[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016122200A1 - 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막 - Google Patents

방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막 Download PDF

Info

Publication number
WO2016122200A1
WO2016122200A1 PCT/KR2016/000850 KR2016000850W WO2016122200A1 WO 2016122200 A1 WO2016122200 A1 WO 2016122200A1 KR 2016000850 W KR2016000850 W KR 2016000850W WO 2016122200 A1 WO2016122200 A1 WO 2016122200A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
electrolyte membrane
polymer
polymer electrolyte
cathode
Prior art date
Application number
PCT/KR2016/000850
Other languages
English (en)
French (fr)
Inventor
장용진
한중진
김영제
강에스더
정세희
류현욱
유윤아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/542,989 priority Critical patent/US10428016B2/en
Priority to EP16743678.1A priority patent/EP3252035B1/en
Priority to CN201680007302.9A priority patent/CN107207424B/zh
Priority to JP2017535043A priority patent/JP6478176B2/ja
Publication of WO2016122200A1 publication Critical patent/WO2016122200A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present specification relates to a compound including an aromatic ring and a polymer electrolyte membrane using the same.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the membrane electrode assembly (MEA) of a fuel cell is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane.
  • a redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy by charging and discharging the active material contained in the electrolyte. to be.
  • the unit cell of the redox flow battery includes an electrode, an electrolyte, and an ion exchange membrane (electrolyte membrane).
  • Fuel cells and redox flow cells are being researched and developed as next generation energy sources due to their high energy efficiency and eco-friendly features with low emissions.
  • the key components of fuel cell and redox flow cell are polymer electrolyte membranes capable of cation exchange, including 1) excellent proton conductivity 2) prevention of crossover of electrolyte, 3) strong chemical resistance, 4) mechanical It is desirable to have properties of enhanced physical properties and / or 4) low swelling ratio.
  • the polymer electrolyte membrane is classified into fluorine-based, partially fluorine-based, hydrocarbon-based, and the like, and the partial fluorine-based polymer electrolyte membrane has a fluorine-based main chain, which has advantages of excellent physical and chemical stability and high thermal stability.
  • the partial fluorine-based polymer electrolyte membrane has a cation transfer functional group attached to the end of the fluorine-based chain, and thus has the advantages of a hydrocarbon-based polymer electrolyte membrane and a fluorine-based polymer electrolyte membrane.
  • the fuel cell and / or the redox flow battery may have various advantages such as improved reactivity of the anode and reduction of water film phenomenon and catalyst contamination when operated under low humidity conditions.
  • advantages such as improved reactivity of the anode and reduction of water film phenomenon and catalyst contamination when operated under low humidity conditions.
  • polymer electrolyte membranes which are generally used, there is a problem in that physical properties such as cation conductivity are decreased in low-humidity conditions, resulting in a sudden decrease in battery performance. Therefore, research is needed to solve this problem.
  • the present specification is to provide a compound containing an aromatic ring and a polymer electrolyte membrane using the same.
  • An exemplary embodiment of the present specification provides a compound including an aromatic ring represented by Formula 1 below:
  • n1 and n2 are each an integer of 0 to 16
  • R1 to R5 are the same as or different from each other, each independently represent a hydroxy group or a halogen group, and the rest are hydrogen;
  • R6 is -SO 3 H, -SO 3 - shown as M +, -PO 3 2- 2M +, and the formula 4 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H Is selected from the group consisting of
  • At least one of R7 to R11 is -SO 3 H, -SO 3 - M a +, and -PO 3 2- 2M + - M + , -COOH, -COO - M +, -PO 3 H 2, -PO 3 H Selected from the group consisting of, the remainder is hydrogen,
  • M is a group 1 element.
  • An exemplary embodiment of the present specification provides a polymer including a monomer derived from the compound of Formula 1.
  • an embodiment provides a polymer electrolyte membrane comprising a polymer comprising a monomer derived from the compound of Formula 1.
  • an exemplary embodiment of the present specification is an anode; Cathode; And it provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane provided between the anode and the cathode.
  • an exemplary embodiment of the present disclosure is two or more of the aforementioned membrane-electrode assembly
  • a stack comprising a bipolar plate provided between the membrane-electrode assemblies
  • a fuel supply unit supplying fuel to the stack
  • It provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • a cathode cell comprising an anode and an anode electrolyte solution
  • a cathode cell comprising a cathode and a cathode electrolyte
  • It provides a redox flow battery comprising the above-described polymer electrolyte membrane provided between the cathode cell and the anode cell.
  • Monomers derived from compounds according to one embodiment of the present specification provide high reactivity during the polymerization reaction.
  • the polymer electrolyte membrane prepared by using a polymer including a monomer derived from a compound according to one embodiment of the present specification has a high ion exchange capacity (IEC) value because it has at least two acid units per unit structure.
  • IEC ion exchange capacity
  • ionic conductivity may be improved under high humidity and / or low humidity conditions.
  • the fuel cell and / or the redox flow battery including the polymer electrolyte membrane have excellent durability and efficiency.
  • FIG. 1 is a schematic diagram illustrating a principle of electricity generation of a fuel cell.
  • FIG. 2 is a view schematically showing a general structure of a redox flow battery.
  • FIG 3 is a view schematically showing an embodiment of a fuel cell.
  • the polymer electrolyte membrane used has excellent efficiency in a high humidification state, but has a problem of low cation conductivity in low humidity conditions.
  • the problem may be improved by using the compound represented by Chemical Formula 1 described above.
  • the compound represented by Chemical Formula 1 is a linker connecting two benzene rings including disulfonamide (-SO 2 NHSO 2- ) which may act as an acid, and A benzene ring substituted with an acid or at least one acid at the end of the linker.
  • the acid is an ion transfer functional group, -SO 3 H, -SO 3 - M + , -COOH, -COO - M + , -PO 3 H 2 , -PO 3 H - M + and -PO 3 2 - is selected from the group consisting of 2M +.
  • the polymer including the monomer derived from the compound represented by Formula 1 shows an increased number of acids per unit unit, and the ion exchange capacity (IEC) value of the polymer electrolyte membrane including the polymer may be increased.
  • IEC ion exchange capacity
  • hydrocarbon monomers for fuel cell and / or redox flow cell polymer electrolyte membranes used in the related art have ion transfer functional groups directly attached to the benzene ring of the polymer main chain, or carbonyl groups in the polymer main chain. Most of them are separated.
  • the ion transfer functional group is separated from the main chain of the polymer hydrophilic groups (hydrophilic) to combine the phase separation more efficiently resulting in the advantage of improving the functionality of the polymer electrolyte membrane There is this.
  • Group 1 element M may be Li, Na or K.
  • two to four of R1 to R5 is a halogen group
  • the halogen group is chlorine (Cl) or fluorine (F).
  • the two halogen groups may have a meta relationship. In this case, there is an effect that the reaction proceeds more efficiently during the polymerization reaction.
  • R1 and R3 is a halogen group
  • R2, R4 and R5 is hydrogen.
  • R3 and R5 are halogen groups
  • R1, R2 and R4 are hydrogen.
