面図であり、
図3(a)から図3(c)は、図2(d)に続く圧力センサの製造工程を示す断面図であり、
図4は、水素ガス発生量と試料表面温度との関係を示す図であり、
図5は、加熱温度と気密室内の圧力との関係を示す図であり、
図6は、本開示の第2実施形態における圧力センサの断面図であり、
図7は、本開示の他の実施形態における圧力センサの断面図であり、
図8は、本開示の他の実施形態における圧力センサの断面図であり、
図9は、本開示の他の実施形態における圧力センサの断面図である。
(第1実施形態)
本開示の第1実施形態について図面を参照しつつ説明する。なお、本実施形態では、本開示の半導体装置の製造方法を圧力センサの製造方法に適用した例について説明する。まず、本実施形態の製造方法によって製造される圧力センサの構成について説明する。
本開示の第1実施形態について図面を参照しつつ説明する。なお、本実施形態では、本開示の半導体装置の製造方法を圧力センサの製造方法に適用した例について説明する。まず、本実施形態の製造方法によって製造される圧力センサの構成について説明する。
図1に示されるように、圧力センサは、一面10aおよび他面10bを有する第1基板10を備えている。本実施形態では、第1基板10は、支持基板11、絶縁膜12、半導体層13が順に積層されたSOI(Silicon on Insulator)基板で構成されている。そして、半導体層13のうちの絶縁膜12側と反対側の一面にて第1基板10の一面10aが構成され、支持基板11のうちの絶縁膜12側と反対側の一面にて第1基板10の他面10bが構成されている。なお、本実施形態では、支持基板11および半導体層13はシリコン基板等で構成され、絶縁膜12はSiO2やSiN等で構成されている。
また、第1基板10には、他面10bから凹部14が形成されることでダイヤフラム部15が構成されている。本実施形態では、凹部14は、第1基板10の他面10bから絶縁膜12に達するように形成されている。このため、ダイヤフラム部15は、凹部14の底面と第1基板10の一面10aとの間に位置する絶縁膜12および半導体層13にて構成されている。
ダイヤフラム部15には、4個のゲージ抵抗16(図1中では2個のみ図示)が形成されおり、各ゲージ抵抗16はブリッジ回路を構成するように図示しない接続配線層によって適宜接続されている。本実施形態では、ゲージ抵抗16は、不純物がイオン注入された後に熱処理されることによって構成された拡散層とされている。なお、本実施形態では、ゲージ抵抗16を構成する不純物の表面濃度が1.0×10-18~1.0×10-21cm-3とされており、当該ゲージ抵抗16が本開示の拡散層に相当している。また、特に図示しないが、第1基板10には、各ゲージ抵抗16と適宜接続されると共に、第2基板20に形成される図示しない貫通電極を介して外部回路と接続される引き出し配線層等も形成されている。
そして、このような第1基板10の一面10aに第2基板20が配置されている。本実施形態では、第2基板20は、貼り合わせ基板21と、当該貼り合わせ基板21のうちの第1基板10と対向する一面21a側に形成された絶縁膜22とを有しており、一面20aが絶縁膜22のうちの貼り合わせ基板21側と反対側の一面にて構成されている。なお、貼り合わせ基板21はシリコン基板等で構成され、絶縁膜22はSiO2やSiN等で構成されている。また、第2基板20の他面20bは、貼り合わせ基板21のうちの一面21aと反対側の他面21bにて構成されている。
貼り合わせ基板21の一面21aには、ゲージ抵抗16と対向する部分に凹部21cが形成され、絶縁膜22は、凹部21cの壁面上にも形成されている。そして、第2基板20には、ゲージ抵抗16と対向する部分に、凹部21cの壁面上に形成された絶縁膜22にて形造られる窪み部20cが形成されている。特に限定されるものではないが、窪み部20cは、平面形状が正八角形とされており、中心を通る対角線の長さが350μmとされている。また、窪み部20cは、窪み部20cの底面と第2基板20の他面20bとの間の距離が10~200μmとなるように構成されている。
そして、第2基板20は、一面20a(すなわち、絶縁膜22)が第1基板10の一面10a(すなわち、半導体層13)と接合されている。これにより、窪み部20cによって第1基板10と第2基板20との間に気密室30が形成され、当該気密室30にゲージ抵抗16が封止される。本実施形態では、ダイヤフラム部15のうちの一面10a側に気密室30から所定の圧力が印加されるため、当該気密室30が基準圧力室として機能する。
