[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016194488A1 - 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法 - Google Patents

積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法 Download PDF

Info

Publication number
WO2016194488A1
WO2016194488A1 PCT/JP2016/062026 JP2016062026W WO2016194488A1 WO 2016194488 A1 WO2016194488 A1 WO 2016194488A1 JP 2016062026 W JP2016062026 W JP 2016062026W WO 2016194488 A1 WO2016194488 A1 WO 2016194488A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
optical unit
retardation
polycycloolefin
Prior art date
Application number
PCT/JP2016/062026
Other languages
English (en)
French (fr)
Inventor
武田 健太郎
直樹 津野
豪彦 安藤
明憲 西村
貴巳 疋田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016011550A external-priority patent/JP6560133B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/575,600 priority Critical patent/US20180155511A1/en
Priority to KR1020177033087A priority patent/KR102684825B1/ko
Priority to CN201680030382.XA priority patent/CN107615118B/zh
Publication of WO2016194488A1 publication Critical patent/WO2016194488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a transparent conductive film including a polycycloolefin film and a transparent conductive layer and a method for producing the same, a roll of a laminate including such a transparent conductive film, an optical unit including such a transparent conductive film, and
  • the present invention relates to a manufacturing method thereof and an organic EL display device including such an optical unit.
  • a transparent conductive film based on a polycycloolefin film is conventionally known (Patent Document 1). Since the polycycloolefin film is optically isotropic, it is suitable for use in combination with a film that controls the phase of light, such as a polarizing film or a retardation film.
  • an organic EL display device integrated with a touch sensor using a transparent conductive film is known as disclosed in Patent Document 2, for example.
  • a touch panel laminate 916 is provided on the viewing side of the organic EL display panel 901, and a polarization having a circular polarization function on the viewing side of the touch panel laminate 916.
  • a functional laminate 920 is provided.
  • the polarization functional laminate 920 includes a polarizing film 921 and a retardation film 923, and the polarizing film 921 is provided on the viewing side of the retardation film 923.
  • the touch panel laminate 916 has a structure in which a dielectric layer 915 and pattern electrodes 912-1 and 912-2 provided on both surfaces of the dielectric layer 915 are laminated. Further, a window 902 is arranged on the viewing side with respect to the polarization functional laminate 920.
  • a typical example of the retardation film 923 is a 1 ⁇ 4 wavelength retardation film.
  • light incident from the viewing side becomes linearly polarized light by the polarizing film 921, and the linearly polarized light is The circularly polarized light is converted into circularly polarized light by the quarter-wave retardation film, and the light incident on the inside is internally reflected so that the circularly polarized light is in reverse phase. It is converted into linearly polarized light that is orthogonal to the polarization direction and is prevented from being emitted to the viewing side by the polarizing film 921.
  • an optically isotropic dielectric layer as the dielectric layer 915, the change in the phase of light when the light passes through the dielectric layer 915 is prevented, and the internal antireflection function deteriorates. It is conceivable to prevent the occurrence of a hue shift or a hue shift. Therefore, it is conceivable to use an optically isotropic material such as a polycycloolefin film as the dielectric layer 915.
  • the polycycloolefin film is not completely optically isotropic and has a slight optical anisotropy.
  • the anisotropy of this polycycloolefin film is slight and has not been recognized as a problem until now.
  • the deterioration of the visibility due to this slight anisotropy becomes a problem in response to the recent strict demand for the visibility of the display device.
  • the present inventors In the width direction of the polycycloolefin film original fabric, the present inventors have a slow axis direction parallel to the MD direction at the center, but the slow phase with respect to the MD direction increases from the center to the end in the width direction.
  • the optical properties of the respective cut out films vary, and in the case where one large film is cut out.
  • the optical properties deteriorate at the edge of the cut film.
  • visibility such as a hue shift may be deteriorated.
  • the present inventors have discovered such a problem that has not been recognized so far.
  • the present invention aims to suppress variations in the direction of the slow axis and in-plane retardation of the transparent conductive film, and to suppress deterioration of optical characteristics such as hue shift in the organic EL display device. I will.
  • One aspect of the present invention is a roll of a laminate in which a long body of a laminate is wound into a roll, and the laminate includes a transparent conductive film including a polycycloolefin film and a transparent conductive layer. And the direction of the slow axis of the polycycloolefin film is the longitudinal direction of the long body of the laminate, except for the ends on both sides of the width of 5% with respect to the full width of the long body of the laminate. Provides a roll in the range of ⁇ 2 °.
  • Another aspect of the present invention includes a transparent conductive film including a polycycloolefin film and a transparent conductive layer, and a retardation film, and the variation in the angle of the slow axis of the polycycloolefin film is 4 °.
