WO2016197300A1 - Capteur de particules microminiaturisé de grande précision - Google Patents
Capteur de particules microminiaturisé de grande précision Download PDFInfo
- Publication number
- WO2016197300A1 WO2016197300A1 PCT/CN2015/080969 CN2015080969W WO2016197300A1 WO 2016197300 A1 WO2016197300 A1 WO 2016197300A1 CN 2015080969 W CN2015080969 W CN 2015080969W WO 2016197300 A1 WO2016197300 A1 WO 2016197300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- particle sensor
- infrared led
- sensor according
- precision
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000013618 particulate matter Substances 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 3
- 238000004382 potting Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 5
- 239000002253 acid Substances 0.000 abstract description 4
- 239000003513 alkali Substances 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 7
- 239000003570 air Substances 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 5
- 239000008277 atmospheric particulate matter Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
Definitions
- the invention relates to a high precision miniaturized particle sensor.
- Atmospheric particulate matter is mainly derived from anthropogenic emissions, including the burning of three major fossil fuels, biomass, and direct emissions of road and building dust, industrial dust, and secondary particulate matter converted from gaseous pollutants discharged at one time. Atmospheric particulate matter can be suspended in the air for a long time, easy to carry toxic and harmful substances, and the transport distance is long, and the physiological structure of the human body determines the limited effect of filtering and blocking atmospheric particulate matter, so the atmospheric particulate matter has great influence on human health. .
- Light scattering method is the most commonly used method for on-line monitoring of air quality.
- Particle sensors developed by the principle of light scattering are common on the market.
- Such sensors on the market have the following disadvantages: 1.
- the light emitted by the optical device passes through the sensor to measure the indoor wall.
- the multiple reflections form stray light, and the stray light enters the light receiver together with the light scattered by the particles, resulting in a low signal-to-noise ratio, large reading drift, and large deviation in measurement results. 2.
- the light-emitting device is Working at a large current, resulting in a large power consumption; 3, the lens used for a long focal length, large diameter, resulting in a large overall sensor size; 4, the sensor circuit board is exposed outside, prone to moisture, corrosion, aging and other issues The sensor life is short and the performance is unstable. 5.
- the probe used by the sensor responds to visible light, so it is easily interfered by external light, resulting in inaccurate sensor reading.
- the present invention provides a highly accurate miniaturized particle sensor.
- a high-precision miniaturized particle sensor is composed of a dark room, a converging lens, a collecting lens, an infrared LED, a light receiver, an aperture, a circuit, and the particulate matter
- the sensor has a vent on at least one side for ambient air to enter the darkroom for measurement.
- the converging lens, the collecting lens, the infrared LED, and the light receiver are all installed in a dark room, and the converging lens, the aperture, and the infrared LED form a transmitting system, and the aperture is located between the converging lens and the infrared LED, so that the infrared LED can be filtered out.
- the large angle of the exit light, so that the small angle of the exit light passes normally.
- the collecting lens, the diaphragm and the light receiver constitute a detecting system, and the diaphragm is located between the collecting lens and the light receiver, so that the stray background light can be filtered out, and the signal light generated by the scattering can pass normally.
- the center of the pupil surrounds a space forming a cone, which makes the filtering effect best.
- the launching system and the detecting system are respectively disposed on both sides of the vent hole.
- the converging lens and the collecting lens all adopt short-focus, small-diameter lenses to realize miniaturization of the entire system.
- the dark chamber is made of a material that absorbs light, which will help eliminate the interference of stray light and ensure the accuracy of the sensor reading.
- the circuit includes a constant current drive module, an I-V conversion, an operational amplifier, and a connector.
- the constant current driving module Under the control of the constant current driving module, the infrared LED emits stable infrared light, which is irradiated on the particles to generate scattered light.
- the scattered light is received by the light receiver and generates a current signal.
- the current signal is converted into a voltage signal through IV conversion, and then Operational amplification output.
- the photoreceiver is a phototransistor, which can have higher photoelectric conversion efficiency and cooperate with the detection system, so that the infrared LED works at a lower power, thereby achieving low power consumption of the entire module, and finally making the present
- the particle sensor of the invention has an operating current of less than 1 mA.
- the surface of the detecting head of the light receiver is a material capable of filtering visible light, which can effectively filter out interference of visible light and further enhance the accuracy of the sensor reading.
- the surface of the dark room is covered with a shielding shell, and the circuit comprises a filter capacitor.
