WO2016121775A1 - 細胞の培養方法及びキット - Google Patents
細胞の培養方法及びキット Download PDFInfo
- Publication number
- WO2016121775A1 WO2016121775A1 PCT/JP2016/052219 JP2016052219W WO2016121775A1 WO 2016121775 A1 WO2016121775 A1 WO 2016121775A1 JP 2016052219 W JP2016052219 W JP 2016052219W WO 2016121775 A1 WO2016121775 A1 WO 2016121775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- porous membrane
- polyimide porous
- polyimide
- sheet
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/02—Membranes; Filters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/14—Scaffolds; Matrices
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
Definitions
- the present invention relates to a cell culture method and kit. Specifically, the present invention relates to a cell culture method and kit using a carrier exposed to air. The present invention also relates to a method for culturing cells by moving them on a polyimide porous membrane.
- Cell culture cells generally exist as a three-dimensional population in vivo, but in classic planar culture, cells are cultivated in a single layer so that the cells stick to the container. It has been reported that the properties of cells vary greatly depending on the culture environment. As for suspension culture in which cells are cultured in a liquid culture medium, some cells are suitable for suspension culture, while others are not suitable.
- Nonpatent literature 1 oxygen deficiency literature 1
- Patent Document 2 attempts have been made to improve oxygen concentration by using microbubbles (Patent Document 1) and a uniform oxygen supply method in microcarrier culture (Patent Document 2).
- Patent Document 3 a liquid phase / gas phase exposure bioreactor in hollow fiber culture
- Patent Document 4 a system in which hollow fibers inhabiting cells rotate and are alternately exposed to a gas phase and a liquid phase
- Patent Document 4 a system that is entirely exposed to the gas phase
- Patent Document 4 a system that is entirely exposed to the gas phase
- the cells are roughly classified into two types, floating cells and adherent cells, according to the characteristics of their survival form.
- adherent cells In the culture of adherent cells, in the process of cell division and proliferation, there is a finite range of scaffolds on which the cells are growing, so it is not necessary to reach the growth limit on the scaffolds as they grow. I don't get it. This is the same truth whether the culture is performed on a flat surface such as a standard petri dish or three-dimensional culture using a medium.
- Passage is indispensable to promote cell growth and is an important task for any application or method.
- cells are treated with trypsin or collagenase, removed from the scaffold, passed through the cell suspension.
- the work of sowing again is a work involving risks such as contamination, and is also a great effort, and there is a view that stress on cells cannot be overlooked.
- microcarrier culture which is a typical culture method using a medium
- cell exchange between carriers has been achieved, but it is handled only in microcarrier culture, and the shape and size of microcarriers It is not a method that can escape from the regularity of the above, but is limited to the form of microcarriers.
- the polyimide porous membrane polyimide is a general term for polymers containing an imide bond in a repeating unit.
- the aromatic polyimide means a polymer in which aromatic compounds are directly linked by an imide bond.
- Aromatic polyimide has a conjugated structure through the imide bond between aromatic and aromatic, so it has a rigid and strong molecular structure, and the imide bond has a strong intermolecular force, so it has a very high level of heat. Has mechanical, mechanical and chemical properties.
- Patent Documents 8 to 10 are particularly excellent in permeability of substances such as gas, high porosity, excellent smoothness of both surfaces, relatively high strength, and in the direction of film thickness despite high porosity.
- a polyimide porous membrane having a large number of macrovoids having excellent proof stress against compressive stress is described. These are all polyimide porous membranes prepared via an amic acid.
- Patent No. 5549209 Patent No. 5460241 WO2005 / 121311 JP 2001-190270 A JP 7-313151 A JP-A-5-335368 JP2003-180337 WO2010 / 038873 JP2011-219585 JP2011-219586
- An object of the present invention is to provide a cell culture method and kit. Specifically, it is an object to provide a method and kit for culturing cells on a carrier exposed to air.
- the present inventors have found that a sheet-shaped cell culture carrier such as a polyimide porous membrane is suitable for cell adhesion and culture, and have arrived at the present invention.
- the present inventors have found the possibility of culturing many cells in a very small volume by culturing cells on a sheet-like cell culture carrier such as a polyimide porous membrane and directly contacting the gas phase. The range was verified. It is expected that the efficiency of oxygen supply will be greatly improved by bringing the carrier into direct contact with the gas phase, but cell death due to depletion of the medium is also expected, so the possibility was verified under various conditions, The present invention has been completed. Furthermore, the carrier is exposed to the gas phase, so that the adhesion between the membranes is improved, the possibility that the cells can freely move between the sheets, and a large three-dimensional space preferable for the cells is expected to be generated. Is done.
- the present inventors have obtained polyimide.
- the inventors have found that preferable results can be obtained by utilizing cell culture using a porous membrane, and have arrived at the present invention. Specifically, in cell culture using a polyimide porous membrane, since the cells stably live in this space using the large-diameter connecting holes through which the cells of the membrane can pass, the membranes adhere to each other. As long as the cells are present, the cells can move freely between the membranes as well as between the membranes.
- polyimide on which cells are not grown on media in which cells are grown petri dishes, dishes, culture plates, microcarriers, silica porous bodies, cellulose sponges, polyimide porous membranes and other cell culture media
- petri dishes, dishes, culture plates, microcarriers, silica porous bodies, cellulose sponges, polyimide porous membranes and other cell culture media By bringing the porous membrane into close contact, cell migration can be induced, and cell culture and passage can be continued continuously and simply.
- a cell culture method comprising: (1) a step of supporting cells on one or more sheet-like porous carriers; (2) A medium is applied to the sheet-like porous carrier supporting cells, and the sheet-like porous carrier is moistened with the medium in a state where the medium is contained in some or all of the pores of the sheet-like porous carrier.
- step (4) The method according to any one of [1] to [3], wherein in step (3), the sheet-like porous carrier is placed on a rigid body.
- step (3) The method according to [4], wherein the rigid body is a metal mesh.
- step (3) a porous sheet having an average pore diameter larger than that of the sheet-like porous carrier is placed so as to cover a part or all of the upper surface of the one or more sheet-like porous carriers.
- step (3) The method according to any one of [1] to [10], wherein in step (3), one or a plurality of sheet-like porous carriers are folded and arranged.
- step (3) The method according to any one of [1] to [11], wherein the one or more sheet-like porous carriers are polyimide porous membranes.
- the polyimide porous film is a polyimide porous film containing a polyimide obtained from tetracarboxylic dianhydride and diamine.
- the polyimide porous membrane was colored by forming a polyamic acid solution composition containing a polyamic acid solution obtained from tetracarboxylic dianhydride and diamine and a colored precursor, and then heat-treating at 250 ° C. or higher.
- the cell culture medium is selected from the group consisting of a petri dish, a dish, a culture plate, a culture flask, a microwell plate, and a glass bottom dish and comprises contacting the polyimide porous membrane with the top surface of the cell culture medium [22 ] Method.
- the cell culture medium is selected from the group consisting of a microcarrier, a silica porous body, a cellulose sponge, a nonwoven fabric and a hollow fiber, and one or more polyimide porous membranes are formed from the upper part, the lower part or both of the cell culture medium.
- the first polyimide porous membrane is brought into contact with the upper surface, the lower surface, or both of the first polyimide porous membrane in which the cells are cultured, by contacting the second polyimide porous membrane in which the cells are not cultured. Moving the cells to the second porous membrane and culturing the cells that have moved to the second polyimide porous membrane.
- the polyimide porous membrane has a thickness of 75 ⁇ m or less.
- the present invention cultivates cells using a sheet-like porous carrier such as a polyimide porous membrane, and maintains the wet environment inside and on the surface of the sheet-like porous carrier. By exposing a part or the whole to the gas phase, it is possible to efficiently supply air to the cells. According to the present invention, even a large-scale cell culture system does not require a special device for supplying oxygen.
- the sheet-like porous carrier is not deeply submerged in the medium, it is not always necessary to move the sheet-like porous carrier in exchanging the medium. For example, the medium can be changed by creating a continuous or intermittent medium flow at the upper or lower portion of the sheet-like porous carrier.
- the cell culture system using the present invention does not require moving parts such as stirring, a cell culture system having excellent robustness and high stability can be provided.
- the present invention even when a confluent state is required in the conventional adherent cells, cells are not seeded and / or have a space for cells to engraft.
- a confluent or sub-confluent cell culture carrier for example, sandwiching, laminating, etc.
- expansion culture can be performed without using conventionally used trypsin or the like.
- FIG. 1 shows the contact between the porous polyimide membranes in which cells are cultured in Example 3 by sandwiching them between the upper and lower empty polyimide porous membranes and exposing the aggregates to the gas phase.
- FIG. 2 is a schematic diagram showing “cell migration from a polyimide porous membrane to an empty polyimide porous membrane” which is an embodiment of the present invention.
- Prepare a laminated assembly by sandwiching a porous polyimide membrane (first polyimide porous membrane) in which cells are cultured with several empty polyimide porous membranes (second polyimide porous membrane) from above or below. To do.
- FIG. 3 shows a case in which the porous polyimide in which human skin fibroblasts are cultured in Example 4 is sandwiched between upper and lower polyimide porous membranes one by one in a medium and contacted using a weight. The result of having investigated the movement of the cell of is shown.
- FIG. 4 shows an example of cell culture using a minimal medium.
- FIG. 5 shows the case of “three-tiered stacking” in Example 6 in which polyimide porous layers in which CHO cells are cultured are sandwiched between upper and lower polyimide porous membranes and brought into contact with each other; An overview photograph of the experiment in the case of “5-tiered stack” sandwiched between empty polyimide porous membranes is shown.
- FIG. 6 shows the results of cell proliferation in Example 6 in the case of “three-stage stacking” in which polyimide porous in which CHO cells are cultured is sandwiched between upper and lower polyimide porous membranes and brought into contact with each other.
- FIG. 7 shows the results of cell proliferation in Example 6 in the case of “five-tiered” in which polyimide porous in which CHO cells are cultured is sandwiched between two upper and lower polyimide porous membranes and brought into contact with each other.
- FIG. 8 is a conceptual diagram of an experiment in Example 7 in which polyimide porous layers in which cells are cultured are laminated in various forms and cells are subcultured and propagated.
- FIG. 9 shows an example of culturing only the carrier using the medium supply device.
- Cells can be continuously cultured by laminating and placing a polyimide porous membrane in which cells are seeded on a metal mesh, and continuously or intermittently adding a medium from the top. Since the cells are cultured in a state where there is no accumulation of the medium, a very large amount of cells can be cultured even in a small space, despite a simple apparatus.
- a specific diagram including a defoaming unit for removing bubbles that hinder cell culture, a non-woven fabric for preventing drift on the surface, a casing, and the like is also shown.
- FIG. 10 shows the cell growth status for each sheet as a result after 5 days of culture in the case of the culture in the continuous culture apparatus shown in the conceptual diagram of FIG.
- the number on the horizontal axis means the number of the laminated sheet counted from the top.
- Example 8 The results of culturing CHO-K1 cells using the cell culture apparatus of the present invention are shown as fluorescence micrographs.
- the results of culturing conditioned CHO-K1 cells using the cell culture apparatus of the present invention are shown as fluorescence micrographs. It is a figure which shows the culture result of the CHO-K1 cell using the cell culture apparatus of this invention. It is a figure which shows the culture result of MDCK cell using the method of this invention. It is a figure which shows the culture result of a human skin fibroblast using the method of this invention.
- the present invention relates to a cell culture method.
- the entire contents of International Application No. PCT / JP2014 / 070407 are incorporated herein by reference.
- the cell culturing method of the present invention includes culturing cells on a sheet-like porous carrier such as a polyimide porous membrane.
- a sheet-like porous carrier is suitable for cell adhesion and culture, and have arrived at the present invention.
- the method of the present invention comprises applying cells to a sheet-like porous carrier and culturing the cells on or inside a polyimide membrane.
- Sheet-like porous carrier Any sheet-like porous carrier used in the present invention may be used as long as it is a sheet-like carrier having pores capable of holding cells.
- a nonwoven fabric, a polymeric porous film, A polyimide porous membrane etc. can be illustrated.
- a polyimide porous film can be suitably used.
- a sheet-like porous carrier such as a polyimide porous membrane for supporting cells is naturally preferably in a state not containing cells other than being loaded, that is, sterilized.
- the method of the present invention preferably includes a step of previously sterilizing a sheet-like porous carrier such as a polyimide porous membrane.
- the polyimide porous membrane is extremely excellent in heat resistance, is lightweight, can be freely selected in shape and size, and is easy to sterilize.
- Arbitrary sterilization processes such as dry heat sterilization, steam sterilization, sterilization with a disinfectant such as ethanol, and electromagnetic wave sterilization such as ultraviolet rays and gamma rays are possible.
- Polyimide is a general term for polymers containing imide bonds in repeating units, and usually means an aromatic polyimide in which aromatic compounds are directly linked by imide bonds.
- Aromatic polyimide has a conjugated structure through the imide bond between aromatic and aromatic, so it has a rigid and strong molecular structure, and the imide bond has a strong intermolecular force, so it has a very high level of heat. Has mechanical, mechanical and chemical properties.
- the polyimide porous membrane used in the present invention is a polyimide porous membrane containing a polyimide obtained from tetracarboxylic dianhydride and diamine (as a main component), more preferably from tetracarboxylic dianhydride and diamine.
- This is a polyimide porous membrane made of the resulting polyimide.
- “Containing as a main component” means that a component other than polyimide obtained from tetracarboxylic dianhydride and diamine may be essentially not included or included as a component of the polyimide porous membrane. It means that it is an additional component that does not affect the properties of the polyimide obtained from tetracarboxylic dianhydride and diamine.
- a colored polyimide porous film obtained by molding a polyamic acid solution composition containing a polyamic acid solution obtained from a tetracarboxylic acid component and a diamine component and a colored precursor and then heat-treating at 250 ° C. or higher. .
- Polyamic acid A polyamic acid is obtained by polymerizing a tetracarboxylic acid component and a diamine component.
- Polyamic acid is a polyimide precursor that can be ring-closed to form polyimide by thermal imidization or chemical imidization.
- the polyamic acid even if a part of the amic acid is imidized, it can be used as long as it does not affect the present invention. That is, the polyamic acid may be partially thermally imidized or chemically imidized.
