WO2016117210A1 - 窒素含有廃水の脱窒方法及び脱窒装置 - Google Patents
窒素含有廃水の脱窒方法及び脱窒装置 Download PDFInfo
- Publication number
- WO2016117210A1 WO2016117210A1 PCT/JP2015/081517 JP2015081517W WO2016117210A1 WO 2016117210 A1 WO2016117210 A1 WO 2016117210A1 JP 2015081517 W JP2015081517 W JP 2015081517W WO 2016117210 A1 WO2016117210 A1 WO 2016117210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- reaction tank
- containing wastewater
- oxygen
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a denitrification method and denitrification apparatus for nitrogen-containing wastewater, and in particular, dewatered separation liquid of sewage digested sludge, leachate, methane fermentation dehydrated separation liquid of livestock waste liquid, concentrated dewatered separation liquid of human waste and septic tank sludge, food
- the present invention relates to a denitrification method and a denitrification apparatus for nitrogen-containing wastewater suitable for denitrification treatment of wastewater from chemical plants and chemical plants.
- Anaerobic ammonia oxidation method uses autotrophic microorganisms with NH 4 -N as an electron donor and NO 2 -N as an electron acceptor, and directly reacts NH 4 -N and NO 2 -N in an anaerobic state. And converted to nitrogen gas. For this reason, addition of organic substances such as methanol from the outside is unnecessary, and the chemical cost can be greatly reduced. Moreover, since it is the process using an autotrophic microorganism, it also has the advantage that the amount of sludge generation is extremely small.
- a polymer gel carrier is added into the anaerobic ammonia oxidation tank, and anaerobic ammonia oxidation bacteria are adhered and fixed on the surface of the carrier to keep the bacterial concentration in the anaerobic ammonia oxidation tank high.
- Patent Document 2 Japanese Patent Laid-Open No. 2014-36959 describes a denitrification method in which partial nitritation and anaerobic ammonia oxidation are simultaneously performed in the same reaction tank.
- Patent Document 3 Japanese Patent No. 5347221 also describes a denitrification method in which partial nitritation and anaerobic ammonia oxidation are simultaneously performed in the same reaction tank.
- JP 2012-24707 A JP 2014-36959 A Japanese Patent No. 5347221
- Patent Document 1 On the other hand, in the processing apparatus described in Patent Document 1, since it is necessary to prepare two reaction tanks, the equipment becomes larger than when the same reaction tank is used. Furthermore, in Patent Document 1, a mechanical stirring method using an impeller is adopted in the anaerobic ammonia oxidation tank. When the carrier is caused to flow using such a mechanical stirring method, anaerobic ammonia on the surface of the carrier is used. It was found that the adhesion rate and amount of oxidized bacteria were greatly influenced by the stirring strength, impeller material, shape, amount of carrier added, and the like.
- the present invention is capable of reducing the size of a treatment apparatus, and removing nitrogen-containing wastewater capable of performing partial nitritation and anaerobic ammonia oxidation treatment stably and efficiently in the same reaction tank.
- a nitriding method and a denitrification apparatus are provided.
- oxygen-containing gas or oxygen-free gas is sequentially supplied to the same reaction tank, and partial nitritation and anaerobic ammonia oxidation treatment are performed in the same reaction tank.
- partial nitritation and anaerobic ammonia oxidation treatment are performed in the same reaction tank.
- the present invention completed on the basis of the above knowledge, in one aspect, supplies nitrogen-containing wastewater into a microbial carrier containing ammonia oxidizing bacteria and anaerobic ammonia oxidizing bacteria or a reaction tank containing a microbial carrier and activated sludge. Supplying oxygen-containing gas or non-oxygen-containing gas into the reaction tank in order, stirring the nitrogen-containing wastewater in the reaction tank, and removing nitrogen-containing wastewater by the action of ammonia oxidizing bacteria and anaerobic ammonia oxidizing bacteria.
- a method for denitrifying nitrogen-containing wastewater comprising a step of nitriding, a step of separating a microbial carrier or a microbial carrier and activated sludge from the treated water, and discharging the treated water from the reaction vessel.
- the M-alkalinity (mg / L) relative to the TN concentration (mg / L) of the nitrogen-containing wastewater before the nitrogen-containing wastewater is denitrified. ) includes pre-adjusting the M-alkalinity of the nitrogen-containing wastewater so that it is 3.5 to 4.5 times.
- the step of denitrifying the nitrogen-containing wastewater supplies oxygen-containing gas into the reaction tank and stirs the nitrogen-containing wastewater in the reaction tank Aerobic stirring step including oxidizing a part of ammonia nitrogen contained in the nitrogen-containing wastewater to nitrite nitrogen by the action of ammonia-oxidizing bacteria, and stopping the supply of oxygen-containing gas,
- Aerobic stirring step including oxidizing a part of ammonia nitrogen contained in the nitrogen-containing wastewater to nitrite nitrogen by the action of ammonia-oxidizing bacteria, and stopping the supply of oxygen-containing gas
- Anaerobic stirring step including generating.
- an additional aerobic reaction is performed in which the oxygen-containing gas is supplied into the reaction tank and the nitrogen-containing wastewater in the reaction tank is stirred.
- a stirring step is further provided.
- the dissolved oxygen concentration in the reaction tank is determined by ammonia oxidizing bacteria. While monitoring the pH of the nitrogen-containing wastewater in the reaction tank while controlling the dissolved oxygen concentration range necessary for partial nitritation treatment, if the pH of the nitrogen-containing wastewater falls below a predetermined value, oxygen into the reaction tank Including stopping the supply of the contained gas.
- the supply of gas containing no oxygen is performed by circulating nitrogen gas generated in the reaction vessel into the reaction vessel.
- the treated water discharged from the reaction vessel is aerated, and the aerated liquid is solid-liquid separated to obtain a supernatant, and by solid-liquid separation. It further includes returning the obtained concentrated sludge to the reaction tank.
- the microorganism carrier is treated with ammonia oxidizing bacteria and anaerobic ammonia on the surface of the hydrophilic polymer carrier as the treatment progresses in the reaction vessel.
- ammonia oxidizing bacteria and anaerobic ammonia on the surface of the hydrophilic polymer carrier as the treatment progresses in the reaction vessel.
- the activated sludge contains ammonia oxidizing bacteria.
- a supply unit for supplying nitrogen-containing wastewater, a nitrogen-containing wastewater, a microorganism carrier containing ammonia-oxidizing bacteria and anaerobic ammonia-oxidizing bacteria, or a microorganism carrier and activated sludge are accommodated.
- An aeration means for stirring the nitrogen-containing wastewater in the inside a switching means connected to the aeration means for switching the supply of oxygen-containing gas or gas not containing oxygen, and a treatment liquid obtained by denitrification treatment as microorganisms
- a denitrification apparatus for nitrogen-containing wastewater comprising a carrier or a microorganism carrier and activated sludge separated from treated water and discharged to the outside of the reaction tank.
- a denitrification method for nitrogen-containing wastewater capable of reducing the size of a treatment apparatus and performing stable and efficient partial nitritation and anaerobic ammonia oxidation treatment in the same reaction tank and A denitrification device can be provided.
- the denitrification apparatus includes a reaction tank 7 for treating nitrogen-containing wastewater and a reaction tank 7 by sequentially supplying oxygen-containing gas or oxygen-free gas into the reaction tank 7. 7 is provided with an air diffuser 12 for stirring the nitrogen-containing wastewater in 7 and a switching means 5 for switching the supply of the oxygen-containing gas or the gas not containing oxygen to the reaction tank 7.
- a supply unit (supply port) 6 for supplying nitrogen-containing wastewater is provided in the upper part of the reaction tank 7. From the supply unit 6, an amount of nitrogen-containing wastewater necessary for one treatment in the reaction tank 7 is supplied.
- a microbial carrier 10 carrying ammonia-oxidizing bacteria and anaerobic ammonia-oxidizing bacteria is accommodated in the reaction tank 7.
- ammonia oxidizing bacteria means microorganisms for oxidizing a part of ammonia nitrogen contained in nitrogen-containing wastewater to nitrite nitrogen.
- “Anaerobic ammonia-oxidizing bacteria” means microorganisms for converting ammonia nitrogen and nitrite nitrogen contained in nitrogen-containing wastewater into nitrogen gas in an anaerobic state.
- the “bound microbial carrier” means a bound and immobilized carrier in which microorganisms are immobilized mainly by a binding and immobilization method in which microorganisms adhere or grow on the surface of a hydrophilic polymer carrier.
- an anaerobic ammonia-oxidizing bacterium is first bound and immobilized on the surface of the carrier, and then a double-layer biofilm that adheres and immobilizes the ammonia-oxidizing bacterium on the surface can be formed.
- a microbial carrier more suitable for the properties of the inflowing nitrogen-containing wastewater can be used, and the treatment can be made more efficient than when the microbial carrier is produced outside the apparatus.
- the entrapping immobilization carrier which is another immobilization method, it is preferable to entrap and fix anaerobic ammonia-oxidizing bacteria inside the carrier and to adhere and fix aerobic ammonia-oxidizing bacteria on the surface.
- hydrophilic polymer carrier examples include polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyacrylamide, a gel polymer using a polymer such as photocurable resin, a polymer such as carrageenan and sodium alginate, polyethylene A carrier made of polyurethane, polypropylene, or the like is preferably used.