- the filter capacitor and the shielding shell can fully filter external interference, ensure the authenticity of the signal, and improve the signal to noise ratio.
- the bottom surface of the darkroom has a straight mouth
- the circuit is fixed in the installation space formed by the straight mouth of the bottom surface of the darkroom
- the circuit board is fixed on the bottom surface of the darkroom by a potting process, so that the circuit can be permanently fixed on the bottom surface of the darkroom.
- the space formed by the mouth, and the entire particle sensor will not have the bare board, enhance the physical properties of the sensor such as acid and alkali corrosion resistance, shock resistance, electrical insulation, etc., and also increase the overall aesthetic effect of the particle sensor.
- FIG 1 and 2 are schematic views of the overall structure of the present invention.
- Figure 3 is a schematic diagram of the circuit of the present invention.
- a high-precision miniaturized particle sensor comprises: a darkroom 1, a converging lens 2, a collecting lens 3, an infrared LED 4, a light receiver 5, an aperture 6, and a circuit.
- the particulate sensor has a vent 7 on at least one side for ambient air to enter the darkroom 1 for measurement.
- the concentrating lens 2, the collecting lens 3, the infrared LED 4, and the light receiver 5 are all installed in the darkroom 1.
- the converging lens 2, the aperture 6, and the infrared LED 4 constitute a transmitting system, and the aperture 6 is located at the converging lens 2 and the infrared LED 4. In this way, the large-angle outgoing light of the infrared LED 4 can be filtered out, so that the small-angle outgoing light passes normally.
- the collecting lens 3, the diaphragm 6, and the light receiver 5 constitute a detecting system, and the diaphragm 6 is located between the collecting lens 3 and the light receiver 5, so that the stray background light can be filtered out, and the signal light generated by the scattering can pass normally.
- the center of the diaphragm 6 surrounds a space forming a cone, which makes the above filtering effect best.
- the transmitting system and the detecting system are respectively disposed on both sides of the vent hole 7.
- Both the condenser lens 2 and the collecting lens 3 adopt short-focus, small-diameter lenses, so that the main physical structure of the dark room 1 and the aperture 6 can be greatly reduced, thereby achieving miniaturization of the entire system.
- the darkroom 1 uses a material that absorbs light, which will help eliminate the interference of stray light and ensure the accuracy of the sensor readings.
- the circuit comprises a constant current driving module, an I-V conversion, an operational amplifier and a connector.
- the infrared LED 4 emits stable infrared light under the control of the constant current driving module, and illuminates the particles to generate scattered light, and the scattered light is received by the light receiver 5 The current signal is received and generated, and the current signal is converted into a voltage signal by I-V conversion, and then amplified by an operation.
- the photoreceiver 5 selects a phototransistor, has a high photoelectric conversion efficiency, and cooperates with the detection system, so that the infrared LED 4 operates at a lower power, thereby achieving low power consumption of the entire module, and finally making the present
- the particle sensor of the invention has an operating current of less than 1 mA.
- the surface of the darkroom 1 is covered with a shielding shell.
- the circuit includes a filter capacitor.
- the filter capacitor and the shielding shell can fully filter out external interference, ensure the authenticity of the signal, and improve the signal-to-noise ratio.
- the bottom of the darkroom 1 has a straight mouth 8 , and the circuit is fixed in the installation space formed by the straight mouth 8 of the darkroom, and the circuit board 9 is fixed on the bottom surface of the darkroom by a potting process, so that the circuit can be permanently fixed to the bottom of the darkroom 8 In the space formed, and the entire sensor will not be exposed by the circuit board 9, which enhances the physical properties of the sensor such as acid and alkali corrosion resistance, shock resistance, electrical insulation, etc., and also increases the overall aesthetic effect of the sensor.
- the surface of the probe of the light receiver 5 is a material capable of filtering out visible light, which can effectively filter out the interference of visible light and further enhance the accuracy of the sensor reading.
- the invention utilizes the principle of optical detection, and the infrared LED 4 of the transmitting system emits infrared light, which is filtered by the aperture 6 in the emission system and focused by the converging lens 2, and the infrared light mainly concentrates on the ambient air at the vent hole 7 and is exposed to the environment.
