[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016125915A1 - 評価装置及び評価方法 - Google Patents

評価装置及び評価方法 Download PDF

Info

Publication number
WO2016125915A1
WO2016125915A1 PCT/JP2016/056290 JP2016056290W WO2016125915A1 WO 2016125915 A1 WO2016125915 A1 WO 2016125915A1 JP 2016056290 W JP2016056290 W JP 2016056290W WO 2016125915 A1 WO2016125915 A1 WO 2016125915A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
movement
bucket
evaluation
detection
Prior art date
Application number
PCT/JP2016/056290
Other languages
English (en)
French (fr)
Inventor
進 幸積
英美 ▲高▼橋
浩樹 赤沼
寿士 浅田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US15/128,210 priority Critical patent/US20170255895A1/en
Priority to JP2016523353A priority patent/JP6259515B2/ja
Priority to AU2016216347A priority patent/AU2016216347B2/en
Priority to PCT/JP2016/056290 priority patent/WO2016125915A1/ja
Priority to CN201680000912.6A priority patent/CN107343381A/zh
Priority to DE112016000019.7T priority patent/DE112016000019T5/de
Priority to KR1020167026005A priority patent/KR20170102799A/ko
Publication of WO2016125915A1 publication Critical patent/WO2016125915A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • G06Q10/063114Status monitoring or status determination for a person or group
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0633Workflow analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present invention relates to an evaluation apparatus and an evaluation method.
  • Patent Document 1 discloses a technique for evaluating the skill of an operator.
  • An object of an aspect of the present invention is to provide an evaluation device and an evaluation method that can objectively evaluate the skill of an operator of a work vehicle.
  • a detection data acquisition unit that acquires detection data including a detection movement trajectory of a predetermined unit; a target data generation unit that generates target data including a target movement trajectory of the predetermined unit of the work implement; the detection data and the target data; And an evaluation data generation unit that generates evaluation data of an operator who operates the work machine.
  • first detection data indicating the excavation amount of the work implement and second detection data indicating the excavation time of the work implement are acquired based on operation data of the work implement of the work vehicle.
  • An evaluation apparatus includes a detection data acquisition unit that performs, and an evaluation data generation unit that generates evaluation data of an operator who operates the work machine based on the first detection data and the second detection data. .
  • the operation data of the work implement of the work vehicle from the movement start position to the movement end position of the work implement detected by the detection device that detects the operation of the work implement of the work vehicle is used.
  • detection data including a detection movement trajectory of the predetermined part of the work implement based on the above
  • target data including a target movement trajectory of the predetermined part of the work implement, the detection data and the target data
  • evaluation data of an operator who operates the work machine based on the above.
  • first detection data indicating the excavation amount of the work implement and second detection data indicating the excavation time of the work implement are acquired based on operation data of the work implement of the work vehicle. And generating evaluation data for an operator who operates the work machine based on the first detection data and the second detection data.
  • an evaluation device and an evaluation method that can objectively evaluate the skill of an operator of a work vehicle are provided.
  • FIG. 1 is a diagram schematically illustrating an example of an evaluation system according to the first embodiment.
  • FIG. 2 is a side view showing an example of a hydraulic excavator according to the first embodiment.
  • FIG. 3 is a plan view illustrating an example of the hydraulic excavator according to the first embodiment.
  • FIG. 4 is a diagram schematically illustrating an example of the operation device according to the first embodiment.
  • FIG. 5 is a diagram schematically illustrating an example of a hardware configuration of the evaluation system according to the first embodiment.
  • FIG. 6 is a functional block diagram illustrating an example of the mobile device according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of the evaluation method according to the first embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of an evaluation system according to the first embodiment.
  • FIG. 2 is a side view showing an example of a hydraulic excavator according to the first embodiment.
  • FIG. 3 is a plan view illustrating an example of the hydraulic excav
  • FIG. 8 is a flowchart illustrating an example of a shooting preparation method according to the first embodiment.
  • FIG. 9 is a diagram for explaining an example of a photographing method according to the first embodiment.
  • FIG. 10 is a diagram for explaining the method of specifying the position of the upper-part turning body according to the first embodiment.
  • FIG. 11 is a diagram for explaining the work machine position specifying method according to the first embodiment.
  • FIG. 12 is a schematic diagram for explaining an example of the evaluation method according to the first embodiment.
  • FIG. 13 is a flowchart illustrating an example of a shooting and evaluation method according to the first embodiment.
  • FIG. 14 is a diagram for explaining a method for specifying the movement start position of the work implement according to the first embodiment.
  • FIG. 15 is a diagram for explaining a method of acquiring photographing data including a detected movement locus of the work machine according to the first embodiment.
  • FIG. 16 is a diagram for explaining a method for acquiring imaging data including the detected movement locus of the work machine according to the first embodiment.
  • FIG. 17 is a diagram for explaining a method for specifying the movement end position of the work machine according to the first embodiment.
  • FIG. 18 is a diagram for explaining a method of generating target data indicating the target movement locus of the work machine according to the first embodiment.
  • FIG. 19 is a diagram for explaining the evaluation data display method according to the first embodiment.
  • FIG. 20 is a diagram for explaining an example of a relative data display method according to the first embodiment.
  • FIG. 21 is a diagram for explaining an example of the operator evaluation method according to the first embodiment.
  • FIG. 22 is a diagram for explaining an example of an operator evaluation method according to the first embodiment.
  • FIG. 23 is a functional block diagram illustrating an example of a mobile device according to the second embodiment.
  • FIG. 24 is a flowchart illustrating an example of a shooting and evaluation method according to the second embodiment.
  • FIG. 25 is a diagram for explaining an example of the excavation amount calculation method according to the second embodiment.
  • FIG. 26 is a diagram schematically illustrating an example of a hydraulic excavator including a detection device that detects the operation of the bucket.
  • FIG. 27 is a diagram for explaining an example of a method for remotely operating a hydraulic excavator.
  • FIG. 28 is a diagram for explaining an example of a method for remotely operating a hydraulic excavator.
  • FIG. 1 is a diagram schematically illustrating an example of an evaluation system 1 according to the present embodiment.
  • the work vehicle 3 operates at the construction site 2.
  • the work vehicle 3 is operated by an operator Ma who has boarded the work vehicle 3.
  • the evaluation system 1 performs one or both of the evaluation of the operation of the work vehicle 3 and the evaluation of the skill of the operator Ma who operates the work vehicle 3.
  • the operator Ma operates the work vehicle 3 to construct the construction site 2.
  • a worker Mb different from the operator Ma performs the work.
  • the worker Mb performs auxiliary work at the construction site 2.
  • the worker Mb uses the mobile device 6.
  • the evaluation system 1 includes a management device 4 including a computer system and a portable device 6 including a computer system.
  • the management device 4 functions as a server.
  • the management device 4 provides a service to the client.
  • the client includes at least one of an operator Ma, a worker Mb, a holder of the work vehicle 3, and a contractor from whom the work vehicle 3 is rented. Note that the owner of the work vehicle 3 and the operator Ma of the work vehicle 3 may be the same person or different persons.
  • the portable device 6 is possessed by at least one of the operator Ma and the worker Mb.
  • the portable device 6 includes a portable computer such as a smartphone or a tablet personal computer.
  • the management device 4 is capable of data communication with a plurality of portable devices 6.
  • FIG. 2 is a side view showing an example of the hydraulic excavator 3 according to the present embodiment.
  • FIG. 3 is a plan view showing an example of the hydraulic excavator 3 according to the present embodiment.
  • FIG. 3 is a plan view of the excavator 3 viewed from above in the posture of the work machine 10 shown in FIG.
  • the excavator 3 includes a work machine 10 that is operated by hydraulic pressure, and a vehicle body 20 that supports the work machine 10.
  • the vehicle main body 20 includes an upper swing body 21 and a lower traveling body 22 that supports the upper swing body 21.
  • the upper swing body 21 includes a cab 23, a machine room 24, and a counterweight 24C.
  • the cab 23 includes a cab.
  • a driver's seat 7 on which the operator Ma sits and an operating device 8 that is operated by the operator Ma are arranged in the driver's cab.
  • the operating device 8 includes a work lever for operating the work implement 10 and the upper swing body 21 and a travel lever for operating the lower travel body 22.
  • the work machine 10 is operated by the operator Ma via the operation device 8.
  • the upper swing body 21 and the lower traveling body 22 are operated by the operator Ma via the operation device 8.
  • the operator Ma can operate the operation device 8 while sitting on the driver's seat 7.
  • the lower traveling body 22 includes drive wheels 25 called sprockets, idle wheels 26 called idlers, and crawler belts 27 supported by the drive wheels 25 and idle wheels 26.
  • the drive wheel 25 is operated by power generated by a drive source such as a hydraulic motor.
  • the drive wheel 25 rotates by operating the travel lever of the operation device 8.
  • the drive wheel 25 rotates about the rotation axis DX1 as a rotation center.
  • the idler wheel 26 rotates about the rotation axis DX2.
  • the rotation axis DX1 and the rotation axis DX2 are parallel. As the driving wheel 25 rotates and the crawler belt 27 rotates, the excavator 3 travels or turns back and forth.
  • the upper turning body 21 can turn around the turning axis RX while being supported by the lower traveling body 22.
  • the work machine 10 is supported by the upper turning body 21 of the vehicle body 20.
  • the work machine 10 includes a boom 11 connected to the upper swing body 21, an arm 12 connected to the boom 11, and a bucket 13 connected to the arm 12.
  • the bucket 13 has, for example, a plurality of convex blades.
  • a plurality of cutting edges 13B, which are the tips of the blades, are provided.
  • the blade edge 13B of the bucket 13 may be the tip of a straight blade provided in the bucket 13.
  • the upper swing body 21 and the boom 11 are connected via a boom pin 11P.
  • the boom 11 is supported by the upper swing body 21 so as to be operable with the rotation axis AX1 as a fulcrum.
  • the boom 11 and the arm 12 are connected via an arm pin 12P.
  • the arm 12 is supported by the boom 11 so as to be operable with the rotation axis AX2 as a fulcrum.
  • the arm 12 and the bucket 13 are connected via a bucket pin 13P.
  • the bucket 13 is supported by the arm 12 so as to be operable with the rotation axis AX3 as a fulcrum.
  • the rotation axis AX1, the rotation axis AX2, and the rotation axis AX3 are parallel to the front-rear direction. The definition of the front-rear direction will be described later.
  • the direction in which the axes of the rotation axes AX1, AX2, and AX3 extend is referred to as the vehicle width direction of the upper swing body 21 as appropriate, and the direction in which the axis of the swing axis RX extends is appropriately
  • the direction orthogonal to both the rotation axes AX1, AX2, AX3 and the turning axis RX is appropriately referred to as the front-rear direction of the upper turning body 21.
  • the direction in which the work machine 10 including the bucket 13 is present is the front, and the reverse direction of the front is the rear.
  • One side in the vehicle width direction is the right side, and the opposite direction to the right side, that is, the direction in which the cab 23 is present is the left side.
  • the bucket 13 is disposed in front of the upper swing body 21.
  • the plurality of cutting edges 13B of the bucket 13 are arranged in the vehicle width direction.
  • the upper swing body 21 is disposed above the lower traveling body 22.
  • Work machine 10 is operated by a hydraulic cylinder.
  • the hydraulic excavator 3 has a boom cylinder 14 for operating the boom 11, an arm cylinder 15 for operating the arm 12, and a bucket cylinder 16 for operating the bucket 13.
  • the boom cylinder 14 expands and contracts, the boom 11 operates with the rotation axis AX1 as a fulcrum, and the tip of the boom 11 moves in the vertical direction.
  • the arm cylinder 15 expands and contracts, the arm 12 operates with the rotation axis AX2 as a fulcrum, and the tip of the arm 12 moves in the vertical direction or the front-rear direction.
  • the bucket 13 When the bucket cylinder 16 expands and contracts, the bucket 13 operates with the rotation axis AX3 as a fulcrum, and the blade edge 13B of the bucket 13 moves in the vertical direction or the front-rear direction.
  • the hydraulic cylinder of the work machine 10 including the boom cylinder 14, the arm cylinder 15, and the bucket cylinder 16 is operated by a work lever of the operation device 8.
  • the posture of the work implement 10 changes as the hydraulic cylinder of the work implement 10 expands and contracts.
  • FIG. 4 is a diagram schematically illustrating an example of the operation device 8 according to the present embodiment.
  • the operation lever of the operating device 8 includes a right operation lever 8WR disposed to the right of the center of the driver seat 7 in the vehicle width direction and a left operation disposed to the left of the center of the driver seat 7 in the vehicle width direction.
  • Lever 8WL The travel lever of the operating device 8 includes a right travel lever 8MR disposed to the right of the center of the driver seat 7 in the vehicle width direction and a left travel disposed to the left of the center of the driver seat 7 in the vehicle width direction.
  • Lever 8ML Lever 8ML.
  • the operation pattern regarding the operational relationship between the tilting direction of the right working lever 8WR and the left working lever 8WL and the working direction of the work implement 10 and the turning direction of the upper turning pair 21 may not be the above-described relationship.
  • FIG. 5 is a diagram schematically illustrating an example of a hardware configuration of the evaluation system 1 according to the present embodiment.
  • the portable device 6 includes a computer system.
  • the portable device 6 includes an arithmetic processing device 60, a storage device 61, a position detection device 62 that detects the position of the portable device 6, a photographing device 63, a display device 64, an input device 65, and an input / output interface device 66. And a communication device 67.
  • the arithmetic processing unit 60 includes a microprocessor such as a CPU (Central Processing Unit).
  • the storage device 61 includes memory and storage such as ROM (Read Only Memory) or RAM (Random Access Memory).
  • the arithmetic processing device 60 performs arithmetic processing according to a computer program stored in the storage device 61.
  • the position detection device 62 detects an absolute position indicating the position of the mobile device 6 in the global coordinate system by a global navigation system (GNSS).
  • GNSS global navigation system
  • the photographing device 63 has a video camera function capable of acquiring moving image data of a subject and a still camera function capable of acquiring still image data of the subject.
  • the photographing device 63 includes an optical system and an image sensor that acquires photographing data of a subject via the optical system.
  • the imaging device includes a charge coupled device (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the photographing device 63 can photograph the excavator 3.
  • the imaging device 63 functions as a detection device that detects the operation of the work machine 10 of the excavator 3.
  • the photographing device 63 photographs the hydraulic excavator 3 from the outside of the hydraulic excavator 3 and detects the operation of the work machine 10.
  • the imaging device 63 can acquire the shooting data of the work machine 10 and acquire the movement data of the work machine 10 including at least one of the movement trajectory, the movement speed, and the movement time of the work machine 10.
  • the shooting data of the work machine 10 includes one or both of moving image data and still image data of the work machine 10.
  • the display device 64 includes a flat panel display such as a liquid crystal display (LCD) or an organic EL display (OLED).
  • the input device 65 generates input data when operated.
  • the input device 65 includes a touch sensor provided on the display screen of the display device 64.
  • Display device 64 includes a touch panel.
  • the input / output interface device 66 performs data communication among the arithmetic processing device 60, the storage device 61, the position detection device 62, the photographing device 63, the display device 64, the input device 65, and the communication device 67.
  • the communication device 67 performs data communication with the management device 4 wirelessly.
  • the communication device 67 performs data communication with the management device 4 using a satellite communication network, a mobile phone communication network, or an Internet line. Note that the communication device 67 may perform data communication with the management device 4 in a wired manner.
  • Management device 4 includes a computer system.
  • the management device 4 uses a server, for example.
  • the management device 4 includes an arithmetic processing device 40, a storage device 41, an output device 42, an input device 43, an input / output interface device 44, and a communication device 45.
  • the arithmetic processing unit 40 includes a microprocessor such as a CPU.
  • the storage device 41 includes a memory such as a ROM or a RAM and a storage.
  • the output device 42 includes a display device such as a flat panel display.
  • the output device 42 may include a printing device that outputs print data.
  • the input device 43 generates input data when operated.
  • the input device 43 includes at least one of a keyboard and a mouse. Note that the input device 43 may include a touch sensor provided on the display screen of the display device.
  • the input / output interface device 44 performs data communication among the arithmetic processing device 40, the storage device 41, the output device 42, the input device 43, and the communication device 45.
  • the communication device 45 performs data communication with the mobile device 6 wirelessly.
  • the communication device 45 performs data communication with the mobile device 6 using a mobile phone communication network or an Internet line.
  • the communication device 45 may perform data communication with the portable device 6 by wire.
  • FIG. 6 is a functional block diagram illustrating an example of the mobile device 6 according to the present embodiment.
  • the portable device 6 functions as an evaluation device 600 that performs one or both of the evaluation of the operation of the excavator 3 and the evaluation of the skill of the operator Ma who operates the excavator 3.
  • the functions of the evaluation device 600 are exhibited by the arithmetic processing device 60 and the storage device 61.
  • the evaluation device 600 acquires detection data including the movement state of the work implement 10 based on the image data (hereinafter, referred to as operation data as appropriate) of the work implement 10 of the excavator 3 detected by the image capture device 63. Based on the detection data acquisition unit 601, the operation data of the work machine 10 of the excavator 3 detected by the imaging device 63, the position data calculation unit 602 that calculates the position data of the work machine 10, and the target movement of the work machine 10 A target data generation unit 603 that generates target data including conditions, an evaluation data generation unit 604 that generates evaluation data based on detection data and target data, a display control unit 605 that controls the display device 64, and a storage A unit 608 and an input / output unit 610. The evaluation device 600 performs data communication via the input / output unit 610.
  • the photographing device 63 detects the operation data of the work machine 10 from the movement start position to the movement end position of the work machine 10 operated by the operator Ma via the operation device 8.
  • the operation data of the work machine 10 includes shooting data of the work machine 10 shot by the shooting device 63.
  • the detection data acquisition unit 601 includes a detected movement locus of a predetermined part of the work machine 10 based on operation data of the work machine 10 from the movement start position to the movement end position detected by the imaging device 63. Get detection data. Further, the detection data acquisition unit 601 acquires an elapsed time after the bucket 13 starts moving based on the imaging data.
  • the position data acquisition unit 602 calculates the position data of the work implement 10 from the operation data of the work implement 10 detected by the photographing device 63.
  • the position data acquisition unit 602 calculates the position data of the work machine 10 from the shooting data of the work machine 10 using, for example, a pattern matching method.
  • the target data generation unit 603 generates target data including the target movement locus of the work implement 10 from the operation data of the work implement 10 detected by the photographing device 63. Details of the target data will be described later.
  • the evaluation data generation unit 604 generates evaluation data based on the detection data acquired by the detection data acquisition unit 601 and the target data generated by the target data generation unit 603.
  • the evaluation data includes one or both of evaluation data indicating evaluation of the operation of the work machine 10 and evaluation data indicating evaluation of the operator Ma who operates the work machine 10 via the operation device 8. Details of the evaluation data will be described later.
  • the display control unit 605 generates display data from the detection data and target data and causes the display device 64 to display the display data. Further, the display control unit 605 generates display data from the evaluation data and causes the display device 64 to display the display data. Details of the display data will be described later.
  • the storage unit 608 stores various data.
  • the storage unit 608 stores a computer program for executing the evaluation method according to the present embodiment.
  • FIG. 7 is a flowchart illustrating an example of the evaluation method according to the present embodiment.
  • the evaluation method includes a step of preparing the photographing of the excavator 3 by the photographing device 63 (S200), and a step of photographing the hydraulic excavator 3 using the photographing device 63 and evaluating the skill of the operator Ma ( S300).
  • FIG. 8 is a flowchart illustrating an example of a shooting preparation method according to the present embodiment.
  • the shooting preparation method includes a step of determining the shooting position of the shooting device 63 with respect to the excavator 3 (S210), a step of specifying the position of the upper swing body 21 (S220), and specifying the position of the boom 11.
  • step S210 a process of determining a relative position between the hydraulic excavator 3 and the imaging device 63 that images the hydraulic excavator 3 is performed (step S210).
  • FIG. 9 is a diagram for explaining an example of a photographing method according to the present embodiment.
  • the input device 65 of the mobile device 6 is operated by the operator Ma or the worker Mb
  • the computer program stored in the storage unit 608 is activated.
  • the portable device 6 transitions to the shooting preparation mode.
  • the zoom function of the optical system of the shooting device 63 is limited.
  • the excavator 3 is photographed by a photographing device 63 having a fixed prescribed photographing magnification.
  • the process of specifying the position of the upper swing body 21 is performed. Is implemented (step S220).
  • the position data calculation unit 602 specifies the position of the upper swing body 21 using the pattern matching method.
  • FIG. 10 is a diagram for explaining a method for specifying the position of the upper-part turning body 21 according to the present embodiment.
  • the photographing device 63 acquires photographing data of the photographing region 73 including the hydraulic excavator 3.
  • the position data calculation unit 602 calculates the position data of the work machine 10 based on the shooting data of the shooting area 73 shot by the shooting device 63.
  • the position data calculation unit 602 scans and moves the upper swing body template 21T (first template), which is the template of the upper swing body 21, with respect to the imaging region 73 on the display screen of the display device 64. Calculate position data.
  • the upper swing body template 21T is data indicating the outer shape of the upper swing body 21 viewed from the left side, and is data indicating the outer shape including the cab 23, the machine room 24, and the counterweight 24C, and is stored in the storage unit 608 in advance. ing.
  • the position data calculation unit 602 calculates the position data of the vehicle main body 20 based on the correlation value between the imaging data of the vehicle main body 20 and the upper swing body template 21T.
  • the upper swing body template 21T is data indicating the outer shape of only the cab 23 or only the machine room 24, the outer shape is close to a quadrangle and may exist in the natural world, and is based on photographing data. It may be difficult to specify the position of the upper turning pair 21.
  • the upper swing body template 21T is data indicating an outer shape including the cab 23 and at least the machine room 24, the outer shape becomes an L-shaped polygon and is less likely to exist in nature, and is based on the shooting data.
  • the position of the upper turning pair 21 can be easily identified.
  • the position data of the vehicle body 20 is calculated, whereby the position of the upper swing body 21 is specified.
  • the position of the boom pin 11P is specified.
  • the position data calculation unit 602 calculates dimension data indicating the dimensions of the vehicle body 20 based on the shooting data of the shooting area 73.
  • the position data calculation unit 602 calculates the dimension (the dimension L in the front-rear direction) of the upper swing body 21 on the display screen of the display device 64 when the upper swing body 21 is viewed from the left side.
  • the position data calculation unit 602 calculates the position data of the boom 11 by moving a boom template 11T (second template) that is a template of the boom 11 with respect to the imaging region 73 on the display screen of the display device 64.
  • the boom template 11T is data indicating the outer shape of the boom 11, and is stored in the storage unit 608 in advance.
  • the position data calculation unit 602 calculates the position data of the boom 11 based on the correlation value between the shooting data of the boom 11 and the boom template 11T.
  • FIG. 11 is a diagram for explaining a method for specifying the position of the boom 11 according to the present embodiment.
