[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016119356A1 - 一种无卤树脂组合物及用其制作的预浸料和层压板 - Google Patents

一种无卤树脂组合物及用其制作的预浸料和层压板 Download PDF

Info

Publication number
WO2016119356A1
WO2016119356A1 PCT/CN2015/080472 CN2015080472W WO2016119356A1 WO 2016119356 A1 WO2016119356 A1 WO 2016119356A1 CN 2015080472 W CN2015080472 W CN 2015080472W WO 2016119356 A1 WO2016119356 A1 WO 2016119356A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
resin
halogen
resin composition
Prior art date
Application number
PCT/CN2015/080472
Other languages
English (en)
French (fr)
Inventor
奚龙
何岳山
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2016119356A1 publication Critical patent/WO2016119356A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to the field of laminate technology, and in particular to a resin composition, and more particularly to a halogen-free resin composition and a prepreg and laminate for printed circuit board produced therefrom.
  • phosphorus-containing resin or flame retardant In order to achieve bromine-free flame retardant, the industry usually uses phosphorus-containing resin or flame retardant, and combined with nitrogen-containing resin or flame retardant to achieve phosphorus-bromine synergistic and high-efficiency flame retardant.
  • Phosphorus-containing epoxy resins are excellent in flame retardancy due to their phosphorus content in the molecular structure, and are favored by developers in the industry. The increase in water absorption due to phosphorus seriously affects the reliability of electronic materials.
  • the benzoxazine resin contains nitrogen, which can significantly improve this problem. In addition, it has low cure shrinkage and good chemical resistance, and is widely used.
  • Chinese patent CN102504532A proposes that the use of a preferred epoxy resin in combination with benzoxazine can achieve excellent electrical properties while maintaining resistance to heat and humidity; however, the benzoxazine in the composition is brittle and processing Sex has a bad influence.
  • Chinese patent CN103724997A discloses that a special structure of benzoxazine and a trifunctional epoxy resin achieves a better overall performance, but since the trifunctional epoxy resin is easy to burn, the water absorption rate is high, and in view of its benzoxazine
  • the characteristics of the resin, the composition of the composition has certain limitations in terms of glass transition temperature, heat and humidity resistance and the like.
  • An object of the present invention is to provide a halogen-free resin composition, particularly a halogen-free resin composition, and a laminate for a prepreg and a printed circuit board produced therefrom.
  • the present invention adopts the following technical solutions:
  • the present invention provides a halogen-free resin composition
  • a halogen-free resin composition comprising, by weight of the solid component, the following components:
  • (C) curing agent 0.5 to 25 parts by weight
  • (D) flame retardant 1 to 15 parts by weight
  • the benzoxazine resin comprises two components B1 and B2, and the structural formula of the B1 component is as follows:
  • n is an integer of from 1 to 10;
  • R 1 , R 6 are independently selected from alkyl or aryl; and
  • R 3 , R 4 are independently selected from substituted or unsubstituted linear alkyl having 4-8 carbon atoms Or a branched alkyl group, preferably n-butyl or n-octyl;
  • R 2 , R 5 are independently selected from a substituted or unsubstituted linear alkyl or branched alkyl group having 4-8 carbon atoms, or selected from a hydrogen atom, preferably a hydrogen atom;
  • the B2 component is selected from the group consisting of bisphenol A type benzoxazine resin, dicyclopentadiene type benzoxazine resin, bisphenol F type benzoxazine resin, phenolphthalein type benzoxazine resin or MDA type benzoxazine Any one or a mixture of at least two of the resins.
  • the B1 component of the benzoxazine resin of the present invention is a benzo six-membered heterocyclic compound synthesized from phenol, primary amine and formaldehyde.
  • the ring-opening polymerization can produce a network structure containing nitrogen and similar phenolic resin.
  • R 3 is R 4 is or Any of them.
  • R 4 When R 4 is When the structural formula ( ⁇ ) is a bisphenol A type benzoxazine resin monomer; when R 4 is When the structural formula ( ⁇ ) is a bisphenol F type benzoxazine resin monomer; when R 4 is When the structural formula ( ⁇ ) is a phenolphthalein type benzoxazine resin monomer.
  • the MDA type benzoxazine resin in the present invention is also called a (4,4'-diaminodiphenylmethane) type benzoxazine resin, and its structure is as shown in the formula ( ⁇ ):
  • the halogen-free resin composition of the present invention uses a benzoxazine resin having a B1 structure as a curing agent for an epoxy resin, and is used in combination with the B2 component, thereby effectively solving the problem of poor toughness of the resin composition and improving the problem.
  • the mechanical processing property of the resin composition that is, in the present invention, the benzoxazine resin can improve the flame retardancy and moisture resistance of the halogen-free resin composition, the prepreg obtained from the resin, the laminate, and the like. , heat resistance, mechanical properties and high glass transition temperature (Tg); in addition, due to the presence of a part of the alkyl segment in the B1 component, the polar group is "diluted", which improves the composition of the resin composition. Electrical performance.
  • the epoxy resin is selected from the group consisting of dicyclopentadiene epoxy resin, phosphorus-containing epoxy resin, MDI modified epoxy resin, biphenyl epoxy resin, bisphenol A epoxy resin, phenol type phenolic resin. Any one or a mixture of at least two of an epoxy resin, an o-cresol novolac epoxy resin or an epoxidized polybutadiene resin.
  • each type of epoxy resin has an epoxy equivalent of from 150 to 800.
  • the epoxy resin content in the present invention is 5 to 45 parts by weight, and may be, for example, 5 parts by weight, 8 parts by weight, 10 parts by weight, 12 parts by weight, 15 parts by weight, 20 parts by weight, 22 parts by weight, and 25 parts by weight. Parts, 30 parts by weight, 32 parts by weight, 35 parts by weight, 38 parts by weight, 40 parts by weight, 42 parts by weight, 45 parts by weight, preferably 10 to 35 parts by weight.
  • the benzoxazine resin content in the present invention is 10 to 80 parts by weight, and may be, for example, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight, preferably 30 to 65 parts by weight.
  • the weight ratio of the components B1 and B2 is from 5:1 to 1:5, for example, it may be 5:1, 5:2, 5:3, 5:4, 5:5, 1:5, 2:5, 3:5, 4:5.
