WO2016125687A1 - ノック検出装置 - Google Patents
ノック検出装置 Download PDFInfo
- Publication number
- WO2016125687A1 WO2016125687A1 PCT/JP2016/052564 JP2016052564W WO2016125687A1 WO 2016125687 A1 WO2016125687 A1 WO 2016125687A1 JP 2016052564 W JP2016052564 W JP 2016052564W WO 2016125687 A1 WO2016125687 A1 WO 2016125687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- knock
- detection device
- learning value
- fuel injection
- valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
- F02D41/1498—With detection of the mechanical response of the engine measuring engine roughness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/027—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
- F02D37/02—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2438—Active learning methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
- F02P5/152—Digital data processing dependent on pinking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a knock detection device.
- a knock detection device that supports multi-stage injection and divided injection is known (see, for example, Patent Document 1).
- the knock detection device of Patent Document 1 sets a basic knock determination period based on the ignition timing of the engine, sets a mask period corresponding to the off timing of the post-stage injection of the divided injection, and the final knock reflecting the mask period Whether or not knocking has occurred is determined during the determination period.
- the fuel injection off timing is masked from the knock determination period to separate the fuel injection valve on / off valve noise from the knock.
- the knock timing is determined so that the injection valve noise generation period due to the operation of the fuel injection valve does not overlap the knock determination period. Mask from period. Therefore, it is impossible to detect a knock that occurs during the mask period.
- the intensity of the on / off valve noise of the fuel injection valve varies depending on the number of multistage injections and the cylinder. That is, with the technique disclosed in Patent Document 2, it is not possible to ensure equivalent knock detection accuracy under various conditions.
- An object of the present invention is to provide a knock detection device that can ensure knock detection accuracy regardless of fuel injection conditions even when the injection valve noise generation period overlaps the knock determination period.
- the present invention shows a first calculation unit that calculates a frequency component by frequency analysis of a signal output from a knock sensor that detects vibration of an internal combustion engine, and shows an average of the frequency component
- a second calculation unit for calculating a background level, a fuel injection number indicating the number of times fuel is injected during a predetermined period in one combustion cycle, and a learning value indicating a correction amount of the frequency component are stored in association with each other.
- a storage unit, and a knock determination unit that determines the presence or absence of knock based on a knock index indicating a ratio of a difference between each frequency component and the learning value corresponding to the number of fuel injections to the background level. It is intended to provide.
- FIG. 1 is a basic configuration diagram of a system including an engine control unit (knock detection device) and an engine (spark ignition internal combustion engine) according to an embodiment of the present invention. It is an internal block diagram of the engine control unit shown in FIG. It is a control block diagram of the engine control unit shown in FIG. It is a figure for demonstrating the relationship between a knock sensor signal and the on-off valve noise of a fuel injection valve. It is a flowchart which shows the learning method of the on-off valve noise at the time of normal learning. It is a flowchart which shows the learning method of the on-off valve noise at the time of forced learning.
- FIG. 1 is a basic configuration diagram of a system including an engine control unit 9 (knock detection device) and an engine 1 (spark ignition internal combustion engine) according to an embodiment of the present invention.
- engine control unit 9 knock detection device
- engine 1 spark ignition internal combustion engine
- the description will be given using a cylinder injection type spark ignition internal combustion engine.
- a port injection type spark ignition internal combustion engine and a dual injection type spark ignition internal combustion engine equipped with both cylinder injection and port injection It is also applicable to.
- the engine 1 includes a piston 2, an intake valve 3, and an exhaust valve 4.
- the intake air passes through the air flow meter (AFM) 18 and enters the throttle valve 17, and is supplied from the collector 14, which is a branch portion, to the combustion chamber 19 of the engine 1 through the intake pipe 10 and the intake valve 3.
- the fuel is injected and supplied from the fuel injection valve 5 to the combustion chamber 19 of the engine 1 and ignited by the ignition coil 7 and the spark plug 6.
- the exhaust gas after combustion is discharged to the exhaust pipe 11 through the exhaust valve 4.
- the exhaust pipe 11 is provided with a three-way catalyst 12 for purifying exhaust gas.
- the engine control unit (ECU) 9 includes a signal from the crank angle sensor 15 of the engine 1, an air amount signal from the AFM 18, a signal from the air-fuel ratio sensor 13 that detects the air-fuel ratio in the exhaust gas, and an accelerator opening sensor 20. A signal such as a degree is input.