  • R1 and R5 is a halogen group
  • R2 to R4 is hydrogen
  • R1 and R4 is a halogen group
  • R2, R3 and R5 is hydrogen
  • R1 and R4 is a hydroxy group
  • R2, R3 and R5 is hydrogen
  • R2 and R4 is a hydroxy group
  • R1, R3 and R5 is hydrogen
  • R1, R2 and R5 is a halogen group
  • R3 and R4 is hydrogen
  • R1, R3 and R5 is a halogen group
  • R2 and R4 is hydrogen
  • R1 to R5 is a halogen group, the remainder is hydrogen.
  • R1, R2, R4 and R5 is a halogen group
  • R3 is hydrogen
  • R6 is Formula 4
  • R7 to R9 of Formula 4 is ortho in the relationship with the linker (-SO 2 NHSO 2- ) linking two benzene ring. ortho and / or para.
  • Linkers linking two benzene rings contain functional groups and / or heteroatoms that exhibit an electron withdrawing effect, and with respect to them ion-transfer functional groups in the ortho and / or para positions.
  • the acidity of R7 to R11) increases.
  • the polymer electrolyte membrane including the polymer including the same has an advantage that the cationic conductivity can be improved.
  • R7 to R11 is an ion transfer functional group
  • the ion transfer functional group is ortho in the relationship with the linker (-S0 2 NHSO 2- ) linking two benzene rings. located in ortho and / or para.
  • the ion transfer functional groups are located at ortho and / or para, thereby showing improved reactivity in the polymerization reaction.
  • At least one of R7 to R11 is -SO 3 H or -SO 3 - M + .
  • at least one of R7, R9 and R11 is -SO 3 H or -SO 3 - M + .
  • the sulfonic acid group absorbs up to about 10 mole of water per mole, resulting in a high proton conductivity of about 0.1 Scm ⁇ 1 .
  • the compound represented by Formula 1 may be any one selected from the following structures.
  • the compound represented by Chemical Formula 1 may be prepared based on the preparation examples described below.
  • An exemplary embodiment of the present specification provides a polymer including a monomer derived from the compound represented by Chemical Formula 1. As described above, the monomer has an advantage of showing improved reactivity during the polymerization reaction.
  • monomer means a structure in which the compound is included in the form of two or more in the polymer by the polymerization reaction.
  • the monomer derived from the compound represented by Formula 1 may have a structure as follows.
  • the present invention is not limited thereto.
  • the polymer according to the exemplary embodiment of the present specification includes a monomer derived from the compound represented by Chemical Formula 1 as described above. Because of this, since ion transport functional groups exist in a pendant form in the polymer, the ion transport functional groups gather well in the polymer to facilitate phase separation, thereby easily forming ion channels, and as a result, the polymer electrolyte membrane including the polymer The effect of improving the ion conductivity can be realized. In addition, since the monomer unit structure includes at least two acid units (acid units), the effect of improving the ion conductivity is more excellent.
  • the polymer may be a random polymer.
  • a polymer having a high molecular weight can be obtained by a simple polymerization method.
  • the monomer derived from the compound represented by Formula 1 serves to control the ionic conductivity of the polymer electrolyte membrane including the polymer, the remaining proportion of the comonomer polymerized in a random form serves to improve the mechanical strength do.
  • the monomer derived from the compound represented by Formula 1 may be included in 0.1 mol% to 100 mol% of the entire polymer.
  • the polymer includes only monomers derived from the compound represented by Chemical Formula 1.
  • the polymer may further include a second monomer other than the monomer derived from the compound represented by Chemical Formula 1.
  • the content of the monomer derived from the compound represented by the formula (1) is preferably 0.5 mol% to 65 mol%. More preferably, it may be 5 mol% to 65 mol%. Polymers comprising monomers derived from compounds within this range have mechanical strength and high ionic conductivity.
  • the second monomer those known in the art may be used. In this case, one kind or two or more kinds of the second monomer may be used.
  • Examples of the second monomer include perfluorosulfonic acid polymer, hydrocarbon-based polymer, polyimide, polyvinylidene fluoride, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyphosphazine, polyethylene naphthalate, polyester, Doped polybenzimidazoles, polyetherketones, polysulfones, monomers thereof or bases thereof may be used.
  • the content of the comonomer which is the second monomer in the polymer may be greater than 0 wt% and 99.9 wt% or less.
  • the polymer when the polymer includes the second monomer, the polymer may be a random polymer.
  • the polymer is represented by the following formula (5).
  • An exemplary embodiment of the present specification also provides a polymer electrolyte membrane including the polymer.
  • the polymer electrolyte membrane may exhibit the above effects.
  • electrolyte membrane is a membrane capable of exchanging ions, such as membrane, ion exchange membrane, ion transfer membrane, ion conductive membrane, separator, ion exchange membrane, ion transfer membrane, ion conductive separator, ion exchange electrolyte membrane, ion And a transfer electrolyte membrane or an ion conductive electrolyte membrane.
  • the polymer electrolyte membrane according to the present specification may be manufactured using materials and / or methods known in the art, except for including monomers derived from the compound represented by Chemical Formula 1.
  • the ion exchange capacity (IEC) value of the polymer electrolyte membrane is 0.01 mmol / g to 7 mmol / g.
  • IEC ion exchange capacity
  • the weight average molecular weight of the polymer included in the polymer electrolyte membrane may be 500 or more and 5,000,000 or less (g / mol), and specifically 20,000 or more and 2,000,000 or less (g / mol).
  • the weight average molecular weight of the copolymer is 500 or more and 5,000,000 or less (g / mol)
  • the mechanical properties of the electrolyte membrane are not lowered, so that the preparation of the electrolyte membrane can be facilitated by maintaining appropriate solubility of the polymer.
  • the thickness of the electrolyte membrane may be 1 ⁇ m to 500 ⁇ m, and specifically 5 ⁇ m to 200 ⁇ m.
  • the thickness of the electrolyte membrane is 1 ⁇ m to 500 ⁇ m, electric short and crossover of the electrolyte material may be reduced, and excellent cation conductivity may be exhibited.
  • the ionic conductivity of the polymer electrolyte membrane may be 0.001 S / cm or more and 0.5 S / cm or less, specifically, may be 0.01 S / cm or more and 0.5 S / cm or less.
  • the ionic conductivity of the polymer electrolyte membrane may be measured under humidification conditions.
  • the humidification condition may mean full humidification condition, may mean 10% to 100% relative humidity (RH), or may mean 30% to 100% relative humidity (RH).
  • the ionic conductivity of the polymer electrolyte membrane may be 0.001 S / cm or more and 0.5 S / cm or less, and may be measured at 10% to 100% relative humidity (RH).
  • the ionic conductivity of the polymer electrolyte membrane may be 0.01 S / cm or more and 0.5 S / cm or less, and may be measured at a relative humidity (RH) of 30% to 100%.
  • the polymer may be in the form of a metal salt.
  • the metal salt may be substituted in the form of an acid.
  • R8 is 1 -SO 3 - M +, -COO - M +, -PO 3 H - M +, or -PO 3 2- 2M + is a metal added to the acid solution in place of Polymer M H ( An electrolyte membrane including a polymer substituted with hydrogen) may be formed.
  • it may be a general acid solution used for the acid treatment, specifically, may be hydrochloric acid or sulfuric acid.
  • the concentration of the acid solution may be 0.1M or more and 10M or less, specifically 1M or more and 2M or less.
  • concentration of the acid solution is 0.1M or more and 10M or less, it can be easily replaced with hydrogen instead of M without damaging the electrolyte membrane.