  • the boom 11 can be operated with respect to the upper swing body 21 around the rotation axis AX1. Therefore, since the boom 11 rotates about the rotation axis AX1 and can take various postures, depending on the rotation angle of the boom 11, the boom template 11T can be simply scanned and moved relative to the imaging region 73. There is a possibility that the shooting data does not match the prepared boom template 11T.
  • the position of the boom pin 11P is specified by specifying the position of the upper swing body 21.
  • the position data calculation unit 602 displays the position of the boom pin 11P of the boom 11 and the position of the boom pin of the boom template 11T specified in step S230 on the display screen of the display device 64. Match. After matching the position of the boom pin 11P of the boom 11 and the position of the boom pin of the boom template 11T, the position data calculation unit 602 matches the boom 11 and the boom template 11T indicated by the shooting data on the display screen of the display device 64. As described above, the boom template 11T is rotated and the position data of the boom 11 is calculated.
  • the position data calculation unit 602 calculates the position data of the boom 11 based on the correlation value between the shooting data of the boom 11 and the boom template 11T.
  • boom templates 11T of various postures are stored in the storage unit 608 in advance, the boom template 11T that matches the boom 11 indicated by the shooting data is searched, and any boom template 11T is selected to select the boom template 11T. Eleven position data may be calculated.
  • the position of the boom 11 is specified by calculating the position data of the boom 11. By specifying the position of the boom 11, the position of the arm pin 12P is specified.
  • a process for specifying the position of the arm 12 is performed (step S240).
  • the position data calculation unit 602 calculates the position data of the arm 12 by moving an arm template (second template) that is a template of the arm 12 with respect to the imaging region 73 on the display screen of the display device 64.
  • the position data calculation unit 602 calculates the position data of the arm 12 based on the correlation value between the imaging data of the arm 12 and the arm template.
  • the arm 12 can operate with respect to the boom 11 about the rotation axis AX2. Therefore, the arm 12 rotates about the rotation axis AX2 and can take various postures. Therefore, depending on the rotation angle of the arm 12, only the arm template is scanned and moved with respect to the imaging region 73. Data and prepared arm template may not match.
  • the position of the arm 11 is specified by specifying the position of the boom 11.
  • the position data calculation unit 602 specifies the position of the arm 12 in the same procedure as the procedure for specifying the position of the boom 11.
  • the position data calculation unit 602 matches the position of the arm pin 12P of the arm 12 identified in step S240 with the position of the arm pin of the arm template on the display screen of the display device 64.
  • the position data calculation unit 602 causes the arm 12 and the arm template indicated by the shooting data to match on the display screen of the display device 64. Then, the position of the arm 12 is calculated by rotating the arm template.
  • the position data calculation unit 602 calculates the position data of the arm 12 based on the correlation value between the imaging data of the arm 12 and the arm template.
  • arm templates having various postures are stored in the storage unit 608 in advance, the arm template matching the arm 12 indicated by the imaging data is searched, and the position of the arm 12 is selected by selecting one of the arm templates. Data may be calculated.
  • the position of the arm 12 is specified by calculating the position data of the arm 12. By specifying the position of the arm 12, the position of the bucket pin 13P is specified.
  • a process for specifying the position of the bucket 13 is performed (step S250).
  • the position data calculation unit 602 calculates the position data of the bucket 13 by moving a bucket template (second template) that is a template of the bucket 13 with respect to the imaging region 73 on the display screen of the display device 64.
  • the position data calculation unit 602 calculates the position data of the bucket 13 based on the correlation value between the shooting data of the bucket 13 and the bucket template.
  • the bucket 13 can operate with respect to the arm 12 about the rotation axis AX3. For this reason, the bucket 13 rotates around the rotation axis AX3 and can take various postures. Depending on the angle of the bucket 13, only the bucket template is scanned and moved with respect to the imaging region 73, The prepared bucket template may not match.
  • the position data calculation unit 602 specifies the position of the bucket 13 in the same procedure as the procedure for specifying the position of the boom 11 and the procedure for specifying the position of the arm 12.
  • the position data calculation unit 602 matches the bucket pin 13P of the bucket 13 identified in step S250 with the position of the bucket pin of the bucket template on the display screen of the display device 64.
  • the position data calculation unit 602 matches the bucket 13 indicated by the shooting data and the bucket template on the display screen of the display device 64. As described above, the bucket template is rotated and the position data of the bucket 13 is calculated.
  • the position data calculation unit 602 calculates the position data of the bucket 13 based on the correlation value between the shooting data of the bucket 13 and the bucket template.
  • bucket templates having various postures are stored in the storage unit 608 in advance, the bucket template matching the bucket 13 indicated by the shooting data is searched, and the position of the bucket 13 is selected by selecting one of the bucket templates. Data may be calculated.
  • the position of the bucket 13 is specified by calculating the position data of the bucket 13. By specifying the position of the bucket 13, the position of the blade edge 13 ⁇ / b> B of the bucket 13 is specified.
  • the movement state of the work machine 10 of the excavator 3 operated by the operator Ma via the operation device 8 is photographed by the photographing device 63 of the portable device 6.
  • the operation conditions of the work machine 10 by the operator Ma are determined so that the work machine 10 moves under a specific movement condition.
  • FIG. 12 is a diagram schematically showing operating conditions of the work machine 10 imposed on the operator Ma in the evaluation method according to the present embodiment.
  • the blade tip 13 ⁇ / b> B of the bucket 13 in an unloaded state in the air is operated to draw a linear movement trajectory along a horizontal plane.
  • This is imposed on the operator Ma of the excavator 3.
  • the operator Ma operates the operating device 8 so that the cutting edge 13B of the bucket 13 draws a straight movement locus along the horizontal plane.
  • the movement start position and the movement end position of the bucket 13 are arbitrarily determined by the operator Ma.
  • the time at which the blade edge 13B of the bucket 13 is stationary is equal to or longer than the specified time, and the position where the stationary bucket 13 starts moving is determined as the movement start position. Further, the time when the stationary bucket 13 starts to move is determined as the movement start time.
  • the position of the bucket 13 that is determined that the cutting edge 13B of the bucket 13B in the moving state stops moving and the stop time is equal to or longer than the specified time is determined as the movement end position. Further, the time when the movement is finished is determined as the movement end time.
  • the position at which the stationary bucket 13 starts moving is the movement start position, and the time when the bucket 13 starts moving is the movement start time.
  • the position where the bucket 13 in the moving state stops is the movement end position, and the time point when it stops is the movement end point.
  • FIG. 13 is a flowchart showing an example of the photographing and evaluation method according to this embodiment.
  • FIG. 13 shows a step (S300) of photographing the excavator 3 using the photographing device 63 and evaluating the skill of the operator Ma.
  • the shooting and evaluation method according to the present embodiment includes a step (S310) of specifying a movement start position of the work machine 10, a step (S320) of obtaining shooting data of the moving work machine 10, and an end of movement of the work machine 10.
  • FIG. 14 is a diagram for explaining a method for specifying the movement start position of the work machine 10 according to the present embodiment.
  • the detection data acquisition unit 601 specifies the position of the blade edge 13 ⁇ / b> B of the bucket 13 of the work machine 10 in a stationary state based on the shooting data of the work machine 10 taken by the shooting device 63. When it is determined that the time during which the blade edge 13B of the bucket 13 is stationary is equal to or longer than the specified time, the detection data acquisition unit 601 determines the position of the blade edge 13B of the bucket 13 as the movement start position of the bucket 13.
  • the detection data acquisition unit 601 detects that the bucket 13 has started moving based on the shooting data of the work implement 10. The detection data acquisition unit 601 determines that the time when the blade edge 13B of the stationary bucket 13 starts moving is the time when the bucket 13 starts moving.
  • the detection data acquisition unit 601 acquires shooting data that is moving image data of the work machine 10 from the shooting device 63 (step S320).
  • FIGS. 15 and 16 are diagrams for explaining a method of acquiring photographing data of the work machine 10 according to the present embodiment.
  • the detection data acquisition unit 601 starts acquisition of imaging data of the work machine 10 that has started moving.
  • the detection data acquisition unit 601 acquires detection data including the movement locus of the work implement 10 based on the imaging data of the bucket 13 from the movement start position to the movement end position.
  • the detection data includes the movement trajectory of the unloaded work machine 10 in the air from when the stationary work machine 10 starts moving at the movement start position to when the movement end position ends.
  • the detection data acquisition unit 601 acquires the movement trajectory of the bucket 13 based on the imaging data. Further, the detection data acquisition unit 601 acquires an elapsed time after the bucket 13 starts moving based on the imaging data.
  • FIG. 15 shows the display device 64 immediately after the movement of the bucket 13 is started.
  • the position data calculation unit 602 calculates the position data of the cutting edge 13B of the bucket 13 included in the position data of the work implement 10, and the display control unit In 605, display data indicating the cutting edge 13B of the bucket 13 is displayed on the display device 64.
  • the movement start position SP is displayed on the display device 64 as a round point, for example.
  • the display control unit 605 displays the movement end position EP on the display device 64 as, for example, a round dot.
  • the display control unit 605 displays the plot PD (SP, EP), which is display data indicating the cutting edge 13B, on the display device 64 as, for example, a round point.
  • the display control unit 605 also displays elapsed time data TD that is display data indicating the elapsed time since the work machine 10 started moving from the movement start position, and the work machine 10 indicates the movement start position and the movement end position.
  • Character data MD which is display data indicating that the user is moving, is displayed on the display device 64.
  • the display control unit 605 causes the display device 64 to display the “Moving” character data MD.
  • FIG. 16 shows the display device 64 when the bucket 13 is moving.
  • the detection data acquisition unit 601 continues to detect the position of the bucket 13 based on the imaging data, and the position data calculation unit 602 continues to calculate the position data of the blade edge 13B of the bucket 13 and detects the movement of the blade edge 13B of the bucket 13. Get the trajectory.
  • the detection data acquisition unit 601 acquires an elapsed time indicating the movement time of the bucket 13 from the movement start time.
  • the display control unit 605 generates display data indicating the detected movement locus of the bucket 13 from the detection data, and causes the display device 64 to display the display data.
  • the display control unit 605 generates a plot PD indicating the position of the blade edge 13B of the bucket 13 at regular time intervals based on the detection data.
  • the display control unit 605 causes the display device 64 to display the plot PD generated at regular time intervals. In FIG. 16, a short interval between plots PD indicates that the moving speed of the bucket 13 is low, and a long interval between plots PD indicates that the moving speed of the bucket 13 is high.
  • the display control unit 605 causes the display device 64 to display the detection line TL indicating the detected movement locus of the bucket 13 based on the plurality of plots PD.
  • the detection line TL is broken line display data connecting a plurality of plots PD.
  • the detection line TL may be displayed by connecting a plurality of plots PD with a smooth curve.
  • FIG. 17 is a diagram for explaining a method for specifying the movement end position of the work machine 10 according to the present embodiment.
  • the detection data acquisition unit 601 detects that the movement of the bucket 13 is stopped based on the shooting data.
  • the detection data acquisition unit 601 determines the position at which the cutting edge 13B of the bucket 13 in the moving state has stopped moving as the movement end position of the bucket 13. Also, the detection data acquisition unit 601 determines the time point when the movement of the bucket 13 ends when the cutting edge 13B of the bucket 13 in the moving state stops moving.
  • the detection data acquisition unit 601 determines that the time when the bucket 13 in the moving state stops moving and the blade edge 13B of the bucket 13 is stationary is equal to or longer than the specified time, the position of the blade edge 13B of the bucket 13 is determined.
  • the movement end position of the bucket 13 is determined.
  • the position data calculation unit 602 calculates position data of the cutting edge 13B of the bucket 13 at the movement end position.
  • FIG. 17 shows the display device 64 immediately after the movement of the bucket 13 is stopped.
  • the display control unit 605 erases the elapsed time data TD and the character data MD from the display device 64. Thereby, the operator Mb who is the photographer can recognize that the movement of the bucket 13 is stopped.
  • the character data MD indicating that the movement of the bucket 13 is stopped may be displayed without deleting the character data MD from the display device 64.
  • FIG. 18 is a diagram for explaining a method for generating target data indicating the target movement locus of the work machine 10 according to the present embodiment.
  • the target data generation unit 603 generates target data indicating the target movement locus of the bucket 13.
  • the target movement locus includes a straight line connecting the movement start position SP and the movement end position EP.
  • the display control unit 605 generates display data to be displayed on the display device 64 from the target data, and causes the display device 64 to display the display data.
  • the display control unit 605 causes the display device 64 to display a target line RL indicating a target movement locus connecting the movement start position SP and the movement end position EP.
  • the target line RL is linear display data connecting the movement start position SP and the movement end position EP.
  • the target line RL is generated based on the target data. That is, the target line RL indicates target data.
  • the display control unit 605 displays the plot PD (SP, EP) and the detection line TL on the display device 64 together with the target line RL. As described above, the display control unit 605 generates display data including the plot PD and the detection line TL from the detection data, generates display data including the target line RL that is target data, and causes the display device 64 to display the display data.
  • the operator Mb or the operator Ma can determine that the actual movement locus of the bucket 13 (the cutting edge 13B) is from the target movement locus indicated by a straight line. You can qualitatively recognize how far away.
  • Step S350 After the detection data including the movement trajectory is acquired and the target data including the target movement trajectory is generated, a process of generating quantitative evaluation data of the operator Ma is performed based on the detection data and the target data. (Step S350).
  • the shooting data of the work machine 10 acquired by the shooting device 63 is stored in the storage unit 608.
  • the worker Mb selects the shooting data to be evaluated from the plurality of shooting data stored in the storage unit 608 via the input device 65. To do.
  • the evaluation data generation unit 604 generates evaluation data from the selected shooting data.
  • the evaluation data generation unit 604 generates evaluation data of the operator Ma based on the difference between the movement locus and the target movement locus. It means that the smaller the difference between the detected detected movement locus and the target movement locus is, the more the bucket 13 can be moved along the target movement locus, and it is evaluated that the skill of the operator Ma is high. On the other hand, the larger the difference between the detected movement trajectory and the target movement trajectory, the more the bucket 13 (blade edge 13B) could not be moved along the target movement trajectory, and the operator Ma evaluated that the skill level was low. Is done.
  • both the right working lever 8WR and the left working lever 8WL of the operating device 8 must be operated simultaneously or alternately, and the skill of the operator Ma is low. In this case, it is not easy to move the cutting edge 13B linearly and for a long distance in a short time.
  • the evaluation data generation unit 604 generates evaluation data based on the area of the plane defined by the detection line TL indicating the detection movement locus and the target line RL indicating the target movement locus. That is, as indicated by the hatched portion in FIG. 18, the area of the plane DI defined by the detection line TL indicated by a curve and the target line RL indicated by a straight line is calculated by the evaluation data generation unit 604, and the area Evaluation data is generated based on the above. The smaller the area, the higher the skill of the operator Ma, and the larger the area, the lower the skill of the operator Ma. The size of the area (plane D1) is also included in the evaluation data.
  • the movement start position SP and the movement end position EP are specified based on the shooting data.
  • the detection data acquisition unit 601 acquires the distance between the movement start position SP and the movement end position EP based on the imaging data.
  • the detection data acquired by the detection data acquisition unit 601 includes the movement distance of the bucket 13 between the movement start position SP and the movement end position EP.
  • the evaluation data generation unit 604 generates evaluation data based on the distance between the movement start position SP and the movement end position EP.
  • the longer the distance between the movement start position SP and the movement end position EP the longer the bucket 13 can be moved along the target movement trajectory, and it is evaluated that the skill of the operator Ma is high. It means that the shorter the distance between the movement start position SP and the movement end position EP, the more the bucket 13 can be moved along the target movement trajectory, and the lower the skill of the operator Ma is.
  • the dimension L of the vehicle body 20 in the front-rear direction on the display screen of the display device 64 is calculated in the shooting preparation mode.
  • actual dimension data indicating the actual dimension of the vehicle body 20 in the front-rear direction is stored in the storage unit 608. Therefore, by calculating the distance between the movement start position SP and the movement end position EP on the display screen of the display device 64, the detection data acquisition unit 601 can detect the dimension L and the vehicle body 20 stored in the storage unit 608. Based on the ratio with the actual dimension, the actual movement distance of the bucket 13 from the movement start position SP to the movement end position EP can be calculated. The movement distance may be calculated by the position data calculation device 602.
  • the elapsed time after the bucket 13 starts moving and the moving time of the bucket 13 from the movement start position SP to the movement end position EP are acquired based on the imaging data.
  • the detection data acquisition unit 601 has an internal timer.
  • the detection data acquisition unit 601 acquires the time of the movement start time and the movement end time of the bucket 13 based on the measurement result of the internal timer and the shooting data of the shooting device 63.
  • the detection data acquired by the detection data acquisition unit 601 includes the movement time of the bucket 13 between the movement start time and the movement end time.
  • the evaluation data generation unit 604 generates evaluation data based on the movement time of the bucket 13 (blade edge 13B) between the movement start time and the movement end time. As the time between the movement start time and the movement end time is shorter, it means that the bucket 13 can be moved in a shorter time along the target movement trajectory, and it is evaluated that the skill of the operator Ma is higher. The longer the time between the movement start time and the movement end time, the longer it takes to move the bucket 13 along the target movement trajectory, and it is evaluated that the skill of the operator Ma is low.
  • the detection data acquisition unit 601 calculates the actual movement distance of the bucket 13 from the movement start position SP to the movement end position EP. Therefore, the detection data acquisition unit 601 starts moving based on the actual movement distance of the bucket 13 from the movement start position SP to the movement end position EP and the movement time of the bucket 13 from the movement start time to the movement end time.
  • the moving speed (average moving speed) of the bucket 13 between the position SP and the movement end position EP can be calculated. This movement speed may be calculated by the position data calculation device 602.
  • the detection data acquired by the detection data acquisition unit 601 includes the moving speed of the bucket 13 between the movement start position SP and the movement end position EP.
  • the evaluation data generation unit 604 generates evaluation data based on the moving speed of the bucket 13 (blade edge 13B) between the movement start position SP and the movement end position EP. This means that the higher the moving speed of the bucket 13 between the movement start position SP and the movement end position EP, the higher the speed of moving the bucket 13 (blade edge 13B) along the target movement trajectory.
  • the skill of the person Ma is evaluated as high. The lower the movement speed of the bucket 13 between the movement start position SP and the movement end position EP, the lower the movement speed of the bucket 13 (blade edge 13B) along the target movement trajectory.
  • the skill of the operator Ma is evaluated as low.
  • FIG. 19 is a diagram for explaining a method of displaying evaluation data according to the present embodiment.
  • the display control unit 605 generates display data from the evaluation data and causes the display device 64 to display the display data.
  • the display control unit 605 displays the name of the operator Ma, which is personal data, on the display device 64, for example.
  • Personal data is stored in the storage unit 606 in advance.
  • the display control unit 605 uses, as evaluation data, “linearity” indicating the difference between the target movement locus and the detected movement locus, and “distance” indicating the movement distance of the bucket 13 from the movement start position SP to the movement end position EP. “Time” indicating the movement time of the bucket 13 from the movement start position SP to the movement end position EP, and “Speed” indicating the average movement speed of the bucket 13 from the movement start position SP to the movement end position EP. It is displayed on the display device 64.
  • the display control unit 605 causes the display device 64 to display numerical data of each item of “linearity”, “distance”, “time”, and “speed” as quantitative evaluation data.
  • the numerical data of “linearity” is, for example, 100 points when the difference between the target movement locus and the detection movement locus (plane DI) is less than a predetermined amount, and 100 points as the difference becomes larger than the predetermined amount. It can be calculated by deducting from the point.
  • numerical data may be displayed on the display device 64 as points based on the difference from the reference numerical value that is a maximum of 100 points.
  • Evaluation data such as “time” and “speed” indicating the average moving speed of the portion from the movement start position SP to the movement end position EP may be acquired. That is, since the imaging device 63 (detection device) detects the operation of the work machine 10 and acquires the shooting data, the operation data based on the movement of the work machine 10 included in the shooting data is used to set the predetermined unit of the work machine 10. You may acquire a movement locus
  • the display control unit 605 causes the display device 64 to display the skill score of the operator Ma as quantitative evaluation data.
  • the storage unit 608 stores reference data regarding skills. Reference data is, for example, evaluation data obtained by comprehensively evaluating numerical data of each item of “linearity”, “distance”, “time”, and “speed” for an operator having a standard skill, Required statistically or empirically. The skill score of the operator Ma is calculated based on the reference data.
  • the display control unit 605 also displays on the display device 64 frequency data indicating how many evaluation data the operator Ma has generated in the past, and the average or maximum score of past evaluation data (skill scores). You may let them.
  • the evaluation data generation unit 604 outputs the generated evaluation data to an external server via the communication device 67.
  • the external server may be the management device 4 or a server different from the management device 4.
  • relative data indicating the relative evaluation of the operator Ma with the other operator Ma is provided from the external server to the communication device 67 of the portable device 6.
  • the evaluation data generation unit 604 acquires relative data supplied from an external server.
  • the display control unit 605 generates display data regarding the relative data and causes the display device 64 to display the display data.
  • the relative data indicating the relative evaluation between the operator Ma and other operators Ma includes ranking data that ranks the skills of the plurality of operators Ma.
  • the external server collects evaluation data of a plurality of operators Ma existing all over the country.
  • the external server aggregates and analyzes the evaluation data of the plurality of operators Ma, and generates skill ranking data for each of the plurality of operators Ma.
  • the external server distributes the generated ranking data to each of the plurality of mobile devices 6.
  • the ranking data is included in the evaluation data, and is relative data indicating a relative evaluation with other operators Ma.
  • FIG. 20 is a diagram for explaining an example of a relative data display method according to the present embodiment.
  • the display control unit 605 generates display data from the relative data and causes the display device 64 to display the display data.
