[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016104940A1 - 발광 소자 구동 장치 - Google Patents

발광 소자 구동 장치 Download PDF

Info

Publication number
WO2016104940A1
WO2016104940A1 PCT/KR2015/011819 KR2015011819W WO2016104940A1 WO 2016104940 A1 WO2016104940 A1 WO 2016104940A1 KR 2015011819 W KR2015011819 W KR 2015011819W WO 2016104940 A1 WO2016104940 A1 WO 2016104940A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
voltage
signal
light emitting
unit
Prior art date
Application number
PCT/KR2015/011819
Other languages
English (en)
French (fr)
Inventor
윤재훈
김도엽
김민학
정승범
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to EP15873468.1A priority Critical patent/EP3240369B1/en
Priority to US15/535,537 priority patent/US10334681B2/en
Priority to CN201580070312.2A priority patent/CN107113947A/zh
Publication of WO2016104940A1 publication Critical patent/WO2016104940A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the embodiment relates to a light emitting element driving apparatus.
  • LED lighting which has low luminance and comparable brightness to lighting devices such as incandescent lamps.
  • the research and development of the light driving device for driving the LED light by controlling the current so that a constant current flows in the LED light is being actively progressed.
  • Such a lighting driving device has various lighting directing functions, and in particular, by changing the dimming of LED elements arranged in parallel and parallel connection, various lighting can be produced.
  • the lighting driving device is a rectifier circuit for rectifying the electric wave output from the AC power source, a transformer circuit for converting the output of the voltage output from the rectifier circuit and output, and a power supply output from the AC power source by adjusting the output voltage of the transformer circuit
  • a power factor correction circuit for compensating for power factor a smoothing circuit for outputting a stable DC voltage and supplying the output voltage to the LED module by smoothing the voltage output from the transformer circuit, and driving a LED current so that a constant driving current flows through the LED module.
  • It may include a constant current driving circuit for controlling, and a dimming control circuit for controlling the dimming by controlling the current flow of the LED module by controlling the constant current driving circuit by a PWM (Pulse Width Modualtion) method.
  • PWM Pulse Width Modualtion
  • the embodiment provides a light emitting device driving apparatus capable of improving power efficiency and preventing flickering.
  • a light emitting device driving apparatus includes: a voltage generator configured to provide a DC signal driving a light emitting unit; And a dimming unit connected between the light emitting unit and the sensing resistor and controlling the current flowing through the sensing resistor and the light emitting unit, wherein the dimming unit senses a voltage of a first node connected to the light emitting unit and the switch.
  • the level of the DC signal is adjusted based on a first sensing voltage according to a result and a second sensing voltage according to a result of sensing a voltage of a second node connected to the switch and the sensing resistor.
  • the dimming unit may adjust the level of the DC signal such that a difference between the first sensing voltage and the second sensing voltage is equal to or less than a first reference voltage.
  • the dimming unit may block a current flow between the light emitting unit and the sensing resistor.
  • the dimming unit is a switch connected between the light emitting unit and the sensing resistor;
  • An amplifier including a first input terminal to which a constant current control signal is input, a second input terminal connected to the second node, and an output terminal;
  • a voltage sensing unit configured to output the first sensing voltage and the second sensing voltage;
  • a controller configured to generate a dimming signal based on the first and second sensing voltages, wherein the switch is switched in response to an output of the amplifier, and the voltage generator is based on the dimming signal.
  • the level of the DC signal can be adjusted.
  • the constant current control signal may be an analog signal.
  • the dimming unit may smooth a pulse width modulated signal and provide a signal according to the smoothed result as the constant current control signal.
  • the controller may adjust the level of the DC signal such that a difference between the first sensing voltage and the second sensing voltage is equal to or less than a first reference voltage.
  • the switch may be implemented as a transistor, and the first reference voltage may be a drain-source on state voltage of the switch.
  • the controller may reduce the level of the DC signal when the difference between the first sensing voltage and the second sensing voltage is greater than the first reference voltage and less than or equal to the second reference voltage.
  • the controller may change the level of the constant current control signal to zero when a difference between the first sensing voltage and the second sensing voltage exceeds the second reference voltage.
  • the light emitting device driving apparatus includes: a rectifier for rectifying an AC signal and providing a rectified signal according to the rectified result; And a power factor correction unit configured to correct the power factor of the rectified signal and output the rectified signal whose power factor is corrected to the voltage generator.
  • the control unit may calculate a sensing current flowing through the sensing resistor based on the second sensing voltage, and turn on or off the power factor correcting unit based on the calculated sensing current.
  • the controller may turn off the power factor corrector when the sensing current is smaller than the reference current value.
  • a light emitting device driving apparatus includes: a voltage generator configured to provide a DC signal for driving a light emitting unit based on a dimming signal: a first input terminal to which a constant current control signal is input, a second input terminal, and an output; An amplifier comprising a terminal; A sensing resistor, one end of which is connected to the second input terminal of the amplifier; A switch connected between the light emitting unit and one end of the sensing resistor and switching in response to an output of the amplifier; A first sensing voltage according to a result of sensing a voltage of a first node connected to the light emitting unit and the switch, and a second sensing result of sensing a voltage of a second node connected to one end of the switch and the sensing resistor A voltage sensing unit configured to output a sensing voltage; And a controller configured to provide the dimming signal to the voltage generator to adjust the level of the DC signal based on a difference between the first sensing voltage and the second sensing voltage.
  • the light emitting device driving apparatus may further include a smoothing circuit for smoothing a pulse width modulation signal and providing a signal according to the smooth result as the constant current control signal.
  • the controller may provide the pulse width modulated signal.
  • the light emitting device driving apparatus includes: a rectifier for rectifying an AC signal and providing a rectified signal according to the rectified result; And a power factor correction unit configured to correct the power factor of the rectified signal and output the rectified signal whose power factor is corrected to the voltage generator.
  • the voltage generator may convert the level of the rectified signal whose power factor is corrected based on the dimming signal, and generate the DC signal according to the level converted result.
  • the controller may calculate a sensing current flowing through the sensing resistor based on the second sensing voltage, and output a control signal for turning on or off the power factor correcting unit based on the calculated sensing current.
  • a light emitting device driving apparatus includes: a voltage generator configured to provide a DC signal for driving a plurality of light emitting parts: a plurality of sensing resistors; A plurality of dimming units for controlling a current flowing through the plurality of light emitting units; And a controller configured to provide a constant current control signal to each of the plurality of dimming units and to adjust the level of the DC signal, wherein each of the plurality of dimming units includes: a first input terminal to which the constant current control signal is input; An amplifier comprising a second input terminal and an output terminal connected to a corresponding one of the sensing resistors; A switch connected between a corresponding one of the plurality of light emitting units and one end of a corresponding one of the plurality of sensing resistors and switching in response to an output of the amplifier; First sensing voltages according to a result of sensing a corresponding one of the plurality of light emitting units and a voltage of a first node to which the switch is connected,
  • the embodiment can improve power efficiency and prevent flickering.
  • FIG. 1 is a block diagram of a lighting apparatus according to an embodiment.
  • FIG. 2A illustrates an embodiment of the first sensing unit illustrated in FIG. 1.
  • FIG. 2B illustrates another embodiment of the first sensing unit illustrated in FIG. 1.
  • FIG. 3 is a block diagram of a lighting apparatus according to another embodiment.
  • FIG. 4 is a block diagram of a lighting apparatus according to another embodiment.
  • FIG. 5 is a flowchart illustrating an operation of a controller for controlling the level of the DC voltage provided to the light emitting unit from the voltage generator shown in FIGS. 1 and 3.
  • FIG. 6 is a flowchart illustrating an operation of a controller for controlling the power factor correction unit of FIG. 4.
  • Fig. 7A shows light emission of the light emitting portion in the constant current control by the duty ratio of the PWM signal.
  • 7B illustrates light emission of the light emitting unit according to the embodiment.
  • FIG. 8 is a block diagram of a lighting apparatus according to another embodiment.
  • each layer (region), region, pattern, or structure is “on” or “under” the substrate, each layer (film), region, pad, or pattern.
  • “up” and “under” include both “directly” or “indirectly” formed through another layer. do.
  • the criteria for up / down or down / down each layer will be described with reference to the drawings.
  • FIG. 1 is a block diagram of a lighting apparatus 100 according to an embodiment.
  • the lighting apparatus 100 includes a light emitting unit 101 and a light emitting element driving device 102 driving the light emitting unit 101.
  • the light emitting unit 101 includes a plurality of light emitting element arrays D1 to Dn, a natural number of n> 1, connected in series.
  • Each of the plurality of light emitting element arrays D1 to Dn may include one or more light emitting elements, for example, a light emitting diode.
  • the plurality of light emitting diodes may be connected in series, in parallel, or in series and in parallel.
  • the light emitting device driving apparatus 102 includes an AC power supply unit 110, an EMI filter 115, a rectifier 120, a power factor improving unit 125, a voltage generator 130, a dimming unit 140, and a sensing unit. Resistance Rsen.
  • the AC power supply unit 110 provides an AC signal AC.
  • the AC signal AC may be an AC voltage and / or an AC current.
  • Electromagnetic interference (EMI) filter 115 is for blocking external electromagnetic noise, and removes noise, for example, conductive noise, included in the AC signal AC provided from the AC power supply 110.
  • the EMI filter 115 may be implemented to include at least one of a capacitor, a transformer, and an inductor.
  • the rectifier 120 rectifies the AC signal AC from which electromagnetic noise is removed by the EMI filter 115, and provides a rectified signal (ripple current, VR) according to the rectified result.
  • the rectifier 120 may full-wave rectify the AC signal AC and output a rectified signal VR according to the result of the full-wave rectified. That is, the rectified signal VR may be a signal obtained by full-wave rectification of the AC signal AC.
  • the rectifier 120 may be implemented as a full-wave diode bridge circuit including four diodes that are bridged, but is not limited thereto.
  • the power factor correction unit 125 adjusts the phase difference between the voltage and the current of the rectified signal VR to correct the power factor of the rectified signal VR, and outputs the rectified signal VR1 with the corrected power factor. .
  • the voltage generator 130 converts the level of the rectified signal VR1 whose power factor is corrected by the power factor improving unit 125 based on a dimming signal DS provided from the dimming unit 140,
  • the level converted DC signal VR2 is output.
  • the DC signal VR2 may be a DC voltage.
  • the level of the DC signal VR2 output from the voltage generator 130 may be set or converted based on the dimming signal DS provided from the dimming unit 140.
  • the DC signal VR2 output from the voltage generator 130 is provided to the light emitting unit 101.
  • the DC signal VR2 output from the voltage generator 130 may be provided to the input terminal 105 of the light emitting unit 101.
  • the input terminal 105 of the light emitting unit 101 may be an anode terminal of the first light emitting device array D1 among the light emitting device arrays D1 to Dn connected in series.
  • the voltage generator 130 may be implemented as a converter capable of converting the DC level of the rectified signal VR1.
  • the voltage generator 130 may be implemented to include at least one of a DC-DC converter, a resonant LLC half bridge converter, a flyback converter, or a buck converter. Can be.
  • the dimming unit 140 connects the light emitting unit 101 and the sensing resistor Rsen, and controls the current flowing through the light emitting unit 101 to adjust the brightness of the light emitting unit 101.
  • the dimming unit 140 provides the voltage VN between the output terminal 106 of the light emitting unit 101 and one end 107 of the sensing resistor Rsen to be maintained at a predetermined reference voltage.
  • the level of the DC signal VR2 is changed.
  • the output terminal 106 of the light emitting unit 101 may be a cathode terminal of the last light emitting device array Dn among the light emitting device arrays D1 to Dn connected in series.
  • the preset reference voltage is described with reference to FIG. 5.
  • the dimming unit 140 may include a first sensing voltage Vsen1 based on a result of sensing a voltage of the first node N1 connected by the light emitting unit 101 and the switch 142, and a switch 142 and a sensing resistor ( The level of the DC signal VR2 may be adjusted based on the second sensing voltage Vsen2 according to the result of sensing the voltage of the second node N2 connected to the Rsen.
  • the dimming unit 140 senses the first sensing voltage Vsen1 based on the sensing result of the voltage of the first node N1 connected to the light emitting unit 101 and the switch 142, and the sensing unit 142.
  • the dimming signal DS may be generated based on the second sensing voltage Vsen2 according to a result of sensing the voltage of the second node N2 connected by the resistor Rsen.
  • the dimming unit 140 may adjust the level of the DC signal VR2 such that the difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 is equal to or less than the first reference voltage.
  • the dimming unit 140 may have a difference between the light emitting unit 101 and the sensing resistor Rsen when the difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 exceeds the second reference voltage. Can block the current flow. For example, when the difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 exceeds the second reference voltage, the dimming unit 140 may not be sufficient to turn on the light emitting unit 101.
  • the voltage generator 130 may be controlled to reduce the level of the DC signal VR2 or to the level of the DC signal VR2 to zero.
  • the dimming unit 140 may include a switch 142, a voltage sensing unit 144, an amplifier 146, and a controller 148.
  • the switch 142 is connected between the output terminal 106 of the light emitting unit 101 and one end 107 of the sensing resistor Rsen and is switched based on the constant current control signal Vset provided from the controller 148.
  • the switch 142 may be implemented with a transistor such as a FET transistor or a BJT transistor.
  • the switch 142 may include a drain connected to the output terminal 106 of the light emitting unit 101, a source connected to one end 107 of the sensing resistor Rsen, and an output of the amplifier 146.
  • This may be implemented as an NMOS transistor including an input gate, but is not limited thereto. In another embodiment, it may also be implemented as a PMOS transistor.
  • the switch 142 may be implemented in various forms to electrically connect the output terminal 106 of the light emitting unit 101 and one end 107 of the sensing resistor Rsen in response to the output CS of the amplifier 146. .
  • the voltage VN between the output terminal 106 of the light emitting unit 101 and one end 107 of the sensing resistor Rsen may be a voltage between the source and the drain of the switch 142 implemented as a transistor.
  • the voltage sensing unit 144 includes a voltage of the first node N1 connected to the output terminal 106 of the light emitting unit 101 and the switch 142, and one end 107 of the sensing resistor Rsen and the switch 142.
  • the voltage of the second node N2 that is connected to may be sensed.
  • the voltage sensing unit 144 may detect a voltage of the first node N1 and provide the detected first sensing voltage Vsen1 to the controller 148.
  • the voltage sensing unit 144 may detect the voltage of the second node N2 and provide the control unit 148 with the second sensing voltage Vsen2 according to the detected result.
  • the voltage sensing unit 144 senses the voltage of the first node N1, and senses the voltage of the first sensing unit 144-1 and the second node N2 that provide the first sensing voltage Vsen1.
  • the second sensing unit 144-2 may provide a second sensing voltage Vsen2.
  • FIG. 2A illustrates an embodiment 144a of the first sensing unit 144-1 shown in FIG. 1.
  • the first sensing unit 144a may include a plurality of resistors (eg, R1 and R2) connected in series between the first node N1 and the ground power source GND.
  • the voltage applied to at least one of the resistors (eg, R1 and R2) (eg, R2) may be provided to the controller 148 as the first sensing voltage Vsen1.
  • FIG. 2B illustrates another embodiment 144b of the first sensing unit 144-1 shown in FIG. 1.
  • the first sensing unit 144b may include a plurality of resistors (eg, R1 and R2) and a plurality of resistors (eg, R1 and R2) connected in series between the first node N1 and the ground power source GND. And a Zener diode 201 connected in parallel with at least one of R1 and R2 (eg, R2), and the controller 148 converts a voltage across the Zener diode 201 as a first sensing voltage Vsen1.
  • a plurality of resistors eg, R1 and R2
  • a plurality of resistors eg, R1 and R2
  • Vsen1 a voltage across the Zener diode 201
  • the first sensing unit 144b may include first and second resistors R1 and R2 and first and second resistors R1 connected in series between the first node N1 and the ground power source GND. And a Zener diode 201 connected between the connection node of the R2 and the ground power source GND, and the voltage across the Zener diode 201 is controlled by the first sensing voltage Vsen1 to the controller 148. Can provide.
  • the second sensing unit 144-2 may provide a voltage applied to the second node N2 to the controller 148 as the second sensing voltage Vsen2.
  • the second sensing unit 144-2 may sense a voltage applied to the sensing resistor Rsen, and may provide a voltage applied to the sensing resistor Rsen to the controller 148.
  • FIGS. 2A and 2B may be applied to the second sensing unit 144-2.
  • values of the resistors included in the second sensing unit 144-2 may be different from those of the first sensing unit 144-1.
  • the amplifier 146 amplifies the voltage of the constant current control signal Vset and the second node N2 provided from the controller 148, and outputs an amplified signal CS according to the amplified result.
  • the constant current control signal Vset provided from the controller 148 of FIG. 1 may be an analog signal such as a DC voltage, not a pulse signal such as a PWM signal.
  • the amplifier 146 has a first input terminal 146a to which the constant current control signal Vset is input, a second input terminal 146b connected to the second node N2, and an output terminal for outputting the amplified signal CS. 146c.
  • the amplifier 146 may be implemented as an operational amplifier or a differential amplifier, but is not limited thereto.
  • the first input terminal 146a may be a positive input terminal (+) of an operational amplifier
  • the second input terminal 146b may be a negative input terminal ( ⁇ ) of an operational amplifier.
  • the current flowing through the sensing resistor Rsen may be determined by the constant current control signal Vset provided by the controller 148, and accordingly, the embodiment may control the current flowing through the light emitting unit 101.
  • the sensing current Isen flowing through the sensing resistor Rsen is a constant current.
  • the control signal Vset may be a value obtained by dividing the sensing resistor Rsen.
  • the constant current control signal Vset is not a pulse signal but an analog signal
  • the current flowing through the light emitting unit 101 may be linear unless the light emitting unit 101 changes the level value of the constant current control signal Vset. As a result, flicker may be reduced or eliminated in the light emitting unit 101.