  • the B1 component benzoxazine resin of the present invention has a longer molecular chain segment, contains a good tough alkyl segment, and has superior toughness; and the B2 component has higher vitrification. Conversion temperature (Tg), good heat resistance. When the weight ratio of the two is between 5:1 and 1:5, the resin composition is balanced in terms of heat and humidity resistance and toughness, and has a good overall performance.
  • the curing agent described in the present invention is selected from the group consisting of dicyandiamide, 4,4-diaminodiphenyl sulfone, diaminodiphenyl ether, diaminodiphenyl sulfide, phenol type phenolic resin, o-cresol novolac resin or double Any one or a mixture of at least two of phenol type A phenol resins.
  • the curing agent of the present invention has a content of 0.5 to 25 parts by weight, for example, 0.5 parts by weight, 1 weight. Parts, 2 parts by weight, 4 parts by weight, 6 parts by weight, 8 parts by weight, 10 parts by weight, 12 parts by weight, 14 parts by weight, 15 parts by weight, 16 parts by weight, 18 parts by weight, 20 parts by weight, 22 parts by weight, 24 parts by weight, 25 parts by weight, preferably 1 to 15 parts by weight.
  • the curing agent in the present invention contributes to increase the crosslinking density between the resins, increase the glass transition temperature (Tg), and improve the heat resistance reliability of the substrate. If the content is less than 0.5 part, the glass transition temperature (Tg) of the resin composition is low, and the heat resistance of the substrate is insufficient, which may cause failure of the PCB blasting plate; if the content exceeds 25 parts, the water absorption rate of the resin composition is greatly increased. Reliability is significantly degraded.
  • the flame retardant described in the present invention is selected from the group consisting of resorcinol-bis(diphenyl phosphate), bisphenol A-bis(diphenyl phosphate), resorcinol-bis(2,6-dimethylphenyl) Any one or a mixture of at least two of a phosphate ester, a dimethyl methyl phosphate or a phosphazene compound is preferably a phosphazene compound.
  • the flame retardant content of the present invention is 1 to 15 parts by weight, and may be, for example, 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, and 9 parts by weight.
  • the use of the phosphorus-containing resin can be effectively reduced, and the water absorption rate of the resin composition can be lowered.
  • composition of the present invention further comprises (E) a curing accelerator: 0.1 to 1 part by weight, for example, 0.1 part by weight, 0.2 part by weight, 0.3 part by weight, 0.4 part by weight, 0.5 part by weight, 0.6 part by weight, 0.7. Parts by weight, 0.8 parts by weight, 0.9 parts by weight, 1 part by weight.
  • a curing accelerator 0.1 to 1 part by weight, for example, 0.1 part by weight, 0.2 part by weight, 0.3 part by weight, 0.4 part by weight, 0.5 part by weight, 0.6 part by weight, 0.7. Parts by weight, 0.8 parts by weight, 0.9 parts by weight, 1 part by weight.
  • the curing accelerator according to the present invention is selected from the group consisting of an imidazole accelerator and a derivative thereof, a pyridine or a Lewis acid, or a mixture of at least two.
  • the curing accelerator of the invention is beneficial to the curing reaction of the epoxy resin and the benzoxazine resin and the curing agent, forming a uniform three-dimensional network structure, achieving better physical properties; and promoting hydroxyl (-0H)
  • the decrease in the concentration of groups such as epoxy groups helps the resin composition to achieve better dielectric properties and lower dielectric constant and dielectric loss.
  • composition of the present invention further comprises (F) a filler: 5 to 80 parts by weight, for example, 5 parts by weight, 8 parts by weight, 10 parts by weight, 12 parts by weight, 15 parts by weight, 20 parts by weight, 22 parts by weight. 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight, preferably 25 to 60 parts by weight;
  • the filler of the present invention is selected from the group consisting of inorganic fillers and/or organic fillers.
  • the inorganic filler is selected from the group consisting of aluminum hydroxide, silica, talc, boehmite, zeolite, wollastonite, magnesia, calcium silicate, calcium carbonate, clay or mica or Mix of at least two.
  • the organic filler is selected from the group consisting of melamine and/or melamine cyanurate.
  • the inorganic filler of the present invention has a particle diameter of 50 nm to 50 ⁇ m, and the physical form thereof may be a sheet shape, a rod shape, a spherical shape, a hollow sphere shape, a granular shape, a fiber shape or a plate shape, and the like, and may be selectively treated with a silane coupling agent.
  • the filler of the present invention is uniformly dispersed in the resin composition, and its function is to further improve the mechanical strength, thermal conductivity, heat absorption, reduction of expansion coefficient, and workability of the resin composition.
  • the method for preparing the halogen-free flame-retardant resin composition of the present invention can be selected by those skilled in the art with reference to the preparation method of the existing resin composition, and the present invention is not particularly limited.
  • the halogen-free resin composition of the present invention comprises, by weight of the solid component, the following components:
  • (C) curing agent 0.5 to 25 parts by weight
  • (D) flame retardant 1 to 15 parts by weight
  • the halogen-free resin composition of the present invention comprises, by weight of the solid component, the following components:
  • (C) curing agent 1 to 15 parts by weight
  • the present invention also provides a prepreg comprising the halogen-free resin composition according to the first aspect of the invention.
  • the prepreg is a combination of a resin matrix and a reinforcement formed by impregnating a continuous fiber or fabric under a strictly controlled condition with a resin matrix, and is an intermediate material for manufacturing a composite material.
  • the prepreg comprises a binder and a halogen-free resin composition attached thereto by dipping and drying.
  • the binder of the present invention is a nonwoven fabric or other fabric, and typical but not limited to include natural fibers, organic synthetic fibers or inorganic fibers.
  • the binder is a nonwoven or woven fiberglass cloth.
  • preparation method of the prepreg according to the present invention those skilled in the art can refer to the preparation method of the existing prepreg, which is not specifically limited in the present invention, and the preparation method of the prepreg which is typical but not limited. Including the following steps:
  • the impregnated glass cloth is dried by heating in an oven at 140 to 200 ° C for 3 to 8 minutes.
  • the present invention also provides a laminate comprising the prepreg according to the second aspect of the invention.
  • a laminate is a type of laminate which is a composite of two or more layers of resin-impregnated fibers or fabrics (i.e., prepregs) which are laminated and heat-pressed.
  • the invention provides a printed circuit board comprising the laminate of the third aspect of the invention.
