WO2016124135A1 - 一种单芯片具有校准线圈和/或重置线圈的高强度磁场x轴线性磁电阻传感器 - Google Patents
一种单芯片具有校准线圈和/或重置线圈的高强度磁场x轴线性磁电阻传感器 Download PDFInfo
- Publication number
- WO2016124135A1 WO2016124135A1 PCT/CN2016/073244 CN2016073244W WO2016124135A1 WO 2016124135 A1 WO2016124135 A1 WO 2016124135A1 CN 2016073244 W CN2016073244 W CN 2016073244W WO 2016124135 A1 WO2016124135 A1 WO 2016124135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- magnetic field
- sensing unit
- calibration
- reset
- Prior art date
Links
- 230000004907 flux Effects 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000011810 insulating material Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 34
- 239000010410 layer Substances 0.000 description 29
- 239000010408 film Substances 0.000 description 13
- 239000004020 conductor Substances 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000010292 electrical insulation Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0017—Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0011—Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/007—Environmental aspects, e.g. temperature variations, radiation, stray fields
- G01R33/0076—Protection, e.g. with housings against stray fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0094—Sensor arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
Definitions
- the present invention relates to the field of magnetic sensors, and more particularly to a high-intensity magnetic field X-axis magnetic resistance sensor having a calibration coil/reset coil on a single chip.
- the silicon magnetic sensor mainly includes a Hall magnetic sensor, an AMR magnetic sensor, and a GMR magnetic sensor.
- the Hall magnetic sensor obtains different resistance values by depositing a semiconductor film such as indium antimonide on the substrate by the deflection of the path of the external magnetic field, which has the advantage that the Hall magnetoresistive sensor can measure a wide magnetic field.
- the disadvantage is that the sensitivity of the magnetic field is low, and it is usually necessary to introduce a flux concentrator to amplify the external magnetic field.
- the AMR magnetic sensor deposits a single-layer magnetic film on the substrate, and changes the magnetic moment direction of the magnetic film by the external magnetic field, thereby changing the resistance at both ends thereof, and the sensing unit and the electrode are prepared in a diagonal strip shape so that the current direction and the magnetic field are made.
- the direction is at a certain angle, so that the direction of the magnetic field can be distinguished.
- the advantage is that the sensor unit is simple and has only one film.
- the disadvantage is that the sensor has a low magnetic field change rate and poor sensitivity.
- the GMR multilayer thin film magnetic sensor is a magnetoresistive sensor formed by forming a nano-multilayer film structure by a magnetic film and a conductive film. By changing the magnetization direction of the magnetic film layer, the magnetic carrier is carried by the magnetic field when the carrier passes through the multilayer film. The sub-path changes to change the resistance, and the rate of change in magnetoresistance is further improved relative to the AMR sensor.
- the TMR magnetic multilayer film sensor controls the magnetization direction of the free layer by an external magnetic field by introducing a reference magnetic layer, a pinning layer, a non-metal isolating layer, and a magnetic free layer, thereby changing two magnetic free layers.
- the relative ratio of spin electrons causes the current flowing from the reference free layer to enter the magnetic free layer to change, resulting in a change in the resistance of the sensor.
- the rate of change of magnetoresistance can reach 200%, which is much higher than Hall, AMR and GMR types. Magnetoresistive sensor.
- Three-axis magnetoresistive sensors include X-axis magnetoresistive sensors, Y-axis magnetoresistive sensors, and Z. Axial magnetoresistive sensors, but so far these sensors
- the device is mainly based on Hall, AMR or GMR.
- the present invention proposes a high-intensity magnetic field X-axis magnetoresistive sensor with a calibration coil/reset coil on a single chip, which has excellent linear range and magnetic field sensitivity. It can completely replace the current Hall, AMR or GMR type X-axis magnetoresistive sensor.
- the invention provides a high-intensity magnetic field X-axis magnetoresistive sensor with a calibration coil/reset coil on a single chip, and a calibration coil/reset coil is introduced on the chip, and the sensitive magnetoresistance is passed through an appropriate current in the calibration coil.
- the position of the string of cells and the reference magnetoresistive element string respectively generate a calibration magnetic field in the X direction, and realizes precise adjustment of the magnitude of the calibration magnetic field by adjustment of the calibration current. Since the calibration coil is located on the X-axis sensor chip, only measurement is required Measurements can be made by means of a probe that can apply a current, thereby improving the efficiency of the measurement and ensuring the accuracy of the measurement.
- the invention provides a single-chip high-intensity magnetic field X-axis magnetoresistive sensor with a calibration coil/reset coil, which comprises a high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor, a calibration coil and/or Or reset the coil;
- the high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor comprises a reference magnetoresistive sensing unit string and a sensitive magnetoresistive sensing unit string staggered on a substrate, and a long strip soft magnetic flux guide,
- the soft magnetic flux guide includes a shield and an attenuator, and the reference magnetoresistive sensing unit string and the sensitive magnetoresistive sensing unit string are respectively located at a Y-axis center line position of the shield and the attenuator surface,
- the reference magnetoresistive sensing unit string and the sensitive magnetoresistive sensing unit are electrically connected in a reference bridge structure, the sensitive direction is the X-axis direction, and the reference magnetoresistive sensing unit string and the sensitive magnetoresistive sensing unit string both include Magnetoresistive unit;
- the calibration coil is a planar coil, including parallel and serial And a reference straight wire and a sensitive straight wire respectively corresponding to the reference magnetoresistive sensing unit string and the sensitive magnetoresist
- the reset coil includes a plurality of reset straight wires perpendicular to the series of the sensitive magnetoresistive sensing unit strings and the reference magnetoresistive sensing unit strings, and the same is generated perpendicular to the sensitive direction at all of the magnetoresistive sensing unit strings Reset the magnetic field;
- the calibration coil passes a calibration current, and an X-direction sensitive calibration magnetic field and a reference calibration magnetic field are respectively generated at the sensitive magnetoresistive sensing unit string and the reference magnetoresistive sensing unit string, by measuring the X-axis magnetic field An output signal of the resistance sensor, thereby implementing a calibration function; when resetting, a resetting magnetic field is generated in the reset coil by generating a reset magnetic field in the Y direction at each of the magnetoresistive sensing units, thereby realizing a magnetoresistance The magnetic state of the sensing unit is restored.