なお、本実施形態では、第1基板10と第2基板20とは、後述するように、第1基板10および第2基板20のうちの接合面を活性化させて接合するいわゆる直接接合等で接合されている。また、特に図示しないが、第2基板20には、第1基板10と第2基板20との積層方向に貫通して第1基板10に形成された引き出し配線層を露出させる貫通孔が形成されており、当該貫通孔には引き出し配線層と適宜電気的に接続され、外部回路との接続を図るための貫通電極が形成されている。
以上が本実施形態における圧力センサの構成である。次に、上記圧力センサの製造方法について図2(a)から図2(d)を参照しつつ説明する。
まず、図2(a)に示されるように、支持基板11、絶縁膜12、半導体層13が順に積層された第1基板10を用意する。そして、一面10aに図示しないマスクを形成した後、不純物をイオン注入すると共に加熱処理して不純物を熱拡散させることによってゲージ抵抗16、図示しない接続配線層、引き出し配線層等を適宜形成する。なお、この工程における加熱処理は、不純物が熱拡散するように、例えば、第1基板10を800~1100℃に加熱処理することによって行う。
次に、上記図2(a)とは別工程において、図2(b)に示されるように、貼り合わせ基板21を用意し、貼り合わせ基板21の一面21aにドライエッチング等で凹部21cを形成する。そして、基板21の一面21aに化学気相成長(すなわち、Chemical Vapor Deposition:CVD)法等で絶縁膜22を形成する。これにより、絶縁膜22にて形造られる上記窪み部20cが形成された第2基板20が用意される。
続いて、第1基板10(半導体層13)と第2基板20(絶縁膜22)とを真空中で接合する。本実施形態では、まず、図2(c)に示されるように、第1基板10の一面10a側および第2基板20の一面20a側にOH基を生成する。
具体的には、第1基板10および第2基板20を図示しないチャンバ内に配置し、第1基板10の一面10a(すなわち、半導体層13)側および第2基板20の一面20a(すなわち、絶縁膜22)側からO2プラズマ、N2プラズマ、Arイオンビーム等を照射し、接合面に付着している不純物を除去すると共に各接合面を活性化させる。
なお、接合面を活性化させるとは、接合面に露出した原子における結合手の一部が結合相手を失った状態とすることである。また、接合面を活性化させる際には、第1基板10の一面10a側および第2基板20の一面20a側からO2プラズマ等を照射するため、第1基板10の一面10aにおける第2基板20と接合される領域よりも内縁側の領域、および第2基板20の窪み部20cの壁面等も活性化される。
次に、例えば、第1基板10および第2基板20をチャンバ内から取り出して大気に曝すことにより、第1基板10の一面10a側および第2基板20の一面20a側にOH基を生成する。
なお、OH基は、第1基板10および第2基板20の活性化された領域に生成されるため、第1基板10の一面10aにおける第2基板20と接合される領域よりも内縁側の領域、および第2基板20の窪み部20cの壁面等にも形成される。また、第1基板10および第2基板20の各一面10a、20a側にOH基を生成する際には、第1基板10および第2基板20をチャンバ内から取り出す代わりに、例えば、チャンバ内に大気を導入することで第1基板10および第2基板20にOH基を生成するようにしてもよい。
次に、図2(d)に示されるように、第1基板10および第2基板20に適宜設けられたアライメントマーク等を用いて赤外顕微鏡等によるアライメントを行い、室温~550℃の低温で接合するいわゆる直接接合により、第1基板10と第2基板20とを接合する。本実施形態では、300℃に維持しつつ、第1基板10と第2基板20との積層方向に18kNの加重を印加して第1基板10と第2基板20とを直接接合する。これにより、第1基板10と第2基板20の窪み部20cとの間の空間を含んで気密室30が構成され、当該気密室30にゲージ抵抗16が封止される。
なお、この工程では、以下の反応式[F1]のように、第1基板10の一面10aおよび第2基板20の一面20aに生成されたOH基同士が共有結合することによって水素ガス31が発生する。
2SiOH→SiOSi+H2+O-…[F1]