- fine particles such as an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, and organic fine particles can be added to the polyamic acid solution as necessary.
- fine particles such as a chemical imidating agent, a dehydrating agent, inorganic fine particles, and organic fine particles, etc. can be added to a polyamic acid solution as needed. Even when the above components are added to the polyamic acid solution, it is preferable that the coloring precursor is not precipitated.
- the colored precursor means a precursor that is partially or wholly carbonized by heat treatment at 250 ° C. or higher to produce a colored product.
- the colored precursor used in the present invention is uniformly dissolved or dispersed in a polyamic acid solution or a polyimide solution, and heat treatment at 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably 300 ° C. or higher.
- heat treatment at 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably 300 ° C. or higher in the presence of oxygen such as air to produce a colored product by carbonization
- oxygen such as air
- the carbon-based coloring precursor is not particularly limited.
- polymers such as petroleum tar, petroleum pitch, coal tar, coal pitch, or polymers obtained from monomers including pitch, coke, and acrylonitrile, ferrocene compounds (ferrocene and ferrocene derivatives). Etc.
- the polymer and / or ferrocene compound obtained from the monomer containing acrylonitrile are preferable, and polyacrylonitrile is preferable as a polymer obtained from the monomer containing acrylonitrile.
- tetracarboxylic dianhydride any tetracarboxylic dianhydride can be used, and can be appropriately selected according to desired characteristics.
- tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4 ′.
- -Biphenyltetracarboxylic dianhydride such as biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2, 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid an
- At least one aromatic tetracarboxylic dianhydride selected from the group consisting of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is particularly preferable.
- the biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride can be suitably used.
- diamines include the following. 1) One benzene nucleus such as 1,4-diaminobenzene (paraphenylenediamine), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, etc .; 2) 4,4'-diaminodiphenyl ether, diaminodiphenyl ether such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'- Dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′- Dicar
- the diamine to be used can be appropriately selected according to desired characteristics.
- aromatic diamine compounds are preferable, and 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether and paraphenylenediamine, 1,3-bis (3-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-amino) Phenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene can be preferably used.
- at least one diamine selected from the group consisting of benzenediamine, diaminodiphenyl ether and bis (aminophenoxy) phenyl is
- the polyimide porous membrane has a glass transition temperature of 240 ° C. or higher, or a tetracarboxylic dianhydride and a diamine having a clear transition point of 300 ° C. or higher. It is preferable that it is formed from the polyimide obtained combining these.
- the polyimide porous membrane of the present invention is preferably a polyimide porous membrane made of the following aromatic polyimide from the viewpoints of heat resistance and dimensional stability at high temperatures.
- an aromatic polyimide comprising at least one tetracarboxylic acid unit selected from the group consisting of a biphenyltetracarboxylic acid unit and a pyromellitic acid unit, and an aromatic diamine unit
- an aromatic polyimide comprising a tetracarboxylic acid unit and at least one aromatic diamine unit selected from the group consisting of a benzenediamine unit, a diaminodiphenyl ether unit and a bis (aminophenoxy) phenyl unit
- a polyimide porous film a polyimide having a multilayer structure having at least two surface layers (A surface and B surface) and a macrovoid layer sandwiched between the two surface layers Porous membranes can be used in the method of the present invention.
- the polyimide porous film is a film in which the macrovoid layer is surrounded by a partition wall bonded to the surface layer (A surface and B surface), and the partition wall and the surface layer (A surface and B surface).
- a plurality of macrovoids having an average pore diameter in the plane direction of 10 to 500 ⁇ m, and the partition walls of the macrovoid layer and the surface layers (A surface and B surface) each have a thickness of 0.01 to 20 ⁇ m.
- the polyimide porous film has a total film thickness of 5 to 500 ⁇ m and a porosity of 40% or more and less than 95%.
- the total film thickness of the polyimide porous film used in the present invention is not limited, but may be 20 to 75 ⁇ m as one aspect. Due to the difference in film thickness, differences in cell growth rate, cell morphology, in-plane cell saturation, etc. can be observed.
- the average hole diameter of the holes may be different from the average hole diameter of the holes existing on the B surface.
- the average pore diameter of the holes present on the A plane is smaller than the average pore diameter of the holes present on the B plane.
- the average pore diameter of the holes existing on the A plane is smaller than the average pore diameter of the holes existing on the B plane, and the average pore diameter of the holes existing on the A plane is 0.01 to 50 ⁇ m, 0.01 ⁇ m to 40 ⁇ m, 0 0.01 ⁇ m to 30 ⁇ m, 0.01 ⁇ m to 20 ⁇ m, or 0.01 ⁇ m to 15 ⁇ m, and the average pore diameter of the holes present on the B surface is 20 ⁇ m to 100 ⁇ m, 30 ⁇ m to 100 ⁇ m, 40 ⁇ m to 100 ⁇ m, 50 ⁇ m to 100 ⁇ m, or 60 ⁇ m to 100 ⁇ m It is.
- the A surface of the polyimide porous membrane has a mesh structure having small pores with an average pore diameter of 15 ⁇ m or less, for example, 0.01 ⁇ m to 15 ⁇ m, and the B surface has a large pore structure with an average pore diameter of 20 ⁇ m or more, for example, 20 ⁇ m to 100 ⁇ m. It is.
- the total film thickness of the polyimide porous membrane used in the present invention can be measured with a contact-type thickness meter.
- the average pore diameter on the surface of the polyimide porous membrane was determined by measuring the pore area of 200 or more apertures from the scanning electron micrograph on the surface of the porous membrane, and calculating the pore size according to the following formula (1) from the average value of the pore area.
- the average diameter when the shape is assumed to be a perfect circle can be obtained by calculation. (In the formula, Sa means the average value of the pore area.)
- the porosity of the polyimide porous membrane used in the present invention can be determined from the mass per unit area according to the following formula (2) by measuring the thickness and mass of the porous film cut into a predetermined size.
- S is the area of the porous film
- d is the total film thickness
- w is the measured mass
- D is the polyimide density.
- the polyimide density is 1.34 g / cm 3 ).
- polyimide porous film described in International Publication WO2010 / 038873, JP2011-219585A, or JP2011-219586 can also be used in the present invention.
- Cells seeded on the surface of the polyimide porous membrane can stably grow and proliferate on the surface and / or inside of the membrane.
- Cells can take a variety of different forms depending on where they grow and proliferate in the membrane.
- the cells may proliferate while changing the shape while moving on and inside the polyimide porous membrane.
- cell loading on a sheet-like porous carrier means that cells are held on the surface, inside of the sheet-like porous carrier, or a part of or all of the inside. That means.
- the specific process for carrying cells on a sheet-like porous carrier is not particularly limited.
- the steps described herein or any method suitable for applying cells to a membrane-like carrier can be employed.
- application of cells to the polyimide porous membrane includes, for example, the following aspects.
- A an embodiment comprising a step of seeding cells on the surface of the polyimide porous membrane;
- B Place a cell suspension on the dried surface of the polyimide porous membrane, Leave or move the polyimide porous membrane to promote fluid outflow, or stimulate a portion of the surface to draw cell suspension into the membrane; and The cells in the cell suspension are retained in the membrane, and the water flows out.
- An embodiment comprising steps; and
- C Wet one side or both sides of the polyimide porous membrane with a cell culture medium or a sterilized liquid, Loading the wet polyimide porous membrane with a cell suspension; and The cells in the cell suspension are retained in the membrane, and the water flows out.
- a mode comprising the steps.
- the mode includes directly seeding cells and cell clusters on the surface of the polyimide porous membrane. Or the aspect which puts a polyimide porous membrane in a cell suspension and infiltrate a cell culture solution from the surface of a membrane is also included.
- the cells seeded on the surface of the polyimide porous membrane adhere to the polyimide porous membrane and enter the inside of the porous body.
- the cells spontaneously adhere to the polyimide porous membrane without any physical or chemical force applied from the outside.
- Cells seeded on the surface of the polyimide porous membrane can grow and proliferate stably on the surface and / or inside of the membrane. Cells can take a variety of different forms depending on the location of the membrane in which they grow and multiply.
- a cell suspension is placed on the dried surface of the polyimide porous membrane.
- the cell suspension is sucked into the membrane, Cell suspension penetrates into the membrane. Without being bound by theory, it is considered that this is due to the properties derived from the surface shape of the polyimide porous membrane.
- the cells are sucked and seeded at the portion of the membrane where the cell suspension is loaded.
- one or both sides or the whole of the polyimide porous membrane is wetted with a cell culture medium or a sterilized liquid, and then the suspended polyimide porous membrane is subjected to cell suspension.
- the liquid may be loaded. In this case, the passage speed of the cell suspension is greatly improved.
- a method of wetting a part of the membrane electrode for the main purpose of preventing the scattering of the membrane (hereinafter referred to as “one-point wet method”) can be used.
- the one-point wet method is substantially similar to the dry method (the embodiment (B)) that does not substantially wet the film.
- a method in which a cell suspension is loaded into a fully porous one or both surfaces of a polyimide porous membrane hereinafter referred to as “wet membrane”).
- this Is described as “wet film method”.
- the passage speed of the cell suspension is greatly improved in the entire polyimide porous membrane.
- the cells in the cell suspension are retained in the membrane and the water is allowed to flow out.
- processing such as concentrating the concentration of cells in the cell suspension or allowing unnecessary components other than cells to flow out together with moisture.
- the mode of (A) may be referred to as “natural sowing” (B) and the mode of (C) as “suction sowing”.
- living cells remain selectively in the polyimide porous membrane. Therefore, in a preferred embodiment of the present invention, living cells remain in the polyimide porous membrane, and dead cells preferentially flow out with moisture.
- the sterilized liquid used in the embodiment (C) is not particularly limited, but is a sterilized buffer or sterilized water.
- the buffer include (+) and ( ⁇ ) Dulbecco ’s PBS, (+) and ( ⁇ ) Hank's Balanced Salt Solution. Examples of buffer solutions are shown in Table 1 below.
- the application of the cells to the polyimide porous membrane is an embodiment in which cells are attached to the membrane by allowing the adhesive cells in a suspended state to coexist with the polyimide porous membrane (entanglement). )
- a cell culture medium, cells, and one or more of the polyimide porous membranes may be placed in a cell culture container in order to apply the cells to the polyimide porous membrane.
- the cell culture medium is liquid
- the polyimide porous membrane is suspended in the cell culture medium. Due to the nature of the polyimide porous membrane, cells can adhere to the polyimide porous membrane.
- the polyimide porous membrane can be cultured in a suspended state in the cell culture medium.
- the cells spontaneously adhere to the polyimide porous membrane. “Spontaneously adheres” means that the cells remain on or inside the polyimide porous membrane without any physical or chemical force applied from the outside.
- cells can be supported on a sheet-like porous carrier by the method described above.
- a medium is applied to a sheet-like porous carrier carrying cells, and the medium is contained in some or all of the pores of the sheet-like porous carrier.
- a step of wetting the sheet-like porous carrier with a medium is applied to a sheet-like porous carrier carrying cells, and the medium is contained in some or all of the pores of the sheet-like porous carrier.
- the state in which the sheet-like porous carrier is wetted with the medium refers to a state in which the medium is contained in some or all of the pores present on the surface and inside of the sheet-like porous carrier.
- the medium is applied to the sheet-like porous carrier, and the medium is contained in some or all of the pores existing on the surface and inside of the sheet-like porous carrier. Any method can be used as long as it can be used.
- the sheet-like porous carrier can be wetted with a culture medium at the same time as the cells are supported on the sheet-like porous carrier by the method described above.
- the medium is applied to the sheet-like porous carrier, and the liquid contained in the sheet-like porous carrier is replaced with the medium.
- carrier may be used.
- the method of the present invention includes a step of disposing a sheet-like porous carrier in a culture container containing the medium so that a part or all of the surface of the sheet-like porous carrier wetted with the medium is exposed to the gas phase.
- the method of the present invention it is possible to directly supply oxygen in the gas phase to the sheet-like porous carrier, so that a special apparatus for supplying oxygen to the medium is not essential, and during the culture It is possible to supply oxygen to almost any cell.
- a special apparatus for supplying oxygen to the medium is not essential, and during the culture It is possible to supply oxygen to almost any cell.
- the present invention may further include means for supplying oxygen to the culture medium (for example, oxygen supply means by bubbling, medium stirring means, etc.) depending on selection.
- the sheet-like porous carrier is overlapped by the step of arranging the sheet-like porous carrier so that a part or all of the surface of the sheet-like porous carrier is exposed to the gas phase according to the present invention.
- the carriers are in close contact with each other and the cell-adhesive space increases in proportion to the area (volume) of the sheet-like porous carrier, the space for accommodating and culturing the sheet-like porous carrier can be minimized. It becomes.
- a carrier such as a microcarrier in the conventional culture in a liquid medium, in order to increase the number of cells to be cultured, it is necessary to prevent collisions between the carriers, and inevitably increase the amount of the medium.
- the space for accommodating and culturing the carrier is increased.
- the sheet-like porous carrier can be disposed by being exposed to the gas phase, the sheet-like porous carriers are in close contact with each other, and the culture space can be minimized.
- the number of layers is limited due to the supply of oxygen and nutrients, but the sheet itself has the characteristics of a flexible and three-dimensional ultra-thin film.
- stable and long-term cell culture can be achieved by supplying oxygen and nutrients sufficiently stably only by diffusion.
- the adhesion between the polyimide porous membranes is improved very well by gas-phase exposure, and the cells can freely move between the sheets. By freely diffusing and proliferating in the sheet, it is possible to give the same effect as the substantial passage.
- the cell culture medium used in the method of the present invention may be in any form such as a liquid medium, a semi-solid medium, a solid medium, etc.
- a medium can be preferably used.
- the medium may be brought into contact with the sheet-like porous carrier by spraying the atomized liquid medium into the cell culture container.
- two or more small pieces of sheet-like porous carrier may be used.
- the container bottom area is the upper limit of the cell cultivatable area, but in cell culture using a sheet-like porous carrier, the previously brought-in sheet-like porous carrier All of the large surface area is an area where cells can be cultured. Since the sheet-like porous carrier allows the cell culture medium to pass therethrough, for example, nutrients, oxygen, etc. can be supplied into the folded membrane.
- the size and shape of the small pieces of the sheet-like porous carrier are not particularly limited.
