[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016121823A1 - 蛍光体、発光装置及び蛍光体の製造方法 - Google Patents

蛍光体、発光装置及び蛍光体の製造方法 Download PDF

Info

Publication number
WO2016121823A1
WO2016121823A1 PCT/JP2016/052360 JP2016052360W WO2016121823A1 WO 2016121823 A1 WO2016121823 A1 WO 2016121823A1 JP 2016052360 W JP2016052360 W JP 2016052360W WO 2016121823 A1 WO2016121823 A1 WO 2016121823A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
hydrofluoric acid
manufacturing
wavelength
Prior art date
Application number
PCT/JP2016/052360
Other languages
English (en)
French (fr)
Inventor
秀幸 江本
基 田中
伊藤 和弘
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2016572108A priority Critical patent/JP6715778B2/ja
Priority to KR1020177023971A priority patent/KR102520635B1/ko
Priority to DE112016000492.3T priority patent/DE112016000492T5/de
Priority to CN201680013888.XA priority patent/CN107429159B/zh
Priority to US15/546,400 priority patent/US10611956B2/en
Publication of WO2016121823A1 publication Critical patent/WO2016121823A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/674Halogenides
    • C09K11/675Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/677Germanates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to a phosphor that efficiently emits red light when excited by blue light, a light-emitting device using the phosphor, and a method for manufacturing the phosphor.
  • a red-emitting phosphor and a method for manufacturing the same are disclosed.
  • This manufacturing method is a manufacturing method in which an A 2 [MF 6 ] crystal serving as a base material of a phosphor and a K 2 MnF 6 crystal containing Mn serving as an emission center are dissolved in hydrofluoric acid and evaporated to dryness.
  • an object of the present invention is to provide an A 2 MF 6 : Mn 4+ phosphor having high fluorescence intensity, a high-intensity light emitting device using the phosphor, and a method for producing the phosphor.
  • the minimum value of light absorption appearing at a wavelength of 300 nm to 350 nm is 67% or less, and the maximum light absorption at a wavelength of 400 nm to 500 nm is 65% or more
  • the phosphor has a Mn content of 0.3% by mass or more and 1.5% by mass or less.
  • the average particle size of the phosphor is preferably 10 ⁇ m or more and 35 ⁇ m or less.
  • the present invention is a light emitting device containing the phosphor and a light emitting light source, wherein the light emitting light source has a peak wavelength of 420 nm or more and 480 nm or less.
  • This light-emitting device preferably includes the phosphor and a green phosphor having a peak wavelength of 510 nm or more and 550 nm or less when receiving excitation light of 455 nm.
  • a green phosphor of the light emitting device Eu-activated ⁇ sialon is preferable.
  • the present invention is a phosphor production method for producing the above-described phosphor, a dissolution step of dissolving a raw material in hydrofluoric acid, a precipitation step of depositing the phosphor from a solution after the dissolution step, and impurities.
  • the hydrofluoric acid aqueous solution obtained in the dissolution step has a cleaning step to be removed and contains the elements A, M and Mn, and the aqueous solution of the hydrofluoric acid aqueous solution after the dissolution step is evaporated after the precipitation in the precipitation step It is the manufacturing method of the fluorescent substance used as the means.
  • the present invention is a phosphor production method for producing the above-described phosphor, a dissolution step of dissolving a raw material in hydrofluoric acid, a precipitation step of depositing the phosphor from a solution after the dissolution step, and impurities.
  • the hydrofluoric acid aqueous solution obtained in the dissolution step has a cleaning step to be removed and contains element A, element M, and Mn, and the precipitation in the precipitation step is used as a means for introducing a poor solvent into the hydrofluoric acid aqueous solution. It is a manufacturing method of fluorescent substance.
  • the poor solvent is preferably water.
  • the present invention is a phosphor production method for producing the above-described phosphor, a dissolution step of dissolving a raw material in hydrofluoric acid, a precipitation step of depositing the phosphor from a solution after the dissolution step, and impurities.
  • Two or more types of hydrofluoric acid aqueous solutions having a cleaning step to be removed and containing element A, element M, and Mn are prepared in the dissolving step, and precipitation in the precipitation step is performed by the two or more types of hydrofluoric acid aqueous solutions. It is the manufacturing method of the fluorescent substance used as the means to mix and react.
  • the phosphor of the present invention is a phosphor that emits excitation light efficiently and has high fluorescence intensity. Since the light-emitting device of the present invention uses the phosphor, the light-emitting device is a high-intensity light-emitting device.
  • the phosphor production method of the present invention can produce a phosphor with high fluorescence intensity.
  • the minimum value of light absorption appearing at a wavelength of 300 nm to 350 nm is 67% or less, and the maximum light absorption at a wavelength of 400 nm to 500 nm is 65% or more
  • the phosphor has a Mn content of 0.3% by mass or more and 1.5% by mass or less.
  • the element A is an alkali metal element, and is preferably one or more elements selected from Na, K, and Rb from the viewpoint of the crystal structure.
  • the M is one or more metal elements selected from Si, Ge, Sn, Ti, Zr, and Hf, and Si, Ge, and Ti are preferable from the viewpoint of fluorescence characteristics and chemical stability.
  • the fluorescence characteristics of the phosphor are affected by the type of element M.
  • F is fluorine and Mn is manganese.
  • Mn takes various oxidation numbers, and among these, Mn 4+ functions as the emission center substance of the phosphor of the present invention.
  • Mn 4+ which is an activating ion of the phosphor has an excitation band in a wavelength range of 300 nm to 400 nm and a wavelength range of 400 nm to 500 nm.
  • the peak wavelength of the excitation band varies depending on the type of the element M, and the excitation band peak wavelength on the long wavelength side is not less than 440 nm and not more than 480 nm.
  • the excitation band peak wavelength on the long wavelength side coincides with the emission wavelength of the blue LED used as the excitation source of the white LED. If the light absorptance in this wavelength region is less than 65%, the luminance of the light emitting device using this phosphor cannot be sufficiently obtained, so the maximum light absorptance at a wavelength of 400 nm to 500 nm is 65% or more. Is preferable, more preferably 66% or more, still more preferably 68% or more, and even more preferably 78% or more.
  • the minimum value of the light absorptance appearing at wavelengths of 300 nm to 350 nm is set to 67% or less for the following reason.
  • the causes of light absorption include impurities and crystal defects in addition to Mn 4+ excitation. This crystal defect traps electrons excited by Mn 4+ and suppresses light emission.