- the sensitive straight wire of the calibration coil is elongated, having a width Lx1 that is symmetrical with respect to a Y-axis centerline of the attenuator; each of the reference reference wires of the calibration coil includes two sub-straight wires connected in parallel The sub-straight wire is elongated and has a width of Lx2.
- the two sub-straight wires are symmetrically distributed on both sides of the reference magnetoresistive sensing unit string, and Lx2 is smaller than Lx1, the reference straight wire and the Sensitive straight wires are connected in series.
- the sensitive straight wire of the calibration coil is elongated and has a width Lx1 which is symmetrical with respect to a Y-axis center line of the attenuator;
- the reference straight wire of the calibration coil is elongated and has a width of Lx2 It is symmetrical with respect to the Y-axis centerline of the shield, and Lx1 is smaller than Lx2, and the reference straight wire and the sensitive straight wire are connected in series.
- both the reference straight wire and the sensitive straight wire of the calibration coil are located at a gap between the adjacent shield and the attenuator, wherein the reference straight wire is located on a side close to the shield, The sensitive straight wire is located on a side close to the attenuator, and the sensitive straight wire and the reference straight wire are elongated, and the widths are Lx1 and Lx2, respectively, wherein Lx1 is smaller than Lx2, and the reference straight wire and the The sensitive straight wires are connected in series.
- a ratio of a magnetic field generated by the calibration coil in a sensitive direction at the string of the sensitive magnetoresistive sensing unit and the reference magnetoresistive sensing unit string approaches or exceeds the X external magnetic field in the sensitive magnetoresistive sensing unit string And a ratio of magnetic fields in a sensitive direction at the reference magnetoresistive sensing unit string.
- the calibration coil is located above the substrate, below the magnetoresistive sensing unit, or between the magnetoresistive sensing unit and the soft magnetic flux director, or above the soft magnetic flux director.
- the calibration coil is located above the substrate, under the magnetoresistive sensing unit, or between the magnetoresistive sensing unit and the soft magnetic flux director, or at the magnetoresistive resistor Above the sensing unit and at the gap between the shield of the soft magnetic flux director and the attenuator.
- the reset coil is a planar reset coil located directly above or directly below the magnetoresistive sensing unit string arranged in the X direction of the magnetoresistive sensing unit array.
- the reset coil is a three-dimensional reset coil, comprising a top-level straight wire and a bottom-layer straight wire perpendicular to a center line of the Y-axis, wherein the top-layer straight wire and the bottom-straight wire are connected in series to form a three-dimensional coil, and the three-dimensional coil is wound around a soft magnetic flux guide and the magnetoresistive sensing unit, wherein the top straight wire and the bottom straight wire are respectively located on surfaces of the soft magnetic flux guide and the magnetoresistive sensing unit, and the top straight wire and the bottom straight wire are in the Each of the surfaces has the same arrangement interval.
- the planar reset coil may be located above the substrate, under the magnetoresistive sensing unit, or between the magnetoresistive sensing unit and the soft magnetic flux director, or above the soft magnetic flux director.
- the reset coil and the calibration coil are high conductivity materials such as Cu, Au or Ag.
- the reset coil and/or the calibration coil are isolated from the high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor by an insulating material of SiO 2 , Al 2 O 3 , Si 3 N 4 , polyimide or photoresist.
- the calibration coil includes a positive port and a negative port, and when the two ports pass current, the calibration magnetic field amplitude generated therein is within a linear operating region of the magnetoresistive sensing unit.
- the calibration current can be set to a current value, or a plurality of current values.
- the reset coil includes two ports, and when the two ports pass current, the generated reset magnetic field is higher than the saturation magnetic field value of the magnetoresistive sensing unit.
- the reset current can be a pulse current or a direct current.
- Figure 1 shows the structure of a high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor.
- FIG. 2 is a structural diagram of a high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor.
- FIG. 3 is a cross-sectional structural view of a high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor.
- FIG. 4 is a structural diagram of a high-intensity magnetic field X-axis magnetoresistive sensor including a type-plane calibration coil.
- Figure 5 is a cross-sectional view of a high-intensity magnetic field X-axis magnetoresistive sensor including a type-plane calibration coil.
- FIG. 6 is a cross-sectional view 2 of a high-intensity magnetic field X-axis magnetoresistive sensor including a type-plane calibration coil.
- FIG. 7 is a cross-sectional view 3 of a high-intensity magnetic field X-axis magnetoresistive sensor including a type-plane calibration coil.
- Figure 8 is a magnetic field distribution diagram of a type-plane calibration coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 9 is a diagram showing the X-direction magnetic field distribution of a type-plane calibration coil in a high-intensity magnetic field X-axis magnetoresistance sensing at a position of a magnetoresistive sensing unit.
- Figure 10 is a magnetic field distribution diagram of a type-plane calibration coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 11 is a diagram showing the X-direction magnetic field distribution of a type-plane calibration coil in a high-intensity magnetic field X-axis magnetoresistance sensing at a position of a magnetoresistive sensing unit.