- the shape can take any shape such as a circle, an ellipse, a square, a triangle, a polygon, and a string.
- the sheet-like porous carrier can be used by changing its shape.
- the sheet-like porous carrier may be processed into a three-dimensional shape instead of a flat shape.
- a sheet-like porous carrier is i) folded, ii) wound into a roll, iii) a sheet or piece is connected by a thread-like structure, or iv) a rope is tied, and a cell culture container It may be suspended or fixed in the cell culture medium.
- a sheet-like porous carrier is i) folded, ii) wound into a roll, iii) a sheet or piece is connected by a thread-like structure, or iv) a rope is tied, and a cell culture container It may be suspended or fixed in the cell culture medium.
- two or more sheet-like porous carriers may be stacked in the cell culture medium vertically or horizontally.
- Lamination also includes an embodiment in which the sheet-like porous carrier partially overlaps. Stacked culture enables cells to be cultured at high density in a narrow space. It is also possible to form a multilayer system with different types of cells by further stacking the membranes on the membrane where the cells are already grown.
- the number of sheet-like porous carriers to be laminated is not particularly limited.
- any method may be used depending on the purpose.
- the medium is removed from the sheet-like porous carrier seeded with cells or cultured, and the medium is substantially free of the outside of the sheet-like porous carrier.
- a porous sheet having an average pore diameter larger than that of the sheet-like porous carrier may be placed so as to cover part or all of the upper surface of the sheet-like porous carrier.
- Any porous sheet may be used as long as it has an average pore size larger than that of the polyimide porous film, and for example, a nonwoven fabric, gauze, sponge, or the like can be suitably used.
- a porous sheet having an average pore size larger than that of the polyimide porous membrane on the polyimide porous membrane, the flow of the medium flowing over the surface of the polyimide porous membrane, particularly the liquid medium, is suppressed, and the polyimide porous membrane surface Since the medium can be uniformly applied to the top, the culture efficiency can be further increased.
- a rigid body such as a metal mesh may be installed in the cell culture container, and the sheet-like porous carrier on which the cells are seeded or cells are cultured may be placed so as to be exposed to the gas phase. it can.
- a porous sheet having an average pore diameter larger than that of the sheet-like porous carrier may be placed so as to cover part or all of the upper surface of the sheet-like porous carrier.
- a part of the sheet-like porous carrier can be obtained by using a cell culture apparatus that can continuously or intermittently apply the medium on the sheet-like porous carrier on which cells are seeded or cells are cultured.
- the entire structure can be exposed to the gas phase.
- a porous sheet having an average pore diameter larger than that of the sheet-like porous carrier may be placed so as to cover part or all of the upper surface of the sheet-like porous carrier.
- the shape and scale of the system used for culture are not particularly limited.
- the culture container an open container or a closed container may be used.
- cell culture dishes, flasks, plastic bags, test tubes to large tanks can be used as appropriate.
- a cell culture dish manufactured by BD Falcon, a Nunc cell factory manufactured by Thermo Scientific, and the like are included.
- the culture in the method of the present invention is a type in which the polyimide porous membrane sheet is exposed to the air using a continuous circulation or open type device that continuously adds and recovers the medium on the polyimide porous membrane. It is also possible to execute with.
- cells may be cultured in a system in which the cell culture medium is supplied into the cell culture container continuously or intermittently from a cell culture medium supply means installed outside the cell culture container.
- the cell culture medium can be a system in which the cell culture medium is circulated between the cell culture medium supply means and the cell culture container.
- the system When cell culture is performed in a system in which the cell culture medium is continuously or intermittently supplied from the cell culture medium supply means installed outside the cell culture container, the system is a cell culture container. It may be a cell culture apparatus including a culture unit and a culture medium supply unit which is a cell culture medium supply means, wherein the culture unit is a culture unit containing one or more polyimide porous membranes for supporting cells.
- the culture medium supply unit includes a culture medium storage container, a culture medium supply line, and a liquid feed pump that continuously or intermittently feeds the culture medium via the culture medium supply line, where the first end of the culture medium supply line is
- the cell culture device may be a culture medium supply unit, which is in contact with the culture medium in the culture medium storage container and the second end of the culture medium supply line communicates with the culture unit via the culture medium supply port of the culture unit.
- the culture unit may be a culture unit that does not include an air supply port, an air discharge port, and an oxygen exchange membrane, and further includes an air supply port and an air discharge port, or an oxygen exchange membrane. It may be a culture unit. Even if the culture unit does not include an air supply port, an air discharge port, and an oxygen exchange membrane, oxygen and the like necessary for cell culture are sufficiently supplied to the cells through the medium. Furthermore, in the cell culture apparatus, the culture unit further includes a medium discharge line, wherein the first end of the medium discharge line is connected to the medium storage container, and the second end of the medium discharge line is the culture unit. The culture medium may be circulated between the culture medium supply unit and the culture unit by communicating with the culture unit via the culture medium outlet.
- Any incubator may be used as long as it can maintain a temperature suitable for cell culture.
- An incubator that can adjust humidity and CO 2 concentration in addition to temperature may be used.
- an incubator that can supply 5% CO 2 to the cell culture apparatus may be used.
- part or all of the surface of the sheet-like porous carrier wetted with a medium is exposed to the gas phase through cell culture.
- the wet state of the surface and inside of the sheet-like porous carrier is maintained through cell culture.
- Arbitrary methods can be appropriately used as a method for maintaining the wet state of the surface and inside of the sheet-like porous carrier throughout the culture.
- a sheet-like porous carrier wetted with a medium can be accommodated in a closed container, and the humidity inside the container can be kept high.
- the humidity inside the container is preferably 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 99% or more.
- a cell culture device that can continuously or intermittently apply a medium on a sheet-like porous carrier on which cells are seeded or cells are cultured, The wet state of the sheet-like porous carrier surface and inside can be maintained.
- Cells The types of cells that can be used in the method of the present invention are not particularly limited, and can be used for the growth of arbitrary cells.
- the cells are selected from the group consisting of animal cells, insect cells, plant cells, yeasts and bacteria.
- Animal cells are roughly classified into cells derived from animals belonging to the vertebrate phylum and cells derived from invertebrates (animals other than animals belonging to the vertebrate phylum).
- the origin of the animal cell is not particularly limited.
- Vertebrates include the maxilla and maxilla, and the maxilla includes mammals, birds, amphibians, reptiles, and the like.
- it is a cell derived from an animal belonging to the mammal class generally called a mammal. Mammals are not particularly limited, but preferably include mice, rats, humans, monkeys, pigs, dogs, sheep, goats and the like.
- Plant cells including moss plants, fern plants, and seed plants are targeted.
- Plants from which seed plant cells are derived include monocotyledonous plants and dicotyledonous plants.
- monocotyledonous plants include orchids, gramineous plants (rice, corn, barley, wheat, sorghum, etc.), cyperaceae plants, and the like.
- Dicotyledonous plants include plants belonging to many subclasses such as Chrysanthemum, Magnolia, and Rose.
- Algae can also be regarded as cell-derived organisms. Different from eubacteria, cyanobacteria (Cyanobacteria), eukaryotes that are unicellular (diatoms, yellow green algae, dinoflagellates, etc.) and multicellular organisms, seaweeds (red algae, brown algae, green algae) Includes groups.
- the archaea and the types of bacteria in this specification are not particularly limited.
- the archaea is composed of a group consisting of methane bacteria, highly halophilic bacteria, thermophilic acidophiles, hyperthermophilic bacteria, and the like.
- the bacterium is selected from the group consisting of lactic acid bacteria, Escherichia coli, Bacillus subtilis, cyanobacteria and the like.
- animal cells or plant cells that can be used in the method of the present invention are not limited, but are preferably selected from the group consisting of pluripotent stem cells, tissue stem cells, somatic cells, and germ cells.
- pluripotent stem cell is intended to be a generic term for stem cells having the ability to differentiate into cells of any tissue (differentiation pluripotency).
- the pluripotent stem cells include, but are not limited to, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ stem cells (EG cells), germ stem cells (GS cells), and the like. .
- ES cells embryonic stem cells
- iPS cells induced pluripotent stem cells
- EG cells embryonic germ stem cells
- GS cells germ stem cells
- Any known pluripotent stem cell can be used.
- the pluripotent stem cell described in International Publication WO2009 / 123349 PCT / JP2009 / 057041
- PCT / JP2009 / 057041 can be used.
- tissue stem cell means a stem cell that has the ability to differentiate into various cell types (differentiated pluripotency) although the cell line that can be differentiated is limited to a specific tissue.
- hematopoietic stem cells in the bone marrow become blood cells, and neural stem cells differentiate into nerve cells.
- the tissue stem cells are selected from mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, neural stem cells, skin stem cells, or hematopoietic stem cells.
- somatic cells refers to cells other than germ cells among the cells constituting multicellular organisms. In sexual reproduction, it is not passed on to the next generation.
- the somatic cells are hepatocytes, pancreatic cells, muscle cells, bone cells, osteoblasts, osteoclasts, chondrocytes, adipocytes, skin cells, fibroblasts, pancreatic cells, kidney cells, lung cells, or , Lymphocytes, erythrocytes, leukocytes, monocytes, macrophages or megakaryocyte blood cells.
- Reproductive cells means cells that have a role in transmitting genetic information to the next generation in reproduction. For example, gametes for sexual reproduction, ie eggs, egg cells, sperm, sperm cells, spores for asexual reproduction, and the like.
- the cells may be selected from the group consisting of sarcoma cells, cell lines and transformed cells.
- “Sarcoma” is a cancer that develops in connective tissue cells derived from non-epithelial cells such as bone, cartilage, fat, muscle, blood, etc., and includes soft tissue sarcoma, malignant bone tumor and the like.
- Sarcoma cells are cells derived from sarcomas.
- the “established cell” means a cultured cell that has been maintained outside the body for a long period of time, has a certain stable property, and is capable of semi-permanent subculture.
- PC12 cells derived from rat adrenal medulla
- CHO cells derived from Chinese hamster ovary
- HEK293 cells derived from human fetal kidney
- HL-60 cells derived from human white blood cells
- HeLa cells derived from human cervical cancer
- Vero cells There are cell lines derived from various tissues of various biological species including humans such as (derived from African green monkey kidney epithelial cells), MDCK cells (derived from canine kidney tubular epithelial cells), and HepG2 cells (human hepatoma-derived cell lines).
- a “transformed cell” means a cell in which a nucleic acid (DNA or the like) has been introduced from the outside of the cell to change its genetic properties. Appropriate methods are known for transformation of animal cells, plant cells, and bacteria. II.
- the present invention also relates to a kit for use in a cell culture method, comprising a sheet-like porous membrane, particularly a polyimide porous membrane.
- the kit of the present invention may appropriately contain components necessary for cell culture in addition to the polyimide porous membrane.
- cells applied to the polyimide porous membrane, cell culture medium, continuous medium supply apparatus, continuous medium circulation apparatus, scaffold or module supporting a cell sheet, cell culture apparatus, instruction manual for kit, and the like are included.
- a sterilized polyimide porous membrane is stored alone or in a plurality of sheets in a transparent pouch, and a package containing a form that can be used for cell culture as it is, or the same
- a sterilizing liquid is enclosed in a pouch together with a polyimide porous membrane, and includes an integrated membrane / liquid kit that enables efficient suction seeding.
- the present invention also relates to the use of a sheet-like porous membrane, particularly a polyimide porous membrane, for a cell-culturing method.
- the present invention relates to a method, kit, and use for culturing cells by moving them onto a polyimide porous membrane.
- the cell subculture method and culture method of the present invention can be applied to cells inhabiting on a medium (a petri dish, a dish, a culture plate, a microcarrier, a silica porous body, a cellulose sponge, a polyimide porous membrane, and other cell culture media).
- This method involves subculture or culturing the cells by bringing them into contact with a novel polyimide porous membrane that is not growing and transferring the cells on the medium to an empty polyimide porous membrane.
- the present inventors have found that a polyimide porous membrane is suitable for cell adhesion and culture, and have come up with the present invention.
- the method of the present invention comprises moving the cells to the polyimide membrane by contacting the polyimide porous membrane with various media in which the cells are already grown, and culturing the cells on or inside the polyimide membrane.
- This polyimide porous membrane allows cells to grow in a large space, cell migration has the same significance as cell passage, and extremely efficient cell growth can be achieved with treatments such as trypsin. In addition to efficiency, the damage to the cells is small. In addition, it is expected that cells having excellent adhesion and motility can be preferentially taken out from a state where a plurality of cells such as biological tissue are mixed.
- a method of culturing by moving cells on a polyimide porous membrane moves cells from the cell culture medium to the polyimide porous film by bringing the polyimide porous film into contact with the cell culture medium in which the cells are cultured, and the cells moved to the polyimide porous film Culturing. The cells move from the cell culture medium in which the cells are cultured to the polyimide porous membrane.
- Cells The types of cells that can be used in the method of the present invention are not particularly limited, and can be used for the growth of any cell, for example, the cells described above.
- the cell culture medium in which cells are cultured is not particularly limited as long as the medium can grow (proliferate and differentiate) cells.
- the cell culture surface is usually a flat surface, and in the present invention, the polyimide porous membrane is brought into contact with the upper surface of the cell culture medium.
- the first polyimide porous membrane itself in which cells are cultured corresponds to a “cell culture medium”.
- cultivation with a cell medium is not specifically limited.
- the steps described herein or any method suitable for applying cells to a membrane-like medium can be employed.
- Polyimide porous membrane used in the present invention is the polyimide porous membrane described above.
- a cell culture medium or a sample containing cells is brought into contact with a surface (surface A) having a mesh structure having small holes with an average pore diameter of 15 ⁇ m or less of a polyimide porous membrane.
- the polyimide porous membrane loaded with cells in the present invention does not contain cells other than those loaded, that is, is sterilized.
- the method of the present invention preferably includes a step of pre-sterilizing the polyimide porous membrane.
- the polyimide porous membrane is extremely excellent in heat resistance, is lightweight, can be freely selected in shape and size, and is easy to sterilize. Arbitrary sterilization treatments such as dry heat sterilization, steam sterilization, sterilization with a disinfectant such as ethanol, and electromagnetic wave sterilization such as ultraviolet rays and gamma rays are possible.
- Cells applied to the surface of the polyimide porous membrane can grow and proliferate stably on the surface and / or inside of the membrane.