  • the inventors have found that the absorption in the ultraviolet region derived from crystal defects overlaps with the absorption band of Mn 4+ near the wavelength of 350 nm.
  • the minimum value of light absorption that appears at a wavelength of 300 nm to 350 nm is 67% or less. It was. Preferably, the minimum value is 66% or less, more preferably 56% or less.
  • the maximum light absorption rate at a wavelength of 400 nm or more and 500 nm or less is set to 65% or more in order to obtain sufficient luminance in a light emitting device using the phosphor of the present invention.
  • the Mn content in the phosphor of the present invention is 0.3% by mass or more and 1.5% by mass or less. This is because if the Mn content is too low, sufficient fluorescence cannot be obtained, and if it is too high, the crystal emission tends to increase and the fluorescence emission tends to decrease due to concentration quenching.
  • the average particle size of the phosphor of the present invention is preferably 10 ⁇ m or more and 35 ⁇ m or less.
  • the average particle diameter is a volume median diameter obtained from a particle size distribution curve measured by a laser diffraction scattering method.
  • the average particle size is too small, the light absorption rate is significantly reduced, so the fluorescence intensity tends to be low. If the average particle size is too large, the amount of phosphor added to obtain a predetermined color increases, It tends to cause a blockage of the dispenser during mounting.
  • the present invention is a light emitting device containing the phosphor and a light emitting light source, wherein the light emitting light source has a peak wavelength of 420 nm or more and 480 nm or less.
  • the reason why the peak wavelength of the light emission source is set to 420 nm or more and 480 nm or less is that Mn 4+ that is the emission center in the phosphor is efficiently excited and used as blue light of the light emitting device.
  • the phosphor of the present invention has high fluorescence intensity due to the above-described configuration.
  • the high fluorescence intensity specifically means that the internal quantum efficiency is 70% or more and the external quantum efficiency is 57% or more.
  • This light-emitting device preferably includes the phosphor and a green phosphor having a peak wavelength of 510 nm or more and 550 nm or less when receiving excitation light of 455 nm.
  • This light-emitting device can emit white light with a blue light-emitting light source, a red phosphor, and a green phosphor, and can emit different color gamuts depending on the blending ratio of the phosphors.
  • an Eu-activated ⁇ sialon phosphor having a narrow half-width fluorescence spectrum is used as the green phosphor, a backlight light source for liquid crystal having a high color gamut can be obtained.
  • Solvent evaporation method Method of evaporating the solvent after dissolving the element used as the phosphor material in the hydrofluoric acid solvent
  • Poor solvent addition precipitation method adding the poor solvent to precipitate the phosphor
  • Mixed reaction precipitation method a method in which two or more hydrofluoric acid solutions in which an element that is a raw material of the phosphor is dissolved are mixed to cause the phosphor to react and precipitate
  • the phosphor of Example 1 is a phosphor of the general formula: A 2 MF 6 : Mn, and K (potassium) as the element A, Si (silicon) as the element M, and the light absorptance appearing at wavelengths of 300 nm to 350 nm.
  • the excitation wavelength dependence of the light absorption rate of the phosphor of Example 1 was measured at room temperature by the following method.
  • a standard reflector (Spectralon manufactured by Labsphere) having a reflectivity of 99% was set in the side opening ( ⁇ 10 mm) of the integrating sphere ( ⁇ 60 mm).
  • monochromatic light dispersed at a predetermined wavelength from an Xe lamp as a light source is introduced as an excitation light by an optical fiber, and a reflected light spectrum of a standard reflector is measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.).
  • MCPD-7000 spectrophotometer manufactured by Otsuka Electronics Co., Ltd.
  • Excitation light was irradiated at intervals of 5 nm in a range of 300 nm to 700 nm, and the spectrum of reflected light was measured for each excitation light.
  • a concave cell filled with a phosphor so that the surface is smooth is set in the opening of the integrating sphere.
  • monochromatic light is emitted at 5 nm intervals in the range of 300 nm to 700 nm. Irradiated, and the spectrum was measured with excitation light of each wavelength.
  • the obtained spectrum was a reflection spectrum of excitation light and a fluorescence spectrum near red.
  • FIG. 1 shows a plot of the light absorptance of the phosphor of Example 1 measured in this manner against the excitation wavelength.
  • the optical absorptance shows the maximum optical absorptance at excitation wavelengths of 350 nm and 450 nm due to excitation of Mn 4+ , and the minimum value of the optical absorptance appearing in the wavelength range of 300 nm to 350 nm is 55.5%.
  • the maximum light absorptance in the wavelength range of 400 nm to 500 nm was 78.1%.
  • the Mn content contained in the phosphor of Example 1 was 0.75% by mass as a result of measurement by ICP (Inductively Coupled Plasma) emission spectroscopic analysis.
  • the average particle size of the phosphor of Example 1 was determined by measuring the particle size distribution with a laser diffraction scattering type particle size distribution measuring device (LC13 320 manufactured by Beckman Coulter, Inc.). 50 volume% diameter (D50)) was determined. The average particle size of the phosphor of Example 1 was 29.8 ⁇ m. Ethanol was used as a measurement solvent in the measurement apparatus.
  • the internal quantum efficiency and external quantum efficiency in the case of an excitation wavelength of 455 nm were determined by the following method.
  • the number of excitation light photons was calculated from the spectrum in the wavelength range of 450 nm to 465 nm.
  • the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated from the spectrum of the phosphor.
  • the number of excitation reflected light photons was calculated in the same wavelength range as the number of excitation light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
  • the internal quantum efficiency and external quantum efficiency of the phosphor of Example 1 when excited with a wavelength of 455 nm were 82.5% and 64.4%, respectively.
  • Example 1 A method for manufacturing the phosphor of Example 1 will be described.
  • the phosphor of Example 1 is a phosphor manufactured by the above-described poor solvent addition precipitation method.
  • the poor solvent addition precipitation method a dissolution step of dissolving the raw material in hydrofluoric acid, a precipitation step of depositing the phosphor from the solution after the dissolution step, and a cleaning step of removing impurities were adopted.
  • K 2 SiF 6 manufactured by Morita Chemical Co., Ltd., purity of 98% or more