- the engine control unit 9 calculates the required torque to the engine from the signal of the accelerator opening sensor 20, determines the idling state, etc., calculates the intake air amount necessary for the engine 1, and calculates the opening signal corresponding to the intake air amount. 17 to output. In addition, the engine control unit 9 outputs a fuel injection signal to the fuel injection valve 5 and outputs an ignition signal to the spark plug 6.
- the knock sensor 8 attached to the engine 1 detects abnormal noise (knocking) that occurs during abnormal combustion of the engine 1 and feedback-controls the ignition signal.
- FIG. 2 is an internal configuration diagram of the engine control unit 9 shown in FIG.
- the engine control unit 9 is composed of a microcomputer including an input circuit 101, an A / D converter 102, a central processing unit (CPU) 103, a ROM 104, a RAM 105, and an output circuit 106.
- the input signal 100 is an analog signal (for example, a signal from the AFM 18, the accelerator opening sensor 20, etc.)
- the input circuit 101 removes a noise component from the signal and outputs the signal to the A / D converter 102. Is to do.
- the central processing unit 103 has a function of executing each control, diagnosis, and the like by fetching the A / D conversion result and executing a fuel injection control program and other control programs stored in a medium such as the ROM 104. Yes.
- the calculation result and the A / D conversion result are temporarily stored in the RAM 105, and the calculation result is output as the control signal 107 through the output circuit 106 and used for controlling the fuel injection valve 5, the ignition coil 7, and the like. It is done.
- FIG. 3 is a control block diagram of the engine control unit 9 shown in FIG.
- the knock control region determination unit 301 determines whether or not it is within the knock control region based on the engine speed and the engine load value.
- Knock frequency component calculation unit 302 calculates a knock frequency component based on the knock sensor signal.
- the knock index calculation unit 303 calculates the knock index based on the knock frequency component and the opening / closing valve noise learning value calculated by the opening / closing valve noise learning value calculation unit 306.
- the multi-stage injection frequency calculation unit 304 calculates the multi-stage injection frequency based on parameters such as engine speed, engine load, and engine water temperature.
- Knock sensor signal detection interval calculation unit 305 calculates a knock sensor signal detection interval based on the signal of crank angle sensor 15 input to central processing unit 103.
- the on-off valve noise learning value calculation unit 306 calculates an on-off valve noise learning value for each number of multistage injections within the knock sensor signal detection interval.
- the knock determination unit 307 determines the presence or absence of knock based on the knock index and the on-off valve noise learning value.
- FIG. 4 is a diagram for explaining the relationship between the knock sensor signal and the on-off valve noise of the fuel injection valve.
- FIG. 4 is an example of an in-line four-cylinder engine.
- # 1 to # 4 indicate cylinder numbers.
- the knock sensor signal constantly vibrates due to factors other than knocking. Specifically, vibrations of the intake valve and the exhaust valve, vibrations due to opening and closing of the fuel injection valve, etc. are constantly occurring.
- a knock sensor signal detection section (window) based on the compression top dead center is used for knock detection.
- the knock sensor signal detection section is set so that a knock generated in the engine can be detected.
- the knock sensor signal detection section (window) set after ignition of one cylinder (# 1) has a fuel injection valve opening / closing valve by intake stroke injection of four cylinders (# 4). Noise will enter.
- single-stage injection single injection
- the level of the on-off valve noise of the fuel injection valve does not change, so that it can be easily separated from the vibration generated by knocking.
- the knock sensor signal detection section set after ignition of one cylinder (# 1) includes three cylinders in addition to the on-off valve noise of the fuel injection valve due to the intake stroke injection of four cylinders (# 4). It is considered that the fuel injection valve noise due to the compression stroke injection of (# 3) enters.
- the number of multi-stage injections entering the knock sensor signal detection section changes, and as a result, the on-off valve noise of the fuel injection valve also changes. For this reason, when the number of multistage injections changes transiently, even if knocking actually occurs, vibration due to knocking is buried in the on-off valve noise of the fuel injection valve, and a situation where knock detection is difficult occurs.
- the on-off valve noise of the fuel injection valve is learned and used for the knock determination.
- the fuel injection valve on / off valve noise learning value is set for each number of injections, cylinders, and frequency, and control is performed to improve knock detection accuracy.