  • the controller 148 may have a level of the DC signal VR2 output from the voltage generator 130 based on the first sensing voltage Vsen1 and the second sensing voltage Vsen2 provided from the voltage sensing unit 144.
  • the voltage generator 130 may be controlled to be converted.
  • the controller 148 may generate a dimming signal DS that controls the voltage generator 130 based on the first sensing voltage Vsen1 and the second sensing voltage Vsen2, and the voltage generator 130. ) May convert the level of the rectified signal VR1 based on the dimming signal DS and output the DC signal VR2 having the converted level. That is, the level of the DC signal VR2 provided from the voltage generator 130 to the light emitting unit 101 may be determined based on the dimming signal DS.
  • the controller 148 adjusts the level of the DC signal VR2 of the voltage generator 130 such that the difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 is equal to or less than a preset reference voltage. I can adjust it.
  • the controller 148 may include a direct current signal of the voltage generator 130 such that a difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 is equal to the first reference voltage. VR2) level can be adjusted.
  • the preset first reference voltage may be a drain-source on state voltage of the switch 142 implemented as a transistor, but is not limited thereto.
  • the preset reference voltage may be 0.4 [V], but is not limited thereto.
  • a first voltage obtained by adding up the rated operating voltages of each of the light emitting device arrays may be provided across the light emitting device arrays.
  • the operating voltage of the light emitting device arrays may decrease.
  • the reduction of the operating voltage of the light emitting device arrays causes a voltage difference between the first voltage and the operating voltage actually applied across the light emitting device arrays, and the voltage difference may be consumed as heat in another device of the light emitting driving apparatus. This may reduce the power efficiency of the lighting device.
  • the embodiment prevents power consumption wasted as heat in the switch 142. can do.
  • the dimming unit 140 senses a difference between the first sensing voltage Vsen1 and the second sensing voltage Vsen2, and presets a difference Vsen1-Vsen2 between the first and second sensing voltages according to the sensing result. Since the level of the DC signal VR2 provided to the light emitting portion 101 is adjusted to be maintained at a voltage, the power consumed by the switch 142 remains constant even when the operating voltage of the light emitting portion 101 is varied. It is possible to prevent the power efficiency of the lighting apparatus 100 from being lowered.
  • the dimming unit 140 If there is no control of the dimming unit 140 as described above, the difference between the voltage provided from the voltage generator 130 and the voltage actually applied to the light emitting unit 101 due to a decrease in the operating voltage of the light emitting unit 101 is switched. At 142 may be consumed as heat, and the power efficiency of the lighting device 100 may be degraded.
  • the controller 148 transmits the voltage generating unit 130 to the light emitting unit 105.
  • the light emitting unit 105 can be turned off without providing the DC signal VR2.
  • the controller 148 zeros the level of the constant current control signal Vset when the difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 exceeds the second reference voltage. Can be set or changed.
  • the controller 148 may block the provision of the DC signal VR2 or change the level of the constant current control signal Vset to zero.
  • FIG. 3 is a block diagram of a lighting apparatus 100 according to another embodiment.
  • the same reference numerals as in FIG. 1 denote the same components, and the description of the same components will be simplified or omitted.
  • the lighting apparatus 200 includes a light emitting unit 101 and a light emitting element driving apparatus 102a for driving the light emitting unit 101.
  • the light emitting device driving apparatus 102a includes an AC power supply unit 110, an EMI filter 115, a rectifier 120, a power factor improving unit 125, a voltage generator 130, a dimming unit 140a, and a sensing resistor Rsen. ).
  • the dimming unit 140a may include a switch 142, a voltage sensing unit 144, an amplifier 146, a smoothing circuit 310, and a controller 148.
  • the dimming unit 140a illustrated in FIG. 3 may further include a smoothing circuit 310 in the dimming unit 140 illustrated in FIG. 1.
  • the smoothing circuit 310 smoothes the signal Pw provided from the controller 148 and outputs a constant current control signal Vset1 according to the smoothed result.
  • the signal Pw provided from the controller 148 may be a pulse width modulation (PWM) signal, and performs constant current control on the light emitting unit 101 based on the duty ratio of the PWM signal.
  • PWM pulse width modulation
  • a ripple component is present in the current flowing through the light emitting unit 101, and thus, flicker may occur in the light emitting unit 101.
  • the smoothing circuit 310 smoothes the PWM signal provided from the controller 148 to remove such flicker, and generates a constant current control signal Vset1, which is an analog signal in the form of a DC signal in which a pulse flow component is removed according to the smoothed result. do.
  • the current flowing through the light emitting unit 101 by the constant current control signal Vset1 generated by the smoothing circuit 310 may reduce the ripple component.
  • the constant current control of the light emitting unit 101 may be performed by the level value of the constant current control signal Vset1, which is an analog signal rather than the duty ratio of the PWM signal, thereby reducing the occurrence of flicker of the light emitting unit 101 or Can be removed.
  • the smoothing circuit 310 may include a resistor R3 connected between the control unit 148 and the first input terminal 146a of the amplifier 146 and the first input terminal 146a of the amplifier 146 and the ground power supply.
  • RC smoothing circuit including a capacitor (C1) connected between (GND) may be implemented, but is not limited thereto, and may be implemented in various forms including a resistor, a capacitor, or an inductor.
  • FIG. 7A illustrates light emission of the light emitting unit during dimming control by the duty ratio of the PWM signal
  • FIG. 7B illustrates light emission of the light emitting unit 101 according to the embodiment.
  • the dimming range can be adjusted up to 1% of the maximum current value that can flow in the light emitting unit 101, thereby obtaining an energy saving effect.
  • the embodiment may enable accurate current control.
  • FIG. 5 is a flowchart illustrating an operation of the controller 148 for controlling the level of the DC voltage VR2 provided to the light emitting unit 101 from the voltage generator 130 shown in FIG. 3.
  • the controller 148 controls the constant current supplied to the first input terminal 146a of the amplifier 146 by a signal S1 (see FIG. 3) received from the outside through a communication interface.
  • the signal Vset1 is set (S510).
  • the level value of the analog signal may be a setting target for the Vset of FIG. 1
  • the duty ratio of the PWM signal may be a setting target for the Vset1 of FIG. 3.
  • the constant current control signal Vset or Vset1 for determining the brightness of the light emitting unit 101 may be set by an external user's selection. For example, the dimming degree may be determined in S510.
  • the controller 148 may output a pulse width modulation signal Pw corresponding to the signal S1 received from the outside, and the signal Pw provided from the controller 148 is smooth.
  • the circuit 310 may be converted into a constant current control signal Vset1 which is an analog signal.
  • the level value of the constant current control signal Vset1 may be determined by the duty ratio of the signal Pw provided from the controller 148.
  • the level value of the constant current control signal Vset1 may be proportional to the duty ratio of the signal Pw provided from the controller 148.
  • the controller 148 receives the first and second sensing voltages Vsen1 and Vsen2 provided from the voltage sensing unit 144 (S520).
  • the controller 148 compares the set constant current control signal Vset or Vset1 with the received second sensing voltage Vsen2 (S530).
  • the voltage Vsen2 actually applied to the sensing resistor Rsen by the current flowing through the light emitting unit 101 by the DC signal VR2 provided from the voltage generator 130 is set to the constant current control signal Vset or Vset1.
  • the controller 148 may provide the DC signal VR2 provided from the voltage generator 130 to the light emitting unit 101. Change the level of (S540). The controller 148 may repeat steps S520 to S540 until the second sensing voltage Vsen2 is equal to the set constant current control signal Vset or Vset1.
  • the second sensing voltage Vsen2 may be smaller than the set constant current control signal Vset or Vset1.
  • the set constant current control signal Vset or Vset1 and the second sensing voltage Vsen2 are the same.
  • the level of the DC signal VR2 can be changed until.
  • the controller 148 may have a difference Vsen1 between the received first sensing voltage Vsen1 and the second sensing voltage Vsen2.
  • Vsen2 is equal to or less than the first reference voltage Vref1.
  • the preset first reference voltage Vref1 may be a drain-source on state voltage of the switch 142 implemented as a transistor.
  • the preset first reference voltage Vref1 may be 0.4 [V], but is not limited thereto.
  • the second reference voltage Vref2 may be a voltage set to determine that the light emitting unit 101 is shorted.
  • the second reference voltage Vref2 may be 3.5 [V], but is not limited thereto.
  • steps S520, S530, S550, S570, and S540 are repeated until the difference Vsen1-Vsen2 between the first sensing voltage Vsen1 and the second sensing voltage Vsen2 becomes less than or equal to the first reference voltage Vref1.
  • the controller 148 decreases the level of the DC signal VR2 provided from the voltage generator 130 to the light emitting unit 101, thereby making a difference between the first sensing voltage Vsen1 and the second sensing voltage Vsen2.
  • Vsen1-Vsen2 may be equal to or less than the first reference voltage Vref1.
  • the controller 148 may be configured to have the same value. The power efficiency can be improved by reducing the level of the DC signal VR2.
  • the controller 148 sets the set constant current control.
  • the level of the signal Vset or Vset1 may be changed to zero.
  • the controller 148 may change the level of the constant current control signal Vset or Vset1 to 0 so that no current flows in the light emitting unit 101.
  • FIG. 4 is a block diagram of a lighting device 300 according to another embodiment.
  • the same reference numerals as in FIG. 1 denote the same components, and the description of the same components will be simplified or omitted.
  • the lighting apparatus 300 includes a light emitting unit 101 and a light emitting element driving apparatus 102b for driving the light emitting unit 101.
  • the light emitting device driving apparatus 102b includes the AC power supply unit 110, the EMI filter 115, the rectifier 120, the power factor improving unit 125, the voltage generator 130, the dimming unit 140b, and the sensing resistor Rsen. ).
  • the dimming unit 140b may include a switch 142, a voltage sensing unit 144, an amplifier 146, a smoothing circuit 310, and a controller 148-1.
  • the controller 148-1 outputs a dimming signal DS for controlling the voltage generator 130 and a PFC control signal TS for controlling the power factor correcting unit 125.
  • the dimming signal DS Since the description of the dimming signal DS is the same as that described with reference to FIG. 1, the description is omitted to avoid duplication.
  • the controller 148-1 calculates the sensing current Isen flowing through the sensing resistor Rsen based on the second sensing voltage Vsen2 provided from the second sensing unit 144-2, and calculates the calculated sensing current ( The power factor corrector 125 is turned on or off based on Isen.
  • FIG. 6 is a flowchart illustrating an operation of the controller 148-1 for controlling the power factor correcting unit 125 of FIG. 4.
  • the controller 148-1 detects the sensing current Isen flowing through the sensing resistor Rsen based on the second sensing voltage Vsen2 provided from the second sensing unit 144-2. (S610).
  • the controller 148-1 may store a resistance value of the sensing resistor Rsen, and may be obtained by dividing the second sensing voltage Vsen2 received from the second sensing unit 144-2 by the stored sensing resistor Rsen.
  • the sensing current Isen can be calculated.
  • the controller 148-1 determines whether the detected current value of the sensing current Isen is greater than or equal to the preset reference current value Iref (S620).
  • the current flowing through the light emitting unit 101 may be controlled by the constant current control signal Vset or Vset1 provided from the controller 148.
  • the preset reference current value Iref may be a constant current control signal Vset or Vset1. In response thereto, 20% to 50% of the maximum current value that can flow in the light emitting unit 101.
  • the preset reference current value Iref may be 20% of the maximum current value that can flow in the light emitting unit 101 in response to the maximum constant current control signal Vset or Vset1.
  • the controller 148-1 controls the power factor correcting unit 125 so that the power factor correcting unit 125 does not perform an operation. Turn off. That is, when the detected current value of the sensing current Isen is smaller than the preset reference current value Iref, the power factor correcting unit 125 is turned off so that power consumption is eliminated by the power factor correcting unit 125.
  • the controller 148-1 controls the power factor correcting unit 125 so that the power factor correcting unit 125 performs an operation.
  • the power factor correction unit 125 may be turned off or turned on by cutting off or supplying power provided to the power factor correction unit 125 by the PFC control signal TS, but is not limited thereto.
  • the embodiment can secure the EMI margin.
  • FIGS. 1 and 3 show a configuration diagram of a lighting device 400 according to another embodiment.
  • the same reference numerals as those in FIGS. 1 and 3 denote the same components, and the description of the same components will be simplified or omitted.
  • the lighting apparatus 400 includes a plurality of light emitting units 101-1 to 101-n, n> 1 natural numbers, and a plurality of light emitting units 101-1 to 101-n, n> 1 natural numbers. ) Includes a light emitting element driving apparatus 102c.
  • Each of the plurality of light emitting units 101-1 to 101-n, a natural number of n> 1, may be implemented in the same manner as the light emitting unit 101 described with reference to FIG. 1, and description thereof is omitted to avoid duplication.
  • the light emitting device driving apparatus 102c includes an AC power supply unit 110, an EMI filter 115, a rectifier 120, a power factor improving unit 125, a voltage generator 130, and a plurality of dimming units 140-1 to 140-. n, n> 1, and a plurality of sensing resistors Rsen_1 to Rsen_n, n> 1, and the controller 148a.
  • the AC power supply unit 110, the EMI filter 115, the rectifier 120, the power factor correction unit 125, and the voltage generator 130 of the light emitting device driving apparatus 102c may be the same as described with reference to FIGS. 1 and 3. have.
  • the DC signal VR2 output from the voltage generator 130 is simultaneously provided to the plurality of dimming units 140-1 to 140-n, a natural number of n> 1.
  • Each of the plurality of dimming units 140-1 to 140-n, and n> 1 is a first input terminal to which a corresponding one of constant current control signals Vset_1 to Vset_n, n> 1 is input, A second input terminal connected to a corresponding one of the sensing resistors Rsen_1 to Rsen_n, n> 1, and an amplifier 146 including an output terminal, and the plurality of light emitting units 101-1 to 101-. a corresponding one of n, n> 1 and a corresponding one of the plurality of sensing resistors Rsen_1 to Rsen_n, n> 1 and one end of a corresponding one of the plurality of sensing resistors, and respond to an output of the amplifier 146.
  • the first sensing voltages Vsen1_1 to Vsen1_n, n> 1 are natural numbers according to a result, and the switch 142 and the plurality of sensing resistors Rsen_1 to Rsen_n, A voltage outputting second sensing voltages Vsen2_1 to Vsen2_n, a natural number of n> 1 according to a result of sensing the voltage of the second node N2 to which one of the corresponding ones of n> 1 is connected.
  • the sensing unit 144 may be included.
  • the controller 148a may adjust the level of the DC signal VR2 based on the differences Vsen1_1 to Vsen2_1 to Vsen1_n to Vsen_2_n of the first sensing voltage and the second sensing voltage.
  • Each of the plurality of dimming units 140-1 to 140-n, and n> 1 is a plurality of sensing resistors and a corresponding one of the plurality of light emitting units 101-1 to 101-n, and n> 1, respectively.
  • a plurality of light emitting units by connecting a corresponding one among Rsen_1 to Rsen_n, a natural number of n> 1, and controlling a current flowing through the plurality of light emitting units 101-1 to 101-n, n> 1.
  • the brightness of (101-1 to 101-n, n> 1 natural number) is adjusted.
  • Each of the plurality of dimming units 140-1 to 140-n may include a switch 142, a voltage sensing unit 144, and an amplifier 146.
  • the descriptions of the switch 142, the voltage sensing unit 144, and the amplifier 146 of FIG. 1 may be equally applied to each of the plurality of dimming units 140-1 to 140-n, where n> 1. .
  • each of the plurality of dimming units 140-1 to 140-n may further include the smoothing circuit 310 of FIG. 3.
  • Each switch 142 of the plurality of dimming units 140-1 to 140-n, and n> 1 is a corresponding one of the plurality of light emitting units 101-1 to 101-n, and n> 1.
  • the constant current control signals Vset_1 to Vset_n, n> connected between the output terminal 106 of the output terminal 106 and a corresponding one of the plurality of sensing resistors Rsen_1 to Rsen_n, a natural number of n> 1, and provided from the controller 148a. And a natural number of 1).
  • Each of the plurality of dimming units 140-1 to 140-n is a first sensing voltage Vsen1_1 to Vsen1_n, a natural number of n> 1 according to a result of sensing the voltage of the first node N1.
  • second sensing voltages Vsen2_1 to Vsen_2_n a natural number of n> 1, based on a result of sensing the voltage of the second node N2.
  • the controller 148a provides a constant current control signal (Vset_1 to Vset_n, a natural number of n> 1) for dimming to each of the dimming units 140-1 to 140-n (n> 1).
  • the controller 148a is based on the differences between the first sensing voltages Vsen1_1 to Vsen1_n, a natural number of n> 1, and the second sensing voltages Vsen2_1 to Vsen_2_n, and a natural number of n> 1, Vsen1_1 to Vsen2_1 to Vsen1_n to Vsen_2_n.
  • the voltage generator 130 may be controlled to convert the level of the DC signal VR2 output from the voltage generator 130.
  • the controller 148a may include a first sensing voltage (Vsen1_1 to Vsen1_n, a natural number of n> 1) and a second sensing voltage provided from the plurality of dimming units 140-1 to 140-n (n> 1).
  • Vsen1_1 to Vsen2_1 to Vsen1_n-Vsen_2_n Calculate differences (Vsen1_1 to Vsen2_1 to Vsen1_n-Vsen_2_n) of Vsen2_1 to Vsen_2_n, and a natural number of n> 1, and are calculated based on the calculated differences between the first and second sensing voltages Vsen1_1 to Vsen2_1 to Vsen1_n to Vsen_2_n.
  • a first reference value and a second reference value can be set.
  • the controller 148a may reduce the level of the DC signal VR2 provided from the voltage generator 130 by the first reference value.
  • the first reference value may be a value obtained by subtracting the first reference voltage from the largest value among the calculated differences between the first and second sensing voltages Vsen1_1 to Vsen2_1 to Vsen1_n to Vsen_2_n.
  • the preset first reference voltage may be a drain-source on state voltage of the switch 142 implemented as a transistor.
  • the light emitting units 101-1 to 101-n may satisfy all desired brightness levels (eg, 100% or 50% brightness levels) and may improve power efficiency.
  • the controller 148a may reduce the level of the DC signal VR2 provided from the voltage generator 130 by the first reference value and the second reference value.
  • the second reference value may be smaller than the difference between the largest value and the smallest value among the calculated differences between the first and second sensing voltages Vsen1_1 to Vsen2_1 to Vsen1_n to Vsen_2_n.
  • the second reference value may be one half of the difference between the largest value and the smallest value among the differences between the first and second sensing voltages Vsen1_1 to Vsen2_1 to Vsen1_n to Vsen_2_n, but is not limited thereto. .
  • the reason for subtracting the second reference value is that even if a part of the light emitting units 101-1 to 101-n, and n> 1 is not satisfied with a desired brightness level (eg, 100% or 50% brightness level), This is to further improve the efficiency.
  • a desired brightness level eg, 100% or 50% brightness level
  • the embodiment of the present invention sets the level of the DC signal VR2 which is commonly provided to the plurality of light emitting units 101-1 to 101-n, and n> 1.
  • the power efficiency can be improved by decreasing in response to a change in the operating voltage of a natural number of -n, n> 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