  • K 2 MnF 6 were used as the raw material of the phosphor. Both are powdery. A process for producing K 2 MnF 6 will be described.
  • Teflon registered trademark
  • 800 ml of 40% by mass hydrofluoric acid was added, and 260 g of powdered KHF 2 (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) and potassium permanganate powder ( 12 g of Wako Pure Chemical Industries, Ltd., reagent grade 1) was dissolved.
  • ⁇ Phosphor production process> In a 3000 ml Teflon (registered trademark) beaker, 1000 ml of 55% by weight hydrofluoric acid is added, and 30 g of powdery K 2 SiF 6 (Morita Chemical Co., Ltd., purity 98% or more) and the aforementioned K 2 MnF are added. 5 g of 6 was added and dissolved with sufficient stirring.
  • the X-ray diffraction pattern of the phosphor of Example 1 was measured using an X-ray diffractometer (Uriga IV manufactured by Rigaku Corporation). As a result, the phosphor of Example 1 was single phase with K 2 SiF 6 crystal.
  • Examples 2 to 4 and Comparative Examples 1 to 3 were phosphors produced by the same method as Example 1 except that the addition amounts of K 2 SiF 6 and K 2 MnF 6 shown in the raw material column of Table 1 were changed. It is.
  • the phosphor of Comparative Example 1 has a minimum value of light absorption that appears at a wavelength of 300 nm or more and 350 nm or less, and the Mn content is more than 1.5% by mass, so that the internal quantum efficiency and the external quantum efficiency are acceptable. It was not value.
  • the minimum value of the light absorption rate appearing at a wavelength of 400 nm to 500 nm was smaller than 65% and the Mn content was larger than 1.5% by mass, so that the external quantum efficiency was not an acceptable value.
  • the external quantum efficiency was not an acceptable value because the minimum value of the light absorption rate appearing at a wavelength of 300 nm to 350 nm was greater than 67%.
  • Comparative Example 4 Although not shown in Table 1, the phosphor of Comparative Example 4 is a phosphor manufactured by a mixed reaction precipitation method which is a manufacturing method different from the above-described Examples.
  • KHF 2 powder special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Solution Y was prepared.
  • the hydrofluoric acid solution Y was added to the hydrofluoric acid solution X being stirred with a stirrer.
  • the phosphor was precipitated in the X solution by the addition of the Y solution, and after adding the entire amount of the Y solution, the mixture was stirred for 20 minutes and then allowed to stand to precipitate the solid content.
  • the phosphor of Comparative Example 4 is a single phase with K 2 SiF 6 crystal, has a minimum value of light absorptance appearing in the wavelength range of 300 nm to 350 nm, 67.3%, and within the wavelength range of 400 to 500 nm.
  • the maximum light absorption rate was 81.5%.
  • the Mn content was 0.68% by mass, and the average particle size was 30.2 ⁇ m.
  • FIG. 1 shows the excitation wavelength dependence of the optical absorptance of Comparative Example 4.
  • the internal quantum efficiency and external quantum efficiency of the phosphor of Comparative Example 4 were 68.9% and 56.1%, respectively.
  • the phosphor of Comparative Example 4 has a Mn content and particle size distribution similar to those of Example 1, but reflects the difference in excitation wavelength dependence of the light absorption rate as shown in FIG. Both the quantum efficiency and the external quantum efficiency were low values.
  • the phosphor of Example 5 is a phosphor of the general formula: A 2 MF 6 : Mn, and K (potassium) as the element A, Ge (germanium) as the element M, and the light absorptance appearing at wavelengths of 300 nm to 350 nm.
  • Phosphor having a minimum value of 46.0%, a maximum light absorption rate of 79.6% at a wavelength of 400 nm to 500 nm, an Mn content of 0.61% by mass, and an average particle size of 38.4 ⁇ m It is. Table 2 shows these characteristic values and effects of the invention described later.
  • the manufacturing method of the phosphor in Example 5 is a mixed reaction precipitation method.
  • Teflon registered trademark
  • GeO 2 powder purity 99.99%, purity 99.99%)
  • K 2 3 g of MnF 6 powder K 2 MnF 6 produced in Example 1
  • Example 5 a solution prepared by dissolving 46.9 g of KHF 2 powder in 100 ml of 48% by mass hydrofluoric acid was added to this solution.
  • Phosphor was precipitated by hydrofluoric acid solution of KHF 2. After the entire amount of KHF 2 hydrofluoric acid solution was added, the solution was stirred for 20 minutes and then allowed to stand to precipitate a solid content. After confirming the precipitation, the supernatant was removed.
  • Example 5 The precipitate is repeatedly washed with 20% by mass of hydrofluoric acid until it becomes bright yellow, further washed with methanol, the solid part is separated and recovered by filtration, and the residual methanol is evaporated and removed by drying treatment. Thus, the phosphor of Example 5 was obtained.
  • Example 5 For the phosphor of Comparative Example 5, the production method was the same as that of Example 5 except that “a solution obtained by dissolving 46.9 g of KHF 2 powder in 100 ml of 48% by mass hydrofluoric acid” and “46.9 g of KHF 2 powder”. The characteristic values and evaluation are as shown in Table 2.
  • Comparative Example 5 the minimum value of the light absorptance seen in the vicinity of 300 nm is very high, the particle size is small, and the light absorptance in the vicinity of 450 nm is low. The value was lower than. Changing the method of adding KHF 2 from solution to powder reduced crystal growth.
  • Example 6 and Example 7 were not shown in the table
  • the internal quantum efficiency and the external quantum efficiency were lower than those in Example 1, but both were acceptable values.
  • Example 1 Although not shown as an example, even with the solvent evaporation method, a phosphor equivalent to that in Example 1 could be obtained by performing synthesis with the generation of crystal defects suppressed as much as possible.
  • Example 8 is a light emitting device having the phosphor of Example 1 and an LED as a light emitting source, and the LED has a peak wavelength of 455 nm.
  • the light emitting device is specifically a lighting device.
  • the light-emitting device of Example 8 was a light-emitting device having high emission intensity because the phosphor of Example 1 was used.
  • Example 9 is a light-emitting device in which the phosphor of Example 1 and the green phosphor having a peak wavelength of 528 nm when receiving excitation light of 455 nm are used as the phosphor of Example 8.
  • the green phosphor is (Ba, Sr) 2 SiO 4 : Eu. Since the light emitting device uses a green phosphor, the light emitting device emits white light.
  • Example 9 was a light-emitting device having high emission intensity because the phosphor of Example 1 was used.
  • Example 10 is a light emitting device in which Example 9 (Ba, Sr) 2 SiO 4 : Eu was Eu-activated ⁇ sialon.
  • Example 10 was a light-emitting device having superior high-temperature stability and moisture resistance than Example 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