- any of a spherical shape, a square shape, and a cylindrical shape can be used, and the effective diameter is preferably 1 to 20 mm, which is easily separated when the treated water and the carrier are separated later.
- a carrier having a large number of fine pores on the surface and a carrier having innumerable irregularities on the surface can quickly attach and fix ammonia-oxidizing bacteria and anaerobic ammonia-oxidizing bacteria, and high denitrification performance can be obtained in a short period of time.
- the specific surface area of the hydrophilic polymer carrier is preferably 200 to 30000 m 2 / m 3 , more preferably 200 to 20000 m 2 / m 3 , and still more preferably 200 to 10000 m 2 / m 3 .
- the specific gravity of the carrier is 1.01 to 1.15, more preferably 1.01 to 1.10, and still more preferably 1.01 to 1.05, which enables more uniform flow by gas stirring in the reaction vessel 7. are preferred.
- the filling amount of the microbial carrier 10 into the reaction tank 7 is preferably 5 to 30 V%, more preferably 10 to 30 V%, further preferably 10 to 30 V%, which enables uniform mixing and flow by gas stirring in the reaction tank 7. Is 10 to 20 V%.
- the microorganism carrier 10 and activated sludge coexist. Coexistence of suspended activated sludge enables averaging by activated sludge treatment even if the quality of the nitrogen-containing wastewater varies, and a stable partial nitritation treatment is obtained.
- the activated sludge preferably contains ammonia oxidizing bacteria.
- the aeration means 12 is provided at the bottom of the reaction tank 7.
- a blower 11 is connected to the upstream side of the air diffusion means 12 via a pipe or the like.
- a water trap 13 is disposed in the upstream pipe of the blower 11, and nitrogen gas generated in the reaction tank 7 is supplied to the water trap 13, and the pipe connected to the water trap 13, the blower 11, and the aeration means. 12 can be internally circulated to the reaction tank 7 as a gas not containing oxygen.
- the nitrogen gas generated in the reaction tank 7 can be used effectively, as compared with the case where a gas not containing oxygen is introduced from the outside of the apparatus.
- Productivity is improved.
- a gas not containing oxygen can be supplied from the outside of the apparatus.
- a supply unit (not shown) for supplying an oxygen-containing gas (for example, air) is connected to the piping on the upstream side of the blower 11 in FIG.
- the switching means 5 performs an oxygen-containing gas and a gas not containing oxygen (nitrogen gas from the reaction tank 7) according to the processing state of the reaction tank 7. For example, when it is desired to advance the partial nitritation treatment preferentially in a batch manner in the reaction tank 7, the oxygen-containing gas is supplied from the aeration means 12 by the switching means 5. When the anaerobic ammonia oxidation treatment is desired to proceed preferentially in a batch manner, the supply of oxygen-containing gas is stopped by the switching means 5 so that a gas not containing oxygen is supplied from the aeration means 12.
- the reaction vessel 7 is provided with a DO meter 2, a pH meter 3, and an ORP meter 4, and can measure the dissolved oxygen concentration (DO), pH, and oxidation-reduction potential (ORP) of the nitrogen-containing wastewater in the reaction vessel 7. It has become.
- DO dissolved oxygen concentration
- ORP oxidation-reduction potential
- the reaction tank 7 may be provided with an exhaust port 14 through which exhaust gas generated in the reaction tank 7 can be discharged to the outside of the reaction tank 7.
- the treated water finally obtained by denitrification treatment in the reaction tank 7 is separated from the microorganism carrier 10 and activated sludge through the discharge part 15 and discharged to the outside.
- the denitrification method according to this embodiment is a step of supplying nitrogen-containing wastewater into a microbial carrier containing ammonia-oxidizing bacteria and anaerobic ammonia-oxidizing bacteria, or a reaction tank 7 containing the microbial carrier and activated sludge. (S11) and an oxygen-containing gas or a gas not containing oxygen are sequentially supplied into the reaction tank 7 to stir the nitrogen-containing wastewater in the reaction tank 7, and nitrogen is contained by the action of ammonia-oxidizing bacteria and anaerobic ammonia-oxidizing bacteria.
- Steps for denitrifying wastewater (S12, S13), supply of oxygen-containing gas or oxygen-free gas into the reaction tank 7 is stopped, and the microbial carrier (and activated sludge) is separated from the treated water (S14). ) And discharging the treated water from the reaction tank 7 (S15).
- Nitrogen-containing wastewater includes sewage digestion sludge dewatered separation liquid, leachate, livestock wastewater methane fermentation dewatered separation liquid, human waste and septic tank sludge concentrated dewatered separation liquid, food and chemical factory wastewater, inorganic discharged in semiconductor manufacturing processes Chemical waste water is used.
- the nitrogen-containing wastewater has an M-alkaliness (mg / L) of 3.5 to 4.5 times the TN concentration (mg / L) of the nitrogen-containing wastewater before denitrification treatment in the reaction tank 7. It is preferable to adjust the M-alkalinity of the nitrogen-containing wastewater in advance so that it is more preferably 3.7 to 4.4 times, and even more preferably 3.9 to 4.1 times.
- an acid such as sulfuric acid or hydrochloric acid or an alkali such as sodium hydroxide, sodium carbonate, or sodium bicarbonate is added depending on the nature of the nitrogen-containing wastewater. Adjustment is possible. It should be noted that the adjustment of the M-alkalinity / TN concentration ratio of the nitrogen-containing wastewater may be performed in advance before being supplied to the reaction tank 7 or may be added directly to the reaction tank.
- step S12 by supplying an oxygen-containing gas into the reaction tank 7 and stirring the nitrogen-containing wastewater in the reaction tank 7, a part of ammonia nitrogen contained in the nitrogen-containing wastewater is sublimated by the action of the ammonia oxidizing bacteria.
- An aerobic stirring step including oxidation to nitrate nitrogen is performed (step S12).
- the blower 11 of FIG. 1 is activated, the switching means 5 is switched to open the air intake port so as to take in the oxygen-containing gas, and the oxygen is supplied into the reaction tank 7 through the air diffuser means 12.
- the aeration of the reaction tank 7 and the carrier flow are performed by causing a liquid flow in the nitrogen-containing wastewater in the tank 7.
- the partial nitritation process which oxidizes a part of ammonia nitrogen contained in nitrogen-containing wastewater to nitrite nitrogen by the action of the ammonia oxidizing bacteria proceeds.
- the aeration volume of the oxygen-containing gas is preferably 5 to 100 L / m 3 / min, more preferably 5 to 50 L / m in order to allow the microorganism carrier 10 and activated sludge to flow sufficiently in the reaction tank 7. 3 / min, more preferably 5 to 20 L / m 3 / min.
- step S12 in order to perform partial nitritation stably and to avoid oxygen inhibition to anaerobic ammonia oxidizing bacteria adhering to the microbial carrier, the degree of aeration is adjusted by appropriately adjusting the degree of opening and closing of the air intake. It is important to control the dissolved oxygen concentration (DO) of the nitrogen-containing wastewater in the reaction tank 7 to the dissolved oxygen concentration range necessary for the partial nitritation treatment by ammonia oxidizing bacteria by adjusting
- the reaction time in step S12 can be controlled by the pH of the nitrogen-containing wastewater in the reaction tank 7.
- the pH is around 7 or When it falls below that, it can be set as the completion
- the pH of the nitrogen-containing wastewater is monitored by the pH meter 3 in FIG. 1, and the pH of the nitrogen-containing wastewater is not more than a predetermined value (7.5 or less, more preferably 6.5 to 7.5, still more preferably 6.5 to 7.0), it is preferable to stop the supply of the oxygen-containing gas into the reaction tank 7 and end the step S12.
- ammonia-containing nitrogen and nitrous acid contained in the nitrogen-containing wastewater are supplied by supplying a gas not containing oxygen into the reaction tank 7 and stirring the nitrogen-containing wastewater in the reaction tank.
- An anaerobic stirring step including generating nitrogen gas from the functional nitrogen by the action of anaerobic ammonia oxidizing bacteria is performed (step S13).
- the supply amount of the gas not containing oxygen is preferably 5 to 100 L / m 3 / min in order to sufficiently flow the microorganism carrier 10 and the activated sludge in the reaction tank 7 as in step S12.
- the reaction in step S13 can be appropriately and stably performed by controlling the pH and ORP of the nitrogen-containing wastewater in the reaction tank 7. That is, as the anaerobic ammonia oxidation treatment proceeds, the pH increases, so when the pH in the reaction tank 7 increases according to the detection result of the pH meter 3, sulfuric acid or hydrochloric acid is injected. Thus, the pH in the reaction vessel 7 is controlled to 8.5 or less, preferably 8.0 or less.
- ORP is 50 mV or less, preferably 20 mV or less by mixing organic additives in the reaction tank 7 temporarily. More preferably, it can be maintained at 0 mV or less.
- the ORP may be lowered by increasing the amount of internal circulation of a gas not containing oxygen (nitrogen gas).
- the denitrification processing time may be lengthened before the ORP decreases by a predetermined value. Examples of organic substances to be added include methanol, ethanol, acetic acid, sodium acetate, glucose, peptone, organic sludge and the like.