  • the present invention has at least the following beneficial effects:
  • the present invention adopts a ratio of a proportion of the benzoxazine resin of the two components B1 and B2 as a curing agent for the epoxy resin, thereby ensuring that the resin composition has excellent heat resistance and a low water absorption rate. , overcomes the defects of large brittleness of the resin composition and poor machinability;
  • the benzoxazine resin used in the present invention can improve the toughness of the resin composition by controlling the functional group thereof, and has a low dielectric constant and a low dielectric constant while increasing the heat and humidity resistance and reliability. Dielectric loss;
  • the use of the flame retardant in the present invention can reduce the use of the phosphorus-containing resin, has a low water absorption rate, and has good reliability;
  • the prepreg and copper-clad laminate provided by the present invention have excellent dielectric properties, and also have high glass transition temperature (Tg), high heat resistance, high reliability, low water absorption, and low thermal expansion. Coefficient (CTE), flame retardant and excellent machinability, etc., are conducive to industrialization and implementation.
  • step (1) The molar ratio of phenolic hydroxyl group, amine group and aldehyde group is 1:1:2, and the product of step (1), aniline and paraformaldehyde are sequentially added, and the pH is adjusted to 8-10 with NaOH; Thereafter, the mixture was heated to reflux, and after reacting for 3 hours, the apparatus was cooled to obtain a pale yellow translucent viscous body. After washing, purification, and drying, a benzoxazine B1 component having the following structural formula was obtained in a yield of 81%.
  • A is a dicyclopentadiene epoxy resin purchased from Japan DIC Corporation, trade name is HP-7200H;
  • B is a benzoxazine resin
  • B-1 is a B1 component benzoxazine resin synthesized in the preparation example
  • B-2 is a model D125 purchased from Sichuan Dongcai Technology Group Co., Ltd.;
  • n is a positive integer from 1 to 9;
  • C is a curing agent
  • C-1 is a linear phenolic resin, and the model of Korea Momentive is EPONOL 6635M65;
  • C-2 is the DICY purchased from Ningxia Darong;
  • D is a product of SPB-100 purchased from Otsuka Chemical Co., Ltd. of Japan;
  • E is 2E4MI purchased from the four countries of Japan;
  • F is a filler
  • F-1 is American Yabao aluminum hydroxide
  • F-2 is the silica of Chongqing Jinyi.
  • halogen-free resin compositions provided in Examples 1-8 and Comparative Examples 1-8 were prepared as follows, and laminates for printed circuit boards were prepared, and the prepared laminates were subjected to performance tests.
  • the preparation method of the laminate for printed circuit board comprises:
  • step (2) 8 pieces of prepreg and 2 pieces of one ounce (35 ⁇ m thick) metal foil are laminated;
  • the operating conditions of the lamination are: when the temperature is 80-140 ° C, the controlled heating rate is 1.5-2.5 ° C / min; when the outer layer temperature is 80-100 ° C, the full pressure is applied, full The pressure is about 350 psi; when curing, the temperature of the material is controlled at 195 ° C and kept for more than 60 minutes.