  • the in-plane retardation of the polycycloolefin film measured with light having a wavelength of 550 nm at 23 ° C. is in the range of 3 to 8 nm, and the variation thereof is in the range of 1.5 nm.
  • the in-plane retardation of the retardation film cancels out the in-plane retardation of the polycycloolefin film so that the entire in-plane retardation of the retardation film and the transparent conductive film becomes a desired value.
  • An optical unit is provided.
  • the retardation film may include a quarter wavelength retardation film, and the desired value may be about a quarter wavelength.
  • the retardation film includes a viewing angle compensation retardation film and a quarter-wave retardation film in order from the transparent conductive film side, and the desired value is about 1 / There can be four wavelengths.
  • the direction of the slow axis of the quarter-wave retardation film can be in the range of 0 ° ⁇ 3 ° with respect to the direction of the slow axis of the polycycloolefin film.
  • the direction of the slow axis of the quarter-wave retardation film can be within a range of 90 ° ⁇ 3 ° with respect to the direction of the slow axis of the polycycloolefin film.
  • the transparent conductive layer may be formed of indium tin oxide (ITO).
  • ITO indium tin oxide
  • the optical unit further includes a polarizing functional laminate, the polarizing functional laminate includes a polarizing film and the retardation film, and the retardation film is the transparent conductive film. It is arrange
  • the polarization functional laminate may have a function of generating circularly polarized light.
  • Another aspect of the present invention includes the above-described optical unit and an organic EL display panel, wherein the optical unit is disposed on the viewing side with respect to the organic EL display panel, and the optical unit is the transparent conductive material.
  • An organic EL display device is provided in which a conductive film is disposed between the polarizing film and the organic EL display panel.
  • Still another embodiment of the present invention includes a step of unwinding the polycycloolefin film from a roll of a polycycloolefin film in which a long body of a polycycloolefin film is wound into a roll, and the unfolded polycycloolefin film Is heated and wound at a heating temperature of 140 to 160 ° C. while being wound by a winding roll, and a transparent conductive layer is formed on the heated polycycloolefin film to produce a transparent conductive film. And a step for producing a transparent conductive film.
  • the heating temperature may be 145 to 155 ° C.
  • the heating temperature may be 148 to 153 ° C.
  • Yet another embodiment of the present invention is a method for producing the optical unit, wherein the polarizing functional laminate and the transparent conductive film produced by the production method are bonded together to produce the optical unit.
  • the manufacturing method of this is provided.
  • the present invention it is possible to suppress the variation of the direction of the slow axis and the in-plane retardation of the transparent conductive film, and it is possible to suppress the deterioration of optical characteristics such as hue shift in the organic EL display device.
  • a transparent conductive film including a polycycloolefin film and a transparent conductive layer and a method for producing the same, a roll of a laminate including such a transparent conductive film, and an optical including such a transparent conductive film An embodiment of a unit, a manufacturing method thereof, and an organic EL display device including such an optical unit will be described in detail with reference to the drawings.
  • the roll of the laminated body of this invention is a roll of the laminated body by which the elongate body of the laminated body was wound by roll shape.
  • the laminate used for the roll of the laminate of the present invention includes a transparent conductive film.
  • the transparent conductive film used for the roll of the laminate of the present invention includes a polycycloolefin film and a transparent conductive layer.
  • the direction of the slow axis of the polycycloolefin film used for the roll of the laminate of the present invention is the entire length of the laminate except for the ends on both sides of the width of 5% with respect to the entire width of the laminate. It is within a range of ⁇ 2 °, preferably ⁇ 1.5 ° with respect to the longitudinal direction of the body.
  • the optical unit of the present invention includes a transparent conductive film including a polycycloolefin film and a transparent conductive layer, and a retardation film.
  • the retardation film is disposed on the transparent conductive layer side of the transparent conductive film.
  • the angle variation of the slow axis of the polycycloolefin film used in the optical unit of the present invention is in the range of 4 °.
  • the in-plane retardation of the polycycloolefin film measured with light having a wavelength of 550 nm at 23 ° C. is in the range of 3 to 8 nm, and the variation thereof is in the range of 1.5 nm.
  • Re [550] means an in-plane retardation value measured with light having a wavelength of 550 nm at 23 ° C.
  • the slow axis means the direction in which the in-plane refractive index is maximum.
  • the in-plane retardation of the retardation film used in the optical unit of the present invention cancels out the almost constant in-plane retardation with little variation of the polycycloolefin film, and the entire retardation film and the transparent conductive film.
  • the in-plane phase difference is set to a desired value.
