[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016129306A1 - 選択素子およびメモリセルならびに記憶装置 - Google Patents

選択素子およびメモリセルならびに記憶装置 Download PDF

Info

Publication number
WO2016129306A1
WO2016129306A1 PCT/JP2016/050539 JP2016050539W WO2016129306A1 WO 2016129306 A1 WO2016129306 A1 WO 2016129306A1 JP 2016050539 W JP2016050539 W JP 2016050539W WO 2016129306 A1 WO2016129306 A1 WO 2016129306A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
memory
layer
resistance
selection
Prior art date
Application number
PCT/JP2016/050539
Other languages
English (en)
French (fr)
Inventor
大場 和博
五十嵐 実
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/545,923 priority Critical patent/US10971685B2/en
Priority to JP2016574687A priority patent/JP6750507B2/ja
Priority to CN201680008329.XA priority patent/CN107210302B/zh
Publication of WO2016129306A1 publication Critical patent/WO2016129306A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Definitions

  • the present disclosure relates to a selection element having a switch element between electrodes, a memory cell including the selection element, and a memory device.
  • cross-point type memory cells are provided with selection elements for cell selection.
  • the selection element include those configured using a metal oxide (for example, see Non-Patent Documents 1 and 2), but the selection element has an insufficient switching threshold voltage, When a high voltage is applied, dielectric breakdown is likely to occur.
  • a selection element for example, see Non-Patent Documents 3 and 4 in which the resistance value is switched at a certain voltage and the current rapidly increases (Snap Back).
  • the selection current value can be made larger than a selection element constituted by a nonlinear resistance material such as a metal oxide. It becomes.
  • the switching threshold voltage of the selection element needs to be larger than the write threshold voltage of the memory element to be combined, the magnitude is not sufficient. Further, when combined with a memory element having a large write threshold voltage, the selection element is required to have a sufficiently large selection ratio (on / off state) and half-selection (off) state (on / off ratio). However, this was not enough.
  • a selection element using a chalcogenide material Ovonic Threshold Switch (OTS): see, for example, Patent Documents 1 and 2). Is small, the current in the on-state can be increased, and the switch characteristic is such that the current increases rapidly by switching at a certain threshold voltage, so that a relatively large on / off ratio can be obtained.
  • Ovonic Threshold Switch Ovonic Threshold Switch
  • this OTS element is used for a cross-point type memory cell as a selection element and a current having a large current density of, for example, 10 MA / cm 2 is passed, and further repeated operation is performed at such a large current density.
  • a current having a large current density of, for example, 10 MA / cm 2 is passed, and further repeated operation is performed at such a large current density.
  • the switching threshold voltage is lowered, or the variation of the switching threshold voltage between a plurality of OTS elements arranged becomes large.
  • the selection element includes a first electrode, a second electrode disposed opposite to the first electrode, a switch element provided between the first electrode and the second electrode, and boron (B) , Including at least one of silicon (Si) and carbon (C), and a non-linear resistance element connected in series with the switch element.
  • a memory cell according to an embodiment of the present technology includes a memory element and the selection element.
  • a storage device includes a plurality of memory elements and a plurality of the selection elements.
  • the memory cell according to the embodiment, and the memory device according to the embodiment, together with the switching element at least one of boron (B), silicon (Si), and carbon (C) is used.
  • B boron
  • Si silicon
  • C carbon
  • the memory cell of one embodiment, and the memory device of one embodiment, together with the switch element, at least one of boron (B), silicon (Si), and carbon (C) Nonlinear resistance elements including seeds were used.
  • B boron
  • Si silicon
  • C carbon
  • the current applied to the switch element is controlled, and it becomes possible to provide a highly reliable selection element, memory cell, and memory device with improved current resistance.
  • the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 2 is a perspective view illustrating an example of a memory cell array including the selection element illustrated in FIG. 1.
  • FIG. 8 is a cross-sectional view illustrating an example of a configuration of a memory cell illustrated in FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating another example of the configuration of the memory cell illustrated in FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating another example of the configuration of the memory cell illustrated in FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating another example of the configuration of the memory cell illustrated in FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating another example of the configuration of the memory cell illustrated in FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating another example of the configuration of the memory cell illustrated in FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating another example of the configuration of the memory cell illustrated in FIG. 7.
  • FIG. 7 is a perspective view illustrating another example of the memory cell array including the selection element illustrated in FIG. 1. It is sectional drawing showing the structure of the selection element which concerns on the modification 1 of this indication. It is sectional drawing of the memory cell provided with the selection element shown in FIG. It is a characteristic view showing the current-voltage characteristic of the nonlinear resistance element used for the selection element shown in FIG. It is a characteristic view showing the current-voltage characteristic of a general switch element. It is a characteristic view showing the relationship between the reciprocal of the set resistance of a general memory element, and a current. It is sectional drawing showing the structure of the selection element which concerns on the modification 2 of this indication.
  • FIG. 16 is a cross-sectional view of a memory cell including the selection element shown in FIG. 15. It is a characteristic view showing the current voltage characteristic of the nonlinear resistance element used for the selection element shown in FIG. It is a current-voltage characteristic view of each current density in Experimental Example 1-1. It is a current-voltage characteristic view of each current density in Experimental Example 1-2. It is a current-voltage characteristic view of each current density in Experimental Example 1-3.
  • FIG. 10 is a current-voltage characteristic diagram in Experimental Example 2-1. It is a current-voltage characteristic figure in Experimental example 2-2.
  • Embodiment selecting element comprising a switching element and a non-linear resistance element 1-1.
  • Selection element 1-2.
  • Modification (example using a constant current diode as a nonlinear resistance element) 2-1.
  • Modification 2 3.
  • FIG. 1 illustrates a cross-sectional configuration of a selection element (selection element 10A) according to an embodiment of the present disclosure.
  • the selection element 10A selects, for example, an arbitrary memory element (memory element 20; FIG. 7) among a plurality of memory cell arrays (memory cell array 1A) having a so-called cross-point array structure shown in FIG. It is intended to operate automatically.
  • the selection element 10A (selection element 10; FIG. 7) is a switch element 10X and a non-linear resistance element 10Y having the current-voltage characteristics shown in FIG. 2 connected in series.
  • the non-linear resistance layer 15 constituting the non-linear resistance element 10Y and the switch element 10X are formed between the lower electrode 11 (first electrode) and the upper electrode 12 (second electrode) arranged to face each other.
  • the switch layer 14 is stacked in this order from the lower electrode 11 side through the intermediate electrode 13. That is, the switch element 10X and the non-linear resistance element 10Y share the intermediate electrode 13, and the switch element 10X is formed by the intermediate electrode 13, the switch layer 14 and the upper electrode 12 to form the lower electrode 11, the non-linear resistance layer 15 and the intermediate electrode 13.
  • the electrode 13 constitutes the nonlinear resistance element 10Y.
  • the lower electrode 11 is a wiring material used in a semiconductor process, such as tungsten (W), tungsten nitride (WN), titanium nitride (TiN), copper (Cu), aluminum (Al), molybdenum (Mo), tantalum (Ta). ), Tantalum nitride (TaN), silicide, and the like.
  • the lower electrode 11 is made of a material that may cause ion conduction in an electric field such as Cu
  • the surface of the lower electrode 11 made of Cu or the like is made of W, WN, titanium nitride (TiN), TaN, or the like. You may make it coat
  • a known semiconductor wiring material can be used similarly to the lower electrode 11, but a stable material that does not react with the switch layer 14 even after post-annealing is preferable.
  • the switch element 10X performs an OTS operation by applying a voltage.
  • the applied voltage is set to a certain threshold voltage or more, the switch layer 14 is lowered in resistance, and the applied voltage is reduced or removed below the threshold voltage.
  • the switch layer 14 has a high resistance. This threshold voltage is referred to as a switching threshold voltage.
  • the material of the switch layer 14 has a small leakage current in the off state and a large selection ratio.
  • a material capable of using dry etching in the manufacturing process because of easy microfabrication.
  • the switch layer 14 contains a group 16 element of the periodic table, specifically, chalcogen elements such as sulfur (S), selenium (Se) and tellurium (Te), and boron ( It is preferable to use a chalcogenide containing at least one of B), silicon (Si) and carbon (C).
  • Te is particularly preferable.
  • the leakage current in the off state is reduced by adding nitrogen (N).
  • the film thickness of the switch layer 14 is not particularly limited, but is preferably 3 nm or more and 40 nm or less, for example, in order to reduce the thickness of the switch layer 14 and suppress the leakage current at the time of non-selection (off) as much as possible. .
  • the switch layer 14 may contain, for example, metal elements such as aluminum (Al), magnesium (Mg), boron (B), yttrium (Y), and rare earth elements as additive elements other than the above elements. Note that the switch layer 14 may contain elements other than these as long as the effects of the present disclosure are not impaired.
  • the non-linear resistance element 10Y has a non-linear current-voltage characteristic as shown in FIG. 2, and a switch element 10X (specifically, a switch element 10X) is generated from a drive current applied at the time of writing or erasing in a memory cell array to be described later. For protecting the layer 14).
  • the nonlinear resistance element 10Y preferably has moderate nonlinearity. Specifically, for example, it is desirable to have non-linearity in which the current increases by about 0.5 to 2 digits per 1V in an IV curve shape in the current-voltage characteristics. This is because the switch element 10X operates favorably.
  • the non-linearity is smaller than 0.5 digit / 1 V, for example, when the resistance value in the off state is increased, the current flowing in the on state is reduced, and it is difficult to sufficiently obtain the effect of the present disclosure.
  • the non-linearity is too large (for example, exceeding 2 digits / 1V)
  • the switch element 10X cannot be protected from an overcurrent at the time of switching, and the switch element 10X cannot be prevented from being deteriorated.
  • the non-linear resistance element 10Y of the present embodiment is not limited to the range where the current increase per 1V is 0.5 digits to 2 digits. If the effect of the present disclosure is obtained, the nonlinear resistance element 10Y falls outside the above range. It may be.
  • the material of the non-linear resistance layer 15 preferably includes at least one of B, Si, and C. Specifically, the dielectric breakdown voltage of the non-linear resistance layer 15 is increased by using B 4 C. be able to.
  • the material constituting the non-linear resistance layer 15 does not necessarily have a so-called compound composition having a uniform composition ratio, and can have any composition as long as it includes any of B, Si, and C. .
  • a B—Si—C alloy, a B—Si alloy, or a Si—C alloy may be used.
  • oxygen (O) or N may be added. By adding O or N, the resistance value or insulation of the nonlinear resistance layer 15 can be improved.
  • the non-linear resistance element 10Y (non-linear resistance layer 15) has a withstand voltage of 1 MV / cm or more, and allows a current having a current density of 10 MA / cm 2 or more to flow when the applied voltage is 2 V or less. preferable.
  • a non-stoichiometric compound such as silicon oxide (SiO x ), silicon nitride (SiN x ), or silicon oxynitride (SiO x N y ) is used as the material of the nonlinear resistance layer 15. Also good.
  • the film thickness of the non-linear resistance layer 15 is not particularly limited, but is preferably, for example, 1 nm or more and 20 nm or less in order to keep the flowing current low when the switch element is in an off state and allow a large current to flow in the on state.
  • B, C, and Si are elements that are also used in the switch layer 14, and thus are preferable in that similar etching conditions can be used in etching performed during microfabrication.
  • the intermediate electrode 13 is provided between the switch layer 14 and the nonlinear resistance layer 15.
  • the material of the intermediate electrode 13 is conductive and has, for example, an oxidation-reduction reaction such as dissolution or precipitation of ions in the switch layer 14 and the nonlinear resistance layer 15 containing chalcogenide and movement of ions by application of an electric field. It is preferable to use a hard inert material. For example, it is preferable to use a refractory metal (for example, a melting point of 1800 ° C. or higher) or a compound thereof, thereby suppressing deterioration of the switch element 10X.
  • a refractory metal for example, a melting point of 1800 ° C. or higher
  • the material include titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), tungsten nitride (WN), titanium tungsten (TiW), and titanium tungsten nitride (TiWN). It is desirable to use W. W is preferably used not only for the intermediate electrode 13 but also for an electrode in contact with the switch layer 14 (here, the upper electrode 12). This is because a chalcogen element (for example, Te) contained in the switch layer 14 reacts or is easily alloyed with an electrode material used in a general semiconductor circuit mainly composed of Al, Cu, or the like. This is because the characteristics of the switch element 10X are significantly deteriorated due to the reaction.
  • a chalcogen element for example, Te
  • At least the switch layer 14 is in contact with an electrode formed of the above-described high melting point metal or a compound that does not easily react with Te.
  • the selection element 10A is lowered in resistance by application of a voltage equal to or higher than the switching threshold voltage, but returns to a high resistance state when the applied voltage is lowered below the switching threshold voltage.
  • the selection element 10A has a phase change (amorphous phase (amorphous phase)) of the switch layer 14 by applying a voltage pulse or a current pulse through a lower electrode 11 and an upper electrode 12 from a power supply circuit (pulse applying means) (not shown). ) And crystal phase).
  • the selection element 10A does not perform a memory operation such that a conduction path formed by movement of ions by voltage application is maintained even after erasing the applied voltage.
  • the capacity of the memory is increased by a cross point in which a memory cell in which a memory element and a switch element are stacked is arranged in the vicinity of a cross point between intersecting wires as shown in FIG.
  • a resistance change type memory element for example, a memory element 20 described later
  • the resistance change type memory element is formed of various materials. Generally, a memory element having a larger write threshold voltage has higher recording retention reliability. Further, the write threshold voltage of the memory element has a variation between elements. For this reason, it is necessary to allow an extra margin for the write threshold voltage in a large-scale memory cell array.
  • the switching threshold voltage of the switch element is preferably higher than that.
  • the variation of the write threshold voltage in the memory cell array is ⁇ 0.3V.
  • the voltage is desirably 1.3 V or higher. Therefore, in order to drive a memory element having a high writing threshold voltage (for example, 1.5 V or more) and high retention reliability without a defective writing operation, a higher switching threshold voltage is required for the switch element.
  • a bidirectional diode for example, MIM (Metal-Insulator-Metal) bidirectional diode
  • MIM Metal-Insulator-Metal
  • the selection ratio (on / off ratio) defined by the ratio of the resistance value or the current value between the on state and the off state to be driven is often insufficient.
  • some MIM diodes using NbO x , VO x, and the like switch at a certain threshold voltage, but have a large leakage current in the off state and do not have a sufficiently large selection ratio.
  • the selection ratio is further reduced, so that it is difficult to operate a memory cell array including a plurality of memory elements such as a cross-point type memory cell. . This is because the off-state leakage current is large and the selection ratio is low.
  • an OTS element using a chalcogenide material has a small leakage current in the off state, can increase the current in the on state, and has the above switching characteristics.
  • a relatively large selection ratio can be obtained even when connected to. Therefore, it is promising as a selection element used for a large capacity memory such as a cross-point type memory cell.
  • the OTS element when used for a cross-point type memory cell, if a current having a large current density of 10 MA / cm 2 , for example, is passed and repeated operation is performed at such a large current density, the switching threshold voltage decreases. Or a variation in switching threshold voltage between a plurality of OTS elements arranged increases. This is because the OTS element has a so-called negative resistance in which the resistance value rapidly decreases during switching (the apparent resistance value is almost 0 or minus).
  • a negative resistance is generated when the OTS element is switched, and an excessive current flows instantaneously.
  • the OTS element specifically, a chalcogenide layer made of a chalcogenide material
  • the switching threshold voltage decreases and the switching threshold voltage varies.
  • FIG. 3 shows current-voltage characteristics of the linear resistance element.
  • 4A shows a current-voltage characteristic when a non-linear resistance element having a non-linear current-voltage characteristic as shown in FIG. 2 and a switch element are connected in series
  • FIG. 4B shows the current-voltage characteristic in FIG.
  • the current-voltage characteristic when the element (linear resistance element) and the switch element which have the current-voltage characteristic of line formation as shown and the switch element are connected in series is represented. As can be seen from FIG.
  • the selection element formed by connecting the non-linear resistance element in series with the switch element shows the switch characteristics regardless of the resistance value of the non-linear resistance element, and can change the sustain voltage.
  • the sustain voltage is also referred to as a holding voltage, and is a voltage at an inflection point at which the voltage starts to rise again after the voltage is lowered by switching in FIG. 4A.
  • FIG. 4B when a linear resistance element and a switch element are combined, when a linear resistance element having a large resistance value is used in order to improve the voltage resistance of the switch element, it is turned on. Since the current is also limited, the switch characteristics are lost.
  • the sustaining voltage can be increased and the switching threshold voltage can be controlled without significantly affecting the on-current. That is, it is possible to reduce degradation of the switching element due to repetition characteristics and deterioration due to applied current and voltage.
  • an on-current can be secured, so that a driving current density can be obtained. For this reason, even in a miniaturized memory cell, a driving current necessary for rewriting a memory element can be obtained.
  • the current control element combined with the switch element is preferably a non-linear resistance element.
  • a non-linear resistance element for example, a non-linear resistance element using TiO 2 or the like can be mentioned, but this non-linear resistance element is not sufficient in specific resistance, withstand voltage, etc.
  • TiO 2 is destroyed and a sufficient effect as a current control element cannot be obtained.
  • the effect can be obtained by increasing the film thickness of the non-linear resistance element, but in this case, miniaturization of the memory cell is hindered.
  • the selection element 10A of the present embodiment includes at least one of boron (B), silicon (Si), and carbon (C) as a current control element connected in series to the switch element 10X.
  • the nonlinear resistance element 10Y is used. Specifically, between the lower electrode 11 and the upper electrode 12 arranged to face each other, the switch layer 14 via the intermediate electrode 13 and the nonlinear resistance layer 15 including at least one of B, Si, and C, Were stacked. This makes it possible to control the current applied to the switch element 10X.
  • the nonlinear resistance element 10Y including at least one of boron (B), silicon (Si), and carbon (C) is connected in series with the switch element 10X. I did it. As a result, the current applied to the switch element 10X can be controlled, the switch layer 14 constituting the switch element 10X is protected, and the current resistance can be improved.
  • the selection element 10 is only required to connect the switch element 10X and the nonlinear resistance element 10Y in series, and is laminated between the lower electrode 11 and the upper electrode 12 via the intermediate electrode 13.
  • the order in which the switch layer 14 and the nonlinear resistance layer 15 are stacked is not particularly limited.
  • the intermediate electrode 13 may be laminated
  • the switch layer 14 may be on the lower electrode side
  • the nonlinear resistance layer 15 may be laminated on the upper electrode side.
  • the resistance value of the nonlinear resistance layer 15 is adjusted by adjusting its composition, film thickness, etc., for example, without using the intermediate electrode 13 as in the selection elements 10C and 10D shown in FIGS. 6A and 6B, the switch layer 14 and the non-linear resistance layer 15 may be directly laminated.
  • the selection elements 10C and 10D that do not use the intermediate electrode 13 tend to have higher off-state resistance than the selection elements 10A and 10B that use the intermediate electrode 13 even if the switch layer 14 and the nonlinear resistance layer 15 have the same film thickness. There is.
  • the area of the non-linear resistance element 10Y is the size of the element itself, but in the selection elements 10C and 10D not using the intermediate electrode 13, it is formed in the switch layer 14. This is because the size of the filament to be formed is considered to be a substantial element size.
  • the resistance or nonlinearity of the non-linear resistance layer 15 of the selection elements 10C and 10D that do not use the intermediate electrode 13 is set so that a current that is 1 to 4 digits larger than the leakage current in the OFF state of the switch layer 14 flows. It is preferable to adjust. Specifically, although depending on the element sizes of the selection elements 10C and 10D, the film thickness of the nonlinear resistance layer 15 is, for example, 1/5 to 1 compared with the selection elements 10A and 10B using the intermediate electrode 13. / 2 or less is preferable. Also, when the resistance value is adjusted by changing the composition ratio of the non-linear resistance layer 15, the resistance may be 1/5 to 1/2 or less.
  • the storage device can be configured by arranging a plurality of memory elements 20 to be described later, for example, in a column shape or a matrix shape.
  • the selection element 10 of the present disclosure includes the switch element 10X and the nonlinear resistance element 10Y connected in series, and the selection element 10 is further connected in series with the memory element 20 to be connected to the memory cell. 2 is constituted.
  • the memory cell 2 is connected to a sense amplifier, an address decoder, a write / erase / read circuit, etc. via wiring such as a bit line (BL) and a word line (WL).
  • FIG. 7 shows an example of a so-called cross-point array type storage device (memory cell array 1A) in which the memory cells 2 are arranged at the intersections (cross points) between the intersecting wirings.
  • this memory cell array 1A for each memory cell 2, wiring connected to the lower electrode 11 side (for example, bit line; BL (row line)) and wiring connected to the upper electrode 12 side (for example, word line) Line; WL (vertical line)), for example, each memory cell 2 is arranged near the intersection of these wirings.
  • the cross point array structure the floor area per unit cell can be reduced, and the capacity can be increased.
  • a high-density and large-capacity memory can be realized by forming a three-dimensional structure in which unit structures composed of bit lines, memory cells 2 and word lines are stacked in the Z-axis direction. .
  • the bit line or the word line may be shared by the upper and lower memory cells.