  • the measurement was carried out in accordance with the DSC method specified in 2.4.25 of IPC-TM-650.
  • a sample (a 100 ⁇ 100 mm printed circuit board laminate) was held in a pressure cooker at 121 ° C and 105 kPa for 2 hours; after that, the sample was immersed in a solder bath at 260 ° C to record the delamination time.
  • the dielectric constant and dielectric loss factor at 1 GHz were measured according to the method specified in 2.5.5.5 of IPC-TM-650 according to the resonance method using a strip line.
  • the substrate with a thickness of 1.60mm and 100 ⁇ 100mm is horizontally placed on the gantry.
  • the circular passage with a diameter of 8cm inside the gantry runs through the upper and lower sections of the gantry.
  • a 1Kg weight cross hammer is selected, and the diameter of the hammer head is 10mm. Place the hammer head at a height of 1 m, align the circular section of the gantry, and vertically fall on the plate, and calculate the area of the white grain on the plate.
  • Example 2 and Example 3 show that the benzoxazine of the B1 component greatly improves the toughness while effectively reducing the dielectric constant and dielectric loss of the resin composition.
  • Example 3 and Example 4 show that when the ratio of phenolic in the curing agent is high, the brittleness is easily increased, and the amine curing agent can increase the toughness;
  • Example 5 and Example 6 show that the two components of B1 and B2 are The benzoxazine weight ratio can be adjusted between 1:5 and 5:1 to obtain the desired performance;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明涉及一种无卤树脂组合物及用其制作的预浸料和层压板,以固体组分重量份计,包括如下组分:(A)环氧树脂:5至45重量份;(B)苯并噁嗪树脂:10至80重量份;(C)固化剂:0.5至25重量份;(D)阻燃剂:1至15重量份。本发明还提供了用所述的无卤树脂组合物制备的预浸料、层压板和印制电路用层压板。本发明通过采用将两种苯并噁嗪树脂按一定比例进行复配,使得所述无卤树脂组合物在保证具有优良耐湿热性的同时,有效提升了树脂组合物的韧性;并使预浸料、层压板和印制电路用层压板在具有优异介电性能的同时,具有优良的机械加工性能。

Description

一种无卤树脂组合物及用其制作的预浸料和层压板 技术领域
本发明涉及层压板技术领域,具体涉及一种树脂组合物,尤其涉及一种无卤树脂组合物及用其制作的预浸料与印制电路用层压板。
背景技术
随着欧盟的有害物质限用指令(Restriction of Hazardous Substances,RoHS)的实施以及绿色和平组织大力推动电子行业的绿色化,电子材料的无卤化成为2007年以后业界的评价重点。相对于含溴阻燃树脂或阻燃剂,磷系阻燃产品在焚烧后污染相对较小,在近几年获得了较快的发展。
为实现无溴阻燃,业内通常采用含磷的树脂或阻燃剂,配合含氮的树脂或阻燃剂实现磷-溴协同高效阻燃。含磷环氧树脂由于分子结构中含有磷元素,在阻燃方面表现优异,获得业内开发者的青睐。由于磷元素造成吸水率升高,严重影响到了电子材料的可靠性。苯并噁嗪树脂中含有氮元素,可以明显改善这一难题,加之固化收缩率低,耐化学性佳,得到了广泛使用。然而,大部分苯并噁嗪由于刚性基团较多,交联点之间的分子基团分子量有限,导致其固化物脆性较大,制成品加工性较差,成为了其应用的难点。
另一方面,随着电子技术的发展,特别是通讯技术的发展,印制线路板(PCB)对信息处理要求的速度越来越高。众所周知,印制线路基板(CCL)的介电常数(Dk)越低,信号在基板上传输的速度越快,基板的介电损耗(Df)越小,信号在传输过程中损失功率保持一致时,容许传输的频率就越高。即,介电损耗越小,信号在传输时的失真就越不明显。此外,以手机、笔记本电脑和平板电脑为代表的消费电子领域,轻薄短小这一趋势将会进一步发展。为实 现更薄的设计且不降低运算速度,必须开发具有较低介电常数/介电损耗的基板。以基站服务器等为代表的高端领域,对Dk/Df有较严格要求的同时,特别关注材料的可靠性,要求基板具有较高的玻璃化转变温度(Tg),耐热可靠性以及更低的热膨胀系数(CTE)。
为此,业内从业者对此作出了多种努力。中国专利CN102504532A中提出采用优选的环氧树脂与苯并噁嗪组合使用能实现优异的电性能,同时耐湿热可靠等性能得到兼顾;然而该组合物中的苯并噁嗪脆性较大,对加工性产生了不良的影响。中国专利CN103724997A中披露了采用特殊结构的苯并噁嗪和三官能环氧树脂实现了较佳的综合性能,但由于三官能环氧树脂易于燃烧,吸水率较高,且鉴于其苯并噁嗪树脂的特性,其组合物在玻璃化转化温度、耐湿热可靠性等方面存在一定的局限性。
因此,寻找一种在保证具有优良耐湿热性的同时,可有效提升树脂组合物的韧性并使预浸料、层压板和印制电路用层压板具有优异介电性能的无卤树脂组合物是目前亟待解决的问题。
发明内容
本发明的目的在于提供一种无卤树脂组合物,特别是一种无卤树脂组合物及用其制作的预浸料与印制电路用层压板。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种无卤树脂组合物,所述组合物,以固体组分重量份计,包括如下组分:
(A)环氧树脂:5至45重量份;
(B)苯并噁嗪树脂:10至80重量份;
(C)固化剂:0.5至25重量份;
(D)阻燃剂:1至15重量份;
其中,所述的苯并噁嗪树脂包括B1和B2两种组分,B1组分的结构式如下所示:
Figure PCTCN2015080472-appb-000001