- knock detection can be performed appropriately.
- FIG. 5 is a flowchart showing a learning method of on-off valve noise during normal learning.
- the ECU 9 calculates a knock frequency component (KDL) by performing frequency analysis of the knock sensor signal in step 501.
- KDL knock frequency component
- KDL i is As an example, the value is 7 to 14 kHz.
- the ECU 9 functions as a calculation unit that calculates a frequency component KDL i by performing frequency analysis on a signal output from the knock sensor 8 that detects vibration of the internal combustion engine.
- the ECU 9 determines whether or not a knock control region is established. For example, the ECU 9 determines whether or not the measured values of the engine speed and the engine load are within a knock control region indicating a region where control for suppressing knock is performed. The ECU 9 determines that the knock control region is established when the measured values of the engine speed and the engine load are within the knock control region, and determines that the measured values of the engine speed and the engine load are outside the knock control region. It is determined that the control area is not established. Thereby, the on-off valve noise learning of the fuel injection valve can be completed before the knock control is activated. In addition, since the knock control region is not established, it is possible to perform the on-off valve noise learning under conditions where no knock occurs.
- step 502 if it is determined that the knock control region is established, the ECU 9 proceeds to step 503 and calculates a knock index.
- KDL i (KDL i - ⁇ i ) / BGL i (1)
- BGL i MBGL ⁇ KDL i + (1-MBGL) ⁇ previous BGL i (2)
- KDL i is the knock frequency component calculated in step 501.
- BGL i is a background level.
- BGL i is a weighted average of knock frequency component KDL i and background level BGL i at the previous frequency analysis.
- MBGL is a weighting coefficient.
- ⁇ i is a learning value of the on-off valve noise calculated in step 507 described later.
- the ECU 9 functions as a calculation unit that calculates a background level BGL i indicating the average of the frequency components KDL i .
- step 504 the ECU 9 determines whether or not there is a knock.
- the ECU 9 determines that there is a knock, and all the knock indices KS i or any knock index KS i. Is less than a predetermined threshold TH i , it is determined that there is no knock.
- the ECU 9 determines whether or not there is a knock based on a knock index KS i indicating the ratio of the difference between each frequency component KDL i and the learning value ⁇ i corresponding to the number of fuel injections to the background level. It functions as a part.
- step 505 the ECU 9 determines whether or not the number of fuel injections in the knock sensor signal detection section is one. If it is determined in step 505 that the number of times of fuel injection in the knock sensor signal detection section is one, the ECU 9 does not calculate the on-off valve noise learning value of the fuel injection valve and ends.
- step 506 the number of fuel injections in the knock sensor signal detection section is two. Determine whether or not. If it is determined in step 506 that the number of times of fuel injection in the knock sensor signal detection section is 2, the process proceeds to step 507 and is performed twice based on the knock frequency component (KDL) calculated in step 501. The learning value of the on-off valve noise at the time of injection is calculated.
- KDL knock frequency component
- the ECU 9 calculates the on-off valve noise learning value ⁇ i from the following equation (4).
- the ECU 9 stores a memory by associating a fuel injection number indicating the number of times fuel is injected in a predetermined period (knock sensor signal detection section) in one combustion cycle with a learning value ⁇ i indicating a frequency component correction amount. Store in (storage unit).
- the ECU 9 outputs a first signal output from the knock sensor 8 when the number of fuel injections is N (N: a natural number equal to or greater than 2) and a second signal output from the knock sensor 8 when the number of fuel injections is one.
- the learning value ⁇ i is calculated on the basis of these signals, and functions as an updating unit that updates the learning value ⁇ i corresponding to the number of N injection stages stored in the storage unit to the calculated learning value.
- the ECU 9 (update unit) may calculate the learning value ⁇ i from the frequency component of the difference between the first signal and the second signal.
- the knock detection accuracy can be ensured regardless of the fuel injection conditions.
- the knock determination can be performed appropriately.
- the number of fuel injections and the learning value ⁇ i are stored in correspondence with each cylinder of the internal combustion engine, and the ECU 9 (knock determination unit) determines the presence or absence of knock based on the knock index for each cylinder of the internal combustion engine. May be.
- the knock detection accuracy can be ensured regardless of the cylinder by accurately grasping the on-off valve noise of the fuel injection valve that is different for each cylinder.
- FIG. 6 is a flowchart showing a learning method of on-off valve noise during forced learning.