つまり、図2(d)の工程が終了した後には、気密室30内に水素ガス31が発生した状態となり、気密室30内の圧力が所望の圧力より高くなった状態となっている。
つまり、図2(d)の工程が終了した後には、気密室30内に水素ガス31が発生した状態となり、気密室30内の圧力が所望の圧力より高くなった状態となっている。
続いて、図3(a)に示されるように、図2(d)の工程まで行ったものを図示しないアニール装置に導入して加熱処理する。これにより、第1基板10と第2基板20との接合に寄与しなかったOH基、つまり第1基板10の一面10aにおける第2基板20と接合される領域よりも内縁側の領域に生成されたOH基、および第2基板20の窪み部20cの壁面に生成されたOH基同士が結合し、水分子が生成される。
その後、図3(b)に示されるように、加熱を続けることにより、以下の反応式[F2]のように、水分子とシリコンが反応し、酸化膜が生成される(すなわち、厚くなる)と共に更なる水素ガス31が気密室30内に発生する。
2H2O+Si→SiO2+2H2…[F2]
ここで、本発明者らは、Si基板にOH基を生成し、Si基板を加熱した際にOH基に起因する水素ガス31の発生量について実験を行い、図4に示す実験結果を得た。なお、図4は、O2プラズマを照射することによってOH基を生成した後に昇温脱離ガス分光(すなわち、Thermal DesorptionSpectrometry:TDS)法を行うことによって得られた実験結果であり、昇温速度を1℃/secとしている。また、図4中の試料表面温度はOH基が生成されている表面温度のことであり、図4中の破線で示すバックグラウンドは実験に使用した装置固有のノイズである。
ここで、本発明者らは、Si基板にOH基を生成し、Si基板を加熱した際にOH基に起因する水素ガス31の発生量について実験を行い、図4に示す実験結果を得た。なお、図4は、O2プラズマを照射することによってOH基を生成した後に昇温脱離ガス分光(すなわち、Thermal DesorptionSpectrometry:TDS)法を行うことによって得られた実験結果であり、昇温速度を1℃/secとしている。また、図4中の試料表面温度はOH基が生成されている表面温度のことであり、図4中の破線で示すバックグラウンドは実験に使用した装置固有のノイズである。
図4に示されるように、Si基板にOH基を生成した場合、加熱して試料表面温度を高くすることで水素ガスが発生するが、本発明者らは、昇温速度を1℃/secとした場合には700℃以上で水素ガスが発生しなくなることを見出した。また、明確な原理については明らかではないが、昇温速度を1℃/secより小さくした場合には水素ガス発生量の最大量における温度が低温側にずれ、昇温速度を1℃/secより大きくした場合には、水素ガス発生量の最大量における温度が高温側にずれることが知られている。つまり、昇温速度を1℃/secより小さくした場合には水素ガスが発生しなくなる温度が低温側にずれ、昇温速度を1℃/secより大きくした場合には、水素ガスが発生しなくなる温度が高温側にずれることが知られている。さらに、図4に示されるように、本発明者らは、プラズマ湿度を変更した場合には、水素ガス発生量の最大量、および最大量における温度が変動するが、水素ガスが発生しなくなる温度は変化しないことも見出した。
このため、本実施形態では、昇温速度を1℃/sec以下とし、OH基が生成された面が700℃以上となるように加熱するようにしている。つまり、第1基板10の一面10a、第2基板20の一面20a、および窪み部20cの壁面が700℃以上となるように加熱している。これにより、図2(c)の工程にて生成したOH基を全て水素ガス31に変換できる。
なお、図3(b)は、図2(c)の工程にてOH基が生成された面が700℃以上となる前の状態を示している。また、図2(d)の工程では、第1基板10および第2基板20の各接合面に生成されたOH基同士は、上記反応式[F1]のように反応するが、OH基の一部が残存する場合がある。このため、図3(b)の工程にて、第1基板10および第2基板20の接合面も700℃以上となるように加熱することにより、図2(d)の工程にて反応しなかったOH基が存在する場合には、当該OH基を水素ガス31に変換できる。
その後、図3(c)に示されるように、加熱温度(すなわち、700℃以上の温度)を維持し、気密室30内に発生した水素ガス31を当該気密室30内から外部に排出するガス抜き工程を行う。