- Figure 12 is a magnetic field distribution diagram of a type-plane calibration coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 13 is a three-dimensional magnetic field distribution diagram of a type-plane calibration coil in a high-intensity magnetic field X-axis magnetoresistance sensing at a magnetoresistive sensing unit position.
- Figure 14 is a structural diagram of a high-intensity magnetic field X-axis magnetoresistive sensor including a type II planar calibration coil.
- Figure 15 is a cross-sectional view of a high-intensity magnetic field X-axis magnetoresistive sensor including a type II planar calibration coil.
- Figure 16 is a magnetic field distribution diagram of a type II planar calibration coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 17 is a type II planar calibration coil on a high-intensity magnetic field X-axis magnetoresistance sensing magnetic field Layout II.
- Figure 18 is a diagram showing the X-direction magnetic field distribution of the type II planar calibration coil at the position of the magnetoresistive sensing unit in the high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 19 is a structural diagram of a high-intensity magnetic field X-axis magnetoresistive sensor including a type three planar calibration coil.
- Figure 20 is a cross-sectional view of a high-intensity magnetic field X-axis magnetoresistive sensor including a type three planar calibration coil.
- Figure 21 is a magnetic field distribution diagram of a type three planar calibration coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 22 is a diagram showing the X-direction magnetic field distribution of the type three-plane calibration coil at the position of the magnetoresistive sensing unit in the high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 23 is a structural diagram of a high-intensity magnetic field X-axis magnetoresistive sensor including a planar reset coil.
- Figure 24 is a cross-sectional view of a high-intensity magnetic field X-axis magnetoresistive sensor including a planar reset coil.
- Figure 25 is a magnetic field distribution diagram of a planar reset coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 26 is a diagram showing the Y-direction magnetic field distribution of the planar reset coil at the position of the magnetoresistive sensing unit in the high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 27 is a structural diagram of a high-intensity magnetic field X-axis magnetoresistive sensor including a three-dimensional reset coil.
- Figure 28 is a cross-sectional view of a high-intensity magnetic field X-axis magnetoresistive sensor including a three-dimensional reset coil.
- Figure 29 is a magnetic field distribution diagram of a three-dimensional reset coil on a high-intensity magnetic field X-axis magnetoresistance sensing.
- Figure 30 is a diagram showing the Y-direction magnetic field distribution of the planar reset coil at the position of the magnetoresistive sensing unit in the high-intensity magnetic field X-axis magnetoresistance sensing.
- 31 is a cross-sectional view of a high-intensity magnetic field X-axis magnetoresistive sensor including a planar calibration coil and a reset coil.
- a single-chip reference bridge magnetic sensor for high-intensity magnetic field including a substrate 1, a reference magnetoresistance on the substrate.
- the soft magnetic flux directors include shields 2 corresponding to reference magnetoresistive sensing unit strings 4, 41, respectively 21, corresponding to the attenuators 3, 31 of the sensitive magnetoresistive sensing unit strings 5, 51;
- the reference magnetoresistive sensing unit string and the sensitive magnetoresistive sensing unit are electrically connected into a reference bridge structure, and The connection is made by wires 6, wherein the ports include a power terminal 7, a ground terminal 9, and signal output terminals 8 and 10.
- FIG. 1 and FIG. 2 differ in that the reference magneto-resistance sensing unit string and the sensitive magnetoresistive sensing unit string are arranged in a different order, wherein in FIG. 1, the middle two sensitive magnetoresistive sensing units are adjacent to each other, and the two sides are adjacent to each other. Corresponding to two reference magnetoresistive sensing units, in FIG. 1, the middle two sensitive magnetoresistive sensing units are adjacent to each other, and the two sides are adjacent to each other.
- the middle two reference magnetoresistive sensing unit strings are adjacent, and the two sides correspond to two sensitive magnetoresistive sensing unit strings, wherein the reference magnetoresistive sensing unit
- the string of cells and the pair of sensitive magnetoresistive sensing elements are located on the corresponding Y-axis center line of the shield and the attenuator, and the magnetic field sensitive direction of the magnetoresistive sensing unit string is the X-axis direction.
- the principle is that when the external magnetic field acts in the X-axis direction, the attenuation factor of the magnetic field component generated at the reference magnetoresistive sensing unit string is very large. Because the width of the shielding device is large, the width of the shielding is much larger than the reference magnetic resistance sensing.
- the width of the cell string is less attenuated by the magnetic field component generated at the string of sensitive magnetoresistive sensing elements. Since the width of the attenuator is small, the width amplitude is close to the width of the string of sensitive magnetoresistive sensing elements. Therefore, although the magnetoresistive sensing unit string can measure the magnetic field value is low, since the attenuator can attenuate the external magnetic field far larger than the measurable magnetic field value into the measurable magnetic field range, the shielding device can attenuate the external magnetic field to a far distance. It is smaller than the range of the measurable magnetic field amplitude, and therefore constitutes a reference bridge type high magnetic field measuring X-axis magnetic field sensor.
- FIG. 3 is a cross-sectional view of the single-chip reference bridge X-axis magnetic sensor for high-intensity magnetic field, from bottom to top, substrate 1, magnetic resistance unit including reference magnetoresistive sensing unit string 4 and sensitive magnetic
- the resistance sensing unit string 5, and the soft magnetic flux director that is, the shield 2 on the surface of the reference magnetoresistive sensing unit string 4 and the attenuator 3 on the surface of the sensitive magnetoresistive sensing unit string 5, in addition, including the substrate 1 and an insulating material layer 11 for isolation between the magnetoresistive sensing unit, and an insulating material layer 12 between the soft magnetic flux director and the magnetoresistive sensing unit, and an insulating material 13 covering the surface layer, and 7 indicates The four electrodes described.