- FIG. 6 differs from FIG. 5 in the processing in steps 606 to 610.
- the ECU 9 performs steps 601 to 605 in the same manner as steps 501 to 505 in FIG.
- step 605 If it is determined in step 605 that the number of fuel injections in the knock sensor signal detection section is two or more, the ECU 9 forcibly changes the number of fuel injections and calculates the on-off valve noise learning value. Specifically, the process proceeds to step 606, where the ECU 9 forcibly changes the number of fuel injections in the knock sensor signal detection section to two.
- step 607 based on the knock frequency component (KDL) calculated in step 601, the ECU 9 calculates an on-off valve noise learning value at the time of the second injection.
- KDL knock frequency component
- the ECU 9 proceeds to step 608 and forcibly changes the number of fuel injections in the knock sensor signal detection section to 3 times.
- step 609 based on the knock frequency component (KDL) calculated in step 601, the ECU 9 calculates an on-off valve noise learning value for the third injection.
- KDL knock frequency component
- step 610 when the calculation of the on-off valve noise learning value is completed due to the forced change of the number of times of fuel injection in the knock sensor signal detection section, the forced learning based on the change of the number of times of fuel injection is terminated.
- the ECU 9 functions as a changing unit that forcibly changes the number of fuel injections to N times regardless of the operating state of the internal combustion engine when the number of fuel injections is one.
- the number of injections is forcibly changed during multi-stage injection, and the on-off valve noise learning of the fuel injection valve is performed. Therefore, the calculation of the on-off valve noise learning value is completed before the knock control is activated. Can do.
- the ECU 9 may determine whether or not the fuel injection valve is in a half lift state.
- the ECU 9 (update unit) corrects the number of times of fuel injection by subtracting the number of times that the fuel injection valve is in a half lift state from the number of times of fuel injection when the number of times of fuel injection is N times.
- fuel injection with a small valve opening noise can be excluded when calculating the valve opening / closing valve noise learning value of the fuel injection valve, so that a more accurate opening / closing valve noise learning value can be calculated.
- the ECU 9 may not update the learning value ⁇ i when it is determined that the fuel injection valve is in a half lift state. Thereby, since the learning value update when the valve opening noise is small as in the half lift state can be masked, an accurate on-off valve noise learning value can be calculated.
- the intensity of the on-off valve noise of the fuel injection valve varies depending on whether the fuel pressure is low or high. Specifically, when the fuel pressure is low, when the fuel injection valve is opened, the reaction force due to the fluid (fuel) is small, so the valve opening operation becomes faster, and the collision with the stopper on the valve opening side The force is strong and the noise of valve opening increases. When the fuel injection valve is closed, the pressure applied to the fuel injection valve is small, so that the valve closing operation is delayed, the collision force when the valve body is seated is weak, and the valve closing noise is reduced.
- the ECU 9 may calculate the learning value ⁇ i from at least one of the valve opening noise and the valve closing noise of the fuel injection valve.
- the on / off valve noise learning is performed based on the characteristics of the noise intensity of the valve opening and closing depending on conditions, so that the on / off valve noise learning value can be calculated with high accuracy.
- the ECU 9 may correct the learning value ⁇ i according to the fuel pressure measured by the fuel pressure sensor 21.
- the knock frequency component is calculated using Fourier transform during frequency analysis, but other transforms such as Walsh transform may be used.