  • One embodiment of the present specification also includes an anode; Cathode; It provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane provided between the anode and the cathode.
  • Membrane-electrode assembly is an electrode (cathode and anode) in which the electrochemical catalysis of fuel and air occurs and a polymer membrane in which hydrogen ions are transferred.
  • the electrode (cathode and anode) and the electrolyte membrane are bonded together. It is a single unitary unit.
  • the membrane-electrode assembly of the present specification is a form in which the catalyst layer of the anode and the catalyst layer of the cathode are in contact with the electrolyte membrane, and may be prepared according to conventional methods known in the art.
  • the cathode; Anode; And it may be prepared by thermocompression bonding at 100 °C to 400 °C in a state in which the electrolyte membrane located between the cathode and the anode in close contact.
  • the anode electrode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may again include an anode microporous layer and an anode electrode substrate.
  • the cathode electrode may include a cathode catalyst layer and a cathode gas diffusion layer.
  • the cathode gas diffusion layer may further include a cathode microporous layer and a cathode electrode substrate.
  • FIG. 1 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane 100 and the electrolyte membrane 100. It consists of an anode (200a) and a cathode (200b) electrode formed on both sides of the.
  • MEA membrane electrode assembly
  • an anode 200a generates an oxidation reaction of a fuel such as hydrogen or a hydrocarbon such as methanol and butane to generate hydrogen ions (H + ) and electrons (e ⁇ ).
  • the hydrogen ions move to the cathode 200b through the electrolyte membrane 100.
  • water is generated by reacting hydrogen ions transferred through the electrolyte membrane 100 with an oxidant such as oxygen and electrons. This reaction causes the movement of electrons in the external circuit.
  • the catalyst layer of the anode electrode is where the oxidation reaction of the fuel occurs, the catalyst is selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy. Can be used.
  • the catalyst layer of the cathode electrode is where the reduction reaction of the oxidant occurs, platinum or platinum-transition metal alloy may be preferably used as a catalyst.
  • the catalysts can be used on their own as well as supported on a carbon-based carrier.
  • the introduction of the catalyst layer may be carried out by conventional methods known in the art, for example, the catalyst ink may be directly coated on the electrolyte membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the coating method of the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • Catalytic inks can typically consist of a catalyst, a polymer ionomer, and a solvent.
  • the gas diffusion layer serves as a passage for the reaction gas and water together with a role as a current conductor, and has a porous structure. Therefore, the gas diffusion layer may include a conductive substrate. As the conductive substrate, carbon paper, carbon cloth or carbon felt may be preferably used. The gas diffusion layer may further include a microporous layer between the catalyst layer and the conductive substrate. The microporous layer may be used to improve the performance of the fuel cell in low-humidity conditions, and serves to reduce the amount of water flowing out of the gas diffusion layer so that the electrolyte membrane is in a sufficient wet state.
  • One embodiment of the present specification includes two or more of the aforementioned membrane-electrode assemblies; A stack comprising a bipolar plate provided between the membrane-electrode assemblies; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a fuel cell, the above-described effects can be obtained.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the fuel cell can be manufactured according to conventional methods known in the art using the membrane-electrode assembly (MEA) described above.
  • MEA membrane-electrode assembly
  • it may be prepared by configuring a membrane-electrode assembly (MEA) and a bipolar plate prepared above.
  • the fuel cell of the present specification includes a stack, a fuel supply unit and an oxidant supply unit.
  • FIG. 3 schematically illustrates the structure of a fuel cell, in which the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and includes two or more separators interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidant, and may be used by injecting oxygen or air into the oxidant supply unit 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.
  • an exemplary embodiment of the present specification includes a positive electrode cell including a positive electrode and a positive electrode electrolyte; A cathode cell comprising a cathode and a cathode electrolyte; And it provides a redox flow battery comprising a polymer electrolyte membrane according to one embodiment of the present specification provided between the cathode cell and the anode cell.
  • the redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy. It is a system in which the active material contained in the electrolyte is oxidized, reduced, and charged and discharged. to be.
  • the redox flow battery uses a principle that charges and discharges are exchanged when electrons containing active materials having different oxidation states meet with an ion exchange membrane interposed therebetween.
  • a redox flow battery is composed of a tank containing an electrolyte solution, a battery cell in which charging and discharging occurs, and a circulation pump for circulating the electrolyte solution between the tank and the battery cell, and the unit cell of the battery cell includes an electrode, an electrolyte, and an ion. Exchange membrane.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a redox flow battery, the above-described effects may be exhibited.
  • the redox flow battery of the present specification may be manufactured according to conventional methods known in the art, except for including the polymer electrolyte membrane according to one embodiment of the present specification.
  • the redox flow battery is divided into the positive electrode cell 32 and the negative electrode cell 33 by the electrolyte membrane 31.
  • the anode cell 32 and the cathode cell 33 include an anode and a cathode, respectively.
  • the anode cell 32 is connected to the anode tank 10 for supplying and discharging the anode electrolyte 41 through a pipe.
  • the cathode cell 33 is also connected to the cathode tank 20 for supplying and discharging the cathode electrolyte 42 through a pipe.
  • the electrolyte is circulated through the pumps 11 and 21, and an oxidation / reduction reaction (that is, a redox reaction) in which the oxidation number of ions changes occurs, thereby causing charge and discharge at the anode and the cathode.
  • an oxidation / reduction reaction that is, a redox reaction
  • An exemplary embodiment of the present specification also provides a method of manufacturing the electrolyte membrane.
  • the preparation method of the electrolyte membrane may be prepared using materials and / or methods of the art, except for including a polymer including a monomer derived from the compound represented by Chemical Formula 1.
  • the polymer electrolyte membrane may be prepared by adding the polymer to a solvent to form a polymer solution and then forming a polymer solution using a solvent casting method.
  • Each monomer and potassium carbonate (K 2 CO 3 : molar ratio 4) were mixed in an NMP 20 wt% ratio and a benzene 20 wt% ratio, and polymerized at 140 ° C. for 4 hours and at 180 ° C. for 16 hours to prepare the polymer. .
  • An electrolyte membrane was prepared using the obtained polymer, the molecular weight was measured through GPC, and the result of measuring the cation conductivity and ion exchange capacity (IEC) of the pure membrane was described.
  • the polymer was prepared by using a monomer in a meta position based on a disulfonamide (-SO 2 NHSO 2- ) linker.
  • the electrolyte membrane was prepared using the polymer, and the results of measuring the cation conductivity and ion exchange capacity (IEC) of the pure membrane are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