- step S14 the supply of the oxygen-containing gas or the oxygen-free gas from the air diffuser 12 to the reaction tank 7 is stopped, and the microorganism carrier flowing in the nitrogen-containing wastewater in the reaction tank 7 and the activated sludge are removed. It separates from treated water by settling or floating. The separated treated water is discharged from the discharge unit 15 provided in the reaction tank 7 in step S15.
- step S16 if there is no new treatment target (nitrogen-containing wastewater), the treatment is terminated.
- Step S16 when a new treatment target (nitrogen-containing wastewater) is supplied to the reaction tank 7 and it is desired to continue the denitrification treatment, the process returns to Step S11, and Steps S11 to S15 are repeated.
- the denitrification apparatus and the denitrification method according to the embodiment of the present invention in the same reaction tank, the aeration process with oxygen-containing gas and the gas stirring by the internal nitrogen gas circulation are performed by the action of the microbial carrier or the microbial carrier and activated sludge.
- the aerobic and anaerobic sections can be stably maintained, and the partial nitritation and the anaerobic ammonia oxidation reaction can be efficiently obtained. Therefore, the denitrification performance can be improved as compared with the conventional method.
- both the aerobic stirring step (S12) and the anaerobic stirring step (S13) flow the carrier in the reaction tank 7 by the gas stirring method, there is almost no mechanical impact on the carrier and it is uniform.
- the anaerobic ammonia oxidizing bacteria and ammonia oxidizing bacteria can adhere to the surface of the microorganism carrier at a high concentration.
- the carrier and the activated sludge are stably held, so that ammonia oxidizing bacteria and anaerobic ammonia oxidizing bacteria can be simultaneously held, and the partial nitritation and the anaerobic ammonia oxidation reaction are performed. Obtained efficiently.
- the oxygen-containing gas is further supplied into the reaction tank 7 and the nitrogen-containing wastewater in the reaction tank 7 is stirred.
- An aerobic stirring step may be further provided. By performing the additional aerobic stirring step, nitrogen gas adhering to the microbial carrier or activated sludge can be removed by aeration, so that the microbial carrier and activated sludge can be stably separated from the treated water. .
- the treated water discharged from the reaction tank 7 is guided to the aeration tank 9 and aerated, and the aerated liquid obtained in the aeration tank 9 is separated into the solid-liquid separation tank (sedimentation basin 17). Then, the supernatant is obtained as treated water, and the concentrated sludge obtained by solid-liquid separation is returned to the reaction tank 7 via the return line 16. Moreover, you may extract some concentrated sludge as the excess sludge 18 for reaction tank MLSS adjustment. Thereby, the effect that the reduction of the treated water SS by the stable separation of the activated sludge and the setting of the reaction tank MLSS concentration can be easily and highly maintained is obtained. If the reaction tank MLSS concentration can be maintained high, not only can the raw water quality of the processing target be changed, but also the partial nitritation reaction rate can be improved, and the partial nitritation step can be completed in a short time.
- Nitrogen-containing wastewater was treated as follows. (1) One batch of raw water was introduced into the top-sealed reaction tank 7. (2) The blower 11 is started, the air inlet is opened using the switching means 5 and the oxygen-containing gas (air) is taken in, so that the aeration in the reaction tank 7 and the carrier flow are performed through the air diffusion means 12. It was. This treatment step was performed for the purpose of oxidizing a part of the ammonia nitrogen in the raw water to nitrite nitrogen. (3) While the blower 11 was operated, the switching means 5 was switched to continue aeration of gas stirring using the internal circulation gas, and the carrier flow was performed.
- This treatment step was performed for the purpose of nitrogen removal by the reaction of nitrite nitrogen and ammonia nitrogen obtained in step (2) to generate nitrogen gas.
- inorganic carbonate is consumed and the pH rises. Therefore, at the start of step (3), an aqueous inorganic carbonate solution was added and pH control was performed by injecting an aqueous acid solution. (4) Aeration was stopped, the carrier was allowed to settle or float, and the treated liquid after separation was discharged through the discharge unit 15.
- step (4) The batch processing was basically repeated in the order of (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (1) as described above. If it is difficult to separate the sedimented carrier in step (4), after the completion of step (3), the switching means 5 is switched, the air intake is opened again and aerated, and the nitrogen gas adhering to the carrier is removed by aeration. Later, step (4) was performed again.
- step (2) partial nitritation treatment was performed to convert part of NH 4 —N contained in the raw water into NO 2 —N by the action of ammonia oxidizing bacteria adhering to the surface of the microorganism carrier.
- the DO in the reaction vessel 7 was controlled.
- the pH of the raw water in the reaction vessel 7 was monitored.
- the reaction time in step (3) was controlled by ORP and pH. While injecting sulfuric acid or hydrochloric acid into the reaction vessel 7, the reaction vessel pH was 8.5 or less, preferably 8.0 or less, and the ORP was controlled to 50 mV or less.
- Table 1 shows the processing conditions for carrying out the sewage digested sludge dewatered filtrate in the above processing flow.
- Table 2 shows the average water quality results of raw water and treated water that were treated for about 2 months continuously under the present treatment conditions.
- Example 1 batch processing was performed with a cycle of raw water introduction time 5 minutes, partial nitritation process time 3 h, anaerobic ammonia oxidation process time 3 h, re-aeration process time 15 minutes, and sedimentation separation time 15 minutes.
- the reaction tank 7 has an average diameter of 4 mm, a specific gravity of 1.01, and a polymer gel carrier mainly composed of polyvinyl alcohol (PVA) as insufficient alkali so that the M-alkaline degree is 4 times that of TN when raw water is introduced.
- PVA polyvinyl alcohol
- Example 2 As shown in FIG. 3, as in Example 1, the raw water was batch-processed in the reaction tank 7 to perform the partial nitritation process and the anaerobic ammonia oxidation process, and then the treatment liquid separated from the reaction tank 7 by the carrier was treated with the aeration tank 9.
- the aerated liquid obtained in the aeration tank 9 is solid-liquid separated in the solid-liquid separation tank (sedimentation basin 17) to obtain the supernatant as treated water, and the concentration obtained by solid-liquid separation.
- the sludge was returned to the reaction tank 7.
- the treatment process was performed according to the following procedure and time.
- a predetermined amount of Na 2 CO 3 aqueous solution was added as inorganic carbonic acid before the start of the anaerobic ammonia oxidation process.
- the injection was controlled with an aqueous H 2 SO 4 solution so that the pH during the anaerobic ammonia oxidation treatment was 8.0 or lower and ORP 50 mV or lower.
- Table 4 shows the average water quality of raw water and treated water treated continuously for about 2 months. As shown in Table 4, the TN removal rate averaged 83.8%, and stable denitrification performance was obtained.
- Example 2 The same reaction tank 7 as in FIG. 1 was used, and the amount of batch process water was set to 20 L as in Example 1, and a process of always performing partial nitritation treatment and anaerobic ammonia oxidation simultaneously by continuous aeration under aerobic conditions was performed. .
- the reactor DO was controlled to 0.4 to 0.5 mg / L.
- the reaction vessel pH was set to 7.5.
- Other conditions were the same as in Example 1.