- Figure 1 and Figure 2 show the magnetoresistance in a single-chip reference bridge magnetic sensor for high-intensity magnetic fields.
- the sensing unit string is a TMR magnetoresistive sensing unit, and includes a free layer, a pinning layer and an intermediate barrier layer.
- the initial magnetization direction of the free layer is the Y direction
- the magnetization direction of the pinning layer that is, the magnetic field sensitive direction is the X direction.
- the single-chip X-axis magnetoresistive sensor described above can measure the external magnetic field component from the X-axis, but has the following problems:
- the high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor of FIG. 2 is taken as an example to illustrate the types and characteristics of the calibration coil and the reset coil on the chip, and the results are also applicable.
- the high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor shown in FIG. 2 is taken as an example to illustrate the types and characteristics of the calibration coil and the reset coil on the chip, and the results are also applicable.
- FIG. 4 is a structure and a distribution diagram of a type one calibration coil 70 which is a planar coil including an elongated sensitive straight wire 101 and a reference straight wire 104 connected in series, the sensitive straight wire 101 having a width of Lx1, whose Y-axis center line is arranged along the sensitive magnetoresistive element string 51, each of the reference straight wires 104 including two sub-straight wires 102 and 103, which are connected in parallel and symmetric in the Y direction Distributed on both sides of the reference magnetoresistive sensing unit string 41, the sub-straight conductors 102 and 103 have a width of Lx2.
- FIG. 5-7 are cross-sectional views of the X-axis magnetoresistive sensor including the type one calibration coil 70, wherein the planar calibration coil is located above the substrate 1 and under the magnetoresistive sensing unit, respectively.
- the sensitive straight wire 101 is located below the sensitive magnetoresistive sensing cell string 51
- the reference straight wire 104 comprises two parallel sub-straight wires 102 and 103, and 102 and 103 are symmetrically distributed over the reference magnetoresistive sensing cell string 41. On both sides.
- the type one calibration coil 70 is located between the magnetoresistive sensing units 41, 51 and the soft magnetic flux directors 21 and 31.
- the type one calibration coil 70 is located in the soft magnetic flux guide 21 and Above 31. Furthermore, in order to ensure electrical isolation of the type one calibration coil 70 and other portions of the X-axis magnetoresistive sensor, layers 14, 15 and 16 of insulating material are introduced.
- a magnetic field distribution map generated by 104 wherein 104 includes two parallel sub-straight wires 102 and 103, and m1-m9 correspond to magnetoresistive sensor positions, respectively.
- FIG. 9 is a distribution diagram of X-axis magnetic field components on a straight line corresponding to the magnetoresistive sensor connected to m1-m9 shown in FIG. 8, and it can be seen that m1, m3, m5, m7, and m9 corresponding to the attenuator have the same
- FIG. 10 is a view showing a straight wire 101 corresponding to the attenuator 31 and corresponding to the shield included in the calibration coil when the type one calibration coil is located above the magnetoresistive sensing units 41 and 51 and under the soft magnetic flux directors 21 and 31.
- Figure 11 is a distribution diagram of the X-axis magnetic field component on a straight line corresponding to the magnetoresistive sensor of the connection m11-m19 shown in Figure 10, it can be seen that m11, m13, m15, m17 and m19 corresponding to the attenuator have the same
- the magnetic field values, corresponding to the m12, m14, m16 and m18 of the shield, also have the same magnetic field value, the former being much larger than the latter, Bs/Bf 8.86.
- Figure 12 is a magnetic field distribution of a straight wire 101 corresponding to the attenuator 31 and a straight wire 104 corresponding to the shield 21 included in the calibration coil when the type one calibration coil is placed over the soft magnetic flux directors 21 and 31.
- Figure 13 is a distribution diagram of X-axis magnetic field components on a straight line corresponding to the magnetoresistive sensor of the connection m21-m29 shown in Figure 12, and it can be seen that m21, m23, m25, m27 and m29 corresponding to the attenuator have the same
- the type 2 planar calibration coil 80 includes two straight wires, that is, a reference straight wire 105 and a sensitive straight wire 106, respectively. Located at a gap between the shield 21 and the attenuator 31, and the reference straight wire 105 is wide, located on the side close to the shield 21, the sensitive straight wire 106 is narrow in width and is located on the side close to the attenuator 31. And the sensitive straight wire 106 and the reference straight wire 105 are connected to each other in series.
- Figure 15 is a cross-sectional view of a type two planar calibration coil 80 on a high-intensity magnetic field single-chip X-axis magnetoresistive sensor.
- the reference straight wire 105 and the sensitive straight wire 106 are located at the gap between the attenuator 31 and the shield 21, and are located above the magnetoresistive sensing units 41 and 51.
- Figure 16 is a magnetic field distribution diagram of the type 2 planar calibration coil 80. It can be seen that the relative positional relationship and magnetic field distribution of the m31-m42 total of 12 magnetoresistive sensing units in the reference straight conductor and the sensitive straight conductor, Fig. 17
- the magnetic field distribution diagram at the reference magnetoresistive sensing unit and the sensitive magnetoresistive sensing unit in FIG. 16 has a magnetic field strength at the sensitive magnetoresistive sensing unit 51 that is significantly stronger than the magnetic field strength at the reference magnetoresistive sensing unit 41.
- the X-direction magnetic field component distribution diagram is shown in FIG.
- the type 2 planar calibration coil 80 is located above the magnetoresistive sensing units 41 and 51, between the adjacent attenuator 21 and the shield 31, in fact, the type II is flat.
- the face calibration coil 80 can also be located above the substrate, under the magnetoresistive sensing unit, or above the magnetoresistive sensing unit, under the soft magnetic flux director.