- Cells can take a variety of different forms depending on where they grow and proliferate in the membrane.
- the cells may proliferate while changing the shape while moving on and inside the polyimide porous membrane.
- weights and fixtures for fixing the polyimide porous membrane can be used.
- the method of expanding a contact surface by pushing up a polyimide porous membrane to a gaseous phase can also be employ
- a method of culturing after removing the contacted polyimide porous membrane is also possible, but it is also possible to proceed with culturing while maintaining the contacted state.
- the cell culture surface is flat, when the cell culture medium is, for example, a petri dish, dish, culture plate, culture flask, microwell plate, glass bottom dish, etc., the polyimide porous membrane is brought into contact with the upper surface of the cell culture medium It is possible.
- the cell culture surface is three-dimensional (three-dimensional)
- the cell culture medium is, for example, a microcarrier, a porous silica, a cellulose sponge, a nonwoven fabric, a hollow fiber, or the like. From the above, it is possible to contact one or a plurality of polyimide porous membranes.
- the method of the present invention includes culturing cells after moving the cells to the polyimide porous membrane.
- Animal cell culture methods and cell culture media are described, for example, in the cell culture media catalog of Lonza.
- Plant cell culture methods and cell culture media are described in, for example, the plant tissue culture series from WAKO.
- Bacterial cell culture methods and cell culture media are described in, for example, the general bacterial culture catalog of BD.
- the cultured cells can be classified into an adhesion culture cell and a floating culture cell according to the existence form in the cell culture.
- Adherent culture cells are cultured cells that adhere to a culture vessel and proliferate, and the medium is changed during passage.
- Floating culture cells are cultured cells that proliferate in a floating state in a medium. In general, dilution culture is performed without replacing the medium during passage.
- Suspension culture can be cultured in a floating state, that is, in a liquid state, so that it can be cultured in large quantities. Compared with adherent cells that grow only on the surface of the culture vessel, it is a three-dimensional culture. There is an advantage that the number of cells that can be cultured is large.
- the polyimide porous membrane when used in a suspended state in the cell culture medium, two or more pieces of the polyimide porous membrane may be used. Since the polyimide porous membrane is a flexible thin film, for example, it is possible to bring a polyimide porous membrane having a large surface area into a certain volume of cell culture medium by using small pieces suspended in the culture medium. Become. In the case of normal culture, the bottom area of the container is the upper limit of the cell culture area, but in the cell culture using the polyimide porous membrane of the present invention, all of the large surface area of the previously introduced polyimide porous membrane is the cell. It becomes the area that can be cultured. Since the polyimide porous membrane allows the cell culture solution to pass therethrough, for example, nutrients, oxygen and the like can be supplied into the folded membrane.
- the cells grow and proliferate on and inside the polyimide porous membrane.
- the cells can continue to grow for 5 days or longer, more preferably 10 days or longer, and even more preferably 30 days or longer.
- the method of the present invention when the number of cultured cells is large, it is possible to use a continuous culture apparatus that continuously adds a medium. Since the culture medium is continuously added, it becomes possible to maintain the mutual adhesion while continuing the humid environment, and the mobility and proliferation degree to the empty polyimide porous membrane can be improved.
- a polyimide porous membrane is brought into contact with the petri dish in which cells are cultured from above the culture surface, and a stainless mesh or the like is placed, and the culture is continued for a certain period of time. After a certain period, the polyimide porous membrane is separated from the contact surface, and the cells that have moved into the membrane are continuously cultured.
- a method of culturing by moving cells onto a polyimide porous membrane (third embodiment)
- a cell is obtained by contacting a second polyimide porous membrane not culturing cells from the upper surface, the lower surface or both of the first polyimide porous membrane culturing cells. Moving the cells from the first polyimide porous membrane to the second porous membrane and culturing the cells that have moved to the second polyimide porous membrane; How to culture. The cells move from the first polyimide porous membrane in which the cells are cultured to the second polyimide porous membrane in which the cells are not cultured.
- the definitions of “cell” and “polyimide porous membrane” are the same as those described for the first and second embodiments.
- the membrane may be contacted from the upper surface, the lower surface, or both of the first porous polyimide membrane.
- the first polyimide porous membrane may be a polyimide porous membrane that has been cryopreserved in a state where cells are held.
- a polyimide porous membrane that has been thawed by any method that allows cells to survive is used. be able to.
- the whole complex of the polyimide porous membrane on which the cells are grown and the empty polyimide porous membrane is submerged in the culture medium, and contact is made using a metal mesh or glass cube as a weight.
- a method can also be used.
- the entire membrane assembly may be lifted into the gas phase while the first polyimide porous membrane and the second polyimide porous membrane are in contact with each other.
- a metal mesh or the like is laminated to form a pedestal, and the entire membrane assembly pair of a polyimide porous membrane with cells grown thereon and an empty polyimide porous membrane is placed on each other. It is also possible to use a method of increasing sheet adhesion and promoting cell movement between sheets and proliferation.
- two or more of an empty polyimide porous membrane or a polyimide porous membrane on which cells have grown may be used.
- complex can also be taken.
- the polyimide porous membrane itself becomes a cell growth medium, it is important that the polyimide porous membrane to be used is sufficiently wetted in advance to form a state containing no air.
- the step of preparing the first polyimide porous membrane in which the cells are cultured specifically, the cells
- the method may further comprise the step of applying the cells to an empty first polyimide porous membrane that has not been cultured and culturing the cells with the first polyimide porous membrane.
- the specific process for applying the cells to the empty first polyimide porous membrane in which the cells are not cultured is not particularly limited.
- the steps described herein or any method suitable for applying cells to a membrane-like carrier can be employed.
- the first polyimide porous membrane is obtained by bringing an empty first polyimide porous membrane into contact with a cell culture medium in which cells are cultured, and moving the cells from the cell culture medium to the polyimide porous membrane. Apply cells to the membrane.
- any of the following modes as described in PCT / JP2014 / 070407 may be used as appropriate.
- A an embodiment comprising a step of seeding cells on the surface of the polyimide porous membrane;
- B Place a cell suspension on the dried surface of the polyimide porous membrane, Leave or move the polyimide porous membrane to promote fluid outflow, or stimulate a portion of the surface to draw cell suspension into the membrane; and The cells in the cell suspension are retained in the membrane, and the water flows out.
- An embodiment comprising steps; and
- C Wet one side or both sides of the polyimide porous membrane with a cell culture medium or a sterilized liquid, Loading the wet polyimide porous membrane with a cell suspension; and The cells in the cell suspension are retained in the membrane, and the water flows out.
- a mode comprising the steps.
- the present invention moves a cell from a biological sample to the polyimide porous membrane by bringing a biological sample containing cells into contact with the upper surface, the lower surface or both of the polyimide porous membrane, and the polyimide porous membrane. Culturing the cells that have migrated to. Cells migrate directly from the biological sample to the polyimide porous membrane.
- the definitions of “cell” and “polyimide porous membrane” are the same as those described for the first to third embodiments.
- the “biological sample containing cells” is not particularly limited. For example, it includes all or part of an organ, tissue, etc. isolated from a living body. Non-limiting examples include biological samples containing cells derived from lung, skin, liver and the like.
- This aspect is a method of culturing by moving a highly mobile cell population from a biological sample on which a large number of cells are accumulated and growing to a polyimide porous membrane at a stretch. For example, it is difficult to reproduce the environment of each living organ. It is expected that simple work can be achieved easily.
- the polyimide porous membrane when the polyimide porous membrane is brought into contact with the biological sample, a method of contacting from the upper surface and the lower surface or both can be taken. Also, in order to bring the sample into contact with the polyimide porous membrane, the sample / polyimide porous membrane composite is submerged in the culture medium and a metal mesh or glass cube is used as a weight or lifted to the gas phase and the sample and the polyimide porous Any method of contacting the membrane can be used.
- a cell culture medium in which cells are cultured in any of the first to fourth aspects, a cell culture medium in which cells are cultured, a biological sample containing cells, or a polyimide porous medium in which cells are cultured It is also possible to repeat the movement of the cells from the membrane to the polyimide porous membrane in which the cells are not cultured twice or more.
- the method of the present invention enables cells to be moved and passaged by a simple method without using trypsin or the like as conventionally used.
- the number of passages is not particularly limited.
- the present invention also relates to a cell culture device for use in the method of the present invention comprising a polyimide porous membrane.
- the polyimide porous membrane may be used in a fixed state, or may be used suspended in the cell culture medium, or may be placed in the medium or exposed from the medium. Also good.
- two or more polyimide porous membranes may be laminated vertically or horizontally. Laminated aggregates and aggregates may be placed in the medium or exposed from the medium.
- the cell culture apparatus for cell culture may take any form as long as it includes a polyimide porous membrane, and a known cell culture apparatus can be used.
- the shape, scale, etc. of the culture apparatus are not particularly limited and can be appropriately used from petri dishes, test tubes to large tanks.
- a cell culture dish manufactured by BD Falcon, a Nunc cell factory manufactured by Thermo Scientific, and the like are included.
- a polyimide porous membrane in the present invention it has become possible to culture cells in a state similar to suspension culture using a suspension culture apparatus even for cells that were not inherently capable of suspension culture.
- a spinner flask manufactured by Corning, rotary culture, or the like can be used.
- hollow fiber culture such as FiberCell (registered trademark) System of VERITAS can also be used.
- the cell culture device using cultured cells of the present invention is a continuous circulation or open type device in which a medium is continuously added to a membrane on a mesh and recovered, and a type in which a polyimide porous membrane is exposed to the air. It is also possible to execute with.
- kits for use in a method for culturing by moving cells onto a polyimide porous membrane The present invention further includes a method for culturing by transferring cells of the present invention onto a polyimide porous membrane, including the polyimide porous membrane. It relates to a kit for use.
- the kit of the present invention may appropriately contain components necessary for cell culture in addition to the polyimide porous membrane.
- a sterilized polyimide porous membrane is stored alone or in a plurality of sheets in a transparent pouch, and a package containing a form that can be used for cell culture as it is, or the same
- a sterilizing liquid is enclosed in a pouch together with a polyimide porous membrane, and includes an integrated membrane / liquid kit that enables efficient suction seeding.
- the present invention further includes the use of a polyimide porous membrane for the above-described inventive method.
- polyimide porous membrane refers to a polyimide porous membrane having a total film thickness of 25 ⁇ m and a porosity of 73%.
- the polyimide porous membrane had two different surface layers (A surface and B surface) and a macrovoid layer sandwiched between the two surface layers.
- the average hole diameter of the holes existing on the A surface was 6 ⁇ m
- the average hole diameter of the holes existing on the B surface was 46 ⁇ m.
- the polyimide porous membrane used in the following examples is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) which is a tetracarboxylic acid component and 4 which is a diamine component. , 4′-diaminodiphenyl ether (ODA) and a polyamic acid solution composition containing a polyamic acid solution, which is a colored precursor, and a heat treatment at 250 ° C. or higher. .
- s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
- ODA 4′-diaminodiphenyl ether
- a polyamic acid solution composition containing a polyamic acid solution, which is a colored precursor, and a heat treatment at 250 ° C. or higher.
- the medium was removed from the polyimide porous membrane on which the cells were growing and stored in an incubator for 24 hours. Then, when the light absorbency was measured again using CCK8, the light absorbency of 1.0 time was confirmed as an average value.
- the medium was removed from the polyimide porous membrane on which the cells were growing and stored in an incubator for 24 hours. After that, when the absorbance was measured again using CCK8, an average absorbance of 1.1 times was confirmed.
- each membrane was divided into single pieces, and culturing was continued in an environment in which 1 ml of cell culture medium was added to each 2 cm ⁇ 2 cm sterilized square container. After 14 days, 21 days, 28 days, and 35 days, the number of cells was measured using CCK8, and the growth behavior was observed. It was confirmed that both the original upper membrane and lower membrane were proliferating to the number of cells close to the upper limit of culture. (Figure 3)
- FIG. 5 A total of nine sets of three-tier and five-tier stacks were placed on the mesh placed in the medium so as to be in contact with the gas phase, and the culture was continued. After this culture was continued for 4 days, all the laminates were made independent of each other, and the number of cells of each polyimide porous membrane was measured using CCK8. In both the triple stack (FIG. 6) and the five stack (FIG. 7), cell migration and proliferation inside the stack were confirmed. It was confirmed that cells proliferated and migrated in an environment in contact with the gas phase.
- a total of 11-stage polyimide porous membrane laminates were prepared by being alternately stacked.
- the prepared laminate was placed on a mesh placed in a medium so as to be in contact with the gas phase, and the state was maintained for 4 days.
- the obtained sheets for growing 11 cells were made independent one by one, and each sheet was sandwiched between the upper and lower sides with a novel porous polyimide film of the same size, one by one.
- Eleven sets of stacked polyimide porous membrane laminates were prepared. (Fig. 8)
- Mass gas phase exposure culture (1) CHO-K1 cells were used to inoculate a polyimide porous membrane, and then mass continuous culture was performed using a continuous culture apparatus. Ten sterilized polyimide porous membranes of 4 cm ⁇ 10 cm are sterilized by dry heat and arranged in a sterilized square petri dish. Suspension containing 1.1 ⁇ 10 7 CHO-K1 cells (of which 1.1 ⁇ 10 7 live cells, 5.0 ⁇ 10 5 dead cells, 96% live cell rate) per 5 ml of medium A liquid is prepared, and 0.5 ml each is seeded on the previously prepared polyimide porous membrane.
- the suspension placed on the sheet was homogenized with a cell scraper, and the sheet was moved slightly to allow the liquid to pass through the cells and seed the cells on the polyimide porous membrane.
- Ten sheets of this sheet were placed on a stainless steel metal mesh of the same size, and a PE / PP mixed nonwoven fabric was placed on the upper part.
- the aggregate containing the cells was grounded in a plastic case. (FIG. 9)
- the polyimide porous membrane laminate containing cells was tilted by about 20 °.
- Medium from Ham's F-12 plus penicillin, streptomycin, amphotericin B plus 10% FBS
- the polyimide porous membranes were in close contact with each other and existed as an aggregate.
- 0.5 ml of the cell suspension was added to each of the 10 sterilized polyimide porous membranes described above and leveled with a cell scraper. After leaving for a few minutes, the sheet was moved slightly to allow the suspension to pass, and then 10 sheets on which cell seeding had been completed were laminated on the same type of metal mesh as the sheet. Thereafter, the nonwoven fabric is placed on the laminated sheets, installed inside the culture apparatus, the medium supply line is installed thereon, and the entire culture apparatus is transferred to a forced ventilation CO 2 incubator manufactured by Taitec Co., Ltd. set at 37 ° C. Completed preparation.
- Continuous culture was started by circulating 150 ml of Ham medium containing 0.5% FBS at a pace of 1 ml per minute. Three days later, the medium was removed and replaced with 100 ml of fresh medium, and the culture was continued for another 9 days while continuing the medium exchange at the same pace. On the 12th day from the start of the culture, the medium circulation was completed, and the polyimide porous membrane and the nonwoven fabric were removed. When the removed porous porous membrane was left as an aggregate, cell count was performed with CCK8, and a total of 2.6 ⁇ 10 8 cells were confirmed. The approximate cell culture density was 1.7 ⁇ 10 8 cells / ml.
- FIG. 12 shows a fluorescence micrograph after a part of a polyimide porous membrane grown with cells is cut out and fixed in formalin and stained with nucleus (DAPI), cell membrane (cell mask), and actin (phalloidin). Even when conditioned cells were used, good cell proliferation was confirmed.
- DAPI nucleus
- cell membrane cell mask
- actin phalloidin
- Example 9 sterilized polyimide porous material of the same size, using 10 sheets of 4 cm ⁇ 10 cm square rectangular polyimide porous membranes with CHO-K1 cells attached as a base sheet The 10 sheets of the membrane were laminated on the top surface of the base sheet with the A-side of the mesh structure all up. Similarly, the 10 A polyimide porous membranes were laminated on the bottom surface of the base sheet with the A side of the mesh structure all over. Thereafter, the nonwoven fabric was placed on the 30 sheets stacked, placed inside the culture apparatus used in Example 9 (FIG. 9), and the medium supply line was set on top of it, and the forced manufacture made by Taitec Co., Ltd. set to 37 ° C. The entire culture apparatus was transferred to an aerated CO 2 incubator to complete the culture preparation.
- Continuous culture was started by circulating Ham medium containing 0.5% FBS at a pace of 2 ml / min. The culture was further continued for 76 days or more while continuing the medium exchange at the pace shown in FIG.
- the figure shows the number of culture days and the amount of medium used.
- the glucose consumption and lactic acid production at that time were measured by LC / MS (Shimadzu LCMS-2020).
- FIG. 13 shows the result.
- One of the sheets was taken out and sandwiched between a new polyimide porous membrane of the same size and one sheet above and below, to prepare one set of three-layered polyimide porous membrane laminates.
- one cell-grown sheet was taken out and sandwiched between two sheets each of the upper and lower sheets with a new polyimide porous film of the same size, and one set of five-layered polyimide porous film stacks was prepared ( FIG. 5).
- These two sets of three-tiered and five-tiered laminates were placed on the mesh placed in the medium so as to be in contact with the gas phase, and the culture was continued in a CO 2 incubator.
- each sheet was divided into one sheet and the culture was continued as a single sheet.
- 10 days, 16 days, 21 days, 28 days, 42 days and 56 days the number of cells was measured using CCK8, and the original sheet and the empty polyimide porous membrane grounded later were The growth behavior was observed using the staining method with CCK8. From the polyimide porous membrane in which human skin fibroblasts were cultured for a long period of time, it was observed that the cells efficiently migrated to the empty polyimide porous membrane and continuously proliferated. The results are shown in FIG.
- a human dermal fibroblast culture sheet that has been cultured for 294 days on a polyimide porous membrane without undergoing gas phase passage, and a base sheet that has been subjected to gas phase passage on the 230th day for the same period and gas phase culture.
- Fibronectin produced by inhabiting human skin fibroblasts was compared in the amount of fibronectin released in 24 hours into the medium in which the sheet was cultured, on the upper and lower sheets cultured for 56 days after passage. . Stable fibronectin production was confirmed regardless of the culture period and gas phase passage. The results are shown in Table 2. As a comparison object, the amount of fibronectin produced from two sheets cultured for 13 days in a polyimide porous membrane is also shown.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Sustainable Development (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
細胞は生体内では一般に三次元的な集団として存在するが、古典的な平面培養では、細胞が容器に張り付く形で単層状に培養される。培養環境の相違により、細胞の性質も大きく異なることが数多く報告されている。また、液体培養培地中で細胞を培養する浮遊培養については、浮遊培養に適した細胞がある一方、適さない細胞もある。
ポリイミドとは、繰り返し単位にイミド結合を含む高分子の総称である。芳香族ポリイミドは、芳香族化合物が直接イミド結合で連結された高分子を意味する。芳香族ポリイミドは芳香族と芳香族とがイミド結合を介して共役構造を持つため、剛直で強固な分子構造を持ち、かつ、イミド結合が強い分子間力を持つために非常に高いレベルの熱的、機械的、化学的性質を有する。
[1]
細胞の培養方法であって、
(1)1又は複数のシート状多孔質担体に細胞を担持させる工程、
(2)細胞を担持させたシート状多孔質担体に培地を適用し、シート状多孔質担体の孔の一部またはすべてに培地が含まれた状態として、シート状多孔質担体を培地で湿潤させる工程、
(3)培地を収容する培養容器中に、培地で湿潤させたシート状多孔質担体表面の一部または全体が気相に曝露されるようシート状多孔質担体を配置する工程、及び
(4)培養容器をインキュベータ内に設置して、細胞を培養する工程
を含み、ここで培養を通じてシート状多孔質担体表面及び内部の湿潤状態が保たれる、培養方法。
[2]
工程(4)において、培養容器内に連続的又は間歇的に培地が供給され、ここで培養を通じて培地で湿潤させたシート状多孔質担体の一部または全体が気相に曝露されている、[1]に記載の培養方法。
[3]
工程(4)において、細胞を培養する工程が、酸素を供給する手段で酸素を供給しながら培養する工程である、[1]又は[2]に記載の方法。
[4]
工程(3)において、シート状多孔質担体を剛体の上に載置する、[1]~[3]のいずれかに記載の方法。
[5]
剛体が金属メッシュである、[4]に記載の方法。
[6]
工程(3)において、1又は複数のシート状多孔質担体の上面の一部又は全部を被覆するように、シート状多孔質担体よりも平均孔径の大きい多孔質シートを載置する、[1]~[5]のいずれかに記載の方法。
[7]
シート状多孔質担体よりも平均孔径の大きい多孔質シートが不織布、ガーゼ、及びスポンジからなる群より選択される、[6]に記載の方法。
[8]
培養容器が開放容器である、[1]~[7]のいずれかに記載の方法。
[9]
培養容器が閉鎖容器である、[1]~[7]のいずれかに記載の方法。
[10]
工程(3)において、2以上のシート状多孔質担体を上下に積層して配置する、[1]~[9]のいずれかに記載の方法。
[11]
工程(3)において、1又は複数のシート状多孔質担体を折り畳んで配置する、[1]~[10]のいずれかに記載の方法。
[12]
1又は複数のシート状多孔質担体がポリイミド多孔質膜である、[1]~[11]のいずれかに記載の方法。
[13]
ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、[12]に記載の方法。
[14]
ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜である、[13]に記載の方法。
[15]
前記ポリイミド多孔質膜が、2つの異なる表層面とマクロボイド層を有する多層構造のポリイミド多孔質膜である、[13]又は[14]に記載の方法。
[16]
細胞が、物質を発現するように遺伝子工学技術により形質転換されている、[1]~[15]のいずれか1項に記載の方法。
[17]
細胞が、動物細胞、昆虫細胞、植物細胞、酵母菌及び細菌からなる群から選択される、[1]~[16]のいずれかに記載の方法。
[18]
動物細胞が、脊椎動物門に属する動物由来の細胞である、[17]に記載の方法。
[19]
細胞が、CHO細胞、CHO-K1細胞、Vero細胞、及びMDCK細胞からなる群より選択される、[18]に記載の方法。
[20]
ポリイミド多孔質膜を含む、[1]~[19]のいずれかに記載の方法に使用するためのキット。
[21]
ポリイミド多孔質膜の、[1]~[19]のいずれかに記載の方法のための使用。
[22]
細胞を培養している細胞培養媒体にポリイミド多孔質膜を接触させることにより細胞を細胞培養媒体からポリイミド多孔質膜に移動させ、そして、ポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。
[23]
細胞培養媒体が、シャーレ、ディッシュ、培養プレート、培養フラスコ、マイクロウェルプレート及びグラスボトムディッシュからなる群から選択され、そして、ポリイミド多孔質膜を細胞培養媒体の上面に接触させることを含む、[22]に記載の方法。
[24]
細胞培養媒体が、マイクロキャリア、シリカ多孔体、セルローススポンジ、不織布及び中空糸からなる群から選択され、そして、当該細胞培養媒体の上部、下部又はその双方から、単数又は複数のポリイミド多孔質膜を接触させる、ことを含む、[22]に記載の方法。
[25]
細胞を培養している第1のポリイミド多孔質膜の上面、下面あるいはその双方から、細胞を培養していない第2のポリイミド多孔質膜を接触させことにより、細胞を第1のポリイミド多孔質膜から第2の多孔質膜へ移動させ、そして、第2のポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。
[26]
第1のポリイミド多孔質膜と第2のポリイミド多孔質膜とが接触した状態のまま、膜集合体を気相中に持ち上げることを含む、[25]に記載の方法。
[27]
細胞を培養していない空の第1のポリイミド多孔質膜に細胞を適用し、第1のポリイミド多孔質膜で細胞を培養する工程をさらに含む、[25]又は[26]に記載の方法。
[28]
細胞を培養している細胞培養媒体に空の第1のポリイミド多孔質膜を接触させて、細胞を細胞培養媒体からポリイミド多孔質膜に移動させることにより、第1のポリイミド多孔質膜に細胞を適用する。[27]に記載の方法。
[29]
細胞を含む生体試料を、ポリイミド多孔質膜の上面、下面あるいはその双方に接触させることにより、細胞を生体試料からポリイミド多孔質膜に移動させ、そして、ポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。
[30]
前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、[22]~[29]のいずれか1項に記載の方法。
[31]
前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜である、[30]に記載の方法。
[32]
前記ポリイミド多孔質膜が、2つの異なる表層面とマクロボイド層を有する多層構造のポリイミド多孔質膜である、[30]又は[31]に記載の方法。
[33]
前記ポリイミド多孔質膜の膜厚が75μm以下である、[32]に記載の方法。
[34]
細胞が移動した2以上のポリイミド多孔質膜を、上下又は左右に細胞培養培地中に積層して細胞を培養する、[22]~[33]のいずれか1項に記載の方法。
[35]
細胞を培養している細胞培養媒体、細胞を含む生体試料、あるいは、細胞を培養しているポリイミド多孔質膜、から細胞を培養していないポリイミド多孔質膜への細胞の移動を、2回以上繰り返すことを含む、[22]~[34]のいずれか1項に記載の方法。