 一般式:A2MF6:Mnで表される蛍光体である。元素Aはアルカリ金属元素であり、元素MはSi、Ge、Sn、Ti、Zr及びHfから選ばれる一種以上の四価の金属元素である。波長300nm以上350nm以下に現れる光吸収率の極小値が67%以下である。波長400nm以上500nm以下での最大の光吸収率が65%以上である。Mn含有量が0.3質量%以上1.5質量%以下である。

Description

蛍光体、発光装置及び蛍光体の製造方法
本発明は、青色光で励起された際に効率良く赤色を発光する蛍光体、それを用いた発光装置及び蛍光体の製造方法に関する。
特許文献1には、A2[MF6]:Mn4+(元素Aは、Li、Na、K、Rb、Cs、NH4など、元素MはGe、Si、Sn、Ti、Zrなど)で表される赤色発光蛍光体及びその製造方法が開示されている。この製造方法は、蛍光体の母体となるA2[MF6]結晶と発光中心となるMnを含むK2MnF6結晶をフッ化水素酸中に溶解し、蒸発乾固させる製造方法である。
特表2009-528429号公報
しかしながら、この蛍光体は、光学特性が不十分であり、実用化には更なる蛍光強度の向上が必要である。従って、本発明の目的は、蛍光強度の高いA2MF6:Mn4+蛍光体、この蛍光体を用いた高輝度の発光装置及び蛍光体の製造方法を提供することにある。
本発明は、一般式:A2MF6:Mn(元素Aはアルカリ金属元素であり、元素MはSi、Ge、Sn、Ti、Zr及びHfから選ばれる一種以上の四価の金属元素である。)で表される蛍光体であって、波長300nm以上350nm以下に現れる光吸収率の極小値が67%以下であり、波長400nm以上500nm以下での最大の光吸収率が65%以上で、Mn含有量が0.3質量%以上1.5質量%以下である蛍光体である。この蛍光体の平均粒径は10μm以上35μm以下が好ましい。
本発明は、前記蛍光体と、発光光源とを含有する発光装置であって、前記発光光源のピーク波長が420nm以上480nm以下の発光装置である。
この発光装置は、蛍光体として、前記蛍光体と、励起光455nmを受けた際のピーク波長が510nm以上550nm以下の緑色蛍光体を有することが好ましい。この発光装置の緑色蛍光体としては、Eu付活βサイアロンが好ましい。
本発明は、上述の蛍光体を製造する蛍光体の製造方法であり、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程、及び、不純物を除去する洗浄工程を有し、溶解工程で得られるフッ化水素酸水溶液が元素A、元素M及びMnを含有し、析出工程での析出を溶解工程後のフッ化水素酸水溶液の水溶液を蒸発させる手段とした蛍光体の製造方法である。
本発明は、上述の蛍光体を製造する蛍光体の製造方法であり、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程、及び、不純物を除去する洗浄工程を有し、溶解工程で得られるフッ化水素酸水溶液が元素A、元素M及びMnを含有し、析出工程での析出をフッ化水素酸水溶液に貧溶媒を投入する手段とした蛍光体の製造方法である。
前記貧溶媒は水であることが好ましい。
本発明は、上述の蛍光体を製造する蛍光体の製造方法であり、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程、及び、不純物を除去する洗浄工程を有し、溶解工程で元素A、元素M及びMnを含有する二種類以上のフッ化水素酸水溶液を調製し、析出工程での析出を前記二種類以上のフッ化水素酸水溶液を混合して反応させる手段とした蛍光体の製造方法である。
本発明の蛍光体は、励起光を効率良く蛍光発光させ、蛍光強度が高い蛍光体である。本発明の発光装置は当該蛍光体を用いているので、高輝度の発光装置である。本発明の蛍光体の製造方法は、蛍光強度の高い蛍光体を製造することができる。
実施例1及び比較例4の蛍光体の吸収率の励起波長依存性を示す参考図。
本発明は、一般式:A2MF6:Mn(元素Aはアルカリ金属元素であり、元素MはSi、Ge、Sn、Ti、Zr及びHfから選ばれる一種以上の四価の金属元素である。)で表される蛍光体であって、波長300nm以上350nm以下に現れる光吸収率の極小値が67%以下であり、波長400nm以上500nm以下での最大の光吸収率が65%以上で、Mn含有量が0.3質量%以上1.5質量%以下である蛍光体である。前記元素Aはアルカリ金属元素であり、結晶構造の観点から、好ましくはNa、K、Rbから選ばれる一種以上の元素である。
前記Mは、Si、Ge、Sn、Ti、Zr及びHfから選ばれる一種以上の金属元素であり、蛍光特性と化学的安定性からSi、Ge、Tiが好ましい。前記蛍光体の蛍光特性は元素Mの種類に影響される。Fはフッ素であり、Mnはマンガンである。Mnは様々な酸化数を取るが、その中でもMn4+が本発明の蛍光体の発光中心物質として機能する。
蛍光体の付活イオンであるMn4+は、300nm以上400nm以下の波長域と400nm以上500nm以下の波長域に励起帯を有する。励起帯のピーク波長は元素Mの種類に応じて異なり、その長波長側の励起帯ピーク波長は440nm以上480nm以下である。
この長波長側の励起帯ピーク波長は、白色LEDの励起源として使用される青色LEDの発光波長と一致している。この波長域での光吸収率が65%未満であると、この蛍光体を使用した発光装置の輝度が十分に得られないので、波長400nm以上500nm以下での最大の光吸収率は65%以上が好ましく、より好ましくは66%以上、さらに好ましくは68%以上、さらにより好ましくは78%以上であってよい。