- Figure 19 is a distribution diagram of a type three planar calibration coil 81 on a high intensity magnetic field single chip X-axis magnetoresistive sensor, the type three planar calibration coil 81 comprising a sensitive straight wire 107 and a reference straight wire 108, both connected in series, wherein
- the reference straight wire 108 corresponds to the shield 21, the sensitive straight wire 107 corresponds to the attenuator 31, and the reference straight wire 108 and the sensitive straight wire 107 are each elongated, respectively
- the attenuator 31 and the Y-axis centerline of the shield 21 coincide, and the width of the sensitive straight wire 107 is smaller than the width of the reference straight wire 108.
- FIG. 20 is a cross-sectional view of a type three planar calibration coil 81 on a high-intensity magnetic field single-chip X-axis magnetoresistive sensor.
- the reference straight conductor 108 and the sensitive straight conductor 107 are respectively located in the reference magnetoresistive sensing unit string 41 and the sensitive magnetoresistive sensing. Below the cell string 51.
- the type three-plane calibration coil 81 can also be located between the magnetoresistive sensing unit and the soft magnetic flux guide, or in the soft magnetic flux guide.
- an insulating layer 141 is introduced.
- FIG. 21 is a distribution diagram of a magnetic field generated by a type three planar calibration coil 81 on a high-intensity magnetic field single-chip X-axis magnetoresistive sensor, wherein m51-m59 respectively represent a reference magnetoresistive sensing unit and a sensitive magnetoresistive sensing unit X.
- the distribution of the axial magnetic field, the value of the X magnetic field distribution is shown in Fig. 22. It can be seen that the X-direction magnetic field component at the reference magnetoresistive sensing unit is very small, and the X-direction at the sensitive magnetoresistive sensing unit.
- FIG. 23 is a distribution diagram of a planar reset coil 82 on a single-chip high-intensity magnetic field X-axis magnetoresistive sensor, including two straight wires 109 and 110 connected in series, the straight wires being perpendicular to the Y-axis center line, wherein a straight wire 109 is located in the magnetoresistive sensing unit of the magnetoresistive sensing unit array in the X direction The line is directly above or directly below, and the straight wire 110 is located at the gap of the adjacent two magnetoresistive sensing unit rows or at the two outer positions of the row of the magnetoresistive sensing unit.
- Figure 24 is a cross-sectional view of the planar reset coil 82 on a single-chip high-intensity magnetic field X-axis magnetoresistive sensor located above the substrate and under the magnetoresistive sensing unit, for convenience of explanation, this example Only one case is given.
- the planar reset coil 82 may also be located between the magnetoresistive sensing unit and the soft magnetic flux director or on the soft magnetic flux guide. Further, in order to secure electrical insulation between the planar reset coil 82 and the magnetoresistive sensing units 41 and 51, an insulating material 143 is introduced.
- FIG. 25 is a magnetic field distribution diagram of the planar reset coil 82 on a single-chip high-intensity magnetic field X-axis magnetoresistive sensor, wherein the magnetoresistive sensing unit m61-m65 is located on the surface of the attenuator 21 or the shield 31, and its X direction
- the magnetic field distribution curve is as shown in Fig. 26.
- the magnetoresistive sensing units m61-m65 have the same Y-direction magnetic field component.
- FIG. 27 is a distribution diagram of a three-dimensional reset coil 83 on a single-chip high magnetic field strength magnetic field X-axis magnetoresistive sensor, including a straight wire perpendicular to the center line of the Y axis, including a top straight wire 111 and a bottom straight wire 112.
- the top straight wire 111 and the bottom straight wire 112 form a three-dimensional helical coil structure, and the soft magnetic flux guide and the magnetoresistive sensing unit are magnetic cores, and the three-dimensional helical coil structure has an axial direction of the Y direction, and the top layer The same spacing is between the straight wires 111 and the bottom straight wires 112.
- FIG. 28 is a cross-sectional view of the three-dimensional reset coil 83 on a single-chip high-intensity magnetic field X-axis magnetoresistive sensor, the top-level straight wire 112 of the three-dimensional reset coil being located above the soft magnetic flux directors 21 and 31, The bottom straight conductor 112 is located above the substrate, under the magnetoresistive sensing units 41 and 51.
- insulating material layers 131 and 144 are introduced.
- FIG. 29 is a magnetic field distribution diagram of the three-dimensional reset coil 83 on a single-chip high-intensity magnetic field X-axis magnetoresistive sensor, wherein m71-m75 are respectively the magnetoresistive sensing unit 41 or 51 on the attenuator 21 or the shield 31, respectively.
- the distribution, the corresponding Y-direction magnetic field component is shown in Fig. 30, and it can be seen that the Y-direction magnetic field component has a periodic distribution characteristic as long as the top-layer straight wire 111 and the bottom layer of the three-dimensional reset coil 83 are reset.
- the straight wires 112 have a uniform pitch, and the magnetoresistive sensing unit 41 or 51 has an equidistant periodic distribution in the Y direction on the attenuator 21 or the shield 31, respectively, that is, the Y-direction magnetic field of the magnetoresistive sensing unit can be ensured. Evenly distributed features.
- FIG. 31 is a one-chip high-field-strength X-axis magnetoresistive sensor including a calibration coil and a reset coil, wherein reset The coil is a planar reset coil comprising reset direct conductors 109 and 110, the calibration coil being a planar coil comprising a reference straight conductor 101 and a sensitive straight conductor 104, said 101 and 104 being located above the magnetic sensing unit, Below the soft magnetic flux guide, the sensitive straight wire contains two sub-straight wires 102 and 103. Furthermore, in order to ensure electrical insulation between the calibration coil and the reset coil and other parts, layers of insulating material 111, 122 and 152 are introduced.