  • the display control unit 605 causes the display device 64 to display the following information regarding display data. For example, among the number of operators Ma nationwide and the operator Ma nationwide who registered personal data with the mobile device 6 and generated evaluation data using the mobile device 6, the name of the operator Ma The display device 64 displays the ranking based on the evaluation data (score) of the operator Ma who has generated the evaluation data and the score indicating the evaluation data on the mobile device 6 (the mobile device 6 that is trying to display the display data).
  • the display control unit 605 may display the information on the display device 64 by receiving from the external server information indicating the name and score of the operator Ma having the higher score indicating the evaluation data.
  • the rank based on the evaluation data is also included in the evaluation data, and is relative data indicating a relative evaluation with another operator Ma.
  • the detection data acquisition unit 601 that acquires detection data including the detected movement trajectory of the work implement 10 and the target data that generates target data including the target movement trajectory of the work implement 10.
  • An evaluation device 600 including a generation unit 603 and an evaluation data generation unit 604 that generates evaluation data of the operator Ma based on the detection data and the target data enables objective and quantitative determination of the skill of the operator Ma of the excavator 3. Can be evaluated. By providing the evaluation data and the relative data based on the evaluation data, the operator Ma's willingness to improve the skill is improved. Further, the operator Ma can improve his / her operation based on the evaluation data.
  • the detection data is the unloaded work machine 10 in the air from the start of movement of the stationary work machine 10 at the movement start position SP to the end of movement at the movement end position EP.
  • Including the movement trajectory By imposing operation conditions so that the work machine 10 moves in the air, it is possible to make the evaluation conditions of the operator Ma existing all over the country constant. For example, when the soil quality is different for each construction site 2, for example, when the operator Ma existing in various parts of the country is actually evaluated by performing excavation operation, the operator Ma is evaluated with different evaluation conditions. Become. In this case, the fairness of the evaluation may be lacking. By operating the work machine 10 so as to move in the air, the skill of the operator Ma can be evaluated fairly under the same evaluation conditions.
  • a straight line connecting the movement start position SP and the movement end position EP is adopted as the target movement locus.
  • the evaluation data generation unit 604 generates evaluation data based on the difference between the detected movement locus and the target movement locus. Thereby, the skill of the operator Ma who moves the blade edge 13B of the bucket 13 straight can be evaluated appropriately. According to the present embodiment, the evaluation data generation unit 604 generates evaluation data based on the area (difference) of the plane defined by the detection line TL indicating the detection movement locus and the target line RL indicating the target movement locus. . Thereby, the skill of the operator Ma who moves the blade edge 13B of the bucket 13 straight can be evaluated more appropriately.
  • the detection data includes the movement distance of the bucket 13 between the movement start position SP and the movement end position EP
  • the evaluation data generation unit 604 is based on the movement distance of the bucket 13. Generate evaluation data.
  • the operator Ma capable of moving the blade edge 13B of the bucket 13 for a long distance can be appropriately evaluated as a person having high skill.
  • the detection data includes the movement time of the bucket 13 from the movement start position SP to the movement end position EP, and the evaluation data generation unit 603 evaluates the evaluation data based on the movement time of the bucket 13. Is generated.
  • operator Ma who can move blade edge 13B of bucket 13 in a short time can be appropriately evaluated as a person with high skill.
  • the detection device 63 that detects the operation data of the work machine 10 is the imaging device 63 that detects the operation data of the work machine 10. Thereby, the operation data of the work machine 10 can be easily obtained without using a large-scale device.
  • the position data calculation unit 602 scans and moves the upper swing body template 21T with respect to the shooting area 73, and the shooting data of the upper swing body 21 and the upper swing body template 21T (first template). After calculating the position data of the upper-part turning body 21 based on the correlation value between the boom 11 and the boom template 11T, the boom template 11T (second template) is moved with respect to the shooting region 73 and the boom template 11T is captured. Based on the above, position data of the boom 11 is calculated. As a result, the position of the work implement 10 can be specified also in the hydraulic excavator 3 having a characteristic structure and movement that the work implement 10 that moves relative to the vehicle body 20 exists.
  • the position of the boom 11 is determined by specifying the position of the boom 11 with reference to the boom pin 11P after the position of the upper swing body 21 including the boom pin 11P is specified by the pattern matching method. Is accurately identified.
  • the position of the boom 11 is specified, the position of the arm 12 is specified with reference to the arm pin 12P.
  • the position of the bucket 13 is specified with reference to the bucket pin 13P. Even in the hydraulic excavator 3 having a characteristic structure and movement, the position of the blade edge 13B of the bucket 13 can be accurately specified.
  • the position data calculation unit 602 calculates the dimension data of the upper swing body 21 on the display screen of the display device 64 based on the shooting data of the shooting area 73.
  • the evaluation data generation unit 604 actually calculates the movement start position SP and the movement end position EP from the ratio between the dimension data of the upper swing body 21 and the actual dimension data of the upper swing body 21 on the display screen of the display device 64. Can be calculated.
  • the display control unit 605 that generates display data from the detection data and target data and displays the display data on the display device 64 is provided.
  • the operator Ma can recognize qualitatively through vision how far his / her skill is from the target.
  • the display data can be displayed on the display device 64 as numerical data such as linearity, distance, time, speed, and score, it is possible to quantitatively recognize its own skill.
  • the display data includes the elapsed time data TD indicating the elapsed time since the work machine 10 started moving from the movement start position SP, and the work machine 10 is moved from the movement start position SP to the end of movement.
  • One or both of character data MD indicating that movement is in progress with the position EP is included.
  • the display control unit 605 generates display data from the evaluation data and causes the display device 64 to display the display data. Accordingly, the operator Ma can objectively recognize the evaluation data of his / her skill through vision.
  • FIG. 21 and 22 are diagrams for explaining an example of an evaluation method for the operator Ma according to the present embodiment.
  • a first evaluation method As shown in FIG. 12, the operator Ma so that the blade edge 13B of the bucket 13 in the unloaded state in the air draws a linear movement locus along the horizontal plane. Then, the work machine 10 was operated to evaluate the skill of the operator Ma.
  • the operation of the work machine 10 such as the first evaluation method is assumed to be an operation for forming the ground into a flat surface or an operation for spreading and leveling earth and sand. As shown in FIG.
  • the operator Ma is caused to operate the work machine 10 so that the cutting edge 13B of the bucket 13 in the unloaded bucket 13 in the air draws a linear movement trajectory inclined with respect to the horizontal plane. May be evaluated (hereinafter, second evaluation method).
  • the operation of the work machine 10 like the second evaluation method is assumed to be a work for forming a slope, and requires a high skill.
  • the operator Ma is caused to operate the work machine 10 so that the blade edge 13B of the bucket 13 in an unloaded state in the air draws a circular movement trajectory, and the skill of the operator Ma is evaluated (hereinafter referred to as “first”).
  • first skill evaluation methods
  • the above three first to third evaluation methods may be performed, or any one of the evaluation methods may be performed.
  • the above three first to third evaluation methods may be implemented step by step.
  • the operation data of the work machine 10 when performing the lifting work may be imaged by the imaging device 63, and the skill of the operator Ma may be evaluated based on the operation data.
  • the operator Ma is evaluated based on the movement state of the unloaded work machine 10 in the air.
  • the operator Ma is operated by the operator Ma so that the bucket 13 performs excavation, and the operator Ma is evaluated.
  • the mobile device 6 having the photographing device 63 is used for the evaluation of the operator Ma.
  • the excavation operation of the work machine 10 of the excavator 3 operated by the operator Ma via the operation device 8 is photographed by, for example, the photographing device 63 of the portable device 6 held by the worker Mb.
  • the photographing device 63 photographs the excavation operation of the work machine 10 from the outside of the excavator 3.
  • FIG. 23 is a functional block diagram illustrating an example of a portable device according to the present embodiment. Similar to the above-described embodiment, the evaluation apparatus 600 includes the detection data acquisition unit 601, the position data calculation unit 602, the evaluation data generation unit 604, the display control unit 605, the storage unit 608, and the input / output unit 610. Have.
  • the detection data acquisition unit 601 performs image processing based on operation data including the shooting data of the work machine 10 detected by the shooting device 63, and the first detection data and bucket indicating the excavation amount of the bucket 13. Second detection data indicating 13 excavation times is acquired.
  • the evaluation data generation unit 604 generates evaluation data for the operator Ma based on the first detection data and the second detection data.
  • the evaluation apparatus 600 includes an excavation time calculation unit 613 that performs image processing on the imaging data of the bucket 13 imaged by the imaging apparatus 63 and calculates the excavation time of one excavation operation by the bucket 13. .
  • the evaluation device 600 performs image processing on the photographing data of the bucket 13 photographed by the photographing device 63, and when the bucket 13 is viewed from the side (left or right), the opening end portion (
  • the excavation amount calculation part 614 which calculates the excavation amount of the bucket 13 from the area of the excavation thing which has come out from the opening edge part 13K shown in FIG. 25 is provided.
  • One excavation operation by the bucket 13 starts, for example, the bucket 13 moves to excavate excavated material as earth and sand, enters the ground, the bucket 13 moves while scooping earth and sand, and holds the earth and sand in the bucket 13. The operation until the movement of the bucket 13 stops.
  • the evaluation of the excavation time for the operation it is determined that the skill of the operator Ma is higher as the excavation time is shorter, and it is determined that the skill of the operator Ma is lower as the excavation time is longer.
  • the excavation time and the score may be associated with each other, and in the case of a short excavation time, evaluation data with a high score may be generated.
  • the evaluation apparatus 600 includes a target data acquisition unit 611 that acquires target data indicating the target excavation amount of the work machine 10.
  • the evaluation data generation unit 604 generates evaluation data of the operator Ma based on the difference between the first detection data indicating the excavation amount of the work implement 10 and the target data acquired by the target data acquisition unit 611.
  • FIG. 24 is a flowchart illustrating an example of a shooting and evaluation method according to the present embodiment.
  • the imaging and evaluation method according to the present embodiment includes a step of acquiring target data indicating a target excavation amount of the work machine 10 (S305B), a step of specifying a movement start position of the work machine 10 (S310B), and a moving work.
  • the process which acquires the target data which show the target excavation amount of the working machine 10 is implemented (step S305B).
  • the operator Ma declares a target excavation amount to be excavated, and inputs the target excavation amount to the evaluation device 600 via the input device 65.
  • the target data acquisition unit 611 acquires target data indicating the target excavation amount of the bucket 13. Note that the target excavation amount may be stored in the storage unit 608 in advance, and the target excavation amount may be used.
  • the target excavation amount may be specified by the capacity of the excavated material, or may be specified by the full rate based on the state in which the excavated material of the specified volume has come out from the opening end of the bucket 13.
  • the target excavation amount is designated by the full rate.
  • the fullness rate is a kind of pile capacity.
  • a predetermined amount of soil for example, 1 0.0 [m 3 ]
  • a full rate of 1.0 when the excavated material is raised from the opening end (upper edge) of the bucket 13 with a gradient of 1: 1, a predetermined amount of soil (for example, 1 0.0 [m 3 ]) of excavated material being scooped into the bucket 13 is, for example, a full rate of 1.0.
  • step S310B a process of specifying the movement start position and the movement start time of the bucket 13 of the work machine 10 is performed. If the position data calculation unit 602 determines that the time during which the bucket 13 is stationary is equal to or longer than the specified time based on the shooting data of the shooting device 63, the position of the bucket 13 is determined as the movement start position of the bucket 13. To do.
  • the position data calculation unit 602 detects that the movement of the bucket 13 is started based on the shooting data.
  • the position data calculation unit 602 determines a time point when the stationary bucket 13 starts to move as a time point when the bucket 13 starts moving.
  • step S320B a process of acquiring operation data of the bucket 13 is performed.
  • the operation data of the bucket 13 is the shooting data of the bucket 13 until the stationary work machine 10 starts moving at the movement start position and performs excavation operation, and the excavation operation ends and the movement ends at the movement end position. Including.
  • step S330B a process for specifying the movement end position and the movement end point of the bucket 13 of the work machine 10 is performed.
  • the position data calculation unit 602 detects that the movement of the bucket 13 is stopped based on the shooting data.
  • the position data calculation unit 602 determines the position at which the bucket 13 in the moving state has stopped moving as the movement end position of the bucket 13. Further, the position data calculation unit 602 determines the time point when the bucket 13 in the moving state stops moving as the time point when the movement of the bucket 13 ends.
  • the position data calculation unit 602 determines that the moving bucket 13 stops moving and the time during which the bucket 13 is stationary is equal to or longer than the specified time, the position of the bucket 13 is changed to the movement end position of the bucket 13. To decide.
  • the excavation time calculation unit 613 calculates the excavation time of the bucket 13 based on the imaging data (step S332B).
  • the excavation time is the time from the start of movement to the end of movement.
  • the excavation amount calculation unit 614 identifies the open end 13K of the bucket 13 based on the shooting data of the bucket 13 shot by the shooting device 63.
  • FIG. 25 is a diagram for explaining an example of the excavation amount calculation method according to the present embodiment.
  • the excavated material is held in the bucket 13 when the excavation operation ends.
  • the excavation operation is performed so that the excavated material goes upward from the opening end portion 13K of the bucket 13.
  • the excavation amount calculation unit 614 performs image processing on the imaging data of the bucket 13 captured from the left by the imaging device 63, and specifies the opening end portion 13K of the bucket 13 that is the boundary between the bucket 13 and the excavated material.
  • the excavation amount calculation unit 614 can specify the open end 13K of the bucket 13 based on contrast data including at least one of a luminance difference, a brightness difference, and a chromaticity difference between the bucket 13 and the excavated object. .
  • the excavation amount calculation unit 614 specifies the position of the opening end 13K of the bucket 13, performs image processing on the bucket 13 and the imaging data of the excavation taken by the imaging device 63, and exits from the opening end 13 K of the bucket 13. Calculate the area of the excavated material.
  • the excavation amount calculation unit 614 calculates the excavation amount of the bucket 13 from the area of the excavated matter that has come out from the open end 13K. From the area of the excavated matter coming out of the open end portion 13K, an approximate amount of soil (excavated amount) excavated by the bucket 13 in one excavation operation is estimated. That is, the capacity [m 3 ] of the bucket 13 to be used and the dimension in the width direction of the bucket 13 are known, for example, stored in advance in the storage unit 608, and the excavation amount calculation unit 614 uses the capacity and width of the bucket 13.
  • the evaluation data generation unit 604 Ma evaluation data is generated.
  • the evaluation data may be evaluation data only for the amount of excavation or may be evaluation data only for the excavation time, but having a high skill in excavation work means that an appropriate amount of excavation can be excavated in a short time in one excavation operation. Since the amount can be excavated with the bucket 13, in order to quantitatively evaluate whether the operator Ma has such a skill, the evaluation data is generated using both the excavation amount and the excavation time. Is desirable. That is, for example, the evaluation data generation unit 604 adds the score related to the excavation amount and the score related to the excavation time, and generates a comprehensively evaluated score.
  • the evaluation data generation unit 604 obtains the evaluation data of the operator Ma based on the difference between the first detection data indicating the excavation amount of the bucket 13 and the target data indicating the target excavation amount of the bucket 13 acquired in step S305B. Generate. The smaller the difference between the first detection data and the target data, the better the skill of the operator Ma. On the other hand, it is evaluated that the skill of the operator Ma is inferior as the difference between the first detection data and the target data is large. Further, it is determined that the skill of the operator Ma is higher as the excavation time is shorter, and it is determined that the skill of the operator Ma is lower as the excavation time is longer.
  • step S360B a process for displaying the evaluation data on the display device 64 is performed. For example, a score indicating evaluation data is displayed on the display device 64.
  • the operator Ma actually performs the excavation operation in the evaluation of the operator Ma, and the second detection data indicating the excavation amount and the second excavation time of the work implement 10 are obtained. Since the detection data is acquired and the evaluation data of the operator Ma is generated based on the first detection data and the second detection data, the skill of the actual excavation operation of the operator Ma is quantitatively evaluated. be able to.
  • the evaluation device 600 includes the target data acquisition unit 611 that acquires target data indicating the target excavation amount, and the evaluation data generation unit 604 calculates the difference between the first detection data and the target data. Based on this, evaluation data is generated. For example, assuming that the target data is a full rate of 1.0, the full rate of the excavation amount indicated by the first detection data for the excavation amount corresponding to the full rate of 1.0 may be generated as the evaluation data, or the first Evaluation data may be generated using the ratio of detected data as a score. Thereby, an arbitrary target excavation amount can be specified and the skill of the operator Ma regarding the excavation amount can be evaluated.
  • the operator Ma when performing a loading operation such as loading excavated material on a dump truck bed using the hydraulic excavator 3, the operator Ma needs to finely adjust the excavation amount by the bucket 13 so as to obtain an appropriate loading amount.
  • the target excavation amount By specifying the target excavation amount and evaluating the skill of the operator Ma based on the target excavation amount, the skill of the actual loading operation of the operator Ma can be evaluated.
  • the excavation amount of the bucket 13 is calculated from the area of the excavated matter that is output from the opening end portion 13 ⁇ / b> K of the bucket 13 by performing image processing on the imaging data of the bucket 13 imaged by the imaging device 63. Is done. Thereby, the excavation amount of the bucket 13 can be easily obtained without performing complicated processing. According to the present embodiment, it is possible to evaluate whether or not it was possible to excavate an appropriate amount of soil with the bucket 13 in one excavation operation in a short time, and to evaluate the excavation work efficiency of the operator Ma. Can do.
  • the operation data of the bucket 13 is detected by the imaging device 63.
  • the operation data of the bucket 13 may be detected by a scanner device capable of detecting the operation data of the bucket 13 by irradiating the bucket 13 with detection light such as radar, or by irradiating the bucket 13 with radio waves. It may be detected by a radar device that can detect the operation data.
  • FIG. 26 is a diagram schematically illustrating an example of a hydraulic excavator 3 ⁇ / b> C including a detection device 63 ⁇ / b> C that detects operation data of the bucket 13.
  • the detecting device 63C detects the relative position of the blade edge 13B of the bucket 13 with respect to the upper swing body 21.
  • the detection device 63C includes a boom cylinder stroke sensor 14S, an arm cylinder stroke sensor 15S, and a bucket cylinder stroke sensor 16S.
  • the boom cylinder stroke sensor 14 ⁇ / b> S detects boom cylinder length data indicating the stroke length of the boom cylinder 14.
  • the arm cylinder stroke sensor 15 ⁇ / b> S detects arm cylinder length data indicating the stroke length of the arm cylinder 15.
  • the bucket cylinder stroke sensor 16 ⁇ / b> S detects bucket cylinder length data indicating the stroke length of the bucket cylinder 16.
  • an angle sensor may be used as the detection device 63C.
  • the detecting device 63C calculates the tilt angle ⁇ 1 of the boom 11 with respect to the direction parallel to the turning axis RX of the upper turning body 21 based on the boom cylinder length data.
  • the detection device 63C calculates the inclination angle ⁇ 2 of the arm 12 with respect to the boom 11 based on the arm cylinder length data.
  • the detection device 63C calculates the inclination angle ⁇ 3 of the blade edge 13B of the bucket 13 with respect to the arm 12 based on the bucket cylinder length data.
  • the detection device 63C is based on the inclination angle ⁇ 1, the inclination angle ⁇ 2, the inclination angle ⁇ 3, and the known working machine dimensions (the length L1 of the boom 11, the length L2 of the arm 12, and the length L3 of the bucket 13).
  • the relative position of the blade edge 13B of the bucket 13 with respect to the upper swing body 21 is calculated. Since the detection device 63 ⁇ / b> C can detect the relative position of the bucket 13 with respect to the upper swing body 21, it can detect the movement state of the bucket 13.
  • the detection device 63 ⁇ / b> C at least the position, the movement trajectory, the movement speed, and the movement time of the bucket 13 can be detected from the operation data of the bucket 13.
  • the excavation amount of the bucket 13 may be obtained by providing a weight sensor in the bucket 13 and obtaining the excavation amount [m 3 ] based on the detected weight.
  • the operator Ma sits on the driver's seat 7 and operates the work machine 10.
  • the work machine 10 may be remotely operated.
  • 27 and 28 are diagrams for explaining an example of a method for remotely operating the excavator 3.
  • FIG. 27 is a diagram illustrating a method in which the excavator 3 is remotely operated from the remote operation chamber 1000.
  • the remote operation chamber 1000 and the excavator 3 can communicate wirelessly via a communication device.
  • the remote operation room 1000 is provided with a construction information display device 1100, a driver's seat 1200, an operation device 1300 for remotely operating the excavator 3, and a monitor device 1400.
  • the construction information display device 1100 displays various types of data such as construction site image data, work machine 10 image data, construction process data, and construction control data.
  • the operating device 1300 includes a right working lever 1310R, a left working lever 1310L, a right traveling lever 1320R, and a left traveling lever 1320L.
  • an operation signal is wirelessly transmitted to the excavator 3 based on the operation direction and the operation amount. Thereby, the hydraulic excavator 3 is remotely operated.
  • the monitor device 1400 is installed obliquely in front of the driver seat 1200. Detection data of a sensor system (not shown) of the hydraulic excavator 3 is wirelessly transmitted to the remote operation room 1000 via a communication device, and display data based on the detection data is displayed on the monitor device 1400.
  • FIG. 28 is a diagram illustrating a method in which the excavator 3 is remotely operated by the mobile terminal device 2000.
  • the portable terminal device 2000 includes a construction information display device, an operation device for remotely operating the excavator 3, and a monitor device.
  • the operation data of the remotely operated hydraulic excavator 3 is acquired, so that the skill of the operator Ma who operates remotely can be evaluated.
  • the management device 4 may have some or all of the functions of the evaluation device 600.
  • the management device 4 determines the skill of the operator Ma based on the operation data of the excavator 3. Can be evaluated. Since the management device 4 includes the arithmetic processing device 40 and the storage device 41 that can store the computer program for performing the evaluation method according to the present embodiment, the management device 4 can exhibit the functions of the evaluation device 600.
  • the skill of the operator Ma is evaluated based on the operation data of the work machine 10.
  • the operating state of the work machine 10 may be evaluated. For example, an inspection process for determining whether or not the operating state of the work implement 10 is normal based on operation data of the work implement 10 may be performed.
  • the work vehicle 3 is the hydraulic excavator 3.
  • the work vehicle 3 may be a work vehicle having a work machine that can move relative to the vehicle body, such as a bulldozer, a wheel loader, and a forklift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Mechanical Engineering (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 評価装置は、作業車両の作業機の動作を検出する検出装置によって検出された、作業機の移動開始位置から移動終了位置までの動作データに基づいて作業機の所定部の検出移動軌跡を含む検出データを取得する検出データ取得部と、作業機の所定部の目標移動軌跡を含む目標データを生成する目標データ生成部と、検出データと目標データとに基づいて、作業機を操作する操作者の評価データを生成する評価データ生成部と、を備える。