  • the retardation film used in the optical unit of the present invention includes a quarter-wave retardation film, and the desired value can be about 1 ⁇ 4 wavelength.
  • the retardation film used in the optical unit of the present invention includes a viewing angle compensation retardation film and a quarter-wave retardation film in order from the transparent conductive film side, and the desired value is about 1 ⁇ 4 wavelength. It can be.
  • the desired value of approximately 1 ⁇ 4 wavelength means that the desired value is ideally 1 ⁇ 4 wavelength at all wavelengths in the visible light region.
  • the in-plane retardation at a wavelength of 550 nm is preferably 130 to 150 nm, and more preferably 140 to 146 nm.
  • the direction of the slow axis of the quarter-wave retardation film is substantially parallel to the direction of the slow axis of the polycycloolefin film, that is, within a range of ⁇ 2 ° with respect to the direction of the slow axis of the polycycloolefin film. can do. With such a configuration, the in-plane retardation of the polycycloolefin film can be easily canceled by the retardation film.
  • the optical unit further includes a polarizing functional laminate, the polarizing functional laminate includes a polarizing film and the retardation film, the retardation film is disposed on the transparent conductive layer side of the transparent conductive film, and the polarizing film has a retardation.
  • the film may be disposed on the opposite side of the transparent conductive film.
  • the polarizing functional laminate can have a function of generating circularly polarized light.
  • the method for producing a transparent conductive film of the present invention includes a step of unwinding the polycycloolefin film from a roll of a polycycloolefin film in which a long body of a laminate including a polycycloolefin film is wound in a roll shape, The polycycloolefin film thus obtained is heated and wound at a heating temperature of 140 to 160 ° C. while being wound with a winding roll, and a transparent conductive layer is formed on the heated and wound polycycloolefin film. Producing a transparent conductive film.
  • the glass transition temperature (Tg) of the polycycloolefin film is By performing the heating and winding process at a temperature close to 165 ° C., the direction of the slow axis can be aligned with the MD direction.
  • the heating temperature is more preferably 145 to 155 ° C, and still more preferably 148 to 153 ° C.
  • a polarizing functional laminate including a retardation film and a polarizing film and a transparent conductive film produced by the production method are bonded together to produce an optical unit.
  • polarizing film used in the optical unit of the present invention, it is possible to use a polyvinyl alcohol-based resin oriented with iodine and stretched by a stretching process such as air stretching (dry stretching) or boric acid water stretching process.
  • a production method including a step of dyeing a single layer of a PVA resin and a step of stretching.
  • the manufacturing method including the process of extending
  • the production method including the step of stretching in the state of the laminate and the step of dyeing is as described in JP-A-51-069644, JP-A-2000-338329, and JP-A-2001-343521.
  • stretching in boric-acid aqueous solution like the international publication 2010/100917 and Unexamined-Japanese-Patent No. 2012-073563 in the point which can be extended
  • a production method including the step of performing air-assisted auxiliary stretching before stretching in a boric acid aqueous solution as described in JP 2012-073563 A is particularly preferable.
  • a method of stretching a PVA resin layer and a stretching resin base material in a laminated state, then excessively dyeing the PVA resin layer, and then decoloring is also preferable.
  • the polarizing film used in the optical layered body of the present invention is composed of a polyvinyl alcohol resin in which iodine is oriented as described above, and a polarizing film stretched in a two-stage stretching process consisting of air-assisted stretching and boric acid-water stretching, can do.
  • the polarizing film used in the optical laminate of the present invention is made of a polyvinyl alcohol resin in which iodine is oriented as described above, and excessively dyes the laminate of the stretched PVA resin layer and the stretching resin substrate. And it can be set as the polarizing film produced by decoloring after that.
  • the retardation film used for the optical unit of the present invention includes a single-layer or multilayer retardation film.
  • the retardation film used in the optical unit of the present invention one obtained by stretching a polymer film or one obtained by aligning and fixing a liquid crystal material can be used.
  • the retardation film refers to a film having birefringence in the plane and / or in the thickness direction, thereby realizing a predetermined function.
  • the retardation film examples include an antireflection retardation film (see JP 2012-133303 [0221], [0222] [0228]) and a viewing angle compensation retardation film (JP 2012-133303 [0225]). , [0226]), and a tilted alignment phase difference film for viewing angle compensation (see Japanese Unexamined Patent Application Publication No. 2012-133303 [0227]).
  • the retardation film is not particularly limited as long as it has substantially the above-mentioned function.
  • the retardation value, the arrangement angle, the three-dimensional birefringence, and whether it is a single layer or a multilayer are not particularly limited. Can be used.