- the scattering of particles in the air, the convergence of the scattered light by the collecting lens 3, the filtering of the stray light by the pupil 6 , the scattered light reaches the detecting head of the light receiver 5, and is converted into a weak electrical signal; the electrical signal passes through the subsequent circuit
- the amplification and filtering process obtains a voltage signal related to the particulate matter in the ambient air.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
L'invention concerne un capteur de particules micro-miniaturisé de grande précision constitué d'une chambre noire (1), d'une lentille convergente (2), d'une lentille collectrice (3), d'une DEL à infrarouge (4), d'un récepteur optique (5), d'un diaphragme (6) et d'un circuit. Le capteur de particules micro-miniaturisé peut détecter la densité de particules dans l'air avec une grande précision, et le capteur, par comparaison avec des capteurs classiques, présente des caractéristiques de grande précision, de faibles coûts, de petit volume, de faible consommation d'énergie, de stabilité et de fiabilité, de résistance à la corrosion acide et alcaline, de performance antistatique et d'utilisation pratique, et peut être largement utilisé pour une détection de particules dans divers environnements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/080969 WO2016197300A1 (fr) | 2015-06-08 | 2015-06-08 | Capteur de particules microminiaturisé de grande précision |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/080969 WO2016197300A1 (fr) | 2015-06-08 | 2015-06-08 | Capteur de particules microminiaturisé de grande précision |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016197300A1 true WO2016197300A1 (fr) | 2016-12-15 |
Family
ID=57502848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/080969 WO2016197300A1 (fr) | 2015-06-08 | 2015-06-08 | Capteur de particules microminiaturisé de grande précision |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016197300A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101947A (zh) * | 2017-07-03 | 2017-08-29 | 福州大学 | Ccd生物芯片荧光扫描仪的消杂散光装置及其工作方法 |
CN108710429A (zh) * | 2018-05-22 | 2018-10-26 | Oppo广东移动通信有限公司 | 功耗调节方法、电子装置及计算机可读存储介质 |
CN109557004A (zh) * | 2017-09-27 | 2019-04-02 | 田果成 | 检测腔结构、检测装置、拍摄设备及终端 |
CN111795921A (zh) * | 2020-07-14 | 2020-10-20 | 南京理工大学 | 粒子计数器传感器光束匀化和锐化的照明系统 |
CN113533150A (zh) * | 2021-06-30 | 2021-10-22 | 安荣信科技(南京)有限公司 | 一种颗粒物测量装置 |
CN114002115A (zh) * | 2021-10-20 | 2022-02-01 | 江苏愈厚环保科技有限公司 | 一种自加热再生型激光散射法颗粒物传感器 |
CN114689476A (zh) * | 2020-12-30 | 2022-07-01 | 江苏春帆生物科技有限公司 | 一种新型岩盐气溶胶浓度传感器 |
CN114813647A (zh) * | 2022-05-12 | 2022-07-29 | 广东迈能欣科技有限公司 | 一种气溶胶传感器检测系统及检测装置 |
CN117664816A (zh) * | 2024-02-02 | 2024-03-08 | 深圳市美思先端电子有限公司 | 一种外光路颗粒物传感器及颗粒物检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1385034A1 (ru) * | 1986-03-28 | 1988-03-30 | Институт высоких температур АН СССР | Устройство дл измерени размеров и счетной концентрации дисперсных частиц |
CN101329249A (zh) * | 2008-08-04 | 2008-12-24 | 天津信达北方科技有限公司 | 气体中微小颗粒物的分析方法及仪器 |
CN101487786A (zh) * | 2008-01-18 | 2009-07-22 | 南京理工大学 | 可吸入粉尘浓度测量传感器 |