실시 예는 발광부를 구동하는 직류 신호를 제공하는 전압 발생부, 센싱 저항, 및 상기 발광부와 상기 센싱 저항 사이에 연결되고, 상기 센싱 저항 및 상기 발광부에 흐르는 전류를 제어하는 디밍부를 포함하며, 상기 디밍부는 상기 발광부와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압, 및 상기 스위치와 상기 센싱 저항이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압에 기초하여, 상기 직류 신호의 레벨을 조정한다.

Description

발광 소자 구동 장치
실시 예는 발광 소자 구동 장치에 관한 것이다.
최근 들어, 적은 소비 전력으로 구동하면서도 백열등과 같은 조명 장치에 필적할 정도의 휘도를 가진 LED 조명에 대한 관심이 높아지고 있다. 특히 LED 조명에 일정한 전류가 흐르도록 전류를 제어하여 LED 조명을 구동시키기 위한 조명 구동 장치에 대한 연구, 개발이 활발하게 진행되고 있다.
이러한, 조명 구동 장치는 다양한 조명 연출 기능을 보유하고 있는데, 특히 직병렬 접속으로 배열 설치된 LED 소자들의 디밍을 변경함으로써, 다양한 조명 연출이 가능하다.
일반적으로 조명 구동 장치는 교류 전원에서 출력되는 전파를 정류하는 정류 회로와, 정류 회로로부터 출력되는 전압의 크기를 변환하여 출력하는 변압 회로와, 변압 회로의 출력 전압을 조절하여 교류 전원에서 출력되는 전원의 역률을 보상하는 역률 보상 회로와, 변압 회로로부터 출력되는 전압을 평활화하여 안정적인 DC 전압을 출력하고 그 출력 전압을 LED 모듈로 공급하는 평활 회로와, LED 모듈에 일정한 구동 전류가 흐르도록 LED 전류를 제어하는 정전류 구동 회로와, PWM(Pulse Width Modualtion) 방식에 의해 정전류 구동 회로를 제어하여 LED 모듈의 전류 흐름을 조절하여 디밍을 제어하는 디밍 제어 회로를 포함할 수 있다.
실시 예는 전력 효율을 향상시킬 수 있고, 깜빡임을 방지할 수 있는 발광 소자 구동 장치를 제공한다.
실시 예에 따른 발광 소자 구동 장치는 발광부를 구동하는 직류 신호를 제공하는 전압 발생부: 센싱 저항; 및 상기 발광부와 상기 센싱 저항 사이에 연결되고, 상기 센싱 저항 및 상기 발광부에 흐르는 전류를 제어하는 디밍부를 포함하며, 상기 디밍부는 상기 발광부와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압, 및 상기 스위치와 상기 센싱 저항이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압에 기초하여, 상기 직류 신호의 레벨을 조정한다.
상기 디밍부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 제1 기준 전압 이하가 되도록 상기 직류 신호의 레벨을 조정할 수 있다.
상기 디밍부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 제2 기준 전압을 초과하면, 상기 발광부와 상기 센싱 저항 사이의 전류 흐름을 차단할 수 있다.
상기 디밍부는 상기 발광부와 상기 센싱 저항 사이에 연결되는 스위치; 정전류 제어 신호가 입력되는 제1 입력 단자, 상기 제2 노드와 연결되는 제2 입력 단자, 및 출력 단자를 포함하는 증폭기; 상기 제1 센싱 전압, 및 상기 제2 센싱 전압을 출력하는 전압 센싱부; 및 상기 제1 및 제2 센싱 전압들에 기초하여, 디밍(dimming) 신호를 생성하는 제어부를 포함하며, 상기 스위치는 상기 증폭기의 출력에 응답하여 스위칭되고, 상기 전압 발생부는 상기 디밍 신호에 기초하여 상기 직류 신호의 레벨을 조정할 수 있다.
상기 정전류 제어 신호는 아날로그 신호일 수 있다.
상기 디밍부는 펄스 폭 변조 신호를 평활하고, 평활한 결과에 따른 신호를 상기 정전류 제어 신호로 제공할 수 있다.
상기 제어부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 제1 기준 전압 이하가 되도록 상기 직류 신호의 레벨을 조정할 수 있다.
상기 스위치는 트랜지스터로 구현되며, 상기 제1 기준 전압은 상기 스위치의 드레인-소스 온 상태 전압일 수 있다.
상기 제어부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 상기 제1 기준 전압을 초과하고 제2 기준 전압 이하일 때, 상기 직류 신호의 레벨을 감소시킬 수 있다.
상기 제어부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 상기 제2 기준 전압을 초과할 때, 상기 정전류 제어 신호의 레벨을 제로(zero)로 변경할 수 있다.
상기 발광 소자 구동 장치는 교류 신호를 정류하고, 정류된 결과에 따른 정류 신호를 제공하는 정류기; 및 상기 정류 신호의 역률을 보정하고, 역률이 보정된 정류 신호를 상기 전압 발생부로 출력하는 역률 보정부를 더 포함할 수 있다.
상기 제어부는 상기 제2 센싱 전압에 기초하여 상기 센싱 저항에 흐르는 센싱 전류를 산출하고, 산출된 상기 센싱 전류에 기초하여 상기 역률 보정부를 턴 온 또는 턴 오프할 수 있다.
상기 제어부는 상기 센싱 전류가 기준 전류 값보다 작을 때, 상기 역률 보정부를 턴 오프시킬 수 있다.
다른 실시 예에 따른 발광 소자 구동 장치는 디밍 신호(dimming signal)에 기초하여 발광부를 구동하는 직류 신호를 제공하는 전압 발생부: 정전류 제어 신호가 입력되는 제1 입력 단자, 제2 입력 단자, 및 출력 단자를 포함하는 증폭기; 일단이 상기 증폭기의 상기 제2 입력 단자에 접속되는 센싱 저항; 상기 발광부와 상기 센싱 저항의 일단 사이에 연결되고, 상기 증폭기의 출력에 응답하여 스위칭하는 스위치; 상기 발광부와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압, 및 상기 스위치와 상기 센싱 저항의 일단이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압을 출력하는 전압 센싱부; 및 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이에 기초하여 상기 직류 신호의 레벨을 조정하는 상기 디밍 신호를 상기 전압 발생부로 제공하는 제어부를 포함한다.
상기 발광 소자 구동 장치는 펄스 폭 변조 신호를 평활하고, 평활한 결과에 따른 신호를 상기 정전류 제어 신호로 제공하는 평활 회로를 더 포함할 수 있다.
상기 제어부는 상기 펄스 폭 변조 신호를 제공할 수 있다.
상기 발광 소자 구동 장치는 교류 신호를 정류하고, 정류된 결과에 따른 정류 신호를 제공하는 정류기; 및 상기 정류 신호의 역률을 보정하고, 역률이 보정된 정류 신호를 상기 전압 발생부로 출력하는 역률 보정부를 더 포함할 수 있다.
상기 전압 발생부는 상기 디밍 신호에 기초하여 상기 역률이 보정된 정류 신호의 레벨을 변환하고, 레벨 변환된 결과에 따른 상기 직류 신호를 생성할 수 있다.
상기 제어부는 상기 제2 센싱 전압에 기초하여 상기 센싱 저항에 흐르는 센싱 전류를 산출하고, 산출된 상기 센싱 전류에 기초하여 상기 역률 보정부를 턴 온 또는 턴 오프하는 제어 신호를 출력할 수 있다.
실시 예에 따른 발광 소자 구동 장치는 복수의 발광부들을 구동하는 직류 신호를 제공하는 전압 발생부: 복수의 센싱 저항들; 상기 복수의 발광부들에 흐르는 전류를 제어하는 복수의 디밍부들; 및 상기 복수의 디밍부들 각각에 정전류 제어 신호를 제공하고, 상기 직류 신호의 레벨의 조정하는 제어부를 포함하며, 상기 복수의 디밍부들 각각은 상기 정전류 제어 신호가 입력되는 제1 입력 단자, 상기 복수의 센싱 저항들 중 대응하는 어느 하나에 접속되는 제2 입력 단자, 및 출력 단자를 포함하는 증폭기; 상기 복수의 발광부들 중 대응하는 어느 하나와 상기 복수의 센싱 저항들 중 대응하는 어느 하나의 일단 사이에 연결되고, 상기 증폭기의 출력에 응답하여 스위칭하는 스위치; 상기 복수의 발광부들 중 대응하는 어느 하나와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압들, 및 상기 스위치와 상기 복수의 센싱 저항들 중 대응하는 어느 하나의 일단이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압들을 출력하는 전압 센싱부를 포함하며, 상기 제어부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이들에 기초하여 상기 직류 신호의 레벨을 조정한다.
실시 예는 전력 효율을 향상시킬 수 있고, 깜빡임을 방지할 수 있다.
도 1은 실시 예에 따른 조명 장치의 구성도를 나타낸다.
도 2a는 도 1에 도시된 제1 센싱부의 일 실시 예를 나타낸다.
도 2b는 도 1에 도시된 제1 센싱부의 다른 실시 예를 나타낸다.
도 3은 다른 실시 예에 따른 조명 장치의 구성도를 나타낸다.
도 4는 다른 실시 예에 따른 조명 장치의 구성도를 나타낸다.
도 5는 도 1 및 도 3에 도시된 전압 발생부로부터 발광부에 제공되는 직류 전압의 레벨을 제어하는 제어부의 동작을 나타내는 플로차트이다.
도 6은 도 4의 역률 보정부를 제어하기 위한 제어부의 동작을 나타내는 플로차트이다.
도 7a는 PWM 신호의 듀티비에 의한 정전류 제어시의 발광부의 발광을 나타낸다.
도 7b는 실시 예에 따른 발광부의 발광을 나타낸다.
도 8은 또 다른 실시 예에 따른 조명 장치의 구성도를 나타낸다.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 또한 동일한 참조번호는 도면의 설명을 통하여 동일한 요소를 나타낸다.
도 1은 실시 예에 따른 조명 장치(100)의 구성도를 나타낸다.
도 1을 참조하면, 조명 장치(100)는 발광부(101), 및 발광부(101)를 구동하는 발광 소자 구동 장치(102)를 포함한다.
발광부(101)는 직렬 연결된 복수의 발광 소자 어레이들(D1 내지 Dn, n>1인 자연수)을 포함한다.
복수의 발광 소자 어레이들(D1 내지 Dn, n>1인 자연수) 각각은 1개 이상의 발광 소자, 예컨대, 발광 다이오드(light emitting diode)를 포함할 수 있다.
발광 소자 어레이에 포함되는 발광 소자의 수가 복수 개일 경우, 복수의 발광 다이오드들은 서로 직렬 연결되거나, 병렬 연결되거나, 또는 직렬 및 병렬 연결될 수 있다.
발광 소자 구동 장치(102)는 교류 전원부(110), EMI 필터(115), 정류기(120), 역률 개선부(125), 전압 발생부(130), 디밍부(dimming unit, 140), 및 센싱 저항(Rsen)을 포함한다.
교류 전원부(110)는 교류 신호(AC)를 제공한다.
예컨대, 교류 신호(AC)는 교류 전압, 또는/및 교류 전류일 수 있다.
EMI(ElectroMagnetic Interference) 필터(115)는 외부의 전자기 잡음을 차단하기 위한 것으로, 교류 전원부(110)로부터 제공되는 교류 신호(AC)에 포함되는 잡음, 예컨대, 전도성 노이즈를 제거한다. EMI 필터(115)는 커패시터, 트랜스포머, 및 인덕터 중에서 적어도 하나를 포함하도록 구현될 수 있다.
정류기(120)는 EMI 필터(115)에 의하여 전자기 잡음이 제거된 교류 신호(AC)를 정류하고, 정류된 결과에 따른 정류 신호(ripple current, VR)를 제공한다.
예컨대, 정류기(120)는 교류 신호(AC)를 전파 정류하고, 전파 정류된 결과에 따른 정류 신호(VR)를 출력할 수 있다. 즉 정류 신호(VR)는 교류 신호(AC)가 전파 정류된 신호일 수 있다.
정류기(120)는 브릿지 연결되는 4개의 다이오드들을 포함하는 전파 다이오드 브릿지 회로로 구현될 수 있으나, 이에 한정되는 것은 아니다.
역률 보정부(power factor correction unit, 125)는 정류 신호(VR)의 전압 및 전류의 위상 차이를 조정하여 정류 신호(VR)의 역률을 보정하고, 역률이 보정된 정류 신호(VR1)를 출력한다.
전압 발생부(130)는 디밍부(140)로부터 제공되는 디밍 신호(dimming signal, DS)에 기초하여, 역률 개선부(125)에 의하여 역률이 보정된 정류 신호(VR1)의 레벨을 변환하고, 레벨 변환된 직류 신호(VR2)를 출력한다. 예컨대, 직류 신호(VR2)는 직류 전압일 수 있다.
이때 전압 발생부(130)로부터 출력되는 직류 신호(VR2)의 레벨은 디밍부(140)로부터 제공되는 디밍 신호(DS)에 기초하여 설정되거나 또는 변환될 수 있다.