本発明の蛍光体において、波長300nm以上350nm以下に現れる光吸収率の極小値を67%以下としたのは、次の理由による。
この理由は、波長300nm以上350nm以下の領域の紫外光の光吸収が、蛍光体の内部量子効率(吸収した励起フォトンを蛍光フォトンに変換する効率)と負の相関があるためである。
光吸収の原因には、Mn4+の励起以外に、不純物、及び、結晶欠陥がある。この結晶欠陥は、Mn4+が励起した電子をトラップし、発光を抑制する。本発明者らは、結晶欠陥に由来する紫外光域の吸収と波長350nm付近のMn4+の吸収帯が重なることを見出した。
波長300nm以上350nm以下で光吸収率の極小値があり、この極小値が低いほど蛍光体の内部量子効率が高いため、「波長300nm以上350nm以下に現れる光吸収率の極小値を67%以下」とした。好ましくは当該極小値は66%以下、より好ましくは56%以下とすることができる。
本発明の蛍光体において、波長400nm以上500nm以下での最大の光吸収率が65%以上としたのは、本発明の蛍光体を使用する発光装置で十分な輝度を得るためである。
本発明の蛍光体におけるMn含有量は、0.3質量%以上1.5質量%以下である。Mn含有量があまりに少ないと十分な蛍光発光が得られない傾向にあり、あまりに多いと結晶欠陥増大及び濃度消光による蛍光発光の低下が起こる傾向にあるためである。
本発明の蛍光体の平均粒径は、10μm以上35μm以下が好ましい。当該平均粒径は、レーザー回折散乱法により測定される粒度分布曲線から求められる体積メディアン径である。
平均粒径があまりに小さいと、光吸収率が大幅に低下するために蛍光強度が低くなる傾向にあり、平均粒径があまりに大きいと、所定の色を得るための蛍光体添加量が多くなり、実装時のディスペンサー閉塞を引き起こす傾向にある。
本発明は、前記蛍光体と、発光光源とを含有する発光装置であって、前記発光光源のピーク波長が420nm以上480nm以下の発光装置である。発光光源のピーク波長を420nm以上480nm以下としたのは、蛍光体中の発光中心であるMn4+が効率良く励起されるとともに、発光装置の青色光として利用するためである。
本発明の蛍光体は、上述の構成により、高い蛍光強度を有する。本発明において高い蛍光強度とは、具体的には、内部量子効率で70%以上、外部量子効率で57%以上のことをいう。
この発光装置は、蛍光体として、前記蛍光体と、励起光455nmを受けた際のピーク波長が510nm以上550nm以下の緑色蛍光体を有することが好ましい。この発光装置は、青色の発光光源、赤色蛍光体及び緑色蛍光体で白色を発光でき、さらに、蛍光体の配合比の違いにより異なる色域を発光させることができる。緑色蛍光体として半値幅の狭い蛍光スペクトルのEu付活βサイアロン蛍光体を用いると、高色域の液晶用バックライト光源が得られる。
本発明の蛍光体の製造方法としては次の方法がある。
1)溶媒蒸発方法:フッ化水素酸溶媒中に蛍光体の原料となる元素を溶解させた後、溶媒を蒸発させる方法
2)貧溶媒添加析出方法:貧溶媒を添加して蛍光体を析出させる方法
3)混合反応析出方法:蛍光体の原料となる元素を溶解させた二種以上のフッ化水素酸溶液を混合して蛍光体を反応析出させる方法
いずれの製造方法においても、結晶成長の過程でMn4+の励起した電子をトラップし発光を抑制してしまう結晶欠陥の生成をできるだけ低減することが肝要である。
実施例、比較例に基づいて、本発明を詳細に説明する。
実施例1の蛍光体は、一般式:A2MF6:Mnの蛍光体であり、元素AとしてK(カリウム)、元素MとしてSi(ケイ素)、波長300nm以上350nm以下に現れる光吸収率の極小値が55.5%であり、波長400nm以上500nm以下での最大の光吸収率が78.1%で、Mn含有量が0.75質量%で、平均粒径が29.8μmの蛍光体である。これらの特性値と後述する発明の効果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1の蛍光体の特性値の測定方法及び製造方法について説明する。
実施例1の蛍光体の光吸収率の励起波長依存性は、次の方法により、常温下で測定した。
積分球(φ60mm)の側面開口部(φ10mm)に反射率が99%の標準反射板(Labsphere社製スペクトラロン)をセットした。この積分球に、発光光源としてのXeランプから所定の波長に分光した単色光を励起光として、光ファイバーにより導入し、標準反射板の反射光スペクトルを分光光度計(大塚電子株式会社製MCPD-7000)により220~800nmの波長範囲で測定した。励起光は、300nm以上700nm以下の範囲において5nm間隔で照射し、それぞれの励起光に対して反射光のスペクトルを測定した。
凹型のセルに表面が平滑になるように蛍光体を充填したものを積分球の開口部にセットし、上記標準反射板の場合と同様に、単色光を300nm以上700nm以下の範囲において5nm間隔で照射し、各々の波長の励起光でスペクトルを測定した。
得られたスペクトルは、励起光の反射スペクトルと赤色付近の蛍光スペクトルであった。