[36]
ポリイミド多孔質膜を含む、[22]~[35]のいずれか1項に記載の方法に使用するためのキット。
[37]
ポリイミド多孔質膜の[22]~[35]のいずれか1項に記載の方法のための使用。
本発明は、細胞の培養方法に関する。なお、国際出願番号PCT/JP2014/070407の全内容を、参照により本明細書に援用する。
本発明に用いるシート状多孔質担体は、細胞を保持することのできる孔を有するシート状の担体であればいずれを用いてもよいが、たとえば不織布、ポリマー性多孔質フィルム、ポリイミド多孔質膜等を例示することができる。特にポリイミド多孔質膜を好適に用いることができる。本発明において細胞を担持させるためのポリイミド多孔質膜のようなシート状多孔質担体は、当然、装填する以外の細胞を含まない状態、即ち、滅菌されていることが好ましい。本発明の方法は、好ましくは、ポリイミド多孔質膜のようなシート状多孔質担体を予め滅菌する工程を含む。ポリイミド多孔質膜は、耐熱性に極めて優れており、軽量であり、形・大きさも自由に選択可能であり、滅菌処理が容易である。乾熱滅菌、蒸気滅菌、エタノール等消毒剤による滅菌、紫外線やガンマ線等の電磁波滅菌等任意の滅菌処理が可能である。
ポリアミック酸は、テトラカルボン酸成分とジアミン成分とを重合して得られる。ポリアミック酸は、熱イミド化又は化学イミド化することにより閉環してポリイミドとすることができるポリイミド前駆体である。
本発明において着色前駆体とは、250℃以上の熱処理により一部または全部が炭化して着色化物を生成する前駆体を意味する。
1)1,4-ジアミノベンゼン(パラフェニレンジアミン)、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン;
2)4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン;
3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン;
4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
これらの中でも、芳香族ジアミン化合物が好ましく、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。
(i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、
(ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、
及び/又は、
(iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
ポリイミド多孔質膜表面の平均孔径は、多孔質膜表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積の平均値から下式(1)に従って孔の形状が真円であるとした際の平均直径を計算より求めることができる。
本明細書において、シート状多孔質担体における細胞の担持とは、シート状多孔質担体の表面、内部、又は表面及び内部の一部又はすべてに細胞が保持されることをいう。細胞をシート状多孔質担体に担持させるための具体的な工程は特に限定されない。本明細書に記載の工程、あるいは、細胞を膜状の担体に適用するのに適した任意の手法を採用することが可能である。限定されるわけではないが、本発明の方法において、シート状多孔質担体としてポリイミド多孔質膜を用いる場合、細胞のポリイミド多孔質膜への適用は、例えば、以下のような態様を含む。
(B)前記ポリイミド多孔質膜の乾燥した表面に細胞縣濁液を載せ、
放置するか、あるいは前記ポリイミド多孔質膜を移動して液の流出を促進するか、あるいは表面の一部を刺激して、細胞縣濁液を前記膜に吸い込ませ、そして、
細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様;並びに、
(C)前記ポリイミド多孔質膜の片面又は両面を、細胞培養液又は滅菌された液体で湿潤し、
前記湿潤したポリイミド多孔質膜に細胞縣濁液を装填し、そして、
細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様。
本発明の方法は、細胞を担持させたシート状多孔質担体に培地を適用し、シート状多孔質担体の孔の一部またはすべてに培地が含まれた状態としてシート状多孔質担体を培地で湿潤させる工程を含む。
シート状多孔質担体を培地で湿潤させる方法としては、シート状多孔質担体に培地を適用して、シート状多孔質担体の表面及び内部に存在する孔の一部またはすべてに培地が含まれる状態とすることのできる方法であればどんな方法でもよい。たとえば、上述した方法で細胞をシート状多孔質担体に担持させると同時に、シート状多孔質担体を培地で湿潤させることができる。また、培地を含まない溶液を介して細胞をシート状多孔質担体に担持させた後、シート状多孔質担体に培地を適用して、シート状多孔質担体に含まれる液体を培地に置き換えてもよい。また、霧状の培地をシート状多孔質担体へ噴霧することによって適用してもよい。
本発明の方法は、培地を収容する培養容器中に、培地で湿潤させたシート状多孔質担体表面の一部または全体が気相に曝露されるようシート状多孔質担体を配置する工程を含む。従来、高密度で細胞を培養する場合や、酸素要求度が高い細胞を培養する場合は、酸素消費量が細胞数依存的に増加するため、それに伴って培地中の溶存酸素量が減少してしまい、細胞密度が増加した環境での培養は困難であった。そのため、高密度で細胞培養を行う場合は、培地中の酸素増加させるための制御装置が別途必要であった。しかし、本発明の方法を用いれば、シート状多孔質担体に気相中の酸素を直接供給することが可能であるため、培地に酸素を供給するための特別な装置は必須ではなくなり、培養中の細胞へ酸素をほぼ無限に供給可能となる。また、通常、気相暴露した場合に生じ易い培養媒体の乾燥が、ポリイミド多孔質膜の有する多孔性から生じる堅牢な保湿性により避けられている事も、気相に暴露した培養を可能としている。本発明は、選択によって、培地に酸素を供給する手段(例えば、バブリング等による酸素供給手段、培地攪拌手段など)をさらに有していても良い。また、培養容器内に酸素を供給する手段をさらに有していても良い。
たとえば、細胞培養容器内において、細胞を播種した、または細胞を培養しているシート状多孔質担体から培地を除去し、シート状多孔質担体の外部に実質的に培地がなくなった状態とすることができる。この場合、シート状多孔質担体の上面の一部又は全部を被覆するように、シート状多孔質担体よりも平均孔径の大きい多孔質シートを載置してもよい。多孔質シートはポリイミド多孔質膜よりも平均孔径の大きいものであればどのようなものを用いてもよいが、たとえば不織布、ガーゼ、及びスポンジ等を好適に用いることができる。ポリイミド多孔質膜よりも平均孔径の大きい多孔質シートをポリイミド多孔質膜上に載置することにより、ポリイミド多孔質膜表面上を流れる培地、特に液体培地の偏流を抑制し、ポリイミド多孔質膜表面上に均一に培地を適用することができるため、さらに培養効率を上げることができる。
培養ユニットは細胞を担持するための1又は複数のポリイミド多孔質膜を収容する培養ユニットであって、培地供給口および培地排出口を備えた培養ユニットであり、
培地供給ユニットは培地収納容器と、培地供給ラインと、培地供給ラインを介して連続的又は間歇的に培地を送液する送液ポンプとを備え、ここで培地供給ラインの第一の端部は培地収納容器内の培地に接触し、培地供給ラインの第二の端部は培養ユニットの培地供給口を介して培養ユニット内に連通している、培地供給ユニットである
細胞培養装置であってよい。
本発明の方法では、上記のように培地で湿潤させたシート状多孔質担体表面の一部または全体が気相に曝露されるようシート状多孔質担体を配置した培養容器をインキュベータ内に設置して、細胞を培養する。
本発明の方法に利用し得る細胞の種類は特に限定されず、任意の細胞の増殖に利用可能である。
種子植物細胞が由来する植物は、単子葉植物、双子葉植物のいずれも含まれる。限定されるわけではないが、単子葉植物には、ラン科植物、イネ科植物(イネ、トウモロコシ、オオムギ、コムギ、ソルガム等)、カヤツリグサ科植物などが含まれる。双子葉植物には、キク亜綱、モクレン亜綱、バラ亜綱など多くの亜綱に属する植物が含まれる。
II.細胞の培養方法に使用するためのキット
本発明は、シート状多孔質膜、特にポリイミド多孔質膜を含む、細胞の培養方法に使用するためのキットにも関する。
III.シート状多孔質膜の細胞の培養方法のための使用
本発明は、シート状多孔質膜、特にポリイミド多孔質膜の、細胞の培養方法のための使用にも関する。
本発明は一態様において、細胞を培養している細胞培養媒体にポリイミド多孔質膜を接触させることにより細胞を細胞培養媒体からポリイミド多孔質膜に移動させ、そして、ポリイミド多孔質膜に移動した細胞を培養する、ことを含む。細胞が、細胞を培養している細胞培養媒体から、ポリイミド多孔質膜へ移動する。
本発明の方法に利用し得る細胞の種類は特に限定されず、任意の細胞、例えば、上述の細胞の増殖に利用可能である。
細胞を培養している細胞培養媒体は、細胞を生育(増殖、分化)できる媒体であれば特に限定されない。限定されるわけではないが、シャーレ、ディッシュ、培養プレート、培養フラスコ、マイクロウェルプレート及びグラスボトムディッシュからなる群から選択さてもよい。この場合細胞の培養面は通常は平面であり、本発明においてポリイミド多孔質膜は細胞培養媒体の上面に接触させる。あるいは、マイクロキャリア、シリカ多孔体、セルローススポンジ、不織布及び中空糸からなる群から選択されてもよい。この場合、細胞培養媒体の上部、下部又はその双方から、単数又は複数のポリイミド多孔質膜を接触させる、ことが可能である。
細胞の媒体での培養に関する具体的な工程は特に限定されない。本明細書に記載の工程、あるいは、細胞を膜状の媒体に適用するのに適した任意の手法を採用することが可能である。
本発明に用いられるポリイミド多孔質膜は、上述のポリイミド多孔質膜である。
シャーレ、ディッシュ、カルチャープレート、マイクロキャリア、シリカ多孔体、セルローススポンジ及びポリイミド多孔質膜そのものを含む各種媒体上あるいは内部に生育した細胞は、新規な(細胞の生育していない為に、大きな生育可能空間を有する)ポリイミド多孔質膜と接触する事により、従来の棲家である媒体からポリイミド多孔質膜へと移動を開始し、数時間~数日の接触で、空のポリイミド多孔質膜側へ移住しそこに生着する。この移動は、面同士の接触状況に大きく左右される為、有効な(実質的に空間が排除されている)接触面積を大きくする事で、より効率的な移動が実現される。移動と共に増殖も起こり得る為、本現象は、細胞と継代と同等であると考えられる。
本発明の方法は、ポリイミド多孔質膜に細胞を移動した後に、細胞を培養することを含む。
細胞培養は、細胞培養における存在形態により培養細胞は接着培養系細胞と浮遊培養系細胞に分類することができる。接着培養系細胞は培養容器に付着し増殖する培養細胞であり、継代には培地交換を行う。浮遊培養系細胞は培地中において浮遊状態で増殖する培養細胞であり、一般的には継代の際には培地交換は行わず、希釈培養を行う。浮遊培養は、浮遊状態、即ち液体中での培養が可能なため、大量培養が可能であり、培養容器表面にのみ生育する付着細胞と比較すると、立体的な培養である為に、単位空間当りの培養可能細胞数は多いという利点がある。
本発明は一態様において、細胞を培養している第1のポリイミド多孔質膜の上面、下面あるいはその双方から、細胞を培養していない第2のポリイミド多孔質膜を接触させことにより、細胞を第1のポリイミド多孔質膜から第2の多孔質膜へ移動させ、そして、第2のポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。細胞が、細胞を培養している第1のポリイミド多孔質膜から、細胞を培養していない第2のポリイミド多孔質膜へ移動する。
第1のポリイミド多孔質膜と第2のポリイミド多孔質膜とを接触させる態様についても、特に限定されない。第1のポリイミド多孔質膜の上面、下面あるいはその双方から膜を接触させてよい。第1のポリイミド多孔質膜は、細胞が保持された状態で凍結保存されたポリイミド多孔質膜であってもよく、この場合、細胞が生存する任意の方法で融解したポリイミド多孔質膜を使用することができる。これにより、凍結・融解を行っても生存状態を保った細胞を、第2のポリイミド多孔質膜へと取り出すことが可能となり、そのまま継続して培養することが可能となる。
(B)前記ポリイミド多孔質膜の乾燥した表面に細胞縣濁液を載せ、
放置するか、あるいは前記ポリイミド多孔質膜を移動して液の流出を促進するか、あるいは表面の一部を刺激して、細胞縣濁液を前記膜に吸い込ませ、そして、
細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様;並びに、
(C)前記ポリイミド多孔質膜の片面又は両面を、細胞培養液又は滅菌された液体で湿潤し、
前記湿潤したポリイミド多孔質膜に細胞縣濁液を装填し、そして、
細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様。
本発明は一態様において、細胞を含む生体試料を、ポリイミド多孔質膜の上面、下面あるいはその双方に接触させることにより、細胞を生体試料からポリイミド多孔質膜に移動させ、そして、ポリイミド多孔質膜に移動した細胞を培養する、ことを含む。細胞が、生体試料から直接ポリイミド多孔質膜へ移動する。
「細胞を含む生体試料」とは特に限定されない。例えば、生体から単離された器官、組織等の全体又は一部を含む。非限定的に、肺、皮膚、肝臓等に由来する細胞を含む生体試料が含まれる。
本発明はまた、ポリイミド多孔質膜を含む、本発明の方法に使用するための細胞培養装置に関する。本発明の細胞培養装置において、ポリイミド多孔質膜は固定されて用いられてもよく、あるいは細胞培養培地中に浮遊して用いられてもよく、培地中に置かれても、培地から露出しても良い。細胞培養装置において、2以上のポリイミド多孔質膜が、上下又は左右に積層してもよい。積層された集合体や集積体は、培地中に置かれても培地から露出していてもかまわない。
本発明はさらに、ポリイミド多孔質膜を含む、本発明の細胞をポリイミド多孔質膜上に移動させて培養する方法に使用するためのキットに関する。
本発明はさらに、ポリイミド多孔質膜の上述した本発明の方法のための使用、を含む
・HepG2(CET(Cellular ENGINEERING TECHNOLOGIES, INC.)社、HEPG2-500)
・ヒト線維芽細胞(LONZA社 product code CC-2511)
・CHO-K1(パブリックヘルスイングランド cat. 85051005)
・CHO DP-12(ATCC CRL-12445)
・MDCK(パブリックヘルスイングランド cat. 85011435)
・ヒト間葉系幹細胞用培地(LONZA社 product code Pt-3238)
・HepG2用培地(CET(Cellular ENGINEERING TECHNOLOGIES, INC.)社 cat. HEPG2.E. Media-450)
・ヒト線維芽細胞用培地(LONZA社 product code CC-3132)
・CHO-K1用培地(和光純薬工業株式会社 Ham’s F-12 087-08335)
・CHO DP-12用培地(和光純薬工業株式会社 IMDM 098-06465)
・MDCK用培地(和光純薬工業株式会社 E-MEM 051-07615)
・3.5cmシャーレ(Falcon社 cat. 353001)
・Cell Counting Kit8(株式会社同仁化学研究所 CK04)
・ステンレスメッシュ(久宝金属株式会社 60メッシュ E9117)
・2cm×2cmの滅菌された正方形容器(Thermo Fisher Scientific 社 cat. 103)
・Penicillin-Streptomycin-Amphotericin BSuspension(X100)(和光純薬工業株式会社 161-23181)
・顕微鏡名、使用した画像ソフト名
Carl Zeiss 社製 LSM 700 使用ソフト ZEN
2cm×2cmの滅菌された正方形容器に細胞培養培地1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜5枚をメッシュ構造のA面を上にしてそれぞれ浸漬させた。1枚のシートあたり4×104個のヒト間葉系幹細胞をそれぞれ添加し、週2回の割合で培地を交換し、37℃5%CO2インキュベータで58日間細胞培養を実施し、CCK8を用いて吸光度を測定した。
2cm×2cmの滅菌された正方形容器に細胞培養培地1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜5枚をメッシュ構造のA面を上にしてそれぞれ浸漬させた。1枚のシートあたり4×104個のHepG2細胞をそれぞれ添加し、31日間細胞培養を実施し、CCK8を用いて吸光度を測定した。
2cm×2cmの滅菌された正方形容器に細胞培養培地1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にしてそれぞれ浸漬させた。1枚のシートあたり5.2×104個のヒト皮膚線維芽細胞をそれぞれ添加し、6日間細胞培養を実施し、CCK8を用いて6日時点での細胞数を測定した。
2cm×2cmの滅菌された正方形容器に細胞培養培地1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にして浸漬させた。1枚の膜あたり5.2×104個のヒト皮膚線維芽細胞を添加し、28日間細胞培養を実施し、CCK8を用いて経時的に細胞数を測定した。
3.5cm径シャーレに2.0×105個のHepG2細胞を播種し、CO2インキュベータ内で、週2回培地交換しながら33日間培養した。
2cm×2cmの滅菌された正方形容器に細胞培養培地1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜9枚にメッシュ構造のA面を上にして培地にそれぞれ浸漬させた。1枚のシートあたり4×104個のCHO-K1細胞をそれぞれ添加し、8日間CO2インキュベータ内で細胞培養を実施し、最大生育量近くの状態となった。8日目の各シートあたりの生存細胞数は、平均値で1.2×107であった。このシートの内5枚を取り出し、それぞれのシートに対し、新規な同サイズのポリイミド多孔質膜で上下を各1枚ずつのシートで挟み、3段重ねのポリイミド多孔質膜積層体を5セット用意した。同様に、細胞の生育したシート4枚を取り出し、それぞれのシートに対し、新規な同サイズのポリイミド多孔質膜で上下を各2枚ずつのシートで挟み、5段重ねのポリイミド多孔質膜積層体を4セット用意した(図5)。これら合計9セットの3段重ね及び5段重ねの積層体を、培地中に置いたメッシュの上に気相に接する様に置き、培養を継続した。4日間この培養を継続した後、それぞれの積層体を全て1枚毎に独立させ、各ポリイミド多孔質膜の細胞数についてCCK8を用いて測定した。3重積層(図6)及び5重積層(図7)の双方で、積層体内部での細胞の移動と増殖が確認された。気相に接する環境での細胞の好適な増殖・移動が確認された。