Description

評価装置及び評価方法
 本発明は、評価装置及び評価方法に関する。
 操作者が作業車両を操作して施工する場合、操作者の技量によって施工効率が変わる。特許文献1には操作者の技量の巧拙を評価する技術が開示されている。
特開2009-235833号公報
 操作者の技量を客観的に評価できれば、操作の改善点が明確となり、技量向上のための操作者の意欲は向上する。
 本発明の態様は、作業車両の操作者の技量を客観的に評価できる評価装置及び評価方法を提供することを目的とする。
 本発明の第1の態様に従えば、作業車両の作業機の動作を検出する検出装置によって検出された、前記作業機の移動開始位置から移動終了位置までの動作データに基づいて前記作業機の所定部の検出移動軌跡を含む検出データを取得する検出データ取得部と、前記作業機の所定部の目標移動軌跡を含む目標データを生成する目標データ生成部と、前記検出データと前記目標データとに基づいて、前記作業機を操作する操作者の評価データを生成する評価データ生成部と、を備える評価装置が提供される。
 本発明の第2の態様に従えば、作業車両の作業機の動作データに基づいて、前記作業機の掘削量を示す第1検出データ及び前記作業機の掘削時間を示す第2検出データを取得する検出データ取得部と、前記第1検出データ及び前記第2検出データに基づいて、前記作業機を操作する操作者の評価データを生成する評価データ生成部と、を備える評価装置が提供される。
 本発明の第3の態様に従えば、作業車両の作業機の動作を検出する検出装置によって検出された、前記作業機の移動開始位置から移動終了位置までの作業車両の作業機の動作データに基づいて前記作業機の所定部の検出移動軌跡を含む検出データを取得することと、前記作業機の所定部の目標移動軌跡を含む目標データを生成することと、前記検出データと前記目標データとに基づいて、前記作業機を操作する操作者の評価データを生成することと、を含む評価方法が提供される。
 本発明の第4の態様に従えば、作業車両の作業機の動作データに基づいて、前記作業機の掘削量を示す第1検出データ及び前記作業機の掘削時間を示す第2検出データを取得することと、前記第1検出データ及び前記第2検出データに基づいて、前記作業機を操作する操作者の評価データを生成することと、を含む評価方法が提供される。
 本発明の態様によれば、作業車両の操作者の技量を客観的に評価できる評価装置及び評価方法が提供される。
図1は、第1実施形態に係る評価システムの一例を模式的に示す図である。 図2は、第1実施形態に係る油圧ショベルの一例を示す側面図である。 図3は、第1実施形態に係る油圧ショベルの一例を示す平面図である。 図4は、第1実施形態に係る操作装置の一例を模式的に示す図である。 図5は、第1実施形態に係る評価システムのハードウエア構成の一例を模式的に示す図である。 図6は、第1実施形態に係る携帯機器の一例を示す機能ブロック図である。 図7は、第1実施形態に係る評価方法の一例を示すフローチャートである。 図8は、第1実施形態に係る撮影準備方法の一例を示すフローチャートである。 図9は、第1実施形態に係る撮影方法の一例を説明するための図である。 図10は、第1実施形態に係る上部旋回体の位置特定方法を説明するための図である。 図11は、第1実施形態に係る作業機の位置特定方法を説明するための図である。 図12は、第1実施形態に係る評価方法の一例を説明するための模式図である。 図13は、第1実施形態に係る撮影及び評価方法の一例を示すフローチャートである。 図14は、第1実施形態に係る作業機の移動開始位置の特定方法を説明するための図である。 図15は、第1実施形態に係る作業機の検出移動軌跡を含む撮影データの取得方法を説明するための図である。 図16は、第1実施形態に係る作業機の検出移動軌跡を含む撮影データの取得方法を説明するための図である。 図17は、第1実施形態に係る作業機の移動終了位置の特定方法を説明するための図である。 図18は、第1実施形態に係る作業機の目標移動軌跡を示す目標データの生成方法を説明するための図である。 図19は、第1実施形態に係る評価データの表示方法を説明するための図である。 図20は、第1実施形態に係る相対データの表示方法の一例を説明するための図である。 図21は、第1実施形態に係る操作者の評価方法の一例を説明するための図である。 図22は、第1実施形態に係る操作者の評価方法の一例を説明するための図である。 図23は、第2実施形態に係る携帯機器の一例を示す機能ブロック図である。 図24は、第2実施形態に係る撮影及び評価方法の一例を示すフローチャートである。 図25は、第2実施形態に係る掘削量の算出方法の一例を説明するための図である。 図26は、バケットの動作を検出する検出装置を有する油圧ショベルの一例を模式的に示す図である。 図27は、油圧ショベルの遠隔操作方法の一例を説明するための図である。 図28は、油圧ショベルの遠隔操作方法の一例を説明するための図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[第1実施形態]
<評価システム>
 図1は、本実施形態に係る評価システム1の一例を模式的に示す図である。施工現場2において作業車両3が稼働する。作業車両3は、その作業車両3に搭乗した操作者Maに操作される。評価システム1は、作業車両3の動作の評価、及び作業車両3を操作する操作者Maの技量の評価の一方又は両方を実施する。操作者Maは、作業車両3を操作して施工現場2を施工する。施工現場2においては操作者Maとは別の作業者Mbが作業を実施する。作業者Mbは、例えば施工現場2で補助作業を実施する。例えば作業者Mbは、携帯機器6を使用する。
 評価システム1は、コンピュータシステムを含む管理装置4と、コンピュータシステムを含む携帯機器6とを備える。管理装置4は、サーバとして機能する。管理装置4は、クライアントにサービスを提供する。クライアントは、操作者Ma、作業者Mb、作業車両3の保有者、及び作業車両3がレンタルされる契約者の少なくとも一つを含む。なお、作業車両3の保有者と作業車両3の操作者Maとは同一の者でもよいし異なる者でもよい。
 携帯機器6は、操作者Ma及び作業者Mbの少なくとも一方に所持される。携帯機器6は、スマートフォン又はタブレット型パーソナルコンピュータのような携帯型コンピュータを含む。
 管理装置4は、複数の携帯機器6と相互にデータ通信可能である。
<作業車両>
 次に、本実施形態に係る作業車両3について説明する。本実施形態においては、作業車両3が油圧ショベルである例について説明する。図2は、本実施形態に係る油圧ショベル3の一例を示す側面図である。図3は、本実施形態に係る油圧ショベル3の一例を示す平面図である。図3は、図2に示す作業機10の姿勢において、油圧ショベル3を上方から見たときの平面図を示す。
 図2及び図3に示すように、油圧ショベル3は、油圧により作動する作業機10と、作業機10を支持する車両本体20とを備える。車両本体20は、上部旋回体21と、上部旋回体21を支持する下部走行体22とを含む。
 上部旋回体21は、キャブ23と、機械室24と、カウンタウエイト24Cとを有する。キャブ23は、運転室を含む。運転室には、操作者Maが着座する運転席7と、操作者Maに操作される操作装置8とが配置される。操作装置8は、作業機10及び上部旋回体21を操作するための作業レバー、及び下部走行体22を操作するための走行レバーを含む。作業機10は、操作装置8を介して操作者Maに操作される。上部旋回体21及び下部走行体22は、操作装置8を介して操作者Maに操作される。操作者Maは、運転席7に着座した状態で操作装置8を操作可能である。
 下部走行体22は、スプロケットと呼ばれる駆動輪25と、アイドラと呼ばれる遊動輪26と、駆動輪25及び遊動輪26に支持される履帯27とを有する。駆動輪25は、例えば油圧モータのような駆動源が発生する動力により作動する。駆動輪25は、操作装置8の走行レバーの操作により回転する。駆動輪25は、回転軸DX1を回転中心として回転する。遊動輪26は、回転軸DX2を回転中心として回転する。回転軸DX1と回転軸DX2とは平行である。駆動輪25が回転して履帯27が回転することにより油圧ショベル3が前後に走行又は旋回する。
 上部旋回体21は、下部走行体22に支持された状態で旋回軸RXを中心に旋回可能である。
 作業機10は、車両本体20の上部旋回体21に支持される。作業機10は、上部旋回体21に連結されるブーム11と、ブーム11に連結されるアーム12と、アーム12に連結されるバケット13とを有する。バケット13は、例えば凸形状の複数の刃を有する。刃の先端部である刃先13Bは複数設けられる。なお、バケット13の刃先13Bは、バケット13に設けられたストレート形状の刃の先端部でもよい。
 図3に示すように、上部旋回体21とブーム11とはブームピン11Pを介して連結される。ブーム11は、回転軸AX1を支点として動作可能に上部旋回体21に支持される。ブーム11とアーム12とはアームピン12Pを介して連結される。アーム12は、回転軸AX2を支点として動作可能にブーム11に支持される。アーム12とバケット13とはバケットピン13Pを介して連結される。バケット13は、回転軸AX3を支点として動作可能にアーム12に支持される。回転軸AX1と回転軸AX2と回転軸AX3とは前後方向に平行である。前後方向の定義については後述する。
 以下の説明においては、回転軸AX1,AX2,AX3の軸が延びる方向を適宜、上部旋回体21の車幅方向、と称し、旋回軸RXの軸が延びる方向を適宜、上部旋回体21の上下方向、と称し、回転軸AX1,AX2,AX3及び旋回軸RXの両方と直交する方向を適宜、上部旋回体21の前後方向、と称する。
 本実施形態においては、運転席7に着座した操作者Maを基準として、バケット13を含む作業機10が存在する方向が前方であり前方の逆方向が後方である。車幅方向の一方が右方であり右方の逆方向、すなわちキャブ23が存在する方向が左方である。バケット13は、上部旋回体21よりも前方に配置される。バケット13の複数の刃先13Bは、車幅方向に配置される。上部旋回体21は、下部走行体22の上方に配置される。
 作業機10は、油圧シリンダによって作動する。油圧ショベル3は、ブーム11を動作させるためのブームシリンダ14と、アーム12を動作させるためのアームシリンダ15と、バケット13を動作させるためのバケットシリンダ16とを有する。ブームシリンダ14が伸縮動作すると、ブーム11が回転軸AX1を支点に動作して、ブーム11の先端部が上下方向に移動する。アームシリンダ15が伸縮動作すると、アーム12が回転軸AX2を支点に動作して、アーム12の先端部が上下方向あるいは前後方向に移動する。バケットシリンダ16が伸縮動作すると、バケット13が回転軸AX3を支点に動作して、バケット13の刃先13Bが上下方向又は前後方向に移動する。ブームシリンダ14、アームシリンダ15、及びバケットシリンダ16を含む作業機10の油圧シリンダは、操作装置8の作業レバーによって操作される。作業機10の油圧シリンダが伸縮動作することにより、作業機10の姿勢が変化する。
<操作装置>
 次に、本実施形態に係る操作装置8について説明する。図4は、本実施形態に係る操作装置8の一例を模式的に示す図である。操作装置8の作業レバーは、車幅方向において運転席7の中心よりも右方に配置される右作業レバー8WRと、車幅方向において運転席7の中心よりも左方に配置される左作業レバー8WLとを含む。操作装置8の走行レバーは、車幅方向において運転席7の中心よりも右方に配置される右走行レバー8MRと、車幅方向において運転席7の中心よりも左方に配置される左走行レバー8MLとを含む。
 中立位置にある右作業レバー8WRを前方に傾倒するとブーム11が下げ動作し後方に傾倒するとブーム11が上げ動作する。中立位置にある右作業レバー8WRを右方に傾倒するとバケット13がダンプ動作し左方に傾倒するとバケット13が掻き込み動作する。
 中立位置にある左作業レバー8WLを右方に傾倒すると上部旋回体21が右旋回し左方に傾倒すると上部旋回体21が左旋回する。中立位置にある左作業レバー8WLを下方に傾倒するとアーム12が掻き込み動作し上方に傾倒するとアーム12が伸ばし動作する。
 中立位置にある右走行レバー8MRを前方に傾倒すると右方のクローラ27が前進動作し後方に傾倒すると右方のクローラ27が後進動作する。中立位置にある左走行レバー8MLを前方に傾倒すると左方のクローラ27が前進動作し後方に傾倒すると左方のクローラ27が後進動作する。
 なお、右作業レバー8WR及び左作業レバー8WLの傾倒方向と、作業機10の動作方向及び上部旋回対21の旋回方向との動作関係についての操作パターンは、上述の関係でなくてもよい。
<ハードウエア構成>
 次に、本実施形態に係る評価システム1のハードウエア構成について説明する。図5は、本実施形態に係る評価システム1のハードウエア構成の一例を模式的に示す図である。
 携帯機器6は、コンピュータシステムを含む。携帯機器6は、演算処理装置60と、記憶装置61と、携帯機器6の位置を検出する位置検出装置62と、撮影装置63と、表示装置64と、入力装置65と、入出力インターフェース装置66と、通信装置67とを有する。
 演算処理装置60は、CPU(Central Processing Unit)のようなマイクロプロセッサを含む。記憶装置61は、ROM(Read Only Memory)又はRAM(Random Access Memory)のようなメモリ及びストレージを含む。演算処理装置60は、記憶装置61に記憶されているコンピュータプログラムに従って演算処理を実施する。
 位置検出装置62は、全地球測位システム(global navigation satellite system:GNSS)により、グローバル座標系における携帯機器6の位置を示す絶対位置を検出する。
 撮影装置63は、被写体の動画データを取得可能なビデオカメラ機能、及び被写体の静止画データを取得可能なスチルカメラ機能を有する。撮影装置63は、光学系と、光学系を介して被写体の撮影データを取得する撮像素子とを有する。撮像素子は、CCD(charge coupled device)イメージセンサ又はCMOS(complementary metal oxide semiconductor)イメージセンサを含む。
 撮影装置63は、油圧ショベル3を撮影可能である。撮影装置63は、油圧ショベル3の作業機10の動作を検出する検出装置として機能する。撮影装置63は、油圧ショベル3の外部から油圧ショベル3を撮影して、作業機10の動作を検出する。撮影装置63は、作業機10の撮影データを取得して、作業機10の移動軌跡、移動速度、及び移動時間の少なくとも一つを含む作業機10の移動データを取得可能である。作業機10の撮影データは、作業機10の動画データ及び静止画データの一方又は両方を含む。
 表示装置64は、液晶ディスプレイ(liquid crystal display:LCD)又は有機ELディスプレイ(organic electroluminescence display:OLED)のようなフラットパネルディスプレイを含む。入力装置65は、操作されることにより入力データを生成する。本実施形態において、入力装置65は、表示装置64の表示画面に設けられたタッチセンサを含む。表示装置64は、タッチパネルを含む。
 入出力インターフェース装置66は、演算処理装置60と記憶装置61と位置検出装置62と撮影装置63と表示装置64と入力装置65と通信装置67との間でデータ通信する。
 通信装置67は、管理装置4と無線でデータ通信する。通信装置67は、衛星通信網、携帯電話通信網又はインターネット回線を使って管理装置4とデータ通信する。なお、通信装置67は、管理装置4と有線でデータ通信してもよい。
 管理装置4は、コンピュータシステムを含む。管理装置4は、例えばサーバを用いる。管理装置4は、演算処理装置40と、記憶装置41と、出力装置42と、入力装置43と、入出力インターフェース装置44と、通信装置45とを有する。
 演算処理装置40は、CPUのようなマイクロプロセッサを含む。記憶装置41は、ROM又はRAMのようなメモリ及びストレージを含む。
 出力装置42は、フラットパネルディスプレイのような表示装置を含む。なお、出力装置42は、プリントデータを出力する印刷装置を含んでもよい。入力装置43は、操作されることにより入力データを生成する。入力装置43は、キーボード及びマウスの少なくとも一方を含む。なお、入力装置43が表示装置の表示画面に設けられたタッチセンサを含んでもよい。
 入出力インターフェース装置44は、演算処理装置40と記憶装置41と出力装置42と入力装置43と通信装置45との間でデータ通信する。
 通信装置45は、携帯機器6と無線でデータ通信する。通信装置45は、携帯電話通信網又はインターネット回線を使って携帯機器6とデータ通信する。なお、通信装置45は、携帯機器6と有線でデータ通信してもよい。
<携帯機器>
 次に、図5に示した携帯機器6について詳細に説明する。図6は、本実施形態に係る携帯機器6の一例を示す機能ブロック図である。携帯機器6は、油圧ショベル3の動作の評価、及び油圧ショベル3を操作する操作者Maの技量の評価の一方又は両方を実施する評価装置600として機能する。評価装置600の機能は、演算処理装置60及び記憶装置61によって発揮される。
 評価装置600は、撮影装置63によって検出された、油圧ショベル3の作業機10の撮影データ(以下、適宜、動作データと称する)に基づいて、作業機10の移動状態を含む検出データを取得する検出データ取得部601と、撮影装置63によって検出された油圧ショベル3の作業機10の動作データに基づいて、作業機10の位置データを算出する位置データ算出部602と、作業機10の目標移動条件を含む目標データを生成する目標データ生成部603と、検出データと目標データとに基づいて、評価データを生成する評価データ生成部604と、表示装置64を制御する表示制御部605と、記憶部608と、入出力部610とを有する。評価装置600は、入出力部610を介してデータ通信する。
 撮影装置63は、操作装置8を介して操作者Maに操作された、作業機10の移動開始位置から移動終了位置までの作業機10の動作データを検出する。本実施形態において、作業機10の動作データは、撮影装置63で撮影された作業機10の撮影データを含む。
 検出データ取得部601は、撮影装置63によって検出された、作業機10の移動開始位置から移動終了位置までの作業機10の動作データに基づいて、作業機10の所定部の検出移動軌跡を含む検出データを取得する。また、検出データ取得部601は、撮影データに基づいて、バケット13が移動を開始してからの経過時間を取得する。
 位置データ取得部602は、撮影装置63によって検出された作業機10の動作データから作業機10の位置データを算出する。位置データ取得部602は、例えばパターンマッチング法を使って、作業機10の撮影データから作業機10の位置データを算出する。
 目標データ生成部603は、撮影装置63によって検出された作業機10の動作データから作業機10の目標移動軌跡を含む目標データを生成する。目標データの詳細については後述する。
 評価データ生成部604は、検出データ取得部601で取得された検出データと目標データ生成部603で生成された目標データとに基づいて評価データを生成する。評価データは、作業機10の動作の評価を示す評価データ及び操作装置8を介して作業機10を操作した操作者Maの評価を示す評価データの一方又は両方を含む。評価データの詳細については後述する。
 表示制御部605は、検出データ及び目標データから表示データを生成して表示装置64に表示させる。また、表示制御部605は、評価データから表示データを生成して表示装置64に表示させる。表示データの詳細については後述する。
 記憶部608は、各種のデータを記憶する。また、記憶部608は、本実施形態に係る評価方法を実施するためのコンピュータプログラムを記憶する。
<評価方法>
 次に、本実施形態に係る操作者Maの評価方法について説明する。図7は、本実施形態に係る評価方法の一例を示すフローチャートである。
 本実施形態において、評価方法は、撮影装置63による油圧ショベル3の撮影準備を実施するステップ(S200)と、撮影装置63を使って油圧ショベル3を撮影し操作者Maの技量を評価するステップ(S300)とを含む。
(撮影準備)
 撮影装置63による油圧ショベル3の撮影準備が実施される(ステップS200)。図8は、本実施形態に係る撮影準備方法の一例を示すフローチャートである。
 本実施形態において、撮影準備方法は、油圧ショベル3に対する撮影装置63の撮影位置を決定するステップ(S210)と、上部旋回体21の位置を特定するステップ(S220)と、ブーム11の位置を特定するステップ(S230)と、アーム12の位置を特定するステップ(S240)と、バケット13の位置を特定するステップ(S250)とを含む。
 油圧ショベル3の撮影条件を一定にするために、油圧ショベル3とその油圧ショベル3を撮影する撮影装置63との相対位置を決定する処理が実施される(ステップS210)。
 図9は、本実施形態に係る撮影方法の一例を説明するための図である。操作者Ma又は作業者Mbによって携帯機器6の入力装置65が操作されることにより、記憶部608に記憶されているコンピュータプログラムが起動する。コンピュータプログラムの起動により、携帯機器6は、撮影準備モードに遷移する。撮影準備モードにおいては、撮影装置63の光学系のズーム機能が制限される。油圧ショベル3は、固定された規定撮影倍率の撮影装置63によって撮影される。
 例えば、作業者Mbが携帯機器6を保持し、油圧ショベル3の外部にある撮影位置を決定した後、入力装置65を介して処理開始の操作をすると、上部旋回体21の位置を特定する処理が実施される(ステップS220)。位置データ算出部602は、パターンマッチング法を使って、上部旋回体21の位置を特定する。
 図10は、本実施形態に係る上部旋回体21の位置特定方法を説明するための図である。図10に示すように、撮影装置63は、油圧ショベル3を含む撮影領域73の撮影データを取得する。位置データ算出部602は、撮影装置63で撮影された撮影領域73の撮影データに基づいて、作業機10の位置データを算出する。位置データ算出部602は、表示装置64の表示画面において、撮影領域73に対して、上部旋回体21のテンプレートである上部旋回体テンプレート21T(第1テンプレート)をスキャン移動して、車両本体20の位置データを算出する。上部旋回体テンプレート21Tは、上部旋回体21を左方からみた外形を示すデータであって、キャブ23と機械室24及びカウンタウエイト24Cを含む外形を示すデータであり、予め記憶部608に記憶されている。位置データ算出部602は、車両本体20の撮影データと上部旋回体テンプレート21Tとの相関値に基づいて、車両本体20の位置データを算出する。ここで、上部旋回体テンプレート21Tが、キャブ23のみ、あるいは機械室24のみの外形を示すデータであると、その外形は四角形に近くなり自然界に存在する可能性がある形となり、撮影データに基づく上部旋回対21の位置の特定が困難となるおそれがる。上部旋回体テンプレート21Tが、キャブ23と少なくとも機械室24とを含む外形を示すデータであれば、その外形はL字状の多角形となり自然界に存在する可能性が少ない形となり、撮影データに基づく上部旋回対21の位置の特定が容易となる。
 車両本体20の位置データが算出されることにより、上部旋回体21の位置が特定される。上部旋回体21の位置が特定されることにより、ブームピン11Pの位置が特定される。
 また、位置データ算出部602は、撮影領域73の撮影データに基づいて、車両本体20の寸法を示す寸法データを算出する。本実施形態において、位置データ算出部602は、上部旋回体21を左側方から見たときの、表示装置64の表示画面における、上部旋回体21の寸法(前後方向の寸法L)を算出する。
 上部旋回体21の位置データが算出された後、ブーム11の位置を特定する処理が実施される(ステップS230)。位置データ算出部602は、表示装置64の表示画面において、撮影領域73に対して、ブーム11のテンプレートであるブームテンプレート11T(第2テンプレート)を移動して、ブーム11の位置データを算出する。ブームテンプレート11Tは、ブーム11の外形を示すデータであって、予め記憶部608に記憶されている。位置データ算出部602は、ブーム11の撮影データとブームテンプレート11Tとの相関値に基づいて、ブーム11の位置データを算出する。
 図11は、本実施形態に係るブーム11の位置特定方法を説明するための図である。ブーム11は上部旋回体21に対して回転軸AX1を支点に動作可能である。そのため、回転軸AX1を支点としてブーム11は回転し、様々な姿勢を取り得るため、ブーム11の回転角度によっては、撮影領域73に対してブームテンプレート11Tをスキャン移動させただけでは、ブーム11の撮影データと用意されたブームテンプレート11Tとが一致しない可能性がある。
 上述のように、上部旋回体21の位置が特定されることにより、ブームピン11Pの位置が特定される。本実施形態においては、図11に示すように、位置データ算出部602は、表示装置64の表示画面において、ステップS230で特定されたブーム11のブームピン11Pの位置とブームテンプレート11Tのブームピンの位置とを一致させる。ブーム11のブームピン11Pの位置とブームテンプレート11Tのブームピンの位置とを一致させた後、位置データ算出部602は、表示装置64の表示画面において、撮影データが示すブーム11とブームテンプレート11Tとが一致するように、ブームテンプレート11Tを回転移動して、ブーム11の位置データを算出する。位置データ算出部602は、ブーム11の撮影データとブームテンプレート11Tとの相関値に基づいて、ブーム11の位置データを算出する。ここで、予め様々な姿勢のブームテンプレート11Tを記憶部608に記憶させておき、撮影データが示すブーム11に一致するブームテンプレート11Tを探索して、いずれかのブームテンプレート11Tを選択することでブーム11の位置データを算出するようにしてもよい。
 ブーム11の位置データが算出されることにより、ブーム11の位置が特定される。ブーム11の位置が特定されることにより、アームピン12Pの位置が特定される。
 ブーム11の位置が算出された後、アーム12の位置を特定する処理が実施される(ステップS240)。位置データ算出部602は、表示装置64の表示画面において、撮影領域73に対して、アーム12のテンプレートであるアームテンプレート(第2テンプレート)を移動して、アーム12の位置データを算出する。位置データ算出部602は、アーム12の撮影データとアームテンプレートとの相関値に基づいて、アーム12の位置データを算出する。
 アーム12はブーム11に対して回転軸AX2を支点に動作可能である。そのため、回転軸AX2を支点としてアーム12は回転し、様々な姿勢を取り得るため、アーム12の回転角度によっては、撮影領域73に対してアームテンプレートをスキャン移動させただけでは、アーム12の撮影データと用意されたアームテンプレートとが一致しない可能性がある。
 上述のように、ブーム11の位置が特定されることにより、アームピン12Pの位置が特定される。本実施形態においては、位置データ算出部602は、ブーム11の位置を特定した手順と同様の手順で、アーム12の位置を特定する。位置データ算出部602は、表示装置64の表示画面において、ステップS240で特定されたアーム12のアームピン12Pとアームテンプレートのアームピンの位置とを一致させる。アーム12のアームピン12Pの位置とアームテンプレートのアームピンの位置とを一致させた後、位置データ算出部602は、表示装置64の表示画面において、撮影データが示すアーム12とアームテンプレートとが一致するように、アームテンプレートを回転移動して、アーム12の位置データを算出する。位置データ算出部602は、アーム12の撮影データとアームテンプレートとの相関値に基づいて、アーム12の位置データを算出する。ここで、予め様々な姿勢のアームテンプレートを記憶部608に記憶させておき、撮影データが示すアーム12に一致するアームテンプレートを探索して、いずれかのアームテンプレートを選択することでアーム12の位置データを算出するようにしてもよい。
 アーム12の位置データが算出されることにより、アーム12の位置が特定される。アーム12の位置が特定されることにより、バケットピン13Pの位置が特定される。
 アーム12の位置が算出された後、バケット13の位置を特定する処理が実施される(ステップS250)。位置データ算出部602は、表示装置64の表示画面において、撮影領域73に対して、バケット13のテンプレートであるバケットテンプレート(第2テンプレート)を移動して、バケット13の位置データを算出する。位置データ算出部602は、バケット13の撮影データとバケットテンプレートとの相関値に基づいて、バケット13の位置データを算出する。
 バケット13はアーム12に対して回転軸AX3を支点に動作可能である。そのため、回転軸AX3を支点としてバケット13は回転し、様々な姿勢を取り得るため バケット13の角度によっては、撮影領域73に対してバケットテンプレートをスキャン移動させただけでは、バケット13の撮影データと用意されたバケットテンプレートとが一致しない可能性がある。
 上述のように、アーム12の位置が特定されることにより、バケットピン13Pの位置が特定される。本実施形態においては、位置データ算出部602は、ブーム11の位置を特定した手順及びアーム12の位置を特定した手順と同様の手順で、バケット13の位置を特定する。位置データ算出部602は、表示装置64の表示画面において、ステップS250で特定されたバケット13のバケットピン13Pとバケットテンプレートのバケットピンの位置とを一致させる。バケット13のバケットピン13Pの位置とバケットテンプレートのバケットピンの位置とを一致させた後、位置データ算出部602は、表示装置64の表示画面において、撮影データが示すバケット13とバケットテンプレートとが一致するように、バケットテンプレートを回転移動して、バケット13の位置データを算出する。位置データ算出部602は、バケット13の撮影データとバケットテンプレートとの相関値に基づいて、バケット13の位置データを算出する。ここで、予め様々な姿勢のバケットテンプレートを記憶部608に記憶させておき、撮影データが示すバケット13に一致するバケットテンプレートを探索して、いずれかのバケットテンプレートを選択することでバケット13の位置データを算出するようにしてもよい。
 バケット13の位置データが算出されることにより、バケット13の位置が特定される。バケット13の位置が特定されることにより、バケット13の刃先13Bの位置が特定される。
(撮影及び評価)
 撮影装置63による油圧ショベル3の撮影準備を実施するステップ(S200)が実行され、作業機10の位置が特定され、下記に説明する、バケット13の移動開始位置が特定されると、携帯機器6は、撮影及び評価モードに遷移する。撮影及び評価モードにおいても、撮影装置63の光学系のズーム機能が制限される。油圧ショベル3は、固定された規定撮影倍率の撮影装置63によって撮影される。撮影準備モードにおける規定撮影倍率と、撮影及び評価モードにおける規定撮影倍率とは同一である。
 操作装置8を介して操作者Maに操作される油圧ショベル3の作業機10の移動状況が携帯機器6の撮影装置63によって撮影される。本実施形態においては、操作者Maの技量の評価において、作業機10が特定の移動条件で移動するように、操作者Maによる作業機10の操作条件が決められている。
 図12は、本実施形態に係る評価方法において操作者Maに課される作業機10の操作条件を模式的に示す図である。本実施形態においては、図12に示すように、作業機10を操作する操作条件として、空中において無負荷状態のバケット13の刃先13Bが水平面に沿って直線の移動軌跡を描くよう操作させることを油圧ショベル3の操作者Maに課する。操作者Maは、バケット13の刃先13Bが水平面に沿った直線の移動軌跡を描くように操作装置8を操作する。
 本実施形態において、バケット13の移動開始位置及び移動終了位置は、操作者Maによって任意に決定される。本実施形態においては、バケット13の刃先13Bが静止している時間が規定時間以上でありその静止状態のバケット13が移動を開始した位置が移動開始位置に決定される。また、静止状態のバケット13が移動を開始した時点が移動開始時点に決定される。また、移動状態のバケット13の刃先13Bが移動を停止しその停止している時間が規定時間以上であると判定されたバケット13の位置が移動終了位置に決定される。また、移動を終了した時点が移動終了時点に決定される。換言すれば、静止状態のバケット13が動き出した位置が移動開始位置であり、動き出した時点が移動開始時点である。移動状態のバケット13が停止した位置が移動終了位置であり、停止した時点が移動終了時点である。
 図13は、本実施形態に係る撮影及び評価方法の一例を示すフローチャートである。図13は、撮影装置63を使って油圧ショベル3を撮影し操作者Maの技量を評価するステップ(S300)を示す。本実施形態に係る撮影及び評価方法は、作業機10の移動開始位置を特定するステップ(S310)と、移動する作業機10の撮影データを取得するステップ(S320)と、作業機10の移動終了位置を特定するステップ(S330)と、作業機10の目標データを生成するステップ(S340)と、撮影データと目標データとに基づいて操作者Maの評価データを生成するステップ(S350)と、表示装置64に評価データを表示するステップ(S360)とを含む。
 ここで、作業者Mbは、図9に示すように、表示装置64に入力装置65の一つとして表示された録画ボタンを押す。作業者Mbは、油圧ショベル3の外部から油圧ショベル3を撮影する。作業機10のバケット13の移動開始位置及び移動開始時点を特定する処理が実施される(ステップS310)。図14は、本実施形態に係る作業機10の移動開始位置の特定方法を説明するための図である。検出データ取得部601は、撮影装置63で撮影された作業機10の撮影データに基づいて、静止状態の作業機10のバケット13の刃先13Bの位置を特定する。検出データ取得部601は、バケット13の刃先13Bが静止している時間が規定時間以上であると判定した場合、そのバケット13の刃先13Bの位置をバケット13の移動開始位置に決定する。
 静止状態のバケット13が操作者Maの操作により移動を開始した場合、検出データ取得部601は、作業機10の撮影データに基づいて、バケット13の移動が開始されたことを検出する。検出データ取得部601は、静止状態のバケット13の刃先13Bが移動を開始した時点をバケット13の移動開始時点であると判定する。
 バケット13の移動が開始されると、検出データ取得部601は、作業機10の動画データである撮影データを撮影装置63から取得する(ステップS320)。図15及び図16は、本実施形態に係る作業機10の撮影データの取得方法を説明するための図である。検出データ取得部601は、移動を開始した作業機10の撮影データの取得を開始する。
 本実施形態において、検出データ取得部601は、移動開始位置から移動終了位置までのバケット13の撮像データに基づいて、作業機10の移動軌跡を含む検出データを取得する。本実施形態において、検出データは、移動開始位置において静止状態の作業機10が移動を開始してから移動終了位置において移動を終了するまでの空中における無負荷状態の作業機10の移動軌跡を含む。検出データ取得部601は、撮影データに基づいて、バケット13の移動軌跡を取得する。また、検出データ取得部601は、撮影データに基づいて、バケット13が移動を開始してからの経過時間を取得する。
 図15は、バケット13の移動が開始された直後の表示装置64を示す。検出データ取得部601によりバケット13の移動が開始されたと判定されると、位置データ算出部602は、作業機10の位置データに含まれるバケット13の刃先13Bの位置データを算出し、表示制御部605は、バケット13の刃先13Bを示す表示データを表示装置64に表示させる。図15に示すように、表示データとして、移動開始位置SPを例えば丸い点として表示装置64に表示する。表示制御部605は、移動終了位置EPも同様に、例えば丸い点として表示装置64に表示する。本実施形態においては、表示制御部605は、刃先13Bを示す表示データであるプロットPD(SP、EP)を例えば丸い点として表示装置64に表示させる。
 また、表示制御部605は、作業機10が移動開始位置から移動を開始してからの経過時間を示す表示データである経過時間データTD、及び作業機10が移動開始位置と移動終了位置との間において移動中であることを示す表示データである文字データMDを表示装置64に表示させる。本実施形態において、表示制御部605は、「Moving」の文字データMDを表示装置64に表示させる。これにより、撮影者である作業者Mbは、バケット13の移動が開始され、バケット13の刃先13Bの移動軌跡の取得が開始されたことを認識することができる。
 図16は、バケット13が移動しているときの表示装置64を示す。検出データ取得部601は、撮影データに基づいて、バケット13の位置を検出し続け、位置データ算出部602は、バケット13の刃先13Bの位置データを算出し続け、バケット13の刃先13Bの検出移動軌跡を取得する。また、検出データ取得部601は、移動開始時点からのバケット13の移動時間を示す経過時間を取得する。
 表示制御部605は、検出データからバケット13の検出移動軌跡を示す表示データを生成して、表示装置64に表示させる。表示制御部605は、検出データに基づいて、バケット13の刃先13Bの位置を示すプロットPDを一定時間間隔で生成する。表示制御部605は、一定時間間隔で生成されたプロットPDを表示装置64に表示させる。図16において、プロットPDの間隔が短いことは、バケット13の移動速度が低いことを示し、プロットPDの間隔が長いことは、バケット13の移動速度が高いことを示す。
 また、表示制御部605は、複数のプロットPDに基づいて、バケット13の検出移動軌跡を示す検出ラインTLを表示装置64に表示させる。検出ラインTLは、複数のプロットPDを結んだ折れ線状の表示データである。検出ラインTLは、複数のプロットPDを滑らかな曲線で結んで表示させてもよい。
 移動状態のバケット13が操作者Maの操作により移動を停止した場合、作業機10のバケット13の移動終了位置及び移動終了時点を特定する処理が実施される(ステップS330)。図17は、本実施形態に係る作業機10の移動終了位置の特定方法を説明するための図である。
 移動状態のバケット13が操作者Maの操作により移動を停止した場合、検出データ取得部601は、撮影データに基づいて、バケット13の移動が停止されたことを検出する。検出データ取得部601は、移動状態のバケット13の刃先13Bが移動を停止した位置をバケット13の移動終了位置に決定する。また、検出データ取得部601は、移動状態のバケット13の刃先13Bが移動を停止した時点をバケット13の移動終了時点に決定する。検出データ取得部601は、移動状態のバケット13が移動を停止し、そのバケット13の刃先13Bが静止している時間が規定時間以上であると判定した場合、そのバケット13の刃先13Bの位置をバケット13の移動終了位置に決定する。位置データ算出部602は、移動終了位置のバケット13の刃先13Bの位置データを算出する。
 図17は、バケット13の移動が停止された直後の表示装置64を示す。検出データ取得部601によりバケット13の移動が停止されたと判定されると、表示制御部605は、経過時間データTD及び文字データMDを表示装置64から消去する。これにより、撮影者である作業者Mbは、バケット13の移動が停止されたことを認識することができる。ここで、文字データMDを表示装置64から消去せずに、バケット13の移動が停止されたことを示す文字データMDを表示させてもよい。
 作業機10の移動が停止された後、作業機10の目標移動軌跡を示す目標データを生成する処理が実施される(ステップS340)。図18は、本実施形態に係る作業機10の目標移動軌跡を示す目標データの生成方法を説明するための図である。目標データ生成部603は、バケット13の目標移動軌跡を示す目標データを生成する。
 本実施形態において、目標移動軌跡は、移動開始位置SPと移動終了位置EPとを結ぶ直線を含む。