  • an interlayer insulating film (not shown) may be provided between the stacked unit structures composed of the bit line, the memory cell 2 and the word line.
  • the memory element 20 constituting the memory cell 2 has, for example, the lower electrode 11, the memory layer 21, and the upper electrode 12 in this order.
  • the memory layer 21 is configured, for example, by a laminated structure in which the resistance change layer 23 and the ion source layer 22 are laminated from the lower electrode 11 side or a single layer structure of the resistance change layer 23.
  • an intermediate electrode 24 is provided between the switch layer 14 and the memory layer 21, and the intermediate electrode 24 serves as an upper electrode of the selection element 10 and a lower electrode of the memory element 20.
  • the memory cell 2 includes, for example, a resistance change layer 23, an ion source layer 22, an intermediate electrode 24, a nonlinear resistance layer 15, between the lower electrode 11 and the upper electrode 12, as shown in FIG. 8A.
  • the intermediate electrode 13 and the switch layer 14 are stacked in this order (memory cell 2A).
  • the memory layer 21 may be a so-called resistance change type memory element (memory element) having a configuration in which, for example, the ion source layer 22 and the resistance change layer 23 are stacked as described above.
  • a resistance change memory made of a transition metal oxide, PCM (phase change memory) or MRAM (magnetoresistance change memory) may be used.
  • the ion source layer 22 includes a movable element that forms a conduction path in the resistance change layer 23 by application of an electric field.
  • the movable elements are, for example, transition metal elements (Group 4 to Group 6 of the periodic table) and chalcogen elements, and the ion source layer 22 is configured to include one or more of these elements.
  • the ion source layer 22 preferably contains oxygen (O), nitrogen (N), or an element other than the above elements, such as Al, Cu, zirconium (Zr), and hafnium (Hf).
  • the ion source layer 22 may contain, for example, manganese (Mn), cobalt (Co), iron (Fe), nickel (Ni), platinum (Pt), Si, and the like.
  • the resistance change layer 23 is made of, for example, an oxide or nitride of a metal element or a nonmetal element, and the resistance value changes when a predetermined voltage is applied between the lower electrode 11 and the upper electrode 12. To do. Specifically, when a voltage is applied between the lower electrode 11 and the upper electrode 12, the transition metal element contained in the ion source layer 22 moves into the resistance change layer 23, and a conduction path is formed. The change layer 23 has a low resistance. Alternatively, structural defects such as oxygen defects and nitrogen defects occur in the resistance change layer 23 to form a conduction path, and the resistance change layer 23 has a low resistance. Further, by applying a reverse voltage, the conduction path is cut or the conductivity is changed. As a result, the resistance change layer 23 is increased in resistance.
  • the metal element and the nonmetal element included in the resistance change layer 23 do not necessarily have to be in an oxide state, and may be in a state in which a part thereof is oxidized.
  • the initial resistance value of the resistance change layer 23 only needs to realize an element resistance of, for example, several M ⁇ to several hundred G ⁇ , and the optimum value varies depending on the size of the element and the resistance value of the ion source layer 22.
  • the film thickness is preferably about 1 nm to 10 nm, for example.
  • the intermediate electrode 24 is provided between the selection element 10 and the memory element 20.
  • redox such as dissolution / precipitation of ions into the switch layer 14 containing the chalcogenide and the ion source layer 22 by application of an electric field. Any inert material that is unlikely to cause reaction and ion migration can be used, and the same material as that of the intermediate electrode 13 described above can be used.
  • the intermediate electrode 24 is in contact with the non-linear resistance layer 15, it is not necessarily required to be W or other refractory metal, and the intermediate electrode 24 is on the side in contact with the switch layer 14 and the side in contact with the non-linear resistance layer 15. Separate materials may be used. Therefore, as the material used for the intermediate electrode 24, known materials such as Cu, Al, TiN, which are general wiring materials, can also be used.
  • the stacked structure of the memory cells 2 in the memory cell array 1A having the cross-point array structure is not limited to the memory cell 2A in which the selection element 10A and the memory element 20 illustrated in FIG. 8A are stacked, and for example, FIG. 8B to FIG. A stacked structure as shown in FIG.
  • the memory cell 2B shown in FIG. 8B is obtained by stacking the selection element 10B and the memory element 20 shown in FIG. 5 via the intermediate electrode 24.
  • the memory cell 2C shown in FIG. And the stacking order of the memory element 20 are reversed.
  • the memory cell 2D illustrated in FIG. 8D is obtained by providing the memory element 20 between the switch element 10X and the nonlinear resistance element 10Y constituting the selection element 10.
  • the intermediate electrodes 13 and 24 may be omitted as appropriate, and the memory cell 2E shown in FIG. 8E has the intermediate electrode 24 between the memory element 20 and the nonlinear resistance layer 15 of the memory cell 2D shown in FIG. 8D. Is omitted.
  • the switching element 10X, the nonlinear resistance element 10Y, and the memory element 20 are directly stacked, the switching element 10X and the memory element 20 are interposed between the nonlinear resistance element 10Y as in the memory cell 2F illustrated in FIG. 8F. It is preferable to laminate.
  • the non-linear resistance layer 15 By disposing the non-linear resistance layer 15 in the middle, diffusion of movable ions in the ion source layer 22 constituting the memory element 20 to the switch layer 14 constituting the switch element 10X is reduced, and a good operation as a switch element is achieved. That is, it is possible to prevent the OTS operation from being lost.
  • the memory element 20 applies a voltage pulse or a current pulse through a lower electrode 11 and an upper electrode 12 from a power supply circuit (pulse applying means) (not shown), the resistance change in which the electrical characteristic (resistance value) of the memory layer 21 changes.
  • a power supply circuit pulse applying means
  • a voltage or current pulse of “positive direction” (for example, a negative potential on the first electrode side and a positive potential on the second electrode side) with respect to the element in the initial state (high resistance state) is applied.
  • the metal element for example, transition metal element
  • the metal element contained in the ion source layer is ionized and diffuses in the memory layer (for example, in the resistance change layer), or oxygen ions move in the resistance change layer. Oxygen defects are generated.
  • a low resistance portion (conductive path) having a low oxidation state is formed in the memory layer, and the resistance of the resistance change layer is lowered (recording state).
  • the metal ions in the resistance change layer are ionized. Movement into the source layer or oxygen ions from the ion source layer reduces oxygen defects in the conduction path portion. As a result, the conduction path containing the metal element disappears, and the resistance of the variable resistance layer becomes high (initial state or erased state).
  • the memory layer 21 is formed of a single layer of the resistance change layer 23. defects are generated by the application of a positive voltage (or current pulse) and the electric field applied to the resistance change layer 23. When a voltage pulse is applied in the negative direction, the defect is repaired by the movement of oxygen ions and nitrogen ions in the resistance change layer.
  • the structure of the cross-point array type memory cell array is not limited to the memory cell array 1A shown in FIG.
  • WL may extend in the Y-axis direction
  • BL may extend in the Z-axis direction
  • the memory cell 2 may be provided at the intersection where WL and BL face each other.
  • WL and BL do not necessarily have to extend in one direction, and a part of WL may extend in the X-axis direction or the Z-axis direction.
  • WL may be continuously refracted from the X-axis direction to the Y-axis direction.
  • the storage device in this embodiment is the same when the so-called PCM and MRAM configurations are applied to the storage layer 21.
  • FIG. 10 illustrates a cross-sectional configuration of a selection element 30 as a modified example of the present disclosure according to the above-described embodiment.
  • the selection element 30 is different from the above-described embodiment in that a constant current diode is used as the nonlinear resistance element 30Y connected in series with the switching element 10X.
  • FIG. 11 shows a cross-sectional configuration of a memory cell using the selection element 30 of this modification.
  • a junction field effect transistor is used as the constant current diode that is the nonlinear resistance element 30Y, and its specific configuration is schematically shown.
  • the same components as those in the above embodiment are given the same reference numerals, and the description thereof is omitted.
  • the non-linear resistance element 30Y is a constant current diode as described above, and specifically, a so-called junction field effect transistor having a configuration in which a gate electrode and a drain electrode or a source electrode are integrated.
  • the current-voltage characteristic of the constant current diode shows a non-linear resistance change as shown in FIG.
  • the current flowing through the mold channel region is limited. In the depletion type junction field effect transistor, even when the gate-source voltage becomes zero, the channel region is not blocked by the depletion layer region.
  • the IV curve of the junction field effect transistor shows a change as shown in FIG. That is, since the size of the depletion layer region does not change while the drain-source voltage is small, a current proportional to the voltage flows.
  • This voltage range is called the linear region and does not exhibit constant current action.
  • the drain-source voltage increases, the channel region is blocked by the depletion layer region, and only a constant current flows.
  • This voltage range is called a saturation region and exhibits constant current characteristics.
  • the drain-source voltage is further increased, the insulation of the depletion layer region is broken, and minority carriers start to grow and a large current flows rapidly. The voltage at which a large current begins to flow is the breakdown voltage of the transistor, and the constant current action is lost in a voltage range higher than this.
  • the nonlinear resistance element 30Y includes an n-type channel region 351 in which a Si or SiC semiconductor is doped with an element of Group 15 of the periodic table such as N as a donor element, and an acceptor element on the surface of the n-type substrate.
  • p-type gate region 352 doped with elements of Group 13 of the periodic table such as B.
  • the p-type gate region 352 has a cross-sectional area smaller than the inner diameter of the contact hole structure formed in the vertical direction at the intersection of BL and WL of the cross-point type memory cell array.
  • an n-type channel region heavily doped with N or the like as a donor element is formed at a connection portion between the upper electrode 12 and the n-type channel region 351 and a connection portion between the intermediate electrode 24. ing.
  • the upper electrode 12 functions as a drain electrode or a source electrode
  • the intermediate electrode 24 functions as a source electrode or a drain electrode
  • the n-type channel region 351 has a gate potential equal to that of the drain electrode or the source electrode.
  • a p-type gate region 352 form a depletion layer.
  • the selection element 10 described in the above embodiment and the selection element 30 of this modification example are connected to the memory element 20 in series to select an arbitrary memory element in a memory cell array arranged in a plurality of columns or matrices. It is for making it possible. That is, it can be said that the selection element 10 and the selection element 30 are for suppressing generation of a sneak current at the time of writing / reading of the memory element 20.
  • FIG. 13 shows current-voltage characteristics of a 20 nm-thickness diode having a BCTeN layer, for example, which is used as a general selection element.
  • This selection element is a kind of bidirectional Schottky barrier diode, and both ends of the BCTeN layer are connected to an inert metal electrode such as TiN or W.
  • This selection element has two states, an off state in which almost no current flows and an on state in which a large current can flow. In order to switch between the off state and the on state, it is necessary to apply a voltage equal to the switching threshold voltage Vb across the BCTeN layer. As seen in FIG.
  • the phenomenon that the differential resistance of the current-voltage characteristics becomes negative (negative differential resistance) at the time of transition between the off state and the on state is often seen when a chalcogen element is included. Even if the chalcogen element is not included, an insulator having many trap levels may be seen.
  • the load line of this selection element is represented by a straight line connecting Vin and the maximum current Vin / RA determined by the resistance RA of the memory element.
  • the set current Icomp flowing through the memory element is on the load line, and is expressed by the following equation, where the holding voltage of the selection element is Vh and the on-resistance of the selection element is Ron.
  • the on-resistance Ron has a current dependency, and the set current Icomp cannot be determined accurately.
  • FIG. 14 shows the relationship between the reciprocal 1 / R A of the set resistance and the set current Icomp of a general nonvolatile memory element capable of storing the resistance value of the resistance layer provided between the pair of electrodes in a nonvolatile manner.
  • This nonvolatile memory element is a kind of 4 nm-thick ion conduction memory having an Al 2 O 3 layer as a resistance layer.
  • One end face of the resistance layer is connected to an inert metal electrode such as TiN, and the other end face is connected to an active electrode such as CuZrAlTe.
  • This active electrode corresponds to the ion source layer described in the above embodiment.
  • the reciprocal 1 / R A of the set resistance (that is, the set conductance) has a property proportional to the set current Icomp, and the set resistance value can be accurately determined as long as the set current can be strictly applied.
  • a unique set current cannot be determined because the ON resistance Ron and the holding voltage Vh of the selection element vary, resulting in a variation in the set resistance itself. If the set resistance varies, one end (maximum current Vin / R A ) of the load line of the selection element also fluctuates, and the variation of the set current Icomp further increases.
  • the non-linear resistance element can limit the set current Icomp flowing through the cross-point type memory cell array to a constant value. Further, since the non-linear resistance element does not have a function of reducing the reset current and the sneak current, the function does not overlap with the general selection element as described above.
  • a memory cell in a cross-point type memory cell array, can be used as a new selection element by connecting a non-linear resistance element in series to a general selection element as described above as a selection element constituting a memory cell. It is possible to stabilize the maximum current flowing through the capacitor, that is, the set current to a constant value. When the set current is always constant, the resistance value of the memory element is also set to a constant value.
  • the resistance value of the memory element is set to be constant, it becomes possible to improve the resistance isolation characteristic corresponding to the binary state of the high resistance state (0) and the low resistance state (1), and a cross-point type memory cell array
  • the array size can be increased, and a memory (storage device) having a large capacity and a reduced price can be realized.
  • FIG. 15 illustrates a cross-sectional configuration of a selection element 40 as a modification of the present disclosure according to the above-described embodiment.
  • the selection element 40 uses a junction field effect transistor as the non-linear resistance element 40Y as in the first modification, but the gate electrode (gate electrode 453) is applied with a potential different from BL and WL. It is different from the above modification.
  • FIG. 16 shows a cross-sectional configuration of a memory cell using the selection element 40 of this modification.
  • symbol is attached
  • the non-linear resistance element 40Y is a junction field effect transistor as described above, and the gate electrode 453 is provided separately from the upper electrode 12 which is a drain electrode and a source electrode. This is different from the first modification.
  • FIG. 17 shows the current-voltage characteristics of the nonlinear resistance element 40Y.
  • the corresponding limit values Ilimit1, Ilimit2, Ilimit3,...) are controlled by controlling the voltage applied to the gate electrode 453 (for example, Vg1, Vg2, Vg3,). Can be obtained. This is because the size of the depletion layer region formed between the n-type channel region 451 and the p-type gate region 452 can be controlled.
  • the maximum current (set current Icomp) flowing through the memory cell can be stabilized to a corresponding value. Therefore, the controllability of a plurality of intermediate resistance states set between the high resistance state and the low resistance state is improved, and multilevel recording of the memory cell 4 can be realized.
  • the selection element 40 in addition to the effect of the first modification, the selection element 40 is set between the high resistance state and the low resistance state required for multilevel recording. Since the plurality of intermediate resistance state resistance separation characteristics are improved, it is possible to achieve further increase in capacity and cost.
  • Example 1 First, after the lower electrode 11 made of TiN was cleaned by reverse sputtering, a BCTeN film having a thickness of 20 nm was formed as a switch layer 14 on TiN, and then W was formed as an intermediate electrode 13 with a thickness of 1 nm. Subsequently, after forming a B 4 C film with a thickness of 10 nm on the W film as the nonlinear resistance layer 15, W was further formed with a thickness of 30 nm to form the upper electrode 12. Subsequently, the selection element 10A (Experimental Example 1-1) was manufactured by performing fine processing using a known technique such as photolithography or dry etching so that the element size becomes 100 nm ⁇ .
  • a selection element (a switching element 10X only; experimental example 1-2) not provided with the nonlinear resistance layer 15 and a selection element (in which the nonlinear resistance layer 15) is formed with a TiO 2 film (non-linear resistance layer 15).
  • Experimental Example 1-3 was produced. The composition of each layer of Experimental Examples 1-1 to 1-3 is shown below in the order of “lower electrode / switch layer / intermediate electrode / nonlinear resistance layer / upper electrode”.
  • FIGS. 18 to 20 show the drive currents of about 0.8 mA (5 k ⁇ ; A) in Experimental Example 1-1 (FIG. 18), Experimental Example 1-2 (FIG. 19), and Experimental Example 1-3 (FIG. 20), It shows the relationship (current-voltage characteristics) between the applied voltage at 200 ⁇ A (18.5 k ⁇ ; B) and 100 ⁇ A (37 k ⁇ ; C) and the current value flowing through each electrode.
  • Example 1-1 which is an embodiment of the present disclosure
  • the switching threshold voltage decreases even when driven at 0.8 mA, which is the highest current density. And good characteristics could be maintained. This is considered because the nonlinear resistance layer 15 made of B 4 C is provided as the nonlinear resistance element 10Y.
  • a nonlinear resistance layer made of TiO 2 is provided as the nonlinear resistance element 10Y.
  • good switching characteristics were obtained up to a driving current of 100 ⁇ A, but when it exceeded 200 ⁇ A, the switching threshold voltage decreased and the variation of the switching threshold voltage became remarkable.
  • the non-linear resistance element 10Y including B is connected in series like the selection element 10 of the present disclosure, the deterioration of the switch element 10X due to a large drive current is reduced, and the switching threshold voltage It has been found that an increase in switching and a variation in switching threshold voltage can be reduced. Further, even with the same nonlinear resistance element, the effect of the present disclosure could not be obtained with a nonlinear resistance element having a nonlinear resistance layer made of TiO 2 . This is probably caused by a high dielectric constant.
  • the dielectric constant of TiO 2 is about 70 to 100, and the dielectric constant of B 4 C is 10 or less. That is, in order to obtain sufficient current resistance, the dielectric constant of the non-linear resistance layer is preferably a constant value or less, for example, 20 or less, more preferably 10 or less.
  • B 4 C is used as the material constituting the nonlinear resistance layer 15, but the composition ratio of B and C can be adjusted within a range not departing from the spirit of the present invention. Although not shown here, the same effect can be obtained by using Si in addition to B and C.
  • Example 2 Next, a constant current diode was formed as a non-linear resistance layer 35 as a non-linear resistance element, and a selection element 30 (Experimental Example 2-1) having a configuration similar to that of Experiment 1 except for the non-linear resistance layer 35 was produced. Further, as a comparative example, a selection element (Experimental Example 2-2) having the same configuration as that of the selection element 30 was prepared except that the nonlinear resistance layer was not provided. Thirty of each of these selection elements were produced, and their current-voltage characteristics were measured.
  • FIG. 21A and FIG. 21B show the current-voltage characteristics of 30 experimental examples 2-1 (FIG. 21A) and 2-1 (FIG. 21B) in an overlapping manner.
  • FIG. 21A even when a constant current diode is used as the non-linear resistance element 30Y, the memory cell is compared with the experimental example 2-2 in which the non-linear resistance element is not provided as in the experimental example 1-1 in the first experiment. 2 variation could be reduced. This is presumably because the use of the constant current diode protected the memory element 20 from overcurrent and reduced the variation in cycle life and resistance value of the memory element 20.
  • the present technology can take the following configurations. (1) a first electrode, a second electrode disposed opposite to the first electrode, a switch element provided between the first electrode and the second electrode, boron (B), silicon (Si) And a non-linear resistance element including at least one of carbon (C) and connected in series with the switch element. (2) The selection according to (1), wherein the nonlinear resistance element includes a nonlinear resistance layer including an alloy or a compound including at least one of boron (B), silicon (Si), and carbon (C). element. (3) The selection element according to (1) or (2), wherein the nonlinear resistance element includes a nonlinear resistance layer including an oxide, nitride, or oxynitride of boron (B) or silicon (Si).
  • the non-linear resistance element has a withstand voltage of 1 MV / cm or more, and a current having a current density of 10 MA / cm 2 or more is applied when the voltage applied to the non-linear resistance element is 2 V or less. Thru
  • the switch element includes a switch layer that changes to a low resistance state when an applied voltage is equal to or higher than a predetermined threshold voltage and changes to a high resistance state when the applied voltage is reduced or removed below the threshold voltage.
  • the selection element according to any one of (4) to (4).
  • the switch layer includes tellurium (Te) and at least one of boron (B), silicon (Si), carbon (C), and nitrogen (N). Selection element.
  • the constant current diode is a junction field effect transistor.
  • a non-linear resistance element including at least one of boron (B), silicon (Si), and carbon (C) and connected in series with the switch element.
  • Memory cell (12) The memory cell according to (11), wherein the memory element includes a memory layer between the first electrode and the second electrode of the selection element. (13) The memory layer includes an ion source layer containing tellurium (Te) and at least one of aluminum (Al), copper (Cu), zirconium (Zr), nitrogen (N), and oxygen (O); The memory cell according to (12), further including a resistance change layer made of an oxide material. (14) The memory layer, the switch element, or the selection element is stacked via a fourth electrode between the first electrode and the second electrode, according to (12) or (13). Memory cells.
  • the memory layer is any one of (12) to (14), which is any one of a resistance change layer, a phase change memory layer, and a magnetoresistance change memory layer made of a transition metal oxide.
  • a plurality of memory cells including a memory element and a selection element connected to the memory element, wherein the selection element includes a first electrode, a second electrode disposed opposite to the first electrode, and the first electrode And a switching element provided between the second electrode and at least one of boron (B), silicon (Si), and carbon (C) and connected in series with the switching element A memory device having a resistance element.
  • the memory according to (16) including a plurality of row lines and a plurality of column lines, wherein the memory cells are arranged in the vicinity of intersection regions of the plurality of row lines and the plurality of column lines. apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

 本技術の選択素子は、第1電極および第1電極に対向配置された第2電極と、第1電極と第2電極との間に設けられたスイッチ素子と、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、スイッチ素子と直列に接続された非線形抵抗素子とを備える。

Description

選択素子およびメモリセルならびに記憶装置
 本開示は、電極間にスイッチ素子を有する選択素子およびこれを備えたメモリセルならびに記憶装置に関する。
 近年、ReRAM(Resistance Random Access Memory)やPRAM(Phase-Change Random Access Memory)等の抵抗変化型メモリに代表されるデータストレージ用の不揮発性メモリの大容量化が求められている。しかしながら、現行のアクセストランジスタを用いた抵抗変化型メモリでは単位セルあたりのフロア面積が大きくなる。このため、例えば、NAND型等のフラッシュメモリと比較して同じ設計ルールを用いて微細化しても大容量化が困難であった。これに対して、交差する配線間の交点(クロスポイント)にメモリ素子を配置する、所謂クロスポイントアレイ構造を用いた場合には、単位セルあたりのフロア面積が小さくなり、大容量化を実現することが可能となる。
 クロスポイント型のメモリセルにはメモリ素子のほかにセル選択用の選択素子が配設されている。選択素子としては、例えば、金属酸化物を用いて構成されたものが挙げられる(例えば、非特許文献1,2参照)が、この選択素子は、スイッチング閾値電圧の大きさは不十分であり、高電圧を印加した場合には絶縁破壊が起こりやすい。この他、ある電圧で抵抗値がスイッチして急激に電流が増大(Snap Back)する選択素子(例えば、非特許文献3,4参照)が挙げられる。この選択素子では、スイッチング閾値電圧をまたいで選択/非選択の電圧値を設定することにより、金属酸化物等の非線形抵抗材料によって構成された選択素子よりも、選択電流値を大きくすることが可能となる。但し、上記選択素子のスイッチング閾値電圧は、組み合わせるメモリ素子の書き込み閾値電圧よりも大きい必要があるが、その大きさは十分とはいえなかった。また、書き込み閾値電圧の大きなメモリ素子と組み合わせる場合には、その選択素子には十分に大きな選択(オン)状態および半選択(オフ)状態の選択比(オン/オフ比)を確保することが求められるが、これも十分とはいえなかった。
 上記選択素子のほかには、例えばカルコゲナイド材料を用いた選択素子(オボニック閾値スイッチ(OTS;Ovonic Threshold Switch:例えば、特許文献1,2参照)が挙げられる。オボニック閾値スイッチは、オフ状態におけるリーク電流が小さく、オン状態における電流を大きくすることができ、さらに、ある閾値電圧でスイッチして急激に電流が増大するスイッチ特性を有するため、比較的大きなオン/オフ比を得ることができる。
特開2006-86526号公報 特開2010-157316号公報
Jiun-Jia Huang他,2011 IEEE IEDM11-733~736 Wootae Lee他,2012 IEEE VLSI Technology symposium p.37~38 Myungwoo Son他,IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 11, NOVEMBER 2011 Seonghyun Kim他、2012 VLSI p.155~156
 しかしながら、このOTS素子を選択素子としてクロスポイント型のメモリセルに用い、例えば、10MA/cm2等の大きな電流密度の電流を流し、さらにこのような大きな電流密度で繰り返し動作を行った場合には、スイッチング閾値電圧が低下したり、あるいは、複数配設されたOTS素子間におけるスイッチング閾値電圧のばらつきが大きくなるという問題があった。
 従って、信頼性を向上させることが可能な選択素子およびメモリセルならびに記憶装置を提供することが望ましい。
 本技術の一実施形態の選択素子は、第1電極および第1電極に対向配置された第2電極と、第1電極と第2電極との間に設けられたスイッチ素子と、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、スイッチ素子と直列に接続された非線形抵抗素子とを備えたものである。
 本技術の一実施形態のメモリセルは、メモリ素子および上記選択素子を備えたものである。
 本技術の一実施形態の記憶装置は、複数のメモリ素子および複数の上記選択素子を備えたものである。
 本技術の一実施形態の選択素子および一実施形態のメモリセルならびに一実施形態の記憶装置では、スイッチ素子と共に、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含む非線形抵抗素子を用いることにより、スイッチ素子に印加される電流を制御することが可能となる。
 本技術の一実施形態の選択素子および一実施形態のメモリセルならびに一実施形態の記憶装置によれば、スイッチ素子と共に、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含む非線形抵抗素子を用いるようにした。これにより、スイッチ素子に印加される電流が制御され、耐電流性の向上した信頼性の高い選択素子およびメモリセルならびに記憶装置を提供することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
本開示の一実施の形態に係る選択素子の構成の一例を表す断面図である。 非線形抵抗素子の電流電圧特性を表す特性図である。 線形抵抗素子の電流電圧特性を表す特性図である。 非線形抵抗素子を用いた選択素子の電流電圧特性を表す特性図である。 線形抵抗素子を用いた選択素子の電流電圧特性を表す特性図である。 本開示の一実施の形態に係る選択素子の構成の他の例を表す断面図である。 本開示の一実施の形態に係る選択素子の構成の他の例を表す断面図である。 本開示の一実施の形態に係る選択素子の構成の他の例を表す断面図である。 図1に示した選択素子を備えたメモリセルアレイの一例を表す斜視図である。 図7に示したメモリセルの構成の一例を表す断面図である。 図7に示したメモリセルの構成の他の例を表す断面図である。 図7に示したメモリセルの構成の他の例を表す断面図である。 図7に示したメモリセルの構成の他の例を表す断面図である。 図7に示したメモリセルの構成の他の例を表す断面図である。 図7に示したメモリセルの構成の他の例を表す断面図である。 図1に示した選択素子を備えたメモリセルアレイの他の例を表す斜視図である。 本開示の変形例1に係る選択素子の構成を表す断面図である。 図10に示した選択素子を備えたメモリセルの断面図である。 図10に示した選択素子に用いた非線形抵抗素子の電流電圧特性を表す特性図である。 一般的なスイッチ素子の電流電圧特性を表す特性図である。 一般的なメモリ素子のセット抵抗の逆数と電流との関係を表す特性図である。 本開示の変形例2に係る選択素子の構成を表す断面図である。 図15に示した選択素子を備えたメモリセルの断面図である。 図16に示した選択素子に用いた非線形抵抗素子の電流電圧特性を表す特性図である。 実験例1-1における各電流密度の電流電圧特性図である。 実験例1-2における各電流密度の電流電圧特性図である。 実験例1-3における各電流密度の電流電圧特性図である。 実験例2-1における電流電圧特性図である。 実験例2-2における電流電圧特性図である。
 以下、本開示の一実施形態について、以下の順に図面を参照しつつ説明する。
 1.実施の形態(スイッチ素子と非線形抵抗素子とからなる選択素子)
  1-1.選択素子
  1-2.記憶装置
 2.変形例(非線形抵抗素子として定電流ダイオードを用いた例)
  2-1.変形例1
  2-2.変形例2
 3.実施例
<1.実施の形態>
(1-1.選択素子)
 図1は、本開示の一実施の形態に係る選択素子(選択素子10A)の断面構成を表したものである。この選択素子10Aは、例えば、図7に示した、所謂クロスポイントアレイ構造を有するメモリセルアレイ(メモリセルアレイ1A)に複数配設されたうちの任意のメモリ素子(メモリ素子20;図7)を選択的に動作させるためのものである。本実施の形態では、選択素子10A(選択素子10;図7)は、スイッチ素子10Xと、図2に示した電流電圧特性を有する非線形抵抗素子10Yとが直列に接続されたものである。具体的には、対向配置された下部電極11(第1電極)と上部電極12(第2電極)との間に、非線形抵抗素子10Yを構成する非線形抵抗層15と、スイッチ素子10Xを構成するスイッチ層14とが中間電極13を介して、下部電極11側からこの順に積層された構成を有する。即ち、スイッチ素子10Xおよび非線形抵抗素子10Yは、互いに中間電極13を共有しており、この中間電極13、スイッチ層14および上部電極12によってスイッチ素子10Xが、下部電極11、非線形抵抗層15および中間電極13によって非線形抵抗素子10Yが構成されている。
 下部電極11は、半導体プロセスに用いられる配線材料、例えば、タングステン(W),窒化タングステン(WN),窒化チタン(TiN)、銅(Cu),アルミニウム(Al),モリブデン(Mo),タンタル(Ta)、窒化タンタル(TaN)およびシリサイド等により構成されている。下部電極11がCu等の電界でイオン伝導が生じる可能性のある材料により構成されている場合にはCu等よりなる下部電極11の表面を、W,WN,窒化チタン(TiN),TaN等のイオン伝導や熱拡散しにくい材料で被覆するようにしてもよい。
 上部電極12は、下部電極11と同様に公知の半導体配線材料を用いることができるが、ポストアニールを経てもスイッチ層14と反応しない安定な材料が好ましい。
 スイッチ素子10Xは、電圧印加によってOTS動作するものであり、印加電圧をある閾値電圧以上とすることよってスイッチ層14が低抵抗化すると共に、印加電圧を閾値電圧以下に減少、あるいは除去することによってスイッチ層14が高抵抗化するものである。この閾値電圧をスイッチング閾値電圧という。
 スイッチ層14の材料としては、オフ状態でのリーク電流が小さく、且つ、大きな選択比を有することが好ましい。また、微細加工のしやすさから製造工程においてドライエッチングを用いることが可能な材料を用いることが好ましい。以上のことから、スイッチ層14には、周期律表第16族の元素、具体的には、硫黄(S),セレン(Se)およびテルル(Te)等のカルコゲン元素を含み、さらに、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種とを含むカルコゲナイドを用いることが好ましい。上記カルコゲン元素の中でも、特に、Teを用いることが望ましい。更に、窒素(N)を添加することでオフ状態におけるリーク電流が低減される。スイッチ層14の膜厚は特に限定されないが、スイッチ層14の厚みを小さくし、且つ、非選択(オフ)時のリーク電流をできるだけ小さく抑えるために、例えば、3nm以上40nm以下であることが好ましい。
 スイッチ層14は、上記元素以外の添加元素として、例えば、アルミニウム(Al),マグネシウム(Mg),ホウ素(B),イットリウム(Y)および希土類元素等の金属元素を含んでいてもよい。なお、スイッチ層14は、本開示の効果を損なわない範囲でこれら以外の元素を含んでいてもかまわない。
 非線形抵抗素子10Yは、図2に示したような非線形な電流電圧特性を有するものであり、後述するメモリセルアレイおいて書き込みあるいは消去時に印加される駆動電流からスイッチ素子10X(具体的には、スイッチ層14)を保護するためのものである。非線形抵抗素子10Yは、適度な非線形性を有することが好ましい。具体的には、例えば、電流電圧特性におけるIV曲線状で1V当たり0.5桁から2桁ほど電流が増加する非線形性を有することが望ましい。これは、スイッチ素子10Xを良好に動作させるためである。非線形性が、例えば0.5桁/1Vよりも小さい場合には、オフ状態における抵抗値を大きくするとオン状態で流れる電流が小さくなり、本開示の効果を十分に得ることが難しくなる。一方、非線形性が大きすぎる(例えば、2桁/1Vを超える)場合には、スイッチ時における過電流からスイッチ素子10Xを保護することができず、スイッチ素子10Xの劣化を防ぐことができなくなる。なお、本実施の形態の非線形抵抗素子10Yは、1V当たりの電流増加量が0.5桁から2桁の範囲内に限定されるものではなく、本開示の効果が得られれば上記範囲を外れていてもよい。
 非線形抵抗層15の材料としては、少なくともB,SiおよびCのうちの少なくとも1種を含むことが好ましく、具体的には、B4Cを用いることにより、非線形抵抗層15の絶縁耐圧を大きくすることができる。なお、非線形抵抗層15を構成する材料は、必ずしも均一な組成比率を有する、いわゆる化合物組成である必要はなく、B,SiおよびCのいずれかを含んでいれば任意の組成をとることができる。例えば、B-C合金の他に、B-Si-C合金,B-Si合金あるいはSi-C合金を用いてもよい。また、上記元素以外に、酸素(O)やNを添加してもよい。OやNを添加することにより、非線形抵抗層15の抵抗値あるいは絶縁性を向上させることができる。但し、OおよびNの添加量は多すぎると非線形抵抗層15の非線形性が低下するため、非線形抵抗層15に含まれるOおよびNの組成(原子%)は50%以下であることが望ましい。具体的には、非線形抵抗素子10Y(非線形抵抗層15)は、1MV/cm以上の耐電圧を有し、印加される電圧が2V以下で10MA/cm2以上の電流密度の電流を流すことが好ましい。このような特性の範囲内であれば、非線形抵抗層15の材料として、酸化ケイ素(SiOx)や窒化ケイ素(SiNx)、酸窒化ケイ素(SiOxy)等の不定比化合物を用いてもよい。非線形抵抗層15の膜厚は特に限定されないが、スイッチ素子のオフ状態では流れる電流を低く抑えてオン状態では大きな電流を流すために、例えば1nm以上20nm以下であることが好ましい。
 なお、B,CおよびSiは、スイッチ層14にも用いられている元素であるため、微細加工時等に行うエッチングにおいて同様のエッチング条件を用いることができる点でも好適である。
 中間電極13は、スイッチ層14と非線形抵抗層15との間に設けられるものである。中間電極13の材料としては、導電性を有すると共に、例えば、電界の印加によってカルコゲナイドを含むスイッチ層14および非線形抵抗層15中へのイオンの溶解あるいは析出等の酸化還元反応およびイオンの移動が生じにくい不活性な材料を用いることが好ましい。例えば、高融点金属(例えば、融点1800℃以上)やその化合物を用いることが好ましく、これにより、スイッチ素子10Xの劣化が抑制される。具体的な材料としては、窒化チタン(TiN),窒化タンタル(TaN),タングステン(W),窒化タングステン(WN),チタンタングステン(TiW)あるいは窒化チタンタングステン(TiWN)等が挙げられるが、特に、Wを用いることが望ましい。Wは、中間電極13だけでなく、スイッチ層14に接する電極(ここでは、上部電極12)にも用いることが好ましい。これは、スイッチ層14に含まれるカルコゲン元素(例えば、Te)は、AlやCu等を主とした一般的な半導体回路に用いられる電極材料と接すると反応したり、合金化しやすく、そのような反応が起こることでスイッチ素子10Xの特性が著しく劣化するためである。更に、高融点金属を用いた場合でも、例えば、Tiはカルコゲナイドと反応しやすい。このため、少なくともスイッチ層14は上記の高融点金属、あるいはTeと反応しにくい化合物によって形成された電極に接する構造が好ましい。
 本実施の形態の選択素子10Aは、スイッチング閾値電圧以上の電圧の印加によって低抵抗化するが、印加電圧をスイッチング閾値電圧より下げると高抵抗状態に戻るものである。即ち、選択素子10Aは、図示しない電源回路(パルス印加手段)から下部電極11および上部電極12を介して電圧パルスあるいは電流パルスの印加によって、スイッチ層14の相変化(非晶質相(アモルファス相)と結晶相)を生じないものである。また、選択素子10Aは電圧印加によるイオンの移動によって形成される伝導パスが印加電圧消去後にも維持される等のメモリ動作をしないものである。
 前述したように、メモリ(メモリセルアレイ)の大容量化は図7に示したような、交差する配線間のクロスポイント付近にメモリ素子とスイッチ素子とが積層されたメモリセルが配置されたクロスポイントアレイ型をとることで実現することができる。このクロスポイント型のメモリセルアレイは、メモリ素子として抵抗変化型のメモリ素子(例えば、後述するメモリ素子20)を用いることができる。抵抗変化型のメモリ素子は種々の材料によって形成されるが、一般的に書き込み閾値電圧の大きなメモリ素子程高い記録保持信頼性を有する。また、メモリ素子の書き込み閾値電圧は素子間におけるばらつきを有する。このため、大規模なメモリセルアレイでは書き込み閾値電圧に余分にマージンを見ておく必要がある。例えば、書き込み閾値電圧が1Vのメモリ素子であっても、スイッチ素子のスイッチング閾値電圧はそれ以上の大きさを有することが望ましく、例えばメモリセルアレイでの書き込み閾値電圧のばらつきが±0.3Vである場合には、1.3V以上であることが望ましい。よって、書き込み閾値電圧が高く(例えば、1.5V以上)保持信頼性の高いメモリ素子を書き込み動作の不良なく駆動させるには、スイッチ素子には更に高いスイッチング閾値電圧が求められる。
 スイッチ素子としては、例えば、金属酸化物を用いて構成された双方向ダイオード(例えば、MIM(Metal-Insulator-Metal)双方向ダイオード)が挙げられるが、このような双方向ダイオードは、メモリ素子を駆動させるオン状態とオフ状態との抵抗値あるいは電流値の比で規定される選択比(オン/オフ比)の大きさが不十分であることが多い。例えば、NbOx,VOx等が用いられているMIMダイオードは、ある閾値電圧でスイッチするものもあるが、オフ状態におけるリーク電流が大きく、十分な大きさの選択比をもっていない。更に、スイッチ素子とメモリ素子とを直列に接続した場合、選択比はさらに小さくなるため、クロスポイント型のメモリセルのように複数のメモリ素子を備えたメモリセルアレイを動作させることは困難であった。これは、オフ状態のリーク電流が大きく選択比が低いためである。
 これに対して、カルコゲナイド材料を用いたOTS素子は、前述したように、オフ状態におけるリーク電流が小さく、オン状態における電流を大きくすることができると共に、上記スイッチ特性を有するため、メモリ素子と直列に接続した場合でも比較的大きな選択比を得ることができる。このため、クロスポイント型のメモリセルのような大容量メモリに用いる選択素子として有望であった。
 しかしながら、OTS素子をクロスポイント型のメモリセルに用いた場合、例えば10MA/cm2等の大きな電流密度の電流を流し、さらにこのような大きな電流密度で繰り返し動作を行うと、スイッチング閾値電圧が低下したり、複数配設されたOTS素子間におけるスイッチング閾値電圧のばらつきが増大するという問題があった。これは、OTS素子は、スイッチングの際に抵抗値が急激に低下(見かけ上の抵抗値がほぼ0、あるいはマイナス)する、いわゆる負性抵抗が生じるためである。OTS素子を用いたクロスポイント型のメモリセルにおいて高い電流密度を得ようとすると、OTS素子のスイッチ時に負性抵抗が生じて瞬時に過大な電流が流れる。これによって、OTS素子(具体的には、カルコゲナイド材料によって構成されるカルコゲナイド層)が劣化し、スイッチング閾値電圧の低下や、スイッチング閾値電圧おばらつきが増大する。
 この問題を解決する方法としては、電流を制御することが可能な電流制御を有する素子をOTS素子に組み合わせることが考えられる。図3は、線形抵抗素子の電流電圧特性を表したものである。図4Aは、図2に示したような非線形性の電流電圧特性を有する非線形抵抗素子とスイッチ素子とを直列に接続した際の電流電圧特性を表したものであり、図4Bは、図2に示したような線形成の電流電圧特性を有する素子(線形抵抗素子)とスイッチ素子とを直列に接続した際の電流電圧特性を表したものである。図4Aからわかるように、非線形抵抗素子をスイッチ素子に直列に接続して形成した選択素子では、非線形抵抗素子の抵抗値に係わりなくスイッチ特性を示しており、維持電圧を変化させることができる。なお、維持電圧とは、保持電圧ともいい、図4Aにおけるスイッチして電圧が低下した後に再び電圧が上昇し始める変曲点における電圧のことである。一方、図4Bからわかるように、線形抵抗素子とスイッチ素子とを組み合わせた場合には、スイッチ素子の耐電圧性を向上させるために大きな抵抗値を有する線形抵抗素子を用いた場合には、オン電流も制限されてしまうためスイッチ特性が失われてしまう。このように、スイッチ素子は非線形抵抗素子と組み合わせることで、オン電流に大きな影響を与えずに維持電圧を上昇させ、スイッチング閾値電圧を制御することができる。即ち、スイッチ素子の繰り返し特性の低下や、印加される電流および電圧による劣化を低減することができる。また、線形抵抗素子とは異なり、オン電流を確保できるため、駆動電流密度が得られる。このため、微細化されたメモリセルにおいても、メモリ素子を書き換える際に必要な駆動電流を得ることができる。
 以上のことから、スイッチ素子と組み合わせる電流制御素子は、非線形抵抗素子が好ましいといえる。ここで、一般的な非線形抵抗素子として、例えば、TiO2等を用いた非線形抵抗素子が挙げられるが、この非線形抵抗素子は比抵抗や耐電圧性等が十分ではなく、上記のように、例えば10MA/cm2等の大きな電流密度の電流を流した場合にTiO2破壊され、電流制御素子として十分な効果が得られない。あるいは、非線形抵抗素子の膜厚を大きくすることで効果を得ることはできるが、その場合、メモリセルの微細化の妨げとなる。
 これに対して、本実施の形態の選択素子10Aでは、スイッチ素子10Xに直列に接続する電流制御素子として、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含む非線形抵抗素子10Yを用いるようにした。具体的には、対向配置された下部電極11と上部電極12との間に、中間電極13を介してスイッチ層14と、少なくともB,Si,Cのうちのいずれかを含む非線形抵抗層15とを積層するようにした。これにより、スイッチ素子10Xに印加される電流を制御することが可能となる。
 以上のことから、本実施の形態の選択素子10Aでは、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含む非線形抵抗素子10Yをスイッチ素子10Xと直列に接続するようにした。これにより、スイッチ素子10Xに印加される電流を制御することが可能となり、スイッチ素子10Xを構成するスイッチ層14が保護され、耐電流性を向上させることが可能となる。
 なお、本実施の形態の選択素子10は、スイッチ素子10Xと非線形抵抗素子10Yとが直列に接続されていればよく、下部電極11と上部電極12との間に、中間電極13を介して積層されるスイッチ層14および非線形抵抗層15の積層順は特に問わない。例えば、図5に示した選択素子10Bのように、中間電極13を間に、スイッチ層14を下部電極側に、非線形抵抗層15を上部電極側になるように積層しても構わない。また、非線形抵抗層15の抵抗値を、その組成や膜厚等を調整することにより、例えば、図6Aおよび図6Bに示した選択素子10C,10Dのように中間電極13を用いず、スイッチ層14および非線形抵抗層15を直接積層した構造としてもよい。
 中間電極13を用いない選択素子10C,10Dは、中間電極13を用いた選択素子10A,10Bと比較してスイッチ層14および非線形抵抗層15の膜厚が同じでもオフ状態の抵抗が高くなる傾向がある。これは、中間電極13を用いた選択素子10A,10Bでは、非線形抵抗素子10Yの面積が素子の大きさそのものとなるが、中間電極13を用いない選択素子10C,10Dでは、スイッチ層14に形成されるフィラメントの大きさが実質的な素子サイズとなると考えられるためである。このため、中間電極13を用いない選択素子10C,10Dの非線形抵抗層15の抵抗あるいは非線形性は、スイッチ層14のオフ状態におけるリーク電流より1~4桁ほど大きい電流が流れるように膜厚を調整することが好ましい。具体的には、選択素子10C,10Dの素子サイズにもよるが、中間電極13を用いた選択素子10A,10Bと比較して、非線形抵抗層15の膜厚を、例えば、1/5~1/2、あるいはそれ以下にすることが好ましい。また、非線形抵抗層15の組成比を変化させて抵抗値を調整する場合も、1/5~1/2の抵抗あるいはそれ以下とすればよい。
(1-2.記憶装置)
 記憶装置(メモリ)は、後述するメモリ素子20を複数、例えば列状やマトリクス状に配列することにより構成することができる。このとき、本開示の選択素子10は、上記スイッチ素子10Xと非線形抵抗素子10Yとが直列に接続されたものであり、この選択素子10が、さらに、メモリ素子20と直列に接続されてメモリセル2を構成している。メモリセル2は、ビット線(BL)およびワード線(WL)等の配線を介してセンスアンプ,アドレスデコーダおよび書き込み・消去・読み出し回路等に接続される。
 図7は、交差する配線間の交点(クロスポイント)にメモリセル2を配置した、所謂クロスポイントアレイ型の記憶装置(メモリセルアレイ1A)の一例を表したものである。このメモリセルアレイ1Aでは、各メモリセル2に対して、その下部電極11側に接続される配線(例えばビット線;BL(行ライン))と、その上部電極12側に接続される配線(例えばワード線;WL(縦ライン))とを交差するよう設け、例えば、これら配線の交差点付近に各メモリセル2が配置されている。このように、クロスポイントアレイ構造を用いることにより、単位セルあたりのフロア面積を小さくすることが可能であり、大容量化を実現することが可能となる。更に、ビット線,メモリセル2およびワード線から構成される単位構造がZ軸方向に積層された3次元立体構造とすることによって、より高密度、且つ、大容量なメモリを実現することができる。なお、ビット線あるいはワード線を上下のメモリセルで共有する構造としてもよい。また、ビット線,メモリセル2およびワード線から構成される単位構造の積層間に、層間絶縁膜(図示せず)を設けてもよい。
 メモリセル2を構成するメモリ素子20は、例えば、下部電極11、記憶層21および上部電極12をこの順に有するものである。記憶層21は、例えば下部電極11側から抵抗変化層23およびイオン源層22が積層された積層構造あるいは抵抗変化層23の単層構造によって構成されている。なお、ここではスイッチ層14と記憶層21との間には中間電極24が設けられており、この中間電極24が選択素子10の上部電極と、メモリ素子20の下部電極とを兼ねている。具体的には、メモリセル2は、例えば図8Aに示したように、下部電極11と上部電極12との間に、抵抗変化層23,イオン源層22,中間電極24,非線形抵抗層15,中間電極13およびスイッチ層14がこの順に積層された構成(メモリセル2A)を有する。
 記憶層21は、上記のように、例えば、イオン源層22と抵抗変化層23とが積層された構成を有する、所謂抵抗変化型メモリ素子(メモリ素子)であればよい。具体的には、例えば、遷移金属酸化物からなる抵抗変化メモリ,PCM(相変化型メモリ)あるいはMRAM(磁気抵抗変化型メモリ)を用いてもかまわない。
 イオン源層22は、電界の印加によって抵抗変化層23内に伝導パスを形成する可動元素を含んでいる。この可動元素は、例えば遷移金属元素(周期律表第4族~第6族)およびカルコゲン元素であり、イオン源層22はこれらをそれぞれ1種あるいは2種以上含んで構成されている。また、イオン源層22は、酸素(O)や窒素(N)や、上記元素以外の元素、例えばAl,Cu,ジルコニウム(Zr)およびハフニウム(Hf)を含んでいることが好ましい。イオン源層22は、上記元素のほか、例えば、マンガン(Mn),コバルト(Co),鉄(Fe),ニッケル(Ni)および白金(Pt),Si等を含んでいてもかまわない。
 抵抗変化層23は、例えば、金属元素または非金属元素の酸化物あるいは窒化物によって構成されており、下部電極11と上部電極12との間に所定の電圧を印加した場合にその抵抗値が変化するものである。具体的には、下部電極11と上部電極12との間に電圧が印加されると、イオン源層22に含まれる遷移金属元素が抵抗変化層23内に移動して伝導パスが形成され、抵抗変化層23は低抵抗化する。あるいは、抵抗変化層23内で酸素欠陥や窒素欠陥等の構造欠陥が生じて伝導パスが形成され、抵抗変化層23は低抵抗化する。また、逆方向の電圧を印加することによって伝導パスは切断、または導電性が変化する。これにより、抵抗変化層23は高抵抗化する。
 なお、抵抗変化層23に含まれる金属元素および非金属元素は必ずしもすべてが酸化物の状態でなくてもよく、一部が酸化されている状態であってもよい。また、抵抗変化層23の初期抵抗値は、例えば数MΩから数百GΩ程度の素子抵抗が実現されればよく、素子の大きさやイオン源層22の抵抗値によってもその最適値が変化するが、その膜厚は例えば1nm~10nm程度が好ましい。
 中間電極24は、選択素子10とメモリ素子20との間に設けられるものであり、例えば、電界の印加によってカルコゲナイドを含むスイッチ層14およびイオン源層22中へイオンの溶解・析出等の酸化還元反応およびイオンの移動が生じにくい不活性な材料であればよく、上述した中間電極13と同様の材料を用いることができる。なお、中間電極24が非線形抵抗層15に接する場合は、必ずしもW、あるいはその他の高融点金属である必要はなく、中間電極24はスイッチ層14に接する側と非線形抵抗層15に接する側とで別々の材料を用いるようにしてもよい。よって、中間電極24に用いる材料としては、一般的な配線材料である、Cu,Al、TiN等の公知の材料も用いることができる。
 なお、クロスポイントアレイ構造を有するメモリセルアレイ1Aにおけるメモリセル2の積層構造は、図8Aに示した選択素子10Aとメモリ素子20を積層したメモリセル2Aに限定されず、例えば、図8B~図8Fに示したような積層構造としてもよい。図8Bに示したメモリセル2Bは、図5に示した選択素子10Bとメモリ素子20とを中間電極24を介して積層させたものであり、図8Cに示したメモリセル2Cは、選択素子10Bとメモリ素子20との積層順を逆にしたものである。図8Dに示したメモリセル2Dは、選択素子10を構成するスイッチ素子10Xと非線形抵抗素子10Yとの間にメモリ素子20を設けたものである。また、中間電極13,24は適宜省略してもよく、図8Eに示したメモリセル2Eは、図8Dに示したメモリセル2Dの、メモリ素子20と非線形抵抗層15との間の中間電極24を省略したものである。また、スイッチ素子10X,非線形抵抗素子10Yおよびメモリ素子20を直接積層する場合には、図8Fに示したメモリセル2Fのように、非線形抵抗素子10Yを間に、スイッチ素子10Xおよびメモリ素子20を積層することが好ましい。非線形抵抗層15を中間に配置することで、メモリ素子20を構成するイオン源層22中の可動イオンのスイッチ素子10Xを構成するスイッチ層14への拡散が低減され、スイッチ素子としての良好な動作、即ち、OTS動作が失われることを防ぐことができる。
 メモリ素子20は、図示しない電源回路(パルス印加手段)から下部電極11および上部電極12を介して電圧パルスあるいは電流パルスを印加すると、記憶層21の電気的特性(抵抗値)が変化する抵抗変化型のメモリ素子であり、これにより情報の書き込み,消去,更に読み出しが行われる。
 具体的には、メモリ素子20では、初期状態(高抵抗状態)の素子に対して「正方向」(例えば第1電極側を負電位、第2電極側を正電位)の電圧または電流パルスが印加されると、イオン源層に含まれる金属元素(例えば、遷移金属元素)がイオン化して記憶層中(例えば、抵抗変化層中)に拡散、あるいは酸素イオンが移動することによって抵抗変化層中に酸素欠陥が生成する。これにより記憶層内に酸化状態の低い低抵抗部(伝導パス)が形成され、抵抗変化層の抵抗が低くなる(記録状態)。この低抵抗な状態の素子に対して「負方向」(例えば第1電極側を正電位、第2電極側を負電位)へ電圧パルスが印加されると、抵抗変化層中の金属イオンがイオン源層中へ移動、あるいはイオン源層から酸素イオンが移動して伝導パス部分の酸素欠陥が減少する。これにより金属元素を含む伝導パスが消滅し、抵抗変化層の抵抗が高い状態となる(初期状態または消去状態)。なお、記憶層21を抵抗変化層23の単層で構成する場合には、正方向の電圧(または電流パルス)が印加される場合と、抵抗変化層23に印加される電界よって欠陥が生成され、負方向へ電圧パルスが印加されると、欠陥は抵抗変化層内の酸素イオンや窒素イオンの移動によって修復される。
 なお、クロスポイントアレイ型のメモリセルアレイの構造は、図7に示したメモリセルアレイ1Aに限定されるものではない。例えば、図9に示したメモリセル2Bように、WLはY軸方向に、BLはZ軸方向に延伸すると共に、WLとBLとが対向する交点にメモリセル2を有する構造としてもよい。また、WLおよびBLは必ずしも一方向に延伸する必要はなく、WLの一部がX軸方向あるいはZ軸方向に延伸するような構造としてもよい。あるいは、WLがX軸方向からY軸方向に連続して屈折するようにしてもよい。
 なお、本実施の形態における記憶装置は、記憶層21に、所謂PCMおよびMRAMの構成を適用した場合も同様である。
<2.変形例>
(2-1.変形例1)
 図10は、上記実施の形態に係る本開示の変形例としての選択素子30の断面構成を表したものである。この選択素子30は、スイッチ素子10Xと直列に接続される非線形抵抗素子30Yとして定電流ダイオードを用いた点が、上記実施の形態とは異なる。図11は、本変形例の選択素子30を用いたメモリセルの断面構成を表したものである。図11では、非線形抵抗素子30Yである定電流ダイオードとして、例えば、接合型電界効果トランジスタを用い、その具体的な構成を模式的に表している。また、上記実施の形態と同一の構成要素については、同一符号を付してその説明は省略する。
 非線形抵抗素子30Yは、上記のように定電流ダイオードであり、具体的には、ゲート電極とドレイン電極またはソース電極が一体化した構成を有する、いわゆる接合型電界効果トランジスタである。定電流ダイオードの電流電圧特性は、図12に示したような非線形な抵抗変化を示す。定電流ダイオード(接合型電界効果トランジスタ)のp型領域とn型領域の間に空乏層領域(多数キャリアがほとんど存在せず、少数キャリアのみが存在するため高抵抗領域)があって、これがn型チャネル領域を流れる電流を制限している。デプレッション型接合型電界効果トランジスタはゲート・ソース間電圧が零になってもチャネル領域が空乏層領域によってふさがれることはない。このため、接合型電界効果トランジスタのIV曲線は、図12に示したような変化を示す。即ち、ドレイン・ソース間電圧が小さいうちは空乏層領域の大きさが変化しないので、電圧に比例した電流が流れる。この電圧範囲は線形領域と呼ばれ、定電流作用を示さない。ドレイン・ソース間電圧が大きくなると空乏層領域によってチャネル領域がふさがれてしまって、一定の電流しか流れなくなる。この電圧範囲は飽和領域と呼ばれ、定電流特性を示す。ドレイン・ソース間電圧がさらに大きくなると空乏層領域の絶縁が破れ、少数キャリアの増殖が始まり急激に大電流が流れる。大電流が流れ始める電圧はトランジスタの絶縁破壊電圧であって、これ以上の電圧範囲において定電流作用は失われる。
 この非線形抵抗素子30Yは、非線形抵抗層35として、SiまたはSiC半導体にドナー元素としてN等の周期律表第15族の元素をドープしたn型チャネル領域351と、n型基板の表面にアクセプタ元素としてB等の周期律表第13族の元素をドープしたp型ゲート領域352を有する。p型ゲート領域352は、クロスポイント型のメモリセルアレイのBLとWLの交点において垂直方向に形成されるコンタクトホール構造の内径よりも小さな断面積を有する。なお、図11には示していないが、上部電極12とn型チャネル領域351との接続部および中間電極24との接続部には、ドナー元素としてN等をヘビードープしたn型チャネル領域が形成されている。
 以下に、接合型電界効果トランジスタの電流制御効果について説明する。本変形例では、上部電極12はドレイン電極またはソース電極として、中間電極24はソース電極またはドレイン電極として働き、ゲート電位がドレイン電極またはソース電極と等電位になった状態で、n型チャネル領域351とp型ゲート領域352との間に空乏層が形成される。ドレイン電極およびソース電極間に流れるセット電流Icompが制限値Ilimitを超えようとすると、空乏層の領域が拡大して電流が流れるチャネルを狭め、抵抗値が増大する。セット電流Icompが制限値Ilimitを超えない場合には、抵抗値は元の値に減少するため、結果的に定電流動作する。
 上記実施の形態で説明した選択素子10や本変形例の選択素子30は、メモリ素子20と直列に接続することにより、列状やマトリクス状に複数配列されたメモリセルアレイにおいて任意のメモリ素子を選択可能にするためのものである。即ち、選択素子10および選択素子30は、メモリ素子20の書き込み/読み出し時におけるスニーク電流の発生を抑制するためにものであるといえる。
 図13は、一般的な選択素子として用いられる、例えば、BCTeN層を有する膜厚20nmのダイオードの電流電圧特性を表したものである。この選択素子は、双方向ショットキーバリアダイオードの一種であり、BCTeN層の両端はTiNやW等の不活性な金属電極に接続されている。この選択素子は、電流をほとんど流さないオフ状態と、大電流を流すことが可能なオン状態の2つの状態を有している。オフ状態とオン状態とを切り換えるには、スイッチング閾値電圧Vbに等しい電圧をBCTeN層の両端に印加する必要がある。図13にみられるように、オフ状態およびオン状態の状態遷移時において、電流電圧特性の微分抵抗が負になる現象(負性微分抵抗)は、カルコゲン元素を含む場合によく見られるものであり、カルコゲン元素を含まない場合でも、多くの捕獲準位を有する絶縁体であれば見られる場合がある。ここで、クロスポイント型のメモリセルアレイに印加される全電圧をVinとすると、この選択素子の負荷線はVinとメモリ素子の抵抗RAで決まる最大電流Vin/RAを結ぶ直線で表わされる。メモリ素子に流れるセット電流Icompはこの負荷線上にあり、選択素子の保持電圧をVh、選択素子のオン抵抗をRonとすると、以下の式で表わされる。但し、オン抵抗Ronには電流依存性があり、セット電流Icompを精密に決めることができない。
(数1)
  Icomp=(V-Vh)/Ron
 図14は、一対の電極間に設けられた抵抗層の抵抗値を不揮発に記憶することが可能な一般的な不揮発性メモリ素子のセット抵抗の逆数1/RAとセット電流Icompとの関係を表した特性図である。この不揮発性メモリ素子は、抵抗層としてAl23層を有する膜厚4nmのイオン伝導型メモリの一種である。抵抗層の一端面にはTiN等の不活性な金属電極が接続されており、他端面にはCuZrAlTe等の活性電極に接続されている。この活性電極は、上記実施の形態において説明したイオン源層に相当する。セット抵抗の逆数1/RA(即ち、セットコンダクタンス)は、セット電流Icompに比例する性質があり、セット電流さえ厳密に印加できればセット抵抗値を精密に決定することができる。ところが、選択素子とメモリ素子とを組み合わせた場合には、選択素子のオン抵抗Ronや保持電圧Vhがばらつくために一意なセット電流を決めることができず、セット抵抗自体がばらつく結果となる。セット抵抗がばらつくと、選択素子の負荷線の一端(最大電流Vin/RA)も揺らぐこととなり、セット電流Icompのばらつきはさらに増大する。
 これに対して、非線形抵抗素子は、クロスポイント型のメモリセルアレイに流れるセット電流Icompを一定値に制限することができる。また、非線形抵抗素子は、リセット電流やスニーク電流を低減する働きは有さないため、上記のような一般的な選択素子と機能が重複することはない。
 このため、クロスポイント型のメモリセルアレイにおいて、メモリセルを構成する選択素子に、上記のような一般的な選択素子に非線形抵抗素子を直列に接続して新たな選択素子として用いることで、メモリセルに流れる最大電流、即ち、セット電流を一定の値に安定化することが可能となる。セット電流が常に一定となると、メモリ素子の抵抗値も一定の値にセットされるようになる。
 以上のように、非線形抵抗素子30Yとして定電流ダイオードを用いても、上記実施の形態と同様の効果が得られると共に、さらにメモリセル3の制御性を向上させることが可能となるという効果を奏する。
 また、外部雑音等による影響を低減することが可能となる。メモリ素子の抵抗値が一定にセットされると、高抵抗状態(0)と低抵抗状態(1)の二値状態に対応した抵抗分離特性を改善することが可能となり、クロスポイント型のメモリセルアレイのアレイサイズを拡大することができ、さらに大容量且つ低下価格なメモリ(記憶装置)を実現することが可能となる。
(2-2.変形例2)
 図15は、上記実施の形態に係る本開示の変形例としての選択素子40の断面構成を表したものである。この選択素子40は、上記変形例1と同様に非線形抵抗素子40Yとして接合型電界効果トランジスタを用いているが、ゲート電極(ゲート電極453)がBLおよびWLとは異なる電位を印加される点が上記変形例とは異なる。図16は、本変形例の選択素子40を用いたメモリセルの断面構成を表したものであり、ここでは、非線形抵抗素子40Yとして用いた接合型電界効果トランジスタの具体的な構成を模式的に表している。なお、上記実施の形態と同一の構成要素については、同一符号を付してその説明は省略する。
 非線形抵抗素子40Yは、上記のように接合型電界効果トランジスタであり、ゲート電極453がドレイン電極およびソース電極である上部電極12とは別に、独立して設けられたものであり、この点が上記変形例1とは異なる。図17は、非線形抵抗素子40Yの電流電圧特性を表したものである。本変形例のメモリセル4では、ゲート電極453に印加される電圧を制御(例えば、Vg1,Vg2,Vg3,・・・)することによって対応する制限値(Ilimit1,Ilimit2,Ilimit3,・・・)が得られるようになる。これは、n型チャネル領域451とp型ゲート領域452との間に形成される空乏層領域の大きさを制御することができるためである。このように、ゲート電極453に印加される電圧を制御することによって、メモリセルに流れる最大電流(セット電流Icomp)を対応する値に安定的化することが可能となる。よって、高抵抗状態と低抵抗状態との間に設定される複数の中間抵抗状態の制御性が改善され、メモリセル4の多値記録を実現することが可能となる。
 以上のことから、本変形例における選択素子40およびこれを備えたメモリセル4では、上記変形例1の効果に加えて、多値記録に求められる高抵抗状態と低抵抗状態との間に設定される複数の中間抵抗状態抵抗分離特性が改善されるため、より一層の大容量化と低価格化を実現することが可能になるという効果を奏する。
<3.実施例>
 以下、本開示の具体的な実施例について説明する。
(実験1)
 まず、TiNよりなる下部電極11を逆スパッタによってクリーニングしたのち、TiN上にスイッチ層14としてBCTeN膜を20nmの膜厚で形成したのち、中間電極13として、Wを1nmの膜厚で形成した。続いて、非線形抵抗層15として、W膜上にB4C膜を10nmの膜厚で形成したのち、さらにWを30nmの膜厚で形成して上部電極12とした。続いて、素子サイズが100nmφとなるように、例えばフォトリソグラフィやドライエッチング等の公知の技術を用いて微細加工を行い、選択素子10A(実験例1-1)を作製した。また、比較例として、非線形抵抗層15を設けていない選択素子(スイッチ素子10Xのみ;実験例1-2)および非線形抵抗素子10Y(非線形抵抗層15)として、TiO2膜を形成した選択素子(実験例1-3)を作製した。実験例1-1~1-3の各層の組成については、「下部電極/スイッチ層/中間電極/非線形抵抗層/上部電極」の順に以下に示す。これら実験例1-1~1-3に対して、3種類の直列抵抗(5kΩ;A、18.5kΩ;B、37kΩ;C)を接続し、駆動電流1mA、200μA、100μAにおける印加電圧に対する電流変化(抵抗変化)を測定した。

(実験例1-1)TiN/BCTeN/W/B4C/W
(実験例1-2)TiN/BCTeN/―/―/W
(実験例1-3)TiN/BCTeN/W/TiO2/W
 図18~図20は、実験例1-1(図18)、実験例1-2(図19)および実験例1-3(図20)の各駆動電流約0.8mA(5kΩ;A)、200μA(18.5kΩ;B)、100μA(37kΩ;C)における印加電圧と各電極に流れる電流値との関係(電流電圧特性)を表したものである。
 図19(A)~(C)からわかるように、一般的な選択素子(OTS素子)である下部電極11と上部電極12との間にスイッチ層14のみを設けた実験例1-2では、良好なスイッチング動作は見られるものの、測定のために接続した直列抵抗が小さく、駆動電流が大きくなるにつれて、スイッチング動作のばらつきやスイッチング閾値電圧の低下がみられた。本実験では、駆動電流と素子サイズ(110nmφ)から換算して、それぞれ、およそ9MA/cm2(A)、2MA/cm2(B)、1MA/cm2(C)の電流密度でDCループをそれぞれ5回繰り返し行ったが、例えば、20nmφのメモリ素子を駆動するためには、20μmAの電流が必要であると仮定した場合、電流密度としては、およそ8MA/cm2となり、本実験では、0.8mAの駆動電流がこれに相当する。実際は、メモリセルは、短時間のパルス印加によって駆動されるため、この値をそのままあてはめることができないが、実験例1-2のメモリセルでは、電流密度が大きくなるに従って、良好な特性を保つことが困難になることがわかった。
 これに対して、本開示の実施例である実験例1-1では、図18(A)からわかるように、最も大きな電流密度となる0.8mAで駆動しても、スイッチング閾値電圧が低下せずに良好な特性を保つことができた。これは、非線形抵抗素子10Yとして、B4Cからなる非線形抵抗層15を設けたためと考えられる。
 また、図20(A)~(C)からわかるように、本開示の比較例としての実験例1-3では、非線形抵抗素子10Yとして、TiO2からなる非線形抵抗層を設けたが、このメモリセルでは、100μAの駆動電流までは良好なスイッチ特性が得られたものの、200μAを超えるとスイッチング閾値電圧が低下し、スイッチング閾値電圧のばらつきが顕著になった。
 以上のことから、本開示の選択素子10のように、スイッチ素子10XにBを含む非線形抵抗素子10Yを直列に接続することにより、大きな駆動電流によるスイッチ素子10Xの劣化を低減し、スイッチング閾値電圧の低下およびスイッチング閾値電圧のばらつきの増大を低減することができることがわかった。また、同じ非線形抵抗素子であってもTiO2からなる非線形抵抗層を有する非線形抵抗素子では、本開示の効果は得られなかった。これは、おそらく誘電率が高いこと等が原因であると推察される。TiO2の誘電率は70~100程度であり、B4Cの誘電率は10以下である。即ち、十分な耐電流性が得るためには、非線形抵抗層の誘電率は一定以下の値であることが好ましく、例えば、20以下、さらに好ましくは、10以下であると考えられる。
 なお、本実施例では、非線形抵抗層15を構成する材料としてB4Cを用いたが、BとCの組成比は本発明の趣旨を逸しない範囲で調整することが可能である。また、ここでは示していないが、BとCの他にSiを用いても同様の効果が得られる。
(実験2)
 次に、非線形抵抗素子として定電流ダイオードを非線形抵抗層35として形成し、この非線形抵抗層35以外は、上記実験1と同様の構成を有する選択素子30(実験例2-1)を作製した。また、比較例として、非線形抵抗層を設けない以外は、選択素子30と同様お構成を有する選択素子(実験例2-2)を作製した。これら選択素子をそれぞれ30個ずつ作製し、その電流電圧特性を測定した。
 図21Aおよび図21Bは、実験例2-1(図21A),2-1(図21B)各30個の電流電圧特性を重ねて表示したものである。図21Aからわかるように、非線形抵抗素子30Yとして定電流ダイオードを用いた場合でも、実験1における実験例1-1と同様に、非線形抵抗素子を設けない実験例2-2と比較してメモリセル2のばらつきを低減することができた。これは、定電流ダイオードを用いることにより、メモリ素子20が過電流から保護され、メモリ素子20のサイクル寿命および抵抗値のばらつきも低減されたためと考えられる。
 なお、上記実施の形態、変形例および実施例に記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
 また、本技術は以下のような構成も取ることができる。
(1)第1電極および前記第1電極に対向配置された第2電極と、前記第1電極と前記第2電極との間に設けられたスイッチ素子と、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、前記スイッチ素子と直列に接続された非線形抵抗素子とを備えた選択素子。
(2)前記非線形抵抗素子は、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含む合金あるいは化合物を含む非線形抵抗層を有する、前記(1)に記載の選択素子。
(3)前記非線形抵抗素子は、ホウ素(B)あるいはケイ素(Si)の酸化物、窒化物あるいは酸窒化物を含む非線形抵抗層を有する、前記(1)または(2)に記載の選択素子。
(4)前記非線形抵抗素子は、1MV/cm以上の耐電圧を有し、前記非線形抵抗素子に印加される電圧が2V以下で10MA/cm2以上の電流密度の電流を流す、前記(1)乃至(3)のずれか1つに記載の選択素子。
(5)前記スイッチ素子は、印加電圧を所定の閾値電圧以上とすることにより低抵抗状態に、該閾値電圧以下に減少あるいは除去することにより高抵抗状態に変化するスイッチ層を有する、前記(1)乃至(4)のずれか1つに記載の選択素子。
(6)前記スイッチ層は、テルル(Te)と、ホウ素(B)、ケイ素(Si)、炭素(C)および窒素(N)のうちの少なくとも1種とを含む、前記(5)に記載の選択素子。
(7)前記非線形抵抗素子は、定電流ダイオードである、前記(1)乃至(6)のずれか1つに記載の選択素子。
(8)前記定電流ダイオードは、接合型電界効果トランジスタである、前記(7)に記載の選択素子。
(9)前記非線形抵抗素子および前記スイッチ素子は、第3電極を介して積層されている、前記(1)乃至(8)のいずれか1つに記載の選択素子。
(10)前記第3電極は、タングステン(W)からなる、前記(9)に記載の選択素子。(11)メモリ素子および前記メモリ素子に接続された選択素子を備え、前記選択素子は、第1電極および前記第1電極に対向配置された第2電極と、前記第1電極と前記第2電極との間に設けられたスイッチ素子と、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、前記スイッチ素子と直列に接続された非線形抵抗素子とを有するメモリセル。
(12)前記メモリ素子は、前記選択素子の前記第1電極および前記第2電極の間に記憶層を有する、前記(11)に記載のメモリセル。
(13)前記記憶層はテルル(Te)と、アルミニウム(Al),銅(Cu),ジルコニウム(Zr),窒素(N)および酸素(O)のうちの少なくとも1種とを含むイオン源層と、酸化物材料からなる抵抗変化層とを含む、前記(12)に記載のメモリセル。
(14)前記記憶層と、前記スイッチ素子あるいは前記選択素子は前記第1電極と前記第2電極との間に第4電極を介して積層されている、前記(12)または(13)に記載のメモリセル。
(15)前記記憶層は、遷移金属酸化物からなる抵抗変化層、相変化型メモリ層、磁気抵抗変化型メモリ層のいずれかである、前記(12)乃至(14)のいずれか1つに記載のメモリセル。
(16)メモリ素子および前記メモリ素子に接続された選択素子を含むメモリセルを複数備え、前記選択素子は、第1電極および前記第1電極に対向配置された第2電極と、前記第1電極と前記第2電極との間に設けられたスイッチ素子と、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、前記スイッチ素子と直列に接続された非線形抵抗素子とを有する記憶装置。
(17)複数の行ラインおよび複数の列ラインを有し、前記複数の行ラインと複数の列ラインとの各交差領域付近に前記メモリセルが配置されている、前記(16)に記載の記憶装置。
 本出願は、日本国特許庁において2015年2月10日に出願された日本特許出願番号2015-024608号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (17)

  1.  第1電極および前記第1電極に対向配置された第2電極と、
     前記第1電極と前記第2電極との間に設けられたスイッチ素子と、
     ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、前記スイッチ素子と直列に接続された非線形抵抗素子と
     を備えた選択素子。
  2.  前記非線形抵抗素子は、ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含む合金あるいは化合物を含む非線形抵抗層を有する、請求項1に記載の選択素子。
  3.  前記非線形抵抗素子は、ホウ素(B)あるいはケイ素(Si)の酸化物、窒化物あるいは酸窒化物を含む非線形抵抗層を有する、請求項1に記載の選択素子。
  4.  前記非線形抵抗素子は、1MV/cm以上の耐電圧を有し、前記非線形抵抗素子に印加される電圧が2V以下で10MA/cm2以上の電流密度の電流を流す、請求項1に記載の選択素子。
  5.  前記スイッチ素子は、印加電圧を所定の閾値電圧以上とすることにより低抵抗状態に、該閾値電圧以下に減少あるいは除去することにより高抵抗状態に変化するスイッチ層を有する、請求項1に記載の選択素子。
  6.  前記スイッチ層は、テルル(Te)と、ホウ素(B)、ケイ素(Si)、炭素(C)および窒素(N)のうちの少なくとも1種とを含む、請求項5に記載の選択素子。
  7.  前記非線形抵抗素子は、定電流ダイオードである、請求項1に記載の選択素子。
  8.  前記定電流ダイオードは、接合型電界効果トランジスタである、請求項7に記載の選択素子。
  9.  前記非線形抵抗素子および前記スイッチ素子は、第3電極を介して積層されている、請求項1に記載の選択素子。
  10.  前記第3電極は、タングステン(W)からなる、請求項9に記載の選択素子。
  11.  メモリ素子および前記メモリ素子に接続された選択素子を備え、
     前記選択素子は、
     第1電極および前記第1電極に対向配置された第2電極と、
     前記第1電極と前記第2電極との間に設けられたスイッチ素子と、
     ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、前記スイッチ素子と直列に接続された非線形抵抗素子と
     を有するメモリセル。
  12.  前記メモリ素子は、前記選択素子の前記第1電極および前記第2電極の間に記憶層を有する、請求項11に記載のメモリセル。
  13.  前記記憶層はテルル(Te)と、アルミニウム(Al),銅(Cu),ジルコニウム(Zr),窒素(N)および酸素(O)のうちの少なくとも1種とを含むイオン源層と、酸化物材料からなる抵抗変化層とを含む、請求項12に記載のメモリセル。
  14.  前記記憶層と、前記スイッチ素子あるいは前記選択素子は前記第1電極と前記第2電極との間に第4電極を介して積層されている、請求項12に記載のメモリセル。
  15.  前記記憶層は、遷移金属酸化物からなる抵抗変化層、相変化型メモリ層、磁気抵抗変化型メモリ層のいずれかである、請求項12に記載のメモリセル。
  16.  メモリ素子および前記メモリ素子に接続された選択素子を含むメモリセルを複数備え、
     前記選択素子は、
     第1電極および前記第1電極に対向配置された第2電極と、
     前記第1電極と前記第2電極との間に設けられたスイッチ素子と、
     ホウ素(B)、ケイ素(Si)および炭素(C)のうちの少なくとも1種を含むと共に、前記スイッチ素子と直列に接続された非線形抵抗素子と
     を有する記憶装置。
  17.  複数の行ラインおよび複数の列ラインを有し、前記複数の行ラインと複数の列ラインとの各交差領域付近に前記メモリセルが配置されている、請求項16に記載の記憶装置。
PCT/JP2016/050539 2015-02-10 2016-01-08 選択素子およびメモリセルならびに記憶装置 WO2016129306A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/545,923 US10971685B2 (en) 2015-02-10 2016-01-08 Selective device, memory cell, and storage unit
JP2016574687A JP6750507B2 (ja) 2015-02-10 2016-01-08 選択素子およびメモリセルならびに記憶装置
CN201680008329.XA CN107210302B (zh) 2015-02-10 2016-01-08 选择性元件、存储器胞元和存储装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-024608 2015-02-10
JP2015024608 2015-02-10