- this example only shows a single-chip high-field-strength X-axis magnetoresistive sensor including a calibration coil and a reset coil.
- the calibration coil can be any of type one, type two, and type three.
- the reset coil may be a planar reset coil or a three-dimensional reset coil.
- the calibration coil and the planar reset coil may be located above the substrate, under the magnetoresistive sensing unit, or the magnetoresistive sensing Between the unit and the soft flux guide, or any position above the soft flux guide, the two are independent of each other; for the calibration coil and the 3D reset coil, the calibration coil can be located at the above positions, but the three-dimensional weight There is only one case where the coil is placed, that is, the soft magnetic flux guide and the magnetoresistive sensing unit are centered.
- the reset coil and/or the calibration coil are isolated from the high-intensity magnetic field single-chip reference bridge X-axis magnetoresistive sensor by an insulating material of SiO 2 , Al 2 O 3 , Si 3 N 4 , polyimide or photoresist.
- the reset coil and the calibration coil are high conductivity materials such as Cu, Au or Ag.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
Claims (16)
- 一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,包括高强度磁场单芯片参考桥式X轴磁电阻传感器、校准线圈和/或重置线圈;所述高强度磁场单芯片参考桥式X轴磁电阻传感器包括位于衬底之上交错排列的参考磁电阻传感单元串和敏感磁电阻传感单元串,以及长条形软磁通量引导器,所述软磁通量引导器包括屏蔽器和衰减器,所述参考磁电阻传感单元串和敏感磁电阻传感单元串分别位于所述屏蔽器和所述衰减器表面的Y轴中心线位置,所述参考磁电阻传感单元串和敏感磁电阻传感单元串电连接成参考桥式结构,敏感方向为X轴方向,所述参考磁电阻传感单元串和敏感磁电阻传感单元串均包括多个磁电阻单元;所述校准线圈为平面线圈,包括平行且串联连接的分别对应于所述参考磁电阻传感单元串和敏感磁电阻传感单元串的参考直导线和敏感直导线,所述参考直导线和所述敏感直导线分别在所述参考磁电阻传感单元串和敏感磁电阻传感单元串位置处沿磁电阻传感单元敏感方向产生参考校准磁场和敏感校准磁场;所述重置线圈包括多个垂直于所述敏感磁电阻传感单元串和参考磁电阻传感单元串的重置直导线,并在所有磁电阻传感单元串处沿垂直于敏感方向产生相同重置磁场。
- 根据权利要求1所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准线圈的敏感直导线为长条形,宽度为Lx1,其相对于所述衰减器的Y轴中心线对称;所述校准线圈的每一段参考直导线包括两个并联连接的子直导线,所述子直导线为长条形,宽度为Lx2,所述两个子直导线对称分布于所述参考磁电阻传感单元串的两侧,且Lx2小于Lx1,所述参考直导线和所述敏感直导线串联连接。
- 根据权利要求1所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准线圈的敏感直导线为长条形, 宽度为Lx1,其相对于所述衰减器的Y轴中心线对称;所述参考直导线为长条形,宽度为Lx2,其相对于所述屏蔽器的Y轴中心线对称,且Lx1小于Lx2,所述参考直导线和所述敏感直导线串联连接。
- 根据权利要求1所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准线圈的参考直导线和敏感直导线都位于相邻所述屏蔽器和衰减器之间的间隙处,其中,所述参考直导线位于靠近所述屏蔽器的一侧,所述敏感直导线位于靠近所述衰减器的一侧,所述敏感直导线和所述参考直导线均为长条形,宽度分别为Lx1和Lx2,其中Lx1小于Lx2,所述参考直导线和所述敏感直导线串联连接。
- 根据权利要求2-4中任意一项所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述敏感校准磁场和参考校准磁场比率大于等于X轴外加磁场在所述敏感磁电阻传感单元串和参考磁电阻传感单元串处的沿敏感方向的磁场比率。
- 根据权利要求2或3所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准线圈位于所述衬底之上、所述磁电阻传感单元之下,或者位于所述磁电阻传感单元和所述软磁通量引导器之间,或者位于所述软磁通量引导器之上。
- 根据权利要求4所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准线圈位于所述衬底之上、所述磁电阻传感单元之下,或者位于所述磁电阻传感单元和所述软磁通量引导器之间,或者位于所述磁电阻传感单元之上且处于所述软磁通量引导器的屏蔽器和衰减器之间的间隙处。
- 根据权利要求1所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述重置线圈为平面重置线圈,所述重置直导线位于所述磁电阻传感单元阵列的沿所述X轴方向排列的磁电阻传感 单元行的正上方或者正下方。
- 根据权利要求1所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述重置线圈为三维重置线圈,包含垂直于所述Y轴中心线的顶层直导线和底层直导线,所述顶层直导线和底层直导线串联形成三维线圈,所述三维线圈缠绕所述软磁通量引导器以及所述磁电阻传感单元,所述顶层直导线之间以及底层直导线之间分别以相同间隔排列在所述软磁通量引导器和磁电阻传感单元的表面。
- 根据权利要求8所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述平面重置线圈位于所述衬底之上、磁电阻传感单元之下,或者位于磁电阻传感单元和软磁通量引导器之间,或者位于软磁通量引导器之上。
- 根据权利要求1-10中任意一项所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述重置线圈和校准线圈为高导电率材料,所述高导电率材料为Cu、Au或Ag。
- 根据权利要求1-10中任意一项所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述重置线圈和/或校准线圈与所述高强度磁场单芯片参考桥式X轴磁电阻传感器之间采用绝缘材料隔离,所述绝缘材料为SiO2、Al2O3、Si3N4、聚酰亚胺或光刻胶。
- 根据权利要求1、2、3、4或7所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准线圈包含一个正的端口和一个负的端口,所述两个端口通过校准电流时,其所产生的校准磁场幅度范围在所述磁电阻传感单元的线性工作区域内。
- 根据权利要求13所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述校准电流为设定的一个电流值 或者多个电流值。
- 根据权利要求1、8、9或10所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述重置线圈包含两个端口,当两端口通过重置电流时,其所产生的重置磁场大小为高于所述磁电阻传感单元的饱和磁场值。