전압 발생부(130)로부터 출력되는 직류 신호(VR2)는 발광부(101)에 제공된다. 예컨대, 전압 발생부(130)로부터 출력되는 직류 신호(VR2)는 발광부(101)의 입력단(105)에 제공될 수 있다. 여기서 발광부(101)의 입력단(105)은 직렬 연결되는 발광 소자 어레이들(D1 내지 Dn) 중 제1번째 발광 소자 어레이(D1)의 양극 단자일 수 있다.
전압 발생부(130)는 정류 신호(VR1)의 DC 레벨을 변환할 수 있는 컨버터로 구현될 수 있다. 예컨대, 전압 발생부(130)는 DC-DC 컨버터, 공진형 LLC 하프 브리지 컨버터(Half Bridge Converter), 플라이백 컨버터(Fly back Converter), 또는 벅 컨버터(Buck converter) 중 적어도 하나를 포함하도록 구현될 수 있다.
디밍부(140)는 발광부(101)와 센싱 저항(Rsen) 사이를 연결하고, 발광부(101)에 흐르는 전류를 제어하여 발광부(101)의 밝기를 조절한다.
또한 디밍부(140)는 발광부(101)의 출력단(106)과 센싱 저항(Rsen)의 일단(107) 사이의 전압(VN)이 기설정된 기준 전압으로 유지되도록 전압 발생부(130)로부터 제공되는 직류 신호(VR2)의 레벨을 변환시킨다.
여기서 발광부(101)의 출력단(106)은 직렬 연결되는 발광 소자 어레이들(D1 내지 Dn) 중 마지막 번째 발광 소자 어레이(Dn)의 음극 단자일 수 있다. 여기서 기설정된 기준 전압은 도 5에서 설명한다.
디밍부(140)는 발광부(101)와 스위치(142)가 접속하는 제1 노드(N1)의 전압을 감지한 결과에 따른 제1 센싱 전압(Vsen1), 및 스위치(142)와 센싱 저항(Rsen)이 접속하는 제2 노드(N2)의 전압을 감지한 결과에 따른 제2 센싱 전압(Vsen2)에 기초하여, 직류 신호(VR2)의 레벨을 조정할 수 있다.
예컨대, 디밍부(140)는 발광부(101)와 스위치(142)가 접속하는 제1 노드(N1)의 전압을 감지한 결과에 따른 제1 센싱 전압(Vsen1), 및 스위치(142)와 센싱 저항(Rsen)이 접속하는 제2 노드(N2)의 전압을 감지한 결과에 따른 제2 센싱 전압(Vsen2)에 기초하여 디밍 신호(DS)를 발생할 수 있다.
디밍부(140)는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제1 기준 전압 이하가 되도록 직류 신호(VR2)의 레벨을 조정할 수 있다.
또한 디밍부(140)는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압을 초과하면, 발광부(101)와 센싱 저항(Rsen) 사이의 전류 흐름을 차단할 수 있다. 예컨대, 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압을 초과하면, 디밍부(140)는 발광부(101)를 턴 온시키기에 부족할 정도로 직류 신호(VR2)의 레벨을 줄이거나, 직류 신호(VR2)의 레벨이 0이 되도록 전압 발생부(130)를 제어할 수 있다.
디밍부(140)는 스위치(142), 전압 센싱부(144), 증폭기(146), 및 제어부(148)를 포함할 수 있다.
스위치(142)는 발광부(101)의 출력단(106)과 센싱 저항(Rsen)의 일단(107) 사이에 연결되고, 제어부(148)로부터 제공되는 정전류 제어 신호(Vset)에 기초하여 스위칭된다.
예컨대, 스위치(142)는 트랜지스터, 예컨대, FET 트랜지스터 또는 BJT 트랜지스터로 구현될 수 있다.
예컨대, 스위치(142)는 발광부(101)의 출력단(106)에 접속되는 드레인(drain), 센싱 저항(Rsen)의 일단(107)에 접속되는 소스(source), 및 증폭기(146)의 출력이 입력되는 게이트(gate)를 포함하는 NMOS 트랜지스터로 구현될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 PMOS 트랜지스터로도 구현될 수 있다.
스위치(142)는 증폭기(146)의 출력(CS)에 응답하여 발광부(101)의 출력단(106)과 센싱 저항(Rsen)의 일단(107)을 전기적으로 연결하는 다양한 형태로 구현될 수 있다.
상술한 발광부(101)의 출력단(106)과 센싱 저항(Rsen)의 일단(107) 사이의 전압(VN)은 트랜지스터로 구현되는 스위치(142)의 소스와 드레인 간의 전압일 수 있다.
전압 센싱부(144)는 발광부(101)의 출력단(106)과 스위치(142)가 접속하는 제1 노드(N1)의 전압, 및 센싱 저항(Rsen)의 일단(107)과 스위치(142)가 접속하는 제2 노드(N2)의 전압을 센싱할 수 있다.
예컨대, 전압 센싱부(144)는 제1 노드(N1)의 전압을 감지하고, 감지된 따른 제1 센싱 전압(Vsen1)을 제어부(148)에 제공할 수 있다.
또한 전압 센싱부(144)는 제2 노드(N2)의 전압을 감지하고, 감지된 결과에 따른 제2 센싱 전압(Vsen2)을 제어부(148)에 제공할 수 있다.
전압 센싱부(144)는 제1 노드(N1)의 전압을 감지하고, 제1 센싱 전압(Vsen1)을 제공하는 제1 센싱부(144-1), 및 제2 노드(N2)의 전압을 감지하고, 제2 센싱 전압(Vsen2)을 제공하는 제2 센싱부(144-2)를 포함할 수 있다.
도 2a는 도 1에 도시된 제1 센싱부(144-1)의 일 실시 예(144a)를 나타낸다.
도 2a를 참조하면, 제1 센싱부(144a)는 제1 노드(N1)와 그라운드 전원(GND) 사이에 직렬 연결되는 복수의 저항들(예컨대, R1, R2)을 포함할 수 있으며, 복수의 저항들(예컨대, R1,R2) 중 적어도 하나(예컨대, R2)에 걸리는 전압을 제1 센싱 전압(Vsen1)으로 제어부(148)에 제공할 수 있다.
도 2b는 도 1에 도시된 제1 센싱부(144-1)의 다른 실시 예(144b)를 나타낸다.
도 2b를 참조하면, 제1 센싱부(144b)는 제1 노드(N1)와 그라운드 전원(GND) 사이에 직렬 연결되는 복수의 저항들(예컨대, R1, R2), 및 복수의 저항들(예컨대, R1,R2) 중 적어도 하나(예컨대, R2)와 병렬 연결되는 제너 다이오드(201)를 포함할 수 있으며, 제너 다이오드(201) 양단에 걸리는 전압을 제1 센싱 전압(Vsen1)으로 제어부(148)에 제공할 수 있다.
예컨대, 제1 센싱부(144b)는 제1 노드(N1)와 그라운드 전원(GND) 사이에 직렬 연결되는 제1 및 제2 저항들(R1, R2), 및 제1 및 제2 저항들(R1,R2)의 접속 노드와 그라운드 전원(GND) 사이에 연결되는 제너 다이오드(201)를 포함할 수 있으며, 제너 다이오드(201) 양단에 걸리는 전압을 제1 센싱 전압(Vsen1)으로 제어부(148)에 제공할 수 있다.
제2 센싱부(144-2)는 제2 노드(N2)에 걸리는 전압을 제2 센싱 전압(Vsen2)으로 제어부(148)에 제공할 수 있다.
예컨대, 제2 센싱부(144-2)는 센싱 저항(Rsen)에 걸리는 전압을 센싱할 수 있으며, 센싱 저항(Rsen)에 걸리는 전압을 제어부(148)에 제공할 수 있다.
다른 실시 예에서는 도 2a 및 도 2b에 도시된 실시 예들이 제2 센싱부(144-2)에 적용될 수도 있다. 다만 제2 센싱부(144-2)에 포함되는 저항들의 값은 제1 센싱부(144-1)와 다를 수 있다.
증폭기(146)는 제어부(148)로부터 제공되는 정전류 제어 신호(Vset)와 제2 노드(N2)의 전압을 증폭하고, 증폭한 결과에 따른 증폭 신호(CS)를 출력한다. 예컨대, 도 1의 제어부(148)로부터 제공되는 정전류 제어 신호(Vset)는 PWM 신호와 같은 펄스 신호가 아닌 직류 전압과 같은 아날로그 신호일 수 있다.
증폭기(146)는 정전류 제어 신호(Vset)가 입력되는 제1 입력 단자(146a), 제2 노드(N2)와 연결되는 제2 입력 단자(146b), 및 증폭 신호(CS)를 출력하는 출력 단자(146c)를 포함할 수 있다. 증폭기(146)는 연산 증폭기(Operational Amplifier)또는 차동 증폭기로 구현될 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 제1 입력 단자(146a)는 연산 증폭기의 양극 입력 단자(+)일 수 있고, 제2 입력 단자(146b)는 연산 증폭기의 음극 입력 단자(-)일 수 있다.
제어부(148)에 의하여 제공되는 정전류 제어 신호(Vset)에 의하여 센싱 저항(Rsen)을 흐르는 전류가 결정될 수 있고, 이로 인하여 실시 예는 발광부(101)에 흐르는 전류를 제어할 수 있다. 연산 증폭기의 특성에 따르면, 제2 노드(N2)의 전압은 제1 입력 단자(146a)로 입력되는 정전류 제어 신호(Vset)가 되기 때문에, 센싱 저항(Rsen)에 흐르는 센싱 전류(Isen)는 정전류 제어 신호(Vset)를 센싱 저항(Rsen)으로 나눈 값이 될 수 있다.
정전류 제어 신호(Vset)는 펄스 신호가 아닌 아날로그 신호이기 때문에 발광부(101)에서 정전류 제어 신호(Vset)의 레벨 값을 변경하지 않는 이상 발광부(101)에 흐르는 전류는 선형적일 수 있고, 이로 인하여 발광부(101)에서는 깜빡임(flicker)이 감소 또는 제거될 수 있다.
제어부(148)는 전압 센싱부(144)로부터 제공되는 제1 센싱 전압(Vsen1) 및 제2 센싱 전압(Vsen2)에 기초하여, 전압 발생부(130)로부터 출력되는 직류 신호(VR2)의 레벨이 변환되도록 전압 발생부(130)를 제어할 수 있다.
예컨대, 제어부(148)는 제1 센싱 전압(Vsen1) 및 제2 센싱 전압(Vsen2)에 기초하여 전압 발생부(130)를 제어하는 디밍 신호(DS)를 생성할 수 있고, 전압 발생부(130)는 디밍 신호(DS)에 기초하여 정류 신호(VR1)의 레벨을 변환하고, 레벨이 변환된 직류 신호(VR2)를 출력할 수 있다. 즉 디밍 신호(DS)에 기초하여 전압 발생부(130)로부터 발광부(101)로 제공되는 직류 신호(VR2)의 레벨이 결정될 수 있다.
제어부(148)는 제1 센싱 전압(Vsen1) 및 제2 센싱 전압(Vsen2)의 차이(Vsen1 - Vsen2)가 기설정된 기준 전압 이하가 되도록 전압 발생부(130)의 직류 신호(VR2)의 레벨을 조정할 수 있다.
예컨대, 제어부(148)는 제1 센싱 전압(Vsen1) 및 제2 센싱 전압(Vsen2)의 차이(Vsen1 - Vsen2)가 기설정된 제1 기준 전압과 동일하게 되도록 전압 발생부(130)의 직류 신호(VR2)의 레벨을 조정할 수 있다.
예컨대, 기설정된 제1 기준 전압은 트랜지스터로 구현되는 스위치(142)의 드레인-소스 온 상태 전압일 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 기설정된 기준 전압은 0.4[V]일 수 있으나, 이에 한정되는 것은 아니다.
직렬 연결되는 발광 소자 어레이들을 구동하기 위하여 발광 소자 어레이들 각각의 정격 동작 전압들을 모두 합한 제1 전압이 발광 소자 어레이들의 양단에 제공될 수 있다.
발광 소자 어레이들의 졍션 온도(junction temperature)가 올라가면, 발광 소자 어레이들의 동작 전압이 감소할 수 있다. 이러한 발광 소자 어레이들의 동작 전압의 감소에 의하여 제1 전압과 실제로 발광 소자 어레이들 양단에 걸리는 동작 전압 간에는 전압 차이가 발생하게 되고, 이러한 전압 차이는 발광 구동 장치의 다른 소자에서 열로 소비될 수 있고, 이로 인하여 조명 장치의 전력 효율이 감소할 수 있다.
스위치(142) 양단의 전압을 감지한 결과에 기초하여, 발광부(101)에 제공되는 직류 신호(VR2)의 레벨을 줄임으로써, 실시 예는 스위치(142)에서 열로서 낭비되는 전력 소모를 방지할 수 있다.
디밍부(140)가 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이를 센싱하고, 센싱한 결과에 따라 제1 및 제2 센싱 전압들 간의 차이(Vsen1-Vsen2)가 기설정된 전압이 되도록 유지되도록 발광부(101)에 제공되는 직류 신호(VR2)의 레벨을 조정하기 때문에, 발광부(101)의 동작 전압이 변동되더라도 스위치(142)에 의하여 소모되는 전력은 일정하게 유지될 수 있고, 조명 장치(100)의 전력 효율이 저하되는 것을 방지할 수 있다.
만약 상술한 바와 같은 디밍부(140)의 제어가 없다면, 발광부(101)의 동작 전압 감소로 인하여 전압 발생부(130)로부터 제공되는 전압과 실제로 발광부(101)에 걸리는 전압 간의 차이는 스위치(142)에서 열로 소비될 수 있고, 조명 장치(100)의 전력 효율은 저하될 수 있다.
제어부(148)는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압을 초과할 때, 전압 발생부(130)가 발광부(105)로 직류 신호(VR2)의 제공하지 않도록 하여, 발광부(105)를 턴 오프시킬 수 있다.