ここで、ガス抜き工程について具体的に説明する。水素ガス31の拡散距離は、周知のように、拡散係数(D)と加熱時間(t)に比例し(すなわち、2(Dt)1/2)、拡散係数(D)は、加熱温度に比例する。つまり、水素ガス31の拡散距離は、加熱時間と加熱温度に比例する。
そして、本発明者らは、水素ガス31が気密室30を構成する壁面と外気に曝される壁面との間の最短距離となる部分を拡散(すなわち、通過)して排出されるように、当該最短距離以上の距離を水素ガス31の拡散距離とし、当該拡散距離が一定となるように加熱温度と加熱時間を調整して実験を行い、図5に示される実験結果を得た。なお、本実施形態では、気密室30を構成する壁面と外気に曝される壁面との最短距離となる部分は、窪み部20cの底面と第2基板20の他面20bとの間の部分となる。また、図5は、気密室30内の体積を1.0×10-3mm-3とし、窪み部20cの底面と第2基板20の他面20bとの間の距離を10~200μmとし、昇温速度を1℃/secとした際の図である。
図5に示されるように、窪み部20cの底面と第2基板20の他面20bとの間の距離以上の距離を拡散距離とし、拡散距離はD1/2、t1/2に比例するために当該拡散距離が一定となるように加熱温度(すなわち、拡散係数)と加熱時間とを調整した場合であっても、例えば、加熱温度が600℃では、気密室30内の圧力を十分に減圧することができないことが判った。つまり、加熱温度が600℃では、気密室30内の水素ガス31を十分に排出することができないことが判った。なお、上記のように、Dは拡散係数であり、tは加熱時間である。
これは、上記のように、600℃では、OH基が全て水素ガス31に変換されず、600℃に維持することによって少量ずつ水素ガス31の発生が継続しているためであると推察される。なお、図5では、加熱温度を600℃とした際には、加熱時間を75時間という長時間とすることにより、水素ガス31の拡散距離を窪み部20cの底面と第2基板20の他面20bとの間の距離以上としている。
これに対し、OH基が生成されている面が700℃以上となるように加熱した場合には、図4に示されるように、図2(c)で生成したOH基を全て水素ガス31に変換できる。このため、ガス抜き工程では、拡散距離が窪み部20cの底面と第2基板20の他面20bとの間の距離以上となるように、加熱温度および加熱時間を調整することにより、気密室30内に発生した水素ガス31を気密室30から排出することができ、気密室30内の圧力を所望の圧力にすることができる。
なお、本実施形態では、上記のように、気密室30を構成する壁面と外気に曝される壁面との最短距離となる部分は、窪み部20cの底面と第2基板20の他面20bとの間の部分となる。このため、図3(c)では、窪み部20cの底面と第2基板20の他面20bとの間の部分を通過して水素ガス31が排出される様子を示している。しかしながら、例えば、気密室30を構成する壁面と外気に曝される壁面との最短距離となる部分が第1基板10の一面10aと他面10bとの間の部分となる場合には、水素ガス31は、第1基板10の一面10aと他面10bとの間の部分を拡散して排出される。
また、Siの融点は1412℃であるため、加熱工程は1412℃未満で行うことが好ましい。そして、上記では、図3(b)ではOH基が生成されている面が700℃以上となるように加熱し、図3(c)ではそのままの温度を維持する例について説明したが、図3(c)のガス抜き工程では、水素ガス31の拡散距離が加熱温度と加熱時間に比例する。このため、例えば、図3(b)の工程でOH基が生成されている面が700℃以上となるように加熱した後、図3(c)の工程では600℃まで降温し、加熱時間を長くすることにより、拡散距離が窪み部20cの底面と第2基板20の他面20bとの間の距離以上となるようにしてもよい。
その後は特に図示しないが、第1基板10の他面10bにマスクを形成し、ドライエッチング等で凹部14を形成してダイヤフラム部15を構成することにより、上記図1に示す圧力センサが製造される。
なお、上記では、1つの圧力センサの製造方法について説明したが、ウェハ状の第1基板10と第2基板20とを用意し、ウェハ状のまま上記各工程を行った後にこのものをダイシングカットしてチップ単位に分割するようにしてもよい。
以上説明したように、本実施形態では、第1基板10の一面10a側および第2基板20の一面20a側にOH基を生成し、第1基板10と第2基板20とを接合している。そして、昇温速度を1℃/sec以下とし、OH基が生成されている面が700℃以上となるように加熱している。これにより、第1基板10と第2基板20とを接合するために生成したOH基を完全に水素ガス31に変換できる(図4参照)。
そして、ガス抜き工程では、水素ガス31の拡散距離が窪み部20cの底面と第2基板20の他面20bとの間の距離以上となるように、加熱温度および加熱時間を調整している。これにより、気密室30内の水素ガス31を十分に排出することができ、気密室30内を十分に減圧した状態(すなわち、真空状態)とできる。つまり、気密室30内の圧力が変動することを抑制できる。
また、加熱処理にて気密室30内に残存するOH基を全て水素ガスに変換させるため、半導体装置の使用中等において、気密室30内で水素ガスが生成し、当該水素ガスによって気密室30内の圧力が変動してしまうことを抑制できる。
(第2実施形態)
本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して第1基板10の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して第1基板10の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
本実施形態の圧力センサは、図6に示されるように、第1基板10は、半導体層13上に薄絶縁膜17を有する構成とされている。つまり、第1基板10は、支持基板11、絶縁膜12、半導体層13、薄絶縁膜17が順に積層されて構成され、一面10aが薄絶縁膜17のうちの半導体層13側と反対側の一面にて構成されている。また、ダイヤフラム部15は、凹部14の底面と第1基板10の一面10aとの間に位置する絶縁膜12、半導体層13、薄絶縁膜17にて構成される。
このような圧力センサは、次のように製造される。すなわち、まず、上記図2(a)の工程において、ゲージ抵抗16等を形成した後、例えば、熱酸化することによって半導体層13上に薄絶縁膜17を形成して第1基板10を構成する。その後、上記図2(b)以降の工程を行い、図3(a)以降の加熱工程を行う際には、半導体層13上に薄絶縁膜17が形成された状態で加熱処理することにより、上記圧力センサが製造される。
これによれば、半導体層13上に薄絶縁膜17が形成された状態でガス抜き工程を行っている。このため、ガス抜き工程の際、薄絶縁膜17によってゲージ抵抗16を構成する不純物が気密室30内に拡散する外方拡散(アウトディフュージョン)を抑制でき、ゲージ抵抗16の特性が変化することを抑制できる。
なお、上記図2(c)の工程で説明した直接接合によって薄絶縁膜17と絶縁膜22とを接合する場合、薄絶縁膜17が厚いと接合強度が低くなることがある。このため、薄絶縁膜17を約10nm以下となるように形成することが好ましい。
(他の実施形態)
例えば、上記第1、第2実施形態では、本開示の半導体装置の製造方法を圧力センサの製造方法に適用した例について説明した。しかしながら、本開示は、気密室30を有し、当該気密室30の圧力が真空状態である種々の半導体装置の製造方法に適用することができ、角速度センサ等の製造方法にも適用することができる。
例えば、上記第1、第2実施形態では、本開示の半導体装置の製造方法を圧力センサの製造方法に適用した例について説明した。しかしながら、本開示は、気密室30を有し、当該気密室30の圧力が真空状態である種々の半導体装置の製造方法に適用することができ、角速度センサ等の製造方法にも適用することができる。
また、図7に示されるように、第2基板20を貼り合わせ基板21のみで構成した圧力センサの製造方法に本開示を適用するようにしてもよい。なお、この圧力センサでは、第2基板20の窪み部20cが貼り合わせ基板21の凹部21cにて構成され、窪み部20cの底面と第2基板20の他面20bとの間に位置する部分は貼り合わせ基板21のみとなる。また、図1において、特に図示しないが、凹部21cの壁面に絶縁膜22が形成されていない構成としてもよい。
そして、図8に示されるように、第1基板10を支持基板11のみで構成すると共に、窪み部20cの底面と第2基板20の他面20bとの間に位置する貼り合わせ基板21および絶縁膜22をダイヤフラム部15とし、このダイヤフラム部15にゲージ抵抗16を形成した圧力センサの製造方法に本開示を適用するようにしてもよい。さらに、図9に示されるように、図8の変形例として、第1基板10を支持基板11および絶縁膜12で構成し、第2基板20を貼り合わせ基板21のみで構成した圧力センサの製造方法に本開示を適用するようにしてもよい。なお、この圧力センサでは、図7に示される圧力センサと同様に、第2基板20の窪み部20cが貼り合わせ基板21の凹部21cで構成され、窪み部20cの底面と第2基板20の他面20bとの間に位置する部分は貼り合わせ基板21のみとなる。
また、上記第1実施形態において、ダイヤフラム部15は、半導体層13のみで構成されていてもよい。つまり、凹部14によって絶縁膜12が除去されていてもよい。同様に、上記第2実施形態において、ダイヤフラム部15は、半導体層13および薄絶縁膜17にて構成されていてもよい。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (2)
- 一面(10a)を有する第1基板(10)と、
一面(20a)および前記一面と反対側の他面(20b)を有し、前記一面側に窪み部(20c)が形成され、当該一面が前記第1基板の一面と対向する状態で前記第1基板に接合される第2基板(20)と、を備え、
前記第1基板と前記第2基板の窪み部との間の空間を含んで気密室(30)が構成され、前記気密室が真空とされた半導体装置の製造方法において、
シリコンを含有する前記第1基板を用意することと、
前記第2基板の前記一面に前記窪み部が形成され、シリコンを含有する前記第2基板を用意することと、
前記気密室が構成されるように、前記第1基板の一面と前記第2基板の一面とを接合することと、
前記気密室内の水素ガス(31)を排出するための加熱処理することと、
前記第1基板の一面と前記第2基板の一面とを接合することの前に、前記第1基板の一面側および前記第2基板の窪み部の壁面を含む一面側にOH基を生成することを備え、
前記第1基板の一面と前記第2基板の一面とを接合することでは、前記第1基板の一面に生成されたOH基と前記第2基板の一面に生成されたOH基を共有結合させ、
前記加熱処理することでは、1℃/sec以下の昇温速度で、前記第1基板および前記第2基板のうちの前記OH基が生成された部分が700℃以上となるように加熱することによって水素ガスを発生させると共に、前記水素ガスの拡散距離が前記気密室を構成する壁面と外気に曝される壁面との間の最短距離以上となるように加熱温度および加熱時間を調整することによって前記水素ガスを前記気密室から排出する半導体装置の製造方法。 - 前記第1基板と前記第2基板とを接合することの前に、前記第1基板の一面側に不純物を拡散させることによって拡散層(16)を形成することと、前記拡散層を覆うと共に前記第1基板の一面を構成する薄絶縁膜(17)を形成することとをさらに備え、
前記第2基板を用意することでは、前記第1基板と前記第2基板とを接合することの際に前記拡散層と対向する部分に前記窪み部が形成されたものを用意し、
前記加熱処理することでは、前記第1基板に前記薄絶縁膜が形成された状態で前記加熱処理する請求項1に記載の半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/528,124 US9944515B2 (en) | 2015-02-16 | 2016-02-03 | Manufacturing method of semiconductor device |
CN201680006742.2A CN107209078B (zh) | 2015-02-16 | 2016-02-03 | 半导体装置的制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-027738 | 2015-02-16 | ||
JP2015027738 | 2015-02-16 | ||
JP2015-242400 | 2015-12-11 | ||
JP2015242400A JP6341190B2 (ja) | 2015-02-16 | 2015-12-11 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132694A1 true WO2016132694A1 (ja) | 2016-08-25 |
Family