- Table 5 shows the average water quality of raw water and treated water treated continuously for about 2 months. As shown in Table 5, the TN removal rate relative to the raw water was only 52% on average, and stable denitrification performance could not be obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
処理装置の小型化が可能で、部分亜硝酸化及び嫌気性酸化処理を同一反応槽内で安定的且つ効率的に行うことが可能な窒素含有廃水の脱窒方法及び脱窒装置を提供する。窒素含有廃水を、アンモニア酸化菌と嫌気性アンモニア酸化菌とを含有する微生物担体若しくは微生物担体と活性汚泥とを収容した反応槽内に供給する工程(S11)と、酸素含有気体又は酸素を含有しない気体を反応槽内に順に供給して反応槽内の窒素含有廃水を攪拌し、アンモニア酸化菌と嫌気性アンモニア酸化菌の働きにより窒素含有廃水を脱窒処理する工程(S12、S13)と、微生物担体若しくは微生物担体及び活性汚泥を処理水から分離し、該処理水を反応槽から排出させる工程(S14、S15)とを含む窒素含有廃水の脱窒方法である。
Description
本発明は、窒素含有廃水の脱窒方法及び脱窒装置に関し、特に、下水消化汚泥の脱水分離液、浸出水、畜産廃液のメタン発酵脱水分離液、し尿及び浄化槽汚泥の濃縮脱水分離液、食品や化学工場廃液等の脱窒処理に好適な窒素含有廃水の脱窒方法及び脱窒装置に関する。
近年、従来の従属脱窒より省エネである嫌気性アンモニア酸化法が注目されている。嫌気性アンモニア酸化法は、NH4-Nを電子供与体とし、NO2-Nを電子受容体とする独立栄養性微生物を利用し、嫌気状態においてNH4-NとNO2-Nを直接反応させて窒素ガスに変換する。このため、外部からメタノール等の有機物添加が不要であり、薬品コストを大きく低減できる。また、独立栄養性微生物を利用した処理であるため、汚泥発生量が極めて少ないという利点も有する。
嫌気性アンモニア酸化法による脱窒反応を安定して得るためには、被処理水の窒素、一般的にはアンモニア性窒素の一部を、予め亜硝酸性窒素に変換する、すなわち部分亜硝酸化プロセスを行うことが必要である。例えば、特許文献1(特開2012-24707号公報)では、図1に示すように、亜硝酸化槽と嫌気性アンモニア酸化槽の2槽式から構成された処理装置の例が記載されている。嫌気性アンモニア酸化槽内には高分子ゲル担体を添加し、担体の表面に嫌気性アンモニア酸化菌を付着固定して、嫌気性アンモニア酸化槽内の菌濃度を高く保持している。
近年、部分亜硝酸化と嫌気性アンモニア脱窒を同一反応槽で行う方法も提案されている。例えば、特許文献2(特開2014-36959号公報)では、同一反応槽において、部分亜硝酸化及び嫌気性アンモニア酸化を同時に行う脱窒方法が記載されている。特許文献3(特許第5347221号公報)にも、同一反応槽において、部分亜硝酸化及び嫌気性アンモニア酸化を同時に行う脱窒方法が記載されている。
しかしながら、特許文献2及び3で記載されるような同一反応槽内で部分亜硝酸化処理と嫌気性アンモニア酸化処理を同時に行う場合、反応槽への曝気風量及びDO(溶存酸素)の制御が部分亜硝酸化及び嫌気性アンモニア酸化性能に大きく影響する。例えば、曝気風量が大きくDOが高い場合には、担体外側に付着したアンモニア酸化菌の亜硝酸化性能が高くなるが、アンモニア酸化菌の内側にある嫌気性アンモニア酸化菌への酸素透過が起こり、脱窒性能が大きく低下してしまう。このため現状の処理装置及び処理方法では、反応槽内のDOの適切な制御が極めて難しく、部分亜硝酸化及び嫌気性酸化処理を安定的に両立させることが難しい。更には、特許文献2及び3の技術では、曝気風量を制御しながら、反応槽内の担体流動の均一化を両立させることも難しい。
一方、特許文献1に記載される処理装置では、反応槽を2つ準備する必要があるため、同一反応槽を用いる場合に比べて設備が大型化する。更に、特許文献1では、嫌気性アンモニア酸化槽内にインペラーを用いた機械攪拌方式を採用しているが、このような機械攪拌方式を用いて担体を流動させると、担体表面への嫌気性アンモニア酸化菌の付着速度、付着量が、攪拌強度、インペラー材質、形状、担体添加量等に大きく影響されることがわかった。即ち、攪拌強度が強すぎてインペラー材質が硬すぎる場合等には、担体表面に付着した嫌気性アンモニア酸化菌が機械摩擦により剥離し、剥離したアンモニア酸化菌が浮上して反応槽外へと流出する現象が発生する。その結果、反応槽内に一定量以上の微生物を常に保持させることが難しくなり、安定した処理を行うことが困難になる場合がある。
上記課題を鑑み、本発明は、処理装置の小型化が可能で、部分亜硝酸化及び嫌気性アンモニア酸化処理を同一反応槽内で安定的且つ効率的に行うことが可能な窒素含有廃水の脱窒方法及び脱窒装置を提供する。
上記課題を解決するために本発明者らが鋭意検討した結果、同一反応槽に酸素含有気体又は酸素を含まない気体を順に供給し、部分亜硝酸化及び嫌気性アンモニア酸化処理を同一反応槽内でバッチ式に処理することで、装置を小型化するとともに窒素含有廃水の脱窒処理をより効率的に行うことが可能であることを見いだした。
以上の知見を基礎として完成した本発明は一側面において、窒素含有廃水を、アンモニア酸化菌と嫌気性アンモニア酸化菌とを含有する微生物担体若しくは微生物担体と活性汚泥とを収容した反応槽内に供給する工程と、酸素含有気体又は酸素を含有しない気体を反応槽内に順に供給して反応槽内の窒素含有廃水を攪拌し、アンモニア酸化菌と嫌気性アンモニア酸化菌の働きにより窒素含有廃水を脱窒処理する工程と、微生物担体若しくは微生物担体及び活性汚泥を処理水から分離し、該処理水を反応槽から排出させる工程とを含む窒素含有廃水の脱窒方法が提供される。
本発明に係る窒素含有廃水の脱窒方法は一実施態様において、窒素含有廃水を脱窒処理する前に、窒素含有廃水のT-N濃度(mg/L)に対するM-アルカリ度(mg/L)が3.5~4.5倍となるように、窒素含有廃水のM-アルカリ度を予め調整することを含む。
本発明に係る窒素含有廃水の脱窒方法は別の一実施態様において、窒素含有廃水を脱窒処理する工程が、反応槽内に酸素含有気体を供給して反応槽内の窒素含有廃水を攪拌することにより、窒素含有廃水に含まれるアンモニア性窒素の一部をアンモニア酸化菌の働きにより亜硝酸性窒素に酸化させることを含む好気攪拌工程と、酸素含有気体の供給を停止し、反応槽内に酸素を含有しない気体を供給して反応槽内の窒素含有廃水を攪拌することにより、窒素含有廃水に含まれるアンモニア性窒素及び亜硝酸性窒素から嫌気性アンモニア酸化菌の働きにより窒素ガスを発生させることを含む嫌気攪拌工程とを含む。
本発明に係る窒素含有廃水の脱窒方法は更に別の一実施態様において、嫌気攪拌工程の後に、反応槽内に酸素含有気体を供給して反応槽内の窒素含有廃水を攪拌する追加好気攪拌工程を更に備える。
本発明に係る窒素含有廃水の脱窒方法は更に別の一実施態様において、反応槽内に酸素含有気体を供給する際に、反応槽内の窒素含有廃水の溶存酸素濃度を、アンモニア酸化菌による部分亜硝酸化処理に必要な溶存酸素濃度範囲に制御しながら反応槽内の窒素含有廃水のpHを監視し、窒素含有廃水のpHが所定値以下となった場合に、反応槽内への酸素含有気体の供給を停止させることを含む。
本発明に係る窒素含有廃水の脱窒方法は更に別の一実施態様において、酸素を含有しない気体の供給は、反応槽内で発生した窒素ガスを反応槽内へ循環させることにより行われる。
本発明に係る窒素含有廃水の脱窒方法は更に別の一実施態様において、反応槽から排出した処理水を曝気し、曝気液を固液分離して上澄液を得るとともに、固液分離により得られた濃縮汚泥を反応槽へ返送することを更に含む。
本発明に係る窒素含有廃水の脱窒方法は更に別の一実施態様において、微生物担体が、反応槽内での処理経過に伴い、親水性高分子担体の表面上にアンモニア酸化菌及び嫌気性アンモニア酸化菌を徐々に付着させることにより得られた結合型微生物担体である。
本発明に係る窒素含有廃水の脱窒方法は更に別の一実施態様において、活性汚泥がアンモニア酸化菌を含有する。
本発明は別の一側面において、窒素含有廃水を供給する供給部と、窒素含有廃水と、アンモニア酸化菌と嫌気性アンモニア酸化菌とを含有する微生物担体若しくは微生物担体と活性汚泥とを収容して、酸素含有気体又は酸素を含有しない気体を順に供給することにより窒素含有廃水を脱窒処理する反応槽と、酸素含有気体又は酸素を含有しない気体を順に反応槽内に供給することによって、反応槽内の窒素含有廃水を攪拌させるための散気手段と、散気手段に接続され、酸素含有気体又は酸素を含有しない気体の供給切替を行う切替手段と、脱窒処理で得られる処理液を微生物担体若しくは微生物担体及び活性汚泥を処理水から分離して反応槽外へ排出させる排出部とを備える窒素含有廃水の脱窒装置が提供される。
本発明によれば、処理装置の小型化が可能で、部分亜硝酸化及び嫌気性アンモニア酸化処理を同一反応槽内で安定的且つ効率的に行うことが可能な窒素含有廃水の脱窒方法及び脱窒装置が提供できる。
以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。
本発明の実施の形態に係る脱窒処理に好適な脱窒装置の例を図1に示す。図1に示すように、本発明に係る脱窒装置は、窒素含有廃水を処理する反応槽7と、反応槽7内に酸素含有気体又は酸素を含有しない気体を順に供給することにより、反応槽7内の窒素含有廃水を攪拌させるための散気手段12と、酸素含有気体又は酸素を含有しない気体の反応槽7への供給切替を行う切替手段5とを備える。