得られたスペクトルにおいて、励起設定波長の-5nm~+10nmの範囲で励起反射光フォトン数を算出し、蛍光体における励起反射光フォトン数を標準反射板の値で除して、各励起波長での蛍光体の光吸収率を算出した。この様にして測定した実施例1の蛍光体の光吸収率を励起波長に対してプロットしたものを図1に示す。
光吸収率は、Mn4+の励起により、励起波長が350nmと450nmに最大の光吸収率を示しており、波長300nm以上350nm以下の範囲に現れる光吸収率の極小値が55.5%であり、波長400nm以上500nm以下の範囲での最大の光吸収率が78.1%であった。
実施例1の蛍光体に含まれるMn含有量は、ICP(Inductively Coupled Plasma)発光分光分析により測定した結果、0.75質量%であった。
実施例1の蛍光体の平均粒径は、粒度分布をレーザー回折散乱式の粒度分布測定装置(ベックマン・コールター社製LC13 320)により測定し、得られた累積粒度分布曲線から、平均粒径(50体積%径(D50))を求めた。実施例1の蛍光体の平均粒径は29.8μmであった。前記測定装置における測定溶媒には、エタノールを用いた。
励起波長455nmの場合の内部量子効率と外部量子効率を、次の方法で求めた。
反射標準板に対するスペクトルにおいて、450nm以上465nm以下の波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
蛍光体に対するスペクトルから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。
励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。得られたフォトン数から外部量子効率(=Qem/Qex×100)、内部量子効率(=Qem/(Qex-Qref)×100)を求めた。
実施例1の蛍光体の波長455nm励起での内部量子効率、外部量子効率はそれぞれ82.5%、64.4%であった。
実施例1の蛍光体の製造方法について説明する。
実施例1の蛍光体は、上述の貧溶媒添加析出方法で製造した蛍光体である。貧溶媒添加析出方法として、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程で、及び、不純物を除去する洗浄工程を採用した。
蛍光体の原料は、K2SiF6(森田化学株式会社製、純度98%以上)及びK2MnF6を採用した。いずれも粉末状である。K2MnF6の製造工程について説明する。
<K2MnF6の製造工程>
容量1リットルのテフロン(登録商標)製のビーカーに濃度40質量%フッ化水素酸800mlを入れ、粉末状のKHF2(和光純薬工業株式会社製、特級試薬)260g及び過マンガン酸カリウム粉末(和光純薬工業株式会社製、試薬1級)12gを溶解させた。
このフッ化水素酸反応液をマグネティックスターラーで撹拌しながら、30%過酸化水素水(和光純薬工業株式会社製、特級試薬)8mlを少しずつ滴下した。
過酸化水素水の滴下量が一定量を超えると黄色粒子が析出し始め、反応液の色が紫色から変化し始めた。過酸化水素水を一定量滴下後、しばらく撹拌を続けた後、撹拌を止め、析出粒子を沈殿させた。上記反応は全て常温下で行った。
<K2MnF6の洗浄工程>
沈殿後、上澄み液を除去し、メタノールを加え、撹拌・静置し、上澄み液を除去し、更にメタノールを加えるという操作を、液が中性になるまで繰り返した。
その後、ろ過で析出粒子を回収し、更に乾燥を行い、メタノールを完全に蒸発除去し、粉末状のK2MnF6を19g得た。
<蛍光体の製造工程>
容量3000mlのテフロン(登録商標)製のビーカーに濃度55質量%フッ化水素酸1000mlを入れ、粉末状のK2SiF6(森田化学株式会社製、純度98%以上)30gと前述のK2MnF6を5g加え、十分に撹拌して溶解した。
このフッ化水素酸水溶液を撹拌しながら、蒸留水1500mlをビーカーにより約1分間で注ぎ入れた。蒸留水の投入により、反応液中に黄色粉末が生成していることを目視にて確認した。これら製造工程は全て常温で行った。
<蛍光体の洗浄工程>
蒸留水全量を入れた後、更に、20分間撹拌し、その後、静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去し、20質量%のフッ化水素酸及びメタノールでの洗浄を行い、濾過により固形部を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去し、黄色の蛍光体粉末を得た。
実施例1の蛍光体に対して、X線回折装置(リガク株式会社製Ultima IV)を用いてX線回折パターンの測定を行った。その結果、実施例1の蛍光体は、K2SiF6結晶と単一相であった。
[実施例2~4、比較例1~3]
実施例2~4、比較例1~3は、表1の原料の欄に示すK2SiF6及びK2MnF6の添加量を変えた以外は、実施例1と同じ方法で製造した蛍光体である。
比較例1の蛍光体は、波長300nm以上350nm以下に現れる光吸収率の極小値が67%より大きく、Mn含有量が1.5質量%より多かったので、内部量子効率及び外部量子効率が合格値でなかった。
比較例2の蛍光体は、波長400nm以上500nm以下に現れる光吸収率の極小値が65%より小さく、Mn含有量が1.5質量%より多かったので、外部量子効率が合格値でなかった。
比較例3の蛍光体は、波長300nm以上350nm以下に現れる光吸収率の極小値が67%より大きかったので、外部量子効率が合格値でなかった。
