WO2016194774A1 - 変倍光学系、光学装置、変倍光学系の製造方法 - Google Patents
変倍光学系、光学装置、変倍光学系の製造方法 Download PDFInfo
- Publication number
- WO2016194774A1 WO2016194774A1 PCT/JP2016/065603 JP2016065603W WO2016194774A1 WO 2016194774 A1 WO2016194774 A1 WO 2016194774A1 JP 2016065603 W JP2016065603 W JP 2016065603W WO 2016194774 A1 WO2016194774 A1 WO 2016194774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens group
- optical system
- refractive power
- object side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/20—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/146—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
- G02B15/1465—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/177—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
Definitions
- the present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.
- variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc.
- variable power optical system as in Patent Document 1 has a problem that the optical performance is insufficient.
- the first aspect of the present invention is: In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A group, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power,
- a variable magnification optical system that satisfies the following conditional expression is provided. 0.30 ⁇ ( ⁇ fA) / fB ⁇ 0.60
- fA focal length of the lens unit arranged closest to the object side
- fB focal length of the lens unit arranged closest to the image side
- the second aspect of the present invention is: In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power
- a variable magnification optical system having a group, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power
- a variable magnification optical system manufacturing method is provided that allows the variable magnification optical system to satisfy the following conditional expression. 0.30 ⁇ ( ⁇ fA) / fB ⁇ 0.60
- fA focal length of the lens unit arranged closest to the object side
- fB focal length of the lens unit arranged closest to the image side
- A, B, and C are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example. It is sectional drawing of the wide-angle end state of the variable magnification optical system which concerns on 2nd Example.
- A, B, and C are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
- A, B, and C are graphs showing various aberrations when an object at infinity is in focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example. It is sectional drawing of the wide angle end state of the variable magnification optical system which concerns on 4th Example.
- A, B, and C are graphs showing various aberrations when an object at infinity is in focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
- A, B, and C are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example. It is a figure which shows the structure of the camera provided with the variable magnification optical system. It is a figure which shows the outline of the manufacturing method of a variable magnification optical system.
- variable magnification optical system of the present embodiment includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power.
- a fourth lens group having a positive refractive power, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power, and adjacent lens groups at the time of zooming The air interval of the air changes, and the following conditional expression (1) is satisfied.
- (1) 0.30 ⁇ ( ⁇ fA) / fB ⁇ 0.60
- fA focal length of the lens unit arranged closest to the object side
- fB focal length of the lens unit arranged closest to the image side
- Conditional expression (1) defines the focal length of the lens unit arranged closest to the image side with respect to the focal length of the lens unit arranged closest to the object side.
- the lower limit of conditional expression (1) it is preferable to set the lower limit of conditional expression (1) to 0.40.
- the corresponding value of the conditional expression (1) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the focal length of the lens unit disposed closest to the object side increases and the lens disposed closest to the image side. The focal length of the group is reduced. This increases the overall length of the variable magnification optical system of the present embodiment, making it difficult to correct field curvature.
- variable magnification optical system of the present embodiment satisfies the following conditional expression (2).
- fC focal length of the second lens group counted from the image side
- Conditional expression (2) defines the focal length of the lens unit arranged closest to the image side with respect to the focal length of the lens unit arranged second from the image side.
- the zooming optical system of the present embodiment can satisfactorily correct the field curvature in the wide-angle end state and the coma variation during zooming by satisfying conditional expression (2).
- the corresponding value of the conditional expression (2) of the variable magnification optical system of the present embodiment is less than the lower limit value, the focal length of the lens unit arranged second from the image side becomes small and the lens unit is arranged closest to the image side.
- the focal length of the lens group increases. This makes it difficult to correct field curvature and coma in the wide-angle end state.
- conditional expression (2) it is preferable to set the lower limit of conditional expression (2) to 0.48.
- the corresponding value of the conditional expression (2) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the focal length of the second lens group counted from the image side becomes large and the most image side is reached. The focal length of the arranged lens group is reduced. As a result, it becomes difficult to correct fluctuations in coma during zooming.
- variable magnification optical system of the present embodiment satisfies the following conditional expression (3).
- fD Focal length of the third lens group counted from the image side
- Conditional expression (3) defines the focal length of the lens unit arranged closest to the image side with respect to the focal length of the lens unit arranged third from the image side.
- the zooming optical system of the present embodiment can satisfactorily correct the field curvature at the wide-angle end state and the coma variation during zooming by satisfying conditional expression (3).
- conditional expression (3) of the variable magnification optical system of the present embodiment is less than the lower limit value, the focal length of the third lens group counted from the image side becomes small and the lens group is arranged closest to the image side. The focal length of the lens group increases. This makes it difficult to correct field curvature and coma in the wide-angle end state.
- the lower limit of conditional expression (3) it is preferable to set the lower limit of conditional expression (3) to 0.265.
- the corresponding value of the conditional expression (3) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the focal length of the third lens group counted from the image side becomes large and the image side becomes the most. The focal length of the arranged lens group is reduced. As a result, it becomes difficult to correct fluctuations in coma during zooming.
- the zoom optical system of the present embodiment it is desirable that the third lens group having negative refractive power moves as the focusing lens group during focusing.
- the diameter of the focusing lens group can be made relatively small, and the number of lenses can be reduced. Therefore, it is possible to reduce the size and weight of the variable magnification optical system of the present embodiment and to reduce the noise of the focusing operation.
- by performing focusing with a focusing lens group having negative refractive power it is possible to satisfactorily correct variations in various aberrations such as spherical aberration and field curvature during focusing.
- the lens group disposed closest to the object side includes two or three lens components.
- the lens unit disposed closest to the object side includes at least one positive lens and one negative lens, and has a lens component having a negative refractive power as a whole. It is preferable to have. With this configuration, it is possible to satisfactorily correct various aberrations, particularly spherical aberration, field curvature, and distortion.
- the lens group disposed closest to the object side includes a lens component having a negative refractive power.
- the lateral chromatic aberration can be favorably corrected.
- the number of lenses can be reduced.
- the lens component refers to a single lens or a cemented lens.
- the lens unit disposed closest to the object side includes a first lens component having a negative refractive power and a second lens component having a negative refractive power.
- the lens group disposed closest to the object side includes a first lens component having a negative refractive power and a second lens component having a negative refractive power, It is desirable that the second lens component is a cemented lens of a negative lens and a positive lens.
- the lens group disposed closest to the image side includes at least one plastic lens having an aspheric surface formed on at least one surface, and is disposed closer to the image side than the plastic lens. And at least one glass lens.
- the lens group disposed closest to the object side includes a first lens component having a negative refractive power and a second lens component having a negative refractive power, It is desirable that the first lens component has an aspheric surface made of a resin material on the image side surface of the glass lens.
- the second lens group, the fourth lens group, and the sixth lens group move together during zooming.
- variable magnification optical system of the present embodiment it is desirable that at least one of the first lens group and the most image side lens group has an aspherical surface. With this configuration, coma aberration can be corrected.
- the lens component in the first lens group has an aspherical surface.
- the image side lens surface of the most object side lens in the first lens group be an aspherical surface.
- the most object side lens in the first lens group is preferably a negative meniscus lens. With this configuration, the front lens diameter (the diameter of the lens surface closest to the object) can be reduced.
- the first lens group has a cemented lens.
- the cemented lens as a whole has a meniscus shape or a biconcave shape with a convex surface facing the object side.
- the cemented lens is preferably composed of a negative lens and a positive lens in order from the object side. It is desirable that the negative lens in the cemented lens has a meniscus shape. It is desirable that the positive lens in the cemented lens has a meniscus shape. The more the cemented lens satisfies these conditions, the less aberration occurs in the cemented lens, and there is no waste in manufacturing because high mounting accuracy is not required.
- the fourth lens group includes a single lens and a cemented lens. With this configuration, spherical aberration and axial chromatic aberration can be corrected.
- variable magnification optical system of the present embodiment includes a plastic lens in the lens group closest to the image side.
- cost reduction can be achieved.
- an aspherical surface can be provided on the plastic lens without increasing the cost, and thereby coma can be corrected well.
- the variable magnification optical system of the present embodiment is an interchangeable lens, the lens on the most image side can be easily touched by the user, so that a glass lens having higher durability than a plastic lens can be used. desirable.
- the third lens group is composed of two or less lens components (preferably one lens component). If the third lens group, that is, the focusing lens group is composed of many lenses, it is easy to correct variations in various aberrations such as spherical aberration and field curvature during focusing. However, when the number of lenses in the third lens group increases, the overall length of the variable magnification optical system of the present embodiment increases, making it difficult to reduce the size and weight. Therefore, in the variable magnification optical system of the present embodiment, the number of lenses can be reduced by configuring the third lens group with only two or less lens components as described above to form a focusing lens group.
- the third lens group it is preferable to configure the third lens group with a single lens because the number of lenses can be reduced. Also, if the focusing lens group is moved to the object side when focusing from an object at infinity to an object at close distance, fluctuations in various aberrations such as spherical aberration and field curvature during focusing will be improved. It can be corrected.
- the optical apparatus of the present embodiment has a variable magnification optical system having the above-described configuration. Thereby, an optical device having good optical performance can be realized.
- variable magnification optical system in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power.
- a method of manufacturing a variable magnification optical system having a lens group, a fourth lens group having a positive refractive power, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power is changed so that the zooming optical system satisfies the following conditional expression (1).
- a variable magnification optical system having good optical performance can be manufactured.
- (1) 0.30 ⁇ ( ⁇ fA) / fB ⁇ 0.60
- fA focal length of the lens unit arranged closest to the object side
- fB focal length of the lens unit arranged closest to the image side
- FIG. 1 is a sectional view of the variable magnification optical system according to the first example of the present embodiment in the wide-angle end state. 1 and FIG. 3, FIG. 5, FIG. 7 and FIG. 9, which will be described later, indicate the movement trajectory of each lens group during zooming from the wide-angle end state (W) to the telephoto end state (T). ing.
- the variable magnification optical system includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
- An aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5.
- the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It consists of a cemented lens.
- the negative meniscus lens L11 is a glass lens, and an aspherical surface is formed of a resin material on the image side lens surface of the negative meniscus lens L11.
- the second lens group G2 is composed of a biconvex positive lens L21.
- the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
- the fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41, a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object, an aperture stop S, Consists of.
- the fifth lens group G5 is composed of a cemented lens of a positive meniscus lens L51 having a concave surface directed toward the object side and a biconcave negative lens L52 in order from the object side.
- the sixth lens group G6 includes, in order from the object side, a positive meniscus lens L61 having a convex surface directed toward the object side, and a positive meniscus lens L62 having a concave surface directed toward the object side.
- the positive meniscus lens L61 is a plastic lens, and the image-side lens surface is aspheric.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group during zooming from the wide-angle end state to the telephoto end state The air gap between G3, the third lens group G3 and the fourth lens group G4, the air gap between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6.
- the first to sixth lens groups G1 to G6 move along the optical axis so that the air gap between them changes.
- the second, fourth, and sixth lens groups G2, G4, and G6 move integrally when zooming.
- the aperture stop S moves integrally with the fourth lens group G4 during zooming.
- variable magnification optical system the third lens group G3 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
- image stabilization is performed by moving the second lens group G2 so as to include a component in a direction perpendicular to the optical axis.
- Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
- f represents the focal length
- Bf represents the back focus, that is, the distance on the optical axis between the lens surface closest to the image side and the image surface.
- the surface number is the order of the optical surfaces counted from the object side
- r is the radius of curvature
- d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface)
- nd is The refractive index for d-line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for d-line (wavelength 587.6 nm), respectively.
- the object plane indicates the object plane
- the variable indicates the variable surface interval
- the stop S indicates the aperture stop S.
- the radius of curvature r ⁇ indicates a plane.
- “*” is attached to the surface number, and the value of the paraxial radius of curvature is shown in the column of the radius of curvature r.
- [Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
- x (h 2 / r) / [1+ ⁇ 1- ⁇ (h / r) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8
- h is the height in the direction perpendicular to the optical axis
- x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h
- ⁇ is the conic constant.
- A4, A6, A8 are aspheric coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature).
- E ⁇ n (n is an integer) indicates “ ⁇ 10 ⁇ n ”, for example “1.23456E-07” indicates “1.23456 ⁇ 10 ⁇ 7 ”.
- the secondary aspherical coefficient A2 is 0 and is not shown.
- FNO is the F number
- 2 ⁇ is the angle of view (unit is “°”)
- Y is the image height
- TL is the total length of the variable magnification optical system according to the present embodiment, that is, the first surface to the image surface.
- a distance on the optical axis, dn indicates a variable distance between the nth surface and the (n + 1) th surface.
- W represents the wide-angle end state
- M represents the intermediate focal length state
- T represents the telephoto end state.
- [Lens Group Data] indicates the start surface and focal length of each lens group.
- [Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.
- the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
- the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
- symbol of Table 1 described above shall be similarly used also in the table
- 2A, 2B, and 2C are graphs showing various aberrations when the object at infinity is focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present embodiment, respectively. is there.
- FNO represents the F number
- Y represents the image height
- the spherical aberration diagram shows the value of the F number FNO corresponding to the maximum aperture
- the astigmatism diagram and the distortion diagram show the maximum value of the image height Y
- the coma diagram shows the value of each image height.
- d indicates the aberration at the d-line (wavelength 587.6 nm)
- g indicates the aberration at the g-line (wavelength 435.8 nm).
- the solid line indicates the sagittal image plane
- the broken line indicates the meridional image plane.
- the coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
- variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- FIG. 3 is a sectional view of the zoom optical system according to the second example of the present embodiment in the wide-angle end state.
- the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
- An aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5.
- the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a cemented lens of a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
- the negative meniscus lens L11 is a glass lens, and an aspherical surface is formed of a resin material on the image side lens surface of the negative meniscus lens L11.
- the second lens group G2 is composed of a biconvex positive lens L21.
- the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
- the fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a cemented lens of a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object side.
- the fifth lens group G5 includes, in order from the object side, an aperture stop S, and a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a biconcave negative lens L52.
- the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a convex surface directed toward the object side, and a positive meniscus lens L62 having a concave surface directed toward the object side.
- the negative meniscus lens L61 is a plastic lens, and the image-side lens surface is aspheric.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group during zooming from the wide-angle end state to the telephoto end state The air gap between G3, the third lens group G3 and the fourth lens group G4, the air gap between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6.
- the first to sixth lens groups G1 to G6 move along the optical axis so that the air gap between them changes.
- the second, fourth, and sixth lens groups G2, G4, and G6 move integrally when zooming.
- the aperture stop S moves integrally with the fifth lens group G5 during zooming.
- variable magnification optical system the third lens group G3 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
- image stabilization is performed by moving the second lens group G2 so as to include a component in a direction perpendicular to the optical axis. Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
- 4A, 4B, and 4C are graphs showing various aberrations when the object at infinity is focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present embodiment, respectively. is there.
- variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- FIG. 5 is a sectional view of the variable magnification optical system according to the third example of the present embodiment in the wide-angle end state.
- the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
- An aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5.
- the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It consists of a cemented lens.
- the negative meniscus lens L11 is a glass lens, and an aspherical surface is formed of a resin material on the image side lens surface of the negative meniscus lens L11.
- the second lens group G2 includes a positive meniscus lens L21 having a concave surface directed toward the object side.
- the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
- the fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41, a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object, an aperture stop S, Consists of.
- the fifth lens group G5 is composed of a cemented lens of a positive meniscus lens L51 having a concave surface directed toward the object side and a biconcave negative lens L52 in order from the object side.
- the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a convex surface directed toward the object side, and a positive meniscus lens L62 having a concave surface directed toward the object side.
- the negative meniscus lens L61 is a plastic lens, and the image-side lens surface is aspheric.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group during zooming from the wide-angle end state to the telephoto end state The air gap between G3, the third lens group G3 and the fourth lens group G4, the air gap between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6.
- the first to sixth lens groups G1 to G6 move along the optical axis so that the air gap between them changes.
- the aperture stop S moves integrally with the fourth lens group G4 during zooming.
- variable magnification optical system the third lens group G3 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
- image stabilization is performed by moving the second lens group G2 so as to include a component in a direction perpendicular to the optical axis. Table 3 below lists values of specifications of the variable magnification optical system according to the present example.
- FIGS. 6A, 6B, and 6C are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present embodiment, respectively. is there.
- variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- FIG. 7 is a sectional view of the zoom optical system according to the fourth example of the present embodiment in the wide-angle end state.
- the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
- An aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5.
- the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a cemented lens of a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
- the negative meniscus lens L11 is a glass lens, and an aspherical surface is formed of a resin material on the image side lens surface of the negative meniscus lens L11.
- the second lens group G2 includes a positive meniscus lens L21 having a concave surface directed toward the object side.
- the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
- the fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41, a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object, an aperture stop S, Consists of.
- the fifth lens group G5 is composed of a cemented lens of a positive meniscus lens L51 having a concave surface directed toward the object side and a biconcave negative lens L52 in order from the object side.
- the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a convex surface directed toward the object side, and a positive meniscus lens L62 having a concave surface directed toward the object side.
- the negative meniscus lens L61 is a plastic lens, and the image-side lens surface is aspheric.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group during zooming from the wide-angle end state to the telephoto end state The air gap between G3, the third lens group G3 and the fourth lens group G4, the air gap between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6.
- the first to sixth lens groups G1 to G6 move along the optical axis so that the air gap between them changes.
- the aperture stop S moves integrally with the fourth lens group G4 during zooming.
- variable magnification optical system the third lens group G3 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
- image stabilization is performed by moving the second lens group G2 so as to include a component in a direction perpendicular to the optical axis. Table 4 below lists values of specifications of the variable magnification optical system according to the present example.
- FIGS. 8A, 8B, and 8C are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the fourth example of the present embodiment, respectively. is there.
- variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- FIG. 9 is a sectional view of the zoom optical system according to the fifth example of the present embodiment in the wide-angle end state.
- the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
- An aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5.
- the first lens group G1 in order from the object side, includes a negative meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a negative meniscus lens L13 having a convex surface directed toward the object side. It consists of a cemented lens with a positive meniscus lens L14 having a convex surface facing the object side.
- the negative meniscus lens L12 is a glass lens, and an aspherical surface is formed of a resin material on the image side lens surface of the negative meniscus lens L12.
- the second lens group G2 is composed of a biconvex positive lens L21.
- the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
- the fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41, a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object, an aperture stop S, Consists of.
- the fifth lens group G5 is composed of a cemented lens of a positive meniscus lens L51 having a concave surface directed toward the object side and a biconcave negative lens L52 in order from the object side.
- the sixth lens group G6 includes, in order from the object side, a positive meniscus lens L61 having a convex surface directed toward the object side, and a positive meniscus lens L62 having a concave surface directed toward the object side.
- the positive meniscus lens L61 is a plastic lens, and the image-side lens surface is aspheric.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group during zooming from the wide-angle end state to the telephoto end state The air gap between G3, the third lens group G3 and the fourth lens group G4, the air gap between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6.
- the first to sixth lens groups G1 to G6 move along the optical axis so that the air gap between them changes.
- the aperture stop S moves integrally with the fourth lens group G4 during zooming.
- variable magnification optical system the third lens group G3 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
- image stabilization is performed by moving the second lens group G2 so as to include a component in a direction perpendicular to the optical axis. Table 5 below provides values of specifications of the variable magnification optical system according to the present example.
- FIGS. 10A, 10B, and 10C are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the fifth example of the present embodiment, respectively. is there.
- variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- variable magnification optical system that is compact and lightweight, suppresses aberration fluctuations during variable magnification, and has excellent optical performance.
- each said Example has shown the specific example of this embodiment, and this embodiment is not limited to these.
- the following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present embodiment is not impaired.
- variable-magnification optical system of the present embodiment is not limited to this, and a variable-magnification optical system of another group configuration (for example, seven groups) is configured.
- a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of each of the above embodiments may be used.
- the lens group on the most image side of the variable magnification optical system of each of the above embodiments may be divided into two, and the distance between these may change at the time of zooming.
- each lens group moves along the optical axis when zooming from the wide-angle end state to the telephoto end state.
- the variable magnification optical system of each of the above embodiments may fix the position of at least one lens group, for example, the most image side lens group.
- the movement locus of the first lens group upon zooming from the wide-angle end state to the telephoto end state is a U-turn shape that once moves to the image side and then moves to the object side.
- the plurality of lens groups can be linked and moved together.
- variable magnification optical system of each of the above embodiments may be in a reduced tube state in which the distance between the lenses is further reduced.
- the variable magnification optical system of each of the above embodiments can improve portability by taking a contracted state.
- it is preferable that the distance between the first lens group and the second lens group having the largest distance between the lens groups is reduced to be changed into a contracted state.
- variable magnification optical system of each of the above embodiments includes a focusing lens that includes a part of a lens group, an entire lens group, or a plurality of lens groups in order to perform focusing from an object at infinity to an object at a short distance. It is good also as a structure which moves to an optical axis direction as a group.
- the third lens group is a focusing lens group.
- Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.
- variable magnification optical system of each of the above embodiments either the entire lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or the optical axis It can also be set as the structure which carries out anti-vibration by carrying out rotational movement (oscillation) to the in-plane direction containing.
- the second lens group is an anti-vibration lens group.
- the fifth lens group may be an anti-vibration lens group.
- the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments may be a spherical surface, a flat surface, or an aspherical surface.
- the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
- the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
- the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
- GRIN lens gradient index lens
- the aperture stop is preferably disposed between the fourth lens group and the fifth lens group, and the role is replaced by a lens frame without providing a member as the aperture stop. It is good also as a structure.
- an antireflection film having a high transmittance in a wide wavelength region may be applied to the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments.
- flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
- FIG. 11 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the present embodiment.
- This camera 1 is an interchangeable lens type digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
- light from an object (not shown) that is a subject is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3.
- the light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6.
- the photographer can observe the subject image as an erect image through the eyepiece 6.
- the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
- variable magnification optical system according to the first example mounted on the camera 1 as the photographing lens 2 is small and has good optical performance as described above. That is, the camera 1 can achieve downsizing and good optical performance. Even if a camera equipped with the variable magnification optical system according to the second to fifth embodiments as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. In addition, even when the zoom optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effects as those of the camera 1 can be obtained.
- FIG. 12 is a diagram showing an outline of a manufacturing method of the variable magnification optical system of the present embodiment.
- the manufacturing method of the variable magnification optical system of the present embodiment shown in FIG. 12 includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. And a fourth lens group having a positive refractive power, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power.
- the manufacturing method includes the following steps S1 and S2.
- Step S1 First to sixth lens groups are prepared, and each lens group is sequentially arranged in the lens barrel from the object side. Then, by providing a known moving mechanism in the lens barrel, the air space between the adjacent lens groups changes at the time of zooming.
- Step S2 The variable magnification optical system is made to satisfy the following conditional expression (1). (1) 0.30 ⁇ ( ⁇ fA) / fB ⁇ 0.60 However, fA: focal length of the lens unit arranged closest to the object side fB: focal length of the lens unit arranged closest to the image side
- variable power optical system of the present embodiment it is possible to manufacture a variable power optical system that is small and has good optical performance.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
Description
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有し、
変倍時に、隣り合う前記レンズ群同士の空気間隔が変化し、
以下の条件式を満足する変倍光学系を提供する。
0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有する変倍光学系の製造方法であって、
変倍時に、隣り合う前記レンズ群同士の空気間隔が変化するようにし、
前記変倍光学系が以下の条件式を満足するようにする変倍光学系の製造方法を提供する。
0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離
本実施形態の変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有し、変倍時に、隣り合う前記レンズ群同士の空気間隔が変化し、以下の条件式(1)を満足する。
(1) 0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離
以上の構成により、良好な光学性能を備えた変倍光学系を実現することができる。
(2) 0.40<(-fC)/fB<0.72
ただし、
fC:像側から数えて2番目に配置されたレンズ群の焦点距離
(3) 0.20<fD/fB<0.50
ただし、
fD:像側から数えて3番目に配置されたレンズ群の焦点距離
また本実施形態の変倍光学系は、前記最も物体側に配置されたレンズ群が少なくとも1枚の正レンズと1枚の負レンズとを有しかつ全体で負の屈折力を有するレンズ成分を有することが好ましい。この構成により、諸収差、特に球面収差、像面湾曲及び歪曲収差を良好に補正することができる。
また本実施形態の変倍光学系は、前記最も像側に配置されたレンズ群が、少なくとも1面に非球面が形成された少なくとも1つのプラスチックレンズと、前記プラスチックレンズよりも像側に配置された少なくとも1つのガラスレンズとを有することが望ましい。
また本実施形態の変倍光学系は、前記最も物体側に配置されたレンズ群が、負の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分とを有し、前記第1レンズ成分が、ガラスレンズの像側面に樹脂材料により非球面を形成されていることが望ましい。
また本実施形態の変倍光学系は、変倍時に、前記第2レンズ群と前記第4レンズ群と前記第6レンズ群とが一体で移動することが望ましい。
また本実施形態の変倍光学系は、前記第2レンズ群中の少なくとも1つのレンズ成分が光軸に対して垂直な方向の成分を含むように移動することが望ましい。この構成により、手ぶれや振動等に起因する像ぶれの補正即ち防振を行うことができる。また、変倍時に像面湾曲の変動を効果的かつ効率的に補正することができる。
(1) 0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離
(第1実施例)
図1は本実施形態の第1実施例に係る変倍光学系の広角端状態における断面図である。なお、図1及び後述する図3、図5、図7及び図9中の矢印は、広角端状態(W)から望遠端状態(T)への変倍時の各レンズ群の移動軌跡を示している。
第2レンズ群G2は、両凸形状の正レンズL21からなる。
第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズと、開口絞りSとからなる。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と両凹形状の負レンズL52との接合レンズからなる。
第6レンズ群G6は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL61と、物体側に凹面を向けた正メニスカスレンズL62とからなる。なお、正メニスカスレンズL61はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、第2レンズ群G2を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
表1において、fは焦点距離、Bfはバックフォーカス即ち最も像側のレンズ面と像面との光軸上の距離を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。物面は物体面、可変は可変の面間隔、絞りSは開口絞りSをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に「*」を付して曲率半径rの欄に近軸曲率半径の値を示している。
x=(h2/r)/[1+{1-κ(h/r)2}1/2]+A4h4+A6h6+A8h8
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E-n」(nは整数)は「×10-n」を示し、例えば「1.23456E-07」は「1.23456×10-7」を示す。2次の非球面係数A2は0であり、記載を省略している。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
[面データ]
面番号 r d nd νd
物面 ∞
1 80.72 2.00 1.58913 61.22
2 18.88 0.17 1.56093 36.64
*3 17.05 9.35 1.00000
4 240.48 1.40 1.62299 58.12
5 17.63 5.00 1.84666 23.80
6 32.74 可変 1.00000
7 164.19 1.65 1.48749 70.31
8 -48.23 可変 1.00000
9 -30.49 0.80 1.77250 49.62
10 -87.64 可変 1.00000
11 46.43 3.05 1.48749 70.31
12 -31.99 0.10 1.00000
13 25.50 4.20 1.48749 70.31
14 -25.50 0.80 1.84666 23.80
15 -60.79 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -43.88 2.27 1.75520 27.57
18 -13.90 0.80 1.70154 41.02
19 38.98 可変 1.00000
20 81.93 1.30 1.52444 56.21
*21 91.62 1.60 1.00000
22 -179.92 2.30 1.51680 63.88
23 -21.95 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.43618E-05 3.23919E-08 -6.25295E-11 2.95784E-13
21 0.0000 2.43150E-05 -6.35221E-09 2.24760E-10 -3.95108E-12
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.64 4.62 5.88
2ω 80.60 45.84 30.70
TL 134.86 128.74 136.72
Y 14.25 14.25 14.25
d6 33.51 11.32 3.41
d8 6.23 7.18 7.40
d10 2.96 2.00 1.78
d16 1.70 5.67 9.57
d19 9.07 5.10 1.20
Bf 43.85 59.92 75.82
[レンズ群データ]
群 始面 f
1 1 -24.58
2 7 76.67
3 9 -60.89
4 11 22.86
5 17 -31.47
6 20 46.90
[条件式対応値]
(1) (-fA)/fB = 0.52
(2) (-fC)/fB = 0.6711
(3) fD/fB = 0.49
図3は本実施形態の第2実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。なお、第4レンズ群G4と第5レンズ群G5の間には、開口絞りSが配置されている。
第2レンズ群G2は、両凸形状の正レンズL21からなる。
第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。
第5レンズ群G5は、物体側から順に、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL51と両凹形状の負レンズL52との接合レンズからなる。
第6レンズ群G6は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL61と、物体側に凹面を向けた正メニスカスレンズL62とからなる。なお、負メニスカスレンズL61はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、第2レンズ群G2を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
[面データ]
面番号 r d nd νd
物面 ∞
1 58.61 1.30 1.51680 63.88
2 18.70 0.15 1.56093 36.64
*3 16.70 12.36 1.00000
4 -539.76 1.20 1.63854 55.34
5 21.43 5.00 1.84666 23.78
6 43.93 可変 1.00000
7 76.20 1.70 1.48749 70.31
8 -74.28 可変 1.00000
9 -33.55 0.79 1.77250 49.62
10 -126.41 可変 1.00000
11 49.80 3.33 1.48749 70.31
12 -30.52 0.10 1.00000
13 23.62 3.51 1.48749 70.31
14 -29.49 0.80 1.84666 23.80
15 -75.25 可変 1.00000
16(絞りS) ∞ 1.50 1.00000
17 -51.95 2.42 1.75520 27.57
18 -15.57 0.90 1.70154 41.02
19 45.98 可変 1.00000
20 96.48 1.37 1.52444 56.21
*21 88.50 1.50 1.00000
22 -58.97 2.38 1.51680 63.88
23 -21.70 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.72915E-05 4.86464E-08 -1.24525E-10 4.71298E-13
21 0.0000 3.10082E-05 1.62502E-09 -1.14900E-10 1.87133E-13
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.64 4.70 5.84
2ω 80.61 45.83 30.72
TL 135.29 129.95 136.93
Y 14.25 14.25 14.25
d6 35.50 13.00 3.00
d8 6.10 9.67 10.06
d10 5.11 1.55 1.15
d15 0.95 3.60 6.50
d19 6.85 4.20 1.30
Bf 40.47 57.64 74.61
[レンズ群データ]
群 始面 f
1 1 -27.41
2 7 77.45
3 9 -59.34
4 11 22.44
5 17 -37.49
6 20 67.25
[条件式対応値]
(1) (-fA)/fB = 0.41
(2) (-fC)/fB = 0.56
(3) fD/fB = 0.33
図5は本実施形態の第3実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。なお、第4レンズ群G4と第5レンズ群G5の間には、開口絞りSが配置されている。
第2レンズ群G2は、物体側に凹面を向けた正メニスカスレンズL21からなる。
第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズと、開口絞りSとからなる。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と両凹形状の負レンズL52との接合レンズからなる。
第6レンズ群G6は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL61と、物体側に凹面を向けた正メニスカスレンズL62とからなる。なお、負メニスカスレンズL61はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、第2レンズ群G2を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
[面データ]
面番号 r d nd νd
物面 ∞
1 79.69 2.00 1.58913 61.22
2 20.75 0.17 1.56093 36.64
*3 19.00 9.65 1.00000
4 416.05 1.40 1.60311 60.69
5 17.31 5.19 1.84666 23.80
6 28.95 可変 1.00000
7 -396.42 1.63 1.48749 70.31
8 -34.31 可変 1.00000
9 -24.55 0.80 1.77250 49.62
10 -67.66 可変 1.00000
11 53.51 2.86 1.60311 60.69
12 -36.03 0.10 1.00000
13 26.08 4.26 1.48749 70.31
14 -23.14 0.80 1.84666 23.80
15 -52.27 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -45.51 2.28 1.84666 23.80
18 -14.24 0.80 1.74950 35.25
19 41.61 可変 1.00000
20 100.00 1.30 1.52444 56.21
*21 97.03 1.55 1.00000
22 -306.68 2.44 1.48749 70.31
23 -21.59 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 9.56997E-06 2.46213E-08 -3.67381E-11 1.68777E-13
21 0.0000 2.66274E-05 2.95181E-08 -8.46694E-11 -4.35134E-12
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.64 4.60 5.88
2ω 80.59 45.80 30.69
TL 134.92 128.32 136.32
Y 14.25 14.25 14.25
d6 33.91 11.51 3.67
d8 5.54 6.25 6.51
d10 2.36 1.94 1.78
d16 1.70 5.75 9.71
d19 9.61 5.26 1.20
Bf 43.82 59.63 75.47
[レンズ群データ]
群 始面 f
1 1 -24.72
2 7 76.93
3 9 -50.29
4 11 21.61
5 17 -33.17
6 20 48.02
[条件式対応値]
(1) (-fA)/fB = 0.51
(2) (-fC)/fB = 0.69
(3) fD/fB = 0.45
図7は本実施形態の第4実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。なお、第4レンズ群G4と第5レンズ群G5の間には、開口絞りSが配置されている。
第2レンズ群G2は、物体側に凹面を向けた正メニスカスレンズL21からなる。
第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズと、開口絞りSとからなる。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と両凹形状の負レンズL52との接合レンズからなる。
第6レンズ群G6は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL61と、物体側に凹面を向けた正メニスカスレンズL62とからなる。なお、負メニスカスレンズL61はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、第2レンズ群G2を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
[面データ]
面番号 r d nd νd
物面 ∞
1 56.24 2.00 1.69680 55.52
2 20.35 0.17 1.56093 36.64
*3 18.69 9.97 1.00000
4 -2982.47 1.40 1.60300 65.44
5 18.31 5.00 1.84666 23.80
6 32.46 可変 1.00000
7 -620.57 1.63 1.48749 70.31
8 -35.68 可変 1.00000
9 -25.12 0.80 1.77250 49.62
10 -71.26 可変 1.00000
11 54.96 2.89 1.60311 60.69
12 -35.02 0.10 1.00000
13 25.68 4.30 1.48749 70.31
14 -23.22 0.80 1.84666 23.80
15 -52.65 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -45.18 2.27 1.84666 23.80
18 -14.36 0.80 1.74950 35.25
19 41.64 可変 1.00000
20 100.05 1.30 1.52444 56.21
*21 80.01 1.54 1.00000
22 -416.31 2.37 1.48749 70.31
23 -21.63 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.09721E-05 2.63109E-08 -3.94901E-11 1.79030E-13
21 0.0000 2.64794E-05 1.52619E-08 5.85840E-11 -4.79996E-12
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.63 4.60 5.88
2ω 80.59 45.83 30.72
TL 134.92 128.32 136.32
Y 14.25 14.25 14.25
d6 34.40 11.79 3.56
d8 5.58 6.27 6.52
d10 2.36 1.87 1.82
d15 1.70 5.48 9.09
d19 8.98 5.00 1.20
Bf 43.82 59.84 76.07
[レンズ群データ]
群 始面 f
1 1 -24.76
2 7 77.60
3 9 -50.59
4 11 21.42
5 17 -32.97
6 20 49.70
[条件式対応値]
(1) (-fA)/fB = 0.50
(2) (-fC)/fB = 0.66
(3) fD/fB = 0.43
図9は本実施形態の第5実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。なお、第4レンズ群G4と第5レンズ群G5の間には、開口絞りSが配置されている。
第2レンズ群G2は、両凸形状の正レンズL21からなる。
第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズと、開口絞りSとからなる。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と両凹形状の負レンズL52との接合レンズからなる。
第6レンズ群G6は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL61と、物体側に凹面を向けた正メニスカスレンズL62とからなる。なお、正メニスカスレンズL61はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、第2レンズ群G2を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。
[面データ]
面番号 r d nd νd
物面 ∞
1 209.27 1.20 1.58913 61.22
2 80.00 0.50 1.00000
3 95.02 1.50 1.58913 61.22
4 20.08 0.17 1.56093 36.64
*5 17.11 8.89 1.00000
6 88.50 1.40 1.62299 58.12
7 20.90 4.97 1.84666 23.80
8 39.72 可変 1.00000
9 91.28 1.69 1.48749 70.31
10 -64.46 7.40 1.00000
11 -31.66 0.80 1.77250 49.62
12 -113.87 可変 1.00000
13 45.03 2.87 1.60311 60.69
14 -44.31 0.10 1.00000
15 28.29 4.12 1.48749 70.31
16 -25.69 0.80 1.84666 23.80
17 -63.83 0.75 1.00000
18(絞りS) ∞ 可変 1.00000
19 -76.88 2.44 1.80518 25.45
20 -14.69 0.80 1.74950 35.25
21 39.81 可変 1.00000
22 87.75 1.30 1.52444 56.21
*23 100.00 1.63 1.00000
24 -130.16 2.10 1.48749 70.31
25 -24.08 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
5 0.0000 7.02973E-06 1.53750E-08 -2.66094E-11 4.94903E-14
23 0.0000 2.52535E-05 1.69828E-07 -4.24774E-09 3.75173E-11
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.62 4.60 5.88
2ω 80.59 45.89 30.76
TL 136.32 128.16 135.63
Y 14.25 14.25 14.25
d8 37.04 12.65 3.40
d10 6.41 7.23 7.40
d12 3.03 1.94 1.78
d18 1.70 5.44 9.04
d21 8.27 4.81 1.20
Bf 43.82 59.84 76.07
[レンズ群データ]
群 始面 f
1 1 -26.43
2 9 77.78
3 11 -57.00
4 13 23.44
5 19 -38.79
6 22 58.02
[条件式対応値]
(1) (-fA)/fB = 0.46
(2) (-fC)/fB = 0.6686
(3) fD/fB = 0.40
また、上記各実施例の変倍光学系は、レンズ同士の間隔をさらに小さくした縮筒状態をとることとしてもよい。上記各実施例の変倍光学系は、縮筒状態をとることにより、携帯性を良くすることができる。上記各実施例の変倍光学系は、最もレンズ群同士の間隔が大きい第1レンズ群と第2レンズ群との間を小さくして縮筒状態に変化させるのが好ましい。
図11は、本実施形態の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式のデジタル一眼レフカメラである。
本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
図12は、本実施形態の変倍光学系の製造方法の概略を示す図である。
図12に示す本実施形態の変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2を含むものである。
ステップS1:第1~第6レンズ群を準備し、各レンズ群を鏡筒内に物体側から順に配置する。そして、公知の移動機構を鏡筒に設けることにより、変倍時に、隣り合う前記レンズ群どうしの空気間隔が変化するようにする。
ステップS2:変倍光学系が以下の条件式(1)を満足するようにする。
(1) 0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離
Claims (13)
- 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有し、
変倍時に、隣り合う前記レンズ群同士の空気間隔が変化し、
以下の条件式を満足する変倍光学系。
0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離 - 以下の条件式を満足する請求項1に記載の変倍光学系。
0.40<(-fC)/fB<0.72
ただし、
fC:像側から数えて2番目に配置されたレンズ群の焦点距離 - 以下の条件式を満足する請求項1又は請求項2に記載の変倍光学系。
0.20<fD/fB<0.50
ただし、
fD:像側から数えて3番目に配置されたレンズ群の焦点距離 - 合焦時に、前記第3レンズ群が移動する請求項1から請求項3のいずれか一項に記載の変倍光学系。
- 前記最も物体側に配置されたレンズ群が負の屈折力を有するレンズ成分からなる請求項1から請求項4のいずれか一項に記載の変倍光学系。
- 前記最も物体側に配置されたレンズ群が、負の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分とからなる請求項1から請求項5のいずれか一項に記載の変倍光学系。
- 前記最も物体側に配置されたレンズ群が、負の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分とを有し、
前記第2レンズ成分が、負レンズと正レンズとの接合レンズからなる請求項1から請求項6のいずれか一項に記載の変倍光学系。 - 前記最も像側に配置されたレンズ群が、少なくとも1面に非球面が形成された少なくとも1つのプラスチックレンズと、前記プラスチックレンズよりも像側に配置された少なくとも1つのガラスレンズとを有する請求項1から請求項7のいずれか一項に記載の変倍光学系。
- 前記最も物体側に配置されたレンズ群が、負の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分とを有し、
前記第1レンズ成分が、ガラスレンズの像側面に樹脂材料により非球面を形成されている請求項1から請求項8のいずれか一項に記載の変倍光学系。 - 変倍時に、前記第2レンズ群と前記第4レンズ群と前記第6レンズ群とが一体で移動する請求項1から請求項9のいずれか一項に記載の変倍光学系。
- 前記第2レンズ群中の少なくとも1つのレンズ成分が光軸に対して垂直な方向の成分を含むように移動する請求項1から請求項10のいずれか一項に記載の変倍光学系。
- 請求項1から請求項11のいずれか一項に記載の変倍光学系を有する光学装置。
- 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とを有する変倍光学系の製造方法であって、
変倍時に、隣り合う前記レンズ群同士の空気間隔が変化するようにし、
前記変倍光学系が以下の条件式を満足するようにする変倍光学系の製造方法。
0.30<(-fA)/fB<0.60
ただし、
fA:最も物体側に配置されたレンズ群の焦点距離
fB:最も像側に配置されたレンズ群の焦点距離
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680043965.6A CN107850762B (zh) | 2015-05-29 | 2016-05-26 | 变倍光学系统、光学装置、变倍光学系统的制造方法 |
US15/576,805 US10690896B2 (en) | 2015-05-29 | 2016-05-26 | Variable magnification optical system, optical device, and production method for variable magnification optical system |
JP2017521881A JP6642572B2 (ja) | 2015-05-29 | 2016-05-26 | 変倍光学系、光学装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015110078 | 2015-05-29 | ||
JP2015-110078 | 2015-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194774A1 true WO2016194774A1 (ja) | 2016-12-08 |
Family
ID=57440533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065603 WO2016194774A1 (ja) | 2015-05-29 | 2016-05-26 | 変倍光学系、光学装置、変倍光学系の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10690896B2 (ja) |
JP (1) | JP6642572B2 (ja) |
CN (1) | CN107850762B (ja) |
WO (1) | WO2016194774A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946824A (zh) * | 2017-12-20 | 2019-06-28 | 富士胶片株式会社 | 变焦透镜及摄像装置 |
JP2019179082A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社タムロン | ズームレンズ及び撮像装置 |
JP2020170053A (ja) * | 2019-04-01 | 2020-10-15 | 株式会社ニコン | 変倍光学系、光学機器、及び変倍光学系の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337647A (ja) * | 2005-06-01 | 2006-12-14 | Canon Inc | ズームレンズ |
JP2011150240A (ja) * | 2010-01-25 | 2011-08-04 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2014032358A (ja) * | 2012-08-06 | 2014-02-20 | Canon Inc | ズームレンズおよびそれを有する撮像装置 |
JP2014041222A (ja) * | 2012-08-22 | 2014-03-06 | Canon Inc | ズームレンズ |
JP2014052413A (ja) * | 2012-09-05 | 2014-03-20 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2014063025A (ja) * | 2012-09-21 | 2014-04-10 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2016009113A (ja) * | 2014-06-25 | 2016-01-18 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0534509A (ja) * | 1991-05-21 | 1993-02-12 | Asahi Optical Co Ltd | 非球面光学素子及びその製造方法 |
-
2016
- 2016-05-26 CN CN201680043965.6A patent/CN107850762B/zh active Active
- 2016-05-26 US US15/576,805 patent/US10690896B2/en active Active
- 2016-05-26 WO PCT/JP2016/065603 patent/WO2016194774A1/ja active Application Filing
- 2016-05-26 JP JP2017521881A patent/JP6642572B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337647A (ja) * | 2005-06-01 | 2006-12-14 | Canon Inc | ズームレンズ |
JP2011150240A (ja) * | 2010-01-25 | 2011-08-04 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2014032358A (ja) * | 2012-08-06 | 2014-02-20 | Canon Inc | ズームレンズおよびそれを有する撮像装置 |
JP2014041222A (ja) * | 2012-08-22 | 2014-03-06 | Canon Inc | ズームレンズ |
JP2014052413A (ja) * | 2012-09-05 | 2014-03-20 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2014063025A (ja) * | 2012-09-21 | 2014-04-10 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
JP2016009113A (ja) * | 2014-06-25 | 2016-01-18 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946824A (zh) * | 2017-12-20 | 2019-06-28 | 富士胶片株式会社 | 变焦透镜及摄像装置 |
CN109946824B (zh) * | 2017-12-20 | 2022-06-03 | 富士胶片株式会社 | 变焦透镜及摄像装置 |
US11650396B2 (en) | 2017-12-20 | 2023-05-16 | Fujifilm Corporation | Zoom lens and imaging apparatus |
JP2019179082A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社タムロン | ズームレンズ及び撮像装置 |
JP7245606B2 (ja) | 2018-03-30 | 2023-03-24 | 株式会社タムロン | ズームレンズ及び撮像装置 |
JP2020170053A (ja) * | 2019-04-01 | 2020-10-15 | 株式会社ニコン | 変倍光学系、光学機器、及び変倍光学系の製造方法 |
JP7372587B2 (ja) | 2019-04-01 | 2023-11-01 | 株式会社ニコン | 変倍光学系及び光学機器 |
Also Published As
Publication number | Publication date |
---|---|
US10690896B2 (en) | 2020-06-23 |
CN107850762A (zh) | 2018-03-27 |
JPWO2016194774A1 (ja) | 2018-03-22 |
JP6642572B2 (ja) | 2020-02-05 |
US20180307012A1 (en) | 2018-10-25 |
CN107850762B (zh) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6669169B2 (ja) | 変倍光学系、光学装置 | |
JP5273184B2 (ja) | ズームレンズ、光学装置、ズームレンズの製造方法 | |
JP5641680B2 (ja) | ズームレンズ、これを有する光学機器 | |
JP5904273B2 (ja) | 変倍光学系、光学装置、および変倍光学系の製造方法 | |
JP5742100B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6946774B2 (ja) | 変倍光学系および光学装置 | |
JP5344279B2 (ja) | ズームレンズ、これを有する光学機器及び変倍方法 | |
JP6531766B2 (ja) | 変倍光学系、及び、光学装置 | |
JP5724189B2 (ja) | 変倍光学系、光学装置 | |
JP6331286B2 (ja) | 撮影レンズ、及び光学機器 | |
JP5273167B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6661893B2 (ja) | 変倍光学系、光学装置 | |
JPWO2018074413A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6642572B2 (ja) | 変倍光学系、光学装置 | |
JP5839062B2 (ja) | ズームレンズ、光学装置 | |
JP6268792B2 (ja) | ズームレンズ、光学装置、ズームレンズの製造方法 | |
WO2016104742A1 (ja) | 変倍光学系、光学装置、及び、変倍光学系の製造方法 | |
JP5790106B2 (ja) | 光学系、光学装置、光学系の製造方法 | |
JP5532402B2 (ja) | ズームレンズおよび光学機器 | |
JP5278799B2 (ja) | ズームレンズ、これを搭載する光学機器および製造方法 | |
WO2015136988A1 (ja) | ズームレンズ、光学装置、ズームレンズの製造方法 | |
JP5333903B2 (ja) | ズームレンズ、これを搭載する光学機器 | |
JP5736651B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6601471B2 (ja) | 変倍光学系及び光学装置 | |
JP6311433B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017521881 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15576805 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16803209 Country of ref document: EP Kind code of ref document: A1 |