- 根据权利要求15所述的一种单芯片具有校准线圈/重置线圈的高强度磁场X轴线性磁电阻传感器,其特征在于,所述重置电流为脉冲电流或直流电流。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/549,098 US10379176B2 (en) | 2015-02-04 | 2016-02-03 | Single-chip high-magnetic-field X-axis linear magnetoresistive sensor with calibration and initialization coil |
JP2017541004A JP6965161B2 (ja) | 2015-02-04 | 2016-02-03 | 較正および初期化コイルを備えた単一チップ高磁界x軸線形磁気抵抗センサ |
EP16746130.0A EP3255446B1 (en) | 2015-02-04 | 2016-02-03 | A single-chip high-magnetic-field x-axis linear magnetoresistive sensor with calibration and initialization coil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510056576.4 | 2015-02-04 | ||
CN201510056576.4A CN104698409B (zh) | 2015-02-04 | 2015-02-04 | 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016124135A1 true WO2016124135A1 (zh) | 2016-08-11 |
Family
ID=53345733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/073244 WO2016124135A1 (zh) | 2015-02-04 | 2016-02-03 | 一种单芯片具有校准线圈和/或重置线圈的高强度磁场x轴线性磁电阻传感器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10379176B2 (zh) |
EP (1) | EP3255446B1 (zh) |
JP (1) | JP6965161B2 (zh) |
CN (1) | CN104698409B (zh) |
WO (1) | WO2016124135A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10379176B2 (en) | 2015-02-04 | 2019-08-13 | MultiDimension Technology Co., Ltd. | Single-chip high-magnetic-field X-axis linear magnetoresistive sensor with calibration and initialization coil |
CN111465877A (zh) * | 2017-07-06 | 2020-07-28 | 迷你麦克斯医疗 | 磁定位器的校准方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205539418U (zh) * | 2015-06-26 | 2016-08-31 | 意法半导体股份有限公司 | 磁电阻传感器和集成传感器 |
WO2019133448A1 (en) * | 2017-12-26 | 2019-07-04 | Robert Bosch Gmbh | Z-axis magnetic sensor with distributed flux guides |
CN108318838B (zh) * | 2018-03-06 | 2024-06-04 | 美新半导体(无锡)有限公司 | 设置有自检线圈的磁电阻传感器 |
CN108303660B (zh) * | 2018-03-13 | 2023-11-24 | 武汉嘉晨电子技术有限公司 | 一种推拉式垂直灵敏磁传感器 |
JP6620834B2 (ja) * | 2018-03-27 | 2019-12-18 | Tdk株式会社 | 磁気センサおよび磁気センサシステム |
CN108363025B (zh) * | 2018-05-14 | 2023-10-13 | 美新半导体(无锡)有限公司 | 磁场传感器 |
JP6658823B2 (ja) * | 2018-08-24 | 2020-03-04 | Tdk株式会社 | 磁気センサおよび磁気センサシステム |
CN110345938B (zh) * | 2019-06-25 | 2021-08-31 | 潍坊歌尔微电子有限公司 | 一种晶圆级的磁传感器及电子设备 |
JP7354836B2 (ja) * | 2019-12-25 | 2023-10-03 | Tdk株式会社 | 磁気センサ |
DE102020210617A1 (de) * | 2020-08-20 | 2022-02-24 | Infineon Technologies Ag | Magnetfeldbasiertes winkelsensorsystem mit streufeldkompensation und verfahren zur streufeldkompensation |
CN113257511A (zh) * | 2021-05-11 | 2021-08-13 | 电子科技大学 | 一种Set/Reset线圈及其设计方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251558A (zh) * | 2008-04-08 | 2008-08-27 | 清华大学 | 一种测量超导线接头电阻的专用装置 |
US20120326715A1 (en) * | 2010-03-12 | 2012-12-27 | Alps Electric Co., Ltd. | Magnetic sensor and magnetic balance type current sensor utilizing same |
TW201317603A (zh) * | 2011-10-28 | 2013-05-01 | Isentek Inc | 磁感測裝置 |
CN103267955A (zh) * | 2013-05-28 | 2013-08-28 | 江苏多维科技有限公司 | 单芯片桥式磁场传感器 |
CN103412176A (zh) * | 2013-08-14 | 2013-11-27 | 清华大学 | 一种基于磁电阻的交直流避雷器电流实时在线监测传感器 |
CN103414176A (zh) * | 2013-07-30 | 2013-11-27 | 江苏多维科技有限公司 | 一种磁阻限流器 |
CN203337808U (zh) * | 2013-05-28 | 2013-12-11 | 江苏多维科技有限公司 | 单芯片桥式磁场传感器 |
CN103645449A (zh) * | 2013-12-24 | 2014-03-19 | 江苏多维科技有限公司 | 一种用于高强度磁场的单芯片参考桥式磁传感器 |
CN103913709A (zh) * | 2014-03-28 | 2014-07-09 | 江苏多维科技有限公司 | 一种单芯片三轴磁场传感器及其制备方法 |
CN104698409A (zh) * | 2015-02-04 | 2015-06-10 | 江苏多维科技有限公司 | 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器 |
CN204462360U (zh) * | 2015-02-04 | 2015-07-08 | 江苏多维科技有限公司 | 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6529114B1 (en) * | 1998-05-27 | 2003-03-04 | Honeywell International Inc. | Magnetic field sensing device |
DE19834153A1 (de) * | 1998-07-29 | 2000-02-10 | Lust Antriebstechnik Gmbh | Verfahren zur Auswertung von Signalen magnetoresistiver Sensoren |