[比較例4]
比較例4の蛍光体は、表1には示さなかったが、上述の実施例とは異なる製造方法である混合反応析出方法で製造した蛍光体である。
常温下で、容量500mlのテフロン(登録商標)製のビーカーに濃度55質量%フッ化水素酸250mlを入れ、SiO2粉末(高純度化学株式会社製、純度99.9%)12g及びK2MnF6粉末(実施例1で製造したK2MnF6)4gを加えて溶解し、フッ化水素酸溶液Xを調製した。
他方、容量300mlのテフロン(登録商標)製のビーカーに濃度55質量%フッ化水素酸100mlにKHF2粉末(和光純薬工業株式会社製、特級試薬)46.9gを溶解し、フッ化水素酸溶液Yを調製した。
スターラーで撹拌を行っているフッ化水素酸溶液Xにフッ化水素酸溶液Yを添加した。Y液の添加によりX液中に蛍光体が析出し、Y液を全量入れた後、20分間撹拌し、その後、静置して固形分を沈殿させた。
沈殿確認後、上澄み液を除去し、20質量%のフッ化水素酸及びメタノールでの洗浄を行い、濾過により固形部を分離回収し、更に乾燥処理により、黄色の蛍光体粉末を得た。
比較例4の蛍光体は、K2SiF6結晶と単一相であり、波長300nm~350nmの範囲に現れる光吸収率の極小値が67.3%であり、波長400~500nmの範囲内での最大の光吸収率が81.5%であった。そのMn含有量は0.68質量%であり、その平均粒径は、30.2μmであった。
図1に、比較例4の光吸収率の励起波長依存性を示す。
比較例4の蛍光体の内部量子効率、外部量子効率はそれぞれ68.9%、56.1%であった。比較例4の蛍光体は、Mn含有量と粒度分布が実施例1の蛍光体に類似しているが、図1に示す様に光吸収率の励起波長依存性の違いを反映して、内部量子効率及び外部量子効率が共に低い値であった。
[実施例5]
実施例5の蛍光体は、一般式:A2MF6:Mnの蛍光体であり、元素AとしてK(カリウム)、元素MとしてGe(ゲルマニウム)、波長300nm以上350nm以下に現れる光吸収率の極小値が46.0%であり、波長400nm以上500nm以下での最大の光吸収率が79.6%で、Mn含有量が0.61質量%で、平均粒径が38.4μmの蛍光体である。これらの特性値と後述する発明の効果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例5の蛍光体の製造方法について説明する。
この実施例5での蛍光体の製造方法は、混合反応析出方法である。
常温下で、容量500mlのテフロン(登録商標)製のビーカーに濃度48質量%フッ化水素酸250mlを入れ、GeO2粉末(高純度化学株式会社製、純度99.99%)20.9g及びK2MnF6粉末(実施例1で製造したK2MnF6)3gを加えて溶解し、フッ化水素酸溶液を調製した。
この溶液に対して、実施例5では、濃度48質量%フッ化水素酸100mlにKHF2粉末46.9gを溶解した溶液を添加した。
KHF2のフッ化水素酸溶液により蛍光体が析出した。KHF2のフッ化水素酸溶液を全量入れた後、20分間撹拌し、その後、静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去した。
沈殿物を鮮やかな黄色になるまで20質量%のフッ化水素酸で繰り返し洗浄し、更にメタノールでの洗浄を行い、濾過により固形部を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去し、実施例5の蛍光体を得た。
実施例5の内部量子効率及び外部量子効率はいずれも合格値であった。
比較例5の蛍光体は、その製造方法を、実施例5での「濃度48質量%フッ化水素酸100mlにKHF2粉末46.9gを溶解した溶液」を、「KHF2粉末46.9g」にした蛍光体であり、特性値及び評価は表2に示すとおりである。
比較例5は、300nm近傍で見られる光吸収率の極小値が非常に高く、粒径が小さく、450nm付近での光吸収率が低くなったために、内部量子効率、外部量子効率が実施例5に比べ低い値であった。KHF2の添加方法を溶液から粉末に変更したことは、結晶成長性を低下させた。
実施例6及び実施例7は、表には示さなかったが、実施例1の平均粒径を8μm、40μmとした蛍光体である。内部量子効率及び外部量子効率は、実施例1よりも低かったが、いずれも合格値であった。
実施例として示さないが、溶媒蒸発方法であっても、結晶欠陥の生成をできるだけ抑えた合成を行うことにより、実施例1と同等の蛍光体を得ることができた。
実施例8は、実施例1の蛍光体と、発光光源としてのLEDを有する発光装置であって、前記LEDのピーク波長が455nmの発光装置である。当該発光装置は、具体的には照明装置である。実施例8の発光装置は、実施例1の蛍光体を用いたので、高い発光強度を有する発光装置であった。
実施例9は、実施例8の蛍光体として、実施例1の蛍光体と、励起光455nmを受けた際のピーク波長が528nmの緑色蛍光体とした発光装置である。緑色蛍光体は、具体的には、(Ba,Sr)2SiO4:Euである。当該発光装置は、緑色蛍光体を用いたので、白色を発光する発光装置である。
実施例9は、実施例1の蛍光体を用いたので、高い発光強度を有する発光装置であった。
実施例10は、実施例9(Ba,Sr)2SiO4:EuをEu付活βサイアロンにした発光装置である。
実施例10は、実施例9よりも、優れた高温安定性、耐湿性を有する発光装置であった。