본 명세서는 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 막-전극 접합체, 상기 막-전극 접합체를 포함하는 연료 전지 및 상기 고분자 전해질막을 포함하는 레독스 플로우 전지에 관한 것이다.

Description

방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
본 출원은 2015년 1월 27일에 한국특허청에 제출된 한국 특허 출원 제10-2015-0012806호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막에 관한 것이다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다. 연료전지의 막 전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 캐소드와 애노드 그리고 전해질막, 즉 이온 전도성 전해질막으로 구성되어 있다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)란 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지의 단위셀은 전극, 전해질 및 이온교환막(전해질막)을 포함한다.
연료전지 및 레독스 플로우 전지는 높은 에너지 효율성과 오염물의 배출이 적은 친환경적인 특징으로 인하여 차세대 에너지원으로 연구 개발되고 있다.
연료전지 및 레독스 플로우 전지에서 가장 핵심이 되는 구성요소는 양이온 교환이 가능한 고분자 전해질막으로서, 1) 우수한 양성자 전도도 2) 전해질의 크로스오버(Cross Over) 방지, 3) 강한 내화학성, 4) 기계적 물성 강화 및/또는 4) 낮은 스웰링 비(Swelling Ratio)의 특성을 갖는 것이 좋다. 고분자 전해질막은 불소계, 부분불소계, 탄화수소계 등으로 구분이 되며, 부분불소계 고분자 전해질막의 경우, 불소계 주 사슬을 가지고 있어 물리적, 화학적 안정성이 우수하며, 열적 안정성 높다는 장점이 있다. 또한, 부분불소계 고분자 전해질막은 불소계 고분자 전해질막과 마찬가지로 양이온 전달 관능기가 불소계 사슬의 말단에 붙어있어, 탄화수소계 고분자 전해질막과 불소계 고분자 전해질막의 장점을 동시에 가지고 있다.
연료전지 및/또는 레독스 플로우 전지는 저가습 조건에서 운전할 경우, 양극의 반응성이 향상되고 수막현상 및 촉매의 오염을 저감하는 등의 다양한 장점이 있다. 그러나, 일반적으로 사용되고 있는 고분자 전해질막의 경우, 저가습 조건에서 양이온 전도도 등의 물성이 감소하여 급격한 전지 성능 저하를 보인다는 문제점이 있다. 따라서, 이를 해결하기 위한 연구가 필요한 실정이다.
[특허문헌]
대한민국 공개공보 제2003-0076057호
본 명세서는 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막을 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 방향족 고리를 포함하는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016000850-appb-I000001
상기 화학식 1에서,
Q는 하기 화학식 2 또는 3으로 표시되며,
[화학식 2]
Figure PCTKR2016000850-appb-I000002
[화학식 3]
Figure PCTKR2016000850-appb-I000003
m, n1 및 n2는 각각 0 내지 16의 정수이고,
m이 2 이상의 정수일 경우, 복수의 Q는 서로 같거나 상이하고,
R1 내지 R5 중 두 개 내지 네 개는 서로 같거나 상이하고, 각각 독립적으로 히드록시기 또는 할로겐기이며, 나머지는 수소이며,
R6은 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+ 및 하기 화학식 4로 표시되는 기로 이루어진 군에서 선택되고,
[화학식 4]
Figure PCTKR2016000850-appb-I000004
상기 화학식 4에 있어서,
R7 내지 R11 중 적어도 하나는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 및 -PO3 2-2M+으로 이루어진 군에서 선택되며, 나머지는 수소이며,
상기
Figure PCTKR2016000850-appb-I000005
는 화학식 1의 Q에 결합되는 부위이고
M은 1족 원소이다.
본 명세서의 일 실시상태는 상기 화학식 1의 화합물로부터 유래되는 단량체를 포함하는 고분자를 제공한다.
본 명세서는 일 실시상태는 상기 화학식 1의 화합물로부터 유래되는 단량체를 포함하는 중합체를 포함하는 것을 특징으로 하는 고분자 전해질막을 제공한다.
또한, 본 명세서의 일 실시상태는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 전해질막을 포함하는 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 2 이상의 전술한 막-전극 접합체;
상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
상기 스택으로 연료를 공급하는 연료공급부; 및
상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
본 명세서의 일 실시상태는 또한,
양극 및 양극 전해액을 포함하는 양극 셀;
음극 및 음극 전해액을 포함하는 음극 셀; 및
상기 양극 셀과 상기 음극 셀 사이에 구비되는 전술한 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태에 따른 화합물로부터 유래되는 단량체는 중합 반응 과정에서 높은 반응성을 제공한다.
또한, 본 명세서의 일 실시상태에 따른 화합물로부터 유래된 단량체를 포함하는 고분자를 이용하여 제조된 고분자 전해질막은 단위 구조 당 적어도 2개의 산단위를 가지기 때문에 높은 이온교환용량(IEC, ion exchange capacity) 값을 가지고, 그 결과, 고가습 및/또는 저가습 조건에서 이온 전도도가 향상될 수 있다.또한, 상기 고분자 전해질막을 포함하는 연료전지 및/또는 레독스 플로우 전지는 내구성 및 효율이 우수하다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 레독스 플로우 전지의 일반적인 구조를 개략적으로 도시한 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
이하 본 명세서에 대하여 더욱 상세히 설명한다.
일반적으로 사용되는 고분자 전해질막의 경우, 고가습 상태에서는 우수한 효율을 보이지만 저가습 조건에서는 양이온 전도도가 낮아지는 문제점이 있다. 그러나, 본 명세서에서는 전술한 화학식 1로 표시되는 화합물을 이용함으로써 상기 문제점을 개선할 수 있다.
구체적으로, 본 명세서에 있어서, 상기 화학식 1로 표시되는 화합물은 산(acid)으로 작용할 수 있는 디설폰아미드(disulfonamide, -SO2NHSO2-)를 포함하는 두개의 벤젠고리를 연결하는 링커와 상기 링커의 말단에 산(acid) 또는 적어도 1개의 산(acid)으로 치환된 벤젠고리를 포함한다. 상기 산(acid)은 이온 전달 관능기로서, -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 및 -PO3 2-2M+으로 이루어진 군에서 선택된다. 따라서, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 중합체는 증가된 단위 유닛(unit)당 산의 개수를 보이며, 상기 중합체를 포함하는 고분자 전해질막의 이온교환용량(IEC)값이 증가될 수 있다. 결과적으로 상기 고분자 전해질막은 고가습 조건뿐만 아니라 저가습 조건에서도 우수한 양이온 전도도를 나타낼 수 있다.
기존에 사용되는 연료전지 및/또는 레독스 플로우 전지 고분자 전해질막용 탄화수소계 모노머는 이온전달관능기가 중합체 주쇄(main chain)의 벤젠고리에 직접 붙어 있거나, 카보닐 작용기(carbonyl group)을 통해 중합체 주쇄에서 떨어져 있는 부분이 대부분이다. 한편, 상기 화학식 1로 표시되는 화합물을 고분자 전해질막용 모노머로 이용할 경우, 이온전달관능기가 중합체의 주쇄로부터 떨어져있어 친수성기(hydrophilic)끼리 뭉쳐 상분리가 더욱 효율적으로 일어나 결과적으로 고분자 전해질막의 기능성을 향상시킨다는 장점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, 1족 원소인 M은 Li, Na 또는 K일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 내지 R5 중 두 개 내지 네 개는 할로겐기이고, 상기 할로겐기는 염소(Cl) 또는 불소(F)이다.
구체적으로, R1 내지 R5 중 두 개가 할로겐기인 경우, 2개의 할로겐기는 메타(meta) 관계일 수 있다. 이 경우, 중합 반응시 반응이 보다 효율적으로 진행되는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R3은 할로겐기이고, R2, R4 및 R5는 수소이다. 이 경우, 설포닐기(-SO2-)의 전자 끌개 효과(electron withdrawing effect)로 인해, 중합 반응시 높은 반응성을 보인다는 장점이 있다. 상기 화학식 1에 있어서, R3 및 R5가 할로겐기이고, R1, R2 및 R4가 수소인 경우도 마찬가지이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R5는 할로겐기이고, R2 내지 R4는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R4는 할로겐기이고, R2, R3 및 R5는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R4는 히드록시기이고, R2, R3 및 R5는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R2 및 R4는 히드록시기이고, R1, R3 및 R5는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 내지 R5 중 세 개는 할로겐기이고, 나머지는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1, R2 및 R5는 할로겐기이고, R3 및 R4는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1, R3 및 R5는 할로겐기이고, R2 및 R4는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 내지 R5 중 네 개는 할로겐기이고, 나머지는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1, R2, R4 및 R5는 할로겐기이고, R3은 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R6이 화학식 4이고, 상기 화학식 4의 R7 내지 R9가 두개의 벤젠고리를 이어주는 링커(-SO2NHSO2-)와의 관계에서 오르쏘(ortho) 및/또는 파라(para)에 위치한다. 두개의 벤젠고리를 이어주는 링커는 전자 끌개 효과(electron withdrawing effect)를 보이는 작용기 및/또는 헤테로원자를 포함하며, 이들에 대하여 오르쏘(ortho) 및/또는 파라(para)위치에 있는 이온 전달 관능기(R7 내지 R11)의 산도가 증가한다. 결과적으로, 이를 포함하는 고분자를 포함하는 고분자 전해질막은 향상된 양이온 전도도를 보일 수 있다는 장점이 있다.