  • the in-plane birefringence ⁇ n which is nx-ny of the retardation film of the present invention is 0.001 to 0.2, preferably 0.002 to 0.15.
  • the retardation film preferably has an in-plane retardation value (Re [550]) measured with light having a wavelength of 550 nm and an in-plane retardation value (Re [450] measured with light having a wavelength of 450 nm at 23 ° C. ]).
  • Re [550] in-plane retardation value measured with light having a wavelength of 550 nm
  • Re [450] measured with light having a wavelength of 450 nm at 23 ° C. ]
  • a retardation film having such wavelength dependency as a quarter wavelength plate is prepared, and a circularly polarizing plate or the like can be prepared by bonding with a polarizing plate, It is possible to realize a neutral polarizing plate and a display device with less hue wavelength dependency.
  • the ratio is out of this range, the wavelength dependency of the reflected hue becomes large, and coloring problems occur in the polarizing plate and the display device.
  • the ratio of Re [550] and Re [450] (Re [450] / Re [550]) of the retardation film is 0.8 or more and less than 1.0, more preferably 0.8 to 0.98. .
  • the retardation film preferably has an in-plane retardation value (Re [550]) measured with light having a wavelength of 550 nm and an in-plane retardation value (Re [650] measured with light having a wavelength of 650 nm at 23 ° C. ]) Smaller than.
  • a retardation film having such a wavelength dispersion characteristic has a constant retardation value in a red region. For example, when used in a liquid crystal display device, a phenomenon in which light leaks depending on a viewing angle or a display image is red. It is possible to improve a taste-taking phenomenon (also referred to as a red-ish phenomenon).
  • the ratio of Re [650] to Re [550] (Re [550] / Re [650]) of the retardation film is 0.8 or more and less than 1.0, preferably 0.8 to 097.
  • Re [450], Re [550], and Re [650] can be measured using the product name “AxoScan” manufactured by Axometrics.
  • NZ refers to the ratio of nx-nz, which is birefringence in the thickness direction, and nx-ny, which is in-plane birefringence (also referred to as Nz coefficient).
  • NZ of the retardation film of the present invention is ⁇ 10 to 1.5, preferably ⁇ 8 to 1.4, more preferably ⁇ 6 to 1.3.
  • the folding strength in the longitudinal direction of the film, which is the stretching direction becomes strong, but the folding strength in the width direction becomes very weak.
  • a state in which a force for regulating the width is generated in an angular direction intersecting the stretching direction (for example, in the case of lateral uniaxial stretching, in a direction perpendicular to the width direction of the film which is the stretching direction).
  • the molecules can be oriented not only in the stretching direction but also in the angular direction intersecting with the stretching direction.
  • the refractive index relationship can be nx> ny> nz.
  • the folding strength in the stretching direction and the folding strength in the width direction can be compatible at a high level.
  • the absolute value of the photoelastic coefficient at 23 ° C. of the retardation film; C (m 2 / N) is 0.5 ⁇ 10 ⁇ 12 to 100 ⁇ 10 ⁇ 12 (m 2 / N), preferably 1 ⁇ 10 ⁇ 12 to 80 ⁇ 10 ⁇ 12 (m 2 / N). Due to the shrinkage stress of the polarizing film, the heat of the display panel, and the surrounding environment (moisture resistance / heat resistance), the retardation film is forcefully applied, and the resulting change in retardation value can be prevented. A display panel device having excellent display uniformity can be obtained.
  • C of the retardation film is 3 ⁇ 10 ⁇ 12 to 45 ⁇ 10 ⁇ 12 , particularly preferably 5 ⁇ 10 ⁇ 12 to 40 ⁇ 10 ⁇ 12 or less.
  • C is 3 ⁇ 10 ⁇ 12 to 45 ⁇ 10 ⁇ 12 , particularly preferably 5 ⁇ 10 ⁇ 12 to 40 ⁇ 10 ⁇ 12 or less.
  • a retardation film exhibiting reverse dispersion wavelength dependency (reverse dispersion wavelength characteristic) with a single film can be suitably used.
  • a resin containing a polycarbonate resin described in the trade name “Pure Ace WR” or Japanese Patent No. 4938151 or an oligofluorene described in Japanese Patent Application No. 2013-214986 can be used. .
  • the retardation film of the present invention is produced by orienting a polymer film by stretching.
  • any appropriate stretching method can be adopted depending on the purpose.
  • the stretching method suitable for the present invention include a transverse uniaxial stretching method, a longitudinal and transverse simultaneous biaxial stretching method, and a longitudinal and transverse sequential biaxial stretching method.
  • any suitable stretching machine such as a tenter stretching machine or a biaxial stretching machine can be used.