ID=56692255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000553 WO2016132694A1 (ja) | 2015-02-16 | 2016-02-03 | 半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016132694A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104217B2 (ja) * | 1988-05-27 | 1995-11-13 | 横河電機株式会社 | 振動式トランスデューサとその製造方法 |
JP4161432B2 (ja) * | 1998-10-28 | 2008-10-08 | 株式会社デンソー | 半導体圧力センサおよびその製造方法 |
-
2016
- 2016-02-03 WO PCT/JP2016/000553 patent/WO2016132694A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104217B2 (ja) * | 1988-05-27 | 1995-11-13 | 横河電機株式会社 | 振動式トランスデューサとその製造方法 |
JP4161432B2 (ja) * | 1998-10-28 | 2008-10-08 | 株式会社デンソー | 半導体圧力センサおよびその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6341190B2 (ja) | 半導体装置の製造方法 | |
JP5783297B2 (ja) | 力学量センサ | |
KR101044503B1 (ko) | 실리콘으로부터 평판-형상의 구조체를 제조하는 방법, 상기방법의 용도, 및 실리콘으로부터 이와 같이 제조되는평판-형상의 구조체 | |
KR20090042712A (ko) | 미세 매립 절연층을 가지는 실리콘-온-절연물 기판들 | |
JP2008294417A5 (ja) | ||
JP2009135468A5 (ja) | 半導体基板及び半導体装置の作製方法 | |
US9029960B2 (en) | Semiconductor device and method of manufacturing the same | |
CN107250807B (zh) | 半导体装置及其制造方法 | |
JP5776232B2 (ja) | 電子デバイスの製造方法 | |
JP6174756B2 (ja) | Soi基板の製造方法 | |
WO2016132694A1 (ja) | 半導体装置の製造方法 | |
JP2009039843A (ja) | 電気部品およびその製造方法 | |
US10622246B2 (en) | Substrate bonding method | |
JP2009076784A5 (ja) | ||
JP6221965B2 (ja) | 半導体装置およびその製造方法 | |
US11027968B2 (en) | Semiconductor device with discharge path, and method for producing the same | |
WO2016143282A1 (ja) | 基板接合方法 | |
JP5884667B2 (ja) | 半導体装置の製造方法 | |
JP6273322B2 (ja) | Soi基板の製造方法 | |
JP2022049603A (ja) | 半導体装置の製造方法 | |
JP5999027B2 (ja) | 物理量センサ | |
JP2018069395A (ja) | Mems装置 | |
JP5454485B2 (ja) | 貼り合わせ基板の製造方法 | |
JP2017028178A (ja) | 半導体ウエーハの3次元実装方法及び半導体ウエーハの接合方法 | |
JP2016131198A (ja) | 半導体装置および半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752085 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528124 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16752085 Country of ref document: EP Kind code of ref document: A1 |