其中,n为1~10的整数;R1,R6独立地选自烷基或芳基;R3,R4独立地选自取代或未取代的碳原子为4-8的直链烷基或支链烷基,优选为正丁基或正辛基;R2,R5独立地选自取代或未取代的碳原子为4-8的直链烷基或支链烷基,或选自氢原子,优选为氢原子;
B2组分选自双酚A型苯并噁嗪树脂、双环戊二烯型苯并噁嗪树脂、双酚F型苯并噁嗪树脂、酚酞型苯并噁嗪树脂或MDA型苯并噁嗪树脂中的任意一种或至少两种的混合。
本发明所述的苯并噁嗪树脂中的B1组分,或称具有二氢苯并噁嗪环的化合物,是由酚、伯胺和甲醛为原料合成的一种苯并六元杂环化合物,经开环聚合可生产含氮且类似酚醛树脂的网状结构。
本发明中的双酚A型苯并噁嗪树脂单体和双酚F型苯并噁嗪树脂单体、酚酞型苯并噁嗪树脂单体的结构如式(α)所示:
Figure PCTCN2015080472-appb-000002
其中,R3
Figure PCTCN2015080472-appb-000003
R4
Figure PCTCN2015080472-appb-000004
Figure PCTCN2015080472-appb-000005
中的任意一种。
当R4
Figure PCTCN2015080472-appb-000006
时,结构式(α)为双酚A型苯并噁嗪树脂单体;当R4
Figure PCTCN2015080472-appb-000007
时,结构式(α)为双酚F型苯并噁嗪树脂单体;当R4
Figure PCTCN2015080472-appb-000008
时,结构式(α)为酚酞型苯并噁嗪树脂单体。
本发明中的MDA型苯并噁嗪树脂,又称(4,4’-二胺基二苯甲烷)型苯并噁嗪树脂,其结构如式(β)所示:
Figure PCTCN2015080472-appb-000009
本发明中的双环戊二烯苯并噁嗪树脂单体的结构式如(γ)所示:
Figure PCTCN2015080472-appb-000010
本发明的无卤树脂组合物采用具有B1结构的苯并噁嗪树脂作为环氧树脂的固化剂,并将其与B2组分进行配合使用,有效解决了树脂组合物韧性不佳的问题,提升了树脂组合物的机械加工性能,即在本发明中,苯并噁嗪树脂能够提高无卤树脂组合物及由所述树脂得到的预浸料、层压板等所需的阻燃性能、耐湿性、耐热性、力学性能及较高的玻璃转变温度(Tg);另外,由于B1组分中的部分烷基链段的存在,极性基团得到“稀释”,提高了树脂组合物的介电性能。
本发明中,所述的环氧树脂选自双环戊二烯环氧树脂、含磷环氧树脂、MDI改性环氧树脂、联苯环氧树脂、双酚A型环氧树脂、苯酚型酚醛环氧树脂、邻甲酚醛型环氧树脂或环氧化聚丁二烯树脂中的任意一种或至少两种的混合。
在本发明所述的无卤树脂组合物中,各类型环氧树脂的环氧当量为150~800。
本发明中所述的环氧树脂含量为5至45重量份,例如可以是5重量份、8重量份、10重量份、12重量份、15重量份、20重量份、22重量份、25重量份、30重量份、32重量份、35重量份、38重量份、40重量份、42重量份、45重量份,优选为10至35重量份。
本发明中所述的苯并噁嗪树脂含量为10至80重量份,例如可以是10重量份、15重量份、20重量份、25重量份、30重量份、35重量份、40重量份、45重量份、50重量份、55重量份、60重量份、65重量份、70重量份、75重量份、80重量份,优选为30至65重量份。
本发明所述的苯并噁嗪树脂中,B1和B2两种组分的重量比为5∶1至1∶5,例如可以是5∶1、5∶2、5∶3、5∶4、5∶5、1∶5、2∶5、3∶5、4∶5。
相对于B2组分,本发明的B1组分苯并噁嗪树脂的分子链段较长,含有韧性良好的烷基链段,具有更优异的韧性;而B2组分则具有较高的玻璃化转化温度(Tg),耐热性良好。当二者的重量比在5∶1-1∶5之间时,树脂组合物在耐湿热性和韧性方面取得平衡,具有较好的综合性能。
本发明中所述的固化剂选自双氰胺、4,4-二氨基二苯砜、二氨基二苯醚、二氨基二苯硫醚、苯酚型酚醛树脂、邻甲酚型酚醛树脂或双酚A型酚醛树脂中的任意一种或至少两种的混合。
本发明的固化剂含量为0.5至25重量份,例如可以是0.5重量份、1重量 份、2重量份、4重量份、6重量份、8重量份、10重量份、12重量份、14重量份、15重量份、16重量份、18重量份、20重量份、22重量份、24重量份、25重量份,优选为1至15重量份。
本发明中的固化剂有助于提高树脂之间的交联密度,提高玻璃化转化温度(Tg),改善基板的耐热可靠性。若含量低于0.5份,树脂组合物的玻璃化转化温度(Tg)偏低,基板耐热性不足,易导致PCB爆板失效;若含量超过25份,将造成树脂组合物吸水率大幅上升,可靠性明显劣化。
本发明中所述的阻燃剂选自间苯二酚-双(磷酸二苯酯)、双酚A-双(磷酸二苯酯)、间苯二酚-双(2,6-二甲苯基磷酸酯)、甲基磷酸二甲酯或磷腈化合物中的任意一种或至少两种的混合,优选为磷腈化合物。
本发明的阻燃剂含量为1至15重量份,例如可以是1重量份、2重量份、3重量份、4重量份、5重量份、6重量份、7重量份、8重量份、9重量份、10重量份、11重量份、12重量份、13重量份、14重量份、15重量份,优选为3至12重量份。
本发明的无卤树脂组合物中,由于使用了阻燃剂,可有效降低含磷树脂的使用,降低了树脂组合物的吸水率。
本发明所述的组合物还包括(E)固化促进剂:0.1至1重量份,例如可以是0.1重量份、0.2重量份、0.3重量份、0.4重量份、0.5重量份、0.6重量份、0.7重量份、0.8重量份、0.9重量份、1重量份。
本发明所述的固化促进剂选自咪唑类促进剂及其衍生物、吡啶类或路易斯酸类中的任意一种或至少两种的混合。
本发明的固化促进剂有益于环氧树脂和苯并噁嗪树脂以及固化剂进行固化反应,形成均匀的三维网状分子结构,达到较佳的物性;并能促进羟基(-0H) 和环氧基等基团浓度的下降,帮助树脂组合物实现较佳的介电性能,降低介电常数和介电损耗。
本发明所述的组合物还包括(F)填料:5至80重量份,例如可以是5重量份、8重量份、10重量份、12重量份、15重量份、20重量份、22重量份、25重量份、30重量份、35重量份、40重量份、45重量份、50重量份、55重量份、60重量份、65重量份、70重量份、75重量份、80重量份,优选为25至60重量份;
本发明所述的填料选自无机填料和/或有机填料。
优选地,所述的无机填料选自氢氧化铝,二氧化硅,滑石粉,勃姆石,沸石、硅灰石、氧化镁、硅酸钙、碳酸钙、粘土或云母中的任意一种或至少两种的混合。
优选地,所述的有机填料选自三聚氰胺和/或三聚氰胺氰尿酸盐。
本发明所述无机填料的粒径在50nm-50μm,其物理形态可为片状、棒状、球形、空心球形、粒状、纤维状或板状等,可选择性以硅烷偶联剂处理。本发明的填料均匀分散在树脂组合物中,其作用在于进一步提高树脂组合物的机械强度,热传导性,降低吸水率,降低膨胀系数以及改善加工性。
本发明所述的无卤阻燃型树脂组合物的制备方法,本领域技术人员可以参考现有的树脂组合物的制备方法,结合实际情况进行选择,本发明不做特殊限定。
作为优选技术方案,本发明所述的无卤树脂组合物,以固体组分重量份计,包括如下组分:
(A)环氧树脂:5至45重量份;
(B)苯并噁嗪树脂:10至80重量份;
(C)固化剂:0.5至25重量份;
(D)阻燃剂:1至15重量份;
(E)固化促进剂:0.1至1重量份;
(F)填料:5至80重量份。
作为进一步优选的技术方案,本发明所述的无卤树脂组合物,以固体组分重量份计,包括如下组分:
(A)环氧树脂:10至35重量份;
(B)苯并噁嗪树脂:30至65重量份;
(C)固化剂:1至15重量份;
(D)阻燃剂:3至12重量份;
(E)固化促进剂:0.1至1重量份;
(F)填料:25至60重量份。
第二方面,本发明还提供了一种预浸料,其包括如本发明第一方面所述的无卤树脂组合物。
预浸料是用树脂基体在严格控制的条件下浸渍连续纤维或织物,制成树脂基体与增强体的组合物,是制造复合材料的中间材料。
优选地,所述的预浸料包括基料和通过浸渍干燥后附着在其上的无卤树脂组合物。
本发明所述的基料为无纺织物或其它织物,典型但非限制性的包括天然纤维、有机合成纤维或无机纤维等。
优选地,所述的基料为无纺或有纺玻璃纤维布。
本发明所述的预浸料的制备方法,本领域技术人员可以参考现有的预浸料的制备方法,本发明不做具体限定,典型但非限制性的所述预浸料的制备方法 包括如下步骤:
使用本发明提供的无卤树脂组合物的胶液含浸基料,将含浸好的玻璃布在140~200℃的烘箱中加热干燥3~8分钟制成。
第三方面,本发明还提供了一种层压板,其包含如本发明第二方面所述的预浸料。
层压板是层压制品的一种,是由两层或多层浸有树脂的纤维或织物(即预浸料),经叠合、热压结合成的整体。
第四方面,本发明提供了一种印刷电路板,其包含如本发明第三方面所述的层压板。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明采用将B1和B2两种组分的苯并噁嗪树脂按一定比例配比后作为环氧树脂的固化剂,保证树脂组合物具有优良耐热性,较低吸水率的同时,克服了树脂组合物脆性大,机械加工性差的缺陷;
(2)本发明采用的苯并噁嗪树脂,通过对其官能团进行了控制,可提高树脂组合物韧性,在增加耐湿热性、可靠性的同时,具有较低的介电常数,较低的介电损耗;
(3)本发明中使用阻燃剂可减少含磷树脂的使用,吸水率较低,可靠性好;
(4)本发明提供的预浸料、覆铜箔层压板具有优异的介电性能,同时还具有高玻璃化转变温度(Tg)、高耐热性、高可靠性、低吸水性、低热膨胀系数(CTE)、阻燃以及优异的机械加工性能等,有利于工业化推广实施。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
制备例B1组分苯并噁嗪树脂的合成
(1)选取4-叔丁基苯酚和4-叔辛基苯酚以摩尔比1∶1加入反应釜内,加热到100℃,缓慢加入适量草酸和甲醛水溶液,回流3-6h。然后将产物于水中沉析,常压、减压蒸馏后得到固态物;
(2)以酚羟基、胺基、醛基官能团的摩尔比为1∶1∶2,依次加入步骤(1)的产物,苯胺,多聚甲醛,用NaOH调pH值至8-10;搅拌均匀后,升温回流,反应3小时后冷却装置,得到浅黄色半透明粘稠体,经过洗涤、纯化、干燥后,即得到具有如下结构式的苯并噁嗪B1组分,产率为81%。
Figure PCTCN2015080472-appb-000011
其中R1,R6为
Figure PCTCN2015080472-appb-000012
在所述实施例和对比例中,如无特别说明,其中“份”代表“重量份”,其中“%”代表“重量%”。
实施例1-8和对比例1-8提供的无卤树脂组合物的配方分别如表1和表2所示。
表1
Figure PCTCN2015080472-appb-000013
Figure PCTCN2015080472-appb-000014
表2
Figure PCTCN2015080472-appb-000015
在表1和表2中,实施例1-8和对比例1-8所用的各组分代号及其对应的组分名称如下所示:
A为购于日本DIC公司的双环戊二烯环氧树脂,商品名为HP-7200H;
B为苯并噁嗪树脂;
B-1为制备例中合成的B1组分苯并噁嗪树脂;
B-2为购于四川东材科技集团股份有限公司的型号为D125的产品;
B-3的结构式为:
Figure PCTCN2015080472-appb-000016
其中n为1-9的正整数;
C为固化剂;
C-1为线性酚醛树脂,韩国momentive公司的型号为EPONOL 6635M65;
C-2为购于宁夏大荣的DICY;
D为购于日本大塚化学株式会社的型号为SPB-100的产品;
E为购于日本四国化成的2E4MI;
F为填料;
F-1为美国雅宝氢氧化铝;
F-2为重庆锦艺的二氧化硅。
性能测试:
将实施例1-8和对比例1-8提供的无卤树脂组合物,按照如下方法制备印制电路用层压板,并对制备得到的层压板进行性能测试。
所述印制电路用层压板的制备方法包括:
(1)通过加热和加压作用使一张或一张以上的预浸料粘合在一起,制成层压板;
(2)在步骤(1)制得的层压板的一面或两面上粘合金属箔;
(3)在层压机中进行层压。
在步骤(2)的过程中,使用8片预浸料和2片一盎司(35μm厚)的金属箔叠合在一起;
在步骤(3)的过程中,层压的操作条件为:料温80~140℃时,控制升温速率为1.5~2.5℃/min;外层料温80-100℃时,施加满压,满压压力为350psi左右;固化时,控制料温在195℃,并保温60min以上。
性能测试的项目及具体方法为:
(a)玻璃化转变温度:
根据差示扫描量热法,按照IPC-TM-650中2.4.25所规定的DSC方法进行测定。
(b)耐燃烧性:
依据UL94法测定。
(c)耐浸焊时间:
首先将试样(100×100mm的印制电路用层压板)在121℃、105kPa的加压蒸煮处理装置内保持2小时;之后将试样浸在260℃的焊锡槽记录其分层气泡时间。
(d)吸水性:
按照IPC-TM-650中的2.6.2.1所规定的方法进行测定。
(e)介电常数和介电损耗因素
根据使用条状线的共振法,按照IPC-TM-650中的2.5.5.5所规定的方法测定1GHz下的介电常数和介电损耗因素。
(f)弯曲强度
按照IPC-TM-650中的2.4.4所规定的方法进行测试。
(g)落锤冲击面积
将厚度1.60mm,100×100mm的基材水平置于台架上,台架内部有直径8cm的圆形通道贯穿于台架上下截面,将选取1Kg重的十字锤,锤头直径10mm, 将锤头置于1m高度,对准台架圆截面,垂直自由落于板材,对板材出现白纹的面积进行计算。
(h)PP表观
目测PP表面是否均匀光滑,是否平整。
由实施例1~8提供的无卤树脂组合物制备的印制电路用层压板的性能测试结果如表3所示;由对比例1~8提供的无卤树脂组合物制备的印制电路用层压板的性能测试结果如表4所示。
表3
Figure PCTCN2015080472-appb-000017
表4
Figure PCTCN2015080472-appb-000018
Figure PCTCN2015080472-appb-000019
从表3和表4的数据可以看出以下几点:
(1)通过实施例1-6可以看出,实施例1-6中的环氧树脂含量是递减的,实施例1中的环氧树脂含量最低,其玻璃化转化温度最高,弯曲强度最好,但是落锤冲击面积较大,韧性差;说明当无卤树脂组合物中的环氧树脂含量较少时,会使玻璃化转化温度升高,弯曲强度变好,但是落锤冲击面积较大,韧性会变差;
(2)实施例2和实施例3表明,B1组分的苯并噁嗪在有效降低树脂组合物介电常数和介电损耗的同时,极大改善了韧性。实施例3和实施例4表明,固化剂中酚醛比例较高时,容易引起脆性的增大,胺类固化剂能增加韧性;实施例5和实施例6表明,B1和B2两种组分的苯并噁嗪重量比可以在1∶5~5∶1之间调整,均可获得理想的性能;
(3)实施例1-8表明,本发明的树脂组合物有较均衡的性能;
(4)由实施例1-6和对比例1进行比较可知,对比例1中的玻璃化转化温 度偏低,耐热性不佳,韧性很差,说明当环氧树脂含量不在本发明范围内时,其耐热性和韧性会变差;
(5)由对比例2可知,苯并噁嗪含量过低,树脂组合物的介电常数较低,但Tg低,阻燃只能达到V-1级别。由对比例3看出,B1组分的苯并噁嗪能有效增加板材韧性的同时,介电性能优异,但是耐热性不佳。由对比例4可看出,B2组分的苯并噁嗪具有较高的Tg,但介电常数和介电损耗都偏高,且韧性表现一般;
(6)由对比例5可知,不包含含磷阻燃剂的样品各项性能较佳,但不能达到V-0级别的阻燃;