Claims (9)

  1. 一般式:A2MF6:Mn(元素Aはアルカリ金属元素であり、元素MはSi、Ge、Sn、Ti、Zr及びHfから選ばれる一種以上の四価の金属元素である。)で表される蛍光体であって、波長300nm以上350nm以下に現れる光吸収率の極小値が67%以下であり、波長400nm以上500nm以下での最大の光吸収率が65%以上で、Mn含有量が0.3質量%以上1.5質量%以下である蛍光体。
  2. 平均粒径が10μm以上35μm以下である請求項1記載の蛍光体。
  3. 請求項1又は請求項2記載の蛍光体と、発光光源とを含有する発光装置であって、前記発光光源のピーク波長が420nm以上480nm以下である発光装置。
  4. 蛍光体として、請求項1又は請求項2記載の蛍光体と、励起光455nmを受けた際のピーク波長が510nm以上550nm以下の緑色蛍光体を有する請求項3記載の発光装置。
  5. 前記緑色蛍光体がEu付活βサイアロンである請求項4記載の発光装置。
  6. 請求項1又は2に記載の蛍光体を製造する蛍光体の製造方法であり、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程、及び、不純物を除去する洗浄工程を有し、溶解工程で得られるフッ化水素酸水溶液が元素A、元素M及びMnを含有し、析出工程での析出を溶解工程後のフッ化水素酸水溶液の水溶液を蒸発させる手段とした蛍光体の製造方法。
  7. 請求項1又は2に記載の蛍光体を製造する蛍光体の製造方法であり、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程、及び、不純物を除去する洗浄工程を有し、溶解工程で得られるフッ化水素酸水溶液が元素A、元素M及びMnを含有し、析出工程での析出をフッ化水素酸水溶液に貧溶媒を投入する手段とした蛍光体の製造方法。
  8. 前記貧溶媒が水である請求項7記載の蛍光体の製造方法。
  9. 請求項1又は2に記載の蛍光体を製造する蛍光体の製造方法であり、原料をフッ化水素酸に溶解する溶解工程と、溶解工程後の溶液から蛍光体を析出させる析出工程、及び、不純物を除去する洗浄工程を有し、溶解工程で元素A、元素M及びMnを含有する二種類以上のフッ化水素酸水溶液を調製し、析出工程での析出を前記二種類以上のフッ化水素酸水溶液を混合して反応させる手段とした蛍光体の製造方法。
PCT/JP2016/052360 2015-01-27 2016-01-27 蛍光体、発光装置及び蛍光体の製造方法 WO2016121823A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016572108A JP6715778B2 (ja) 2015-01-27 2016-01-27 蛍光体、発光装置及び蛍光体の製造方法
KR1020177023971A KR102520635B1 (ko) 2015-01-27 2016-01-27 형광체, 발광 장치 및 형광체의 제조 방법
DE112016000492.3T DE112016000492T5 (de) 2015-01-27 2016-01-27 Leuchtstoff, lichtemittierende Vorrichtung und Verfahren zur Herstellung eines Leuchtstoffs
CN201680013888.XA CN107429159B (zh) 2015-01-27 2016-01-27 荧光体、发光装置及荧光体的制造方法
US15/546,400 US10611956B2 (en) 2015-01-27 2016-01-27 Phosphor, light emitting device, and method for producing phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015013263 2015-01-27
JP2015-013263 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016121823A1 true WO2016121823A1 (ja) 2016-08-04

Family

ID=56543433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052360 WO2016121823A1 (ja) 2015-01-27 2016-01-27 蛍光体、発光装置及び蛍光体の製造方法

Country Status (7)

Country Link
US (1) US10611956B2 (ja)
JP (1) JP6715778B2 (ja)
KR (1) KR102520635B1 (ja)
CN (1) CN107429159B (ja)
DE (1) DE112016000492T5 (ja)
TW (1) TWI688638B (ja)
WO (1) WO2016121823A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209311A (ja) * 2008-09-05 2010-09-24 Mitsubishi Chemicals Corp 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置
JP2013014715A (ja) * 2011-07-06 2013-01-24 Nichia Corp フッ化物蛍光体及びそのフッ化物蛍光体を用いた発光装置
WO2013137144A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 白色照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497973B2 (en) 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
KR101592836B1 (ko) * 2008-02-07 2016-02-05 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 장치, 백라이트, 컬러 화상 표시 장치, 및 그들에 사용하는 형광체
MY167700A (en) * 2011-04-08 2018-09-21 Shinetsu Chemical Co Preparation of complex fluoride and complex fluoride phosphor
JP6394307B2 (ja) * 2014-01-30 2018-09-26 信越化学工業株式会社 複フッ化物蛍光体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209311A (ja) * 2008-09-05 2010-09-24 Mitsubishi Chemicals Corp 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置
JP2013014715A (ja) * 2011-07-06 2013-01-24 Nichia Corp フッ化物蛍光体及びそのフッ化物蛍光体を用いた発光装置
WO2013137144A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 白色照明装置

Also Published As

Publication number Publication date
JPWO2016121823A1 (ja) 2017-11-02
TWI688638B (zh) 2020-03-21
US10611956B2 (en) 2020-04-07
US20180072946A1 (en) 2018-03-15
KR102520635B1 (ko) 2023-04-11
CN107429159B (zh) 2020-06-16
CN107429159A (zh) 2017-12-01
JP6715778B2 (ja) 2020-07-01
TW201634664A (zh) 2016-10-01
KR20170108115A (ko) 2017-09-26
DE112016000492T5 (de) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6155383B2 (ja) 蛍光体、発光素子及び発光装置
JP6155382B2 (ja) 蛍光体、発光素子及び発光装置
JP6273394B1 (ja) フッ化物蛍光体とそれを用いた発光装置
WO2016133110A1 (ja) 蛍光体の製造方法
TWI758494B (zh) 氟化物螢光體及使用其之發光裝置
TW201726892A (zh) 氟化物螢光體、發光裝置及氟化物螢光體之製造方法
JP6359066B2 (ja) マンガン付活複フッ化物蛍光体原料用のフッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体の製造方法
JP6826445B2 (ja) 六フッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体
CN113966377B (zh) 荧光体和荧光体的制造方法
WO2016121823A1 (ja) 蛍光体、発光装置及び蛍光体の製造方法
JP6812231B2 (ja) フッ化物蛍光体の製造方法
JP6590439B2 (ja) 蛍光体の製造方法
WO2021029290A1 (ja) 六フッ化マンガン酸カリウム、及びマンガン賦活複フッ化物蛍光体の製造方法
WO2015129742A1 (ja) 蛍光体、発光素子及び発光装置
WO2021029289A1 (ja) 六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法
WO2023176559A1 (ja) 複フッ化物蛍光体の製造方法
WO2023157885A1 (ja) 蛍光体の製造方法
JP2019001985A (ja) フッ化物蛍光体とそれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572108

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000492

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20177023971

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546400

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16743426

Country of ref document: EP

Kind code of ref document: A1