본 명세서에 있어서, 상기 화학식 4에 있어서, R7 내지 R11 중 적어도 하나는 이온 전달 관능기이며, 상기 이온 전달 관능기는 두개의 벤젠고리를 연결시켜주는 링커(-S02NHSO2-)와의 관계에서 오르쏘(ortho) 및/또는 파라(para)에 위치한다. 전술한 바와 같이, 이온 전달 관능기가 오르쏘(ortho) 및/또는 파라(para)에 위치함으로써, 중합 반응시 향상된 반응성을 보일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 4에 있어서, R7 내지 R11 중 적어도 하나는 -SO3H 또는 -SO3 -M+이다. 바람직하게는 상기 화학식 4에 있어서, R7, R9 및 R11 중 적어도 하나는 -SO3H 또는 -SO3 -M+이다. 술폰산기는 1 mole당 최대 약 10 mole의 물을 흡수하여, 약 0.1 Scm-1의 높은 양성자 전도율을 나타낸다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기의 구조들 중 선택되는 어느 하나일 수 있다.
Figure PCTKR2016000850-appb-I000006
Figure PCTKR2016000850-appb-I000007
상기 화학식 1로 표시되는 화합물은 후술하는 제조예를 기초로 제조될 수 있다.
본 명세서의 일 실시상태는 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 중합체를 제공한다. 상기의 단량체는 전술한 바와 같이 중합 반응시 향상된 반응성을 보인다는 장점이 있다.
본 명세서에 있어서, "단량체"는 화합물이 중합반응에 의해서 중합체 내에서 2가기 이상의 형태로 포함되는 구조를 의미한다. 구체적으로, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체는 하기와 같은 구조를 가질 수 있다. 다만, 이에 의하여 한정되는 것은 아니다.
Figure PCTKR2016000850-appb-I000008
본 명세서의 일 실시상태에 따른 상기 중합체는 전술한 바와 같이, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함한다. 이로 인하여, 중합체 내에서 이온전달관능기가 펜던트(pendant) 형태로 존재하기 때문에 중합체 내에서 이온전달관능기들끼리 잘 모여 상분리가 용이해서 이온 채널을 쉽게 형성하고, 결과적으로 상기 중합체를 포함하는 고분자 전해질막의 이온전도도가 향상되는 효과를 구현할 수 있다. 또한, 단량체 단위구조 당 적어도 2개의 산 단위(acid unit)을 포함하기 때문에 이온 전도도 향상의 효과가 더욱 우수하다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 랜덤 중합체일 수 있다. 이 경우, 간단한 중합 방법으로 높은 분자량을 갖는 중합체를 얻을 수 있다.
이 때, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체는 상기 중합체를 포함하는 고분자 전해질막의 이온 전도도를 조절하는 역할을 하고, 랜덤 형태로 중합되는 나머지 비율의 공단량체는 기계적 강도를 향상시키는 역할을 한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체는 전체 중합체의 0.1 몰% 내지 100 몰%로 포함될 수 있다. 구체적으로 중합체는 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체만을 포함한다. 또 다른 실시상태에 있어서, 상기 중합체는 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체 이외의 제2 단량체를 더 포함할 수 있다. 이 경우, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체의 함량은 0.5 몰% 내지 65 몰%인 것이 바람직하다. 더욱 바람직하게는 5 몰% 내지 65 몰%일 수 있다. 상기 범위 내의 화합물로부터 유래되는 단량체를 포함하는 중합체는 기계적 강도와 높은 이온 전도도를 갖는다.
상기 제2 단량체는 당 기술분야에 알려져 있는 것들이 사용될 수 있다. 이때, 제2 단량체는 1종류 또는 2종류 이상이 사용될 수 있다.
상기 제2 단량체의 예로는 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰, 이들의 산 또는 이들의 염기를 구성하는 단량체가 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체 중 상기 제2 단량체인 공단량체의 함량은 0 중량% 초과 99.9 중량% 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체가 상기 제2 단량체를 포함하는 경우, 상기 중합체는 랜덤 중합체일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 하기 화학식 5로 표시된다.
[화학식 5]
Figure PCTKR2016000850-appb-I000009
상기 화학식 5에 있어서,
상기 p 및 q는 각각 0 초과 1 미만이며, p+q=1이다.
본 명세서의 일 실시상태는 또한, 상기의 중합체를 포함하는 고분자 전해질막을 제공한다. 상기 고분자 전해질막은 전술한 효과를 나타낼 수 있다.
본 명세서에서 "전해질막"은 이온을 교환할 수 있는 막으로서, 막, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등을 포함한다.
본 명세서에 따른 고분자 전해질막은 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 것을 제외하고는 당 기술분야에 알려진 재료 및/또는 방법이 이용되어 제조될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온교환용량(IEC) 값은 0.01 mmol/g 내지 7 mmol/g 이다. 상기 이온교환용량값의 범위를 갖는 경우에는 상기 고분자 전해질막에서의 이온 채널이 형성되고, 중합체가 이온 전도도를 나타낼 수 있다.
또 하나의 일 실시상태에 따르면, 상기 고분자 전해질막에 포함되는 중합체의 중량평균분자량은 500 이상 5,000,000 이하 (g/mol)일 수 있고, 구체적으로 20,000 이상 2,000,000 이하 (g/mol)일 수 있다.
상기 공중합체의 중량평균분자량이 500 이상 5,000,000 이하(g/mol)일 때, 전해질막의 기계적 물성이 저하되지 않고, 적절한 고분자의 용해도를 유지하여 전해질막의 제작을 용이하게 할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질막의 두께는 1 ㎛ 내지 500 ㎛일 수 있고, 구체적으로 5 ㎛ 내지 200 ㎛일 수 있다. 전해질막의 두께가 1 ㎛ 내지 500 ㎛일 때, 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Cross Over)를 저하시키고, 우수한 양이온 전도도 특성을 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.001 S/cm 이상 0.5 S/cm 이하일 수 있으며, 구체적으로, 0.01 S/cm 이상 0.5 S/cm 이하일 수 있다.
또 하나의 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 가습 조건에서 측정될 수 있다. 가습조건이란 풀(full) 가습 조건을 의미할 수도 있고, 상대 습도(RH) 10% 내지 100% 를 의미할 수도 있으며, 상대 습도(RH) 30% 내지 100%를 의미할 수도 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.001 S/cm 이상 0.5 S/cm 이하일 수 있으며, 상대 습도(RH) 10% 내지 100% 에서 측정될 수 있다. 또 하나의 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.01 S/cm 이상 0.5 S/cm 이하일 수 있으며, 상대 습도(RH) 30% 내지 100% 에서 측정될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 중의 적어도 일부가 금속염의 형태일 수 있다. 또한, 상기 금속염은 산의 형태로 치환될 수 있다.
구체적으로, 상기 화학식 1에서 R8이 -SO3 -M+, -COO-M+, -PO3H-M+, 또는 -PO3 2-2M+인 고분자에 산 용액을 가하여 금속 M 대신 H(수소)로 치환된 고분자를 포함하는 전해질막을 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 산 처리에 사용되는 일반적인 산 용액일 수 있으며, 구체적으로 염산 또는 황산일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 산 용액의 농도는 0.1M 이상 10M 이하일 수 있고, 구체적으로 1M 이상 2M 이하일 수 있다. 상기 산 용액의 농도가 0.1M 이상 10M 이하일 때, 전해질막의 손상 없이 M 대신 수소로 용이하게 치환할 수 있다.
본 명세서의 일 실시상태는 또한, 애노드; 캐소드; 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 전해질막을 포함하는 막-전극 접합체를 제공한다.