또는 제어부(148)는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압을 초과할 때, 정전류 제어 신호(Vset)의 레벨을 제로(zero)로 설정 또는 변경할 수 있다.
제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압을 초과하면, 발광부(101)에 단락(short)가 발생한 것으로 판단하여, 발광부(101)를 보호하기 위하여 발광부(101)에 전류가 흐르지 않도록 해야 한다. 이를 위하여 제어부(148)는 직류 신호(VR2)의 제공을 차단하거나 또는 정전류 제어 신호(Vset)의 레벨을 0으로 변경할 수 있다.
도 3은 다른 실시 예에 따른 조명 장치(100)의 구성도를 나타낸다. 도 1과 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명을 간략하게 하거나 생략한다.
도 3을 참조하면, 조명 장치(200)는 발광부(101), 및 발광부(101)를 구동하는 발광 소자 구동 장치(102a)를 포함한다.
발광 소자 구동 장치(102a)는 교류 전원부(110), EMI 필터(115), 정류기(120), 역률 개선부(125), 전압 발생부(130), 디밍부(140a), 및 센싱 저항(Rsen)을 포함한다.
디밍부(140a)는 스위치(142), 전압 센싱부(144), 증폭기(146), 및 평활 회로(310), 및 제어부(148)를 포함할 수 있다.
도 3에 도시된 디밍부(140a)는 도 1에 도시된 디밍부(140)에 평활 회로(310)를 더 구비할 수 있다.
평활 회로(310)는 제어부(148)로부터 제공되는 신호(Pw)를 평활하고, 평활된 결과에 따른 정전류 제어 신호(Vset1)를 출력한다.
제어부(148)로부터 제공되는 신호(Pw)는 펄스 폭 변조(Pulse Width Modulation, PWM) 신호일 수 있는데, 이러한 PWM 신호의 듀티비(duty ratio)에 기초하여 발광부(101)에 대한 정전류 제어를 할 경우 발광부(101)에 흐르는 전류에 리플(ripple) 성분이 있게 되고 이로 인하여 발광부(101)에 깜빡임(flicker)이 생길 수 있다.
평활 회로(310)는 이러한 깜빡임을 제거하기 위하여 제어부(148)로부터 제공되는 PWM 신호를 평활하고, 평활된 결과에 따라 맥류 성분이 제거된 직류 신호 형태의 아날로그 신호인 정전류 제어 신호(Vset1)를 생성한다.
평활 회로(310)에 의하여 생성된 정전류 제어 신호(Vset1)에 의하여 발광부(101)에 흐르는 전류는 리플 성분이 감소할 수 있다. 실시 예는 PWM 신호의 듀티비가 아닌 아날로그 신호인 정전류 제어 신호(Vset1)의 레벨 값에 의하여 발광부(101)에 대한 정전류 제어를 할 수 있으며, 이로 인하여 발광부(101)의 깜빡임 발생을 감소 또는 제거할 수 있다.
예컨대, 평활 회로(310)는 제어부(148)와 증폭기(146)의 제1 입력 단자(146a) 사이에 연결되는 저항(R3), 및 증폭기(146)의 제1 입력 단자(146a)와 그라운드 전원(GND) 사이에 연결되는 커패시터(C1)를 포함하는 RC 평활 회로로 구현될 수 있으나, 이에 한정되는 것은 아니며, 저항, 커패시터, 또는 인덕터를 포함하여 다양한 형태로 구현될 수 있다.
도 7a는 PWM 신호의 듀티비에 의한 디밍 제어시의 발광부의 발광을 나타내고, 도 7b는 실시 예에 따른 발광부(101)의 발광을 나타낸다.
도 7a에 도시된 발광부의 발광에는 명암의 차이에 따른 깜빡임이 발생하는 것을 알 수 있다. 반면에 도 7b에 도시된 발광부의 발광에는 명암의 차이가 거의 없으며, 깜빡임이 거의 존재하지 않는 것을 알 수 있다.
실시 예는 저조도일 때도 깜빡임이 없기 때문에 발광부(101)에 흐를 수 있는 최대 전류 값의 1%까지 디밍 레인지(range)를 조절할 수 있으며, 이로 인하여 에너지 절감 효과를 얻을 수 있다.
정전류 제어 신호(Vset1)의 직류 레벨을 조절하여 발광부(101)에 흐르는 전류 또는 발광부(101)의 밝기를 제어하기 때문에, 실시 예는 정확한 전류 제어가 가능할 수 있다.
도 5는 도 3에 도시된 전압 발생부(130)로부터 발광부(101)에 제공되는 직류 전압(VR2)의 레벨을 제어하는 제어부(148)의 동작을 나타내는 플로차트(flow chart)이다.
도 5를 참조하면, 제어부(148)는 통신 인터페이스(Communication Interface)를 통하여 외부로부터 수신되는 신호(S1, 도 3 참조)에 의하여 증폭기(146)의 제1 입력 단자(146a)로 공급되는 정전류 제어 신호(Vset1)를 설정한다(S510). 예컨대, 도 1의 Vset에 대해서는 아날로그 신호의 레벨 값이 설정 대상일 수 있고, 도 3의 Vset1에 대해서는 PWM 신호의 듀티비가 설정 대상일 수 있다. 외부 사용자의 선택에 의하여 발광부(101)의 밝기를 결정하는 정전류 제어 신호(Vset, 또는 Vset1)를 설정할 수 있다. 예컨대, S510에서 디밍 정도가 결정될 수 있다.
예컨대, 도 3을 참조하면, 제어부(148)는 외부로부터 수신되는 신호(S1)에 대응하는 펄스폭 변조 신호(Pw)를 출력할 수 있으며, 제어부(148)로부터 제공되는 신호(Pw)는 평활 회로(310)에 의하여 아날로그 신호인 정전류 제어 신호(Vset1)로 변환될 수 있다. 정전류 제어 신호(Vset1)의 레벨 값은 제어부(148)로부터 제공되는 신호(Pw)의 듀티비에 의하여 결정될 수 있다. 예컨대, 정전류 제어 신호(Vset1)의 레벨 값은 제어부(148)로부터 제공되는 신호(Pw)의 듀티비에 비례할 수 있다.
다음으로 제어부(148)는 전압 센싱부(144)로부터 제공되는 제1 및 제2 센싱 전압들(Vsen1,Vsen2)을 수신한다(S520).
다음으로 제어부(148)는 설정된 정전류 제어 신호(Vset 또는 Vset1)와 수신되는 제2 센싱 전압(Vsen2)을 비교한다(S530). 이는 전압 발생부(130)로부터 제공되는 직류 신호(VR2)에 의하여 발광부(101)에 흐르는 전류에 의하여 실제로 센싱 저항(Rsen)에 걸리는 전압(Vsen2)이 상기 설정된 정전류 제어 신호(Vset, 또는 Vset1)와 동일한지를 판단하기 위함이다.
다음으로 제2 센싱 전압(Vsen2)이 설정된 정전류 제어 신호(Vset 또는 Vset1)와 동일하지 않을 때, 제어부(148)는 전압 발생부(130)로부터 발광부(101)에 제공되는 직류 신호(VR2)의 레벨을 변경한다(S540). 제2 센싱 전압(Vsen2)이 설정된 정전류 제어 신호(Vset 또는 Vset1)와 동일할 때까지 제어부(148)는 S520 단계 내지 S540 단계를 반복 수행할 수 있다.
예컨대, 제2 센싱 전압(Vsen2)이 설정된 정전류 제어 신호(Vset 또는 Vset1)보다 작을 수 있는데, 제어부(148)는 설정된 정전류 제어 신호(Vset 또는 Vset1)와 제2 센싱 전압(Vsen2)이 동일할 때까지 직류 신호(VR2)의 레벨을 변경할 수 있다.
반면에 제2 센싱 전압(Vsen2)이 설정된 정전류 제어 신호(Vset 또는 Vset1)와 동일할 때, 제어부(148)는 수신되는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 기설정된 제1 기준 전압(Vref1) 이하인지를 판단한다(S550).
예컨대, 기설정된 제1 기준 전압(Vref1)은 트랜지스터로 구현되는 스위치(142)의 드레인-소스 온 상태 전압일 수 있다. 예컨대, 기설정된 제1 기준 전압(Vref1)은 0.4[V]일 수 있으나, 이에 한정되는 것은 아니다.
수신되는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 기설정된 제1 기준 전압(Vref1) 이하일 때는 직류 신호(VR2)의 레벨을 변경하지 않으며, 설정된 정전류 제어 신호(Vset 또는 Vset1)를 유지한다(S560).
수신되는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 기설정된 제1 기준 전압(Vref1) 이하일 때는 스위치(142)에서 열로서 낭비되는 전력 소모가 없거나 또는 적다는 것을 의미하므로, 직류 신호(VR2)의 레벨을 변경하지 않는다. 그 반대의 경우에는 스위치(142)에서 열로서 낭비되는 전력 소모가 많다는 것을 의미하므로, 직류 신호(VR2)의 레벨을 감소시킨다.
다음으로 수신되는 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 기설정된 제1 기준 전압(Vref1)을 초과할 때, 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압(Vref2)을 초과하는지 판단한다(S570). 제2 기준 전압(Vref2)은 제1 기준 전압(Vref1)보다 크다(Vref2>Vref1).
제2 기준 전압(Vref2)은 발광부(101)가 단락된 것으로 판단할 수 있도록 설정된 전압일 수 있다. 예컨대, 제2 기준 전압(Vref2)은 3.5[V]일 수 있으나, 이에 한정되는 것은 아니다.
제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제1 기준 전압(Vref1)을 초과하고, 제2 기준 전압(Vref2) 이하일 때(Vref1<Vsen1-Vsen2≤Vref2), 제어부(148)는 전압 발생부(130)로부터 발광부(101)로 제공되는 직류 신호(VR2)의 레벨을 변경한다(S550->S570->S540).
다음으로 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제1 기준 전압(Vref1) 이하가 될 때까지 S520,S530,S550,S570,및 S540 단계들을 반복 수행한다. 예컨대, 제어부(148)는 전압 발생부(130)로부터 발광부(101)로 제공되는 직류 신호(VR2)의 레벨을 감소시킴으로써, 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제1 기준 전압(Vref1) 이하가 되도록 할 수 있다.
예컨대, 발광부(101)의 정션 온도(junction temperature)가 상승하여 발광부(101)의 구동 전압이 감소하면, 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 증가한다. 제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 증가하여 제1 기준 전압(Verf1)을 초과하고 제2 기준 전압(Vref2) 이하일 때, 제어부(148)는 직류 신호(VR2)의 레벨을 감소시켜 전력 효율을 향상시킬 수 있다.
제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압(Vref2)을 초과할 때(Vsen1-Vsen2>Vref2), 제어부(148)는 설정된 정전류 제어 신호(Vset 또는 Vset1)의 레벨을 제로(zero)로 변경할 수 있다.
제1 센싱 전압(Vsen1)과 제2 센싱 전압(Vsen2)의 차이(Vsen1-Vsen2)가 제2 기준 전압(Vref2)을 초과하면, 발광부(101)에 단락(short)가 발생한 것으로 판단하고, 발광부(101) 및 발광 소자 구동 장치(102)를 보호하기 위하여 발광부(101)에 전류가 흐르지 않도록 제어부(148)는 정전류 제어 신호(Vset 또는 Vset1)의 레벨을 0으로 변경할 수 있다.
도 4는 다른 실시 예에 따른 조명 장치(300)의 구성도를 나타낸다. 도 1과 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명을 간략하게 하거나 생략한다.
도 4를 참조하면, 조명 장치(300)는 발광부(101), 및 발광부(101)를 구동하는 발광 소자 구동 장치(102b)를 포함한다.
발광 소자 구동 장치(102b)는 교류 전원부(110), EMI 필터(115), 정류기(120), 역률 개선부(125), 전압 발생부(130), 디밍부(140b), 및 센싱 저항(Rsen)을 포함한다.
디밍부(140b)는 스위치(142), 전압 센싱부(144), 증폭기(146), 및 평활 회로(310), 및 제어부(148-1)를 포함할 수 있다.
제어부(148-1)는 전압 발생부(130)를 제어하기 위한 디밍 신호(DS), 및 역률 보정부(125)를 제어하는 PFC 제어 신호(TS)를 출력한다.
디밍 신호(DS)에 관한 설명은 도 1에서 설명한 바와 동일하므로, 중복을 피하기 위하여 설명을 생략한다.