(7)由对比例3和对比例6可知,B1和B3两种组分的苯并噁嗪均能有效增加树脂组合物的韧性,但是B3组分的苯并噁嗪的使用会导致介电性能劣化;对比例5和对比例7进行比较可知,B3组分的苯并噁嗪会明显降低树脂体系的介电性能,B1对树脂体系韧性的改善要优于B3;将实施例4与对比例8进行比较表明,B1和B2两种组分的苯并噁嗪重量比例超过5:1时,B1使用量的增加不会对Tg和耐热性等关键指标产生积极影响。
应该注意到并理解,在不脱离后附的权利要求所要求的本发明的精神和范围的情况下,能够对上述详细描述的本发明做出各种修改和改进。因此,要求保护的技术方案的范围不受所给出的任何特定示范教导的限制。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (12)

  1. 一种无卤树脂组合物,其特征在于,所述组合物,以固体组分重量份计,包括如下组分:
    (A)环氧树脂:5至45重量份;
    (B)苯并噁嗪树脂:10至80重量份;
    (C)固化剂:0.5至25重量份;
    (D)阻燃剂:1至15重量份;
    其中,所述的苯并噁嗪树脂包括B1和B2两种组分,B1组分的结构式如下所示:
    Figure PCTCN2015080472-appb-100001
    其中,n为1~10的整数;R1,R6独立地选自烷基或芳基;R3,R4独立地选自取代或未取代的碳原子为4-8的直链烷基或支链烷基;R2,R5独立地选自取代或未取代的碳原子为4-8的直链烷基或支链烷基,或选自氢原子;
    B2组分选自双酚A型苯并噁嗪树脂、双环戊二烯型苯并噁嗪树脂、双酚F型苯并噁嗪树脂、酚酞型苯并噁嗪树脂或MDA型苯并噁嗪树脂中的任意一种或至少两种的混合。
  2. 如权利要求1所述的组合物,其特征在于,R3,R4独立地选自正丁基或正辛基。
  3. 如权利要求1所述的组合物,其特征在于,R2,R5独立地选自氢原子。
  4. 如权利要求1-3任一项所述的组合物,其特征在于,所述的环氧树脂选 自双环戊二烯环氧树脂、含磷环氧树脂、MDI改性环氧树脂、联苯环氧树脂、双酚A型环氧树脂、苯酚型酚醛环氧树脂、邻甲酚醛型环氧树脂或环氧化聚丁二烯树脂中的任意一种或至少两种的混合;
    优选地,所述的无卤树脂组合物中,环氧树脂的含量为10至35重量份。
  5. 如权利要求1-4任一项所述的组合物,其特征在于,所述的无卤树脂组合物中,苯并噁嗪树脂的含量为30至65重量份;
    优选地,所述的B1和B2两种组分的重量比为5∶1至1∶5。
  6. 如权利要求1-5任一项所述的组合物,其特征在于,所述的固化剂选自双氰胺、4,4-二氨基二苯砜、二氨基二苯醚、二氨基二苯硫醚、苯酚型酚醛树脂、邻甲酚型酚醛树脂或双酚A型酚醛树脂中的任意一种或至少两种的混合;
    优选地,所述的无卤树脂组合物中,固化剂的含量为1至15重量份。
  7. 如权利要求1-6任一项所述的组合物,其特征在于,所述的阻燃剂选自间苯二酚-双(磷酸二苯酯)、双酚A-双(磷酸二苯酯)、间苯二酚-双(2,6-二甲苯基磷酸酯)、甲基磷酸二甲酯或磷腈化合物中的任意一种或至少两种的混合,优选为磷腈化合物;
    优选地,所述的无卤树脂组合物中,阻燃剂的含量为3至12重量份。
  8. 如权利要求1-7任一项所述的组合物,其特征在于,所述的组合物还包括(E)固化促进剂:0.1至1重量份;
    优选地,所述的固化促进剂选自咪唑类促进剂及其衍生物、吡啶类或路易斯酸类中的任意一种或至少两种的混合。
  9. 如权利要求1-8任一项所述的组合物,其特征在于,所述的组合物还包括(F)填料:5至80重量份;优选为25至60重量份;
    优选地,所述的填料选自无机填料和/或有机填料;
    优选地,所述的无机填料选自氢氧化铝,二氧化硅,滑石粉,勃姆石,沸石、硅灰石、氧化镁、硅酸钙、碳酸钙、粘土或云母中的任意一种或至少两种的混合;
    优选地,所述的有机填料选自三聚氰胺和/或三聚氰胺氰尿酸盐。
  10. 一种预浸料,其特征在于,所述的预浸料包括如权利要求1-9任一项所述的无卤树脂组合物;
    优选地,所述的预浸料包括基料和通过浸渍干燥后附着在其上的无卤树脂组合物;
    优选地,所述的基料为无纺或有纺玻璃纤维布。
  11. 一种层压板,其特征在于,其包含如权利要求10所述的预浸料。
  12. 一种印刷电路板,其特征在于,其包含如权利要求11所述的层压板。
PCT/CN2015/080472 2015-01-28 2015-06-01 一种无卤树脂组合物及用其制作的预浸料和层压板 WO2016119356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510043255.0A CN104804377B (zh) 2015-01-28 2015-01-28 一种无卤树脂组合物及用其制作的预浸料和层压板
CN201510043255.0 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016119356A1 true WO2016119356A1 (zh) 2016-08-04

Family

ID=53689593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080472 WO2016119356A1 (zh) 2015-01-28 2015-06-01 一种无卤树脂组合物及用其制作的预浸料和层压板

Country Status (2)

Country Link
CN (1) CN104804377B (zh)
WO (1) WO2016119356A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513605B2 (en) 2015-12-04 2019-12-24 Shengyi Technology Co., Ltd. Halogen-free epoxy resin composition, prepreg, laminate and printed circuit board containing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151308B (zh) * 2016-03-04 2019-06-14 广东生益科技股份有限公司 一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板
CN106166874B (zh) * 2016-06-29 2018-07-20 南亚新材料科技股份有限公司 无卤覆铜板及其制备方法
CN106317869A (zh) * 2016-08-22 2017-01-11 威海光威复合材料股份有限公司 纳米陶瓷粉改性苯并噁嗪树脂制备复合材料的方法
CN109955544A (zh) * 2017-12-14 2019-07-02 广州金发碳纤维新材料发展有限公司 一种汽车内饰用复合板及其制备方法
CN108192281B (zh) * 2017-12-27 2020-12-15 江西生益科技有限公司 一种无卤热固性树脂组合物及使用它的预浸料、层压板、覆金属箔层压板和印刷电路板
CN108047647B (zh) * 2017-12-27 2020-07-07 广东生益科技股份有限公司 一种无卤热固性树脂组合物及使用它的预浸料、层压板、覆金属箔层压板和印刷电路板
CN109694545A (zh) * 2018-12-28 2019-04-30 东莞联茂电子科技有限公司 一种用于覆铜板的无卤高耐热树脂组合物
CN113232383B (zh) * 2021-05-25 2022-04-15 武汉理工大学 一种ptfe复合介质基板及其制备方法