WO2013042002A1 (fr) * | 2011-09-19 | 2013-03-28 | Koninklijke Philips Electronics N.V. | Analyse et régulation de débit de pulvérisation |
CN204718931U (zh) * | 2015-05-12 | 2015-10-21 | 杜晨光 | 一种高精度的微型化颗粒物传感器 |
-
2015
- 2015-06-08 WO PCT/CN2015/080969 patent/WO2016197300A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1385034A1 (ru) * | 1986-03-28 | 1988-03-30 | Институт высоких температур АН СССР | Устройство дл измерени размеров и счетной концентрации дисперсных частиц |
CN101487786A (zh) * | 2008-01-18 | 2009-07-22 | 南京理工大学 | 可吸入粉尘浓度测量传感器 |
CN101329249A (zh) * | 2008-08-04 | 2008-12-24 | 天津信达北方科技有限公司 | 气体中微小颗粒物的分析方法及仪器 |
WO2013042002A1 (fr) * | 2011-09-19 | 2013-03-28 | Koninklijke Philips Electronics N.V. | Analyse et régulation de débit de pulvérisation |
CN204718931U (zh) * | 2015-05-12 | 2015-10-21 | 杜晨光 | 一种高精度的微型化颗粒物传感器 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101947B (zh) * | 2017-07-03 | 2023-03-21 | 福州大学 | Ccd生物芯片荧光扫描仪的消杂散光装置及其工作方法 |
CN107101947A (zh) * | 2017-07-03 | 2017-08-29 | 福州大学 | Ccd生物芯片荧光扫描仪的消杂散光装置及其工作方法 |
CN109557004A (zh) * | 2017-09-27 | 2019-04-02 | 田果成 | 检测腔结构、检测装置、拍摄设备及终端 |
CN108710429A (zh) * | 2018-05-22 | 2018-10-26 | Oppo广东移动通信有限公司 | 功耗调节方法、电子装置及计算机可读存储介质 |
CN111795921A (zh) * | 2020-07-14 | 2020-10-20 | 南京理工大学 | 粒子计数器传感器光束匀化和锐化的照明系统 |
CN111795921B (zh) * | 2020-07-14 | 2023-08-22 | 南京理工大学 | 粒子计数器传感器光束匀化和锐化的照明系统 |
CN114689476A (zh) * | 2020-12-30 | 2022-07-01 | 江苏春帆生物科技有限公司 | 一种新型岩盐气溶胶浓度传感器 |
CN113533150A (zh) * | 2021-06-30 | 2021-10-22 | 安荣信科技(南京)有限公司 | 一种颗粒物测量装置 |
CN113533150B (zh) * | 2021-06-30 | 2024-03-08 | 安荣信科技(南京)有限公司 | 一种颗粒物测量装置 |
CN114002115A (zh) * | 2021-10-20 | 2022-02-01 | 江苏愈厚环保科技有限公司 | 一种自加热再生型激光散射法颗粒物传感器 |
CN114002115B (zh) * | 2021-10-20 | 2022-06-14 | 江苏愈厚环保科技有限公司 | 一种自加热再生型激光散射法颗粒物传感器 |
CN114813647A (zh) * | 2022-05-12 | 2022-07-29 | 广东迈能欣科技有限公司 | 一种气溶胶传感器检测系统及检测装置 |
CN117664816A (zh) * | 2024-02-02 | 2024-03-08 | 深圳市美思先端电子有限公司 | 一种外光路颗粒物传感器及颗粒物检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016197300A1 (fr) | Capteur de particules microminiaturisé de grande précision | |
CN102323215A (zh) | 分析读数装置及分析读数方法 | |
CN104374743B (zh) | 浊度传感器及浊度测量装置 | |
CN101893558A (zh) | 三组分火灾气体探测器 | |
CN102608010B (zh) | 微粒子pm检测方法及设备 | |
CN104458520A (zh) | 一种粉尘传感器及空间粉尘的检测方法 | |
CN102279167A (zh) | 微型红外气体传感器 | |
CN204679391U (zh) | 一种pm2.5检测报警装置 | |
CN204718931U (zh) | 一种高精度的微型化颗粒物传感器 | |
CN207300816U (zh) | 一种基于脉冲激光法的颗粒物传感器 | |
CN205003051U (zh) | 一种基于激光散射的pm2.5传感器 | |
CN108562524A (zh) | 激光散射颗粒物检测装置 | |
CN209542441U (zh) | 一种金属腔室红外二氧化碳气体检测模块 | |
CN106290089A (zh) | 一种高精度的微型化颗粒物传感器 | |
CN108181213A (zh) | 一种室外恒流泵吸式激光粉尘检测装置 | |
CN204188525U (zh) | 浊度传感器及浊度测量装置 | |
CN206362670U (zh) | 一种激光粉尘传感器 | |
CN104880392A (zh) | 一种pm2.5检测报警装置及方法 | |
CN104535467A (zh) | 一种pm2.5综合家庭式测量仪 | |
CN204330655U (zh) | 一种便携式甲醛与pm2.5检测装置 | |
CN202189015U (zh) | 分析读数装置 | |
CN203786031U (zh) | 气体浓度检测装置 | |
CN208206729U (zh) | 一种无风扇激光型灰尘传感器 | |
TWI603066B (zh) | 粒子感測裝置、以及具有粒子感測裝置的電子設備 | |
CN209485980U (zh) | 一种基于漫反射的污泥检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15894570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (16.05.2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15894570 Country of ref document: EP Kind code of ref document: A1 |