JP5597206B2 (ja) * | 2009-12-02 | 2014-10-01 | アルプス電気株式会社 | 磁気センサ |
JP5012939B2 (ja) * | 2010-03-18 | 2012-08-29 | Tdk株式会社 | 電流センサ |
CN202433514U (zh) * | 2011-01-17 | 2012-09-12 | 江苏多维科技有限公司 | 独立封装的桥式磁场传感器 |
CN202013413U (zh) * | 2011-04-06 | 2011-10-19 | 江苏多维科技有限公司 | 单一芯片桥式磁场传感器 |
CN102540113B (zh) * | 2011-11-11 | 2014-07-02 | 江苏多维科技有限公司 | 磁场传感器 |
US20130207646A1 (en) * | 2012-02-09 | 2013-08-15 | Xiao-Qiao KONG | Magnetic sensor apparatus |
CN203658561U (zh) * | 2013-12-24 | 2014-06-18 | 江苏多维科技有限公司 | 一种用于高强度磁场的单芯片参考桥式磁传感器 |
-
2015
- 2015-02-04 CN CN201510056576.4A patent/CN104698409B/zh active Active
-
2016
- 2016-02-03 EP EP16746130.0A patent/EP3255446B1/en active Active
- 2016-02-03 JP JP2017541004A patent/JP6965161B2/ja active Active
- 2016-02-03 US US15/549,098 patent/US10379176B2/en active Active
- 2016-02-03 WO PCT/CN2016/073244 patent/WO2016124135A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251558A (zh) * | 2008-04-08 | 2008-08-27 | 清华大学 | 一种测量超导线接头电阻的专用装置 |
US20120326715A1 (en) * | 2010-03-12 | 2012-12-27 | Alps Electric Co., Ltd. | Magnetic sensor and magnetic balance type current sensor utilizing same |
TW201317603A (zh) * | 2011-10-28 | 2013-05-01 | Isentek Inc | 磁感測裝置 |
CN103267955A (zh) * | 2013-05-28 | 2013-08-28 | 江苏多维科技有限公司 | 单芯片桥式磁场传感器 |
CN203337808U (zh) * | 2013-05-28 | 2013-12-11 | 江苏多维科技有限公司 | 单芯片桥式磁场传感器 |
CN103414176A (zh) * | 2013-07-30 | 2013-11-27 | 江苏多维科技有限公司 | 一种磁阻限流器 |
CN103412176A (zh) * | 2013-08-14 | 2013-11-27 | 清华大学 | 一种基于磁电阻的交直流避雷器电流实时在线监测传感器 |
CN103645449A (zh) * | 2013-12-24 | 2014-03-19 | 江苏多维科技有限公司 | 一种用于高强度磁场的单芯片参考桥式磁传感器 |
CN103913709A (zh) * | 2014-03-28 | 2014-07-09 | 江苏多维科技有限公司 | 一种单芯片三轴磁场传感器及其制备方法 |
CN104698409A (zh) * | 2015-02-04 | 2015-06-10 | 江苏多维科技有限公司 | 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器 |
CN204462360U (zh) * | 2015-02-04 | 2015-07-08 | 江苏多维科技有限公司 | 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3255446A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10379176B2 (en) | 2015-02-04 | 2019-08-13 | MultiDimension Technology Co., Ltd. | Single-chip high-magnetic-field X-axis linear magnetoresistive sensor with calibration and initialization coil |
CN111465877A (zh) * | 2017-07-06 | 2020-07-28 | 迷你麦克斯医疗 | 磁定位器的校准方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180246177A1 (en) | 2018-08-30 |
EP3255446A4 (en) | 2019-04-10 |
JP2018506036A (ja) | 2018-03-01 |
EP3255446B1 (en) | 2021-08-04 |
JP6965161B2 (ja) | 2021-11-10 |
EP3255446A1 (en) | 2017-12-13 |
CN104698409A (zh) | 2015-06-10 |
CN104698409B (zh) | 2017-11-10 |
US10379176B2 (en) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016124135A1 (zh) | 一种单芯片具有校准线圈和/或重置线圈的高强度磁场x轴线性磁电阻传感器 | |
JP6687627B2 (ja) | キャリブレーション/初期化コイルを有するシングルチップz軸線形磁気抵抗センサ | |
CN103954920B (zh) | 一种单芯片三轴线性磁传感器及其制备方法 | |
JP6420665B2 (ja) | 磁場を測定する磁気抵抗センサ | |
EP2827165B1 (en) | Magnetoresistance magnetic field gradient sensor | |
US10024930B2 (en) | Single chip referenced bridge magnetic sensor for high-intensity magnetic field | |
US9857434B2 (en) | Push-pull bridge-type magnetic sensor for high-intensity magnetic fields | |
WO2015035912A1 (zh) | 一种单芯片z轴线性磁电阻传感器 | |
US20180164386A1 (en) | Interdigitated y-axis magnetoresistive sensor | |
JP2017502298A5 (zh) | ||
WO2017173992A1 (zh) | 一种无需置位/复位装置的各向异性磁电阻amr传感器 | |
WO2018006879A1 (zh) | 一种无需置位和复位装置的各向异性磁电阻电流传感器 | |
CN203811787U (zh) | 一种单芯片三轴线性磁传感器 | |
CN204462360U (zh) | 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器 | |
TW202246781A (zh) | 電流感測器與裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746130 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017541004 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15549098 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016746130 Country of ref document: EP |