막-전극 접합체(MEA)는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(캐소드와 애노드)과 수소 이온의 전달이 일어나는 고분자 막의 접합체를 의미하는 것으로서, 전극(캐소드와 애노드)과 전해질막이 접착된 단일의 일체형 유니트(unit)이다.
본 명세서의 상기 막-전극 접합체는 애노드의 촉매층과 캐소드의 촉매층이 전해질막에 접촉하도록 하는 형태로서, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 캐소드; 애노드; 및 상기 캐소드와 상기 애노드 사이에 위치하는 전해질막을 밀착시킨 상태에서 100℃ 내지 400℃로 열압착하여 제조될 수 있다.
애노드 전극은 애노드 촉매층과 애노드 기체확산층을 포함할 수 있다. 애노드 기체확산층은 다시 애노드 미세 기공층과 애노드 전극 기재를 포함할 수 있다.
캐소드 전극은 캐소드 촉매층과 캐소드 기체확산층을 포함할 수 있다. 캐소드 기체확산층은 다시 캐소드 미세 기공층과 캐소드 전극 기재를 포함할 수 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(100)과 이 전해질막(100)의 양면에 형성되는 애노드(200a) 및 캐소드(200b) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(200a)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(100)을 통해 캐소드(200b)로 이동한다. 캐소드(200b)에서는 전해질막(100)을 통해 전달된 수소 이온과, 산소와 같은 산화제 및 전자가 반응하여 물이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
상기 애노드 전극의 촉매층은 연료의 산화 반응이 일어나는 곳으로, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다. 상기 캐소드 전극의 촉매층은 산화제의 환원 반응이 일어나는 곳으로, 백금 또는 백금-전이금속 합금이 촉매로 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
촉매층을 도입하는 과정은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 전해질막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(carbon paper), 탄소 천공(carbon cloth) 또는 탄소 펠트(carbon felt)가 바람직하게 사용될 수 있다. 상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게하여 전해질막이 충분한 습윤상태에 있도록 하는 역할을 한다.
본 명세서의 일 실시상태는 2 이상의 전술한 막-전극 접합체; 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료공급부; 및 상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
본 명세서의 일 실시상태에 따른 전해질막을 연료전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다.
연료전지는 전술한 막-전극 접합체(MEA)를 사용하여 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 예를 들면, 상기에서 제조된 막-전극 접합체(MEA)와 바이폴라 플레이트(bipolar plate)로 구성하여 제조될 수 있다.
본 명세서의 연료전지는 스택, 연료공급부 및 산화제공급부를 포함하여 이루어진다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 산화제 공급부(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다.
또한, 본 명세서의 일 실시상태는 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)는 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지는 산화상태가 다른 활성물질을 포함하는 전해액이 이온교환막을 사이에 두고 만날 때 전자를 주고받아 충전과 방전이 되는 원리를 이용한다. 일반적으로 레독스 플로우 전지는 전해액이 담겨있는 탱크와 충전과 방전이 일어나는 전지 셀, 그리고 전해액을 탱크와 전지 셀 사이에 순환시키기 위한 순환펌프로 구성되고, 전지 셀의 단위셀은 전극, 전해질 및 이온교환막을 포함한다.
본 명세서의 일 실시상태에 따른 전해질막을 레독스 플로우 전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
본 명세서의 레독스 플로우 전지는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 것을 제외하고는, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다.
도 2에 도시한 바와 같이, 레독스 플로우 전지는 전해질막(31)에 의해 양극 셀(32)과 음극 셀(33)로 나뉘어진다. 양극 셀(32)과 음극 셀(33)은 각각 양극과 음극을 포함한다. 양극 셀(32)은 파이프를 통해 양극 전해액(41)을 공급 및 방출하기 위한 양극 탱크(10)에 연결되어 있다. 음극 셀(33) 또한, 파이프를 통해 음극 전해액(42)을 공급 및 방출하기 위한 음극 탱크(20)에 연결되어 있다. 전해액은 펌프(11, 21)를 통해 순환되고, 이온의 산화수가 변화되는 산화/환원 반응(즉, 레독스 반응)이 일어남으로써 양극과 음극에서 충전 및 방전이 일어난다.
본 명세서의 일 실시상태는 또한, 상기 전해질막의 제조방법을 제공한다. 상기 전해질막의 제조방법은 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 중합체를 포함하는 것을 제외하고는 당 기술분야의 재료 및/또는 방법이 이용되어 제조될 수 있다. 예컨대, 상기 중합체를 용매에 가하여 중합체 용액을 만든 후, 용매 캐스팅 방법을 이용하여 제막함으로서 고분자 전해질막을 제조할 수 있다.
[부호의 설명]
100: 전해질 막
200a: 애노드
200b: 캐소드
10, 20: 탱크
11, 21: 펌프
31: 전해질막
32: 양극 셀
33: 음극 셀
41: 양극 전해액
42: 음극 전해액
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것이며, 이에 의하여 본 명세서의 범위가 한정되는 것은 아니다.
<제조예 1> 4-(N-((2,4-difluorophenyl)sulfonyl)sulfamoyl)benzenesulfonyl chloride의 제조
Figure PCTKR2016000850-appb-I000010
2,4-difluorobenzenesulfonamide 12.28g (63.6 mmol)을 Acetonitrile 180ml에 녹인 후 1,4-benzenedisulfonyl chloride 20.99g (76.3 mmol)을 첨가하고 반응물을 0 ℃로 냉각 시켰다. 0 ℃에서 반응물에 Et3N 26.6ml (0.19 mol)을 천천히 적가한 후 서서히 실온으로 승온하여 1 내지 2시간 가량 교반하였다. 감압 증류하여 용매를 제거하여 얻은 crude 화합물을 에틸아세테이트에 녹인 후 1N HCl로 수차례 세척하여 Et3N을 제거하였다. 유기층을 분리하여 MgSO4로 건조하고 증류시킨 후 메텔렌 클로라이드 : 아세톤 = 2 : 1 을 이용하여 컬럼크로마토그래피로 분리 정제하여 상기의 화합물 24.98g (91%)을 얻었다.
1H NMR (500MHz,DMSO-D6) δ 8.05 (4H,m), 7.76 (1H,m), 7.17 (2H,m), 6.93 (1H,m)
Mass 432 (M+H)
<제조예 2> 4-(N-((2,4-difluorophenyl)sulfonyl)sulfamoyl)benzenesulfonic acid의 제조
Figure PCTKR2016000850-appb-I000011
제조예 1에서 얻어진 4-(N-((2,4-difluorophenyl)sulfonyl)sulfamoyl)benzene sulfonyl chloride 24.98g (57.8 mmol)을 1,4-Dioxane 200ml에 녹인 후 10% HCl 200ml을 첨가하고 100℃로 가열하였다. 반응물을 100℃ 에서 16시간 동안 교반한 후 실온으로 냉각하고 감압 증류로 모든 용매를 제거 하였다. 이때 얻어진 crude 화합물을 H2O에 녹인 후 불순물을 제거하기 위해 CH2Cl2로 수차례 세척하고 남은 물층을 다시 감압 증류 하였다. CH2Cl2에 화합물을 녹인 후 n-Hexane에 서서히 적가하여 얻은 고체상의 화합물을 여과하고 N2 gas하에서 건조하여 상기의 화합물 20.14g (84.2%)을 얻었다.
1H NMR (500MHz,DMSO-D6) δ 8.50 (1H,br), 8.15 (2H,m), 8.05 (2H,m), 7.76 (1H,m), 7.17 (2H,m), 6.93 (1H,m)
Mass 414 (M+H)
<실시예 1> 랜덤 중합체의 합성
Figure PCTKR2016000850-appb-I000012
각각의 모노머 및 탄산칼륨 (K2CO3: 몰 비 4)를 NMP 20 wt % 비율과 벤젠 20 wt % 비율로 혼합하여, 140 ℃에서 4시간, 180 ℃에서 16시간 중합하여 상기 중합체를 제조하였다.
상기 p 및 q는 각각 0 초과 1 미만이며, p+q=1이다.
얻어진 중합체를 이용하여 전해질막을 제조하고 GPC를 통해 분자량을 측정하고 순수막의 양이온 전도도 및 이온교환용량 (IEC)를 측정한 결과를 기재하였다.
Mn (g/mol) Mw (g/mol) Mw/Mn 이온전도도 (S/m) IEC
실시예 1 42,000 312,000 7.43 0.137 2.04
<비교예 1>
실시예 1과 같은 방법으로 술폰산의 위치가 디설폰아미드(disulfonamide, -SO2NHSO2-) linker를 기준으로 메타위치에 있는 모노머를 이용하여 중합체를 제조하였다. 중합체를 이용하여 전해질막을 제조하고 순수막의 양이온 전도도 및 이온교환용량 (IEC)를 측정한 결과를 하기 표 2에 나타내었다.
전해질막 이온전도도(S/m) IEC
실시예 1 0.137 2.04
비교예 1 0.096 2.02
상기 표 2의 결과로 보아, 벤젠 고리에 있는 술폰산의 위치가 디설폰아미드(disulfonamide, -SO2NHSO2-) linker를 기준으로 메타위치에 있는 것보다 파라위치에 있는 고분자를 이용한 순수막의 양이온 전도도가 같은 조건에서 훨씬 높아 전해질막의 성능이 향상됨을 알 수 있었다.