- the background level BGL i weighted average of the knock frequency component KDL i and the previous background level BGL i at frequency analysis may be another average (smoothed value).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
一例として、7~14kHzの値である。
BGLi=MBGL×KDLi+(1-MBGL)×前回のBGLi (2)
ここで、KDLiはステップ501で算出されたノック周波数成分である。BGLiは、バックグラウンドレベルであり、一例として、ノック周波数成分KDLiと前回の周波数分析時のバックグラウンドレベルBGLiの加重平均である。MBGLは重み付け係数である。αiは、後述するステップ507で算出される開閉弁ノイズの学習値である。
ノックセンサ信号を周波数分析することにより、燃料噴射弁の開閉弁ノイズとノックによる振動を切り分けることができ、より精度よくノック検出が可能となる。また、通常制御中に燃料噴射弁の開閉弁ノイズ学習を行なうため、排気性能の悪化や運転性への跳ね返りが無く、開閉弁ノイズ学習値を算出することができる。
ノックセンサの取り付け位置と燃料噴射弁の距離は、気筒毎に異なっているため、同じレベルの開閉弁ノイズが発生した場合でも、ノックセンサが検知する燃料噴射弁の開閉弁ノイズは気筒毎に差が生じる。
次に、図6を用いて、第2の学習方法を説明する。図6は、強制学習時の開閉弁ノイズの学習方法を示すフローチャートである。図6では、図5と比較してステップ606~ステップ610の処理が異なる。
一般的に多段噴射時には、要求噴射量を分割し燃料噴射を行なうため、1回当たりの燃料噴射量は小さくなり、燃料噴射弁は開弁動作の完了前に閉弁を開始する、ハーフリフト状態での燃料噴射となる。ハーフリフト状態では、開弁動作完了前に閉弁を開始するため、開弁側のストッパへの衝突が無く、開弁時のノイズも発生しない。
燃料圧力については、燃料圧力が低圧であるか高圧であるかによって、燃料噴射弁の開閉弁ノイズの強度が異なる。具体的には、燃料圧力が低圧である場合、燃料噴射弁が開弁する際には、流体(燃料)による反力が小さいために開弁動作が速くなり、開弁側のストッパへの衝突力が強く、開弁のノイズが大きくなる。燃料噴射弁が閉弁する際には、燃料噴射弁に掛かる圧力が小さいために閉弁動作が遅くなり、弁体着座時の衝突力が弱く、閉弁のノイズが小さくなる。
ECU9は、燃料圧力センサ21で測定された燃料圧力に応じて、学習値αiを補正してもよい。
2…ピストン
3…吸気バルブ
4…排気バルブ
5…燃料噴射弁
6…点火プラグ
7…点火コイル
8…ノックセンサ
9…ECU(エンジンコントロールユニット)
10…吸気管
11…排気管
12…三元触媒
13…空燃比センサ
14…コレクタ
15…クランク角度センサ
16…シグナルプレート
17…絞り弁
18…AFM
19…燃焼室
20…アクセル開度センサ
21…燃料圧力センサ
Claims (12)
- 内燃機関の振動を検出するノックセンサから出力される信号を周波数分析して周波数成分を算出する第1の算出部と、
前記周波数成分の平均を示すバックグラウンドレベルを算出する第2の算出部と、
1燃焼サイクル中の所定期間に燃料が噴射される回数を示す燃料噴射回数と前記周波数成分の補正量を示す学習値とを対応づけて記憶する記憶部と、
それぞれの前記周波数成分と前記燃料噴射回数に対応する前記学習値との差分の前記バックグラウンドレベルに対する比を示すノック指数に基づいて、ノックの有無を判定するノック判定部と、
を備えることを特徴とするノック検出装置。 - 請求項1に記載のノック検出装置であって、
前記記憶部は、
前記内燃機関の気筒毎に、前記燃料噴射回数と前記学習値と対応づけて記憶し、
前記ノック判定部は、
前記内燃機関の気筒毎のノック指数に基づいて、ノックの有無を判定する
ことを特徴とするノック検出装置。 - 請求項1に記載のノック検出装置であって、
前記記憶部は、
前記周波数成分毎に、前記燃料噴射回数と前記学習値と対応づけて記憶し、
前記ノック判定部は、
前記周波数成分毎のノック指数に基づいて、ノックの有無を判定する
ことを特徴とするノック検出装置。 - 請求項1に記載のノック検出装置であって、
前記燃料噴射回数がN回(N:2以上の自然数)のときに前記ノックセンサから出力される第1の信号と前記燃料噴射回数が1回のときに前記ノックセンサから出力される第2の信号とに基づいて前記学習値を算出し、前記記憶部に記憶されたN回の前記噴射段数に対応する前記学習値を、算出された前記学習値に更新する更新部をさらに備える
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
前記更新部は、
前記第1の信号の周波数成分と前記第2の信号の周波数成分の差分から前記学習値を算出する
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
前記更新部は、
前記第1の信号と前記第2の信号の差分の周波数成分から前記学習値を算出する
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
前記燃料噴射回数が1回のときに、前記内燃機関の運転状態にかかわらず、前記燃料噴射回数をN回に強制的に変更する変更部をさらに備える
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
燃料噴射弁がハーフリフトの状態であるか否かを判定するリフト判定部をさらに備え、
前記更新部は、
前記燃料噴射回数がN回のときに、前記燃料噴射回数から燃料噴射弁がハーフリフトの状態である回数を減算することにより、前記燃料噴射回数を補正する
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
前記更新部は、
燃料噴射弁の開弁ノイズ及び閉弁ノイズのうち少なくとも1つから前記学習値を算出する
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
燃料噴射弁がハーフリフトの状態であるか否かを判定するリフト判定部をさらに備え、
前記更新部は、