CN113897025B (zh) * 2021-09-24 2023-01-24 江南大学 第三代半导体器件封装用苯并噁嗪树脂基组合物及其制备方法
CN117384457B (zh) * 2023-10-16 2024-03-19 江苏耀鸿电子有限公司 一种无卤阻燃碳氢树脂覆铜板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111489A1 (ja) * 2007-03-08 2008-09-18 Nippon Steel Chemical Co., Ltd. 難燃性接着剤樹脂組成物及びそれを用いた接着剤フィルム
CN101643570A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 无卤阻燃型树脂组合物及用其制成的预浸料、层压板与印制电路用层压板
CN101831144A (zh) * 2010-05-19 2010-09-15 广东生益科技股份有限公司 无卤环氧树脂组合物以及使用其制备的高柔性挠性覆铜板
CN102732029A (zh) * 2012-06-21 2012-10-17 广东生益科技股份有限公司 无卤树脂组合物及粘结片与覆铜箔层压板
CN103013046A (zh) * 2012-12-13 2013-04-03 广东生益科技股份有限公司 一种无卤阻燃树脂组合物及其用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504532B (zh) * 2011-10-18 2013-09-18 广东生益科技股份有限公司 无卤低介电树脂组合物及使用其制作的预浸料与覆铜箔层压板
CN103724997B (zh) * 2013-12-31 2016-01-06 福建新世纪电子材料有限公司 一种无卤低吸水热固性阻燃树脂组合物及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111489A1 (ja) * 2007-03-08 2008-09-18 Nippon Steel Chemical Co., Ltd. 難燃性接着剤樹脂組成物及びそれを用いた接着剤フィルム
CN101643570A (zh) * 2009-08-24 2010-02-10 广东生益科技股份有限公司 无卤阻燃型树脂组合物及用其制成的预浸料、层压板与印制电路用层压板
CN101831144A (zh) * 2010-05-19 2010-09-15 广东生益科技股份有限公司 无卤环氧树脂组合物以及使用其制备的高柔性挠性覆铜板
CN102732029A (zh) * 2012-06-21 2012-10-17 广东生益科技股份有限公司 无卤树脂组合物及粘结片与覆铜箔层压板
CN103013046A (zh) * 2012-12-13 2013-04-03 广东生益科技股份有限公司 一种无卤阻燃树脂组合物及其用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513605B2 (en) 2015-12-04 2019-12-24 Shengyi Technology Co., Ltd. Halogen-free epoxy resin composition, prepreg, laminate and printed circuit board containing the same

Also Published As

Publication number Publication date
CN104804377A (zh) 2015-07-29
CN104804377B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016119356A1 (zh) 一种无卤树脂组合物及用其制作的预浸料和层压板
KR101814322B1 (ko) 무할로겐 난연형 수지 조성물
CN101643570B (zh) 无卤阻燃型树脂组合物及用其制成的预浸料、层压板与印制电路用层压板
WO2018120586A1 (zh) 一种含有苯并噁嗪树脂组合物的制备方法及由其制成的预浸料和层压板
WO2012083727A1 (zh) 无卤高tg树脂组合物及用其制成的预浸料与层压板
KR20130125383A (ko) 비할로겐계 수지 조성물 및 이를 이용한 비할로겐계 구리 피복 라미네이트의 제작방법
KR101681442B1 (ko) 할로겐 비함유 난연성 수지 조성물 및 그 용도
CN103435812B (zh) 一种苯并噁嗪中间体及其制备方法
WO2014040262A1 (zh) 环氧树脂组合物以及使用其制作的半固化片与覆铜箔层压板
CN105348742B (zh) 含三聚氰胺型苯并噁嗪树脂的热固性树脂组合物、半固化片及层压板
EP3412722B1 (en) Halogen-free thermosetting resin composition, prepreg containing same, laminate, and printed circuit board
WO2015101233A1 (zh) 一种无卤环氧树脂组合物及其用途
EP3040358B1 (en) Halogen-free thermosetting resin composition, and prepreg and laminate for printed circuits using the same
TWI579332B (zh) 一種環氧樹脂組合物以及含有其之預浸料、層壓板及印刷電路板
US9752028B2 (en) Halogen-free thermosetting resin composition, prepreg and laminate for printed circuit prepared from the same
WO2015184652A1 (zh) 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
TWI632196B (zh) 一種無鹵阻燃型樹脂組合物及其製成的預浸料和覆銅箔層壓板
CN109265654B (zh) 树脂组合物及其制成的预浸料、层压板
CN106751821B (zh) 一种无卤阻燃型树脂组合物以及使用它的粘结片及覆铜箔层压板
US9006377B2 (en) Resin composition and uses of the same
TW201809124A (zh) 一種無鹵熱固性樹脂組合物及使用其之預浸料與印刷電路用層壓板
EP3156451A1 (en) Halogen-free resin composition, and prepreg and laminated board for printed circuit using same
TWI763282B (zh) 一種無鹵阻燃型樹脂組成物及其應用
JP2015120890A (ja) 熱硬化性樹脂組成物
EP3040356B1 (en) Halogen-free thermosetting resin composition, prepreg and laminate for printed circuit prepared from the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879562

Country of ref document: EP

Kind code of ref document: A1