 図18に示すように、表示制御部605は、目標データから表示装置64に表示させる表示データを生成して、表示装置64に表示させる。本実施形態においては、表示制御部605は、移動開始位置SPと移動終了位置EPとを結ぶ目標移動軌跡を示す目標ラインRLを表示装置64に表示させる。目標ラインRLは、移動開始位置SPと移動終了位置EPとを結んだ直線状の表示データである。目標ラインRLは、目標データに基づいて生成される。すなわち、目標ラインRLは、目標データを示す。
 また、表示制御部605は、プロットPD(SP、EP)及び検出ラインTLを目標ラインRLと一緒に表示装置64に表示させる。このように、表示制御部605は、検出データからプロットPD及び検出ラインTLを含む表示データを生成し、目標データである目標ラインRLを含む表示データを生成して、表示装置64に表示させる。
 検出ラインTLと目標ラインRLとが表示装置64に同時に表示されることにより、作業者Mb又は操作者Maは、バケット13(刃先13B)の実際の移動軌跡が、直線で示される目標移動軌跡からどれくらい離れているかを定性的に認識することができる。
 移動軌跡を含む検出データが取得され、目標移動軌跡を含む目標データが生成された後、検出データと目標データとに基づいて、操作者Maの定量的な評価データを生成する処理が実施される(ステップS350)。
 本実施形態においては、撮影装置63によって取得された作業機10の撮影データが記憶部608に記憶される。作業機10の撮影データが記憶部608に複数記憶されている場合、作業者Mbは、記憶部608に記憶されている複数の撮影データの中から評価する撮影データを入力装置65を介して選択する。評価データ生成部604は、選択された撮影データから評価データを生成する。
 評価データ生成部604は、移動軌跡と目標移動軌跡との差分に基づいて、操作者Maの評価データを生成する。検出された検出移動軌跡と目標移動軌跡との差分が小さいほど、目標移動軌跡に沿ってバケット13を移動することができたことを意味し、操作者Maの技量は高いと評価される。一方、検出移動軌跡と目標移動軌跡との差分が大きいほど、目標移動軌跡に沿ってバケット13(刃先13B)を移動することができなかったことを意味し、操作者Maの技量は低いと評価される。つまり、刃先13Bを直線的に移動させようとするならば、操作装置8の右作業レバー8WRと左作業レバー8WLの両者を同時あるいは交互に操作しなければならず、操作者Maの技量が低い場合、短時間に刃先13Bを直線的かつ長距離移動をさせることは容易ではない。
 本実施形態において、評価データ生成部604は、検出移動軌跡を示す検出ラインTLと目標移動軌跡を示す目標ラインRLとで規定される平面の面積に基づいて、評価データを生成する。すなわち、図18の斜線部分で示すように、専ら曲線で示される検出ラインTLと、直線で示される目標ラインRLとで規定される平面DIの面積が評価データ生成部604によって算出され、その面積に基づいて評価データが生成される。面積が小さいほど操作者Maの技量は高いと評価され、面積が大きいほど操作者Maの技量は低いと評価される。その面積(平面D1)の大小も評価データに含まれる。
 また、本実施形態においては、撮影データに基づいて、移動開始位置SPと移動終了位置EPとが特定される。検出データ取得部601は、撮影データに基づいて、移動開始位置SPと移動終了位置EPとの距離を取得する。本実施形態において、検出データ取得部601が取得する検出データは、移動開始位置SPと移動終了位置EPとの間のバケット13の移動距離を含む。
 評価データ生成部604は、移動開始位置SPと移動終了位置EPとの距離に基づいて、評価データを生成する。移動開始位置SPと移動終了位置EPとの距離が長いほど、目標移動軌跡に沿ってバケット13を長距離移動することができたことを意味し、操作者Maの技量は高いと評価される。移動開始位置SPと移動終了位置EPとの距離が短いほど、目標移動軌跡に沿ってバケット13を短距離しか移動することができなかったことを意味し、操作者Maの技量は低いと評価される。
 本実施形態においては、図10を参照して説明したように、撮影準備モードにおいて、表示装置64の表示画面における前後方向の車両本体20の寸法Lが算出される。また、車両本体20の前後方向の実寸法を示す実寸法データが記憶部608に記憶されている。したがって、表示装置64の表示画面における移動開始位置SPと移動終了位置EPとの距離が算出されることにより、検出データ取得部601は、寸法Lと記憶部608に記憶されている車両本体20の実寸法との比に基づいて、移動開始位置SPから移動終了位置EPまでのバケット13の実際の移動距離を算出することができる。この移動距離は、位置データ算出装置602によって算出してもよい。
 また、本実施形態においては、撮影データに基づいて、バケット13が移動を開始してからの経過時間、及び移動開始位置SPから移動終了位置EPまでのバケット13の移動時間が取得される。検出データ取得部601は、内部タイマを有する。検出データ取得部601は、内部タイマの計測結果と撮影装置63の撮影データとに基づいて、バケット13の移動開始時点と移動終了時点との時間を取得する。本実施形態において、検出データ取得部601が取得する検出データは、移動開始時点と移動終了時点との間のバケット13の移動時間を含む。
 評価データ生成部604は、移動開始時点と移動終了時点との間のバケット13(刃先13B)の移動時間に基づいて、評価データを生成する。移動開始時点と移動終了時点との時間が短いほど、目標移動軌跡に沿ってバケット13を短時間で移動することができたことを意味し、操作者Maの技量は高いと評価される。移動開始時点と移動終了時点との時間が長いほど、目標移動軌跡に沿ってバケット13を移動するのに長時間を要したことを意味し、操作者Maの技量は低いと評価される。
 また、上述のように、検出データ取得部601は、移動開始位置SPから移動終了位置EPまでのバケット13の実際の移動距離を算出する。したがって、検出データ取得部601は、移動開始位置SPから移動終了位置EPまでのバケット13の実際の移動距離と、移動開始時点から移動終了時点までのバケット13の移動時間とに基づいて、移動開始位置SPと移動終了位置EPとの間のバケット13の移動速度(平均移動速度)を算出することができる。この移動速度は、位置データ算出装置602によって算出してもよい。本実施形態において、検出データ取得部601が取得する検出データは、移動開始位置SPと移動終了位置EPとの間のバケット13の移動速度を含む。
 評価データ生成部604は、移動開始位置SPと移動終了位置EPとの間のバケット13(刃先13B)の移動速度に基づいて、評価データを生成する。移動開始位置SPと移動終了位置EPとの間のバケット13の移動速度が高いほど、目標移動軌跡に沿ってバケット13(刃先13B)を高速度で移動することができたことを意味し、操作者Maの技量は高いと評価される。移動開始位置SPと移動終了位置EPとの間のバケット13の移動速度が低いほど、目標移動軌跡に沿ってバケット13(刃先13B)を低速度でしか移動することができなかったことを意味し、操作者Maの技量は低いと評価される。
 以上に説明したような評価データが生成された後、その評価データを表示装置64に表示させる処理が実施される(ステップS360)。図19は、本実施形態に係る評価データの表示方法を説明するための図である。表示制御部605は、評価データから表示データを生成して表示装置64に表示させる。
 図19に示すように、表示制御部605は、例えば、個人データである操作者Maの氏名を表示装置64に表示させる。個人データは、予め記憶部606に保存されている。また、表示制御部605は、評価データとして、目標移動軌跡と検出移動軌跡との差分を示す「直線性」、移動開始位置SPから移動終了位置EPまでのバケット13の移動距離を示す「距離」、移動開始位置SPから移動終了位置EPまでのバケット13の移動時間を示す「時間」、及び移動開始位置SPから移動終了位置EPまでのバケット13の平均移動速度を示す「速度」の各項目を表示装置64に表示させる。また、表示制御部605は、定量的な評価データとして、「直線性」、「距離」、「時間」、及び「速度」の各項目の数値データを表示装置64に表示させる。「直線性」の数値データは、例えば、目標移動軌跡と検出移動軌跡との差分(平面DI)が所定量より少ない場合を100点満点とし、その差分が所定量より多くなるにしたがって、100点から減点していくようにして求めることができる。なお、「距離」、「時間」、及び「速度」についても、100点満点となる基準の数値との差に基づき、点数として数値データを表示装置64に表示させてもよい。
なお、本実施形態においては、作業機10の動作として、作業機10の所定部である、バケット13の刃先13Bに注目し、刃先13Bの移動軌跡を取得することで、刃先13についての「直線性」、「距離」、「時間」、「速度」といった評価データを取得した。しかし、例えば作業機10の動作として、他の部分、例えば、アームの先端あるいはバケット13の刃先13B以外の部分(所定部)に注目し、当該部分の目標移動軌跡と当該部分の検出移動軌跡との差分を示す「直線性」、移動開始位置SPから移動終了位置EPまでの当該部分の移動距離を示す「距離」、移動開始位置SPから移動終了位置EPまでの当該部分の移動時間を示す「時間」、及び移動開始位置SPから移動終了位置EPまでの当該部分の平均移動速度を示す「速度」といった評価データを取得してもよい。つまり、撮影装置63(検出装置)が作業機10の動作を検出し撮影データを取得するため、撮影データに含まれる作業機10の移動に基づく動作データを用いて、作業機10の所定部の移動軌跡を取得し評価データを生成してもよい。
また、表示制御部605は、定量的な評価データとして、操作者Maの技量の得点を表示装置64に表示させる。記憶部608には、技量についてのリファレンスデータが記憶されている。リファレンスデータは、例えば、標準的な技量を有する操作者について、「直線性」、「距離」、「時間」、及び「速度」の各項目の数値データを総合的に評価した評価データであり、統計的又は経験的に求められる。操作者Maの技量の得点は、そのリファレンスデータを基準に算出される。
 また、表示制御部605は、過去に操作者Maが何回の評価データを生成したかを示す回数データと、過去の評価データ(技量の得点)の平均点あるいは最高得点を表示装置64に表示させてもよい。
 本実施形態において、評価データ生成部604は、生成した評価データを、通信装置67を介して外部サーバに出力する。外部サーバは、管理装置4でもよいし、管理装置4とは別のサーバでもよい。
 評価データが外部サーバに送信された後、操作者Maの他の操作者Maとの相対的な評価を示す相対データが外部サーバから携帯機器6の通信装置67に提供される。評価データ生成部604は、外部サーバから供給された相対データを取得する。表示制御部605は、その相対データに関する表示データを生成して表示装置64に表示させる。
 本実施形態において、操作者Maと他の操作者Maとの相対的な評価を示す相対データは、複数の操作者Maの技量を順位付けしたランキングデータを含む。外部サーバには全国各地に存在する複数の操作者Maの評価データが収集される。外部サーバは、複数の操作者Maの評価データを集計及び解析して、複数の操作者Ma毎に技量のランキングデータを生成する。外部サーバは、生成したランキングデータを、複数の携帯機器6のそれぞれに配信する。ランキングデータは、評価データに含まれるものであり、他の操作者Maとの相対的な評価を示す相対データである。
 図20は、本実施形態に係る相対データの表示方法の一例を説明するための図である。図20に示すように、表示制御部605は、相対データから表示データを生成して表示装置64に表示させる。図22に示す例のように、表示制御部605は、表示装置64に、次のような表示データに関する情報を表示させる。例えば、操作者Maの氏名と、携帯機器6で個人データを登録し、その携帯機器6を用いて評価データを生成した、全国の操作者Maの人数と、全国の操作者Maのうち、その携帯機器6(表示データを表示させようとしている携帯機器6)で評価データを生成した操作者Maの評価データ(得点)に基づく順位と、評価データを示す得点とを表示装置64に表示させる。ここで、評価データを示す得点が上位の操作者Maの氏名と得点を示す情報を外部サーバから受信し、表示制御部605は表示装置64に、その情報を表示させてもよい。評価データに基づく順位も、評価データに含むものであり、他の操作者Maとの相対的な評価を示す相対データである。
<作用及び効果>
 以上説明したように、本実施形態によれば、作業機10の検出移動軌跡を含む検出データを取得する検出データ取得部601と、作業機10の目標移動軌跡を含む目標データを生成する目標データ生成部603と、検出データと目標データとに基づいて操作者Maの評価データを生成する評価データ生成部604とを備える評価装置600により、油圧ショベル3の操作者Maの技量を客観的及び定量的に評価することができる。評価データや評価データに基づく相対データが提供されることにより、技量向上のための操作者Maの意欲は向上する。また、操作者Maは、評価データに基づいて、自身の操作を改善することができる。
 また、本実施形態においては、検出データは、移動開始位置SPにおいて静止状態の作業機10が移動を開始してから移動終了位置EPにおいて移動を終了するまでの空中における無負荷状態の作業機10の移動軌跡を含む。作業機10が空中で移動するように操作条件を課すことにより、全国各地に存在する操作者Maの評価条件を一定にすることができる。例えば施工現場2ごとに土質が異なる場合、全国各地に存在する操作者Maに、例えば、実際に掘削動作を実施させて評価すると、操作者Maは、異なる評価条件で技量が評価されることとなる。この場合、評価の公平性を欠く可能性がある。作業機10が空中で移動するように操作させることにより、同一の評価条件で公平に操作者Maの技量を評価することができる。
 また、本実施形態においては、目標移動軌跡は、移動開始位置SPと移動終了位置EPとを結ぶ直線を採用する。これにより、煩雑な処理を実施することなく、目標移動軌跡を簡単に設定することができる。
 また、本実施形態によれば、評価データ生成部604は、検出移動軌跡と目標移動軌跡との差分に基づいて評価データを生成する。これにより、バケット13の刃先13Bを真っ直ぐに移動させる操作者Maの技量を適正に評価することができる。本実施形態によれば、評価データ生成部604は、検出移動軌跡を示す検出ラインTLと目標移動軌跡を示す目標ラインRLとで規定される平面の面積(差分)に基づいて評価データを生成する。これにより、バケット13の刃先13Bを真っ直ぐに移動させる操作者Maの技量をより適正に評価することができる。
 また、本実施形態によれば、検出データは、移動開始位置SPと移動終了位置EPとの間のバケット13の移動距離を含み、評価データ生成部604は、そのバケット13の移動距離に基づいて評価データを生成する。これにより、バケット13の刃先13Bを長距離移動可能な操作者Maを高い技量を有する者として適正に評価することができる。
 また、本実施形態によれば、検出データは、移動開始位置SPから移動終了位置EPまでのバケット13の移動時間を含み、評価データ生成部603は、そのバケット13の移動時間に基づいて評価データを生成する。これにより、バケット13の刃先13Bを短時間で移動可能な操作者Maを高い技量を有する者として適正に評価することができる。
 また、本実施形態によれば、作業機10の動作データを検出する検出装置63は、作業機10の動作データを検出する撮影装置63である。これにより、大掛かりな装置を使用することなく、作業機10の動作データを簡単に取得することができる。
 また、本実施形態によれば、位置データ算出部602は、撮影領域73に対して上部旋回体テンプレート21Tをスキャン移動して上部旋回体21の撮影データと上部旋回体テンプレート21T(第1テンプレート)との相関値に基づいて上部旋回体21の位置データを算出した後、撮影領域73に対してブームテンプレート11T(第2テンプレート)を移動してブーム11の撮影データとブームテンプレート11Tとの相関値に基づいてブーム11の位置データを算出する。これにより、車両本体20に対して移動する作業機10が存在するという特徴的な構造や動きを有する油圧ショベル3においても、作業機10の位置を特定することができる。この特定は、本実施形態においては、パターンマッチング法でブームピン11Pを含む上部旋回体21の位置が特定された後、ブームピン11Pを基準としてブーム11の位置が特定されることにより、ブーム11の位置が正確に特定される。ブーム11の位置が特定された後、アームピン12Pを基準としてアーム12の位置が特定され、アーム12の位置が特定された後、バケットピン13Pを基準としてバケット13の位置が特定されることにより、特徴的な構造や動きを有する油圧ショベル3においても、バケット13の刃先13Bの位置を正確に特定することができる。
 また、本実施形態によれば、位置データ算出部602は、撮影領域73の撮影データに基づいて表示装置64の表示画面における上部旋回体21の寸法データを算出する。これにより、評価データ生成部604は、表示装置64の表示画面における上部旋回体21の寸法データと上部旋回体21の実寸法データとの比から、移動開始位置SPと移動終了位置EPとの実際の距離を算出することができる。
 また、本実施形態によれば、検出データ及び目標データから表示データを生成して表示装置64に表示させる表示制御部605が設けられる。これにより、操作者Maは、自身の技量が目標からどれだけ離れているのかを視覚を通じて定性的に認識することができる。また、表示データを、直線性、距離、時間、速度、得点、といった数値データで表示装置64に表示させることができるため、自身の技量を定量的に認識することができる。
 また、本実施形態によれば、表示データは、作業機10が移動開始位置SPから移動を開始してからの経過時間を示す経過時間データTD、及び作業機10が移動開始位置SPと移動終了位置EPとの間において移動中であることを示す文字データMDの一方又は両方を含む。経過時間データTDが表示されることにより、撮影者である作業者Mbは、作業機10の移動が開始されてからの経過時間を視覚を通じて認識することができる。文字データMDが表示されることにより、撮影者である作業者Mbは、作業機10が移動中であることを、視覚を通じて認識することができる。
 また、本実施形態によれば、表示制御部605は、評価データから表示データを生成して表示装置64に表示させる。これにより、操作者Maは、自身の技量の評価データを、視覚を通じて客観的に認識することができる。
 図21及び図22は、本実施形態に係る操作者Maの評価方法の一例を説明するための図である。上述の実施形態(以下、第一評価方法)においては、図12に示したように、空中において無負荷状態のバケット13の刃先13Bが水平面に沿って直線の移動軌跡を描くように操作者Maに作業機10を操作させて、操作者Maの技量を評価することした。このような第一評価方法のような作業機10の操作は、地面を平面に成形する施工や、土砂を敷き均すような施工が想定される。図21に示すように、空中において無負荷状態のバケット13の刃先13Bが水平面に対して傾斜した直線の移動軌跡を描くように操作者Maに作業機10を操作させて、操作者Maの技量を評価(以下、第二評価方法)してもよい。このような第二評価方法のような作業機10の操作は、法面を成形する施工が想定され、高い技量を必要とする。図22に示すように、空中において無負荷状態のバケット13の刃先13Bが円形の移動軌跡を描くように操作者Maに作業機10を操作させて、操作者Maの技量を評価(以下、第三評価方法)してもよい。操作者Maの技量を評価する際に、以上のような第一から第三の3つの評価方法を全て実施してもよいし、いずれか一つの評価方法を実施してもよい。あるいは、操作者Maの技量を評価する際に、以上のような第一から第三の3つの評価方法を段階的に実施してもよい。