2cm×2cmの滅菌された正方形容器に細胞培養培地1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜5枚にメッシュ構造のA面を上にして培地に浸漬させた。1枚のシートあたり4×104個のCHO細胞を添加し、8日間CO2インキュベータ内で細胞培養を実施し、更に2日間、培地中で5枚を重ねて培養を継続した。培地交換は、培養期間全体を通じて、週2回ペースで実施した。10日目に、細胞の生息していない新規な滅菌した1.4cm角の正方形のポリイミド多孔質膜6枚を用意し、その間に、これまでCHO細胞を培養して来た5枚のシートを交互に重ねて、合計11段のポリイミド多孔質膜積層体を用意した。用意した積層体を、培地中に置いたメッシュの上に気相に接する様に置き、4日間その状態を保持した。その後、得られた11枚の細胞の育成するシートを1枚ずつ独立させてから、それぞれのシートに対し、新規な同サイズのポリイミド多孔質膜で上下を各1枚ずつのシートで挟み、3段重ねのポリイミド多孔質膜積層体を11セット用意した。(図8)
本実施例では、CHO-K1細胞を用いて、ポリイミド多孔質膜への播種を行った後、連続培養装置を用いて大量連続培養を実施した。
4cm×10cmの滅菌されたポリイミド多孔質膜10枚を乾熱滅菌し、滅菌された角型シャーレ内に並べる。培地5mlあたり1.1×107個のCHO-K1細胞(そのうち、生細胞は1.1×107個、死細胞は5.0×105個、生細胞率96%)を含む懸濁液を用意し、先に準備したポリイミド多孔質膜上に夫々0.5mlずつ播種する。シート上に置いた懸濁液は、セルスクレーパーにて均一化し、シートを少し動かす事で、液を通過させて細胞をポリイミド多孔質膜に播種した。このシート10枚を同サイズのステンレス製金属メッシュ上に載せ、更に上部にPE/PP混合不織布を載せ、この細胞を含む集合体をプラスチックケース内に接地した。(図9)この際、細胞を含むポリイミド多孔質膜積層体を、約20°傾斜させた。傾斜上部から連続的に培地(ペニシリン・ストレプトマイシン・アンフォテリシンBを加えたHam’s F-12に10%FBSを添加したもの)を添加し、毎分3mlの流速で150ml量の培地溜から循環させた。ポリイミド多孔質膜は相互に密着して集合体として存在していた。
馴化されたCHO-K1細胞のポリイミド多孔質膜を用いる大量連続培養
4cm×10cm角の正方形のポリイミド多孔質膜10枚を180℃30分で乾熱滅菌し、メッシュ構造のA面を上にして滅菌プレート上に置いた。別途、培地1mlあたり2.4×106個の0.5%FBSに馴化したCHO-K1細胞(そのうち、生細胞は2.3×106個、死細胞は9.0×104個、生細胞率96%)を懸濁した、CHO-K1細胞懸濁液5mlを準備した。細胞懸濁液を0.5mlずつ、上記の滅菌したポリイミド多孔質膜10枚にそれぞれ添加し、セルスクレーパーにて平準化した。数分間放置した後、シートを少し動かして懸濁液を通過させ、その後に、シートと同型の金属メッシュ上に細胞播種を完了したシート10枚を積層した。その後、積層したシート上に不織布を乗せ、培養装置内部に設置し、その上に培地供給ラインを据えて、37℃に設定したタイテック社製強制通気式CO2インキュベータに培養装置全体を移し、培養準備を完了した。
培養開始から12日目に培地循環を終了し、ポリイミド多孔質膜及び不織布を取り外した。取り外したポリイミド多孔質膜を集合体のまま、CCK8にてセルカウントを実施した所、合計で、2.6×108個の細胞を確認した。概算の細胞培養密度としては、1.7×108個/mlであった。細胞の育成したポリイミド多孔質膜を一部切り取ってホルマリン固定し、核(DAPI)、細胞膜(セルマスク)、及びアクチン(ファロイジン)染色を行った後の蛍光顕微鏡写真を図12に示す。馴化細胞を用いても、良好な細胞の増殖が確認された。
実施例9から引き続き、CHO-K1細胞の付着した4cm×10cm角の長方形のポリイミド多孔質膜10枚を基盤シートとし、滅菌した同サイズのポリイミド多孔質膜10枚のメッシュ構造のA面を全て上にして、基盤シート上面に積層させた。また、同じくポリイミド多孔質膜10枚のメッシュ構造のA面を全て上にして、基盤シート下面に積層させた。その後、積層した30枚のシート上に不織布を乗せ、実施例9で使用した培養装置(図9)内部に設置し、その上に培地供給ラインを据えて、37℃に設定したタイテック社製強制通気式CO2インキュベータに培養装置全体を移し、培養準備を完了した。
2cm×2cmの滅菌された正方形容器に培地1mlを加え、滅菌した1.4cm角の正方形の40枚のポリイミド多孔質膜のメッシュ構造のA面を上にして培地に浸漬させた。1枚のシートあたり2×104個のMDCK細胞懸濁液をシート上部に添加した後、CO2インキュベータ内で培養した。経時的に細胞の生育状況を観測しながら、61日間細胞培養を継続した。細胞数は8日目に最高値に達して、その後、安定した細胞数を維持した。61日目の各シートあたりの生存細胞数は、平均値で2.5×106であった。
ヒト皮膚線維芽細胞長期培養時の気相継代による増殖確認
直径6cmのシャーレに2mlの培地を加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜のメッシュ構造のA面に1枚のシートあたり4×104個のヒト皮膚線維芽細胞を播種し、1ヶ月培養した。その後、シートを4分の1に切断し、更に培養を継続して合計230日培養した。その後、3.5cmディッシュ中央に、1.4cm角のステンレスメッシュを3枚重ねて設置し、その上に、前記ポリイミド多孔質膜を置き、滅菌した1.4cm角の空のポリイミド多孔質膜2枚で挟んだ。その状態で培地1mlを加えると、培地は、シートと同様の高さとなった。この状態でCO2インキュベータ内に移動させ、1週間に2回の割合で培地交換して細胞培養を継続的に実施した。
Claims (37)
- 細胞の培養方法であって、
(1)1又は複数のシート状多孔質担体に細胞を担持させる工程、
(2)細胞を担持させたシート状多孔質担体に培地を適用し、シート状多孔質担体の孔の一部またはすべてに培地が含まれた状態として、シート状多孔質担体を培地で湿潤させる工程、
(3)培地を収容する培養容器中に、培地で湿潤させたシート状多孔質担体表面の一部または全体が気相に曝露されるようシート状多孔質担体を配置する工程、及び
(4)培養容器をインキュベータ内に設置して、細胞を培養する工程
を含み、ここで培養を通じてシート状多孔質担体表面及び内部の湿潤状態が保たれる、培養方法。 - 工程(4)において、培養容器内に連続的又は間歇的に培地が供給され、ここで培養を通じて培地で湿潤させたシート状多孔質担体の一部または全体が気相に曝露されている、請求項1に記載の培養方法。
- 工程(4)において、細胞を培養する工程が、酸素を供給する手段で酸素を供給しながら培養する工程である、請求項1又は2に記載の方法。
- 工程(3)において、シート状多孔質担体を剛体の上に載置する、請求項1~3のいずれかに記載の方法。
- 剛体が金属メッシュである、請求項4に記載の方法。
- 工程(3)において、1又は複数のシート状多孔質担体の上面の一部又は全部を被覆するように、シート状多孔質担体よりも平均孔径の大きい多孔質シートを載置する、請求項1~5のいずれかに記載の方法。
- シート状多孔質担体よりも平均孔径の大きい多孔質シートが不織布、ガーゼ、及びスポンジからなる群より選択される、請求項6に記載の方法。
- 培養容器が開放容器である、請求項1~7のいずれかに記載の方法。
- 培養容器が閉鎖容器である、請求項1~7のいずれかに記載の方法。
- 工程(3)において、2以上のシート状多孔質担体を上下に積層して配置する、請求項1~9のいずれかに記載の方法。
- 工程(3)において、1又は複数のシート状多孔質担体を折り畳んで配置する、請求項1~10のいずれかに記載の方法。
- 1又は複数のシート状多孔質担体がポリイミド多孔質膜である、請求項1~11のいずれかに記載の方法。
- ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、請求項12に記載の方法。
- ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜である、請求項13に記載の方法。
- 前記ポリイミド多孔質膜が、2つの異なる表層面とマクロボイド層を有する多層構造のポリイミド多孔質膜である、請求項13又は14に記載の方法。
- 細胞が、物質を発現するように遺伝子工学技術により形質転換されている、請求項1~15のいずれか1項に記載の方法。
- 細胞が、動物細胞、昆虫細胞、植物細胞、酵母菌及び細菌からなる群から選択される、請求項1~16のいずれかに記載の方法。
- 動物細胞が、脊椎動物門に属する動物由来の細胞である、請求項17に記載の方法。
- 細胞が、CHO細胞、CHO-K1細胞、Vero細胞、及びMDCK細胞からなる群より選択される、請求項18に記載の方法。
- ポリイミド多孔質膜を含む、請求項1~19のいずれかに記載の方法に使用するためのキット。
- ポリイミド多孔質膜の、請求項1~19のいずれかに記載の方法のための使用。
- 細胞を培養している細胞培養媒体にポリイミド多孔質膜を接触させることにより細胞を細胞培養媒体からポリイミド多孔質膜に移動させ、そして、ポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。
- 細胞培養媒体が、シャーレ、ディッシュ、培養プレート、培養フラスコ、マイクロウェルプレート及びグラスボトムディッシュからなる群から選択され、そして、ポリイミド多孔質膜を細胞培養媒体の上面に接触させることを含む、請求項22に記載の方法。
- 細胞培養媒体が、マイクロキャリア、シリカ多孔体、セルローススポンジ、不織布及び中空糸からなる群から選択され、そして、当該細胞培養媒体の上部、下部又はその双方から、単数又は複数のポリイミド多孔質膜を接触させる、ことを含む、請求項22に記載の方法。
- 細胞を培養している第1のポリイミド多孔質膜の上面、下面あるいはその双方から、細胞を培養していない第2のポリイミド多孔質膜を接触させことにより、細胞を第1のポリイミド多孔質膜から第2の多孔質膜へ移動させ、そして、第2のポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。
- 第1のポリイミド多孔質膜と第2のポリイミド多孔質膜とが接触した状態のまま、膜集合体を気相中に持ち上げることを含む、請求項25に記載の方法。
- 細胞を培養していない空の第1のポリイミド多孔質膜に細胞を適用し、第1のポリイミド多孔質膜で細胞を培養する工程をさらに含む、請求項25又は26に記載の方法。
- 細胞を培養している細胞培養媒体に空の第1のポリイミド多孔質膜を接触させて、細胞を細胞培養媒体からポリイミド多孔質膜に移動させることにより、第1のポリイミド多孔質膜に細胞を適用する。請求項27に記載の方法。
- 細胞を含む生体試料を、ポリイミド多孔質膜の上面、下面あるいはその双方に接触させることにより、細胞を生体試料からポリイミド多孔質膜に移動させ、そして、ポリイミド多孔質膜に移動した細胞を培養する、ことを含む、細胞をポリイミド多孔質膜上に移動させて培養する方法。
- 前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、請求項22~29のいずれか1項に記載の方法。
- 前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理する事により得られる着色したポリイミド多孔質膜である、請求項30に記載の方法。
- 前記ポリイミド多孔質膜が、2つの異なる表層面とマクロボイド層を有する多層構造のポリイミド多孔質膜である、請求項30又は31に記載の方法。
- 前記ポリイミド多孔質膜の膜厚が75μm以下である、請求項32に記載の方法。
- 細胞が移動した2以上のポリイミド多孔質膜を、上下又は左右に細胞培養培地中に積層して細胞を培養する、請求項22~33のいずれか1項に記載の方法。
- 細胞を培養している細胞培養媒体、細胞を含む生体試料、あるいは、細胞を培養しているポリイミド多孔質膜、から細胞を培養していないポリイミド多孔質膜への細胞の移動を、2回以上繰り返すことを含む、請求項22~34のいずれか1項に記載の方法。
- ポリイミド多孔質膜を含む、請求項22~35のいずれか1項に記載の方法に使用するためのキット。
- ポリイミド多孔質膜の請求項22~35のいずれか1項に記載の方法のための使用。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2974278A CA2974278C (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
US15/545,234 US10738277B2 (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
JP2016572076A JP6502392B2 (ja) | 2015-01-26 | 2016-01-26 | 細胞の培養方法及びキット |
SG11201706090SA SG11201706090SA (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
CN201680007030.2A CN107208031B (zh) | 2015-01-26 | 2016-01-26 | 细胞的培养方法及试剂盒 |
BR112017015124-3A BR112017015124A2 (ja) | 2015-01-26 | 2016-01-26 | The culturing method and kit of a cell |
CN202110183140.7A CN112940940B (zh) | 2015-01-26 | 2016-01-26 | 细胞的培养方法及试剂盒 |
EP18155530.1A EP3406705B1 (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
KR1020177020787A KR102059248B1 (ko) | 2015-01-26 | 2016-01-26 | 세포의 배양 방법 및 키트 |
EP16743378.8A EP3252141B1 (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
US15/880,443 US10982186B2 (en) | 2015-01-26 | 2018-01-25 | Cell culturing method and kit |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015012738 | 2015-01-26 | ||
JP2015-012852 | 2015-01-26 | ||
JP2015012852 | 2015-01-26 | ||
JP2015-012738 | 2015-01-26 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18155530.1A Previously-Filed-Application EP3406705B1 (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
US15/545,234 A-371-Of-International US10738277B2 (en) | 2015-01-26 | 2016-01-26 | Cell culturing method and kit |
US15/880,443 Division US10982186B2 (en) | 2015-01-26 | 2018-01-25 | Cell culturing method and kit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121775A1 true WO2016121775A1 (ja) | 2016-08-04 |
Family
ID=56543386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052219 WO2016121775A1 (ja) | 2015-01-26 | 2016-01-26 | 細胞の培養方法及びキット |
Country Status (9)
Country | Link |
---|---|
US (2) | US10738277B2 (ja) |
EP (2) | EP3406705B1 (ja) |
JP (2) | JP6502392B2 (ja) |
KR (1) | KR102059248B1 (ja) |
CN (2) | CN112940940B (ja) |
BR (1) | BR112017015124A2 (ja) |
CA (1) | CA2974278C (ja) |
SG (1) | SG11201706090SA (ja) |
WO (1) | WO2016121775A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018021365A1 (ja) * | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | 細胞培養装置、及び、それを使用した細胞培養方法 |
WO2018097189A1 (ja) * | 2016-11-24 | 2018-05-31 | 株式会社バイオ未来工房 | 幹細胞の分離方法及びノルボルネン系重合体で構成される不織布の使用 |
JP2019126341A (ja) * | 2018-01-25 | 2019-08-01 | 宇部興産株式会社 | 不織布含有細胞培養モジュール |
WO2019146733A1 (ja) * | 2018-01-24 | 2019-08-01 | 宇部興産株式会社 | 細胞培養装置、及びそれを使用した細胞培養方法 |
WO2019168000A1 (ja) * | 2018-02-27 | 2019-09-06 | 国立大学法人 琉球大学 | コラゲナーゲを用いないで脂肪組織から脂肪由来幹細胞を分離抽出培養するための方法、及び脂肪由来幹細胞分離抽出用キット |