反応槽7の上部には、窒素含有廃水を供給するための供給部(供給口)6が設けられている。供給部6からは、反応槽7での1回の処理に必要な量の窒素含有廃水が供給される。反応槽7内には、図1に示すように、アンモニア酸化菌及び嫌気性アンモニア酸化菌を担持した微生物担体10が少なくとも収容されている。なお、本実施形態において「アンモニア酸化菌」とは、窒素含有廃水に含まれるアンモニア性窒素の一部を亜硝酸性窒素に酸化するための微生物を意味する。「嫌気性アンモニア酸化菌」とは、窒素含有廃水に含まれるアンモニア性窒素と亜硝酸性窒素を嫌気状態において窒素ガスに変換するための微生物を意味する。
反応槽7内に投入される微生物担体10としては、アンモニア酸化菌及び嫌気性アンモニア酸化菌を安定して槽内に維持するために、親水性高分子担体の表面上に前記アンモニア酸化菌及び前記嫌気性アンモニア酸化菌を徐々に付着させることにより得られた結合型微生物担体を利用することが好ましい。「結合型微生物担体」とは、主として親水性高分子担体の表面上に微生物を付着又は成長させる結合固定化法によって微生物を固定化した結合固定化担体を意味する。この場合、担体表面に嫌気性アンモニア酸化菌を先に結合固定化後、その表面にアンモニア酸化菌を付着固定化する二重層の生物膜が形成可能である。結合型微生物担体を用いることにより、流入する窒素含有廃水の性状により適した微生物担体が利用できるとともに、微生物担体を装置外で製造する場合に比べて処理を効率化できる。一方、別の固定化方法である包括固定化担体を利用する場合には、嫌気性アンモニア酸化菌を担体内部に包括固定し、その表面に好気性のアンモニア酸化菌を付着固定することが好ましい。
親水性高分子担体の材料としては、ポリビニルアルコール(PVA)やポリエチレングリコール(PEG)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリプロピレン等からなる担体等が好適に用いられる。
親水性高分子担体の形状としては、球形、四角形、円筒形の何れも使用可能であり、その有効径は、後述する処理水と担体との分離の際に分離しやすい1~20mmが好ましい。担体として表面に微細孔径を多く有するもの、表面に無数の凹凸を有するものがアンモニア酸化菌及び嫌気性アンモニア酸化菌の付着固定が速く短期間で高い脱窒性能が得られる。
親水性高分子担体の比表面積は、200~30000m2/m3、より好ましくは、200~20000m2/m3、更に好ましくは200~10000m2/m3であるものが好ましい。担体比重は、反応槽7内でのガス攪拌によってより均一に流動可能となる1.01~1.15、より好ましくは、1.01~1.10、更に好ましくは1.01~1.05であるものが好ましい。
微生物担体10の反応槽7への充填量は、反応槽7内でのガス攪拌によって、均一に混合流動可能となる5~30V%であるのが好ましく、より好ましくは10~30V%、更に好ましくは10~20V%である。
反応槽7では、微生物担体10と活性汚泥(浮遊活性汚泥)の共存が望ましい。浮遊活性汚泥の共存により、窒素含有廃水の水質が変動しても、活性汚泥処理による平均化が可能であり、安定した部分亜硝酸化処理が得られる。活性汚泥にはアンモニア酸化菌を含有させることが好ましい。
散気手段12は、反応槽7の底部に設けられている。散気手段12の上流側にはブロワ11が配管等を介して接続されている。ブロワ11の上流側の配管には水トラップ13が配置されており、反応槽7で発生した窒素ガスが水トラップ13へ供給されて、水トラップ13に接続された配管、ブロワ11及び散気手段12を介して、酸素を含有しない気体として反応槽7へ内部循環できるようになっている。
反応槽7内で発生した窒素ガスを反応槽内で循環させることにより、反応槽7で発生した窒素ガスを有効利用することができ、装置外部から酸素を含有しない気体を導入する場合に比べて生産性が向上する。なお、内部循環で十分な窒素ガスの供給量が得られない場合には装置外部から酸素を含有しない気体を供給可能であることは勿論である。
図1のブロワ11の上流側の配管には、酸素含有気体(例えば、空気)を供給するための供給部(図示せず)が、切替手段5を介して接続されている。切替手段5は、反応槽7の処理状態に応じて、酸素含有気体と酸素を含有しない気体(反応槽7からの窒素ガス)を行う。例えば、反応槽7において部分亜硝酸化処理をバッチ式で優先的に進めたい場合には、切替手段5により酸素含有気体が散気手段12から供給されるようにする。嫌気アンモニア酸化処理をバッチ式で優先的に進めたい場合には、切替手段5により酸素含有気体の供給を停止させ、酸素を含有しない気体が散気手段12から供給されるようにする。
反応槽7には、DO計2、pH計3、ORP計4が設けられており、反応槽7内の窒素含有廃水の溶存酸素濃度(DO)、pH及び酸化還元電位(ORP)が測定可能になっている。DO計2、pH計3、ORP計4により、部分亜硝酸化処理と嫌気性アンモニア酸化処理の各処理をバッチ処理で行う場合の反応終了時点を決定することが可能である。なお、反応槽7には、反応槽7内で発生した排気ガスを反応槽7の外部へ排出可能な排気口14が設けられていても良い。反応槽7で脱窒処理されて最終的に得られる処理水は、排出部15を介して微生物担体10及び活性汚泥などから分離されて外部へ排出される。
次に、図2に示すフローチャートを用いて、本実施形態に係る脱窒方法の一例を説明する。本実施形態に係る脱窒方法は、窒素含有廃水を、アンモニア酸化菌と嫌気性アンモニア酸化菌とを含有する微生物担体、若しくはこの微生物担体と活性汚泥とを収容した反応槽7内に供給する工程(S11)と、酸素含有気体又は酸素を含有しない気体を反応槽7内に順に供給して反応槽7内の窒素含有廃水を攪拌し、アンモニア酸化菌と嫌気性アンモニア酸化菌の働きにより窒素含有廃水を脱窒処理する工程(S12、S13)と、酸素含有気体又は酸素を含有しない気体の反応槽7内への供給を停止し、微生物担体(及び活性汚泥)を処理水から分離し(S14)、その処理水を反応槽7から排出させる工程(S15)とを含む。
窒素含有廃水を反応槽7内に供給する工程(S11)では、反応槽7内での1回の処理に必要な量の窒素含有廃水が反応槽7内に供給される。窒素含有廃水としては、下水消化汚泥の脱水分離液、浸出水、畜産廃液のメタン発酵脱水分離液、し尿及び浄化槽汚泥の濃縮脱水分離液、食品や化学工場廃液、半導体製造工程で排出される無機化学排水等が利用される。
この窒素含有廃水は、反応槽7で脱窒処理する前に、窒素含有廃水のT-N濃度(mg/L)に対するM-アルカリ度(mg/L)が3.5~4.5倍、より好ましくは3.7~4.4倍、更に好ましくは3.9~4.1倍となるように窒素含有廃水のM-アルカリ度を予め調整しておくことが好ましい。窒素含有廃水のM-アルカリ度/T-N濃度比の調整は、窒素含有廃水の性状に応じて、硫酸、塩酸等の酸又は水酸化ナトリウム、炭酸ナトリウム、重炭酸ナトリウム等のアルカリを添加することにより調整が可能である。なお、窒素含有廃水のM-アルカリ度/T-N濃度比の調整は反応槽7へ供給する前に予め行ってもよく、直接反応槽に添加してもよいことは勿論である。
次に、反応槽7内に酸素含有気体を供給して反応槽7内の窒素含有廃水を攪拌することにより、窒素含有廃水に含まれるアンモニア性窒素の一部を前記アンモニア酸化菌の働きにより亜硝酸性窒素に酸化させることを含む好気攪拌工程を行う(工程S12)。
具体的には、図1のブロワ11を起動し、切替手段5を切り替えて空気取入口を開放して酸素含有気体を取り入れるようにし、散気手段12を通じて反応槽7内へ供給して反応槽7内の窒素含有廃水に液流を起こさせることにより反応槽7の曝気と担体流動を行う。これにより、窒素含有廃水に含まれるアンモニア性窒素の一部を前記アンモニア酸化菌の働きにより亜硝酸性窒素に酸化させる部分亜硝酸化処理が進行する。
酸素含有気体の曝気風量は、微生物担体10と活性汚泥を反応槽7内で十分に流動させるためには、5~100L/m3/分とするのが好ましく、より好ましくは5~50L/m3/分、更に好ましくは5~20L/m3/分である。
工程S12において、部分亜硝酸化処理を安定して行うとともに微生物担体付着の嫌気性アンモニア酸化菌に対する酸素阻害を最小限に避けるためには、空気取入口の開閉度を適切に調整して曝気風量を調整すること等により、反応槽7内の窒素含有廃水の溶存酸素濃度(DO)を、アンモニア酸化菌による部分亜硝酸化処理に必要な溶存酸素濃度範囲に制御することが重要である。
具体的には、図1のDO計2で確認しながら、反応槽7内の窒素含有廃水のDOを0.3~2.0mg/Lに制御することが好ましく、より好ましくは0.5~1.0mg/Lに制御する。
工程S12の反応時間は反応槽7内の窒素含有廃水のpHで制御することが可能である。窒素含有廃水のT-N濃度(又は溶解性T-N濃度)に対するM-アルカリ度の倍率を3.5~4.5倍となるように予め調整しておくことで、pHが7付近もしくはそれ以下に低下した場合を、部分亜硝酸化処理反応終了時間とすることができる。
よって、工程S12においては、反応槽7内の窒素含有廃水の溶存酸素濃度を、アンモニア酸化菌による部分亜硝酸化処理に必要な溶存酸素濃度範囲(DO=0.3~2.0mg/L)に制御しながら、図1のpH計3により窒素含有廃水のpHを監視し、窒素含有廃水のpHが所定値以下(7.5以下、より好ましくは6.5~7.5、更に好ましくは6.5~7.0)となった場合に、反応槽7内への酸素含有気体の供給を停止させ、工程S12を終了させることが好ましい。
酸素含有気体の供給を停止した後は、反応槽7内に酸素を含有しない気体を供給して反応槽内の窒素含有廃水を攪拌することにより、窒素含有廃水に含まれるアンモニア性窒素及び亜硝酸性窒素から嫌気性アンモニア酸化菌の働きにより窒素ガスを発生させることを含む嫌気攪拌工程を行う(工程S13)。
酸素を含まない気体の供給量は、工程S12と同様に、微生物担体10と活性汚泥を反応槽7内で十分に流動させるために、5~100L/m3/分とするのが好ましく、より好ましくは5~50L/m3/分、更に好ましくは5~20L/m3/分である。
工程S13の反応は反応槽7内の窒素含有廃水のpH及びORPを制御することで適切且つ安定的に処理を進めることが可能である。即ち、嫌気性アンモニア酸化処理が進行すると、pHが高くなっていくため、pH計3の検出結果に応じて、反応槽7内のpHが高くなった場合には、硫酸又は塩酸を注入することにより、反応槽7内のpHを8.5以下、好ましくは8.0以下に制御する。