 なお、油圧ショベル3の作業機10を使って荷物を吊り上げる吊荷作業が実施される場合がある。吊荷作業をするときの作業機10の動作データを撮影装置63で撮影し、その動作データに基づいて操作者Maの技量が評価されてもよい。
[第2実施形態]
 第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 上述の実施形態においては、空中における無負荷状態の作業機10の移動状態に基づいて操作者Maを評価することとした。本実施形態においては、バケット13が掘削動作するように操作者Maに作業機10を操作させて、操作者Maを評価する例について説明する。
 本実施形態においても、操作者Maの評価には、撮影装置63を有する携帯機器6が使用される。操作装置8を介して操作者Maに操作された油圧ショベル3の作業機10の掘削動作が、例えば作業者Mbが保持する携帯機器6の撮影装置63によって撮影される。撮影装置63は、油圧ショベル3の外部から、作業機10の掘削動作を撮影する。
 図23は、本実施形態に係る携帯機器の一例を示す機能ブロック図である。上述の実施形態と同様、評価装置600は、検出データ取得部601と、位置データ算出部602と、評価データ生成部604と、表示制御部605と、記憶部608と、入出力部610とを有する。
 本実施形態において、検出データ取得部601は、撮影装置63によって検出された作業機10の撮影データを含む動作データに基づいて、画像処理してバケット13の掘削量を示す第1検出データ及びバケット13の掘削時間を示す第2検出データを取得する。評価データ生成部604は、第1検出データ及び第2検出データに基づいて、操作者Maの評価データを生成する。
 本実施形態においては、評価装置600は、撮影装置63によって撮影されたバケット13の撮影データを画像処理して、バケット13による1回の掘削動作の掘削時間を算出する掘削時間算出部613を備える。
 また、評価装置600は、撮影装置63によって撮影されたバケット13の撮影データを画像処理して、バケット13を側方(左方あるいは右方)から見たときに、バケット13の開口端部(図25に示す開口端部13K)から出ている掘削物の面積から、バケット13の掘削量を算出する掘削量算出部614を備える。
 バケット13による1回の掘削動作は、バケット13が、例えば土砂としての掘削物を掘削するために移動を開始し地面に突入し、バケット13が土砂をすくいながら移動してバケット13で土砂を抱え込み、バケット13の移動が停止するまでの動作である。その動作にかかる掘削時間の評価においては、掘削時間が短いほど操作者Maの技量が高いと判定され、掘削時間が長いほど操作者Maの技量が低いと判定される。掘削時間と点数とを対応付けておき、短い掘削時間の場合、高得点となる評価データを生成してもよい。一方、掘削量の評価においては、一回の掘削動作におけるバケット13の目標掘削量が指定され、実際の掘削量と目標掘削量との差分が小さいほど操作者Maの技量が高いと判定される。差分と点数とを対応付けておき、小さな差分の場合、高得点となる評価データを生成してもよい。あるいは、後述する満杯率を用い、目標とする満杯率に対する、実際の掘削量に基づく満杯率を評価データとして生成してもよい。本実施形態においては、評価装置600は、作業機10の目標掘削量を示す目標データを取得する目標データ取得部611を備える。評価データ生成部604は、作業機10の掘削量を示す第1検出データと、目標データ取得部611で取得された目標データとの差分に基づいて、操作者Maの評価データを生成する。
 次に、本実施形態に係る撮影及び評価方法の一例について説明する。図24は、本実施形態に係る撮影及び評価方法の一例を示すフローチャートである。本実施形態に係る撮影及び評価方法は、作業機10の目標掘削量を示す目標データを取得するステップ(S305B)と、作業機10の移動開始位置を特定するステップ(S310B)と、移動する作業機10の撮影データを取得するステップ(S320B)と、作業機10の移動終了位置を特定するステップ(S330B)と、バケット13の掘削時間を算出するステップ(S332B)と、バケット13の開口端部を特定するステップ(S335B)と、バケット13の掘削量を算出するステップ(S348B)と、操作者Maの評価データを生成するステップ(S350B)と、表示装置64に評価データを表示するステップ(S360B)と、を含む。
 作業機10の目標掘削量を示す目標データを取得する処理が実施される(ステップS305B)。操作者Maは、自身が掘削しようとする目標掘削量を宣言し、入力装置65を介して目標掘削量を評価装置600に入力する。目標データ取得部611は、バケット13の目標掘削量を示す目標データを取得する。なお、予め目標掘削量を記憶部608に記憶させておき、その目標掘削量を用いてもよい。
 目標掘削量は、掘削物の容量で指定されてもよいし、バケット13の開口端部から規定容積の掘削物が出た状態を基準とした満杯率で指定されてもよい。本実施形態においては、目標掘削量が満杯率で指定されることとする。満杯率とは、山積容量の一種であり、本実施形態においては、バケット13の開口端部(上縁)から1:1の勾配で掘削物を盛り上げたとき、所定の土量(例えば、1.0[m])の掘削物がバケット13にすくわれている状態を例えば満杯率1.0とする。
 次に、作業機10のバケット13の移動開始位置及び移動開始時点を特定する処理が実施される(ステップS310B)。位置データ算出部602は、撮影装置63の撮影データに基づいて、バケット13が静止している時間が規定時間以上であると判定した場合、そのバケット13の位置をバケット13の移動開始位置に決定する。
 静止状態のバケット13が操作者Maの操作により移動を開始した場合、位置データ算出部602は、撮影データに基づいて、バケット13の移動が開始されたことを検出する。位置データ算出部602は、静止状態のバケット13が移動を開始した時点をバケット13の移動開始時点に決定する。
 バケット13の移動が開始されると、バケット13の動作データを取得する処理が実施される(ステップS320B)。バケット13の動作データは、移動開始位置において静止状態の作業機10が移動を開始して掘削動作を行い、掘削動作が終了して移動終了位置において移動を終了するまでのバケット13の撮影データを含む。
 移動状態のバケット13が操作者Maの操作により移動を停止した場合、作業機10のバケット13の移動終了位置及び移動終了時点を特定する処理が実施される(ステップS330B)。
 移動状態のバケット13が操作者Maの操作により移動を停止した場合、位置データ算出部602は、撮影データに基づいて、バケット13の移動が停止されたことを検出する。位置データ算出部602は、移動状態のバケット13が移動を停止した位置をバケット13の移動終了位置に決定する。また、位置データ算出部602は、移動状態のバケット13が移動を停止した時点をバケット13の移動終了時点に決定する。位置データ算出部602は、移動状態のバケット13が移動を停止し、そのバケット13が静止している時間が規定時間以上であると判定した場合、そのバケット13の位置をバケット13の移動終了位置に決定する。
 掘削時間算出部613は、撮影データに基づいて、バケット13の掘削時間を算出する(ステップS332B)。掘削時間は、移動開始時点から移動終了時点までの時間である。
 次に、掘削量算出部614は、撮影装置63によって撮影されたバケット13の撮影データに基づいてバケット13の開口端部13Kを特定する。
 図25は、本実施形態に係る掘削量の算出方法の一例を説明するための図である。図25に示すように、掘削動作が終了することにより、バケット13に掘削物が抱え込まれる。本実施形態においては、操作者Maの評価において、例えば、掘削物がバケット13の開口端部13Kから上方に出るように掘削動作が行われる。掘削量算出部614は、撮影装置63によって左方から撮影されたバケット13の撮影データを画像処理して、バケット13と掘削物との境界であるバケット13の開口端部13Kを特定する。バケット13と掘削物との輝度の差、明度の差、及び色度の差の少なくとも一つを含むコントラストデータにより、掘削量算出部614は、バケット13の開口端部13Kを特定することができる。
 掘削量算出部614は、バケット13の開口端部13Kの位置を特定し、撮影装置63によって撮影されたバケット13及び掘削物の撮影データを画像処理してバケット13の開口端部13Kから出ている掘削物の面積を算出する。
 掘削量算出部614は、開口端部13Kから出ている掘削物の面積から、バケット13の掘削量を算出する。開口端部13Kから出ている掘削物の面積から、一回の掘削動作でバケット13により掘削された、おおよその土量(掘削量)が推定される。つまり、使用するバケット13の容量[m]やバケット13の幅方向の寸法は既知であり、例えば、記憶部608に予め記憶されており、掘削量算出部614は、バケット13の容量や幅方向の寸法と、開口端部13Kから出ている掘削物の面積に基づき算出される、開口端部13Kから出ている掘削物の面積に相当する土量[m]とを用いて、一回の掘削動作でバケット13により掘削された、おおよその土量(掘削量)を算出することができる。算出された掘削量に基づき、以下に説明する評価データを生成することができる。なお、開口端部13Kから出ている掘削物の面積に相当する土量[m]のみを用いて、以下に説明する評価データを生成してもよい。
 評価データ生成部604は、ステップS348Bで算出されたバケット13の掘削量を示す第1検出データと、ステップS332Bで算出されたバケット13の掘削時間を示す第2検出データとに基づいて、操作者Maの評価データを生成する。評価データは、掘削量についてのみの評価データでも良いし、掘削時間についてのみの評価データでも良いが、掘削作業において、高い技量を有することは、一回の掘削動作において、短時間で適量の掘削量をバケット13で掘削できることであるため、そのような技量を操作者Maが有するかどうかを定量的に評価するには、評価データは掘削量と掘削時間との両者を用いて生成されることが望ましい。つまり、例えば、評価データ生成部604にて、掘削量に関する点数と掘削時間に関する点数とを合算し、総合的に評価された点数を生成する。
 評価データ生成部604は、バケット13の掘削量を示す第1検出データと、ステップS305Bにおいて取得されたバケット13の目標掘削量を示す目標データとの差分に基づいて、操作者Maの評価データを生成する。第1検出データと目標データとの差分が小さいほど、操作者Maの技量は優れていると評価される。一方、第1検出データと目標データとの差分が大きいほど、操作者Maの技量は劣っていると評価される。また、掘削時間が短いほど操作者Maの技量が高いと判定され、掘削時間が長いほど操作者Maの技量が低いと判定される。
 評価データが生成された後、その評価データを表示装置64に表示させる処理が実施される(ステップS360B)。例えば、評価データを示す点数を表示装置64に表示させる。
 以上説明したように、本実施形態によれば、操作者Maの評価において操作者Maに実際に掘削動作を実施させ、掘削量を示す第1検出データと作業機10の掘削時間を示す第2検出データとを取得し、その第1検出データ及び第2検出データに基づいて操作者Maの評価データを生成するようにしたので、操作者Maの実際の掘削動作の技量を定量的に評価することができる。
 また、本実施形態によれば、評価装置600は、目標掘削量を示す目標データを取得する目標データ取得部611を備え、評価データ生成部604は、第1検出データと目標データとの差分に基づいて評価データを生成する。例えば、目標データを満杯率1.0として、満杯率1.0に相当する掘削量に対する第1検出データが示す掘削量の満杯率を評価データとして生成してもよいし、目標データに対する第1検出データの割合を点数として評価データを生成してもよい。これにより、任意の目標掘削量を指定して、掘削量についての操作者Maの技量を評価することができる。例えば、油圧ショベル3を使ってダンプトラックの荷台に掘削物を積むといった積み込み作業を行う場合、操作者Maは、適正な積載量になるようにバケット13による掘削量を微調整する必要がある。目標掘削量が指定され、その目標掘削量に基づいて操作者Maの技量が評価されることにより、操作者Maの実際の積込作業の技量を評価することができる。
 また、本実施形態によれば、バケット13の掘削量は、撮影装置63によって撮影されたバケット13の撮影データを画像処理してバケット13の開口端部13Kから出ている掘削物の面積から算出される。これにより、煩雑な処理を実施することなく、バケット13の掘削量を簡単に求めることができる。本実施形態によれば、一回の掘削動作で適量の土量をバケット13で掘削することを短時間でできたか否かを評価することができ、操作者Maの掘削作業効率を評価することができる。
<その他の実施形態>
 なお、上述の実施形態においては、バケット13の動作データが撮影装置63で検出されることとした。バケット13の動作データは、バケット13に、例えばレーダ等の検出光を照射してバケット13の動作データを検出可能なスキャナ装置で検出されてもよいし、バケット13に電波を照射してバケット13の動作データを検出可能なレーダ装置で検出されてもよい。
 なお、バケット13の動作データは、油圧ショベル3に設けられたセンサによって検出されてもよい。図26は、バケット13の動作データを検出する検出装置63Cを有する油圧ショベル3Cの一例を模式的に示す図である。
 検出装置63Cは、上部旋回体21に対するバケット13の刃先13Bの相対位置を検出する。検出装置63Cは、ブームシリンダストロークセンサ14Sと、アームシリンダストロークセンサ15Sと、バケットシリンダストロークセンサ16Sとを有する。ブームシリンダストロークセンサ14Sは、ブームシリンダ14のストローク長さを示すブームシリンダ長データを検出する。アームシリンダストロークセンサ15Sは、アームシリンダ15のストローク長さを示すアームシリンダ長データを検出する。バケットシリンダストロークセンサ16Sは、バケットシリンダ16のストローク長さを示すバケットシリンダ長データを検出する。このようなストロークセンサに代えて、角度センサを検出装置63Cとして用いてもよい。
 検出装置63Cは、ブームシリンダ長データに基づいて、上部旋回体21の旋回軸RXと平行な方向に対するブーム11の傾斜角θ1を算出する。検出装置63Cは、アームシリンダ長データに基づいて、ブーム11に対するアーム12の傾斜角θ2を算出する。検出装置63Cは、バケットシリンダ長データに基づいて、アーム12に対するバケット13の刃先13Bの傾斜角θ3を算出する。検出装置63Cは、傾斜角θ1、傾斜角θ2、傾斜角θ3、既知である作業機の寸法(ブーム11の長さL1、アーム12の長さL2、及びバケット13の長さL3)に基づいて、上部旋回体21に対するバケット13の刃先13Bの相対位置を算出する。検出装置63Cは、上部旋回体21に対するバケット13の相対位置を検出できるので、バケット13の移動状態を検出することができる。
 検出装置63Cによれば、バケット13の動作データのうち、少なくとも、バケット13の位置、移動軌跡、移動速度、及び移動時間を検出することができる。なお、バケット13の掘削量は、バケット13に重量センサを設け、検出された重量に基づき掘削量[m]を求めてもよい。
 なお、上述の実施形態においては、操作者Maが運転席7に着座して作業機10を操作することとした。作業機10は遠隔操作されてもよい。図27及び図28は、油圧ショベル3の遠隔操作方法の一例を説明するための図である。
 図27は、遠隔操作室1000から油圧ショベル3が遠隔操作される方法を示す図である。遠隔操作室1000と油圧ショベル3とは、通信装置を介して無線通信可能である。図27に示すように、遠隔操作室1000には、施工情報表示装置1100と、運転席1200と、油圧ショベル3を遠隔操作する操作装置1300と、モニタ装置1400とが設けられる。
 施工情報表示装置1100は、施工現場の画像データ、作業機10の画像データ、施工プロセスデータ、及び施工制御データのような各種のデータを表示する。
 操作装置1300は、右作業レバー1310Rと、左作業レバー1310Lと、右走行レバー1320Rと、左走行レバー1320Lとを含む。操作装置1300が操作されると、その操作方向及び操作量に基づいて、操作信号が油圧ショベル3に無線送信される。これにより、油圧ショベル3は遠隔操作される。
 モニタ装置1400は、運転席1200の斜め前方に設置されている。油圧ショベル3の図示しないセンサシステムの検出データは、通信装置を介して遠隔操作室1000に無線送信され、その検出データに基づく表示データがモニタ装置1400に表示される。
 図28は、携帯端末装置2000によって油圧ショベル3が遠隔操作される方法を示す図である。携帯端末装置2000は、施工情報表示装置と、油圧ショベル3を遠隔操作する操作装置と、モニタ装置とを有する。
 遠隔操作される油圧ショベル3の動作データが取得されることにより、遠隔操作する操作者Maの技量を評価することができる。
 なお、上述の実施形態において、評価装置600の機能の一部又は全部を管理装置4が有してもよい。検出装置63によって検出された油圧ショベル3の動作データが通信装置67を介して管理装置4に送信されることにより、管理装置4は、油圧ショベル3の動作データに基づいて操作者Maの技量を評価することができる。管理装置4は、演算処理装置40及び本実施形態に係る評価方法を実施するコンピュータプログラムを記憶可能な記憶装置41を有するため、評価装置600の機能を発揮することができる。
 なお、上述の実施形態においては、作業機10の動作データに基づいて、操作者Maの技量が評価されることとした。作業機10の動作データに基づいて、作業機10の作動状態が評価されてもよい。例えば、作業機10の動作データに基づいて、作業機10の作動状態が正常か否かを判定する点検処理が実施されてもよい。
 なお、上述の実施形態においては、作業車両3が油圧ショベル3であることとした。作業車両3は、ブルドーザ、ホイールローダ、及びフォークリフトなど、車両本体に対して相対移動可能な作業機を有する作業車両であればよい。
 1 評価システム、2 施工現場、3 油圧ショベル(作業車両)、3C 油圧ショベル(作業車両)、4 管理装置(第1サーバ)、6 携帯機器、7 運転席、8 操作装置、8WR 右作業レバー、8WL 左作業レバー、8MR 右走行レバー、8ML 左走行レバー、10 作業機、11 ブーム、11P ブームピン、12 アーム、12P アームピン、13 バケット、13B 刃先、13K 開口端部、13P バケットピン、14 ブームシリンダ、14S ブームシリンダストロークセンサ、15 アームシリンダ、15S アームシリンダストロークセンサ、16 バケットシリンダ、16S バケットシリンダストロークセンサ、20 車両本体、21 上部旋回体、22 下部走行体、23 キャブ、24 カウンタウエイト、25 駆動輪、26 遊動輪、27 クローラ、40 演算処理装置、41 記憶装置、42 出力装置、43 入力装置、44 入出力インターフェース装置、45 通信装置、60 演算処理装置(評価装置)、61 記憶装置、62 位置検出装置、63 撮影装置、63C 検出装置、64 表示装置、65 入力装置、66 入出力インターフェース装置、67 通信装置、70 ガイド線、73 撮影領域、600 評価装置、601 検出データ取得部、602 位置データ算出部、603 目標データ生成部、604 評価データ生成部、605 表示制御部、608 記憶部、610 入出力部、611 目標データ取得部、613 掘削時間算出部、614 掘削量算出部、1000 遠隔操作室、1100 施工情報表示装置、1200 運転席、1300 操作装置、1310R 右作業レバー、1310L 左作業レバー、1320R 右走行レバー、1320L 左走行レバー、1400 モニタ装置、2000 携帯端末装置、AX1 回転軸、AX2 回転軸、AX3 回転軸、DX1 回転軸、DX2 回転軸、EP 移動終了位置、Ma 操作者、Mb 作業者、MD 文字データ、PD プロット、PM プロット、RL 目標ライン、RX 旋回軸、SP 移動開始位置、TD 経過時間データ、TL 検出ライン。