燃料噴射弁がハーフリフトの状態であると判定された場合、前記学習値を更新しない
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
前記内燃機関の回転数及び負荷がノックを抑制する制御を行う領域を示すノック制御領域内にあるか否かを判定するノック制御領域判定部をさらに備え、
前記更新部は、
前記内燃機関の回転数及び負荷が前記ノック制御領域外の場合、前記学習値を更新する
ことを特徴とするノック検出装置。 - 請求項4に記載のノック検出装置であって、
前記更新部は、
燃料圧力に応じて、前記学習値を補正する
ことを特徴とするノック検出装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/547,968 US10458354B2 (en) | 2015-02-05 | 2016-01-29 | Knock detecting device |
JP2016573319A JP6362713B2 (ja) | 2015-02-05 | 2016-01-29 | ノック検出装置 |
CN201680004329.2A CN107110056B (zh) | 2015-02-05 | 2016-01-29 | 爆燃检测装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-020816 | 2015-02-05 | ||
JP2015020816 | 2015-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016125687A1 true WO2016125687A1 (ja) | 2016-08-11 |
Family
ID=56564034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052564 WO2016125687A1 (ja) | 2015-02-05 | 2016-01-29 | ノック検出装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10458354B2 (ja) |
JP (1) | JP6362713B2 (ja) |
CN (1) | CN107110056B (ja) |
WO (1) | WO2016125687A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018044294A1 (en) * | 2016-08-31 | 2018-03-08 | General Electric Company | System and method for determining the timing of an engine event |
CN111771050B (zh) * | 2018-02-26 | 2022-03-01 | 日立安斯泰莫株式会社 | 燃料喷射控制装置、燃料喷射控制方法 |
US11204011B2 (en) * | 2018-05-21 | 2021-12-21 | Ford Global Technologies, Llc | Method and system for variable displacement engine knock control |
US10746153B2 (en) * | 2018-05-21 | 2020-08-18 | Ford Global Technologies, Llc | Method and system for adjusting engine knock background noise of a variable displacement engine |
DE102018115305B3 (de) * | 2018-06-26 | 2019-10-24 | Mtu Friedrichshafen Gmbh | Verfahren zum Angleichen eines Einspritzverhaltens von Injektoren eines Verbrennungsmotors, Motorsteuergerät und Verbrennungsmotor |
WO2020184073A1 (ja) * | 2019-03-13 | 2020-09-17 | ヤマハ発動機株式会社 | ストラドルドビークルエンジンユニット、及びストラドルドビークル |
CN112051068B (zh) * | 2019-06-05 | 2024-07-30 | 日立安斯泰莫株式会社 | 发动机的爆震检测方法、系统、设备和介质 |
JP7094317B2 (ja) * | 2020-03-31 | 2022-07-01 | 本田技研工業株式会社 | 燃料噴射制御装置 |
CN116037301B (zh) * | 2023-03-07 | 2023-06-13 | 北京博数智源人工智能科技有限公司 | 一种火电站磨煤机爆燃故障位置识别方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005299579A (ja) * | 2004-04-15 | 2005-10-27 | Denso Corp | 内燃機関のノック検出装置 |
JP2006307709A (ja) * | 2005-04-27 | 2006-11-09 | Toyota Motor Corp | 内燃機関のノッキング判定装置 |
JP2009052466A (ja) * | 2007-08-27 | 2009-03-12 | Toyota Motor Corp | ノッキング検出装置 |
JP2009085013A (ja) * | 2007-09-27 | 2009-04-23 | Toyota Motor Corp | 内燃機関 |
JP2012154228A (ja) * | 2011-01-25 | 2012-08-16 | Hitachi Automotive Systems Ltd | 内燃機関のノック制御装置 |
JP2012241554A (ja) * | 2011-05-17 | 2012-12-10 | Mitsubishi Electric Corp | 内燃機関の制御装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006207491A (ja) | 2005-01-28 | 2006-08-10 | Denso Corp | 多気筒内燃機関のノック検出装置 |