更にORP計4により窒素含有廃水のORPを監視することが好ましい。ORPが50mV以上に上昇した場合には嫌気性アンモニア酸化菌の活性が低下する場合があるため、反応槽7内に有機物の添加剤を一次的に混合させてORPを50mV以下、好ましくは20mV以下、さらに好ましくは0mV以下に維持できるようにする。或いは、酸素を含まない気体(窒素ガス)の内部循環量を大きくしてORPを低下させてもよい。或いは脱窒処理時間をORPの所定値低下までに長くしてもよい。また、添加する有機物としては、メタノール、エタノール、酢酸、酢酸ナトリウム、グルコース、ペプトン、有機性汚泥等が挙げられる。
工程S14において、散気手段12からの酸素含有気体又は酸素を含有しない気体の反応槽7内への供給を停止させ、反応槽7内の窒素含有廃水中で流動する微生物担体及び前記活性汚泥を沈降又は浮上させることにより、処理水から分離する。分離した処理水は、工程S15において、反応槽7に設けられた排出部15から排出させる。
工程S16において、新たな処理対象(窒素含有廃水)が無い場合には処理を終了する。工程S16において、新たな処理対象(窒素含有廃水)を反応槽7に供給して脱窒処理を継続したい場合には、工程S11に戻り、工程S11~15を繰り返す。
本発明の実施の形態に係る脱窒装置及び脱窒方法によれば、同一反応槽において、微生物担体または微生物担体と活性汚泥の働きにより、酸素含有ガスによる曝気工程と内部窒素ガス循環によるガス攪拌の曝気工程を行えば、好気と嫌気区間が安定して維持でき、部分亜硝酸化と嫌気性アンモニア酸化反応が効率よく得られるため、従来に比べて脱窒性能を向上させることができる。
更に、好気攪拌工程(S12)及び嫌気攪拌工程(S13)のいずれも、ガス攪拌方式にて反応槽7内の担体を流動させていることから、担体に対する機械的な衝撃が殆どなく、均一の流動が可能であり、微生物担体表面に嫌気性アンモニア酸化菌及びアンモニア酸化菌のいずれも高濃度に付着することが可能である。
更に、反応槽7内において、担体及び活性汚泥が安定的に保持されることにより、アンモニア酸化菌及び嫌気性アンモニア酸化菌の同時保持が可能であり、部分亜硝酸化と嫌気性アンモニア酸化反応が効率よく得られる。
更に、反応槽7に活性汚泥を微生物担体と共存させた場合は、酸素ガスを取り入れた好気曝気工程においては活性汚泥による酸素消費が主となるため、微生物担体表面付着固定の嫌気性アンモニア酸化菌への酸素移動が殆どなく、阻害される懸念がなくなる。
なお、上述した反応槽7における窒素含有廃水を脱窒処理する工程(S12、13)の後に、反応槽7内に更に酸素含有気体を供給して反応槽7内の窒素含有廃水を攪拌する追加好気攪拌工程を更に備えていてもよい。追加好気攪拌工程を行うことにより、微生物担体又は活性汚泥に付着した窒素ガスを曝気にて除去することができるため、微生物担体及び活性汚泥の処理水からの分離を安定的に行うことができる。
或いは、図3に示すように、反応槽7から排出した処理水を曝気槽9に導いて曝気し、曝気槽9で得られた曝気液を固液分離槽(沈殿池17)において固液分離して、上澄液を処理水として得るとともに、固液分離により得られた濃縮汚泥を返送ライン16を介して反応槽7へ返送する。また、反応槽MLSS調整のために濃縮汚泥の一部を余剰汚泥18として抜き出してもよい。これにより、活性汚泥の安定分離による処理水SSの低減、反応槽MLSS濃度の設定が容易かつ高く維持することができるという効果が得られる。反応槽MLSS濃度を高く維持できれば、処理対象原水水質の変動に対応できるだけでなく、部分亜硝酸化反応速度も向上し、短時間で部分亜硝酸化工程の完了が可能となる。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
(実施例1)
窒素含有廃水(原水)を以下の要領で処理した。
(1)バッチ処理1回分の原水を上部密封型の反応槽7に導入した。
(2)ブロワ11を起動し、切替手段5を用いて空気取入口を開放して、酸素含有ガス(空気)を取り入れることにより、散気手段12を通じて反応槽7内の曝気と担体流動を行った。この処理工程は、原水中のアンモニア性窒素の一部を亜硝酸性窒素に酸化することを目的として行った。
(3)ブロワ11を作動させたまま、切替手段5を切り替えて、内部循環ガスを用いたガス攪拌の曝気を継続し、担体流動を行った。この処理工程は、工程(2)で得られた亜硝酸性窒素とアンモニア性窒素が反応して窒素ガスが生成し、窒素除去されることを目的として行った。嫌気性アンモニア酸化反応では、無機炭酸を消費し、pHが上昇するため、工程(3)の開始とともに、無機炭酸水溶液を添加するとともに酸水溶液注入によるpH制御を行った。
(4)曝気停止し、担体を沈降または浮上分離させて、分離後の処理液を排出部15を通じて排出した。
窒素含有廃水(原水)を以下の要領で処理した。
(1)バッチ処理1回分の原水を上部密封型の反応槽7に導入した。
(2)ブロワ11を起動し、切替手段5を用いて空気取入口を開放して、酸素含有ガス(空気)を取り入れることにより、散気手段12を通じて反応槽7内の曝気と担体流動を行った。この処理工程は、原水中のアンモニア性窒素の一部を亜硝酸性窒素に酸化することを目的として行った。
(3)ブロワ11を作動させたまま、切替手段5を切り替えて、内部循環ガスを用いたガス攪拌の曝気を継続し、担体流動を行った。この処理工程は、工程(2)で得られた亜硝酸性窒素とアンモニア性窒素が反応して窒素ガスが生成し、窒素除去されることを目的として行った。嫌気性アンモニア酸化反応では、無機炭酸を消費し、pHが上昇するため、工程(3)の開始とともに、無機炭酸水溶液を添加するとともに酸水溶液注入によるpH制御を行った。
(4)曝気停止し、担体を沈降または浮上分離させて、分離後の処理液を排出部15を通じて排出した。
バッチ処理は、基本的に上記のように(1)→(2)→(3)→(4)→(1)の順に繰り返した。工程(4)において担体沈降分離が困難な場合は、工程(3)終了後、切替手段5を切り替えて、空気取入口を再度開放して曝気し、担体付着の窒素ガスを曝気にて除去した後に、再び工程(4)を行った。
工程(2)では、微生物担体表面付着のアンモニア酸化菌の働きにより、原水中に含まれるNH4-Nの一部をNO2-Nに変換する部分亜硝酸化処理を行った。この部分亜硝酸化処理を安定して行い、微生物担体付着の嫌気性アンモニア酸化菌に対する酸素阻害を最小限に避けるために、反応槽7内のDOを制御した。同時に、反応槽7内の原水のpHを監視した。工程(3)の反応時間はORP及びpHにて制御した。反応槽7へ硫酸や塩酸の注入しながら反応槽pHを8.5以下、好ましくは8.0以下にし、ORPを50mV以下に制御した。
上記処理フローで下水消化汚泥脱水ろ液を実施した処理条件を表1に示す。表2には本処理条件で約2ヶ月連続処理した原水及び処理水の平均水質結果を示す。
実施例1では、原水導入時間5分、部分亜硝酸化工程時間3h、嫌気性アンモニア酸化工程時間3h、再曝気工程時間15分、沈降分離時間15分のサイクルでバッチ処理を行った。反応槽7には平均径4mm、比重1.01、ポリビニルアルコール(PVA)主体の高分子ゲル担体を原水導入時はM-アルカリ度がT-Nの4倍となるように不足のアルカリとして所定量のNa2CO3水溶液を反応槽に原水とともに注入した。また、部分亜硝酸化工程終了後、嫌気性アンモニア酸化工程開始前に無機炭酸として所定量のNa2CO3水溶液を添加した。嫌気性アンモニア酸化処理時のpHが8.0以下、ORP50mV以下となるようにH2SO4水溶液にて注入制御した。その結果、表2に示すようにT-N除去率が84.8%と安定した脱窒性能が得られた。
(実施例2)
図3に示すように実施例1と同じく、反応槽7で原水をバッチ式で部分亜硝酸化工程及び嫌気性アンモニア酸化工程を行った後、反応槽7から担体分離した処理液を曝気槽9に導いて曝気し、曝気槽9で得られた曝気液を固液分離槽(沈殿池17)において固液分離して、上澄液を処理水として得るとともに、固液分離により得られた濃縮汚泥を反応槽7へ返送した。処理工程は以下の手順と時間で行った。(1)原水導入+汚泥返送10分→(2)部分亜硝酸化工程2h、(3)嫌気性アンモニア酸化工程3h→(4)反応槽処理液排出+再曝気15分とした。バッチ処理はこの(1)→(2)→(3)→(4)→(1)のサイクルで行った。ここでは、沈殿池17が別途設置されているため、バッチ処理の間は活性汚泥の沈降分離が可能であり、高濃度の返送汚泥が得られた。表3には実施例2の処理条件を示す。実施例2は実施例1と同様に下水消化汚泥脱水ろ液を原水として用い、M-アルカリ度の調整も同じ方法で行った。嫌気性アンモニア酸化工程開始前に無機炭酸として所定量のNa2CO3水溶液を添加した。嫌気性アンモニア酸化処理時のpHが8.0以下、ORP50mV以下となるようにH2SO4水溶液にて注入制御した。表4には約2ヶ月連続処理した原水及び処理水の平均水質を示す。表4に示すようにT-N除去率が平均83.8%となり、安定した脱窒性能が得られた。
図3に示すように実施例1と同じく、反応槽7で原水をバッチ式で部分亜硝酸化工程及び嫌気性アンモニア酸化工程を行った後、反応槽7から担体分離した処理液を曝気槽9に導いて曝気し、曝気槽9で得られた曝気液を固液分離槽(沈殿池17)において固液分離して、上澄液を処理水として得るとともに、固液分離により得られた濃縮汚泥を反応槽7へ返送した。処理工程は以下の手順と時間で行った。(1)原水導入+汚泥返送10分→(2)部分亜硝酸化工程2h、(3)嫌気性アンモニア酸化工程3h→(4)反応槽処理液排出+再曝気15分とした。バッチ処理はこの(1)→(2)→(3)→(4)→(1)のサイクルで行った。ここでは、沈殿池17が別途設置されているため、バッチ処理の間は活性汚泥の沈降分離が可能であり、高濃度の返送汚泥が得られた。表3には実施例2の処理条件を示す。実施例2は実施例1と同様に下水消化汚泥脱水ろ液を原水として用い、M-アルカリ度の調整も同じ方法で行った。嫌気性アンモニア酸化工程開始前に無機炭酸として所定量のNa2CO3水溶液を添加した。嫌気性アンモニア酸化処理時のpHが8.0以下、ORP50mV以下となるようにH2SO4水溶液にて注入制御した。表4には約2ヶ月連続処理した原水及び処理水の平均水質を示す。表4に示すようにT-N除去率が平均83.8%となり、安定した脱窒性能が得られた。