CN111040983A (zh) * | 2019-12-25 | 2020-04-21 | 杭州原生生物科技有限公司 | 一种3d微载体细胞吸附培养的方法 |
JP2020080836A (ja) * | 2018-11-16 | 2020-06-04 | 株式会社長峰製作所 | 多孔膜状細胞培養基板を用いた細胞培養方法 |
JP2023500933A (ja) * | 2019-11-05 | 2023-01-11 | コーニング インコーポレイテッド | 固定床バイオリアクタおよび固定床バイオリアクタを使用する方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11140840B2 (en) | 2015-06-02 | 2021-10-12 | Pioneer Hi-Bred International, Inc. | Plant propagation system and method |
KR20200119238A (ko) * | 2018-01-24 | 2020-10-19 | 우베 고산 가부시키가이샤 | 세포 배양 모듈 |
US20200157493A1 (en) * | 2018-11-21 | 2020-05-21 | The Secant Group, Llc | Textile growth matrix for cells |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63196286A (ja) * | 1987-02-12 | 1988-08-15 | Sumitomo Electric Ind Ltd | 細胞培養用基材 |
JP2008543303A (ja) * | 2005-06-15 | 2008-12-04 | カプサント・ニューロテクノロジーズ・リミテッド | 器官型細胞培養物の生産方法 |
WO2010038873A1 (ja) * | 2008-10-02 | 2010-04-08 | 宇部興産株式会社 | 多孔質ポリイミド膜及びその製造方法 |
WO2010087397A1 (ja) * | 2009-01-29 | 2010-08-05 | 学校法人北里研究所 | 積層型高密度培養人工組織の製造方法及び積層型高密度培養人工組織 |
WO2015012415A1 (ja) * | 2013-07-26 | 2015-01-29 | 宇部興産株式会社 | 細胞の培養方法、細胞培養装置及びキット |
JP2015213498A (ja) * | 2014-04-22 | 2015-12-03 | 株式会社日本触媒 | 加熱処理によりイミド化された含フッ素ポリイミドを表面に含む細胞培養用基材 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524607A (en) | 1975-06-28 | 1977-01-13 | Marugo Kk | Method of forming casttin place concrete pile |
JPS5460241A (en) | 1977-10-21 | 1979-05-15 | Mitsubishi Heavy Ind Ltd | Manufacture of mast parts of forklift |
JPS5549209A (en) | 1978-10-03 | 1980-04-09 | Uchida Kikai Seisakusho Kk | Cement tile molding method |
JPS638419A (ja) * | 1986-06-27 | 1988-01-14 | Sumitomo Chem Co Ltd | 芳香族ポリアミドイミド樹脂から得られるフイルム |
JPS63196272A (ja) * | 1987-02-10 | 1988-08-15 | Sumitomo Electric Ind Ltd | 細胞培養用基材 |
JPS63196271A (ja) * | 1987-02-10 | 1988-08-15 | Sumitomo Electric Ind Ltd | 細胞培養用基材 |
JPH05335368A (ja) | 1992-05-29 | 1993-12-17 | Fujitsu Ltd | ワイヤボンディング装置及びワイヤボンディング方法 |
JP3982843B2 (ja) | 1994-05-24 | 2007-09-26 | 旭化成メディカル株式会社 | 多孔質担体を用いた動物細胞の逐次培養方法 |
JP2001190270A (ja) | 2000-01-07 | 2001-07-17 | Able Corp | 動物細胞傾斜培養装置 |
JP2003180337A (ja) | 2001-12-20 | 2003-07-02 | Applied Cell Biotechnologies Inc | 細胞培養器具及び細胞分離継代方法 |
JP2004344002A (ja) | 2002-04-19 | 2004-12-09 | Applied Cell Biotechnologies Inc | 多孔膜を用いた細胞培養方法 |
JP2004173563A (ja) | 2002-11-26 | 2004-06-24 | Applied Cell Biotechnologies Inc | ヒト細胞培養に関する方法 |
ES2299837T3 (es) | 2004-06-14 | 2008-06-01 | Probiogen Ag | Reactor de exposicion a fases liquida y gaseosa para el cultivo de celulas. |
JP5464443B2 (ja) | 2008-03-31 | 2014-04-09 | オリエンタル酵母工業株式会社 | 多能性幹細胞を増殖させる方法 |
KR101747462B1 (ko) * | 2009-10-09 | 2017-06-14 | 우베 고산 가부시키가이샤 | 착색 폴리이미드 성형체 및 그의 제조 방법 |
JP5460241B2 (ja) | 2009-10-30 | 2014-04-02 | 株式会社日立製作所 | 生体細胞の培養方法及び培養装置 |
JP5549209B2 (ja) | 2009-12-11 | 2014-07-16 | 株式会社Ihi | 付着性細胞培養装置 |
CN102844362B (zh) * | 2010-04-07 | 2014-05-28 | 宇部兴产株式会社 | 多孔质聚酰亚胺膜及其制造方法 |
JP5577804B2 (ja) | 2010-04-07 | 2014-08-27 | 宇部興産株式会社 | 多孔質ポリイミド膜及びその製造方法 |
JP5577803B2 (ja) | 2010-04-07 | 2014-08-27 | 宇部興産株式会社 | 多孔質ポリイミド膜及びその製造方法 |
GB201019932D0 (en) * | 2010-11-24 | 2011-01-05 | Imp Innovations Ltd | Dimensional hollow fibre bioreactor systems for the maintenance, expansion, differentiation and harvesting of human stem cells and their progeny |
CN103710263B (zh) * | 2012-09-28 | 2015-05-27 | 江苏吉锐生物技术有限公司 | 细胞培养装置 |
JP2014231572A (ja) * | 2013-05-29 | 2014-12-11 | 宇部興産株式会社 | 高分子多孔質膜 |
SG11201706009PA (en) | 2015-01-26 | 2017-08-30 | Ube Industries | Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane |
-
2016
- 2016-01-26 EP EP18155530.1A patent/EP3406705B1/en active Active
- 2016-01-26 BR BR112017015124-3A patent/BR112017015124A2/ja not_active IP Right Cessation
- 2016-01-26 KR KR1020177020787A patent/KR102059248B1/ko active IP Right Grant
- 2016-01-26 US US15/545,234 patent/US10738277B2/en active Active
- 2016-01-26 CN CN202110183140.7A patent/CN112940940B/zh active Active
- 2016-01-26 SG SG11201706090SA patent/SG11201706090SA/en unknown
- 2016-01-26 CA CA2974278A patent/CA2974278C/en active Active
- 2016-01-26 EP EP16743378.8A patent/EP3252141B1/en active Active
- 2016-01-26 WO PCT/JP2016/052219 patent/WO2016121775A1/ja active Application Filing
- 2016-01-26 JP JP2016572076A patent/JP6502392B2/ja active Active
- 2016-01-26 CN CN201680007030.2A patent/CN107208031B/zh active Active
-
2018
- 2018-01-25 US US15/880,443 patent/US10982186B2/en active Active
- 2018-05-11 JP JP2018092562A patent/JP2018138051A/ja not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63196286A (ja) * | 1987-02-12 | 1988-08-15 | Sumitomo Electric Ind Ltd | 細胞培養用基材 |
JP2008543303A (ja) * | 2005-06-15 | 2008-12-04 | カプサント・ニューロテクノロジーズ・リミテッド | 器官型細胞培養物の生産方法 |
WO2010038873A1 (ja) * | 2008-10-02 | 2010-04-08 | 宇部興産株式会社 | 多孔質ポリイミド膜及びその製造方法 |
WO2010087397A1 (ja) * | 2009-01-29 | 2010-08-05 | 学校法人北里研究所 | 積層型高密度培養人工組織の製造方法及び積層型高密度培養人工組織 |
WO2015012415A1 (ja) * | 2013-07-26 | 2015-01-29 | 宇部興産株式会社 | 細胞の培養方法、細胞培養装置及びキット |
JP2015213498A (ja) * | 2014-04-22 | 2015-12-03 | 株式会社日本触媒 | 加熱処理によりイミド化された含フッ素ポリイミドを表面に含む細胞培養用基材 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018021365A1 (ja) * | 2016-07-25 | 2019-05-16 | 宇部興産株式会社 | 細胞培養装置、及び、それを使用した細胞培養方法 |
WO2018021365A1 (ja) * | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | 細胞培養装置、及び、それを使用した細胞培養方法 |
JP7018650B2 (ja) | 2016-11-24 | 2022-02-14 | 株式会社バイオ未来工房 | 幹細胞の分離方法及びノルボルネン系重合体で構成される不織布の使用 |
WO2018097189A1 (ja) * | 2016-11-24 | 2018-05-31 | 株式会社バイオ未来工房 | 幹細胞の分離方法及びノルボルネン系重合体で構成される不織布の使用 |
JPWO2018097189A1 (ja) * | 2016-11-24 | 2019-10-17 | 株式会社バイオ未来工房 | 幹細胞の分離方法及びノルボルネン系重合体で構成される不織布の使用 |
WO2019146733A1 (ja) * | 2018-01-24 | 2019-08-01 | 宇部興産株式会社 | 細胞培養装置、及びそれを使用した細胞培養方法 |
JPWO2019146733A1 (ja) * | 2018-01-24 | 2020-12-03 | 宇部興産株式会社 | 細胞培養装置、及びそれを使用した細胞培養方法 |
JP2019126341A (ja) * | 2018-01-25 | 2019-08-01 | 宇部興産株式会社 | 不織布含有細胞培養モジュール |
JP7354543B2 (ja) | 2018-01-25 | 2023-10-03 | Ube株式会社 | 不織布含有細胞培養モジュール |
WO2019168000A1 (ja) * | 2018-02-27 | 2019-09-06 | 国立大学法人 琉球大学 | コラゲナーゲを用いないで脂肪組織から脂肪由来幹細胞を分離抽出培養するための方法、及び脂肪由来幹細胞分離抽出用キット |
JPWO2019168000A1 (ja) * | 2018-02-27 | 2020-08-20 | 国立大学法人 琉球大学 | コラゲナーゲを用いないで脂肪組織から脂肪由来幹細胞を分離抽出培養するための方法、及び脂肪由来幹細胞分離抽出用キット |
JP2020080836A (ja) * | 2018-11-16 | 2020-06-04 | 株式会社長峰製作所 | 多孔膜状細胞培養基板を用いた細胞培養方法 |
JP7238240B2 (ja) | 2018-11-16 | 2023-03-14 | 株式会社長峰製作所 | 多孔膜状細胞培養基板を用いた細胞培養方法 |
JP2023500933A (ja) * | 2019-11-05 | 2023-01-11 | コーニング インコーポレイテッド | 固定床バイオリアクタおよび固定床バイオリアクタを使用する方法 |
JP7518901B2 (ja) | 2019-11-05 | 2024-07-18 | コーニング インコーポレイテッド | 固定床バイオリアクタおよび固定床バイオリアクタを使用する方法 |
CN111040983A (zh) * | 2019-12-25 | 2020-04-21 | 杭州原生生物科技有限公司 | 一种3d微载体细胞吸附培养的方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2974278C (en) | 2020-12-15 |
CN107208031A (zh) | 2017-09-26 |
JP2018138051A (ja) | 2018-09-06 |
JPWO2016121775A1 (ja) | 2017-09-21 |
EP3252141B1 (en) | 2020-07-29 |
US20180002659A1 (en) | 2018-01-04 |
CN112940940A (zh) | 2021-06-11 |
EP3406705B1 (en) | 2020-08-05 |
EP3406705A1 (en) | 2018-11-28 |
CN107208031B (zh) | 2021-03-09 |
SG11201706090SA (en) | 2017-08-30 |
EP3252141A4 (en) | 2018-09-12 |
KR20170093251A (ko) | 2017-08-14 |
US10738277B2 (en) | 2020-08-11 |
BR112017015124A2 (ja) | 2018-03-13 |
JP6502392B2 (ja) | 2019-04-17 |
KR102059248B1 (ko) | 2019-12-24 |
CA2974278A1 (en) | 2016-08-04 |
US20180155679A1 (en) | 2018-06-07 |
CN112940940B (zh) | 2024-03-15 |
EP3252141A1 (en) | 2017-12-06 |
US10982186B2 (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6288312B2 (ja) | ポリイミド多孔質膜を用いる細胞の大量培養方法、装置及びキット | |
JP6502392B2 (ja) | 細胞の培養方法及びキット | |
JP6225993B2 (ja) | 細胞の培養方法、細胞培養装置及びキット | |
JP6292323B2 (ja) | ポリイミド多孔質膜を用いる細胞の長期培養、及びポリイミド多孔質膜を用いる細胞の凍結保存方法 | |
WO2018021365A1 (ja) | 細胞培養装置、及び、それを使用した細胞培養方法 | |
JP6288311B2 (ja) | 物質の産生方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743378 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016572076 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2974278 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15545234 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177020787 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016743378 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201706090S Country of ref document: SG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017015124 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017015124 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170714 |