WO2018006879A1 - 一种无需置位和复位装置的各向异性磁电阻电流传感器 - Google Patents
一种无需置位和复位装置的各向异性磁电阻电流传感器 Download PDFInfo
- Publication number
- WO2018006879A1 WO2018006879A1 PCT/CN2017/092284 CN2017092284W WO2018006879A1 WO 2018006879 A1 WO2018006879 A1 WO 2018006879A1 CN 2017092284 W CN2017092284 W CN 2017092284W WO 2018006879 A1 WO2018006879 A1 WO 2018006879A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- amr
- magnetoresistive
- magnetic resistance
- exchange bias
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title abstract description 24
- 239000010410 layer Substances 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000002885 antiferromagnetic material Substances 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 5
- 239000011241 protective layer Substances 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 4
- 230000005415 magnetization Effects 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 7
- 229910003289 NiMn Inorganic materials 0.000 claims description 3
- 229910019041 PtMn Inorganic materials 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 230000005290 antiferromagnetic effect Effects 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 abstract 2
- 230000001808 coupling effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005330 Barkhausen effect Effects 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Definitions
- the utility model relates to a magnetoresistive sensor, in particular to an anisotropic (AMR) magnetoresistance current sensor for detecting the magnitude of current intensity.
- AMR anisotropic
- the Anisotropy magnetoresistance (AMR) effect refers to a phenomenon in which the electrical resistivity in a ferromagnetic material changes as the angle between the magnetization of the ferromagnetic material and the direction of the current changes.
- a sensor fabricated using the AMR effect is called an anisotropic magnetoresistive sensor.
- a structure called Barber electrodes is used: specifically, some conductive electrodes disposed on the AMR magnetoresistive strips, such as aluminum, copper, gold, etc., these electrodes Arranged in a 45° configuration with the long axis of the AMR magnetoresistive strip.
- the Babe electrode achieves the purpose of changing the current direction by changing the structure of the electrode, and has the advantages of small volume and low energy consumption compared with other methods, and thus is widely used.
- Patent DE 3442278 A1 describes a Babe electrode.
- the AMR sensor requires an additional magnetic field to bias it during use in order to improve the linearity and stability of the sensor, while also eliminating temperature drift and improving the sensor signal-to-noise ratio.
- DE4221385C2 proposes to add macroscopic permanent magnets in the vicinity of the magnetoresistive layer structure, and adopts the method of applying permanent magnets to realize the bias, but the disadvantage is that the sensor size is limited and the assembly is complicated. Therefore, the applied permanent magnet is gradually replaced by a permanent magnet film, and the permanent magnet film is deposited on The magnetoresistive film is adjacent to the magnetoresistive film and is separated from the magnetoresistive film by an insulating film. The disadvantage of this method is that the magnetic domains of the permanent magnet layer are difficult to control and will produce Barkhausen noise. Another method is to use the exchange coupling of the antiferromagnetic layer for biasing, which is mentioned in US 20150061658.
- the so-called "set/reset” function enables the sensor to operate in high sensitivity mode, flip the polarity of the output response curve, increase linearity, and reduce the effects of vertical axis effects and temperature, but the disadvantage is: Ensure that there is enough current through the coil to generate a strong enough magnetic field to achieve set/reset.
- the size of the coil is often made larger, which increases the size of the chip and increases the power consumption, and to some extent limits The maximum measured magnetic field.
- the utility model provides an anisotropic magnetoresistance (AMR) current sensor without a setting/resetting device, which has the advantages of low power consumption, small size, high sensitivity and wide linear range.
- the current sensor includes at least one anisotropic magnetoresistive device deposited on a substrate including a plurality of anisotropic magnetoresistive elements connected in series by a conductive strip.
- An anisotropic magnetoresistive current sensor that does not require a set and reset device, comprising a substrate having an exchange bias layer deposited over the substrate, the exchange bias layer being comprised of an antiferromagnetic material, An AMR magnetoresistive layer is deposited over the exchange bias layer, a Babe electrode is disposed above the AMR magnetoresistive layer, and the exchange bias layer and the AMR magnetoresistive layer are formed into a plurality of AMR magnets by a semiconductor processing process. a resistance bar, the Babe electrode is regularly arranged on each AMR magnetoresistive strip, the AMR magnetoresistive strip is connected in series to form an AMR magnetoresistive element, and the AMR magnetoresistive element constitutes a Wheatstone bridge. An insulating layer is deposited over the AMR magnetoresistive element, and a current conducting layer is disposed above the insulating layer, and an insulating protective layer is deposited over the current conducting layer.
- each of said AMR magnetoresistive strips has the same angle as said Babe electrode.
- the magnetization direction of the AMR magnetoresistive element is the same as the direction of magnetization annealing of the exchange bias layer.
- the antiferromagnetic material is PtMn, NiMn or IrMn.
- the utility model has the following beneficial effects: the anisotropic magnetoresistance current sensor of the utility model adopts a Barber electrode structure, improves the sensitivity under a weak magnetic field, expands the linear working range, and utilizes the inverse
- the ferromagnetic layer is coupled, no additional magnetic field is used to bias the sensor, and the reset/set coil is eliminated, so that the power consumption of the chip is greatly reduced, and the chip size is reduced, the manufacturing process is simpler, and the product is improved. Rate, reducing production costs.
- Figure 1 is a schematic view showing the structure of a Babe electrode
- FIG. 2 is a cross-sectional view of a chip of an anisotropic magnetoresistive current sensor of the present invention without a set and reset device;
- FIG. 3 is a schematic diagram of a chip structure of an anisotropic magnetoresistive current sensor without a set and reset device according to the present invention
- reference numeral 10 - magnetization annealing direction 20-current wire, 100-current sensor, 110-insulation protective layer, 120-current wire layer, 130-insulation layer, 140-barbe electrode, 150-AMR magnetoresistive layer , 160 - exchange bias layer, 170 - substrate, 180 - pad electrode, 190 - internal wire.
- the anisotropic magnetoresistive current sensor of the present invention includes a substrate 170, An exchange bias layer 160 is deposited over the substrate 170, the exchange bias layer being composed of an antiferromagnetic material, and an AMR magnetoresistive layer 150 is deposited over the exchange bias layer 160, the magnetoresistive layer Babe is set above 150
- the electrode 140, the exchange bias layer 160, and the AMR magnetoresistive layer 150 form a plurality of AMR magnetoresistive strips after a series of semiconductor processing processes, and the Babe electrodes 140 are regularly arranged in each AMR.
- the AMR magnetoresistive strips are connected in series to form an AMR magnetoresistive element, and the AMR magnetoresistive element constitutes a Wheatstone bridge, and an insulating layer 130 is deposited on the magnetoresistive element, the insulation The layer 130 separates the AMR magnetoresistive element from the current wire layer 120.
- the current wire layer 120 is not disposed over the insulating layer 130.
- An insulating protective layer 110 is deposited over the current wire layer 120. In the figure, the direction of the arrow is the direction in which the current flows.
- Each of the AMR magnetoresistive strips has the same angle as the Babe electrode.
- the AMR magnetoresistive element is connected to a Wheatstone bridge through an internal wire 190, and is connected to the pad electrode 180.
- FIG. 3 is a schematic diagram of a chip structure of an anisotropic magnetoresistive current sensor without a set and reset device according to the present invention.
- four AMR magnetoresistors R11, R12, R21, and R22 are connected by wires.
- Wheatstone bridge; the AMR magnetoresistive elements R11, R12, R21, R22 are composed of several sets of AMR magnetoresistive strips.
- the exchange bias layer is subjected to magnetization annealing after deposition, and its direction is 10. After the magnetization annealing, the magnetization direction of the magnetoresistance is the same as the direction of the magnetization annealing due to exchange coupling, that is, the same direction.
- the current to be measured enters the current lead 20 via the electrode Iin+, and then flows out through the electrode Iin-, and the magnetoresistive bridge circuit measures the magnitude of the current to be measured by measuring the magnetic field generated when the current to be measured flows through the current lead 20.
- the exchange bias layer 160 is composed of an antiferromagnetic material such as PtMn, NiMn, IrMn, etc., and the magnetic moment of the magnetoresistive layer is solidified and stabilized after annealing by the exchange coupling with the AMR magnetoresistive layer.
- the utility model does not need to set/reset the coil, but can also achieve the purpose of high sensitivity and high repeatability.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
一种无需置位和复位装置的各向异性磁电阻电流传感器,包括基片(170),基片(170)上方沉积有交换偏置层(160),交换偏置层(160)由反铁磁材料构成,交换偏置层(160)上方沉积有AMR磁电阻层(150),磁电阻层(150)上方设置有巴贝电极(140),交换偏置层(160)、AMR磁电阻层(150)经半导体加工工艺形成多个AMR磁电阻条,巴贝电极(140)规律排布在每一个AMR磁电阻条上,AMR磁电阻条串联连接成AMR磁电阻元件,AMR磁电阻元件组成惠斯通电桥,磁电阻元件上方沉积有绝缘层(130),绝缘层(130)上方设置有电流导线层(120),电流导线层(120)上方沉积有绝缘保护层(100)。该电流传感器提高了在微弱磁场下的灵敏度,扩大线性工作范围,利用反铁磁层与磁阻层间的交换耦合特性,取消了复位/置位装置,降低功耗与成本。
Description
本实用新型涉及一种磁电阻传感器,尤其涉及到一种用于检测电流强度大小的各向异性(AMR)磁电阻电流传感器。
各向异性磁电阻(Anisotropy magnetoresistance,AMR)效应是指铁磁材料中的电阻率随铁磁材料的磁化强度和电流方向之间的夹角改变而改变的现象。由汤姆逊在1857年首次发现。利用AMR效应制备的传感器被称为各向异性磁电阻传感器。
在当前的AMR传感器设计中,通常会采用一种叫巴贝(Barber)电极的结构:具体来说就是布置在AMR磁阻条上的一些导电电极,诸如铝、铜、金等金属,这些电极与AMR磁阻条长轴成45°结构排列。如图1所示,巴贝电极通过通过改变电极的结构达到改变电流方向的目的,与其他方法相比,具有体积小、耗能少的优点,从而被广泛采用。专利DE 3442278A1有关于巴贝电极的描述。
AMR传感器在使用过程中需要一个额外的磁场对其进行偏置,目的在于提高传感器的线性度和稳定性,同时也可以消除温漂,提高传感器信噪比。DE4221385C2提出在磁电阻层结构附近加入宏观永磁体,采用外加永磁的方法实现偏置,但缺点是传感器尺寸受限,装配复杂。所以外加永磁体逐渐被永磁体薄膜代替,永磁体薄膜沉积在
磁阻薄膜附近,并与磁阻薄膜用绝缘膜隔开。该方法的缺点是永磁层的磁畴难以控制,并会产生巴克豪森噪声。另一种方法是利用反铁磁层的交换耦合作用进行偏置,US 20150061658提到了这一方法。
另外,AMR传感器在工作中如果收到外来大磁场的干扰,AMR磁阻条上的磁畴分布会遭到破坏,从而随某些方向随机分布,导致传感器灵敏度降低,衰减甚至失效。针对此类问题,如Honeywell在专利US 005247278A、US20030042901中提到的,通常的做法是在AMR传感器上方沉积一个金属线圈,利用电流通过该线圈时产生的磁场来对磁阻条上的磁畴进行再次分布,实现所谓的“置位/复位”功能,使传感器可以以高灵敏度模式工作、翻转输出响应曲线的极性、提高线性度,并减少垂直轴效应和温度的影响,但缺点是:为了保证有足够多的电流通过线圈以产生足够强的磁场实现置位/复位,线圈的尺寸往往做的比较大,这样就加大了芯片的尺寸而且增加了功耗,在某种程度上还限制了最大测量磁场。
实用新型内容
本实用新型提供一种无需置位/复位装置的各向异性磁电阻(AMR)电流传感器,具有低功耗,小尺寸,高灵敏度,宽线性范围的优点。该电流传感器包括至少一种沉积于基片之上的各向异性磁电阻器件,其包括多个通过导电条串联的各向异性磁电阻元件。
本实用新型的各向异性磁电阻电流传感器是通过以下技术方案实现的:
一种无需置位和复位装置的各向异性磁电阻电流传感器,包括基片,在所述基片上方沉积有交换偏置层,所述交换偏置层由反铁磁材料构成,在所述交换偏置层上方沉积有AMR磁电阻层,所述的AMR磁电阻层上方设置有巴贝电极,所述的交换偏置层、所述的AMR磁电阻层经半导体加工工艺形成多个AMR磁电阻条,所述的巴贝电极规律排布在每一个AMR磁电阻条上,所述的AMR磁电阻条串联连接成AMR磁电阻元件,所述的AMR磁电阻元件组成惠斯通电桥,所述的AMR磁电阻元件上方沉积有绝缘层,所述的绝缘层上方设置有电流导线层,在电流导线层上方沉积有绝缘保护层。
优选的:每个所述的AMR磁电阻条与所述的巴贝电极的夹角相同。
优选的:所述AMR磁电阻元件的磁化方向与所述交换偏置层的磁化退火方向相同。
优选的:所述的反铁磁材料为PtMn、NiMn或者IrMn。
综上所述,本实用新型具有如下有益效果:本实用新型的各向异性磁电阻电流传感器采用了巴贝(Barber)电极结构,提高了在微弱磁场下的灵敏度,扩大线性工作范围,利用反铁磁层进行耦合,无需额外的磁场对传感器进行偏置,取消了复位/置位线圈,使得芯片的功耗大幅度降低,随之缩减了芯片尺寸,制造工艺更加简单,提高了产品的良率,降低了生产成本。
为了更清楚地说明本实用新型实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍。
图1为巴贝电极的结构示意图;
图2为本实用新型的一种无需置位和复位装置的各向异性磁电阻电流传感器的芯片的截面图;
图3为本实用新型的一种无需置位和复位装置的各向异性磁电阻电流传感器的芯片结构示意图;
其中,附图标记10-磁化退火方向,20-电流导线,100-电流传感器,110-绝缘保护层,120-电流导线层,130-绝缘层,140-巴贝电极,150-AMR磁电阻层,160-交换偏置层,170-基片,180-焊盘电极,190-内部导线。
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。
图2为本实用新型的一种无需置位和复位装置的各向异性磁电阻电流传感器的芯片的截面图,如图2所示,本实用新型的向异性磁电阻电流传感器包括基片170,在所述基片170上方沉积有交换偏置层160,该交换偏置层由反铁磁材料组成,在所述交换偏置层160上方沉积有AMR磁电阻层150,所述的磁电阻层150上方设置有巴贝
电极140,所述的交换偏置层160、所述的AMR磁电阻层150经过一系列的半导体加工工艺后形成多个AMR磁电阻条,所述的巴贝电极140规律排布在每一个AMR磁电阻条上,所述的AMR磁电阻条串联连接成AMR磁电阻元件,所述的AMR磁电阻元件组成惠斯通电桥,所述的磁电阻元件上方沉积有绝缘层130,所述的绝缘层130将所述的AMR磁电阻元件与电流导线层120隔开,电流导线层120没置在绝缘层130上方,在电流导线层120上方沉积有绝缘保护层110。图中,箭头方向为电流流过的方向。
每个所述的AMR磁电阻条与巴贝电极的夹角相同。其中,AMR磁电阻元件通过内部导线190连接成惠斯通电桥,再与焊盘电极180相连。
图3为本实用新型的一种无需置位和复位装置的各向异性磁电阻电流传感器的芯片结构示意图,如图3所示,4个AMR磁电阻R11、R12、R21、R22通过导线连接组成惠斯通电桥;所述AMR磁电阻元件R11、R12、R21、R22由若干组AMR磁阻条构成。所述交换偏置层在沉积后需经过磁化退火,其方向为10,在磁化退火后,由于交换耦合作用,磁电阻的磁化方向与磁化退火的方向相同,即同为方向10。待测电流经电极Iin+进入电流导线20,然后经电极Iin-流出,磁电阻电桥电路通过测量待测电流流过电流导线20时所产生的磁场以测量待测电流的大小。
在传统AMR传感器工作过程中如受到外来大磁场的干扰,AMR磁阻条中的磁畴分布会遭到破坏,导致传感器的灵敏度会发生衰减。
在本实用新型中,交换偏置层160由反铁磁材料如PtMn,NiMn,IrMn等组成,利用与AMR磁电阻层间的交换耦合作用使磁阻层的磁矩固化并稳定在退火后的原始位置上,从而避免外界磁场的干扰,使得本实用新型无需置位/复位线圈但同样可以达到高灵敏度,高重复性的目的。
基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。尽管本实用新型就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本实用新型的权利要求所限定的范围,可以对本实用新型进行各种变化。
Claims (4)
- 一种无需置位和复位装置的各向异性磁电阻电流传感器,其特征在于:包括基片,在所述基片上方沉积有交换偏置层,所述交换偏置层由反铁磁材料构成,在所述交换偏置层上方沉积有AMR磁电阻层,所述的AMR磁电阻层上方设置有巴贝电极,所述的交换偏置层、所述的AMR磁电阻层经半导体加工工艺形成多个AMR磁电阻条,所述的巴贝电极规律排布在每一个AMR磁电阻条上,所述的AMR磁电阻条串联连接成AMR磁电阻元件,所述的AMR磁电阻元件组成惠斯通电桥,所述的AMR磁电阻元件上方沉积有绝缘层,所述的绝缘层上方设置有电流导线层,在所述电流导线层上方沉积有绝缘保护层。
- 根据权利要求1所述的一种无需置位和复位装置的各向异性磁电阻电流传感器,其特征在于:每个所述的AMR磁电阻条与所述的巴贝电极的夹角相同。
- 根据权利要求1所述的一种无需置位和复位装置的各向异性磁电阻电流传感器,其特征在于:所述AMR磁电阻元件的磁化方向与所述交换偏置层的磁化退火方向相同。
- 根据权利要求1所述的一种无需置位和复位装置的各向异性磁电阻电流传感器,其特征在于:所述的反铁磁材料为PtMn、NiMn或者IrMn。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620715968.7U CN205861754U (zh) | 2016-07-08 | 2016-07-08 | 一种无需置位和复位装置的各向异性磁电阻电流传感器 |
CN201620715968.7 | 2016-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018006879A1 true WO2018006879A1 (zh) | 2018-01-11 |
Family
ID=57646162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/092284 WO2018006879A1 (zh) | 2016-07-08 | 2017-07-07 | 一种无需置位和复位装置的各向异性磁电阻电流传感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN205861754U (zh) |
WO (1) | WO2018006879A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205809273U (zh) * | 2016-04-06 | 2016-12-14 | 江苏多维科技有限公司 | 一种无需置位/复位装置的各向异性磁电阻amr传感器 |
CN205861754U (zh) * | 2016-07-08 | 2017-01-04 | 江苏多维科技有限公司 | 一种无需置位和复位装置的各向异性磁电阻电流传感器 |
CN108107383A (zh) * | 2017-12-21 | 2018-06-01 | 电子科技大学 | 一种线性各向异性磁阻传感器及其制备方法 |
WO2020006952A1 (zh) * | 2018-07-03 | 2020-01-09 | 清华大学 | 基于各向异性磁阻效应的大量程自供能电流传感装置 |
CN111208455A (zh) * | 2020-01-08 | 2020-05-29 | 华东师范大学 | 一种铁磁体探针探测反铁磁体磁各向异性的方法 |
CN113088637B (zh) * | 2021-03-26 | 2022-08-02 | 深圳技术大学 | 一种坡莫合金的深度脉冲电流退火、信号调理和采集方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1122499A (zh) * | 1994-05-04 | 1996-05-15 | 国际商业机器公司 | 磁致电阻磁头中的多层导线 |
US5521501A (en) * | 1993-06-09 | 1996-05-28 | Institut Fuer Mikrostrukturtechnologie Und Optoelektronik E.V. | Magnetic field sensor constructed from a remagnetization line and one magnetoresistive resistor or a plurality of magnetoresistive resistors |
CN1829913A (zh) * | 2003-06-02 | 2006-09-06 | 霍尼韦尔国际公司 | 集成的设置/复位驱动器和磁阻传感器 |
CN203617345U (zh) * | 2013-12-25 | 2014-05-28 | 杭州士兰集成电路有限公司 | 各向异性磁阻传感器垂直结构 |
WO2015182643A1 (ja) * | 2014-05-30 | 2015-12-03 | 株式会社村田製作所 | 磁気抵抗素子、磁気センサおよび電流センサ |
CN205809273U (zh) * | 2016-04-06 | 2016-12-14 | 江苏多维科技有限公司 | 一种无需置位/复位装置的各向异性磁电阻amr传感器 |
CN205861754U (zh) * | 2016-07-08 | 2017-01-04 | 江苏多维科技有限公司 | 一种无需置位和复位装置的各向异性磁电阻电流传感器 |
-
2016
- 2016-07-08 CN CN201620715968.7U patent/CN205861754U/zh active Active
-
2017
- 2017-07-07 WO PCT/CN2017/092284 patent/WO2018006879A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5521501A (en) * | 1993-06-09 | 1996-05-28 | Institut Fuer Mikrostrukturtechnologie Und Optoelektronik E.V. | Magnetic field sensor constructed from a remagnetization line and one magnetoresistive resistor or a plurality of magnetoresistive resistors |
CN1122499A (zh) * | 1994-05-04 | 1996-05-15 | 国际商业机器公司 | 磁致电阻磁头中的多层导线 |
CN1829913A (zh) * | 2003-06-02 | 2006-09-06 | 霍尼韦尔国际公司 | 集成的设置/复位驱动器和磁阻传感器 |
CN203617345U (zh) * | 2013-12-25 | 2014-05-28 | 杭州士兰集成电路有限公司 | 各向异性磁阻传感器垂直结构 |
WO2015182643A1 (ja) * | 2014-05-30 | 2015-12-03 | 株式会社村田製作所 | 磁気抵抗素子、磁気センサおよび電流センサ |
CN205809273U (zh) * | 2016-04-06 | 2016-12-14 | 江苏多维科技有限公司 | 一种无需置位/复位装置的各向异性磁电阻amr传感器 |
CN205861754U (zh) * | 2016-07-08 | 2017-01-04 | 江苏多维科技有限公司 | 一种无需置位和复位装置的各向异性磁电阻电流传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN205861754U (zh) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018006879A1 (zh) | 一种无需置位和复位装置的各向异性磁电阻电流传感器 | |
JP6247631B2 (ja) | 単一チップ参照フルブリッジ磁場センサ | |
JP6193212B2 (ja) | シングルチップ2軸ブリッジ型磁界センサ | |
EP2827165B1 (en) | Magnetoresistance magnetic field gradient sensor | |
EP2696209B1 (en) | Single-chip push-pull bridge-type magnetic field sensor | |
CN202421483U (zh) | 单一芯片推挽桥式磁场传感器 | |
WO2015096744A1 (zh) | 一种用于高强度磁场的单芯片参考桥式磁传感器 | |
WO2015058632A1 (zh) | 一种用于高强度磁场的推挽桥式磁传感器 | |
WO2017173992A1 (zh) | 一种无需置位/复位装置的各向异性磁电阻amr传感器 | |
JP6474822B2 (ja) | 高感度プッシュプルブリッジ磁気センサ | |
US7064937B2 (en) | System and method for fixing a direction of magnetization of pinned layers in a magnetic field sensor | |
EP2696211A1 (en) | Single chip bridge magnetic field sensor and preparation method thereof | |
WO2014190907A1 (zh) | 单芯片桥式磁场传感器 | |
JP2017502298A5 (zh) | ||
TWI619280B (zh) | 感測元件 | |
CN104868051A (zh) | 高灵敏度磁传感装置及其制备方法 | |
CN116322274A (zh) | 一种磁性隧道结传感单元、制作方法及惠斯通电桥 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17823691 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17823691 Country of ref document: EP Kind code of ref document: A1 |