Claims (12)

  1.  作業車両の作業機の動作を検出する検出装置によって検出された、前記作業機の移動開始位置から移動終了位置までの動作データに基づいて前記作業機の所定部の検出移動軌跡を含む検出データを取得する検出データ取得部と、
     前記作業機の所定部の目標移動軌跡を含む目標データを生成する目標データ生成部と、
     前記検出データと前記目標データとに基づいて、前記作業機を操作する操作者の評価データを生成する評価データ生成部と、
    を備える評価装置。
  2.  前記検出データは、前記移動開始位置において静止状態の前記作業機が移動を開始してから前記移動終了位置において移動を終了するまでの空中における無負荷状態の前記作業機の検出移動軌跡を含む、
    請求項1に記載の評価装置。
  3.  前記目標移動軌跡は、前記移動開始位置と前記移動終了位置とを結ぶ直線を含む、
    請求項1又は請求項2に記載の評価装置。
  4.  前記評価データ生成部は、前記検出移動軌跡と前記目標移動軌跡との差分に基づいて前記評価データを生成する、
    請求項1から請求項3のいずれか一項に記載の評価装置。
  5.  前記検出データは、前記移動開始位置と前記移動終了位置との距離を含み、
     前記評価データ生成部は、前記距離に基づいて前記評価データを生成する、
    請求項1から請求項4のいずれか一項に記載の評価装置。
  6.  前記検出データは、前記移動開始位置から前記移動終了位置までの前記作業機の移動時間を含み、
     前記評価データ生成部は、前記移動時間に基づいて前記評価データを生成する、
    請求項1から請求項5のいずれか一項に記載の評価装置。
  7.  前記検出装置は、前記作業車両を撮影可能な撮影装置を含み、
     前記動作データは、前記作業機の撮影データを含み、
     前記作業機は、前記作業車両の車両本体に支持され、
     前記動作データは、前記撮影装置で撮影された前記作業車両を含む撮影領域の撮影データを含み、
     前記撮影領域の撮影データに基づいて前記作業機の位置データを算出する位置データ算出部を備え、
     前記位置データ算出部は、前記撮影領域に対して第1テンプレートを移動して前記車両本体の撮影データと前記第1テンプレートとの相関値に基づいて前記車両本体の位置データを算出した後、前記撮影領域に対して第2テンプレートを移動して前記作業機の撮影データと前記第2テンプレートとの相関値に基づいて前記作業機の位置データを算出する、
    請求項1から請求項6のいずれか一項に記載の評価装置。
  8.  作業車両の作業機の動作データに基づいて、前記作業機の掘削量を示す第1検出データ及び前記作業機の掘削時間を示す第2検出データを取得する検出データ取得部と、
     前記第1検出データ及び前記第2検出データに基づいて、前記作業機を操作する操作者の評価データを生成する評価データ生成部と、
    を備える評価装置。
  9.  前記作業機の目標掘削量を示す目標データを取得する目標データ取得部を備え、
     前記評価データ生成部は、前記第1検出データと前記目標データとの差分に基づいて前記評価データを生成する、
    請求項8に記載の評価装置。
  10.  前記検出装置は、前記作業車両を撮影可能な撮影装置を含み、
     前記動作データは、前記作業機の撮影データを含み、
     前記作業機は、バケットを含み、
     前記撮影装置によって撮影された前記バケットの撮影データを画像処理して前記バケットの開口端部から出ている掘削物の面積から前記掘削量を算出する掘削量算出部を備える、
    請求項8又は請求項9に記載の評価装置。
  11.  作業車両の作業機の動作を検出する検出装置によって検出された、前記作業機の移動開始位置から移動終了位置までの作業車両の作業機の動作データに基づいて前記作業機の所定部の検出移動軌跡を含む検出データを取得することと、
     前記作業機の所定部の目標移動軌跡を含む目標データを生成することと、
     前記検出データと前記目標データとに基づいて、前記作業機を操作する操作者の評価データを生成することと、
    を含む評価方法。
  12.  作業車両の作業機の動作データに基づいて、前記作業機の掘削量を示す第1検出データ及び前記作業機の掘削時間を示す第2検出データを取得することと、
     前記第1検出データ及び前記第2検出データに基づいて、前記作業機を操作する操作者の評価データを生成することと、
    を含む評価方法。
PCT/JP2016/056290 2016-03-01 2016-03-01 評価装置及び評価方法 WO2016125915A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/128,210 US20170255895A1 (en) 2016-03-01 2016-03-01 Evaluation device and evaluation method
JP2016523353A JP6259515B2 (ja) 2016-03-01 2016-03-01 評価装置及び評価方法
AU2016216347A AU2016216347B2 (en) 2016-03-01 2016-03-01 Evaluation device and evaluation method
PCT/JP2016/056290 WO2016125915A1 (ja) 2016-03-01 2016-03-01 評価装置及び評価方法
CN201680000912.6A CN107343381A (zh) 2016-03-01 2016-03-01 评价装置以及评价方法
DE112016000019.7T DE112016000019T5 (de) 2016-03-01 2016-03-01 Bewertungsvorrichtung und Bewertungsverfahren
KR1020167026005A KR20170102799A (ko) 2016-03-01 2016-03-01 평가 장치 및 평가 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056290 WO2016125915A1 (ja) 2016-03-01 2016-03-01 評価装置及び評価方法

Publications (1)

Publication Number Publication Date
WO2016125915A1 true WO2016125915A1 (ja) 2016-08-11

Family

ID=56564245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056290 WO2016125915A1 (ja) 2016-03-01 2016-03-01 評価装置及び評価方法

Country Status (7)

Country Link
US (1) US20170255895A1 (ja)
JP (1) JP6259515B2 (ja)
KR (1) KR20170102799A (ja)
CN (1) CN107343381A (ja)
AU (1) AU2016216347B2 (ja)
DE (1) DE112016000019T5 (ja)
WO (1) WO2016125915A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199069A1 (ja) * 2017-04-28 2018-11-01 株式会社小松製作所 作業機械および作業機械の制御方法
CN109034509A (zh) * 2017-06-08 2018-12-18 株式会社日立制作所 作业人员评价系统、作业人员评价装置及评价方法
JPWO2018043299A1 (ja) * 2016-08-31 2019-06-24 株式会社小松製作所 作業機械の画像表示システム、作業機械の遠隔操作システム、作業機械及び作業機械の画像表示方法
JP2019159818A (ja) * 2018-03-13 2019-09-19 矢崎総業株式会社 作業評価装置、及び、作業評価方法
JPWO2020196838A1 (ja) * 2019-03-27 2020-10-01
WO2020202788A1 (ja) * 2019-03-29 2020-10-08 コベルコ建機株式会社 作業分析方法、作業分析装置及び作業分析プログラム
JP2021033568A (ja) * 2019-08-22 2021-03-01 ナブテスコ株式会社 情報処理システム、情報処理方法、建設機械
US11076130B2 (en) 2017-07-14 2021-07-27 Komatsu Ltd. Operation information transmission device, construction management system, operation information transmission method, and program
WO2022071349A1 (ja) * 2020-10-02 2022-04-07 コベルコ建機株式会社 仕分先特定装置、仕分先特定方法、及びプログラム
US11619028B2 (en) 2017-12-11 2023-04-04 Sumitomo Construction Machinery Co., Ltd. Shovel
WO2023189216A1 (ja) * 2022-03-31 2023-10-05 日立建機株式会社 作業支援システム
JP7540359B2 (ja) 2021-02-09 2024-08-27 コベルコ建機株式会社 操作対象装置
JP7540358B2 (ja) 2021-02-09 2024-08-27 コベルコ建機株式会社 操作対象装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633625B1 (ko) * 2015-12-28 2024-02-02 스미토모 겐키 가부시키가이샤 쇼벨, 쇼벨용 시스템 및 쇼벨의 제어방법
JP2017156972A (ja) * 2016-03-01 2017-09-07 株式会社小松製作所 評価装置、管理装置、評価システム、及び評価方法
CN107407076B (zh) * 2016-03-11 2020-09-22 日立建机株式会社 工程机械的控制装置
KR20170113001A (ko) * 2016-03-28 2017-10-12 가부시키가이샤 고마쓰 세이사쿠쇼 평가 장치 및 평가 방법
JP6697955B2 (ja) * 2016-05-26 2020-05-27 株式会社クボタ 作業車及び作業車に適用される時間ベース管理システム
EP3571562A4 (en) * 2017-01-23 2020-12-02 Built Robotics Inc. EXCAVATION OF SOIL FROM AN EXCAVATION SITE USING AN EXCAVATION VEHICLE
US10408241B2 (en) 2017-02-09 2019-09-10 Deere & Company Method of determining cycle time of an actuator and a system for determining a cycle time of a machine having an actuator
JP6930337B2 (ja) * 2017-09-27 2021-09-01 カシオ計算機株式会社 電子機器、移動経路記録方法、およびプログラム
JP7106851B2 (ja) * 2017-12-12 2022-07-27 富士フイルムビジネスイノベーション株式会社 情報処理装置及びプログラム
JP7143634B2 (ja) * 2018-05-29 2022-09-29 コベルコ建機株式会社 技能評価システム及び技能評価方法
JP7059845B2 (ja) * 2018-07-18 2022-04-26 トヨタ自動車株式会社 車載装置
CN109296024B (zh) * 2018-11-30 2023-04-07 徐州市产品质量监督检验中心 一种无人挖掘机采装位姿精度检测方法
CN109903337B (zh) * 2019-02-28 2022-06-14 北京百度网讯科技有限公司 用于确定挖掘机的铲斗的位姿的方法和装置
JP7293822B2 (ja) * 2019-04-05 2023-06-20 コベルコ建機株式会社 技能評価システム及び技能評価方法
JP7302244B2 (ja) * 2019-04-05 2023-07-04 コベルコ建機株式会社 スキル情報提示システム及びスキル情報提示方法
JP2020170474A (ja) * 2019-04-05 2020-10-15 コベルコ建機株式会社 スキル情報提示システム及びスキル情報提示方法
WO2020262661A1 (ja) * 2019-06-27 2020-12-30 住友重機械工業株式会社 作業機械の管理システム、作業機械の管理装置、作業員用端末、施工業者用端末
JPWO2021085608A1 (ja) * 2019-10-31 2021-05-06
JP7490948B2 (ja) * 2019-11-25 2024-05-28 コベルコ建機株式会社 作業支援サーバおよび作業支援システム
JP7392422B2 (ja) * 2019-11-25 2023-12-06 コベルコ建機株式会社 作業支援サーバおよび作業支援システム
CN111557642B (zh) * 2020-03-31 2021-05-11 广东省国土资源测绘院 基于轨迹评估外业作业成效的方法、系统
KR20220064599A (ko) * 2020-11-12 2022-05-19 주식회사 가린시스템 차량의 원격시동장치를 이용한 빅데이터 기반의 능동 서비스 제공방법 및 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011058A (ja) * 2003-06-19 2005-01-13 Hitachi Constr Mach Co Ltd 作業機械の作業支援・管理システム
JP2008241300A (ja) * 2007-03-26 2008-10-09 Komatsu Ltd 油圧ショベルの作業量計測方法および作業量計測装置
JP2009235833A (ja) * 2008-03-28 2009-10-15 Komatsu Ltd 建設機械の運転評価システム及び運転評価方法
JP2014112329A (ja) * 2012-12-05 2014-06-19 Kajima Corp 作業内容分類システム及び作業内容分類方法
JP2014148893A (ja) * 2014-05-30 2014-08-21 Komatsu Ltd 油圧ショベルの表示システム
JP2015067990A (ja) * 2013-09-27 2015-04-13 ダイキン工業株式会社 建設機械
JP2015132090A (ja) * 2014-01-10 2015-07-23 キャタピラー エス エー アール エル 建設機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805504B2 (ja) * 1997-11-14 2006-08-02 株式会社トプコン 測量機の通信システム
WO2003091856A2 (en) * 2002-04-26 2003-11-06 Emotion Mobility, Llc System for vehicle assignment and pickup
JP2010287069A (ja) * 2009-06-11 2010-12-24 Caterpillar Sarl 作業機械管理システムにおける作業機械管理方法
JP5337220B2 (ja) * 2011-09-29 2013-11-06 株式会社小松製作所 作業機械の表示装置および表示装置を搭載した作業機械
JP5944805B2 (ja) * 2012-09-26 2016-07-05 株式会社クボタ コンバイン及びコンバインの管理システム
CN105297817A (zh) * 2014-07-28 2016-02-03 西安众智惠泽光电科技有限公司 一种对挖掘机进行监控的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011058A (ja) * 2003-06-19 2005-01-13 Hitachi Constr Mach Co Ltd 作業機械の作業支援・管理システム
JP2008241300A (ja) * 2007-03-26 2008-10-09 Komatsu Ltd 油圧ショベルの作業量計測方法および作業量計測装置
JP2009235833A (ja) * 2008-03-28 2009-10-15 Komatsu Ltd 建設機械の運転評価システム及び運転評価方法
JP2014112329A (ja) * 2012-12-05 2014-06-19 Kajima Corp 作業内容分類システム及び作業内容分類方法
JP2015067990A (ja) * 2013-09-27 2015-04-13 ダイキン工業株式会社 建設機械
JP2015132090A (ja) * 2014-01-10 2015-07-23 キャタピラー エス エー アール エル 建設機械
JP2014148893A (ja) * 2014-05-30 2014-08-21 Komatsu Ltd 油圧ショベルの表示システム

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018043299A1 (ja) * 2016-08-31 2019-06-24 株式会社小松製作所 作業機械の画像表示システム、作業機械の遠隔操作システム、作業機械及び作業機械の画像表示方法
JP2018188831A (ja) * 2017-04-28 2018-11-29 株式会社小松製作所 作業機械および作業機械の制御方法
US11408146B2 (en) 2017-04-28 2022-08-09 Komatsu Ltd. Work machine and method for controlling the same
WO2018199069A1 (ja) * 2017-04-28 2018-11-01 株式会社小松製作所 作業機械および作業機械の制御方法
CN109034509A (zh) * 2017-06-08 2018-12-18 株式会社日立制作所 作业人员评价系统、作业人员评价装置及评价方法
US11076130B2 (en) 2017-07-14 2021-07-27 Komatsu Ltd. Operation information transmission device, construction management system, operation information transmission method, and program
US11619028B2 (en) 2017-12-11 2023-04-04 Sumitomo Construction Machinery Co., Ltd. Shovel
JP2019159818A (ja) * 2018-03-13 2019-09-19 矢崎総業株式会社 作業評価装置、及び、作業評価方法
JP7439053B2 (ja) 2019-03-27 2024-02-27 住友重機械工業株式会社 ショベル及びショベルの管理装置
WO2020196838A1 (ja) * 2019-03-27 2020-10-01 住友重機械工業株式会社 ショベル及びショベルの管理装置
JPWO2020196838A1 (ja) * 2019-03-27 2020-10-01
US11941562B2 (en) 2019-03-29 2024-03-26 Kobelco Construction Machinery Co., Ltd. Operation analysis method, operation analysis device, and operation analysis program
JP2020166462A (ja) * 2019-03-29 2020-10-08 コベルコ建機株式会社 作業分析方法、作業分析装置及びプログラム
CN113474526A (zh) * 2019-03-29 2021-10-01 神钢建机株式会社 作业分析方法、作业分析装置及作业分析程序
WO2020202788A1 (ja) * 2019-03-29 2020-10-08 コベルコ建機株式会社 作業分析方法、作業分析装置及び作業分析プログラム
JP7163235B2 (ja) 2019-03-29 2022-10-31 コベルコ建機株式会社 作業分析方法、作業分析装置及びプログラム
CN113474526B (zh) * 2019-03-29 2023-05-09 神钢建机株式会社 作业分析方法、作业分析装置及存储介质
JP7383255B2 (ja) 2019-08-22 2023-11-20 ナブテスコ株式会社 情報処理システム、情報処理方法、建設機械
JP2021033568A (ja) * 2019-08-22 2021-03-01 ナブテスコ株式会社 情報処理システム、情報処理方法、建設機械
WO2022071349A1 (ja) * 2020-10-02 2022-04-07 コベルコ建機株式会社 仕分先特定装置、仕分先特定方法、及びプログラム
US11987307B2 (en) 2020-10-02 2024-05-21 Kobelco Construction Machinery Co., Ltd. Sorting destination identification device, sorting destination identification method, and program
JP7496278B2 (ja) 2020-10-02 2024-06-06 コベルコ建機株式会社 仕分先特定装置、仕分先特定方法及びプログラム
JP7540359B2 (ja) 2021-02-09 2024-08-27 コベルコ建機株式会社 操作対象装置
JP7540358B2 (ja) 2021-02-09 2024-08-27 コベルコ建機株式会社 操作対象装置
WO2023189216A1 (ja) * 2022-03-31 2023-10-05 日立建機株式会社 作業支援システム

Also Published As

Publication number Publication date
AU2016216347B2 (en) 2019-05-23
US20170255895A1 (en) 2017-09-07
DE112016000019T5 (de) 2016-12-01
AU2016216347A1 (en) 2018-02-08
KR20170102799A (ko) 2017-09-12
JPWO2016125915A1 (ja) 2017-04-27
CN107343381A (zh) 2017-11-10
JP6259515B2 (ja) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6259515B2 (ja) 評価装置及び評価方法
JP6002873B1 (ja) 評価装置及び評価方法
KR102102133B1 (ko) 쇼벨의 화상표시장치
WO2017150298A1 (ja) 評価装置、管理装置、評価システム、及び評価方法
CN106460373B (zh) 评价装置
AU2016336318B2 (en) Construction machine and construction management system
JP7151392B2 (ja) 建設機械の遠隔操作装置
CN111868335B (zh) 远程操作系统以及主操作装置
JP2018059400A (ja) 施工管理システム
CN114127745A (zh) 工程机械的作业信息生成系统以及作业信息生成方法
JP2017071914A (ja) 施工方法、作業機械の制御システム及び作業機械
JP2013133631A (ja) ショベル
CN113785091A (zh) 施工机械用图像获取装置、信息管理系统、信息终端、施工机械用图像获取程序
JP7092714B2 (ja) 作業機械の制御装置及び作業機械の制御方法
JP2020045634A (ja) 作業機械の表示システムおよびその制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016523353

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167026005

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128210

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000019

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016216347

Country of ref document: AU

Date of ref document: 20160301

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16746743

Country of ref document: EP

Kind code of ref document: A1