JP2009209865A (ja) * | 2008-03-06 | 2009-09-17 | Denso Corp | ノック検出系異常診断置 |
JP5508834B2 (ja) * | 2009-12-22 | 2014-06-04 | 日産自動車株式会社 | 内燃機関のノック判定装置 |
JP5333195B2 (ja) * | 2009-12-24 | 2013-11-06 | トヨタ自動車株式会社 | 内燃機関ノック判定装置及び内燃機関ノック制御装置 |
JP2013015105A (ja) | 2011-07-05 | 2013-01-24 | Denso Corp | 内燃機関のノック判定装置 |
JP5546595B2 (ja) * | 2012-08-07 | 2014-07-09 | 三菱電機株式会社 | 内燃機関のノック制御装置 |
-
2016
- 2016-01-29 JP JP2016573319A patent/JP6362713B2/ja active Active
- 2016-01-29 US US15/547,968 patent/US10458354B2/en active Active
- 2016-01-29 WO PCT/JP2016/052564 patent/WO2016125687A1/ja active Application Filing
- 2016-01-29 CN CN201680004329.2A patent/CN107110056B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005299579A (ja) * | 2004-04-15 | 2005-10-27 | Denso Corp | 内燃機関のノック検出装置 |
JP2006307709A (ja) * | 2005-04-27 | 2006-11-09 | Toyota Motor Corp | 内燃機関のノッキング判定装置 |
JP2009052466A (ja) * | 2007-08-27 | 2009-03-12 | Toyota Motor Corp | ノッキング検出装置 |
JP2009085013A (ja) * | 2007-09-27 | 2009-04-23 | Toyota Motor Corp | 内燃機関 |
JP2012154228A (ja) * | 2011-01-25 | 2012-08-16 | Hitachi Automotive Systems Ltd | 内燃機関のノック制御装置 |
JP2012241554A (ja) * | 2011-05-17 | 2012-12-10 | Mitsubishi Electric Corp | 内燃機関の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20180017004A1 (en) | 2018-01-18 |
US10458354B2 (en) | 2019-10-29 |
JPWO2016125687A1 (ja) | 2017-09-14 |
CN107110056B (zh) | 2020-03-13 |
JP6362713B2 (ja) | 2018-07-25 |
CN107110056A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6362713B2 (ja) | ノック検出装置 | |
JP6312618B2 (ja) | 内燃機関の制御装置及び異常燃焼検出方法 | |
JP4179192B2 (ja) | 内燃機関の燃焼状態検出装置 | |
JP4773888B2 (ja) | 内燃機関の点火時期制御装置 | |
US6688286B2 (en) | Knock control apparatus for engine | |
JP4756968B2 (ja) | 内燃機関のノック判定装置 | |
JP5641960B2 (ja) | 内燃機関の制御装置 | |
JP5839972B2 (ja) | 内燃機関の制御装置 | |
JP6006228B2 (ja) | 筒内圧センサの異常診断装置及びこれを備えた筒内圧センサの感度補正装置 | |
US8924134B2 (en) | Knock control device of internal combustion engine | |
WO2014129389A1 (ja) | 内燃機関の異常燃焼検出装置 | |
JP5826054B2 (ja) | 内燃機関のノック検出装置 | |
JP2008095602A (ja) | 内燃機関のノック判定装置 | |
WO2016047626A1 (ja) | ガスセンサの信号処理装置 | |
JP6461393B1 (ja) | 内燃機関の制御装置 | |
JP2019116872A (ja) | 内燃機関の制御装置 | |
JP6407828B2 (ja) | 内燃機関の制御装置 | |
JP5537510B2 (ja) | 内燃機関の気筒判定装置 | |
CN109415988B (zh) | 燃料喷射装置的控制装置 | |
JP6272003B2 (ja) | エンジンの制御装置 | |
JP5240208B2 (ja) | 内燃機関の制御装置 | |
JP2022146773A (ja) | 内燃機関の制御装置 | |
JP2019190341A (ja) | 内燃機関の制御装置 | |
JP2017044151A (ja) | エンジンの制御装置 | |
JP2015068348A (ja) | 気筒休止状態判定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746518 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016573319 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15547968 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16746518 Country of ref document: EP Kind code of ref document: A1 |