Claims (16)

  1. 하기 화학식 1로 표시되는 방향족 고리를 포함하는 화합물:
    [화학식 1]
    Figure PCTKR2016000850-appb-I000013
    상기 화학식 1에서,
    Q는 하기 화학식 2 또는 3으로 표시되며,
    [화학식 2]
    Figure PCTKR2016000850-appb-I000014
    [화학식 3]
    Figure PCTKR2016000850-appb-I000015
    m, n1 및 n2는 각각 0 내지 16의 정수이고,
    m이 2 이상의 정수일 경우, 복수의 Q는 서로 같거나 상이하고,
    R1 내지 R5 중 두 개 내지 네 개는 서로 같거나 상이하고, 각각 독립적으로 히드록시기 또는 할로겐기이며, 나머지는 수소이며,
    R6은 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+ 및 하기 화학식 4로 표시되는 기로 이루어진 군에서 선택되고,
    [화학식 4]
    Figure PCTKR2016000850-appb-I000016
    상기 화학식 4에 있어서,
    R7 내지 R11 중 적어도 하나는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 및 -PO3 2-2M+으로 이루어진 군에서 선택되며, 나머지는 수소이며,
    상기
    Figure PCTKR2016000850-appb-I000017
    는 화학식 1의 Q에 결합되는 부위이고
    M은 1족 원소이다.
  2. 청구항 1에 있어서, 상기 R1 내지 R5 중 두 개는 서로 같거나 상이하고, 각각 독립적으로 할로겐기; 또는 히드록시기이고, 나머지는 수소인 것인 화합물.
  3. 청구항 1에 있어서, 상기 R1 내지 R5 중 세 개는 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고, 나머지는 수소인 것인 화합물.
  4. 청구항 1에 있어서, 상기 R1 내지 R5 중 네 개는 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고, 나머지는 수소인 것인 화합물.
  5. 청구항 1에 있어서, 상기 R7 내지 R11 중 적어도 하나는 -SO3H 또는 -SO3 -M+이고, 나머지는 수소이며, 상기 M의 정의는 화학식 1과 동일한 것인 화합물.
  6. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물이 하기의 구조들 중 선택되는 어느 하나인 것을 특징으로 하는 화합물:
    Figure PCTKR2016000850-appb-I000018
    Figure PCTKR2016000850-appb-I000019
  7. 청구항 1 내지 6 중 어느 하나의 화합물로부터 유래되는 단량체를 포함하는 중합체.
  8. 청구항 7에 있어서, 상기 중합체는 하기 화학식 5로 표시되는 것인 중합체:
    [화학식 5]
    Figure PCTKR2016000850-appb-I000020
    상기 화학식 5에 있어서,
    상기 p 및 q는 각각 0 초과 1 미만이며, p+q=1이다.
  9. 청구항 7의 중합체를 포함하는 고분자 전해질막.
  10. 청구항 9에 있어서, 상기 고분자 전해질막의 이온교환용량(IEC) 값이 0.01 mmol/g 내지 7 mmol/g인 것을 특징으로 하는 고분자 전해질막.
  11. 청구항 9에 있어서, 상기 중합체의 중량평균분자량이 500 이상 5,000,000 이하 (g/mol)인 것을 특징으로 하는 고분자 전해질막.
  12. 청구항 9에 있어서, 상기 고분자 전해질막의 두께가 1㎛ 이상 500㎛ 이하인 것을 특징으로 하는 고분자 전해질막.
  13. 청구항 9에 있어서, 상기 고분자 전해질막의 이온 전도도가 0.01 S/m 이상 0.5 S/m 이하인 것을 특징으로 하는 고분자 전해질막.
  14. 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 청구항 9의 고분자 전해질막을 포함하는 막-전극 접합체.
  15. 2 이상의 청구항 14에 따른 막-전극 접합체;
    상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
    상기 스택으로 연료를 공급하는 연료공급부; 및
    상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지.
  16. 양극 및 양극 전해액을 포함하는 양극 셀;
    음극 및 음극 전해액을 포함하는 음극 셀; 및
    상기 양극 셀과 상기 음극 셀 사이에 구비되는 청구항 9의 고분자 전해질막을 포함하는 레독스 플로우 전지.
PCT/KR2016/000850 2015-01-27 2016-01-27 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막 WO2016122200A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/542,989 US10428016B2 (en) 2015-01-27 2016-01-27 Compound comprising aromatic ring, and polyelectrolyte membrane using same
EP16743678.1A EP3252035B1 (en) 2015-01-27 2016-01-27 Compound comprising aromatic ring, and polyelectrolyte membrane using same
CN201680007302.9A CN107207424B (zh) 2015-01-27 2016-01-27 包含芳环的化合物和使用该化合物的聚电解质膜
JP2017535043A JP6478176B2 (ja) 2015-01-27 2016-01-27 芳香族環を含む化合物およびこれを用いた高分子電解質膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150012806 2015-01-27
KR10-2015-0012806 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016122200A1 true WO2016122200A1 (ko) 2016-08-04