제어부(148-1)는 제2 센싱부(144-2)로부터 제공되는 제2 센싱 전압(Vsen2)에 기초하여 센싱 저항(Rsen)에 흐르는 센싱 전류(Isen)를 산출하고, 산출된 센싱 전류(Isen)에 기초하여 역률 보정부(125)를 턴 온 또는 턴 오프시킨다.
도 6은 도 4의 역률 보정부(125)를 제어하기 위한 제어부(148-1)의 동작을 나타내는 플로차트이다.
도 6을 참조하면, 제어부(148-1)는 제2 센싱부(144-2)로부터 제공되는 제2 센싱 전압(Vsen2)에 기초하여 센싱 저항(Rsen)에 흐르는 센싱 전류(Isen)를 검출한다(S610).
제어부(148-1)는 센싱 저항(Rsen)의 저항값을 저장할 수 있고, 제2 센싱부(144-2)로부터 수신되는 제2 센싱 전압(Vsen2)을 저장된 센싱 저항(Rsen)으로 나눈 결과에 따른 센싱 전류(Isen)를 산출할 수 있다.
다음으로 제어부(148-1)는 검출된 센싱 전류(Isen)의 전류 값이 기설정된 기준 전류 값(Iref)보다 크거나 동일한지를 판단한다(S620). 예컨대, 제어부(148)로부터 제공되는 정전류 제어 신호(Vset 또는 Vset1)에 의하여 발광부(101)에 흐르는 전류가 제어될 수 있는데, 기설정된 기준 전류 값(Iref)은 정전류 제어 신호(Vset 또는 Vset1)에 응답하여 발광부(101)에 흐를 수 있는 최대 전류 값의 20% ~ 50%일 수 있다.
예컨대, 기설정된 기준 전류 값(Iref)은 최대 정전류 제어 신호(Vset 또는 Vset1)에 응답하여 발광부(101)에 흐를 수 있는 최대 전류 값의 20%일 수 있다.
다음으로 제어부(148-1)는 검출된 센싱 전류(Isen)의 전류 값이 기설정된 기준 전류 값(Iref)보다 작을 때에는 역률 보정부(125)가 동작을 수행하지 않도록 역률 보정부(125)를 턴 오프시킨다. 즉 검출된 센싱 전류(Isen)의 전류 값이 기설정된 기준 전류 값(Iref)보다 작을 때에는 역률 보정부(125)를 턴 오프시킴으로써 역률 보정부(125)에 의하여 전력 소모가 없도록 한다.
반면에 제어부(148-1)는 검출된 센싱 전류(Isen)의 전류 값이 기설정된 기준 전류 값(Iref)보다 크거나 같을 때에는 역률 보정부(125)가 동작을 수행하도록 역률 보정부(125)를 턴 온시킨다. 예컨대, PFC 제어 신호(TS)에 의하여 역률 보정부(125)에 제공되는 전원을 차단 또는 공급함으로써 역률 보정부(125)를 턴 오프 또는 턴 온시킬 수 있으나, 이에 한정되는 것은 아니다.
발광부(101)에 흐르는 전류의 크기가 기준 전류 값(Iref) 미만인 구간에서는 역률 보상을 하더라도 역률 개선 효과가 미흡하기 때문에, 발광부(101)에 흐르는 전류의 크기가 기준 전류 값(Iref) 미만인 구간에서 역률 보정부(125)를 턴 오프시킴으로써, 실시 예는 역률 보정부(125)의 전력 소모를 차단하고, 전력 효율을 향상시킬 수 있다.
또한 EMI(ElectroMagnetic Interference)를 줄이기 위하여 역률 보정이 필요없는 구간에서 역률 보정부(125)의 동작을 중단시킴으로써, 실시 예는 EMI 마진을 확보할 수 있다.
도 8은 또 다른 실시 예에 따른 조명 장치(400)의 구성도를 나타낸다. 도 1 및 도 3과 과 동일한 도면 부호는 동일한 구성을 나타내며, 동일한 구성에 대해서는 설명을 간략하게 하거나 생략한다.
도 8을 참조하면, 조명 장치(400)는 복수의 발광부들(101-1 내지 101-n, n>1 자연수), 및 복수의 발광부들(101-1 내지 101-n, n>1인 자연수)을 구동하는 발광 소자 구동 장치(102c)를 포함한다.
복수의 발광부들(101-1 내지 101-n, n>1인 자연수) 각각은 도 1에서 설명한 발광부(101)와 동일하게 구현될 수 있으며, 중복을 피하기 위하여 설명을 생략한다.
발광 소자 구동 장치(102c)는 교류 전원부(110), EMI 필터(115), 정류기(120), 역률 개선부(125), 전압 발생부(130), 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수), 및 복수의 센싱 저항들(Rsen_1 내지 Rsen_n, n>1인 자연수), 및 제어부(148a)를 포함한다.
발광 소자 구동 장치(102c)의 교류 전원부(110), EMI 필터(115), 정류기(120), 역률 개선부(125), 전압 발생부(130)는 도 1 및 도 3에서 설명한 바와 동일할 수 있다. 전압 발생부(130)로부터 출력되는 직류 신호(VR2)는 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수)에 동시에 제공된다.
복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각은 정전류 제어 신호들(Vset_1 내지 Vset_n,n>1인 자연수) 중 대응하는 어느 하나가 입력되는 제1 입력 단자, 복수의 센싱 저항들(Rsen_1 내지 Rsen_n,n>1인 자연수) 중 대응하는 어느 하나에 접속되는 제2 입력 단자, 및 출력 단자를 포함하는 증폭기(146), 복수의 발광부들(101-1 내지 101-n,n>1인 자연수) 중 대응하는 어느 하나와 복수의 센싱 저항들(Rsen_1 내지 Rsen_n,n>1인 자연수) 중 대응하는 어느 하나의 일단 사이에 연결되고, 증폭기(146)의 출력에 응답하여 스위칭하는 스위치(142), 복수의 발광부들(101-1 내지 101-n,n>1인 자연수) 중 대응하는 어느 하나와 스위치(142)가 접속하는 제1 노드(N1)의 전압을 감지한 결과에 따른 제1 센싱 전압들(Vsen1_1 내지 Vsen1_n,n>1인 자연수), 및 스위치(142)와 복수의 센싱 저항들(Rsen_1 내지 Rsen_n,n>1인 자연수) 중 대응하는 어느 하나의 일단이 접속하는 제2 노드(N2)의 전압을 감지한 결과에 따른 제2 센싱 전압들(Vsen2_1 내지 Vsen2_n,n>1인 자연수)을 출력하는 전압 센싱부(144)를 포함할 수 있다.
제어부(148a)는 제1 센싱 전압과 제2 센싱 전압의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n)에 기초하여 직류 신호(VR2)의 레벨을 조정할 수 있다.
복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각은 복수의 발광부들(101-1 내지 101-n, n>1인 자연수) 중 대응하는 어느 하나와 복수의 센싱 저항들(Rsen_1 내지 Rsen_n, n>1인 자연수) 중 대응하는 어느 하나를 연결하며, 복수의 발광부들(101-1 내지 101-n, n>1인 자연수)에 흐르는 전류를 제어하여 복수의 발광부들(101-1 내지 101-n, n>1인 자연수)의 밝기를 조절한다.
복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각은 스위치(142), 전압 센싱부(144), 및 증폭기(146)를 포함할 수 있다. 도 1의 스위치(142), 전압 센싱부(144), 및 증폭기(146)에 대한 설명은 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각에도 동일하게 적용될 수 있다.
다른 실시 예에서 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각은 도 3의 평활 회로(310)를 더 포함할 수 있다.
복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각의 스위치(142)는 복수의 발광부들(101-1 내지 101-n, n>1인 자연수) 중 대응하는 어느 하나의 출력단(106)과 복수의 센싱 저항들(Rsen_1 내지 Rsen_n, n>1인 자연수) 중 대응하는 어느 하나 사이에 연결되고, 제어부(148a)로부터 제공되는 정전류 제어 신호들(Vset_1 내지 Vset_n, n>1인 자연수) 중 대응하는 어느 하나에 기초하여 스위칭될 수 있다.
복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각은 제1 노드(N1)의 전압을 감지한 결과에 따른 제1 센싱 전압(Vsen1_1 내지 Vsen1_n, n>1인 자연수), 및 제2 노드(N2)의 전압을 감지한 결과에 따른 제2 센싱 전압(Vsen2_1 내지 Vsen_2_n, n>1인 자연수)을 출력할 수 있다.
제어부(148a)는 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수) 각각에 디밍을 위한 정전류 제어 신호(Vset_1 내지 Vset_n, n>1인 자연수)를 제공한다.
제어부(148a)는 제1 센싱 전압(Vsen1_1 내지 Vsen1_n, n>1인 자연수)과 제2 센싱 전압(Vsen2_1 내지 Vsen_2_n, n>1인 자연수)의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n)에 기초하여, 전압 발생부(130)로부터 출력되는 직류 신호(VR2)의 레벨을 변환하도록 전압 발생부(130)를 제어할 수 있다.
예컨대, 제어부(148a)는 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수)로부터 제공되는 제1 센싱 전압(Vsen1_1 내지 Vsen1_n, n>1인 자연수)과 제2 센싱 전압(Vsen2_1 내지 Vsen_2_n, n>1인 자연수)의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n)을 산출하고, 산출된 제1 및 제2 센싱 전압들의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n)에 기초하여 제1 기준 값, 및 제2 기준 값을 설정할 수 있다.
제어부(148a)는 전압 발생부(130)로부터 제공되는 직류 신호(VR2)의 레벨을 제1 기준 값만큼 감소시킬 수 있다.
제1 기준 값은 산출된 제1 및 제2 센싱 전압들의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n) 중 가장 큰 값에서 기설정된 제1 기준 전압을 뺀 값일 수 있다. 여기서 기설정된 제1 기준 전압은 트랜지스터로 구현되는 스위치(142)의 드레인-소스 온 상태 전압일 수 있다.
발광 소자 어레이들의 졍션 온도(junction temperature)의 상승, 및 정전류 제어 신호(Vset_1 내지 Vset_n)의 값의 변화에 따른 디밍(dimming)에 의하여 발광부들(101-1 내지 101-n, n>1인 자연수)의 동작 전압들은 감소할 수 있다. 이때 발광부들(101-1 내지 101-n, n>1인 자연수)의 동작 전압들의 감소량은 서로 다를 수 있으며, 복수의 디밍부들(140-1 내지 140-n, n>1인 자연수)에서 동작 전압들의 감소량에 대응하여 열로 소모되는 전력들은 서로 다를 수 있다.
발광부들(101-1 내지 101-n, n>1인 자연수)의 동작 전압이 감소할 때, 전압 발생부(130)로부터 제공되는 직류 신호(VR2)의 레벨을 제1 기준 값만큼 감소시킴으로써, 실시 예는 발광부들(101-1 내지 101-n, n>1인 자연수)이 원하는 밝기 레벨(예컨대, 100% 또는 50% 밝기 레벨)을 모두 충족함과 동시에 전력 효율을 향상시킬 수 있다.
또한 예컨대, 제어부(148a)는 전압 발생부(130)로부터 제공되는 직류 신호(VR2)의 레벨을 제1 기준 값과 제2 기준 값을 더 한 값만큼 감소시킬 수 있다.
제2 기준 값은 산출된 제1 및 제2 센싱 전압들의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n) 중 가장 큰 값과 가장 작은 값의 차이보다 작은 값일 수 있다.
예컨대, 제2 기준 값은 제1 및 제2 센싱 전압들의 차이들(Vsen1_1 - Vsen2_1 내지 Vsen1_n - Vsen_2_n) 중 가장 큰 값과 가장 작은 값의 차이의 2분의 1일 수 있으나, 이에 한정되는 것은 아니다.
이때 제2 기준 값을 빼주는 이유는 발광부들(101-1 내지 101-n, n>1인 자연수)의 일부는 원하는 밝기 레벨(예컨대, 100% 또는 50% 밝기 레벨)을 충족하지 못하더라도, 전력 효율을 더욱 향상시키기 위함이다.
상술한 바와 같이, 실시 예는 복수의 발광부들(101-1 내지 101-n, n>1인 자연수)에 공통으로 제공되는 직류 신호(VR2)의 레벨을 복수의 발광부들(101-1 내지 101-n, n>1인 자연수)의 동작 전압의 변화에 대응하여 감소시킴으로써, 전력 효율을 향상시킬 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
전력 효율을 향상시킬 수 있고, 깜빡임을 방지할 수 있는 발광 소자 구동 장치에 사용된다.

Claims (20)

  1. 발광부를 구동하는 직류 신호를 제공하는 전압 발생부:
    센싱 저항; 및
    상기 발광부와 상기 센싱 저항 사이에 연결되고, 상기 센싱 저항 및 상기 발광부에 흐르는 전류를 제어하는 디밍부를 포함하며,
    상기 디밍부는,
    상기 발광부와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압, 및 상기 스위치와 상기 센싱 저항이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압에 기초하여, 상기 직류 신호의 레벨을 조정하는 발광 소자 구동 장치.
  2. 제1항에 있어서, 상기 디밍부는,
    상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 제1 기준 전압 이하가 되도록 상기 직류 신호의 레벨을 조정하는 발광 소자 구동 장치.
  3. 제1항에 있어서, 상기 디밍부는,
    상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 제2 기준 전압을 초과하면, 상기 발광부와 상기 센싱 저항 사이의 전류 흐름을 차단하는 발광 소자 구동 장치.
  4. 제1항에 있어서, 상기 디밍부는,
    상기 발광부와 상기 센싱 저항 사이에 연결되는 스위치;
    정전류 제어 신호가 입력되는 제1 입력 단자, 상기 제2 노드와 연결되는 제2 입력 단자, 및 출력 단자를 포함하는 증폭기;
    상기 제1 센싱 전압, 및 상기 제2 센싱 전압을 출력하는 전압 센싱부; 및
    상기 제1 및 제2 센싱 전압들에 기초하여, 디밍(dimming) 신호를 생성하는 제어부를 포함하며,
    상기 스위치는 상기 증폭기의 출력에 응답하여 스위칭되고,
    상기 전압 발생부는 상기 디밍 신호에 기초하여 상기 직류 신호의 레벨을 조정하는 발광 소자 구동 장치.
  5. 제4항에 있어서,
    상기 정전류 제어 신호는 아날로그 신호인 발광 소자 구동 장치.
  6. 제4항에 있어서, 상기 디밍부는,
    펄스 폭 변조 신호를 평활하고, 평활한 결과에 따른 신호를 상기 정전류 제어 신호로 제공하는 발광 소자 구동 장치.
  7. 제4항에 있어서,
    상기 제어부는 상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 제1 기준 전압 이하가 되도록 상기 직류 신호의 레벨을 조정하는 발광 소자 구동 장치.
  8. 제7항에 있어서,
    상기 스위치는 트랜지스터로 구현되며, 상기 제1 기준 전압은 상기 스위치의 드레인-소스 온 상태 전압인 발광 소자 구동 장치.
  9. 제4항에 있어서, 상기 제어부는,
    상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 상기 제1 기준 전압을 초과하고 제2 기준 전압 이하일 때, 상기 직류 신호의 레벨을 감소시키는 발광 소자 구동 장치.
  10. 제4항에 있어서, 상기 제어부는,
    상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이가 상기 제2 기준 전압을 초과할 때, 상기 정전류 제어 신호의 레벨을 제로(zero)로 변경하는 발광 소자 구동 장치.
  11. 제4항에 있어서,
    교류 신호를 정류하고, 정류된 결과에 따른 정류 신호를 제공하는 정류기; 및
    상기 정류 신호의 역률을 보정하고, 역률이 보정된 정류 신호를 상기 전압 발생부로 출력하는 역률 보정부를 더 포함하는 발광 소자 구동 장치.
  12. 제11항에 있어서, 상기 제어부는,
    상기 제2 센싱 전압에 기초하여 상기 센싱 저항에 흐르는 센싱 전류를 산출하고, 산출된 상기 센싱 전류에 기초하여 상기 역률 보정부를 턴 온 또는 턴 오프하는 발광 소자 구동 장치.
  13. 제12항에 있어서, 상기 제어부는,
    상기 센싱 전류가 기준 전류 값보다 작을 때, 상기 역률 보정부를 턴 오프시키는 발광 소자 구동 장치.
  14. 디밍 신호(dimming signal)에 기초하여 발광부를 구동하는 직류 신호를 제공하는 전압 발생부:
    정전류 제어 신호가 입력되는 제1 입력 단자, 제2 입력 단자, 및 출력 단자를 포함하는 증폭기;
    일단이 상기 증폭기의 상기 제2 입력 단자에 접속되는 센싱 저항;
    상기 발광부와 상기 센싱 저항의 일단 사이에 연결되고, 상기 증폭기의 출력에 응답하여 스위칭하는 스위치;
    상기 발광부와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압, 및 상기 스위치와 상기 센싱 저항의 일단이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압을 출력하는 전압 센싱부; 및
    상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이에 기초하여 상기 직류 신호의 레벨을 조정하는 상기 디밍 신호를 상기 전압 발생부로 제공하는 제어부를 포함하는 발광 소자 구동 장치.
  15. 제14항에 있어서,
    펄스 폭 변조 신호를 평활하고, 평활한 결과에 따른 신호를 상기 정전류 제어 신호로 제공하는 평활 회로를 더 포함하는 발광 소자 구동 장치.
  16. 제15항에 있어서,
    상기 제어부는 상기 펄스 폭 변조 신호를 제공하는 발광 소자 구동 장치.
  17. 제15항에 있어서,
    교류 신호를 정류하고, 정류된 결과에 따른 정류 신호를 제공하는 정류기; 및
    상기 정류 신호의 역률을 보정하고, 역률이 보정된 정류 신호를 상기 전압 발생부로 출력하는 역률 보정부를 더 포함하는 발광 소자 구동 장치.
  18. 제17항에 있어서, 상기 전압 발생부는,
    상기 디밍 신호에 기초하여 상기 역률이 보정된 정류 신호의 레벨을 변환하고, 레벨 변환된 결과에 따른 상기 직류 신호를 생성하는 발광 소자 구동 장치.
  19. 제17항에 있어서, 상기 제어부는,
    상기 제2 센싱 전압에 기초하여 상기 센싱 저항에 흐르는 센싱 전류를 산출하고, 산출된 상기 센싱 전류에 기초하여 상기 역률 보정부를 턴 온 또는 턴 오프하는 제어 신호를 출력하는 발광 소자 구동 장치.
  20. 복수의 발광부들을 구동하는 직류 신호를 제공하는 전압 발생부:
    복수의 센싱 저항들;
    상기 복수의 발광부들에 흐르는 전류를 제어하는 복수의 디밍부들; 및
    상기 복수의 디밍부들 각각에 정전류 제어 신호를 제공하고, 상기 직류 신호의 레벨의 조정하는 제어부를 포함하며,
    상기 복수의 디밍부들 각각은,
    상기 정전류 제어 신호가 입력되는 제1 입력 단자, 상기 복수의 센싱 저항들 중 대응하는 어느 하나에 접속되는 제2 입력 단자, 및 출력 단자를 포함하는 증폭기;
    상기 복수의 발광부들 중 대응하는 어느 하나와 상기 복수의 센싱 저항들 중 대응하는 어느 하나의 일단 사이에 연결되고, 상기 증폭기의 출력에 응답하여 스위칭하는 스위치;
    상기 복수의 발광부들 중 대응하는 어느 하나와 상기 스위치가 접속하는 제1 노드의 전압을 감지한 결과에 따른 제1 센싱 전압들, 및 상기 스위치와 상기 복수의 센싱 저항들 중 대응하는 어느 하나의 일단이 접속하는 제2 노드의 전압을 감지한 결과에 따른 제2 센싱 전압들을 출력하는 전압 센싱부를 포함하며,
    상기 제어부는,
    상기 제1 센싱 전압과 상기 제2 센싱 전압의 차이들에 기초하여 상기 직류 신호의 레벨을 조정하는 발광 소자 구동 장치.
PCT/KR2015/011819 2014-12-22 2015-11-05 발광 소자 구동 장치 WO2016104940A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15873468.1A EP3240369B1 (en) 2014-12-22 2015-11-05 Device for driving light emitting element
US15/535,537 US10334681B2 (en) 2014-12-22 2015-11-05 Device for driving light emitting element
CN201580070312.2A CN107113947A (zh) 2014-12-22 2015-11-05 驱动发光元件的器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140185732A KR102256631B1 (ko) 2014-12-22 2014-12-22 발광 소자 구동 장치
KR10-2014-0185732 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104940A1 true WO2016104940A1 (ko) 2016-06-30

Family

ID=56150921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011819 WO2016104940A1 (ko) 2014-12-22 2015-11-05 발광 소자 구동 장치

Country Status (5)

Country Link
US (1) US10334681B2 (ko)
EP (1) EP3240369B1 (ko)
KR (1) KR102256631B1 (ko)
CN (1) CN107113947A (ko)
WO (1) WO2016104940A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102523916B1 (ko) * 2016-08-11 2023-04-19 로무 가부시키가이샤 램프 구동 회로
KR102201725B1 (ko) * 2019-03-27 2021-01-12 (주)아신시스텍 비전 검사용 엘이디 구동 장치
CN211606885U (zh) * 2020-02-28 2020-09-29 广州市浩洋电子股份有限公司 一种用于加快恒流源电感能量泄放的led调光装置
JP7437699B2 (ja) 2020-08-24 2024-02-26 パナソニックIpマネジメント株式会社 点灯装置
WO2024208825A1 (en) * 2023-04-07 2024-10-10 Signify Holding B.V. Ripple control of an led driving circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100066267A (ko) * 2008-12-08 2010-06-17 한국전자통신연구원 전류 감지 장치 및 이를 포함하는 발광 다이오드의 구동 장치
KR100968979B1 (ko) * 2009-09-30 2010-07-14 삼성전기주식회사 입력 전원에 따라 휘도를 조절하는 발광 다이오드 구동 장치
US20130250215A1 (en) * 2010-12-08 2013-09-26 Rohm Co., Ltd. Driving circuit for light-emitting element
JP2014110244A (ja) * 2012-11-30 2014-06-12 Silicon Works Co Ltd Led照明装置、その電流レギュレータおよび電流レギュレーティング方法
CN104168697A (zh) * 2014-08-07 2014-11-26 邓小兵 用于led驱动电源开关分段调光的输出电流控制电路

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990035769U (ko) * 1998-02-09 1999-09-15 윤종용 역률 보정 회로를 구비한 전원 공급 장치
US8319448B2 (en) 2007-12-20 2012-11-27 Osram Ag Driver arrangement for light emitting diodes
TWI400989B (zh) 2008-05-30 2013-07-01 Green Solution Technology Inc 發光二極體驅動電路及其控制器
TWI379618B (en) * 2008-06-30 2012-12-11 Green Solution Tech Co Ltd Led driving circuit and mos module thereof
JP4803228B2 (ja) * 2008-09-03 2011-10-26 日本テキサス・インスツルメンツ株式会社 電圧検出装置
US8508150B2 (en) * 2008-12-12 2013-08-13 O2Micro, Inc. Controllers, systems and methods for controlling dimming of light sources
US8330388B2 (en) * 2008-12-12 2012-12-11 O2Micro, Inc. Circuits and methods for driving light sources
US8373356B2 (en) * 2008-12-31 2013-02-12 Stmicroelectronics, Inc. System and method for a constant current source LED driver
KR101072057B1 (ko) 2009-08-18 2011-10-11 엘지이노텍 주식회사 Led 구동 회로
KR101018171B1 (ko) 2009-09-10 2011-02-28 삼성전기주식회사 전류 제한 기능을 갖는 발광 다이오드용 구동 장치
US20140159608A1 (en) * 2009-11-11 2014-06-12 Osram Sylvania Inc. Driver circuit for dimmable solid state light sources with filtering and protective isolation
KR101221583B1 (ko) * 2009-12-28 2013-01-14 엘지디스플레이 주식회사 백 라이트 유닛과 그 구동방법 및 이를 이용한 액정 표시 장치
US9258855B1 (en) * 2013-04-22 2016-02-09 Gary K. MART Highly efficient LED lighting fixture
KR101275399B1 (ko) * 2010-12-13 2013-06-17 삼성전기주식회사 발광 다이오드 구동 장치
TWI443560B (zh) * 2011-01-04 2014-07-01 Raydium Semiconductor Corp 觸控感測裝置
US20130154488A1 (en) * 2011-11-11 2013-06-20 Laurence P. Sadwick Dimmable LED Driver with Multiple Power Sources
US9178444B2 (en) * 2011-12-14 2015-11-03 Cirrus Logic, Inc. Multi-mode flyback control for a switching power converter
KR20130123230A (ko) * 2012-05-02 2013-11-12 페어차일드코리아반도체 주식회사 Led 드라이버 ic, 그 구동 방법, 및 이를 이용한 led 발광 장치
CN102695341B (zh) * 2012-05-28 2014-07-16 矽力杰半导体技术(杭州)有限公司 一种适应于电子变压器的led驱动电源
EP2765697B1 (en) * 2013-02-12 2017-06-21 Nxp B.V. A method of operating switch mode power converters, and controllers and lighting systems using such a method
CN103687245B (zh) 2013-12-24 2016-04-20 杭州士兰微电子股份有限公司 隔离型原边反馈带pfc的led驱动电路及其控制器和驱动方法
CN103841734A (zh) 2014-03-28 2014-06-04 绍兴光大芯业微电子有限公司 实现改善总谐波失真的驱动电路结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100066267A (ko) * 2008-12-08 2010-06-17 한국전자통신연구원 전류 감지 장치 및 이를 포함하는 발광 다이오드의 구동 장치
KR100968979B1 (ko) * 2009-09-30 2010-07-14 삼성전기주식회사 입력 전원에 따라 휘도를 조절하는 발광 다이오드 구동 장치
US20130250215A1 (en) * 2010-12-08 2013-09-26 Rohm Co., Ltd. Driving circuit for light-emitting element
JP2014110244A (ja) * 2012-11-30 2014-06-12 Silicon Works Co Ltd Led照明装置、その電流レギュレータおよび電流レギュレーティング方法
CN104168697A (zh) * 2014-08-07 2014-11-26 邓小兵 用于led驱动电源开关分段调光的输出电流控制电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240369A4 *

Also Published As

Publication number Publication date
US20170332453A1 (en) 2017-11-16
EP3240369A1 (en) 2017-11-01
CN107113947A (zh) 2017-08-29
EP3240369B1 (en) 2020-01-01
US10334681B2 (en) 2019-06-25
KR20160076055A (ko) 2016-06-30
KR102256631B1 (ko) 2021-05-26
EP3240369A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2016104940A1 (ko) 발광 소자 구동 장치
WO2013162308A1 (ko) Led 디머, 이를 포함하는 led 조명장치 및 led 조명장치의 디밍 제어 방법
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2014109429A1 (ko) 전압 에지 검출부를 이용한 교류 led 조명장치
WO2014189298A1 (ko) 발광다이오드 구동장치
WO2014081145A1 (ko) 변조지수가 개선된 엘이디 조명장치
WO2014137099A1 (ko) 발광 다이오드 구동 장치
WO2011052834A1 (ko) 정전류 구동 led 모듈 장치
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2022108339A1 (ko) Thd 및 emi가 개선된 조명 제어장치용 스마트 컨버터 및 이를 포함하는 조명 제어장치
WO2019078425A1 (ko) 조명 기기의 부품에 전력을 공급하기 위한 회로 및 이를 포함하는 조명 기기
WO2012144864A2 (ko) 엘이디 소자를 보호하는 엘이디 조명 장치 및 그 조명 장치의 제어 방법
WO2016028043A1 (ko) 동기식 다채널 발광 다이오드 구동 장치
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
WO2012011700A2 (ko) 적응형 전원 공급기, 스마트 엘이디 모듈 및 그를 위한 엘이디 모듈 시험장치
WO2015080393A1 (ko) 전원 공급 장치와 그를 이용한 엘이디 조명장치
WO2013180500A1 (ko) Led 백라이트를 구비하는 디스플레이 장치와 그 전원 공급 장치 및 방법
WO2014073911A1 (ko) 교류 led 구동 및 조광 제어장치와 그 방법
KR20160084049A (ko) 발광 소자 구동 장치
WO2016122182A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 제어 방법
WO2019208839A1 (ko) 발광다이오드 조명 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15535537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873468

Country of ref document: EP