(比較例)
図1と同じ反応槽7を用い、1回バッチ処理水量を実施例1と同じ20Lとし、常に好気条件での連続曝気で部分亜硝酸化処理と嫌気性アンモニア酸化を同時に行う処理を行った。反応槽DOを0.4~0.5mg/Lに制御した。また、反応槽pHを7.5に設定した。他の条件は実施例1と同じとした。表5には約2ヶ月連続処理した原水及び処理水の平均水質を示す。表5に示すように原水に対するT-N除去率が平均52%にとどまり、安定した脱窒性能が得られなかった。
図1と同じ反応槽7を用い、1回バッチ処理水量を実施例1と同じ20Lとし、常に好気条件での連続曝気で部分亜硝酸化処理と嫌気性アンモニア酸化を同時に行う処理を行った。反応槽DOを0.4~0.5mg/Lに制御した。また、反応槽pHを7.5に設定した。他の条件は実施例1と同じとした。表5には約2ヶ月連続処理した原水及び処理水の平均水質を示す。表5に示すように原水に対するT-N除去率が平均52%にとどまり、安定した脱窒性能が得られなかった。
2・・・DO計
3・・・pH計
4・・・ORP計
5・・・切替手段
6・・・供給部
7・・・反応槽
9・・・曝気槽
10・・・微生物担体
11・・・ブロワ
12・・・散気手段
13・・・水トラップ
14・・・排気口
15・・・排出部
16・・・返送ライン
17・・・沈殿池
18・・・余剰汚泥
3・・・pH計
4・・・ORP計
5・・・切替手段
6・・・供給部
7・・・反応槽
9・・・曝気槽
10・・・微生物担体
11・・・ブロワ
12・・・散気手段
13・・・水トラップ
14・・・排気口
15・・・排出部
16・・・返送ライン
17・・・沈殿池
18・・・余剰汚泥
Claims (10)
- 窒素含有廃水を、アンモニア酸化菌と嫌気性アンモニア酸化菌とを含有する微生物担体若しくは前記微生物担体と活性汚泥とを収容した反応槽内に供給する工程と、
酸素含有気体又は酸素を含有しない気体を前記反応槽内に順に供給して前記反応槽内の前記窒素含有廃水を攪拌し、前記アンモニア酸化菌と前記嫌気性アンモニア酸化菌の働きにより前記窒素含有廃水を脱窒処理する工程と、
前記微生物担体若しくは前記微生物担体及び前記活性汚泥を処理水から分離し、該処理水を前記反応槽から排出させる工程と
を含む窒素含有廃水の脱窒方法。 - 前記窒素含有廃水を脱窒処理する前に、前記窒素含有廃水のT-N濃度(mg/L)に対するM-アルカリ度(mg/L)が3.5~4.5倍となるように、前記窒素含有廃水のM-アルカリ度を予め調整することを含む請求項1に記載の窒素含有廃水の脱窒方法。
- 前記窒素含有廃水を脱窒処理する工程が、
前記反応槽内に酸素含有気体を供給して前記反応槽内の前記窒素含有廃水を攪拌することにより、前記窒素含有廃水に含まれるアンモニア性窒素の一部を前記アンモニア酸化菌の働きにより亜硝酸性窒素に酸化させることを含む好気攪拌工程と、
前記酸素含有気体の供給を停止し、前記反応槽内に前記酸素を含有しない気体を供給して前記反応槽内の前記窒素含有廃水を攪拌することにより、前記窒素含有廃水に含まれる前記アンモニア性窒素及び前記亜硝酸性窒素から前記嫌気性アンモニア酸化菌の働きにより窒素ガスを発生させることを含む嫌気攪拌工程と
を含む請求項1又は2に記載の窒素含有廃水の脱窒方法。 - 前記嫌気攪拌工程の後に、前記反応槽内に酸素含有気体を供給して前記反応槽内の窒素含有廃水を攪拌する追加好気攪拌工程を更に備える請求項3に記載の窒素含有廃水の脱窒方法。
- 前記反応槽内に前記酸素含有気体を供給する際に、
前記反応槽内の前記窒素含有廃水の溶存酸素濃度を、前記アンモニア酸化菌による部分亜硝酸化処理に必要な溶存酸素濃度範囲に制御しながら前記反応槽内の前記窒素含有廃水のpHを監視し、前記窒素含有廃水のpHが所定値以下となった場合に、前記反応槽内への前記酸素含有気体の供給を停止させることを含む請求項1~4のいずれか1項に記載の窒素含有廃水の脱窒方法。 - 前記酸素を含有しない気体の供給は、前記反応槽内で発生した窒素ガスを前記反応槽内へ循環させることにより行われる請求項1~5のいずれか1項に記載の窒素含有廃水の脱窒方法。
- 前記反応槽から排出した前記処理水を曝気し、曝気液を固液分離して上澄液を得るとともに、前記固液分離により得られた濃縮汚泥を前記反応槽へ返送することを更に含む請求項1~6のいずれか1項に記載の窒素含有廃水の脱窒方法。
- 前記微生物担体が、前記反応槽内での処理経過に伴い、親水性高分子担体の表面上に前記アンモニア酸化菌及び前記嫌気性アンモニア酸化菌を徐々に付着させることにより得られた結合型微生物担体である請求項1~7のいずれか1項に記載の窒素含有廃水の脱窒方法。
- 前記活性汚泥が前記アンモニア酸化菌を含有する請求項1~8のいずれか1項に記載の窒素含有廃水の脱窒方法。
- 窒素含有廃水を供給する供給部と、
前記窒素含有廃水と、アンモニア酸化菌と嫌気性アンモニア酸化菌とを含有する微生物担体若しくは前記微生物担体と活性汚泥とを収容して、酸素含有気体又は酸素を含有しない気体を順に供給することにより前記窒素含有廃水を脱窒処理する反応槽と、
前記酸素含有気体又は酸素を含有しない気体を前記反応槽内に供給することによって、前記反応槽内の前記窒素含有廃水を攪拌させるための散気手段と、
前記散気手段に接続され、前記酸素含有気体又は前記酸素を含有しない気体の供給切替を行う切替手段と、
前記脱窒処理で得られる処理液を前記微生物担体若しくは前記微生物担体及び前記活性汚泥を処理水から分離して前記反応槽外へ排出させる排出部と
を備える窒素含有廃水の脱窒装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580072956.5A CN107108293B (zh) | 2015-01-19 | 2015-11-09 | 含氮废水的脱氮方法以及脱氮装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-008059 | 2015-01-19 | ||
JP2015008059A JP6448382B2 (ja) | 2015-01-19 | 2015-01-19 | 窒素含有廃水の脱窒方法及び脱窒装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016117210A1 true WO2016117210A1 (ja) | 2016-07-28 |
Family
ID=56416771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081517 WO2016117210A1 (ja) | 2015-01-19 | 2015-11-09 | 窒素含有廃水の脱窒方法及び脱窒装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6448382B2 (ja) |
CN (1) | CN107108293B (ja) |
WO (1) | WO2016117210A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106186308A (zh) * | 2016-08-31 | 2016-12-07 | 北京城市排水集团有限责任公司 | 一体化厌氧氨氧化颗粒污泥脱氮装置及其控制方法 |
CN109319929A (zh) * | 2018-12-14 | 2019-02-12 | 湖南军信环保股份有限公司 | 一种新型一体式厌氧氨氧化反应系统 |
CN110606576A (zh) * | 2019-10-18 | 2019-12-24 | 长沙理工大学 | 一种污水处理的高效生物脱氮装置 |
CN111410316A (zh) * | 2020-05-07 | 2020-07-14 | 上海环境工程设计研究院有限公司 | 低碳源污水厌氧氨氧化脱氮系统及方法 |
CN113457639A (zh) * | 2021-07-13 | 2021-10-01 | 东华大学 | 一种吸附催化脱氮的锰负载丝瓜络纤维及其制备与应用 |
CN114291975A (zh) * | 2021-12-31 | 2022-04-08 | 连云港东江水务有限公司 | 利用微生物固定化膜生物反应器运行厌氧氨氧化的方法 |
WO2022213586A1 (zh) * | 2021-04-08 | 2022-10-13 | 北京工业大学 | 一种通过传统活性污泥实现主流厌氧氨氧化原位富集的方法与装置 |
CN118702277A (zh) * | 2024-08-28 | 2024-09-27 | 广州市华绿环保科技有限公司 | 用于处理高氨氮煤制油废水的厌氧氨氧化反应器及工艺 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6872921B2 (ja) * | 2017-02-09 | 2021-05-19 | 学校法人 東洋大学 | 窒素含有廃水の処理装置及び処理方法 |
CN108609731B (zh) * | 2018-04-27 | 2020-07-28 | 东北大学 | 一种含氮废水处理方法 |
CN110510743B (zh) * | 2019-09-26 | 2024-03-15 | 西安建筑科技大学 | 一种基于铁盐循环的一步脱氮装置及方法 |
CN111732192A (zh) * | 2020-06-24 | 2020-10-02 | 盐城工学院 | 一种对流式分布进水的短程硝化-厌氧氨氧化脱氮工艺 |
JP2022045829A (ja) * | 2020-09-09 | 2022-03-22 | 水ing株式会社 | 水処理方法及び水処理装置 |