Family

ID=56543740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000850 WO2016122200A1 (ko) 2015-01-27 2016-01-27 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막

Country Status (6)

Country Link
US (1) US10428016B2 (ko)
EP (1) EP3252035B1 (ko)
JP (1) JP6478176B2 (ko)
KR (1) KR101821480B1 (ko)
CN (1) CN107207424B (ko)
WO (1) WO2016122200A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160618A1 (en) * 2017-02-28 2018-09-07 Wisconsin Alumni Research Foundation High-and low-potential, water-soluble, robust quinones

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010399B1 (ko) * 2016-02-17 2019-08-14 주식회사 엘지화학 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
KR102141267B1 (ko) * 2016-11-04 2020-08-04 주식회사 엘지화학 방향족 고리를 포함하는 화합물 및 이를 포함하는 중합체
CN114432903B (zh) * 2020-11-06 2023-03-14 中国石油化工股份有限公司 一种具有耐酸性的复合膜及其制备方法与应用
CN114864989B (zh) * 2022-05-26 2024-01-19 一汽解放汽车有限公司 一种膜电极边框及其制备方法和膜电极

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275153A (ja) * 2004-03-25 2005-10-06 Fuji Photo Film Co Ltd 感光性組成物及びこれを用いたパターン形成方法
US20090269644A1 (en) * 2008-04-24 2009-10-29 3M Innovative Properties Company Proton conducting materials
JP2012078542A (ja) * 2010-10-01 2012-04-19 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
KR20130062252A (ko) * 2011-12-02 2013-06-12 주식회사 엘지화학 고분자 전해질막 및 이를 포함하는 연료전지
US8853448B2 (en) * 2006-07-17 2014-10-07 Institut National Polytechnique De Grenoble Aromatic sulfonylimides, preparation thereof and use thereof as electrolyte

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446662B1 (ko) 2002-03-22 2004-09-04 주식회사 엘지화학 연료 전지용 복합 폴리머 전해질 막 및 그의 제조방법
KR100968398B1 (ko) * 2002-06-28 2010-07-07 스미또모 가가꾸 가부시끼가이샤 고분자 적층막, 그 제조 방법 및 그 용도
JP2008166004A (ja) 2006-12-27 2008-07-17 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
US20090163692A1 (en) * 2007-12-21 2009-06-25 General Electric Company Aromatic polyethers
JP6069972B2 (ja) 2011-09-13 2017-02-01 東レ株式会社 芳香族スルホンイミド誘導体、スルホンイミド基含有ポリマー、それを用いた高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
JP6179372B2 (ja) * 2013-01-17 2017-08-16 ソニー株式会社 リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US9782767B2 (en) 2013-06-14 2017-10-10 Lg Chem, Ltd. Sulfonate-based compound and polymer electrolyte membrane using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275153A (ja) * 2004-03-25 2005-10-06 Fuji Photo Film Co Ltd 感光性組成物及びこれを用いたパターン形成方法
US8853448B2 (en) * 2006-07-17 2014-10-07 Institut National Polytechnique De Grenoble Aromatic sulfonylimides, preparation thereof and use thereof as electrolyte
US20090269644A1 (en) * 2008-04-24 2009-10-29 3M Innovative Properties Company Proton conducting materials
JP2012078542A (ja) * 2010-10-01 2012-04-19 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
KR20130062252A (ko) * 2011-12-02 2013-06-12 주식회사 엘지화학 고분자 전해질막 및 이를 포함하는 연료전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOULGOAT, FABIEN ET AL.: "Efficient Preparation of New Fluorinated Lithium and Ammonium Sulfonimides", J. ORG. CHEM., vol. 73, no. 14, 2008, pages 5613 - 5616, XP055466337 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160618A1 (en) * 2017-02-28 2018-09-07 Wisconsin Alumni Research Foundation High-and low-potential, water-soluble, robust quinones

Also Published As

Publication number Publication date
CN107207424B (zh) 2019-11-05
JP6478176B2 (ja) 2019-03-06
US10428016B2 (en) 2019-10-01
KR101821480B1 (ko) 2018-01-24
EP3252035A1 (en) 2017-12-06
CN107207424A (zh) 2017-09-26
KR20160092512A (ko) 2016-08-04
EP3252035B1 (en) 2020-03-04
JP2018510843A (ja) 2018-04-19
EP3252035A4 (en) 2018-08-01
US20170362171A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2021172706A1 (ko) 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도
WO2018048134A1 (ko) 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
WO2017159889A1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
WO2018199545A1 (ko) 폴리페닐렌계 음이온 전도체, 이의 제조방법 및 용도
WO2023106657A1 (ko) 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법
WO2021006496A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2019143148A1 (ko) 막 전극 접합체의 제조방법 및 적층체
EP3235809B1 (en) Compound and polymer electrolyte membrane using same
WO2016122287A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
KR102010399B1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2021133045A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2016099050A1 (ko) 새로운 화합물 및 이를 이용한 고분자 전해질막
WO2019139415A1 (ko) 연료전지용 기체확산층, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료 전지 및 연료전지용 기체확산층의 제조방법
CN107922596A (zh) 嵌段聚合物和包含该嵌段聚合物的聚合物电解质膜
WO2023101266A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치
WO2018236094A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름 전지, 고분자 전해질막용 조성물, 및 고분자 전해질막의 제조방법
WO2019143097A1 (ko) 막 전극 접합체의 제조방법 및 적층체
WO2022085979A1 (ko) 막 전극 접합체 및 이를 포함하는 연료전지
WO2022103079A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2018182191A1 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535043

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016743678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15542989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE