[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014148767A1 - 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치 - Google Patents

이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치 Download PDF

Info

Publication number
WO2014148767A1
WO2014148767A1 PCT/KR2014/002082 KR2014002082W WO2014148767A1 WO 2014148767 A1 WO2014148767 A1 WO 2014148767A1 KR 2014002082 W KR2014002082 W KR 2014002082W WO 2014148767 A1 WO2014148767 A1 WO 2014148767A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
led
driving
module
rectifying
Prior art date
Application number
PCT/KR2014/002082
Other languages
English (en)
French (fr)
Inventor
정혜만
Original Assignee
서울반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울반도체 주식회사 filed Critical 서울반도체 주식회사
Priority to CN201480024771.2A priority Critical patent/CN105230126B/zh
Priority to US14/778,889 priority patent/US9848470B2/en
Publication of WO2014148767A1 publication Critical patent/WO2014148767A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an LED driving circuit using a double bridge diode, and an LED lighting device including the same. More specifically, a double bridge capable of compensating light output of an LED light by using an element and / or a circuit capable of energy charging and discharging.
  • the present invention relates to an LED driving circuit using a diode and an LED lighting device including the same.
  • LED driving is generally DC driving.
  • AC-DC converters such as SMPS are indispensable in the case of direct current driving, and these power converters increase the manufacturing cost of the lighting fixture, make it difficult to miniaturize the lighting fixture, reduce the energy efficiency of the lighting fixture, and short lifespan. Due to this there is a problem that shortens the life of the lighting fixture.
  • a sequential driving method of the AC LED has been proposed (Korean Patent Publication No. 10-2012-0041093, etc.).
  • the sequential driving method of the AC LED when the input voltage increases with time, the first LED starts emitting light first at Vf1, and the second LED is connected in series with the first LED at Vf2, which is higher than Vf1.
  • the second LED starts to emit light, and at Vf3, the voltage higher than Vf2, the third LED is connected in series with the second LED and the first LED to start emitting light.
  • the third LED first stops emitting light at Vf3, the second LED stops emitting light at Vf2, and the first LED at Vf1 finally stops emitting light.
  • the drive current is designed to approximate the input voltage.
  • the power factor is improved because the LED driving current converges in a form similar to the AC input voltage, but there is still a flicker phenomenon in the non-light emitting section where the input voltage does not reach Vf1.
  • the light characteristics of the lighting device is not uniform because the light emitting time of each LED light emitting module is different.
  • Figure 1a is a block diagram of a configuration of an LED lighting device including a smoothing capacitor according to the prior art
  • Figure 1b is a voltage waveform of the AC power input to the LED lighting device shown in Figure 1a, the current waveform of the AC power and the LED group It is a waveform diagram for demonstrating the waveform of the drive voltage actually applied.
  • the LED lighting apparatus including the smoothing capacitor according to the related art includes an LED module including a rectifying module 10, an LED driving module 20, and a plurality of LED groups 31 to 34. 30) and the smoothing capacitor C dc1 .
  • the rectifier module 10 performs a function of four diodes D1 to D4 forming a full-bridge diode, full-wave rectifying the applied AC voltage V AC , and outputting the full-wave rectified voltage Vrec. do.
  • the smoothing capacitor C dc1 is charged or discharged according to the voltage level of the rectified voltage Vrec to perform a function of smoothing the rectified voltage Vrec.
  • the capacitance of the smoothing capacitor C dc1 may be variously configured as necessary, but in the conventional art illustrated in FIG. 1A, the smoothing capacitor may drive three LED groups 31 to 33 in a non-light emitting period.
  • LED drive module 20 determines the voltage level of the drive voltage (V p) is applied, and controls the driving of the plurality of LED groups (31 to 34) depending on the voltage level of the drive voltage (V p).
  • the LED driving module 20 may control the driving of the four LED groups 31 to 34, but as described above, the driving voltage input to the LED groups 31 to 34 due to the smoothing capacitor C dc1 .
  • the LED driving module 20 may include the third LED group driver V DR3 or the fourth LED group driver V DR4 according to the voltage level of the driving voltage V p (the voltage level of the ripple voltage of the smoothing capacitor C dc1 ). ) To control the first to third LED groups 31 to 33 or the first to fourth LED groups 31 to 34 to emit light.
  • V p the voltage level of the driving voltage of the smoothing capacitor C dc1 .
  • the input current I AC and the LED driving current of the AC power supply are completely decoupling by the smoothing capacitor C dc1 , and the light quantity of the LED module 30 and The power characteristic is almost entirely dependent on the smoothing capacitor C dc1 .
  • the conduction time that is, the charging time of the smoothing capacitor C dc1
  • time intervals t1 to t3, t5 to t7 is It can be seen that it is relatively short and the magnitude of the input current is large (sharp). Therefore, in the prior art as shown in FIGS.
  • the current (I AC ) input from the AC power source is hardly used for driving the LED, and the THD and PF (Power Factor) characteristics are very poor, thereby resulting in high capacity products. There is a problem that it is difficult to apply to.
  • FIG. 2a is a block diagram of a configuration of an LED lighting apparatus according to the prior art including a valley-fill circuit
  • Figure 2b is a voltage waveform of the AC power input to the LED lighting device shown in Figure 2a, the current waveform of the AC power
  • LED It is a waveform diagram for demonstrating the waveform of the drive voltage actually applied to a group, and LED drive current.
  • the LED lighting apparatus including the valley-fill circuit includes a rectifying module 10, an LED driving module 20, and an LED module 30 including a plurality of LED groups 31 to 34. And valley-fill circuitry 40.
  • the valley-fill circuit 40 is a circuit for compensating the power factor, and is charged or discharged according to the voltage level of the rectified voltage Vrec to perform the function of compensating the rectified voltage Vrec.
  • Various valley-fill circuits of various capacities may be adopted and applied as necessary, but the valley-fill circuit 40 illustrated in FIGS. 2A and 2B may have a capacity to drive at least two LED groups 31 and 32. The selected example is shown.
  • the driving voltage V p input to the LED groups 31 to 34 is maintained at least Vf2 due to the valley-fill circuit 40, the driving of the first LED group 31 is substantially controlled.
  • the first LED group driver V DR1 does not operate.
  • the LED driving module 20 controls the second LED group driving unit V DR2 or the third LED group driving unit V DR3 or the fourth LED group driving unit V DR4 according to the voltage level of the driving voltage V p .
  • the first to second LED groups 31 and 32, the first to third LED groups 31 to 33, or the first to fourth LED groups 31 to 34 emit light.
  • FIG. 2A as shown in the waveform of the input current I AC of the AC power supply of FIG.
  • the input current I input from the AC power supply to drive the LED module 30 is shown.
  • the capacity of the capacitor can be reduced compared to the LED lighting device including the smoothing capacitor of the prior art. There is this.
  • the PF characteristics there is an advantage that can maintain a relatively high value compared to the LED lighting apparatus including a smoothing capacitor of the prior art.
  • the conduction time i.e., charging time of the valley-fill circuit 40
  • time intervals t3 to t4, t11 to t12 time intervals t3 to t4, t11 to t12
  • Patent Document 1 Korean Patent Publication No. 10-2012-0032509
  • Patent Document 2 Korean Patent Publication No. 10-2012-0041093
  • Patent Document 3 Korean Patent Publication No. 10-2010-0107196
  • the present invention is to solve the problems of the prior art as described above.
  • An object of the present invention is to provide an LED driving circuit using a double bridge diode that can effectively remove the flicker phenomenon by removing the non-light emitting period, LED lighting apparatus comprising the same.
  • the present invention provides a method for generating a rectified voltage for charging an energy charging / discharging element (or a circuit) for providing a second driving voltage from the same AC power supply separately from the first rectifying portion for providing a first driving voltage. It is an object of the present invention to provide an LED driving circuit using a double bridge diode, and an LED lighting apparatus including the same, by using two rectifiers, which simultaneously improves the THD characteristics and power factor of the LED lighting apparatus.
  • the present invention can minimize the loss during charging and discharging of the energy charging and discharging device (or circuit) by configuring the second driving voltage providing module for providing the second driving voltage to the LED module in the compensation section using only passive elements.
  • An object of the present invention is to provide an LED driving circuit using a double bridge diode, and an LED lighting device including the same.
  • a first rectification module is connected to an AC power source rectified by a full-wave rectification, and provides a full-wave rectified first rectified voltage to the LED light emitting module as a first driving voltage; And a second rectified voltage connected to the AC power supply in parallel with the first rectifying module and generating a second rectified voltage by full-wave rectifying the applied AC voltage, and charging energy using the generated second rectified voltage in a charging section. And a second driving voltage providing module for providing a second driving voltage to the LED light emitting module in a compensation section.
  • the second driving voltage providing module is connected in series between the first output terminal of the AC power supply and the first input terminal of the second rectifying part, and adjusts the AC voltage applied from the AC power supply to adjust the second rectifying part.
  • a first line capacitor outputting to the first input terminal of the first line capacitor;
  • a second line capacitor connected in series between a second output terminal of the AC power supply and a second input terminal of the second rectifying unit, and regulating an AC voltage applied from the AC power supply to the second input terminal of the second rectifying unit;
  • a second rectifying unit configured to generate and output the second rectified voltage by full-wave rectifying the regulated AC voltage inputted through the first line capacitor and the second line capacitor;
  • an energy charging / discharging unit connected between the first output terminal and the second output terminal of the second rectifying unit, charged by receiving the second rectified voltage in the charging section, and discharged in the compensation section to provide the second driving voltage. It can include;
  • the first line capacitor and the second line capacitor may be configured to delay and step down the phase of the applied AC voltage.
  • the energy charging and discharging unit may include: an energy charging and discharging device configured to be charged by receiving the second rectified voltage in the charging section and discharged in the compensation section to provide the second driving voltage; And a first rectified voltage connected in series between the first output terminal of the first rectifying module and the energy charging / discharging device such that the first rectified voltage output from the first rectifying module is not charged to the energy charging / discharging device. It may include; a first rectified voltage blocking unit for blocking.
  • the energy charging and discharging device may be composed of a charge and discharge capacitor.
  • the first rectified voltage blocking unit may be formed of a diode.
  • the capacitance of the first line capacitor and the second line capacitor may be configured to be the same.
  • the compensation section may be a section in which the voltage level of the first rectified voltage is less than Vf1.
  • the LED light emitting module includes a first LED group to n-th LED group (n is an integer of 2 or more), the LED driving circuit, the non-compensation period in accordance with the voltage level of the first driving voltage
  • An LED driving module sequentially driving the first LED group to the nth LED group and driving at least one LED group of the first LED group to the nth LED group according to a voltage level of the second driving voltage in a compensation period; It may further include.
  • the compensation section may be a section in which the voltage level of the first rectified voltage is less than Vf2.
  • the first line capacitor or the second line capacitor is charged by the AC voltage applied in the charging section, and the section in which the second driving voltage is not provided by the energy charging / discharging unit in the compensation section.
  • the discharge may be configured to provide a second driving voltage to the LED light emitting module through the first rectifying module.
  • the first rectification module is connected to an AC power source rectified and applied, and the first rectified module for providing a full-wave rectified first rectified voltage to the LED light emitting module as a first driving voltage; And converting an AC voltage applied to the AC power supply in parallel with the first rectifying module to generate a DC voltage, and providing the generated DC voltage to the LED light emitting module as a second driving voltage in a compensation section.
  • an LED driving circuit comprising a; second drive voltage providing module.
  • the second driving voltage providing module includes: a power converter configured to generate an AC voltage by converting an AC voltage input from the AC power source; And a first rectified voltage blocking unit connected in series between the first output terminal of the first rectifying module and the power converter to block the first rectified voltage output from the first rectifying module.
  • the LED light emitting module includes a first LED group to n-th LED group (n is an integer of 2 or more), the LED driving circuit, the non-compensation period in accordance with the voltage level of the first driving voltage
  • An LED driving module sequentially driving the first LED group to the nth LED group and driving at least one LED group of the first LED group to the nth LED group according to a voltage level of the second driving voltage in a compensation period; It may further include.
  • a first rectifying module connected to an AC power source and rectified AC voltage applied, and providing a full-wave rectified first rectified voltage as a first driving voltage to the LED light emitting module; It is connected to the AC power supply in parallel with the first rectifying module, generates a second rectified voltage by full-wave rectifying the applied AC voltage, and charges energy by using the generated second rectified voltage in the charging section, compensation
  • a second driving voltage providing module providing a second driving voltage to the LED light emitting module in a section;
  • an LED light emitting module that is driven by receiving a first driving voltage provided from the first rectifying module in a non-compensation section, and is driven by receiving a second driving voltage provided from the second driving voltage providing module in the compensation section. It is proposed an LED lighting device comprising a.
  • the second driving voltage providing module is connected in series between the first output terminal of the AC power supply and the first input terminal of the second rectifying part, and adjusts the AC voltage applied from the AC power supply to adjust the second rectifying part.
  • a first line capacitor outputting to the first input terminal of the first line capacitor;
  • a second line capacitor connected in series between a second output terminal of the AC power supply and a second input terminal of the second rectifying unit, and regulating an AC voltage applied from the AC power supply to the second input terminal of the second rectifying unit;
  • a second rectifying unit configured to generate and output the second rectified voltage by full-wave rectifying the regulated AC voltage inputted through the first line capacitor and the second line capacitor;
  • an energy charging / discharging unit connected between the first output terminal and the second output terminal of the second rectifying unit, charged by receiving the second rectified voltage in the charging section, and discharged in the compensation section to provide the second driving voltage. It can include;
  • the first line capacitor and the second line capacitor may be configured to delay and step down the phase of the applied AC voltage.
  • the energy charging and discharging unit may include: an energy charging and discharging device configured to be charged by receiving the second rectified voltage in the charging section and discharged in the compensation section to provide the second driving voltage; And a first rectified voltage connected in series between the first output terminal of the first rectifying module and the energy charging / discharging device such that the first rectified voltage output from the first rectifying module is not charged to the energy charging / discharging device. It may include; a first rectified voltage blocking unit for blocking.
  • the energy charging and discharging device may be composed of a charge and discharge capacitor.
  • the first rectified voltage blocking unit may be formed of a diode.
  • the capacitance of the first line capacitor and the second line capacitor may be the same.
  • the compensation section may be a section in which the voltage level of the first rectified voltage is less than Vf1.
  • the LED light emitting module includes a first LED group to the nth LED group (n is an integer of 2 or more), the LED lighting device, according to the voltage level of the first driving voltage in the non-compensation section
  • the LED driving module sequentially drives the first LED group to the nth LED group and drives at least one LED group of the first LED group to the nth LED group according to the voltage level of the second driving voltage in the compensation period.
  • the LED light emitting module is further driven according to the control of the LED driving module receives the first driving voltage provided from the first rectifying module, from the second driving voltage providing module in the compensation period; At least one LED group may be driven according to the control of the LED driving module by receiving the provided second driving voltage.
  • the compensation section may be a section in which the voltage level of the first rectified voltage is less than Vf2.
  • the first line capacitor or the second line capacitor is charged by the AC voltage applied in the charging section, and the section in which the second driving voltage is not provided by the energy charging / discharging unit in the compensation section. Discharged from to provide a second driving voltage to the LED light emitting module through the first rectifying module, and the LED module receives the second driving voltage in a section in which the second driving voltage is not provided among the compensation periods. It can be configured to be driven.
  • a first rectifying module connected to an AC power source and rectified AC voltage applied, and providing a full-wave rectified first rectified voltage as a first driving voltage to the LED light emitting module;
  • a first voltage connected to the AC power supply in parallel with the first rectifier module, converting an applied AC voltage to generate a DC voltage, and providing the generated DC voltage to the LED light emitting module as a second driving voltage in a compensation section.
  • 2 driving voltage providing module and an LED light emitting module that is driven by receiving a first driving voltage provided from the first rectifying module in a non-compensation section, and is driven by receiving a second driving voltage provided from the second driving voltage providing module in the compensation section. It is proposed an LED lighting device comprising a.
  • the second driving voltage providing module includes: a power converter configured to generate an AC voltage by converting an AC voltage input from the AC power source; And a first rectified voltage blocking unit connected in series between the first output terminal of the first rectifying module and the power converter to block the first rectified voltage output from the first rectifying module.
  • the LED light emitting module includes a first LED group to the nth LED group (n is an integer of 2 or more), the LED lighting device, according to the voltage level of the first driving voltage in the non-compensation section
  • the LED driving module sequentially drives the first LED group to the nth LED group and drives at least one LED group of the first LED group to the nth LED group according to the voltage level of the second driving voltage in the compensation period.
  • the LED light emitting module is further driven according to the control of the LED driving module receives the first driving voltage provided from the first rectifying module, from the second driving voltage providing module in the compensation period; At least one LED group may be driven according to the control of the LED driving module by receiving the provided second driving voltage.
  • a rectified voltage for charging the energy charging / discharging element (or circuit) for providing the second driving voltage from the same AC power source is generated.
  • the second driving voltage providing module using only passive elements, it can be expected that the effect of minimizing loss during charging and discharging of the energy charging and discharging element (or circuit).
  • Figure 1a is a block diagram of a configuration of an LED lighting device including a smoothing capacitor according to the prior art.
  • FIG. 1B is a waveform diagram illustrating waveforms of voltages of AC power input to the LED lighting apparatus shown in FIG. 1A, waveforms of current waveforms of AC power, and driving voltages actually applied to LED groups.
  • FIG. 2A is a block diagram of an LED lighting apparatus according to the prior art including a valley-fill circuit.
  • Figure 2b is a waveform diagram for explaining the voltage waveform of the AC power input to the LED lighting device shown in Figure 2a, the current waveform of the AC power, the waveform of the driving voltage actually applied to the LED group and the LED driving current.
  • FIG. 3 is a schematic block diagram of an LED lighting apparatus according to a preferred embodiment of the present invention.
  • FIG. 4 is a detailed block diagram of the LED lighting apparatus according to a preferred embodiment of the present invention.
  • FIG. 5A shows an AC voltage input to a first rectifying module of an LED lighting device configured to perform a second forward voltage level compensation according to an exemplary embodiment of the present invention, an adjusted AC voltage input to a second rectifying unit, and an AC power supply.
  • the waveform diagram for explaining the AC current input from the LED, the drive voltage applied to the LED module, and the LED drive current.
  • 5B shows the charge current / discharge current of the first line capacitor and the second line capacitor of the LED lighting device configured to perform the second forward voltage level compensation according to the preferred embodiment of the present invention, and the charge current / of the energy charge / discharge device / Waveform diagram to explain discharge current.
  • FIG. 6 is a detailed block diagram of the LED lighting apparatus according to another preferred embodiment of the present invention.
  • the term 'LED group' means that a plurality of LEDs (or a plurality of light emitting cells) are connected in series / parallel / parallel and parallel, so that the operation is controlled as one unit according to the control of the LED driving module. Means a set of LEDs that are (i.e. lit / turned off together).
  • first forward voltage level Vf1' refers to a threshold voltage level capable of driving the first group of LEDs
  • second forward voltage level Vf2' refers to a first group of LEDs connected in series and The threshold voltage level capable of driving the second LED group
  • 'third forward voltage level Vf3' refers to the threshold voltage level capable of driving the first to third LED groups connected in series. That is, the 'n th forward voltage level Vfn' means a threshold voltage level capable of driving the first to n th LED groups connected in series.
  • the term 'LED driving module' refers to a module for driving and controlling the LED by receiving an AC voltage, and has been described based on the embodiment of controlling the driving of the LED using the rectified voltage in the present specification, but is not limited thereto. It should not be interpreted comprehensively nor broadly.
  • the term 'first driving voltage' refers to a driving voltage that is supplied to the LED groups primarily because the input voltage itself or the input voltage is uniformly processed (for example, through a process such as a rectifying circuit).
  • the term 'second driving voltage' refers to a driving voltage supplied second to the LED groups from the energy storage element after the input voltage is stored in the energy storage element.
  • the second driving voltage may be a driving voltage supplied to the LED groups from the charged capacitor after the input voltage is stored in the capacitor.
  • the term 'drive voltage' encompasses a first drive voltage and / or a second drive voltage supplied to the LED groups. It means.
  • the term 'compensation section' refers to a section in which the driving current is not supplied to the LED group as a section in which the voltage level of the input voltage (rectified voltage) is less than the predetermined forward voltage level.
  • the first forward voltage level Vf1 compensation section means a section in which the voltage level of the rectified voltage is less than Vf1.
  • the compensation section is a non-light emitting section.
  • the second forward voltage level Vf2 compensation section means a section in which the voltage level of the rectified voltage is less than Vf2. Therefore, the nth forward voltage level Vfn compensation section means a section in which the voltage level of the rectified voltage is less than Vfn.
  • first forward voltage level (Vf1) compensation means to supply a drive current to the LED group by supplying a second drive voltage to the LED group in the first forward voltage level (Vf1) compensation interval
  • second forward Voltage level Vf2 compensation means supplying a second driving voltage to the LED group in the second forward voltage level Vf2 compensation period. Therefore, the n th forward voltage level Vfn compensation means supplying the second driving voltage to the LED group in the n th forward voltage level Vfn compensation section.
  • the term 'non-compensation section' refers to a section in which the voltage level of the input voltage (rectified voltage) is equal to or greater than a predetermined forward voltage level in the sequential driving method, and the input voltage (first driving Voltage) is supplied to the LED group so that the LED group (s) emit light.
  • the 'non-compensation section' refers to a section in which the voltage level of the input voltage is Vf1 or more, and the second forward direction.
  • the 'non-compensation section' (or 'normal operation section') means a section in which the voltage level of the input voltage is Vf2 or more. Therefore, in the embodiment of performing the n th forward voltage level Vfn compensation, the 'non-compensation section' (or 'normal operation section') means a section in which the voltage level of the input voltage is Vfn or more.
  • the term 'LED group voltage level' refers to the voltage level across the specific LED group.
  • the first LED group voltage level means a voltage level across both ends of the first LED group
  • the second LED group voltage level means a voltage level across both ends of the second LED group.
  • the 'nth LED group voltage level' means a voltage level across both nth LED groups.
  • V1, V2, V3, ..., t1, t2, ..., T1, T2, T3, etc. used to indicate any particular voltage, a specific time point, a specific temperature, etc. within the present specification. Is not used to represent an absolute value, but is a relative value used to distinguish one from another.
  • FIG. 3 is a schematic block diagram of an LED lighting apparatus according to a preferred embodiment of the present invention.
  • the configuration and function of the LED lighting apparatus 1000 according to the present invention will be described with reference to FIG. 3.
  • the LED lighting apparatus 1000 includes an LED driving circuit 1500 and an LED driving circuit including a first rectifying module 1100, an LED driving module 1200, and a second driving voltage providing module 1400. It may include an LED light emitting module 1300 driven under the control of.
  • the LED driving circuit 1500 receives an AC voltage V AC from an AC power source and rectifies the input AC voltage to generate a first rectified voltage Vrec1.
  • the LED driving circuit 1500 is configured to control the driving of the LED light emitting module 1300 by providing the generated first rectified voltage Vrec1 to the LED light emitting module 1300 as the first driving voltage.
  • the LED driving circuit 1500 according to the present invention rectifies the AC voltage V AC input thereto, and then uses the generated rectified voltage to use the LED light emitting module.
  • the first driving voltage is the first rectified voltage Vrec1.
  • the LED driving circuit 1500 according to the present invention is not limited to using the first rectified voltage Vrec1. Rather, the sequential driving method can be adopted, that is, the magnitude of the input voltage changes with time. It should be noted that the LED driving circuit 1500 according to the present invention can be applied in various cases.
  • the LED driving circuit 1500 according to the present invention is an AC LED (for example, LED groups in which LED groups are arranged in parallel in parallel with each other) that can be sequentially driven by receiving an AC voltage V AC directly. It may be used for driving.
  • the LED driving circuit 1500 receives the AC voltage (V AC ) from the AC power supply, rectifies the input AC voltage to generate a second rectified voltage (Vrec2), as described above, non-compensation It is configured to charge the energy using the second rectified voltage (Vrec2) generated during the interval, and to supply the energy stored in the compensation period as described above to the LED light emitting module 1300 as a second driving voltage. . Due to this configuration, the LED driving circuit 1500 according to the present invention can improve the flicker phenomenon by eliminating the non-emitting section of the LED light emitting module 1300.
  • the LED lighting apparatus 1000 according to the present invention, as shown in Figure 3, providing the first rectifying module 1100, LED driving module 1200, the second driving voltage The module 1400 and the LED light emitting module 1300 may be included.
  • the LED light emitting module 1300 may be composed of a plurality of LED groups, and the plurality of LED groups included in the LED light emitting module 1300 are sequentially controlled according to the control of the LED driving module 1200 in the non-compensation section. Are emitted and are sequentially turned off.
  • 3 and 4 disclose an LED light emitting module 1300 including a first LED group 1301, a second LED group 1302, a third LED group 1303, and a fourth LED group 1304.
  • the number of LED groups included in the LED light emitting module 1300 may be variously changed as necessary.
  • the first LED group 1301, the second LED group 1302, the third LED group 1303, and the fourth LED group 1304 may each have different forward voltage levels. It may be.
  • the first LED group 1301, the second LED group 1302, the third LED group 1303, and the fourth LED group 1304 each include a different number of LED elements, The first LED group 1301, the second LED group 1302, the third LED group 1303, and the fourth LED group 1304 will have different forward voltage levels.
  • the first rectification module 1100 is configured to rectify the AC voltage V AC input from an external power source to generate and output a first rectified voltage Vrec1.
  • a first rectifier module 1100 one of various known rectifier circuits such as a full wave rectifier circuit and a half wave rectifier circuit may be used.
  • the first rectified voltage Vrec1 output from the first rectifying module 1100 is output to the LED light emitting module 1300 and the LED driving module 1200.
  • 3 and 4 show a bridge full-wave rectification circuit composed of four diodes D1, D2, D3, and D4.
  • the LED driving module 1200 determines the voltage level of the input driving voltage (the first driving voltage (the first rectified voltage Vrec1) in the non-compensation section, the second driving voltage in the compensation section), and determines The size of the LED driving signal to be provided to the LED light emitting module 1300 (more specifically, each of the plurality of LED groups 1301 to 1304 included in the LED light emitting module 1300) and the LED driving according to the size of the driven voltage. Determine when to provide and when to block the signal.
  • the LED driving module 1200 provides an LED driving signal having a size determined as one or a plurality of LED group (s) (one or more of 1301 to 1304) at the time of providing the determined LED driving signal, and the determined LED driving signal
  • the driving of the LED light emitting module 1300 is configured by stopping the provision of the LED driving signal to the one or the plurality of LED group (s) 1301 to 1304 at the time of blocking.
  • Detailed configuration and function of the LED driving module 1200 according to the present invention will be described later with reference to FIG.
  • the second driving voltage providing module 1400 is connected to the AC power supply in parallel with the first rectifying module 1100 and generates a second rectified voltage Vrec2 by full-wave rectifying the AC voltage applied from the AC power supply. And store energy using the second rectified voltage Vrec2 generated in the charging section, and provide the energy stored in the compensation section to the LED light emitting module 1300 as the second driving voltage.
  • Detailed configuration and function of the second driving voltage providing module 1400 according to the present invention will be described later with reference to FIG. 4.
  • FIG. 4 is a detailed block diagram of the LED lighting apparatus according to an embodiment of the present invention. Hereinafter, referring to FIG. 4, the detailed configuration and function of the LED lighting apparatus 1000 according to the present invention will be described.
  • the LED driving module 1200 includes a plurality of LED group driving units 1220 and an LED driving control unit 1210 for driving and controlling the LED groups 1301 to 1304. It may include.
  • the LED driving controller 1210 may receive a driving voltage (second input from the second driving voltage providing module 1400 in the first driving voltage or compensation section input from the first rectifying module 1100 in the non-compensation section). Driving voltage), and determines the size of the LED driving signal to be provided to each of the LED groups 1301 to 1304, the timing of providing and driving the LED driving signal according to the driving voltage.
  • the LED driving controller 1210 turns on the corresponding LED group by controlling the LED group driving units 1220 at the time of providing the determined LED driving signal for each LED group and providing the LED driving signal to the corresponding LED group (s). By controlling the LED group driving units 1220 at the time of blocking the LED driving signal for each LED group, it is configured to turn off the LED group by blocking the provision of the LED driving signal to the corresponding LED group (s).
  • the plurality of LED group drivers 1220 correspond one-to-one to the plurality of LED groups 1301 to 1304, and to each of the plurality of LED groups 1301 to 1304 under the control of the LED driving controller 1210. It provides a LED driving signal or serves to block the provision of the LED driving signal.
  • the first LED group driver 1221 is connected to the first LED group 1301, and under the control of the LED driving controller 1210, the first LED group ( 1301 is configured to provide or block the LED drive signal.
  • the second LED group driver 1222 is connected to the second LED group 1302, and the third LED group driver 1223 is connected to the third LED group 1303 to LEDs to the corresponding LED groups. And to provide a driving signal and a blocking function.
  • the fourth LED group driver 1224 is connected to the fourth LED group 1304 and provides an LED driving signal to the fourth LED group 1304 under the control of the LED driving controller 1210 or Configured to block.
  • the LED group drivers 1221 to 1224 as described above may be implemented using electronic switching elements such as bipolar junction transistors (BJTs) and field effect transistors (FETs), respectively, and are not limited thereto.
  • the LED driving controller 1210 may turn on each of the LED group drivers 1221 to 1224 by using a control signal in a pulse form. By controlling the turn-off, it controls the provision and blocking of the LED drive signal to a specific LED group.
  • the LED group drivers 1221 to 1224 according to the present invention control the on / off of the paths P1, P2, P3, and P4 under the control of the LED driving controller 1210, and at the same time, It is desirable to be configured to perform the constant current control function.
  • the LED group drivers 1221 to 1224 according to the present invention may each include a constant current controller (not shown).
  • the constant current controller can be implemented using various known techniques.
  • the constant current controller according to the present invention controls the connection of the path according to the sensing resistor for detecting current, the differential amplifier for comparing the reference current value and the current detected current value, and the output of the differential amplifier. When connected, it may include a switching device configured to control the LED driving current value flowing through the path to a constant current.
  • the first LED may be controlled according to the control of the LED driving controller 1210.
  • the group driver 1201 is turned on so that the first current path P1 is connected, so that the first LED driving current I LED1 flows through the first current path P1.
  • the first LED group drive unit 1201 is a constant current to be maintained at a first LED driving signal (driving current) is detected, and the (I LED1), a first LED drive signal (I LED1), a first reference current (I REF1) The control function will be performed.
  • the first LED group driver according to the control of the LED driving controller 1210.
  • the 1201 is turned off and the second LED group driver 1202 is turned on to connect the second current path P2, and accordingly, the second LED driving current I is connected through the second current path P2.
  • LED2 flows.
  • the second LED group driver 1202 detects the second LED drive signal (driving current) I LED2 and maintains a constant current so that the second LED drive signal I LED2 can be maintained as the second reference current I REF2 .
  • the control function will be performed.
  • the second LED group driving unit under the control of the LED driving controller 1210 ( 1202 is turned off and the third LED group driver 1203 is turned on to connect the third current path P3. Accordingly, the third LED driving current I LED3 is connected through the third current path P3. ) Flows.
  • the third LED group driver 1203 detects the third LED driving signal (driving current) I LED3 and constant current so that the third LED driving signal I LED3 can be maintained as the third reference current I REF3 . The control function will be performed.
  • the third LED group driver 1203 is turned off under the control of the LED driving controller 1210, and the fourth LED group driving unit 1203 is turned off.
  • the LED group driver 1204 is turned on so that the fourth current path P4 is connected, so that the fourth LED driving current I LED4 flows through the fourth current path P4.
  • the fourth LED group driver 1204 detects the fourth LED driving signal (driving current) I LED4 , and the constant current so that the fourth LED driving signal I LED4 can be maintained as the fourth reference current I REF4 .
  • the control function will be performed.
  • the waveform of the LED driving current is approximated to the waveform of the rectified voltage in order to improve the power factor (PF) and total harmonic distortion (THD) characteristics.
  • the first LED is driven.
  • the current I LED1 to the fourth LED driving current I LED4 may be configured to approximate a sine wave.
  • the fourth LED group driver 1224 may operate by receiving a fourth driving control signal (for example, 4V), and may be configured to control the fourth LED driving current I LED4 to 100 mA at a constant current. .
  • the third LED group driver 1223 operates by receiving a third driving control signal (for example, 3V), and converts the third LED driving current I LED3 to 80 of the fourth LED driving current I LED4 . It can be configured to control the constant current to any one of 80mA to 95mA, which is% to 95%.
  • the second LED group driver 1222 operates by receiving a second driving control signal (for example, 2V), and converts the second LED driving current I LED2 into the fourth LED driving current I LED4 . It can be configured to control the constant current to any one of 65mA to 80mA, which is 65% to 80%.
  • the first LED group driver 1221 operates by receiving a first driving control signal (for example, 1V), and converts the first LED driving current I LED1 to 30 of the fourth LED driving current I LED4 . It can be configured to control the constant current to any one of 30mA to 65mA, which is% to 65%.
  • a first driving control signal for example, 1V
  • the second driving voltage providing module includes a first line capacitor C L1 , a second line capacitor C L2 , and a second driving voltage providing module 1400.
  • 2 may include a rectifier 1420, the energy charging and discharging 1430.
  • the biggest feature of the second driving voltage providing module 1400 according to the present invention is a separate method of generating a second rectified voltage Vrec2 by full-wave rectifying the AC voltage V AC input from an AC power source. It is configured to include a second rectifying unit 1420. That is, according to the present invention, the first rectifying module 100 and the energy charging and discharging unit 1430 supply the first rectifying voltage Vrec1 as the first driving voltage to the LED light emitting module 1300 and the second rectifying voltage Vrec2. By separating the second rectifying unit 1420 to be supplied, the power factor characteristic and the THD characteristic can be improved at the same time.
  • the first line capacitor C L1 and the second line capacitor C L2 are positioned between the AC power source and the second rectifying unit 1420 to separate the AC power source and the charging DC power source (second rectified voltage Vrec2). It is provided in order to. More preferably, the first line capacitor C L1 is connected in series between the first output terminal of the AC power source and the first input terminal of the second rectifying unit, and the second line capacitor C L2 is connected to the second output terminal of the AC power source. It is connected in series between the second input terminal of the second rectifier.
  • the first line capacitor (C L1) and the second line capacitor (C L2) outputs the AC voltage (V AC ') adjusted by adjusting the AC voltage (V AC) of the AC power supply to the second holding portion 1420 To do more. More specifically, the first line capacitor C L1 and the second line capacitor C L2 reduce the magnitude of the AC voltage V AC of the AC power supply and delay the phase to adjust the applied AC voltage V AC . And output the adjusted AC voltage V AC ′ to the second rectifier 1420.
  • the waveform of V AC ') is shown. As can be seen through the two figures, it can be seen that the phase and magnitude of the AC voltage V AC applied by the first line capacitor C L1 and the second line capacitor C L2 are adjusted.
  • the first line capacitor C L1 and the second line capacitor C L2 have a function of distributing a voltage in a relationship with the charge / discharge capacitor C dc1 .
  • the charging voltage of the charge / discharge capacitor C dc1 is basically determined from the impedance relationship between the first line capacitor C L1 , the second line capacitor C L2 , and the charge / discharge capacitor C dc1 , and the LED driving module In relation to 1200, it may be determined by the forward voltage and the LED driving current of the LED group. That is, the capacitance of the charge / discharge capacitor C dc1 may be determined according to the type and number of LED groups to be driven using the second driving voltage and the length of the compensation interval.
  • the 'compensation section' refers to a section in which the voltage level of the first driving voltage is less than the predetermined forward voltage level in the sequential driving method.
  • the capacitance of the charge / discharge capacitor C dc1 may be determined based on the sum of the forward voltage levels of the LED groups that should supply the second driving voltage in this compensation period. For example, when the charge / discharge capacitor C dc1 needs to supply a second driving voltage to the first LED group 1301 in the compensation interval (that is, configured to perform the first forward voltage level Vf1 compensation). and this must be determined capacitance of the charge and discharge the capacitor charging and discharging the capacitor (C dc1) the minimum value of the voltage so that Vf1 (dc1 C) during operation.
  • the charge / discharge capacitor C dc1 is charged in a section in which the voltage level of the first driving voltage is greater than or equal to Vf1, and the charge / discharge capacitor C dc1 is discharged in a section in which the voltage level of the first driving voltage is less than Vf1.
  • Supply the driving voltage when the charge / discharge capacitor C dc1 needs to supply a second driving voltage to the first LED group 1301 and the second LED group 1302 in the compensation interval (that is, the second forward voltage level Vf2).
  • the charge / discharge capacitor C dc1 when it is configured to perform compensation) must be a determination of the capacitance charging and discharging the capacitor (charging and discharging the capacitor (C dc1) the minimum value of the voltage C dc1) such that operation of Vf2.
  • the charge / discharge capacitor C dc1 is charged in a section in which the voltage level of the first driving voltage is Vf2 or more, and the charge / discharge capacitor C dc1 is discharged in a section in which the voltage level of the first driving voltage is less than Vf2. Supply the driving voltage.
  • the first line capacitor C L1 and the second line capacitor C L2 may also perform a function of a capacitor, that is, a charge and discharge function. Therefore, the first line capacitor C L1 and the second line capacitor C L2 are charged by the input AC voltage, and a period in which the second driving voltage is not provided by the charge / discharge capacitor C dc1 during the compensation period.
  • the discharge may be configured to provide a second driving voltage to the LED light emitting module 1300 through the first rectifying module 1100. Referring to FIG. 5B, waveforms of the charge current and the discharge current of the first line capacitor C L1 are shown at the top of FIG. 5B, and at the bottom thereof, the charge current and the discharge current of the second line capacitor C L2 are illustrated.
  • the waveform is shown, and at the bottom is the waveform of the charge current and discharge current of the charge / discharge capacitor C dc1 .
  • the first line capacitor C L1 is charged by being charged with a charging current Ic during a positive half cycle of the AC power, and is compensated for the negative half cycle of the AC power as shown in FIGS. 5A and 5B.
  • the discharge current is configured to perform the compensation of the second forward voltage level Vf2) from the time point t7 at which the discharge of the charge / discharge capacitor C dc1 ends to the time point t8 at which the charge current Ic is applied.
  • the discharge is configured to provide the second driving voltage to the LED light emitting module 1300 by discharging Idis.
  • the current discharged from the first line capacitor C L1 is input to the LED light emitting module 1300 through the diode D1 of the first rectifying module 1100.
  • the second line capacitor C L2 is charged while the charging current Ic is applied during the negative half cycle of the AC power, and the compensation period of the positive half cycle of the AC power (ie, the first period).
  • the second driving voltage is discharged by discharging the discharge current Idis from the time point t0 at which the discharge of the charge / discharge capacitor C dc1 is terminated to the time point t1 at which the charging current Ic is applied.
  • the first line capacitor C L1 and the second line capacitor C L2 are configured to supply the second driving voltage to the LED light emitting module 1300 in a predetermined section, the blackout of the charge / discharge capacitor C dc1 .
  • the capacitance should be determined in consideration of the capacitance of the first line capacitor C L1 and the second line capacitor C L2 , in which case the charge and discharge required to perform the second forward voltage level Vf2 compensation The capacitance of the capacitor C dc1 is reduced.
  • first line capacitor C L1 and the second line capacitor C L2 as described above may be preferably implemented using a film capacitor, a multilayer ceramic capacitor MLCC, and the charge / discharge capacitor C dc1 is It can be implemented using an electrolytic capacitor, a film capacitor, a multilayer ceramic capacitor (MLCC).
  • MLCC multilayer ceramic capacitor
  • the second rectifier 1420 is a full-bridge diode rectifier including four diodes D5, D6, D7, and D8, and is phased through the first line capacitor C L1 and the second line capacitor C L2 . It is configured to receive the full-scaled AC voltage (V AC ') and full-wave rectification to generate / output the second rectified voltage (Vrec2). Since the configuration and function itself of the second rectifying unit 1420 are the same as the structure and function of the first rectifying module 1100 described above, a further detailed description of the second rectifying unit 1420 will be omitted.
  • the energy charge / discharge unit 1430 is connected between the first output terminal and the second output terminal of the second rectifying unit 1420, and is charged by receiving the second rectified voltage Vrec2 output from the second rectifying unit 1420 in the charging section. And to discharge in the compensation section to provide the second driving voltage. More preferably, the energy charging and discharging unit 1430 according to the present invention may include an energy charging and discharging element C dc1 and a first rectified voltage blocking unit D B1 . In FIG. 4, an embodiment in which the energy charge / discharge device is implemented as a charge / discharge capacitor C dc1 is illustrated, but the energy charge / discharge unit 1430 according to the present invention is not limited to a capacitor, and various energy charge / discharge functions may be provided.
  • the first rectified voltage blocking unit D B1 is connected in series between the first output terminal of the first rectifying module 1100 and the charge / discharge capacitor, and outputs the first rectified voltage Vrec1 output from the first rectifying module 1100.
  • the first rectified voltage Vrec1 is blocked to prevent the charging / discharging capacitor from being charged. That is, the first rectified voltage blocking unit D B1 prevents the current flowing by the first rectified voltage Vrec1 from being applied to the charge / discharge capacitor C dc1 .
  • the first rectified voltage blocking unit D B1 may be implemented using a capacitor.
  • FIG. 5A illustrates an AC voltage V AC and a second rectifying unit input to a first rectifying module 1100 of an LED lighting device configured to perform a second forward voltage level Vf2 compensation according to an exemplary embodiment of the present invention.
  • V AC ' adjusted AC voltage
  • I AC AC current
  • V p driving voltage
  • I LED LED driving current
  • FIG. 5B also shows the charge current / discharge of the first line capacitor C L1 and the second line capacitor C L2 of the LED lighting device configured to perform the second forward voltage level compensation according to the preferred embodiment of the present invention. It is a waveform diagram for demonstrating the charge current / discharge current of an electric current and a charge / discharge capacitor Cdc1 .
  • FIG. 5A shows a waveform of one cycle of the AC voltage V AC of the AC power applied to the LED lighting apparatus 1000, and below the first line capacitor C L1 and the second line capacitor ( The waveform of the adjusted AC voltage V AC ′ adjusted by C L2 ) and input to the second rectifying unit 1420 is shown, and below the waveform of the current I AC input from the AC power source.
  • the waveform of the driving voltage V p input to the LED light emitting module 1300 is shown below, and the waveform of the LED driving current I LED flowing through the LED light emitting module 1300 is shown at the bottom thereof. . Also, at the top of FIG.
  • waveforms of the charge current and the discharge current of the first line capacitor C L1 are shown, and waveforms of the charge current and the discharge current of the second line capacitor C L2 are shown at the bottom thereof. At the bottom, waveforms of the charge current and the discharge current of the charge / discharge capacitor C dc1 are shown.
  • the waveforms shown in FIGS. 5A and 5B are based on an embodiment of the LED driving circuit 1500 configured to perform the second forward voltage level Vf2 compensation.
  • the LED driving circuit 1500 performs the second forward voltage level Vf2 compensation so that the second driving voltage is decreased in the compensation section (a section in which the first rectified voltage Vrec1 is less than the second forward voltage level Vf2).
  • the compensation section a section in which the first rectified voltage Vrec1 is less than the second forward voltage level Vf2
  • a description will be given based on the embodiment configured to supply to the first LED group 1301 and the second LED group 1302. However, this is only for convenience of description and understanding, and the present invention is not limited thereto.
  • Table 1 below shows the charge / discharge state of the first line capacitor C L1 according to the voltage level of the first driving voltage based on one cycle of the AC voltage V AC , and the second line capacitor C L2 .
  • C dc1 charge and discharge capacitor
  • the compensation section is a section in which the voltage level of the first driving voltage is less than Vf2, and the non-compensation section is a first compensation section. It is a section where the voltage level of the driving voltage is Vf2 or more.
  • 5A and 5B show waveforms when a predetermined time elapses after the LED lighting apparatus 1000 is driven. Accordingly, the compensation intervals in FIGS. 5A and 5B are time intervals t0 to t1, t6 to t8, and t14 to t15.
  • the second driving voltage providing module 1400 Since the voltage level of the first driving voltage is less than Vf2 at the time point t0, voltage compensation by the second driving voltage providing module 1400 is performed. More specifically, the current charged in the charge / discharge capacitor C dc1 is discharged in the compensation section immediately before the time point t0, and thus, the second charge that is charged during the previous negative half period of the AC voltage V AC is performed.
  • the line capacitor C L2 starts to discharge the discharge current Idis at the time point t0. That is, the driving voltage compensation in the time period t0 to t1 is performed by the second line capacitor C L2 .
  • FIG. 5B the discharge current Idis discharged from the second line capacitor C L2 during the time period t0 to t1 is illustrated.
  • the discharge current Idis from the second line capacitor CL2 is applied to the LED light emitting module 1300 through the diode D4 of the first rectifying module 1100, whereby the second driving voltage is applied to the LED light emitting module ( 1300. Since the driving voltage Vp applied is greater than or equal to the second forward voltage level Vf2, the LED driving controller 1210 includes the first LED group driver 1201, the third LED group driver 1203, and the fourth LED group driver ( 1204 is maintained in a turn-off state, and the second LED group driver 1202 is maintained in a turn-on state, thereby maintaining a state in which the current path P2 is connected. Accordingly, the second LED driving current I LED2 flows through the second current path P2, so that the first LED group 1301 and the second LED group 1302 maintain the light emitting state.
  • the voltage level of the AC voltage V AC rises with time and the voltage level of the first driving voltage reaches the second forward voltage level Vf2 (time t1)
  • the voltage is separated from the compensation section and is compensated. Since it enters the section, the first rectified voltage Vrec1 is supplied to the LED light emitting module 1300 as the driving voltage V p . Since the voltage level itself of the driving voltage V p belongs to the same range as the second driving voltage supplied to the previous time interval t0 to t1, the LED driving controller 1210 maintains a state in which the current path P2 is connected. Accordingly, the second LED driving current I LED2 flows through the second current path P2, so that the first LED group 1301 and the second LED group 1302 maintain the light emitting state.
  • the LED driving control unit 1210 corresponds to the driving voltage V p .
  • the LED groups 1301 to 1304 are sequentially driven according to the voltage level of the first rectified voltage Vrec1 applied.
  • the LED driving controller 1210 determines the second LED group.
  • the driver 1202 is turned off and the third LED group driver 1203 is turned on so that the third current path P3 is connected. Accordingly, the third LED driving current I LED3 flows through the third current path P3 to cause the first LED group 1301, the second LED group 1302, and the third LED group 1303 to emit light. do.
  • the LED driving control unit 1210 causes the third LED group driving unit 1203 to increase over time.
  • the fourth LED group driver 1204 is turned on so that the fourth current path P4 is connected. Accordingly, the fourth LED driving current I LED4 flows through the fourth current path P4, so that the first LED group 1301, the second LED group 1302, the third LED group 1303, and the fourth LED drive current I LED4 flow.
  • the LED group 1304 will all emit light.
  • the LED driving control unit 1210 generates the first voltage.
  • the fourth LED group driver 1204 is turned off and the third LED group driver 1203 is turned on so that the third current path P3 is connected. Accordingly, the third LED driving current I LED3 flows through the third current path P3 to cause the first LED group 1301, the second LED group 1302, and the third LED group 1303 to emit light. do.
  • the LED driving control unit 1210 causes the third LED group driving unit 1203. ) Is turned off and the second LED group driver 1202 is turned on so that the second current path P2 is connected. Accordingly, the second LED driving current I LED2 flows through the second current path P2 so that the first LED group 1301, the second LED group 1302, and the third LED group 1303 emit light. do.
  • the first rectified voltage Vrec1 cannot drive the first LED group 1301 and the second LED group 1302, so that voltage compensation is performed at this point. More specifically, since the voltage level of the charge / discharge capacitor C dc1 charged at this point becomes higher than the voltage level of the first rectified voltage Vrec1, the discharge current Idis is emitted from the charge / discharge capacitor C dc1 . It begins to flow to the module 1300, whereby the second driving voltage is provided to the LED light emitting module 1300 as the driving voltage (V p ).
  • the discharge current Id is discharged from the charge / discharge capacitor C dc1 during the time period t6 to t7 is illustrated.
  • the LED driving controller 1210 maintains the current path P2 connected. Therefore, the second LED driving current I LED2 flows through the second current path P2, so that the first LED group 1301 and the second LED group 1302 maintain the light emitting state.
  • the LED driving control unit 1210 uses the current path ( P2) remains connected, and thus, the second LED driving current I LED2 flows through the second current path P2, so that the first LED group 1301 and the second LED group 1302 are in a light emitting state. Will be maintained.
  • the above-described processes are repeated periodically, so that the first LED group 1301 and the second LED group 1302 continue to emit light while the LED lighting apparatus 1000 is driven. Flickering of the lighting apparatus 1000 can be eliminated.
  • the second line capacitor C L2 which was charged in the previous negative half cycle at the time when the positive half cycle of the AC power source starts, discharges the discharge current Idis to provide the second driving voltage.
  • the first line capacitor C L1 is charged during the positive half cycle, and the first line capacitor C L1 charged during the positive half cycle at the time when the negative half cycle starts discharges the discharge current Idis by the second line capacitor C L1 . It provides a driving voltage.
  • FIG. 6 is a detailed block diagram of the LED lighting apparatus according to another preferred embodiment of the present invention. Referring to FIG. 6, the configuration and function of the second driving voltage providing module 1400 according to the second embodiment of the present invention will be described.
  • LED without decoupling AC from the same AC power source (Decoupling) It supplies to the drive module 1200 and the LED light emitting module 1300 as a 1st drive voltage (current), and simultaneously converts AC from the same AC power supply into direct current, and direct current separated from an AC power supply as a 2nd drive voltage. It is configured to provide to the LED driving module 1200 and the LED light emitting module 1300 during the compensation period.
  • the second driving voltage providing module 1400 according to the second embodiment of the present invention is also a component for implementing the technical features of the present invention as described above.
  • the second driving voltage providing module 1400 according to the first embodiment as described above is configured to charge and discharge energy
  • the second driving voltage providing module 1400 according to the second embodiment may provide a stabilized constant voltage. There is a difference in that it is configured to continuously output as the second driving voltage.
  • the second driving voltage providing module 1400 is connected to the AC power supply in parallel with the first rectifying module 1100 and converts the applied AC voltage (V AC ) to generate a DC voltage.
  • the DC voltage generated in the compensation section is provided to the LED light emitting module 1300 as the second driving voltage.
  • the second driving voltage providing module 1400 according to the second embodiment includes a power converter 1440 and a first rectified voltage blocking unit D B1 as shown in FIG. 6. can do.
  • the power converter 1440 is connected to the AC power supply in parallel with the first rectification module 1100, generates a stable DC voltage (V DC ) by converting the AC voltage (V AC ) applied from the AC power, and generated It is configured to output a DC voltage.
  • V DC stable DC voltage
  • V AC AC voltage
  • One of various AC-DC converters known as the power converter 1440 may be used.
  • the stable DC voltage output from the power converter 1440 may be determined according to the compensated forward voltage level. For example, when the LED driving circuit 1500 according to the present invention is configured to perform the second forward voltage level Vf2 compensation, the voltage level of the DC voltage output from the power converter 1440 is the second forward voltage. Level Vf2. Similarly, for example, when the LED driving circuit 1500 according to the present invention is configured to perform the first forward voltage level Vf1 compensation, the voltage level of the DC voltage output from the power converter 1440 is set to zero. 1 Forward voltage level Vf1.
  • the first rectified voltage blocking unit D B1 is connected in series between the first output terminal of the first rectifying module 1100 and the power converter 1440 to receive the first rectified voltage output from the first rectifying module. Configured to block.
  • the output terminal of the power converter 1440 is connected to the first output terminal of the first rectifying module 1100 through the first rectified voltage blocking unit D B1 , and therefore, the LED driving circuit 1500 according to the present invention is When configured to perform the first forward voltage level Vf1 compensation, the power converter 1440 in a section in which the voltage level of the rectified voltage Vrec output from the first rectifying module 1100 is less than the first forward voltage level Vf1.
  • the direct current voltage output from the N-th supply voltage is supplied to the LED light emitting module 1300 as the second driving voltage, and thus the first forward voltage level Vf1 compensation may be performed.
  • the configuration and function of the LED driving circuit 1500 according to the present invention based on the LED light emitting module 1300 including a plurality of LED groups 1301 to 1304 sequentially driven in the above, but the present invention It is not limited to this. That is, the technical gist of the present invention lies in the configuration and function of the second driving voltage providing module 1400. Therefore, the LED driving circuit 1500 according to the present invention also includes the LED light emitting module 1300 configured as a single LED group. Can be applied. In this case, since the sequential driving control is unnecessary, the LED driving module 1200 may be omitted.
  • the second driving voltage providing module 1400 is configured to perform the compensation of the first forward voltage level Vf1. Accordingly, the non-light emitting period (the voltage level of the first driving voltage is less than the first forward voltage level Vf1). In the section), the second driving voltage is provided by the second driving voltage providing module 1400.
  • LED lighting device 1100 first rectification module
  • LED driving control unit 1220 LED group driving unit
  • first LED group driver 1222 second LED group driver
  • first LED group 1302 second LED group

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명에 따르면, 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 및 상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 전파정류하여 제 2 정류전압을 생성하고, 충전구간에서 상기 생성된 제 2 정류전압을 이용하여 에너지를 충전하며, 보상구간에서 상기 LED 발광모듈에 제 2 구동전압을 제공하는 제 2 구동전압 제공모듈;을 포함하는 것을 특징으로 하는, LED 구동회로가 제공된다.

Description

이중 브리지 다이오드를 이용한 LED 구동회로, 이를 포함하는 LED 조명장치
본 발명은 이중 브리지 다이오드를 이용한 LED 구동회로, 이를 포함하는 LED 조명장치에 관한 것으로서, 보다 구체적으로 에너지 충방전이 가능한 소자 및/또는 회로를 이용하여 LED 조명의 광출력을 보상할 수 있는 이중 브리지 다이오드를 이용한 LED 구동회로, 이를 포함하는 LED 조명장치에 관한 것이다.
LED 구동은 직류구동 방식이 일반적이다. 직류구동 방식의 경우 SMPS 등의 AC-DC 컨버터가 필수적으로 요구되며, 이러한 전원 컨버터는 조명기구의 제조단가를 상승시키고, 조명기구의 소형화를 어렵게 하며, 조명기구의 에너지 효율을 떨어뜨리고, 짧은 수명으로 인해 조명기구의 수명을 단축시킨다는 문제점이 있다.
이러한 직류구동 방식의 문제점을 해결하기 위하여, LED의 교류구동 방식이 제안되었다(한국 특허공개공보 제10-2012-0032509호 등). 그러나 이러한 기술에 따른 회로의 경우 입력전압과 LED에서 출력되는 전류의 불일치로 인하여 역률이 저하되는 문제가 있을 뿐 아니라, LED의 비발광 구간이 길어 사용자가 조명의 깜빡거림을 인지하게되는 플리커 현상이 발생한다는 문제점이 있다.
전술한 바와 같은 LED 교류구동 방식의 문제점을 해결하기 위하여, 교류 LED의 순차구동 방식이 제안되었다(한국 특허공개공보 제10-2012-0041093호 등). 이러한 교류 LED의 순차구동 방식에 따르면, 입력전압이 시간에 따라 증가하는 상황에서, Vf1에서 제 1 LED가 먼저 발광을 시작하고, Vf1보다 높은 전압인 Vf2에서 제 2 LED가 제 1 LED와 직렬연결되어 제 2 LED가 발광을 시작하고, Vf2보다 높은 전압인 Vf3에서 제 3 LED가 제 2 LED 및 제 1 LED와 직렬연결되어 제 3 LED가 발광을 시작하게 된다. 또한, 입력전압이 시간에 따라 감소하는 상황에서, Vf3에서 제 3 LED가 먼저 발광을 중지하고, Vf2에서 제 2 LED가 발광을 중지하며, Vf1에서 제 1 LED가 마지막으로 발광을 중지함으로써, LED 구동전류가 입력전압에 근사하도록 설계된다. 이러한 교류 LED 순차구동 방식에 따르는 경우, LED 구동전류가 교류 입력전압과 비슷한 형태로 수렴하기 때문에 역률이 개선되는 장점이 있으나, 여전히 입력전압이 Vf1에 미치지 못하는 비발광구간에서의 플리커 현상이 발생되며, LED 발광모듈별 발광시간이 상이하여 조명장치의 광특성이 균일하지 못하다는 문제점이 있다.
한편, 전술한 바와 같은 교류 LED 순차구동 방식의 문제점을 해결하기 위하여, 평활 캐패시터, 역률 보상회로 등을 이용하여 비발광구간을 제거하기 위한 다양한 기술이 제안되었다(한국 특허공개공보 제10-2010-0107196호). 그러나 이러한 기술에 따르는 경우, 평활 캐패시터가 충전을 시작하는 시점에서 전류가 급격히 증가하는 소자특성으로 인해 전체 고조파 왜곡률(Total Harmonic Distortion, THD)이 오히려 악화되는 문제점이 있다. 또한, 비발광구간에서 모든 LED를 구동하기 위해서 평활 캐패시터는 적어도 Vf3 이상의 전압을 유지해야 하기 때문에 높은 정전용량이 요구된다는 문제점이 있다. 또한, 이로 인하여, 평활 캐패시터의 가격이 증가하고, LED 조명기구의 소형화가 어려워진다는 문제점이 있다. 도 1a는 종래기술에 따른 평활 커패시터를 포함하는 LED 조명장치의 구성 블록도이며, 도 1b는 도 1a에 도시된 LED 조명장치에 입력되는 교류전원의 전압 파형, 교류전원의 전류 파형 및 LED 그룹에 실제 인가되는 구동전압의 파형을 설명하기 위한 파형도이다. 도 1a에 도시된 바와 같이, 종래기술에 따른 평활 커패시터를 포함하는 LED 조명장치는 정류모듈(10), LED 구동모듈(20), 복수의 LED 그룹들(31 내지 34)을 포함하는 LED 모듈(30) 및 평활 커패시터(Cdc1)를 포함할 수 있다. 정류모듈(10)은 4개의 다이오드(D1~D4)가 풀-브리지 다이오드를 형성하며, 인가되는 교류전압(VAC)을 전파 정류하고, 전파 정류된 정류전압(Vrec)을 출력하는 기능을 수행한다. 평활 커패시터(Cdc1)는 정류전압(Vrec)의 전압레벨에 따라 충전 또는 방전되어, 정류전압(Vrec)을 평활하는 기능을 수행하게 된다. 평활 커패시터(Cdc1)의 정전용량은 필요에 따라 다양하게 구성될 수 있으나, 도 1a에 도시된 종래기술의 경우 비발광구간에서 3개의 LED 그룹(31~33)을 구동할 수 있도록, 평활 커패시터(Cdc1)의 최소 전압레벨이 Vf3 이상이 되도록 평활 커패시터(Cdc1)의 정전용량이 선택된 예를 도시하고 있다. LED 구동모듈(20)은 인가되는 구동전압(Vp)의 전압레벨을 판단하고, 구동전압(Vp)의 전압레벨에 따라 복수의 LED 그룹들(31~34)의 구동을 제어한다. LED 구동모듈(20)은 4개의 LED 그룹들(31~34)의 구동을 제어할 수 있으나, 전술한 바와 같이 평활 커패시터(Cdc1)로 인하여 LED 그룹들(31~34)에 입력되는 구동전압(Vp)이 최소 Vf3 이상으로 유지되므로, 실질적으로 제 1 LED 그룹(31), 제 2 LED 그룹(32)의 구동을 제어하는 제 1 LED 그룹 구동부(VDR1), 제 2 LED 그룹 구동부(VDR2)는 동작하지 않는다. LED 구동모듈(20)은 구동전압(Vp)의 전압레벨(평활 커패시터(Cdc1)의 리플 전압의 전압레벨)에 따라 제 3 LED 그룹 구동부(VDR3) 또는 제 4 LED 그룹 구동부(VDR4)를 제어하여 제 1 내지 제 3 LED 그룹(31~33) 또는 제 1 내지 제 4 LED 그룹(31~34)이 발광하도록 제어하게 된다. 그러나 도 1a에 도시된 바와 같은 종래기술의 경우, 교류전원의 입력전류(IAC)와 LED 구동전류는 평활 커패시터(Cdc1)에 의해 완전히 분리되며(decoupling), LED 모듈(30)의 광량 및 전력 특성이 평활 커패시터(Cdc1)에 거의 전적으로 의존하게 된다. 한편, 도 1b의 교류전원의 입력전류(IAC) 파형도에 도시되어 있는 바와 같이, 도통시간(즉, 평활 커패시터(Cdc1)의 충전시간)(시간 구간 t1 ~ t3, t5 ~ t7)이 비교적 짧고, 입력전류의 크기가 크다(첨예하다)는 것을 확인할 수 있다. 따라서, 도 1a 및 도 1b에 도시된 바와 같은 종래기술의 경우, 교류전원으로부터 입력되는 전류(IAC)가 LED 구동에 거의 이용되지 않으며, THD 및 PF(Power Factor) 특성이 매우 떨어져 고 용량 제품에 적용이 어렵다는 문제점이 있다.
한편, 전술한 바와 같은 종래기술의 문제점을 해결하기 위하여, 밸리-필(valley-fill) 회로와 같은 역률 보상 회로를 포함하는 LED 조명장치가 제안되었다. 도 2a는 밸리-필 회로를 포함하는 종래기술에 따른 LED 조명장치의 구성 블록도이며, 도 2b는 도 2a에 도시된 LED 조명장치에 입력되는 교류전원의 전압 파형, 교류전원의 전류 파형, LED 그룹에 실제 인가되는 구동전압의 파형 및 LED 구동전류를 설명하기 위한 파형도이다. 도 2a에 도시된 바와 같이, 밸리-필 회로를 포함하는 LED 조명장치는 정류모듈(10), LED 구동모듈(20), 복수의 LED 그룹들(31 내지 34)을 포함하는 LED 모듈(30) 및 밸리-필 회로(40)를 포함할 수 있다. 정류모듈(10), LED 구동모듈(20), 복수의 LED 그룹들(31 내지 34)을 포함하는 LED 모듈(30)에 대한 설명은 도 1a를 참조하여 이상에서 설명한 바와 동일하므로, 중복되는 내용에 대한 설명은 생략하고 밸리-필 회로(40)를 중심으로 설명하도록 한다. 밸리-필 회로(40)는 역률을 보상하기 위한 회로로서, 정류전압(Vrec)의 전압레벨에 따라 충전 또는 방전되어, 정류전압(Vrec)을 보상하는 기능을 수행하게 된다. 필요에 따라 다양한 용량의 밸리-필 회로가 채택되어 적용될 수 있으나, 도 2a 및 도 2b에 도시된 밸리-필 회로(40)는 최소 2개의 LED 그룹(31, 32)을 구동할 수 있도록 용량이 선택된 예를 도시하고 있다. 따라서, 밸리-필 회로(40)로 인하여 LED 그룹들(31~34)에 입력되는 구동전압(Vp)이 최소 Vf2 이상으로 유지되므로, 실질적으로 제 1 LED 그룹(31)의 구동을 제어하는 제 1 LED 그룹 구동부(VDR1)는 동작하지 않는다. LED 구동모듈(20)은 구동전압(Vp)의 전압레벨에 따라 제 2 LED 그룹 구동부(VDR2) 또는 제 3 LED 그룹 구동부(VDR3) 또는 제 4 LED 그룹 구동부(VDR4)를 제어하여, 제 1 내지 제 2 LED 그룹(31, 32), 또는, 제 1 내지 제 3 LED 그룹(31~33), 또는, 제 1 내지 제 4 LED 그룹(31~34)이 발광하도록 제어하게 된다. 도 2a에 도시된 바와 같은 종래기술의 경우, 도 2b의 교류전원의 입력전류(IAC) 파형도에 나타나 있는 바와 같이, LED 모듈(30)을 구동하기 위하여 교류전원으로부터 입력되는 입력전류(IAC)와 밸리-필 회로(40)의 커패시터들(C1, C2)에 저장된 에너지가 함께 사용됨에 따라, 종래기술의 평활 커패시터를 포함하는 LED 조명장치에 비하여 커패시터 용량을 작게 할 수 있다는 장점이 있다. 또한, PF 특성에 있어, 종래기술의 평활 커패시터를 포함하는 LED 조명장치에 비하여 비교적 높은 값을 유지할 수 있다는 장점이 있다. 그러나, 도 2b의 교류전원의 입력전류(IAC) 파형도에 도시되어 있는 바와 같이, 도통시간(즉, 밸리-필 회로(40)의 충전시간)(시간 구간 t3 ~ t4, t11 ~ t12)이 비교적 짧고, 입력전류의 크기가 크다(첨예하다)는 것을 확인할 수 있다. 따라서, 도 2a 및 도 2b에 도시된 바와 같은 종래기술의 경우, THD 특성을 개선하기 위하여 별도의 전류 제한 회로가 필요하다는 문제점이 있으며, 밸리-필 회로(40)의 충전이, 입력전압(VAC)이 4개의 LED 그룹들(31~34) 모두가 구동되는 전압레벨(즉, Vf4)이 되는 시점으로부터 최대가 되는 시점까지만 이루어질 수 있다는 문제점이 있다.
다른 한편으로, 전술한 바와 같은 종래기술의 문제점들을 해결하기 위하여 MOSFET 소자 등의 능동 소자를 사용하여 에너지 충방전부의 충전 및/또는 방전을 제어하는 기술이 제안되었으나, 이러한 기술의 경우 능동 소자에서 소모되는 에너지로 인하여 충방전 손실이 발생한다는 문제점이 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 특허공개공보 제10-2012-0032509호
(특허문헌 2) 한국 특허공개공보 제10-2012-0041093호
(특허문헌 3) 한국 특허공개공보 제10-2010-0107196호
본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위한 것이다.
본 발명은 비발광구간을 제거하여 플리커 현상을 효과적으로 제거할 수 있는 이중 브리지 다이오드를 이용한 LED 구동회로, 이를 포함하는 LED 조명장치를 제공하는 것을 일 목적으로 한다.
또한, 본 발명은 제 1 구동전압을 제공하기 위한 제 1 정류부와는 별개로, 동일한 교류 전원으로부터 제 2 구동전압 제공을 위한 에너지 충방전 소자(또는 회로)를 충전하기 위한 정류 전압을 생성하는 제 2 정류부를 이용하여, LED 조명장치의 THD 특성과 역률을 동시에 개선할 수 있는, 이중 브리지 다이오드를 이용한 LED 구동회로, 이를 포함하는 LED 조명장치를 제공하는 것을 일 목적으로 한다.
또한, 본 발명은 보상구간에서 제 2 구동전압을 LED 모듈에 제공하는 제 2 구동전압 제공모듈을 수동 소자만을 이용하여 구성함으로써, 에너지 충방전 소자(또는 회로)의 충방전시 손실을 최소화할 수 있는, 이중 브리지 다이오드를 이용한 LED 구동회로, 이를 포함하는 LED 조명장치를 제공하는 것을 일 목적으로 한다.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특유의 효과를 달성하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명의 일 측면에 따르면, 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 및 상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 전파정류하여 제 2 정류전압을 생성하고, 충전구간에서 상기 생성된 제 2 정류전압을 이용하여 에너지를 충전하며, 보상구간에서 상기 LED 발광모듈에 제 2 구동전압을 제공하는 제 2 구동전압 제공모듈;을 포함하는 것을 특징으로 하는, LED 구동회로가 제안된다.
보다 바람직하게, 상기 제 2 구동전압 제공모듈은, 상기 교류전원의 제 1 출력단과 제 2 정류부의 제 1 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 1 입력단으로 출력하는 제 1 라인 커패시터; 상기 교류전원의 제 2 출력단과 상기 제 2 정류부의 제 2 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 2 입력단으로 출력하는 제 2 라인 커패시터; 상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터를 통해 입력되는 상기 조정된 교류전압을 전파정류하여 상기 제 2 정류전압을 생성 및 출력하는 제 2 정류부; 및 상기 제 2 정류부의 제 1 출력단과 제 2 출력단 사이에 연결되며, 상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전부;를 포함할 수 있다.
보다 바람직하게, 상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터는 상기 인가되는 교류전압의 위상을 지연시키고 강압하도록 구성될 수 있다.
보다 바람직하게, 상기 에너지 충방전부는, 상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전소자; 및 상기 제 1 정류모듈의 제 1 출력단과 상기 에너지 충방전소자 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압이 상기 에너지 충방전소자에 충전되지 않도록 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함할 수 있다.
보다 바람직하게, 상기 에너지 충방전소자는 충방전 커패시터로 구성될 수 있다.
보다 바람직하게, 상기 제 1 정류전압 차단부는 다이오드로 구성될 수 있다.
보다 바람직하게, 상기 제 1 라인 커패시터와 상기 제 2 라인 커패시터의 정전용량이 동일하게 구성될 수 있다.
보다 바람직하게, 상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf1 미만인 구간일 수 있다.
보다 바람직하게, 상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며, 상기 LED 구동회로는, 비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함할 수 있다.
보다 바람직하게, 상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf2 미만인 구간일 수 있다.
보다 바람직하게, 상기 제 1 라인 커패시터 또는 상기 제 2 라인 커패시터는 상기 충전구간에서 상기 인가되는 교류전압에 의해 충전되며, 상기 보상구간 중 상기 에너지 충방전부에 의해 상기 제 2 구동전압이 제공되지 않는 구간에서 방전되어 상기 제 1 정류모듈을 통해 상기 LED 발광모듈에 제 2 구동전압을 제공하도록 구성될 수 있다.
본 발명의 다른 일 측면에 따르면, 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 및 상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 변환하여 직류전압을 생성하고, 보상구간에서 상기 생성된 직류전압을 제 2 구동전압으로서 상기 LED 발광모듈에 제공하는 제 2 구동전압 제공모듈;을 포함하는 것을 특징으로 하는 LED 구동회로가 제안된다.
보다 바람직하게, 상기 제 2 구동전압 제공모듈은, 상기 교류전원으로부터 입력되는 교류전압을 변환하여 직류전압을 생성하는 전력 변환부; 및 상기 제 1 정류모듈의 제 1 출력단과 상기 전력 변환부 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함할 수 있다.
보다 바람직하게, 상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며, 상기 LED 구동회로는, 비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 전파정류하여 제 2 정류전압을 생성하고, 충전구간에서 상기 생성된 제 2 정류전압을 이용하여 에너지를 충전하며, 보상구간에서 상기 LED 발광모듈에 제 2 구동전압을 제공하는 제 2 구동전압 제공모듈; 및 비보상구간에서 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 구동되는 LED 발광모듈;을 포함하는 것을 특징으로 하는 LED 조명장치가 제안된다.
보다 바람직하게, 상기 제 2 구동전압 제공모듈은, 상기 교류전원의 제 1 출력단과 제 2 정류부의 제 1 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 1 입력단으로 출력하는 제 1 라인 커패시터; 상기 교류전원의 제 2 출력단과 상기 제 2 정류부의 제 2 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 2 입력단으로 출력하는 제 2 라인 커패시터; 상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터를 통해 입력되는 상기 조정된 교류전압을 전파정류하여 상기 제 2 정류전압을 생성 및 출력하는 제 2 정류부; 및 상기 제 2 정류부의 제 1 출력단과 제 2 출력단 사이에 연결되며, 상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전부;를 포함할 수 있다.
보다 바람직하게, 상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터는 상기 인가되는 교류전압의 위상을 지연시키고 강압하도록 구성될 수 있다.
보다 바람직하게, 상기 에너지 충방전부는, 상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전소자; 및 상기 제 1 정류모듈의 제 1 출력단과 상기 에너지 충방전소자 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압이 상기 에너지 충방전소자에 충전되지 않도록 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함할 수 있다.
보다 바람직하게, 상기 에너지 충방전소자는 충방전 커패시터로 구성될 수 있다.
보다 바람직하게, 상기 제 1 정류전압 차단부는 다이오드로 구성될 수 있다.
보다 바람직하게, 상기 제 1 라인 커패시터와 상기 제 2 라인 커패시터의 정전용량이 동일할 수 있다.
보다 바람직하게, 상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf1 미만인 구간일 수 있다.
보다 바람직하게, 상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며, 상기 LED 조명장치는, 상기 비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함하고, 상기 LED 발광모듈은 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 순차구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 적어도 하나의 LED 그룹이 구동되도록 구성될 수 있다.
보다 바람직하게, 상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf2 미만인 구간일 수 있다.
보다 바람직하게, 상기 제 1 라인 커패시터 또는 상기 제 2 라인 커패시터는 상기 충전구간에서 상기 인가되는 교류전압에 의해 충전되며, 상기 보상구간 중 상기 에너지 충방전부에 의해 상기 제 2 구동전압이 제공되지 않는 구간에서 방전되어 상기 제 1 정류모듈을 통해 상기 LED 발광모듈에 제 2 구동전압을 제공하며, 상기 LED 모듈은 상기 보상구간 중 상기 제 2 구동전압이 제공되지 않는 구간에서 상기 제 2 구동전압을 제공받아 구동되도록 구성될 수 있다.
본 발명의 또 다른 일 측면에 따르면, 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 변환하여 직류전압을 생성하고, 보상구간에서 상기 생성된 직류전압을 제 2 구동전압으로서 상기 LED 발광모듈에 제공하는 제 2 구동전압 제공모듈; 및 비보상구간에서 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 구동되는 LED 발광모듈;을 포함하는 것을 특징으로 하는 LED 조명장치가 제안된다.
보다 바람직하게, 상기 제 2 구동전압 제공모듈은, 상기 교류전원으로부터 입력되는 교류전압을 변환하여 직류전압을 생성하는 전력 변환부; 및 상기 제 1 정류모듈의 제 1 출력단과 상기 전력 변환부 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함할 수 있다.
보다 바람직하게, 상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며, 상기 LED 조명장치는, 상기 비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함하고, 상기 LED 발광모듈은 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 순차구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 적어도 하나의 LED 그룹이 구동되도록 구성될 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 비발광구간을 제거하여 플리커 현상을 제거할 수 있다는 효과를 기대할 수 있다.
또한, 본 발명에 따르면, 제 1 구동전압을 제공하기 위한 제 1 정류부와는 별개로, 동일한 교류 전원으로부터 제 2 구동전압 제공을 위한 에너지 충방전 소자(또는 회로)를 충전하기 위한 정류 전압을 생성하는 제 2 정류부를 이용함으로써, LED 조명장치의 THD 특성과 역률을 동시에 개선할 수 있는 효과를 기대할 수 있다.
또한, 본 발명에 따르면, 제 2 구동전압 제공모듈을 수동 소자만을 이용하여 구성함으로써, 에너지 충방전 소자(또는 회로)의 충방전시 손실을 최소화할 수 있다는 효과를 기대할 수 있다.
도 1a는 종래기술에 따른 평활 커패시터를 포함하는 LED 조명장치의 구성 블록도.
도 1b는 도 1a에 도시된 LED 조명장치에 입력되는 교류전원의 전압 파형, 교류전원의 전류 파형 및 LED 그룹에 실제 인가되는 구동전압의 파형을 설명하기 위한 파형도.
도 2a는 밸리-필 회로를 포함하는 종래기술에 따른 LED 조명장치의 구성 블록도.
도 2b는 도 2a에 도시된 LED 조명장치에 입력되는 교류전원의 전압 파형, 교류전원의 전류 파형, LED 그룹에 실제 인가되는 구동전압의 파형 및 LED 구동전류를 설명하기 위한 파형도.
도 3은 본 발명의 바람직한 일 실시예에 따르는 LED 조명장치의 개략적인 구성 블록도.
도 4는 본 발명의 바람직한 일 실시예에 따르는 LED 조명장치의 상세 구성 블록도.
도 5a는 본 발명의 바람직한 일 실시예에 따르는 제 2 순방향 전압레벨 보상을 수행하도록 구성된 LED 조명장치의 제 1 정류모듈에 입력되는 교류전압, 제 2 2정류부에 입력되는 조정된 교류전압, 교류전원으로부터 입력되는 교류전류, LED 모듈에 인가되는 구동전압, LED 구동전류를 설명하기 위한 파형도.
도 5b는 본 발명의 바람직한 일 실시예에 따르는 제 2 순방향 전압레벨 보상을 수행하도록 구성된 LED 조명장치의 제 1 라인 커패시터 및 제 2 라인 커패시터의 충전 전류/방전 전류, 에너지 충방전소자의 충전 전류/방전 전류를 설명하기 위한 파형도.
도 6은 본 발명의 다른 바람직한 일 실시예에 따르는 LED 조명장치의 상세 구성 블록도.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는 적절하게 설명된다면 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
[본 발명의 바람직한 실시예]
본 발명의 실시예에서, 용어 'LED 그룹'이란 복수의 LED들(또는 복수의 발광셀들)이 직렬/병렬/직병렬로 연결되어, LED 구동모듈의 제어에 따라 하나의 단위로서 동작이 제어되는(즉, 같이 점등/소등되는) LED들의 집합을 의미한다.
또한, 용어 '제 1 순방향 전압 레벨(Vf1)'은 제 1 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미하며, 용어 '제 2 순방향 전압 레벨(Vf2)'은 직렬로 연결된 제 1 LED 그룹 및 제 2 LED 그룹을 구동할 수 있는 임계 전압레벨을 의미하고, 용어 '제 3 순방향 전압 레벨(Vf3)'은 직렬로 연결된 제 1 내지 제 3 LED 그룹들을 구동할 수 있는 임계 전압레벨을 의미한다. 즉, '제 n 순방향 전압 레벨(Vfn)'은 직렬로 연결된 제 1 내지 제 n LED 그룹들을 구동할 수 있는 임계 전압레벨을 의미한다.
또한, 용어 'LED 구동모듈'이란 교류전압을 입력받아 LED를 구동 및 제어하는 모듈을 의미하며, 본 명세서 내에서 정류전압을 이용해 LED의 구동을 제어하는 실시예를 기준으로 설명하고 있으나 이에 한정되는 것은 아니며, 포괄적이고 광의적으로 해석되어야 한다.
또한, 용어 '순차구동 방식'이란 시간에 따라 크기가 변화하는 입력전압을 인가받아 LED를 구동하는 LED 구동모듈에 있어, 인가되는 입력전압의 증가에 따라 복수의 LED 그룹들을 순차적으로 발광시키고, 인가되는 입력전압의 감소에 따라 복수의 LED 그룹들을 순차적으로 소등시키는 구동방식을 의미한다.
또한, 용어 '제 1 구동전압'이란 입력전압 자체 또는 입력전압이 일정하게 처리되어(예를 들어, 정류회로 등의 과정을 통한 처리) LED 그룹들에 1차적으로 공급되는 구동전압을 의미한다. 또한, 용어 '제 2 구동전압'이란 입력전압이 에너지 저장 소자에 저장된 후, 에너지 저장 소자로부터 LED 그룹들에 2차적으로 공급되는 구동전압을 의미한다. 이러한 제 2 구동전압은, 예시적으로, 입력전압이 캐패시터에 저장된 후, 충전된 캐패시터로부터 LED 그룹들에 공급되는 구동전압일 수 있다. 따라서, 특별히 '제 1 구동전압' 또는 '제 2 구동전압'으로 구별되어 지칭되는 경우 외에, 용어 '구동전압'은 LED 그룹들에 공급되는 제 1 구동전압 및/또는 제 2 구동전압을 포괄하는 의미이다.
또한, 용어 '보상구간'이란 순차구동 방식에 있어, 입력전압(정류전압)의 전압레벨이 미리 설정된 순방향 전압레벨 미만인 구간으로서 LED 그룹에 구동전류를 공급하지 못하는 구간을 의미한다. 예를 들어, 제 1 순방향 전압레벨(Vf1) 보상구간은 정류전압의 전압레벨이 Vf1 미만인 구간을 의미한다. 이 경우, 보상구간은 비발광 구간이 된다. 또한, 제 2 순방향 전압레벨(Vf2) 보상구간은 정류전압의 전압레벨이 Vf2 미만인 구간을 의미한다. 따라서 제 n 순방향 전압레벨(Vfn) 보상구간은 정류전압의 전압레벨이 Vfn 미만인 구간을 의미한다. 또한, 용어 제 1 순방향 전압레벨(Vf1) 보상이란 제 1 순방향 전압레벨(Vf1) 보상구간에서 제 2 구동전압을 LED 그룹에 공급함으로써 LED 그룹에 구동전류를 공급하는 것을 의미하며, 용어 제 2 순방향 전압레벨(Vf2) 보상이란 제 2 순방향 전압레벨(Vf2) 보상구간에서 제 2 구동전압을 LED 그룹에 공급하는 것을 의미한다. 따라서, 제 n 순방향 전압레벨(Vfn) 보상이란 제 n 순방향 전압레벨(Vfn) 보상구간에서 제 2 구동전압을 LED 그룹에 공급하는 것을 의미한다.
또한, 용어 '비보상구간'(또는 '정상 동작구간')이란 순차구동 방식에 있어, 입력전압(정류전압)의 전압레벨이 미리 설정된 미리 설정된 순방향 전압레벨 이상인 구간으로서, 입력전압(제 1 구동전압)이 LED 그룹에 공급되어 LED 그룹(들)이 발광하는 구간을 의미한다. 예시적으로, 제 1 순방향 전압레벨(Vf1) 보상을 수행하는 실시예에 있어 '비보상구간'(또는 '정상 동작구간')은 입력전압의 전압레벨이 Vf1 이상인 구간을 의미하며, 제 2 순방향 전압레벨(Vf2) 보상을 수행하는 실시예에 있어 '비보상구간'(또는 '정상 동작구간')은 입력전압의 전압레벨이 Vf2 이상인 구간을 의미한다. 따라서, 제 n 순방향 전압레벨(Vfn) 보상을 수행하는 실시예에 있어 '비보상구간'(또는 '정상 동작구간')은 입력전압의 전압레벨이 Vfn 이상인 구간을 의미한다.
또한, 용어 'LED 그룹 전압레벨'이란 특정 LED 그룹의 양단에 걸리는 전압레벨을 의미한다. 예를 들어, 제 1 LED 그룹 전압레벨이란, 제 1 LED 그룹의 양단에 걸리는 전압레벨을 의미하며, 제 2 LED 그룹 전압레벨이란, 제 2 LED 그룹의 양단에 걸리는 전압레벨을 의미한다. 따라서, '제 n LED 그룹 전압레벨'이란, 제 n LED 그룹의 양단에 걸리는 전압레벨을 의미한다.
또한, 본 명세서 내에서 임의의 특정 전압, 특정 시점, 특정 온도 등을 나타내기 위하여 사용되는 V1, V2, V3,..., t1, t2,..., T1, T2, T3, 등의 용어는 절대적인 값을 나타내기 위하여 사용되는 것이 아니라 서로를 구분하기 위하여 사용되는 상대적인 값이다.
LED 조명장치의 개괄
도 3은 본 발명의 바람직한 일 실시예에 따르는 LED 조명장치의 개략적인 구성 블록도이다. 이하에서, 도 3을 참조하여 본 발명에 따른 LED 조명장치(1000)의 구성과 기능에 대하여 개괄적으로 살펴보도록 한다.
먼저, 본 발명에 따른 LED 조명장치(1000)는 제 1 정류모듈(1100), LED 구동모듈(1200) 및 제 2 구동전압 제공모듈(1400)을 포함하는 LED 구동회로(1500)와 LED 구동회로의 제어에 따라 구동되는 LED 발광모듈(1300)을 포함할 수 있다.
LED 구동회로(1500)는 교류 전원으로부터 교류전압(VAC)을 입력받고, 입력된 교류전압을 정류하여 제 1 정류전압(Vrec1)을 생성한다. 또한, LED 구동회로(1500)는 생성된 제 1 정류전압(Vrec1)을 제 1 구동전압으로써 LED 발광모듈(1300)에 제공함으로써 LED 발광모듈(1300)의 구동을 제어하도록 구성된다. 예시적인 목적으로, 그리고, 명료한 이해를 위하여, 이하에서, 본 발명에 따른 LED 구동회로(1500)가 입력되는 교류전압(VAC)을 정류한 후, 생성된 정류전압을 이용하여 LED 발광모듈(1300)의 구동을 제어하는 실시예를 기준으로 설명한다. 따라서, 이러한 실시예에 있어, 제 1 구동전압은 제 1 정류전압(Vrec1)이다. 그러나, 본 발명에 따른 LED 구동회로(1500)가 제 1 정류전압(Vrec1)을 이용하는 것에 한정되는 것은 아니며, 오히려, 순차구동방식이 채택될 수 있는, 즉, 입력전압의 크기가 시간에 따라 변화하는 다양한 경우에 있어 본 발명에 따른 LED 구동회로(1500)가 적용될 수 있음에 유의하여야 한다. 예를 들어, 본 발명에 따른 LED 구동회로(1500)는 교류전압(VAC)을 직접적으로 인가받아 순차구동될 수 있는 교류 LED(예시적으로, LED 그룹들이 서로 역병렬로 배치된 LED)의 구동에 이용될 수도 있다.
또한, 본 발명에 따른 LED 구동회로(1500)는 교류 전원으로부터 교류전압(VAC)을 입력받고, 입력된 교류전압을 정류하여 제 2 정류전압(Vrec2)을 생성하며, 전술한 바와 같이 비보상구간 동안 생성된 제 2 정류전압(Vrec2)을 이용하여 에너지를 충전하고, 전술한 바와 같은 보상구간 동안 저장된 에너지를 제 2 구동전압으로서 LED 발광모듈(1300)에 공급하는 기능을 함께 수행하도록 구성된다. 이러한 구성으로 인하여, 본 발명에 따른 LED 구동회로(1500)는 LED 발광모듈(1300)의 비발광구간을 없앰으로써 플리커 현상을 개선할 수 있다.
전술한 바와 같은 기능을 수행하기 위하여, 본 발명에 따른 LED 조명장치(1000)는, 도 3에 도시된 바와 같이, 제 1 정류모듈(1100), LED 구동모듈(1200), 제 2 구동전압 제공모듈(1400) 및 LED 발광모듈(1300)을 포함할 수 있다.
먼저, LED 발광모듈(1300)은 복수의 LED 그룹들로 구성될 수 있으며, LED 발광모듈(1300)에 포함된 복수의 LED 그룹들은, 비보상구간에서 LED 구동모듈(1200)의 제어에 따라 순차적으로 발광되고, 순차적으로 소등된다. 도 3 및 도 4에는 제 1 LED 그룹(1301), 제 2 LED 그룹(1302), 제 3 LED 그룹(1303) 및 제 4 LED 그룹(1304)을 포함하고 있는 LED 발광모듈(1300)이 개시되어 있으나, 필요에 따라 LED 발광모듈(1300)에 포함되는 LED 그룹의 수가 다양하게 변경될 수 있음은 당업자에게 자명할 것이다.
한편, 실시예를 구성하기에 따라, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302), 제 3 LED 그룹(1303) 및 제 4 LED 그룹(1304)은 각각 서로 상이한 순방향 전압 레벨을 가질 수도 있다. 예를 들어, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302), 제 3 LED 그룹(1303) 및 제 4 LED 그룹(1304)이 각각 상이한 수의 LED 소자를 포함하여 구성되는 경우, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302), 제 3 LED 그룹(1303) 및 제 4 LED 그룹(1304)은 서로 다른 순방향 전압 레벨을 가지게 될 것이다.
본 발명에 따른 제 1 정류모듈(1100)은 외부 전원으로부터 입력되는 교류전압(VAC)을 정류하여 제 1 정류전압(Vrec1)을 생성 및 출력하도록 구성된다. 이러한 제 1 정류모듈(1100)로서 전파 정류회로, 반파 정류회로 등 공지된 다양한 정류회로 중 하나가 이용될 수 있다. 제 1 정류모듈(1100)로부터 출력되는 제 1 정류전압(Vrec1)은 LED 발광모듈(1300), LED 구동모듈(1200)로 출력된다. 도 3 및 도 4에는 4개의 다이오드(D1, D2, D3, D4)로 구성된 브리지 전파 정류회로가 도시되어 있다.
본 발명에 따른 LED 구동모듈(1200)은 입력되는 구동전압(비보상구간에서는 제 1 구동전압(제 1 정류전압(Vrec1)), 보상구간에서는 제 2 구동전압)의 전압레벨을 판단하고, 판단된 구동전압의 크기에 따라 LED 발광모듈(1300)(보다 구체적으로는 LED 발광모듈(1300)에 포함되는 복수의 LED 그룹들(1301~1304) 각각)에 제공될 LED 구동신호의 크기, LED 구동신호의 제공시점 및 차단시점을 결정한다. 또한, LED 구동모듈(1200)은 결정된 LED 구동신호의 제공시점에 하나 또는 복수의 LED 그룹(들)(1301~1304 중 하나 이상)으로 결정된 크기를 갖는 LED 구동신호를 제공하며, 결정된 LED 구동신호의 차단시점에 하나 또는 복수의 LED 그룹(들)(1301~1304 중 하나 이상)으로의 LED 구동신호의 제공을 중지함으로써, LED 발광모듈(1300)의 구동을 제어하도록 구성된다. 이러한 본 발명에 따른 LED 구동모듈(1200)의 상세 구성과 기능에 대해서는 도 4를 참조하여 후술하도록 한다.
본 발명에 따른 제 2 구동전압 제공모듈(1400)은 교류전원에 제 1 정류모듈(1100)과 병렬로 연결되며, 교류전원으로부터 인가되는 교류전압을 전파정류하여 제 2 정류전압(Vrec2)을 생성하고, 충전구간에서 생성된 제 2 정류전압(Vrec2)을 이용하여 에너지를 저장하며, 보상구간에서 저장된 에너지를 제 2 구동전압으로서 LED 발광모듈(1300)에 제공하는 기능을 수행하도록 구성된다. 이러한 본 발명에 따른 제 2 구동전압 제공모듈(1400)의 상세 구성과 기능에 대해서는 도 4를 참조하여 후술하도록 한다.
LED 구동모듈의 구성과 기능
도 4는 본 발명의 바람직한 일 실시예에 따르는 LED 조명장치의 상세 구성 블록도이다. 이하에서, 도 4를 참조하여, 본 발명에 따른 LED 조명장치(1000)의 상세 구성과 기능에 대하여 설명하도록 한다.
LED 구동제어 기능
도 4에 도시된 바와 같이, 본 발명에 따른 LED 구동모듈(1200)은 LED 그룹들(1301~1304)의 구동 및 제어를 위하여, 복수의 LED 그룹 구동부들(1220) 및 LED 구동 제어부(1210)를 포함할 수 있다.
먼저, LED 구동 제어부(1210)는 입력되는 구동전압(비보상구간에서 제 1 정류모듈(1100)로부터 입력되는 제 1 구동전압 또는 보상구간에서 제 2 구동전압 제공모듈(1400)로부터 입력되는 제 2 구동전압)의 크기를 판단하고, 구동전압의 크기에 따라 LED 그룹들(1301~1304) 각각에 제공될 LED 구동신호의 크기, LED 구동신호의 제공시점 및 차단시점을 결정하도록 구성된다. 또한, LED 구동 제어부(1210)는 결정된 LED 그룹별 LED 구동신호의 제공시점에 LED 그룹 구동부들(1220)을 제어하여 해당 LED 그룹(들)으로 LED 구동신호를 제공함으로써 해당 LED 그룹을 점등시키고, 결정된 LED 그룹별 LED 구동신호의 차단시점에 LED 그룹 구동부들(1220)을 제어하여 해당 LED 그룹(들)으로의 LED 구동신호의 제공을 차단함으로써 해당 LED 그룹을 소등하도록 구성된다.
복수의 LED 그룹 구동부들(1220)은 복수의 LED 그룹들(1301~1304)에 1대1로 대응되며, LED 구동 제어부(1210)의 제어에 따라 복수의 LED 그룹들(1301~1304) 각각에 LED 구동신호를 제공하거나 또는 LED 구동신호의 제공을 차단하는 기능을 수행하게 된다. 이를 보다 상세하게 살펴보면, 도 4에 도시된 바와 같이, 제 1 LED 그룹 구동부(1221)는 제 1 LED 그룹(1301)에 연결되어 있으며, LED 구동 제어부(1210)의 제어에 따라 제 1 LED 그룹(1301)으로 LED 구동신호를 제공하거나 또는 차단하도록 구성된다. 유사하게, 제 2 LED 그룹 구동부(1222)는 제 2 LED 그룹(1302)에 연결되고, 제 3 LED 그룹 구동부(1223)는 제 3 LED 그룹(1303)에 연결되어, 대응하는 LED 그룹으로의 LED 구동신호 제공 및 차단 기능을 수행하도록 구성된다. 또한, 마찬가지로, 제 4 LED 그룹 구동부(1224)는 제 4 LED 그룹(1304)에 연결되어 있으며, LED 구동 제어부(1210)의 제어에 따라 제 4 LED 그룹(1304)으로 LED 구동신호를 제공하거나 또는 차단하도록 구성된다.
전술한 바와 같은 LED 그룹 구동부들(1221~1224)은 각기 BJT(bipolar junction transistor), FET(field effect transistor) 등의 전자식 스위칭 소자를 이용하여 구현될 수 있으며, 그 종류에 제한을 받지 않는다. LED 그룹 구동부들(1221~1224)이 전자식 스위칭 소자를 이용하여 구현되는 경우, LED 구동 제어부(1210)는 펄스 형태의 제어신호를 이용하여 LED 그룹 구동부들(1221~1224) 각각의 턴-온 및 턴-오프를 제어함으로써, 특정 LED 그룹으로의 LED 구동신호 제공 및 차단을 제어하게 된다.
한편, 보다 바람직하게, 본 발명에 따른 LED 그룹 구동부들(1221~1224)은 LED 구동 제어부(1210)의 제어에 따라 각각 경로(P1, P2, P3, P4)의 온/오프를 제어하고, 동시에 정전류 제어기능을 수행할 수 있도록 구성되는 것이 바람직하다. 이러한 정전류 제어기능을 수행하기 위하여, 본 발명에 따른 LED 그룹 구동부들(1221~1224)은 각각 정전류 제어부(미도시)를 포함할 수 있다. 정전류 제어부는 다양한 공지된 기술을 이용하여 구현될 수 있다. 예를 들어, 본 발명에 따른 정전류 제어부는 전류 검출하기 위한 센싱 저항, 기준 전류 값과 현재 검출된 전류 값을 비교하기 위한 차동 증폭기, 차동 증폭기의 출력에 따라 경로의 연결을 제어하며, 또한 경로가 연결된 경우 경로를 통해 흐르는 LED 구동전류 값을 정전류로 제어하도록 구성되는 스위칭 소자를 포함할 수 있다.
이를 구체적으로 살펴보면, 구동전압(Vp)의 전압레벨이 제 1 순방향 전압 레벨(Vf1) 이상이고 제 2 순방향 전압 레벨(Vf2) 미만인 구간에서, LED 구동 제어부(1210)의 제어에 따라 제 1 LED 그룹 구동부(1201)가 턴-온되어 제 1 전류경로(P1)가 연결되며, 이에 따라 제 1 전류경로(P1)를 통해 제 1 LED 구동전류(ILED1)가 흐른다. 제 1 LED 그룹 구동부(1201)는 제 1 LED 구동신호(구동전류)(ILED1)를 검출하고, 제 1 LED 구동신호(ILED1)가 제 1 기준전류(IREF1)로 유지될 수 있도록 정전류 제어기능을 수행하게 된다.
유사하게, 구동전압(Vp)의 전압레벨이 제 2 순방향 전압 레벨(Vf2) 이상이고 제 3 순방향 전압 레벨(Vf3) 미만인 구간에서, LED 구동 제어부(1210)의 제어에 따라 제 1 LED 그룹 구동부(1201)가 턴-오프되고 제 2 LED 그룹 구동부(1202)가 턴-온되어 제 2 전류경로(P2)가 연결되며, 이에 따라 제 2 전류경로(P2)를 통해 제 2 LED 구동전류(ILED2)가 흐른다. 제 2 LED 그룹 구동부(1202)는 제 2 LED 구동신호(구동전류)(ILED2)를 검출하고, 제 2 LED 구동신호(ILED2)가 제 2 기준전류(IREF2)로 유지될 수 있도록 정전류 제어기능을 수행하게 된다.
또한, 구동전압(Vp)의 전압레벨이 제 3 순방향 전압 레벨(Vf3) 이상이고 제 4 순방향 전압 레벨(Vf4) 미만인 구간에서, LED 구동 제어부(1210)의 제어에 따라 제 2 LED 그룹 구동부(1202)가 턴-오프되고 제 3 LED 그룹 구동부(1203)가 턴-온되어 제 3 전류경로(P3)가 연결되며, 이에 따라 제 3 전류경로(P3)를 통해 제 3 LED 구동전류(ILED3)가 흐른다. 제 3 LED 그룹 구동부(1203)는 제 3 LED 구동신호(구동전류)(ILED3)를 검출하고, 제 3 LED 구동신호(ILED3)가 제 3 기준전류(IREF3)로 유지될 수 있도록 정전류 제어기능을 수행하게 된다.
마지막으로, 구동전압(Vp)의 전압레벨이 제 4 순방향 전압 레벨(Vf4) 이상인 구간에서, LED 구동 제어부(1210)의 제어에 따라 제 3 LED 그룹 구동부(1203)가 턴-오프되고 제 4 LED 그룹 구동부(1204)가 턴-온되어 제 4 전류경로(P4)가 연결되며, 이에 따라 제 4 전류경로(P4)를 통해 제 4 LED 구동전류(ILED4)가 흐른다. 제 4 LED 그룹 구동부(1204)는 제 4 LED 구동신호(구동전류)(ILED4)를 검출하고, 제 4 LED 구동신호(ILED4)가 제 4 기준전류(IREF4)로 유지될 수 있도록 정전류 제어기능을 수행하게 된다.
한편, 본 발명에 따른 LED 구동회로(1500)는 역률(Power Factor, PF)과 전고조파 왜곡(Total Harmonic Distortion, THD) 특성을 향상시키기 위하여, LED 구동전류의 파형이 정류전압의 파형에 근사화될 수 있도록 제 1 기준전류(IREF1), 제 2 기준전류(IREF2), 제 3 기준전류(IREF3), 제 4 기준전류(IREF4)의 값을 서로 상이하게 설정하여, 제 1 LED 구동전류(ILED1) 내지 제 4 LED 구동전류(ILED4)를 사인파형에 근사화할 수 있도록 구성될 수 있다. 예를 들어, 제 4 LED 그룹 구동부(1224)는 제 4 구동 제어신호(예를 들어, 4V)를 인가받아 동작하며, 제 4 LED 구동전류(ILED4)를 100mA로 정전류 제어하도록 구성될 수 있다. 또한, 제 3 LED 그룹 구동부(1223)는 제 3 구동 제어신호(예를 들어, 3V)를 인가받아 동작하며, 제 3 LED 구동전류(ILED3)를 제 4 LED 구동전류(ILED4)의 80%~95%인 80mA~95mA 중 어느 하나의 값으로 정전류 제어하도록 구성될 수 있다. 유사하게, 제 2 LED 그룹 구동부(1222)는 제 2 구동 제어신호(예를 들어, 2V)를 인가받아 동작하며, 제 2 LED 구동전류(ILED2)를 제 4 LED 구동전류(ILED4)의 65%~80%인 65mA~80mA 중 어느 하나의 값으로 정전류 제어하도록 구성될 수 있다. 또한, 제 1 LED 그룹 구동부(1221)는 제 1 구동 제어신호(예를 들어, 1V)를 인가받아 동작하며, 제 1 LED 구동전류(ILED1)를 제 4 LED 구동전류(ILED4)의 30%~65%인 30mA~65mA 중 어느 하나의 값으로 정전류 제어하도록 구성될 수 있다.
제 1 실시예에 따른 제 2 구동전압 제공모듈의 구성과 기능
이하에서, 도 4를 참조하여, 본 발명에 따른 제 2 구동전압 제공모듈(1400)의 구성과 기능에 대하여 살펴보도록 한다. 도 4에 도시된 바와 같이, 본 발명에 따른 제 2 구동전압 제공모듈(1400)은 상기 제 2 구동전압 제공모듈은, 제 1 라인 커패시터(CL1), 제 2 라인 커패시터(CL2), 제 2 정류부(1420), 에너지 충방전부(1430)를 포함할 수 있다.
종래기술과 구별되는 본 발명에 따른 제 2 구동전압 제공모듈(1400)의 가장 큰 특징은 교류전원으로부터 입력되는 교류전압(VAC)을 전파정류하여 제 2 정류전압(Vrec2)을 생성하는 별도의 제 2 정류부(1420)를 포함하여 구성된다는 점이다. 즉, 본 발명은 LED 발광모듈(1300)에 제 1 구동전압으로서 제 1 정류전압(Vrec1)을 공급하는 제 1 정류모듈(100)과 에너지 충방전부(1430)에 제 2 정류전압(Vrec2)을 공급하는 제 2 정류부(1420)를 분리함으로써, 역률 특성과 THD 특성을 동시에 개선할 수 있도록 구성된다.
제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)는 교류전원과 제 2 정류부(1420) 사이에 위치되어, 교류전원과 충전용 직류전원(제 2 정류전압(Vrec2))을 분리하기 위하여 구비된다. 보다 바람직하게, 제 1 라인 커패시터(CL1)는 교류전원의 제 1 출력단과 제 2 정류부의 제 1 입력단 사이에 직렬로 연결되며, 제 2 라인 커패시터(CL2)는 교류전원의 제 2 출력단과 상기 제 2 정류부의 제 2 입력단 사이에 직렬로 연결된다.
또한, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)는 교류전원의 교류전압(VAC)을 조정하여 조정된 교류전압(VAC')을 제 2 정류부(1420)로 출력하는 기능을 더 수행하게 된다. 보다 구체적으로, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)는 교류전원의 교류전압(VAC)의 크기를 줄이고, 위상을 지연시켜 인가되는 교류전압(VAC)을 조정하고, 조정된 교류전압(VAC')을 제 2 정류부(1420)로 출력하도록 구성된다. 잠깐, 도 5 a를 참조하면, 도 5a의 최상단에는 제 1 정류모듈(1100) 및 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)에 인가되는 교류전원의 교류전압(VAC) 파형이 도시되어 있으며, 그 아래에는 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)에 의해 크기가 줄어들고 위상이 지연되어 제 2 정류부(1420)로 입력되는 조정된 교류전압(VAC')의 파형이 도시되어 있다. 2개의 도면들을 통해 확인할 수 있는 바와 같이, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)에 의해 인가되는 교류전압(VAC)의 위상과 크기가 조정되는 것을 확인할 수 있다.
또한, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)는 충방전 커패시터(Cdc1)와의 관계에 있어, 전압을 분배하는 기능을 수행하게 된다. 즉, 충방전 커패시터(Cdc1)의 충전 전압은 기본적으로 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2) 및 충방전 커패시터(Cdc1)의 임피던스 관계에서 결정되며, LED 구동모듈(1200)과의 관계에 있어 LED 그룹의 순방향 전압과 LED 구동전류에 의해 결정될 수 있다. 즉, 충방전 커패시터(Cdc1)의 정전용량은 제 2 구동전압을 이용해 구동하고자 하는 LED 그룹의 종류와 수 및 보상구간의 길이에 따라 결정될 수 있다. 전술한 바와 같이, '보상구간'이란 순차구동 방식에 있어, 제 1 구동전압의 전압레벨이 미리 설정된 순방향 전압레벨 미만인 구간을 의미한다. 충방전 커패시터(Cdc1)의 정전용량은 이러한 보상구간에서 제 2 구동전압을 공급해야 하는 LED 그룹들의 순방향 전압레벨의 합에 기초하여 결정될 수 있다. 예를 들어, 충방전 커패시터(Cdc1)가 보상구간에서 제 1 LED 그룹(1301)에 제 2 구동전압을 공급해야 하는 경우(즉, 제 1 순방향 전압레벨(Vf1) 보상을 수행하도록 구성된 경우), 동작 중 충방전 커패시터(Cdc1) 전압의 최소 값이 Vf1가 되도록 충방전 커패시터(Cdc1)의 정전용량이 결정되어야 한다. 이러한 경우, 제 1 구동전압의 전압레벨이 Vf1 이상인 구간에서 충방전 커패시터(Cdc1)가 충전되며, 제 1 구동전압의 전압레벨이 Vf1 미만인 구간에서 충방전 커패시터(Cdc1)가 방전되어 제 2 구동전압을 공급하게 된다. 다른 예로서, 충방전 커패시터(Cdc1)가 보상구간에서 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)에 제 2 구동전압을 공급해야 하는 경우(즉, 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성된 경우), 동작 중 충방전 커패시터(Cdc1) 전압의 최소 값이 Vf2가 되도록 충방전 커패시터(Cdc1)의 정전용량이 결정되어야 한다. 이러한 경우, 제 1 구동전압의 전압레벨이 Vf2 이상인 구간에서 충방전 커패시터(Cdc1)가 충전되며, 제 1 구동전압의 전압레벨이 Vf2 미만인 구간에서 충방전 커패시터(Cdc1)가 방전되어 제 2 구동전압을 공급하게 된다. 이하에서는 설명과 이해의 편의를 위하여, 충방전 커패시터(Cdc1)가 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성된 실시예를 기준으로 설명하나, 본 발명이 이에 한정되는 것은 아니며 본 발명의 범위 내에서 다양한 변형과 변용이 가능하다.
한편, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2) 또한 커패시터의 기능, 즉, 충전 및 방전기능을 수행할 수 있다. 따라서, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)는 입력되는 교류전압에 의해 충전되고, 보상구간 중 충방전 커패시터(Cdc1)에 의해 제 2 구동전압이 제공되지 않는 구간에서 방전되어 제 1 정류모듈(1100)을 통해 LED 발광모듈(1300)에 제 2 구동전압을 제공하도록 구성될 수 있다. 도 5b를 참조하면, 도 5b의 최상단에는 제 1 라인 커패시터(CL1)의 충전 전류 및 방전 전류의 파형이 도시되어 있으며, 그 하단에는 제 2 라인 커패시터(CL2)의 충전 전류 및 방전 전류의 파형이 도시되어 있고, 최하단에는 충방전 커패시터(Cdc1)의 충전 전류 및 방전 전류의 파형이 도시되어 있다. 도 5b를 참조하면, 제 1 라인 커패시터(CL1)는 교류전원의 양의 반주기 동안 충전 전류(Ic)가 인가되어 충전되며, 교류전원의 음의 반주기의 보상구간(도 5a 및 5b에 도시된 실시예의 경우 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성됨) 중 충방전 커패시터(Cdc1)의 방전이 종료되는 시점(t7)에서부터 충전 전류(Ic)가 인가되는 시점(t8)까지 방전 전류(Idis)를 방전하여 제 2 구동전압을 LED 발광모듈(1300)에 제공하도록 구성되어 있음을 확인할 수 있다. 제 1 라인 커패시터(CL1)로부터 방전되는 전류는 제 1 정류모듈(1100)의 다이오드(D1)를 통해 LED 발광모듈(1300)에 입력된다. 유사하게, 도 5b를 참조하면, 제 2 라인 커패시터(CL2)는 교류전원의 음의 반주기 동안 충전 전류(Ic)가 인가되어 충전되며, 교류전원의 양의 반주기의 보상구간(즉, 제 1 구동전압이 Vf2 미만인 구간) 중 충방전 커패시터(Cdc1)의 방전이 종료되는 시점(t0)에서부터 충전 전류(Ic)가 인가되는 시점(t1)까지 방전 전류(Idis)를 방전하여 제 2 구동전압을 LED 발광모듈(1300)에 제공하도록 구성되어 있음을 확인할 수 있다. 제 2 라인 커패시터(CL2)로부터 방전되는 전류는 제 1 정류모듈(1100)의 다이오드(D3)를 통해 LED 발광모듈(1300)에 입력된다. 따라서, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)가 소정의 구간에서 제 2 구동전압을 LED 발광모듈(1300)에 공급하도록 구성되므로, 충방전 커패시터(Cdc1)의 정전용량은 이러한 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)의 정전용량을 고려해서 결정되어야 하며, 이러한 경우, 제 2 순방향 전압레벨(Vf2) 보상을 수행하기 위하여 요구되는 충방전 커패시터(Cdc1)의 정전용량이 줄어들게 된다. 충방전 커패시터(Cdc1), 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)의 충전 및 방전에 대한 상세한 설명은 도 5a 및 도 5b를 참조하여 후술하도록 한다. 또한, 전술한 바와 같은 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)는 바람직하게 필름 커패시터, 적층 세라믹 커패시터(MLCC)를 이용해 구현될 수 있으며, 충방전 커패시터(Cdc1)는 전해 커패시터, 필름 커패시터, 적층 세라믹 커패시터(MLCC)를 이용해 구현될 수 있다.
한편, 제 2 정류부(1420)는 4개의 다이오드(D5, D6, D7, D8)로 구성된 풀-브리지 다이오드 정류부로서, 제 1 라인 커패시터(CL1)와 제 2 라인 커패시터(CL2)를 통해 위상과 크기가 조정된 교류전압(VAC')을 입력받고 전파정류하여 제 2 정류전압(Vrec2)을 생성/출력하도록 구성된다. 제 2 정류부(1420)의 구성과 기능 자체는 전술한 제 1 정류모듈(1100)의 구성 및 기능과 동일하므로, 제 2 정류부(1420)에 대한 더 이상의 상세한 설명은 생략하도록 한다.
에너지 충방전부(1430)는 제 2 정류부(1420)의 제 1 출력단과 제 2 출력단 사이에 연결되며, 충전구간에서 제 2 정류부(1420)로부터 출력되는 제 2 정류전압(Vrec2)을 인가받아 충전되고, 보상구간에서 방전되어 제 2 구동전압을 제공하도록 구성된다. 보다 바람직하게, 본 발명에 따른 에너지 충방전부(1430)는 에너지 충방전소자(Cdc1) 및 제 1 정류전압 차단부(DB1)를 포함할 수 있다. 도 4에 있어, 에너지 충방전소자가 충방전 커패시터(Cdc1)로 구현된 실시예가 도시되어 있으나, 본 발명에 따른 에너지 충방전부(1430)가 커패시터로 한정되는 것은 아니며, 다양한 에너지 충방전 기능을 가지고 있는 소자 또는 회로가 본 발명에 따른 에너지 충방전부(1430)로서 이용될 수 있다. 제 1 정류전압 차단부(DB1)는 제 1 정류모듈(1100)의 제 1 출력단과 충방전 커패시터 사이에 직렬로 연결되며, 제 1 정류모듈(1100)로부터 출력되는 제 1 정류전압(Vrec1)이 충방전 커패시터에 충전되지 않도록 제 1 정류전압(Vrec1)을 차단하는 기능을 수행하게 된다. 즉, 제 1 정류전압 차단부(DB1)는 제 1 정류전압(Vrec1)에 의해 흐르게 되는 전류가 충방전 커패시터(Cdc1)로 인가되는 것을 방지하는 기능을 수행한다. 이러한 제 1 정류전압 차단부(DB1)는 커패시터를 이용하여 구현될 수 있다.
LED 조명장치의 LED 구동 제어의 일례
도 5a는 본 발명의 바람직한 일 실시예에 따르는 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성된 LED 조명장치의 제 1 정류모듈(1100)에 입력되는 교류전압(VAC), 제 2 정류부(1420)에 입력되는 조정된 교류전압(VAC'), 교류전원으로부터 입력되는 교류전류(IAC), LED 모듈에 인가되는 구동전압(Vp), LED 구동전류(ILED)를 설명하기 위한 파형도이다. 또한, 도 5b는 본 발명의 바람직한 일 실시예에 따르는 제 2 순방향 전압레벨 보상을 수행하도록 구성된 LED 조명장치의 제 1 라인 커패시터(CL1) 및 제 2 라인 커패시터(CL2)의 충전 전류/방전 전류, 충방전 커패시터(Cdc1)의 충전 전류/방전 전류를 설명하기 위한 파형도이다.
도 5a의 최상단에는 LED 조명장치(1000)에 인가되는 교류전원의 교류전압(VAC)의 1주기의 파형이 도시되어 있으며, 그 아래에는 제 1 라인 커패시터(CL1) 및 제 2 라인 커패시터(CL2)에 의해 조정되어 제 2 정류부(1420)로 입력되는 조정된 교류전압(VAC')의 파형이 도시되어 있고, 그 아래에는 교류전원으로부터 입력되는 전류(IAC)의 파형이 도시되어 있으며, 그 아래에는 LED 발광모듈(1300)로 입력되는 구동전압(Vp)의 파형이 도시되어 있고, 최하단에는 LED 발광모듈(1300)에 흐르는 LED 구동전류(ILED)의 파형이 도시되어 있다. 또한, 도 5b의 최상단에는 제 1 라인 커패시터(CL1)의 충전 전류 및 방전 전류의 파형이 도시되어 있으며, 그 하단에는 제 2 라인 커패시터(CL2)의 충전 전류 및 방전 전류의 파형이 도시되어 있고, 최하단에는 충방전 커패시터(Cdc1)의 충전 전류 및 방전 전류의 파형이 도시되어 있다.
도 5a 및 도 5b에 도시된 파형들은, 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성된 LED 구동회로(1500)의 실시예를 기준으로 한다. 이하에서, LED 구동회로(1500)가 제 2 순방향 전압레벨(Vf2) 보상을 수행하여 보상구간(제 1 정류전압(Vrec1)이 제 2 순방향 전압레벨(Vf2) 미만인 구간)에서 제 2 구동전압이 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)으로 공급하도록 구성된 실시예를 기준으로 설명한다. 다만, 이는 설명 및 이해의 편의를 위한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.
한편, 다음의 표 1은 교류전압(VAC)의 1주기를 기준으로, 제 1 구동전압의 전압레벨에 따른 제 1 라인 커패시터(CL1)의 충방전 상태, 제 2 라인 커패시터(CL2)의 충방전 상태, 충방전 커패시터(Cdc1)의 충방전 상태 및 LED 그룹들(1301~1304)의 작동 상태를 나타낸 표이다. 이하에서, 이하에서, 도 5a, 도 5b 및 표 1을 참조하여, 본 발명에 따른 LED 조명장치의 구동과정에 대하여 상세하게 살펴보도록 한다.
표 1
Vrec1 CL1 CL2 Cdc1 LED G1 LED G2 LED G3 LED G4
0≤Vrec1<Vf2 · 방전 · ON ON OFF OFF
Vf2≤Vrec1<Vf3 충전 · 충전 ON ON OFF OFF
Vf3≤Vrec1<Vf4 충전 · 충전 ON ON ON OFF
Vf4≤Vrec1 충전 · 충전 ON ON ON ON
Vf3≤Vrec1<Vf4 · · · ON ON ON OFF
Vf2≤Vrec1<Vf3 · · · ON ON OFF OFF
0≤Vrec1<Vf2 · · 방전 ON ON OFF OFF
0≤Vrec1<Vf2 방전 · · ON ON OFF OFF
Vf2≤Vrec1<Vf3 · 충전 충전 ON ON OFF OFF
Vf3≤Vrec1<Vf4 · 충전 충전 ON ON ON OFF
Vf4≤Vrec1 · 충전 충전 ON ON ON ON
Vf3≤Vrec1<Vf4 · · · ON ON ON OFF
Vf2≤Vrec1<Vf3 · · · ON ON OFF OFF
Vrec1<Vf2 · · 방전 ON ON OFF OFF
전술한 바와 같이, LED 구동회로(1500)가 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성되어 있으므로, 보상구간은 제 1 구동전압의 전압레벨이 Vf2 미만인 구간이며, 비보상구간은 제 1 구동전압의 전압레벨이 Vf2 이상인 구간이다. 또한, 도 5a 및 도 5b에 도시된 파형도들은 LED 조명장치(1000)가 구동된 후 소정의 시간이 경과한 시점에서의 파형들을 나타내고 있다. 따라서, 도 5a 및 도 5b에서 보상구간은 시간구간(t0~t1, t6~t8, t14~t15)이다.
시점(t0)에서 제 1 구동전압의 전압레벨이 Vf2 미만이므로, 제 2 구동전압 제공모듈(1400)에 의한 전압 보상이 이루어진다. 보다 구체적으로, 시점(t0) 바로 이전의 보상구간에서 충방전 커패시터(Cdc1)에 충전되어 있던 전류가 모두 방전된 상태이며, 따라서 교류전압(VAC)의 이전 음의 반주기 동안 충전되었던 제 2 라인 커패시터(CL2)가 시점(t0)에서 방전 전류(Idis)를 방전하기 시작한다. 즉, 시간구간(t0~t1)에서의 구동전압 보상은 제 2 라인 커패시터(CL2)에 의해 이루어진다. 도 5b에 시간구간(t0~t1) 동안 제 2 라인 커패시터(CL2)로부터 방전되는 방전 전류(Idis)가 도시되어 있다. 제 2 라인 커패시터(CL2)로부터의 방전 전류(Idis)는 제 1 정류모듈(1100)의 다이오드(D4)를 통해 LED 발광모듈(1300)로 인가되며, 이에 따라 제 2 구동전압이 LED 발광모듈(1300)에 제공된다. LED 구동 제어부(1210)는 인가되는 구동전압(Vp)이 제 2 순방향 전압레벨(Vf2) 이상이므로, 제 1 LED 그룹 구동부(1201), 제 3 LED 그룹 구동부(1203) 및 제 4 LED 그룹 구동부(1204)를 턴-오프 상태로 유지하고, 제 2 LED 그룹 구동부(1202)를 턴-온 상태로 유지하여, 전류경로(P2)가 연결된 상태를 유지한다. 이에 따라 제 2 전류경로(P2)를 통해 제 2 LED 구동전류(ILED2)가 흐르게 되어, 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)이 발광상태를 유지한다.
시간의 경과에 따라 교류전압(VAC)의 전압레벨이 상승하고 그에 따라 제 1 구동전압의 전압레벨이 제 2 순방향 전압레벨(Vf2)에 도달하면(시점 t1), 보상구간에서 이탈하여 비보상구간에 진입하게 되므로, 제 1 정류전압(Vrec1)이 구동전압(Vp)으로서 LED 발광모듈(1300)에 공급되게 된다. 구동전압(Vp)의 전압레벨 자체는 이전의 시간구간(t0~t1)에 공급되던 제 2 구동전압과 같은 범위에 속하므로, LED 구동 제어부(1210)는 전류경로(P2)가 연결된 상태를 유지하며, 따라서 제 2 전류경로(P2)를 통해 제 2 LED 구동전류(ILED2)가 흐르게 되어, 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)이 발광상태를 유지한다. 또한, 이 시점(t1)에서 제 1 라인 커패시터(CL1) 및 충방전 커패시터(Cdc1)의 충전이 시작된다. 교류전원의 양의 반주기이므로, 제 2 라인 커패시터(CL2)는 충전되지 않는다. 제 1 라인 커패시터(CL1) 및 충방전 커패시터(Cdc1)의 충전은 해당 커패시터들이 완전히 충전될 때까지 계속된다. 도 5b에 시점(t1) 이후에 제 1 라인 커패시터(CL1) 및 충방전 커패시터(Cdc1)에 충전되는 충전 전류(Ic)가 도시되어 있다.
시간구간(t1~t6)에서는 제 1 정류전압(Vrec1)의 전압레벨이 제 2 순방향 전압레벨(Vf2) 이상이므로 비보상구간에 해당되고, 따라서 LED 구동 제어부(1210)는 구동전압(Vp)으로서 인가되는 제 1 정류전압(Vrec1)의 전압레벨에 따라 LED 그룹들(1301~1304)이 순차구동되도록 제어한다. 이를 간략하게 살펴보면, 시간의 경과에 따라 제 1 정류전압(Vrec1)의 전압레벨이 상승하여 제 3 순방향 전압레벨(Vf3)에 도달하면(시점 t2), LED 구동 제어부(1210)는 제 2 LED 그룹 구동부(1202)를 턴-오프하고 제 3 LED 그룹 구동부(1203)를 턴-온하여 제 3 전류경로(P3)가 연결되도록 한다. 이에 따라 제 3 전류경로(P3)를 통해 제 3 LED 구동전류(ILED3)가 흐르게 되어, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302) 및 제 3 LED 그룹(1303)이 발광하게 된다.
또한, 시간의 경과에 따라 제 1 정류전압(Vrec1)의 전압레벨이 상승하여 제 4 순방향 전압레벨(Vf4)에 도달하면(시점 t3), LED 구동 제어부(1210)는 제 3 LED 그룹 구동부(1203)를 턴-오프하고 제 4 LED 그룹 구동부(1204)를 턴-온하여 제 4 전류경로(P4)가 연결되도록 한다. 이에 따라 제 4 전류경로(P4)를 통해 제 4 LED 구동전류(ILED4)가 흐르게 되어, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302), 제 3 LED 그룹(1303) 및 제 4 LED 그룹(1304)이 모두 발광하게 된다.
계속해서, 시간의 경과에 따라 제 1 정류전압(Vrec1)의 전압레벨이 최고점에 도달한 후 하강하여 제 4 순방향 전압레벨(Vf3) 미만으로 떨어지면(시점 t4), LED 구동 제어부(1210)는 제 4 LED 그룹 구동부(1204)를 턴-오프하고 제 3 LED 그룹 구동부(1203)를 턴-온하여 제 3 전류경로(P3)가 연결되도록 한다. 이에 따라 제 3 전류경로(P3)를 통해 제 3 LED 구동전류(ILED3)가 흐르게 되어, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302) 및 제 3 LED 그룹(1303)이 발광하게 된다.
또한, 시간의 경과에 따라 제 1 정류전압(Vrec1)의 전압레벨이 하강하여 제 3 순방향 전압레벨(Vf3) 미만으로 떨어지면(시점 t5), LED 구동 제어부(1210)는 제 3 LED 그룹 구동부(1203)를 턴-오프하고 제 2 LED 그룹 구동부(1202)를 턴-온하여 제 2 전류경로(P2)가 연결되도록 한다. 이에 따라 제 2 전류경로(P2)를 통해 제 2 LED 구동전류(ILED2)가 흐르게 되어, 제 1 LED 그룹(1301), 제 2 LED 그룹(1302) 및 제 3 LED 그룹(1303)이 발광하게 된다.
한편, 제 1 정류전압(Vrec1)의 시간의 경과에 따라 제 1 정류전압(Vrec1)의 전압레벨이 하강하여 제 2 순방향 전압레벨(Vf2) 미만으로 떨어지면(시점 t6), 제 1 정류전압(Vrec1)이 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)을 구동할 수 없게 되므로, 이 시점에서 전압보상이 수행된다. 보다 구체적으로, 이 시점에서 충전된 충방전 커패시터(Cdc1)의 전압레벨이 제 1 정류전압(Vrec1)의 전압레벨보다 높아지게 되므로, 충방전 커패시터(Cdc1)로부터 방전 전류(Idis)가 LED 발광모듈(1300)로 흐르기 시작하며, 이에 따라 제 2 구동전압이 구동전압(Vp)으로서 LED 발광모듈(1300)에 제공된다. 도 5b에 시간구간(t6~t7) 동안 충방전 커패시터(Cdc1)로부터 방전되는 방전 전류(Idis)가 도시되어 있다. 한편, 시간구간(t6~t7) 동안 충방전 커패시터(Cdc1)에 의해 제 2 순방향 전압레벨(Vf2) 보상이 이루어지므로, LED 구동 제어부(1210)는 전류경로(P2)가 연결된 상태를 유지하며, 따라서 제 2 전류경로(P2)를 통해 제 2 LED 구동전류(ILED2)가 흐르게 되어, 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)이 발광상태를 유지하게 된다.
또한, 시간이 경과됨에 따라, 충방전 커패시터(Cdc1)의 방전에 의해 충방전 커패시터(Cdc1)의 전압레벨이 제 1 라인 커패시터(CL1)의 전압레벨보다 작아지게 되면(t7), 충방전 커패시터(Cdc1)의 방전이 종료되고, 제 1 라인 커패시터(CL1)로부터 방전 전류(Idis)가 제 1 정류모듈(1100)의 다이오드(D1)를 통해 LED 발광모듈(1300)로 공급되게 된다. 도 5b에 시간구간(t7~t8) 동안 제 1 라인 커패시터(CL1)로부터 방전되는 방전 전류(Idis)가 도시되어 있다. 시간구간(t6~t7)과 마찬가지로 시간구간(t7~t8) 동안에 제 1 라인 커패시터(CL1)에 의해 제 2 순방향 전압레벨(Vf2) 보상이 이루어지므로, LED 구동 제어부(1210)는 전류경로(P2)가 연결된 상태를 유지하며, 따라서 제 2 전류경로(P2)를 통해 제 2 LED 구동전류(ILED2)가 흐르게 되어, 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)이 발광상태를 유지하게 된다.
전술한 바와 같은 과정들이 주기적으로 반복되며, 이에 따라 LED 조명장치(1000)가 구동되는 동안 제 1 LED 그룹(1301) 및 제 2 LED 그룹(1302)이 계속하여 발광상태를 유지하게 되며, 따라서 LED 조명장치(1000)의 플리커 현상을 없앨 수 있다. 여기에서 유의해야할 점은, 교류전원의 양의 반주기가 시작되는 시점에서 이전의 음의 반주기에서 충전되었던 제 2 라인 커패시터(CL2)가 방전 전류(Idis)를 방전함으로써 제 2 구동전압을 제공하고, 양의 반주기 동안 제 1 라인 커패시터(CL1)가 충전되며, 음의 반주기가 시작되는 시점에서 양의 반주기 동안 충전되었던 제 1 라인 커패시터(CL1)가 방전 전류(Idis)를 방전함으로써 제 2 구동전압을 제공한다는 것이다.
제 2 실시예에 따른 제 2 구동전압 제공모듈의 구성과 기능
도 6은 본 발명의 다른 바람직한 일 실시예에 따르는 LED 조명장치의 상세 구성 블록도이다. 도 6을 참조하여, 본 발명의 제 2 실시예에 따른 제 2 구동전압 제공모듈(1400)의 구성과 기능에 대하여 살펴보도록 한다.
먼저, 본 발명에 따른 LED 구동회로(1500)의 특징을 다시 한번 살펴보면, 본 발명에 따른 LED 구동회로(1500)의 가장 큰 기술적 특징은, 동일한 교류전원으로부터의 교류를 분리(Decoupling)하지 않고 LED 구동모듈(1200) 및 LED 발광모듈(1300)로 제 1 구동전압(전류)으로서 공급하고, 동시에 동일한 교류전원으로부터의 교류를 직류로 전력변환하고, 교류전원과 분리된 직류를 제 2 구동전압으로서 보상구간 동안 LED 구동모듈(1200) 및 LED 발광모듈(1300)로 제공하도록 구성된다는 것이다. 본 발명의 제 2 실시예에 따른 제 2 구동전압 제공모듈(1400) 또한 전술한 바와 같은 본 발명의 기술적 특징을 구현하기 위한 구성요소이다. 다만, 전술한 바와 같은 제 1 실시예에 따른 제 2 구동전압 제공모듈(1400)은 에너지를 충방전하도록 구성된 반면, 제 2 실시예에 따른 제 2 구동전압 제공모듈(1400)은 안정화된 정전압을 지속적으로 제 2 구동전압으로서 출력하도록 구성된다는 점에 있어 차이점이 있다.
본 발명의 제 2 실시예에 따른 제 2 구동전압 제공모듈(1400)은 교류전원에 제 1 정류모듈(1100)과 병렬로 연결되며, 인가되는 교류전압(VAC)을 변환하여 직류전압을 생성하고, 보상구간에서 생성된 직류전압을 제 2 구동전압으로서 LED 발광모듈(1300)에 제공하도록 구성된다. 이러한 기능을 수행하기 위하여, 제 2 실시예에 따른 제 2 구동전압 제공모듈(1400)은 도 6에 도시된 바와 같이, 전력 변환부(1440) 및 제 1 정류전압 차단부(DB1)를 포함할 수 있다.
전력 변환부(1440)는 교류전원에 제 1 정류모듈(1100)과 병렬로 연결되며, 교류전원으로부터 인가되는 교류전압(VAC)을 변환하여 안정된 직류전압(VDC)을 생성하고, 생성된 직류전압을 출력하도록 구성된다. 이러한 전력 변환부(1440)로써 공지된 다양한 교류-직류 컨버터(AC-DC converter)들 중 하나가 이용될 수 있다. 전력 변환부(1440)로부터 출력되는 안정된 직류전압은 보상되는 순방향 전압레벨에 따라 결정될 수 있다. 예를 들어, 본 발명에 따른 LED 구동회로(1500)가 제 2 순방향 전압레벨(Vf2) 보상을 수행하도록 구성되는 경우, 전력 변환부(1440)로부터 출력되는 직류전압의 전압레벨은 제 2 순방향 전압레벨(Vf2)이다. 유사하게, 예를 들어, 본 발명에 따른 LED 구동회로(1500)가 제 1 순방향 전압레벨(Vf1) 보상을 수행하도록 구성되는 경우, 전력 변환부(1440)로부터 출력되는 직류전압의 전압레벨은 제 1 순방향 전압레벨(Vf1)이다.
한편, 제 1 정류전압 차단부(DB1)는 제 1 정류모듈(1100)의 제 1 출력단과 전력 변환부(1440) 사이에 직렬로 연결되어, 제 1 정류모듈로부터 출력되는 제 1 정류전압을 차단하도록 구성된다.
전력 변환부(1440)의 출력단은 제 1 정류전압 차단부(DB1)를 통해 제 1 정류모듈(1100)의 제 1 출련단에 연결되며, 따라서, 본 발명에 따른 LED 구동회로(1500)가 제 1 순방향 전압레벨(Vf1) 보상을 수행하도록 구성된 경우, 제 1 정류모듈(1100)로부터 출력되는 정류전압(Vrec)의 전압레벨이 제 1 순방향 전압레벨(Vf1) 미만인 구간에서는 전력 변환부(1440)로부터 출력되는 직류전압이 제 2 구동전압으로서 LED 발광모듈(1300)에 공급되며, 이에 따라 제 1 순방향 전압레벨(Vf1) 보상이 수행될 수 있다.
한편, 이상에서 순차구동되는 복수의 LED 그룹들(1301~1304)을 포함하는 LED 발광모듈(1300)에 기초하여 본 발명에 따른 LED 구동회로(1500)의 구성과 기능을 설명하였으나, 본 발명이 이에 한정되는 것은 아니다. 즉, 본 발명의 기술적 요지는 제 2 구동전압 제공모듈(1400)의 구성 및 기능에 있으며, 따라서 단일의 LED 그룹으로 구성되는 LED 발광모듈(1300)에도 본 발명에 따른 LED 구동회로(1500)가 적용될 수 있다. 이러한 경우, 순차구동 제어가 불필요하기 때문에, LED 구동모듈(1200)이 생략될 수 있다. 또한, 제 2 구동전압 제공모듈(1400)은 제 1 순방향 전압레벨(Vf1) 보상을 수행하도록 구성되며, 이에 따라 비발광구간(제 1 구동전압의 전압레벨이 제 1 순방향 전압레벨(Vf1) 미만인 구간)에서 제 2 구동전압 제공모듈(1400)에 의해 제 2 구동전압이 제공된다.
[부호의 설명]
1000 : LED 조명장치 1100 : 제 1 정류모듈
1200 : LED 구동모듈
1210 : LED 구동 제어부 1220 : LED 그룹 구동부
1221 : 제 1 LED 그룹 구동부 1222 : 제 2 LED 그룹 구동부
1223 : 제 3 LED 그룹 구동부 1224 : 제 4 LED 그룹 구동부
1300 : LED 발광모듈
1301 : 제 1 LED 그룹 1302 : 제 2 LED 그룹
1303 : 제 3 LED 그룹 1304 : 제 4 LED 그룹
1400 : 제 2 구동전압 제공모듈
1410 : 라인 커패시터 1420 : 제 2 정류부
1430 : 에너지 충방전부
1500 : LED 구동회로

Claims (28)

  1. 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 및
    상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 전파정류하여 제 2 정류전압을 생성하고, 충전구간에서 상기 생성된 제 2 정류전압을 이용하여 에너지를 충전하며, 보상구간에서 상기 LED 발광모듈에 제 2 구동전압을 제공하는 제 2 구동전압 제공모듈;을 포함하는 것을 특징으로 하는, LED 구동회로.
  2. 제 1 항에 있어서,
    상기 제 2 구동전압 제공모듈은,
    상기 교류전원의 제 1 출력단과 제 2 정류부의 제 1 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 1 입력단으로 출력하는 제 1 라인 커패시터;
    상기 교류전원의 제 2 출력단과 상기 제 2 정류부의 제 2 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 2 입력단으로 출력하는 제 2 라인 커패시터;
    상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터를 통해 입력되는 상기 조정된 교류전압을 전파정류하여 상기 제 2 정류전압을 생성 및 출력하는 제 2 정류부; 및
    상기 제 2 정류부의 제 1 출력단과 제 2 출력단 사이에 연결되며, 상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전부;를 포함하는 것을 특징으로 하는 LED 구동회로.
  3. 제 2 항에 있어서,
    상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터는 상기 인가되는 교류전압의 위상을 지연시키고 강압하는 것을 특징으로 하는 LED 구동회로.
  4. 제 2 항에 있어서,
    상기 에너지 충방전부는,
    상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전소자; 및
    상기 제 1 정류모듈의 제 1 출력단과 상기 에너지 충방전소자 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압이 상기 에너지 충방전소자에 충전되지 않도록 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함하는 것을 특징으로 하는 LED 구동회로.
  5. 제 4 항에 있어서,
    상기 에너지 충방전소자는 충방전 커패시터인 것을 특징으로 하는 LED 구동회로.
  6. 제 4 항에 있어서,
    상기 제 1 정류전압 차단부는 다이오드인 것을 특징으로 하는 LED 구동회로.
  7. 제 2 항에 있어서,
    상기 제 1 라인 커패시터와 상기 제 2 라인 커패시터의 정전용량이 동일한 것을 특징으로 하는 LED 구동회로.
  8. 제 1 항에 있어서,
    상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf1 미만인 구간인 것을 특징으로 하는 LED 구동회로.
  9. 제 1 항에 있어서,
    상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며,
    상기 LED 구동회로는,
    비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함하는 것을 특징으로 하는 LED 구동회로.
  10. 제 9 항에 있어서,
    상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf2 미만인 구간인 것을 특징으로 하는 LED 구동회로.
  11. 제 2 항에 있어서,
    상기 제 1 라인 커패시터 또는 상기 제 2 라인 커패시터는 상기 충전구간에서 상기 인가되는 교류전압에 의해 충전되며, 상기 보상구간 중 상기 에너지 충방전부에 의해 상기 제 2 구동전압이 제공되지 않는 구간에서 방전되어 상기 제 1 정류모듈을 통해 상기 LED 발광모듈에 제 2 구동전압을 제공하는 것을 특징으로 하는 LED 구동회로.
  12. 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈; 및
    상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 변환하여 직류전압을 생성하고, 보상구간에서 상기 생성된 직류전압을 제 2 구동전압으로서 상기 LED 발광모듈에 제공하는 제 2 구동전압 제공모듈;을 포함하는 것을 특징으로 하는 LED 구동회로.
  13. 제 12 항에 있어서,
    상기 제 2 구동전압 제공모듈은,
    상기 교류전원으로부터 입력되는 교류전압을 변환하여 직류전압을 생성하는 전력 변환부; 및
    상기 제 1 정류모듈의 제 1 출력단과 상기 전력 변환부 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함하는 것을 특징으로 하는 LED 구동회로.
  14. 제 12 항에 있어서,
    상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며,
    상기 LED 구동회로는,
    비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함하는 것을 특징으로 하는 LED 구동회로.
  15. 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈;
    상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 전파정류하여 제 2 정류전압을 생성하고, 충전구간에서 상기 생성된 제 2 정류전압을 이용하여 에너지를 충전하며, 보상구간에서 상기 LED 발광모듈에 제 2 구동전압을 제공하는 제 2 구동전압 제공모듈; 및
    비보상구간에서 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 구동되는 LED 발광모듈;을 포함하는 것을 특징으로 하는 LED 조명장치.
  16. 제 15 항에 있어서,
    상기 제 2 구동전압 제공모듈은,
    상기 교류전원의 제 1 출력단과 제 2 정류부의 제 1 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 1 입력단으로 출력하는 제 1 라인 커패시터;
    상기 교류전원의 제 2 출력단과 상기 제 2 정류부의 제 2 입력단 사이에 직렬로 연결되며, 상기 교류전원으로부터 인가되는 교류전압을 조정하여 상기 제 2 정류부의 제 2 입력단으로 출력하는 제 2 라인 커패시터;
    상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터를 통해 입력되는 상기 조정된 교류전압을 전파정류하여 상기 제 2 정류전압을 생성 및 출력하는 제 2 정류부; 및
    상기 제 2 정류부의 제 1 출력단과 제 2 출력단 사이에 연결되며, 상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전부;를 포함하는 것을 특징으로 하는 LED 조명장치.
  17. 제 16 항에 있어서,
    상기 제 1 라인 커패시터 및 상기 제 2 라인 커패시터는 상기 인가되는 교류전압의 위상을 지연시키고 강압하는 것을 특징으로 하는 LED 조명장치.
  18. 제 16 항에 있어서,
    상기 에너지 충방전부는,
    상기 충전구간에서 상기 제 2 정류전압을 인가받아 충전되고, 상기 보상구간에서 방전되어 상기 제 2 구동전압을 제공하는 에너지 충방전소자; 및
    상기 제 1 정류모듈의 제 1 출력단과 상기 에너지 충방전소자 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압이 상기 에너지 충방전소자에 충전되지 않도록 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함하는 것을 특징으로 하는 LED 조명장치.
  19. 제 18 항에 있어서,
    상기 에너지 충방전소자는 충방전 커패시터인 것을 특징으로 하는 LED 조명장치.
  20. 제 18 항에 있어서,
    상기 제 1 정류전압 차단부는 다이오드인 것을 특징으로 하는 LED 조명장치.
  21. 제 16 항에 있어서,
    상기 제 1 라인 커패시터와 상기 제 2 라인 커패시터의 정전용량이 동일한 것을 특징으로 하는 LED 조명장치.
  22. 제 15 항에 있어서,
    상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf1 미만인 구간인 것을 특징으로 하는 LED 조명장치.
  23. 제 15 항에 있어서,
    상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며,
    상기 LED 조명장치는,
    상기 비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함하고,
    상기 LED 발광모듈은 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 순차구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 적어도 하나의 LED 그룹이 구동되는 것을 특징으로 하는 LED 조명장치.
  24. 제 23 항에 있어서,
    상기 보상구간은 상기 제 1 정류전압의 전압레벨이 Vf2 미만인 구간인 것을 특징으로 하는 LED 조명장치.
  25. 제 16 항에 있어서,
    상기 제 1 라인 커패시터 또는 상기 제 2 라인 커패시터는 상기 충전구간에서 상기 인가되는 교류전압에 의해 충전되며, 상기 보상구간 중 상기 에너지 충방전부에 의해 상기 제 2 구동전압이 제공되지 않는 구간에서 방전되어 상기 제 1 정류모듈을 통해 상기 LED 발광모듈에 제 2 구동전압을 제공하며,
    상기 LED 모듈은 상기 보상구간 중 상기 제 2 구동전압이 제공되지 않는 구간에서 상기 제 2 구동전압을 제공받아 구동되는 것을 특징으로 하는 LED 조명장치.
  26. 교류전원에 연결되어 인가되는 교류전압을 전파정류하고, 전파정류된 제 1 정류전압을 제 1 구동전압으로서 LED 발광모듈에 제공하는 제 1 정류모듈;
    상기 교류전원에 상기 제 1 정류모듈과 병렬로 연결되며, 인가되는 교류전압을 변환하여 직류전압을 생성하고, 보상구간에서 상기 생성된 직류전압을 제 2 구동전압으로서 상기 LED 발광모듈에 제공하는 제 2 구동전압 제공모듈; 및
    비보상구간에서 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 구동되는 LED 발광모듈;을 포함하는 것을 특징으로 하는 LED 조명장치.
  27. 제 26 항에 있어서,
    상기 제 2 구동전압 제공모듈은,
    상기 교류전원으로부터 입력되는 교류전압을 변환하여 직류전압을 생성하는 전력 변환부; 및
    상기 제 1 정류모듈의 제 1 출력단과 상기 전력 변환부 사이에 직렬로 연결되어, 상기 제 1 정류모듈로부터 출력되는 제 1 정류전압을 차단하는 제 1 정류전압 차단부;를 포함하는 것을 특징으로 하는 LED 조명장치.
  28. 제 26 항에 있어서,
    상기 LED 발광모듈은 제 1 LED 그룹 내지 제 n LED 그룹(n은 2 이상의 정수)을 포함하며,
    상기 LED 조명장치는,
    상기 비보상구간에서 상기 제 1 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹을 순차구동하며, 보상구간에서 상기 제 2 구동전압의 전압레벨에 따라 상기 제 1 LED 그룹 내지 제 n LED 그룹 중 적어도 하나의 LED 그룹을 구동하는 LED 구동모듈;을 더 포함하고,
    상기 LED 발광모듈은 상기 제 1 정류모듈로부터 제공되는 제 1 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 순차구동되며, 상기 보상구간에서 상기 제 2 구동전압 제공모듈로부터 제공되는 제 2 구동전압을 인가받아 상기 LED 구동모듈의 제어에 따라 적어도 하나의 LED 그룹이 구동되는 것을 특징으로 하는 LED 조명장치.
PCT/KR2014/002082 2013-03-21 2014-03-13 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치 WO2014148767A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480024771.2A CN105230126B (zh) 2013-03-21 2014-03-13 使用双桥二极管的led驱动电路以及包括其的led照明装置
US14/778,889 US9848470B2 (en) 2013-03-21 2014-03-13 LED driving circuit using double bridge diode and LED illumination device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130030181A KR102132665B1 (ko) 2013-03-21 2013-03-21 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
KR10-2013-0030181 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148767A1 true WO2014148767A1 (ko) 2014-09-25

Family

ID=51580381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002082 WO2014148767A1 (ko) 2013-03-21 2014-03-13 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치

Country Status (4)

Country Link
US (1) US9848470B2 (ko)
KR (1) KR102132665B1 (ko)
CN (1) CN105230126B (ko)
WO (1) WO2014148767A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014114853A1 (de) * 2014-10-14 2016-04-14 Atlas Elektronik Gmbh Schaltung zum flackerarmen Betreiben von Leuchtdioden, sowie Leuchtmittel und Leuchte
WO2017063630A1 (de) * 2015-10-14 2017-04-20 Atlas Elektronik Gmbh SCHALTUNG ZUM FLACKERARMEN UND NORMGEMÄßEN BETREIBEN VON LEUCHTDIODEN SOWIE LEUCHTMITTEL UND LEUCHTE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132665B1 (ko) * 2013-03-21 2020-07-21 서울반도체 주식회사 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
US9572212B2 (en) * 2014-05-21 2017-02-14 Lumens Co., Ltd. LED lighting device using AC power supply
CN107211508B (zh) * 2014-10-14 2019-11-05 首尔半导体株式会社 闪烁性能得到改善的led驱动电路以及包括此的led照明装置
JP6656226B2 (ja) * 2015-04-08 2020-03-04 シチズン時計株式会社 Led駆動回路
KR101703761B1 (ko) 2015-09-30 2017-02-17 서울엘이디(주) 전력 분배 회로 및 전력 분배 방법
CN111670369B (zh) * 2017-11-02 2022-12-02 英诺泰克公司 Led灯故障检测电路和方法
US11013086B2 (en) * 2018-12-12 2021-05-18 i Sine Inc. Methods and apparatus for delivery of constant magnitude power to LED strings
CN109587880B (zh) * 2018-12-18 2024-02-20 陕西亚成微电子股份有限公司 一种可控硅调光led驱动方法及电路
WO2020172405A1 (en) * 2019-02-21 2020-08-27 Dialight Corporation Led lighting assembly with integrated power conversion and digital transceiver
EP3813487B1 (en) * 2019-10-25 2021-12-15 Lumileds LLC Automotive led lighting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100063648A (ko) * 2008-12-03 2010-06-11 우시오덴키 가부시키가이샤 Led 점등 회로 및 led 램프 및 led 램프 점등용 변환 소켓
KR20100107196A (ko) * 2009-03-25 2010-10-05 서울반도체 주식회사 발광다이오드 구동회로
WO2011159002A1 (ko) * 2010-06-15 2011-12-22 한국전기연구원 정현파 정전류 led 구동 회로 및 방법
WO2012081878A2 (ko) * 2010-12-16 2012-06-21 Lee Dong-Won 교류 구동 엘이디 조명장치
WO2012144800A2 (ko) * 2011-04-19 2012-10-26 Lee Dong-Il Led 구동 장치 및 이를 이용한 led 구동 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117171A (ja) * 1990-09-05 1992-04-17 Makoto Takahashi 交流電源整流装置
US6483260B1 (en) * 2001-07-23 2002-11-19 Hubbell Incorporated Apparatus for operating respective single lamps among multiple lamps coupled to the same ballast
WO2008146974A1 (en) * 2007-05-30 2008-12-04 Airtec System Co., Ltd. Hybrid ballast for driving triode carbon nano tube lamp
WO2010069983A1 (en) * 2008-12-16 2010-06-24 Ledned Holding B.V. Led tube system for retrofitting fluorescent lighting
JP5367173B2 (ja) * 2009-10-26 2013-12-11 エアテック システム カンパニー リミテッド 定電流駆動ledモジュール装置
KR101576708B1 (ko) * 2009-11-13 2015-12-10 니치아 카가쿠 고교 가부시키가이샤 발광 다이오드 구동장치 및 발광 다이오드의 점등 제어 방법
BR112012016537A2 (pt) * 2010-01-07 2020-11-10 Koniklijke Philips Electronics N.V. "circuito de iluminação de ac-led, dispositivo de iluminação de ac-led e método para o acionamento de um circuito de iluminação de ac-led"
WO2012053825A2 (en) * 2010-10-20 2012-04-26 Seoul Semiconductor Co., Ltd. Light emitting diode driving device
KR101240522B1 (ko) 2010-10-20 2013-03-11 (주) 이노비전 발광 다이오드 구동 장치
FI122954B (fi) * 2011-01-31 2012-09-14 Teknoware Oy LED-putkilamppu ja valaisinjärjestely
KR20120094275A (ko) * 2011-02-16 2012-08-24 삼성전자주식회사 광원 구동 방법, 이를 수행하기 위한 광원 모듈 및 이를 포함하는 표시 장치
JP5821279B2 (ja) * 2011-05-24 2015-11-24 日亜化学工業株式会社 発光ダイオード駆動装置
KR101940780B1 (ko) * 2011-09-16 2019-01-22 서울반도체 주식회사 반도체 발광 소자를 적용한 조명 장치
CN202285447U (zh) * 2011-10-27 2012-06-27 黄景温 一种led灯管电源驱动电路
US9516718B2 (en) * 2011-12-29 2016-12-06 Seoul Semiconductor Co., Ltd. LED luminescence apparatus
KR20130077649A (ko) * 2011-12-29 2013-07-09 서울반도체 주식회사 백라이트 구동장치
CN202396059U (zh) * 2012-01-06 2012-08-22 昆山市华英精密模具工业有限公司 Led驱动电源
KR101202175B1 (ko) 2012-03-26 2012-11-15 서울반도체 주식회사 발광 장치
KR102061318B1 (ko) * 2012-10-08 2019-12-31 서울반도체 주식회사 Led 연속구동을 위한 led 구동장치 및 구동방법
US20160270168A1 (en) * 2012-10-08 2016-09-15 Seoul Semiconductor Co., Ltd. Led driving apparatus and driving method for continuously driving led
WO2014104776A1 (ko) * 2012-12-28 2014-07-03 서울반도체 주식회사 Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
KR102132665B1 (ko) * 2013-03-21 2020-07-21 서울반도체 주식회사 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
KR20160053527A (ko) * 2014-11-05 2016-05-13 서울반도체 주식회사 플리커가 개선된 led 구동회로 및 조명장치
US9681504B1 (en) * 2016-06-14 2017-06-13 New Energies & Alternative Technologies, Inc. Driver circuits with multiple rectifiers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100063648A (ko) * 2008-12-03 2010-06-11 우시오덴키 가부시키가이샤 Led 점등 회로 및 led 램프 및 led 램프 점등용 변환 소켓
KR20100107196A (ko) * 2009-03-25 2010-10-05 서울반도체 주식회사 발광다이오드 구동회로
WO2011159002A1 (ko) * 2010-06-15 2011-12-22 한국전기연구원 정현파 정전류 led 구동 회로 및 방법
WO2012081878A2 (ko) * 2010-12-16 2012-06-21 Lee Dong-Won 교류 구동 엘이디 조명장치
WO2012144800A2 (ko) * 2011-04-19 2012-10-26 Lee Dong-Il Led 구동 장치 및 이를 이용한 led 구동 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014114853A1 (de) * 2014-10-14 2016-04-14 Atlas Elektronik Gmbh Schaltung zum flackerarmen Betreiben von Leuchtdioden, sowie Leuchtmittel und Leuchte
WO2017063630A1 (de) * 2015-10-14 2017-04-20 Atlas Elektronik Gmbh SCHALTUNG ZUM FLACKERARMEN UND NORMGEMÄßEN BETREIBEN VON LEUCHTDIODEN SOWIE LEUCHTMITTEL UND LEUCHTE

Also Published As

Publication number Publication date
US20160050731A1 (en) 2016-02-18
US9848470B2 (en) 2017-12-19
KR102132665B1 (ko) 2020-07-21
CN105230126A (zh) 2016-01-06
CN105230126B (zh) 2018-01-02
KR20140115552A (ko) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2014058196A2 (ko) Led 연속구동을 위한 led 구동장치 및 구동방법
WO2013089506A1 (ko) Led 구동장치
WO2014109429A1 (ko) 전압 에지 검출부를 이용한 교류 led 조명장치
WO2010095813A2 (ko) 절전형 led 조명장치
WO2014189298A1 (ko) 발광다이오드 구동장치
TWI428057B (zh) 具有動態性負載與提升功率因素之發光驅動電路與相關的動態負載模組
WO2014098303A1 (en) Led lighting apparatus with improved total harmonic distortion in source current
WO2011052834A1 (ko) 정전류 구동 led 모듈 장치
WO2012096455A2 (ko) 고효율 전원을 구비한 엘이디 조명장치
WO2014081145A1 (ko) 변조지수가 개선된 엘이디 조명장치
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2014126392A1 (ko) 발광다이오드의 점멸주파수를 변환시키는 전원공급회로
WO2014209009A1 (ko) 발광 다이오드 조명 장치 및 그의 제어 회로
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2015152548A1 (ko) 발광 모듈
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
WO2014030895A1 (ko) 전류원의 시간지연 기능을 갖는 엘이디 구동회로
WO2016104940A1 (ko) 발광 소자 구동 장치
WO2018117720A1 (en) System-in-package for led driving and led lighting device including the same
WO2013180500A1 (ko) Led 백라이트를 구비하는 디스플레이 장치와 그 전원 공급 장치 및 방법
WO2015080393A1 (ko) 전원 공급 장치와 그를 이용한 엘이디 조명장치
WO2017043756A1 (ko) 역률 보상형 led 구동장치 및 구동방법
WO2016122182A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 제어 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024771.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14778889

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14770066

Country of ref document: EP

Kind code of ref document: A1