CN114307880B (zh) * | 2022-01-05 | 2023-03-28 | 深圳职业技术学院 | 一种石墨烯载体的制备方法及基于该石墨烯载体的反应器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001017992A (ja) * | 1999-07-09 | 2001-01-23 | Yamada Kogyo Kk | し尿等の生物学的硝化脱窒方法 |
JP2004230259A (ja) * | 2003-01-29 | 2004-08-19 | Hitachi Plant Eng & Constr Co Ltd | 生物処理方法及び装置 |
WO2006035885A1 (ja) * | 2004-09-30 | 2006-04-06 | Kurita Water Industries Ltd. | 窒素含有液の処理方法および装置 |
JP2010063987A (ja) * | 2008-09-10 | 2010-03-25 | Hitachi Plant Technologies Ltd | 廃水処理装置及び処理方法 |
JP2012024707A (ja) * | 2010-07-23 | 2012-02-09 | Swing Corp | アンモニア性窒素廃液の脱窒処理方法及び処理装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2921917B1 (fr) * | 2007-10-09 | 2011-04-08 | Degremont | Procede et installation de traitement d'effluents contenant de l'azote dans un reacteur biologique sequentiel. |
JP5764330B2 (ja) * | 2008-12-28 | 2015-08-19 | メタウォーター株式会社 | 生物学的窒素除去方法 |
-
2015
- 2015-01-19 JP JP2015008059A patent/JP6448382B2/ja active Active
- 2015-11-09 WO PCT/JP2015/081517 patent/WO2016117210A1/ja active Application Filing
- 2015-11-09 CN CN201580072956.5A patent/CN107108293B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001017992A (ja) * | 1999-07-09 | 2001-01-23 | Yamada Kogyo Kk | し尿等の生物学的硝化脱窒方法 |
JP2004230259A (ja) * | 2003-01-29 | 2004-08-19 | Hitachi Plant Eng & Constr Co Ltd | 生物処理方法及び装置 |
WO2006035885A1 (ja) * | 2004-09-30 | 2006-04-06 | Kurita Water Industries Ltd. | 窒素含有液の処理方法および装置 |
JP2010063987A (ja) * | 2008-09-10 | 2010-03-25 | Hitachi Plant Technologies Ltd | 廃水処理装置及び処理方法 |
JP2012024707A (ja) * | 2010-07-23 | 2012-02-09 | Swing Corp | アンモニア性窒素廃液の脱窒処理方法及び処理装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106186308A (zh) * | 2016-08-31 | 2016-12-07 | 北京城市排水集团有限责任公司 | 一体化厌氧氨氧化颗粒污泥脱氮装置及其控制方法 |
CN106186308B (zh) * | 2016-08-31 | 2022-07-12 | 北京城市排水集团有限责任公司 | 一体化厌氧氨氧化颗粒污泥脱氮装置及其控制方法 |
CN109319929A (zh) * | 2018-12-14 | 2019-02-12 | 湖南军信环保股份有限公司 | 一种新型一体式厌氧氨氧化反应系统 |
CN110606576A (zh) * | 2019-10-18 | 2019-12-24 | 长沙理工大学 | 一种污水处理的高效生物脱氮装置 |
CN111410316A (zh) * | 2020-05-07 | 2020-07-14 | 上海环境工程设计研究院有限公司 | 低碳源污水厌氧氨氧化脱氮系统及方法 |
WO2022213586A1 (zh) * | 2021-04-08 | 2022-10-13 | 北京工业大学 | 一种通过传统活性污泥实现主流厌氧氨氧化原位富集的方法与装置 |
CN113457639A (zh) * | 2021-07-13 | 2021-10-01 | 东华大学 | 一种吸附催化脱氮的锰负载丝瓜络纤维及其制备与应用 |
CN114291975A (zh) * | 2021-12-31 | 2022-04-08 | 连云港东江水务有限公司 | 利用微生物固定化膜生物反应器运行厌氧氨氧化的方法 |
CN118702277A (zh) * | 2024-08-28 | 2024-09-27 | 广州市华绿环保科技有限公司 | 用于处理高氨氮煤制油废水的厌氧氨氧化反应器及工艺 |
Also Published As
Publication number | Publication date |
---|---|
JP6448382B2 (ja) | 2019-01-09 |
CN107108293A (zh) | 2017-08-29 |
JP2016131928A (ja) | 2016-07-25 |
CN107108293B (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6448382B2 (ja) | 窒素含有廃水の脱窒方法及び脱窒装置 | |
WO2020220922A1 (zh) | Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置 | |
Sun et al. | Advanced treatment of landfill leachate using anaerobic–aerobic process: Organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite | |
IL263741A (en) | METHOD AND DEVICE FOR MAXIMIZATION OF NITROGEN REMOVAL OF FUNCTIONS | |
CN110436704B (zh) | 一种基于厌氧氨氧化的城市污水处理升级改造工艺 | |
US20140360933A1 (en) | Methods and apparatus for nitrogen removal from wastewater | |
US7547394B2 (en) | Wastewater treatment with aerobic granules | |
US8323487B2 (en) | Waste water treatment apparatus | |
JP6666165B2 (ja) | アンモニア性窒素含有被処理液の硝化脱窒処理方法及び装置 | |
KR101018587B1 (ko) | 질소, 인 제거 막분리 고도처리장치 | |
JP4876343B2 (ja) | 脱窒方法及び脱窒装置 | |
Lai et al. | Nitrogen removal of high strength wastewater via nitritation/denitritation using a sequencing batch reactor | |
KR102311712B1 (ko) | 여재가 투입된 회분식 반응조(sbbr)를 이용한 부분 아질산화와 이를 이용한 단축질소제거 오폐수 처리장치 및 시스템 | |
KR100643775B1 (ko) | 부유·부착성장 미생물을 이용한 영양염류처리 하이브리드시스템 | |
JP4915036B2 (ja) | 脱窒方法及び脱窒装置 | |
JP6084150B2 (ja) | 脱窒処理方法及び脱窒処理装置 | |
JP5581872B2 (ja) | アンモニア性窒素廃液の脱窒処理方法及び処理装置 | |
JP5869208B2 (ja) | 排水の処理方法及び排水の処理装置 | |
JP2013169529A (ja) | 廃水処理方法及び廃水処理装置 | |
JP5186429B2 (ja) | 消化汚泥分離液の脱窒処理方法と装置 | |
CN105984991B (zh) | 一种污水深度处理工艺 | |
CN110902967A (zh) | 基于序批式膜生物反应的废水处理方法及废水处理系统 | |
TWI564253B (zh) | 廢水處理系統 | |
JP2004275820A (ja) | 排水処理装置 | |
Lia | Simultaneous nitritation, anammox, and denitrification (SNAD) process in a membrane bioreactor: start-up, optimization, and membrane fouling behavior |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15878899 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15878899 Country of ref document: EP Kind code of ref document: A1 |