Publications (1)

Publication Number Publication Date
WO2016129306A1 true WO2016129306A1 (ja) 2016-08-18

Family

ID=56614682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050539 WO2016129306A1 (ja) 2015-02-10 2016-01-08 選択素子およびメモリセルならびに記憶装置

Country Status (4)

Country Link
US (1) US10971685B2 (ja)
JP (1) JP6750507B2 (ja)
CN (1) CN107210302B (ja)
WO (1) WO2016129306A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066320A1 (ja) * 2016-10-04 2018-04-12 ソニーセミコンダクタソリューションズ株式会社 スイッチ素子および記憶装置ならびにメモリシステム
WO2018190071A1 (ja) * 2017-04-11 2018-10-18 ソニーセミコンダクタソリューションズ株式会社 記憶装置
WO2019181273A1 (ja) * 2018-03-19 2019-09-26 ソニーセミコンダクタソリューションズ株式会社 クロスポイント素子および記憶装置
WO2020261736A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 選択素子、メモリセル、および、記憶装置
US10971685B2 (en) 2015-02-10 2021-04-06 Sony Corporation Selective device, memory cell, and storage unit
US11600773B2 (en) 2020-03-16 2023-03-07 Kioxia Corporation Selector and non-volatile storage device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144959A (ja) 2019-03-06 2020-09-10 キオクシア株式会社 半導体記憶装置
US20200295083A1 (en) * 2019-03-15 2020-09-17 Macronix International Co., Ltd. Barrier layer for selector devices and memory devices using same
US11183236B2 (en) * 2019-07-31 2021-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell with built-in amplifying function, memory device and method using the same
JP2021048258A (ja) * 2019-09-18 2021-03-25 キオクシア株式会社 抵抗変化素子
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US11177009B2 (en) * 2019-12-30 2021-11-16 Micron Technology, Inc. Multi-state programming of memory cells
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541613A (ja) * 1999-04-12 2002-12-03 エナージー コンバーション デバイセス インコーポレイテッド ユニバーサルメモリ素子を使用するシステムを有するユニバーサルメモリ素子と、同メモリ素子を読み取り、書き込み、またプログラムするための装置と方法
JP2006351779A (ja) * 2005-06-15 2006-12-28 Sony Corp メモリセル及び記憶装置
JP2007134676A (ja) * 2005-11-09 2007-05-31 Samsung Electronics Co Ltd スイッチング素子としてトランジスタ及びダイオードを含むハイブリッドタイプの不揮発性メモリ素子
JP2009135206A (ja) * 2007-11-29 2009-06-18 Sony Corp メモリセル
JP2011199197A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 半導体記憶装置
JP2011198439A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 半導体記憶装置およびその制御方法
WO2014036461A1 (en) * 2012-08-31 2014-03-06 Micron Technology, Inc. Three dimensional memory array architecture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6940085B2 (en) * 2002-04-02 2005-09-06 Hewlett-Packard Development Company, I.P. Memory structures
US8344348B2 (en) * 2008-10-02 2013-01-01 Ovonyx, Inc. Memory device
KR20130060065A (ko) * 2011-11-29 2013-06-07 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 이의 제조 방법
US8563366B2 (en) * 2012-02-28 2013-10-22 Intermolecular Inc. Memory device having an integrated two-terminal current limiting resistor
JP6750507B2 (ja) 2015-02-10 2020-09-02 ソニー株式会社 選択素子およびメモリセルならびに記憶装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541613A (ja) * 1999-04-12 2002-12-03 エナージー コンバーション デバイセス インコーポレイテッド ユニバーサルメモリ素子を使用するシステムを有するユニバーサルメモリ素子と、同メモリ素子を読み取り、書き込み、またプログラムするための装置と方法
JP2006351779A (ja) * 2005-06-15 2006-12-28 Sony Corp メモリセル及び記憶装置
JP2007134676A (ja) * 2005-11-09 2007-05-31 Samsung Electronics Co Ltd スイッチング素子としてトランジスタ及びダイオードを含むハイブリッドタイプの不揮発性メモリ素子
JP2009135206A (ja) * 2007-11-29 2009-06-18 Sony Corp メモリセル
JP2011199197A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 半導体記憶装置
JP2011198439A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 半導体記憶装置およびその制御方法
WO2014036461A1 (en) * 2012-08-31 2014-03-06 Micron Technology, Inc. Three dimensional memory array architecture

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971685B2 (en) 2015-02-10 2021-04-06 Sony Corporation Selective device, memory cell, and storage unit
JPWO2018066320A1 (ja) * 2016-10-04 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 スイッチ素子および記憶装置ならびにメモリシステム
US11183633B2 (en) 2016-10-04 2021-11-23 Sony Semiconductor Solutions Corporation Switch device, storage apparatus, and memory system
WO2018066320A1 (ja) * 2016-10-04 2018-04-12 ソニーセミコンダクタソリューションズ株式会社 スイッチ素子および記憶装置ならびにメモリシステム
JP7079201B2 (ja) 2016-10-04 2022-06-01 ソニーセミコンダクタソリューションズ株式会社 スイッチ素子および記憶装置ならびにメモリシステム
KR20190057058A (ko) * 2016-10-04 2019-05-27 소니 세미컨덕터 솔루션즈 가부시키가이샤 스위치 소자 및 기억 장치, 및 메모리 시스템
KR102389106B1 (ko) 2016-10-04 2022-04-21 소니 세미컨덕터 솔루션즈 가부시키가이샤 스위치 소자 및 기억 장치, 및 메모리 시스템
CN110494972A (zh) * 2017-04-11 2019-11-22 索尼半导体解决方案公司 存储设备
WO2018190071A1 (ja) * 2017-04-11 2018-10-18 ソニーセミコンダクタソリューションズ株式会社 記憶装置
US11018189B2 (en) 2017-04-11 2021-05-25 Sony Semiconductor Solutions Corporation Storage apparatus
JPWO2018190071A1 (ja) * 2017-04-11 2020-02-20 ソニーセミコンダクタソリューションズ株式会社 記憶装置
US20210005252A1 (en) * 2018-03-19 2021-01-07 Sony Semiconductor Solutions Corporation Cross point device and storage apparatus
WO2019181273A1 (ja) * 2018-03-19 2019-09-26 ソニーセミコンダクタソリューションズ株式会社 クロスポイント素子および記憶装置
WO2020261736A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 選択素子、メモリセル、および、記憶装置
US11600773B2 (en) 2020-03-16 2023-03-07 Kioxia Corporation Selector and non-volatile storage device

Also Published As

Publication number Publication date
JP6750507B2 (ja) 2020-09-02
JPWO2016129306A1 (ja) 2017-11-16
US20180019391A1 (en) 2018-01-18
US10971685B2 (en) 2021-04-06
CN107210302B (zh) 2021-06-15
CN107210302A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6750507B2 (ja) 選択素子およびメモリセルならびに記憶装置
US10804321B2 (en) Switch device and storage unit
KR102356740B1 (ko) 스위치 소자 및 기억 장치
US8687404B2 (en) Memory element and drive method for the same, and memory device
JP6787785B2 (ja) スイッチ素子および記憶装置
US20060113614A1 (en) Nonvolatile memory device and method including resistor and transistor
US9978941B2 (en) Self-rectifying resistive random access memory cell structure
WO2012169198A1 (ja) 不揮発性記憶素子、その製造方法及び初期ブレーク方法、並びに不揮発性記憶装置
KR102631895B1 (ko) 기억 소자 및 기억 장치
US10892300B2 (en) Storage device
JP2010278275A (ja) 半導体記憶装置
CN112306399B (zh) 存储器单元、存储器器件及其使用方法
TWI545816B (zh) 儲存裝置及儲存單元
US20170062522A1 (en) Combining Materials in Different Components of Selector Elements of Integrated Circuits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574687

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748951

Country of ref document: EP

Kind code of ref document: A1