  • the stretching machine includes a temperature control unit. When extending
  • the stretching direction is preferably stretched in the film width direction (TD direction) or in an oblique direction.
  • an unstretched resin film is sent out in the longitudinal direction, and an oblique stretching process of stretching in a direction that forms an angle within the specific range with respect to the width direction is continuously performed.
  • an oblique stretching process of stretching in a direction that forms an angle within the specific range with respect to the width direction is continuously performed.
  • the film is continuously stretched in a direction that forms an angle of the specific range with respect to the width direction of the unstretched resin film, and a slow axis is set in the specific range with respect to the width direction of the film. If it can form in the direction which makes an angle, it will not restrict
  • the temperature at which the unstretched resin film is stretched can be appropriately selected depending on the purpose.
  • the stretching is performed in the range of Tg ⁇ 20 ° C. to Tg + 30 ° C. with respect to the glass transition temperature (Tg) of the polymer film.
  • Tg glass transition temperature
  • the stretching temperature is 90 ° C. to 210 ° C., more preferably 100 ° C. to 200 ° C., and particularly preferably 100 ° C. to 180 ° C.
  • the glass transition temperature can be obtained by a DSC method according to JIS K 7121 (1987).
  • any appropriate means can be adopted as means for controlling the stretching temperature.
  • the temperature control means include an air circulation type thermostatic oven in which hot air or cold air circulates, a heater using microwaves or far infrared rays, a roll heated for temperature adjustment, a heat pipe roll, a metal belt, and the like. .
  • Magnification ratio (stretch ratio) for stretching the unstretched resin film can be appropriately selected according to the purpose.
  • the draw ratio is preferably more than 1 and 6 times or less, more preferably more than 1.5 times and 4 times or less.
  • the feeding speed during stretching is not particularly limited, but is preferably 0.5 m / min to 30 m / min, more preferably 1 m / min to 20 m / min from the viewpoint of mechanical accuracy and stability. If it is said extending
  • the angle formed by the absorption axis of the polarizing plate and the slow axis of the half-wave plate is 15 °, and the absorption axis of the polarizing plate is 1 /
  • a retardation film laminated with a single sheet of acrylic adhesive may be used so that the angle formed by the slow axis of the four-wavelength plate is 75 °.
  • the retardation film of the present invention may be a laminate of retardation layers prepared by aligning and fixing a liquid crystal material.
  • Each retardation layer may be an alignment solidified layer of a liquid crystal compound.
  • the “alignment solidified layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction in the layer and the alignment state is fixed.
  • the rod-like liquid crystal compounds are aligned in a state aligned in the slow axis direction of the retardation layer (homogeneous alignment), or are slow in the normal direction to the in-plane direction.
  • the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) whose liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal compound may exhibit liquid crystallinity either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking the liquid crystal monomer. After aligning the liquid crystal monomers, for example, if the liquid crystal monomers are polymerized or cross-linked, the alignment state can be fixed thereby.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by crosslinking, but these are non-liquid crystalline. Therefore, in the formed retardation layer, for example, a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change specific to the liquid crystal compound does not occur. As a result, the retardation layer is an extremely stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystal properties varies depending on its type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • liquid crystal monomer any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogenic compounds described in JP-T-2002-533742 WO00 / 37585
  • EP358208 US521118)
  • EP66137 US4388453
  • WO93 / 22397 EP0266172
  • DE195504224 DE44081171
  • GB2280445 Specific examples of such a polymerizable mesogenic compound include, for example, trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the alignment solidified layer of the liquid crystal compound is subjected to an alignment treatment on the surface of a predetermined substrate, and a coating liquid containing the liquid crystal compound is applied to the surface to align the liquid crystal compound in a direction corresponding to the alignment treatment, It can be formed by fixing the alignment state.
  • the substrate is any suitable resin film, and the alignment solidified layer formed on the substrate can be transferred to the surface of the polarizing film.
  • the angle between the absorption axis of the polarizing film and the slow axis of the liquid crystal alignment solidified layer is set to 15 °.
  • the retardation of the liquid crystal alignment solidified layer is ⁇ / 2 (about 270 nm) for a wavelength of 550 nm.
  • a liquid crystal alignment solidified layer having a wavelength of ⁇ / 4 (about 140 nm) with respect to a wavelength of 550 nm is formed on a transferable substrate, and 1 / of the laminate of the polarizing film and the half-wave plate.
  • the two-wavelength plate is laminated so that the angle formed by the absorption axis of the polarizing film and the slow axis of the quarter-wave plate is 75 °.
  • any appropriate alignment treatment can be adopted as the alignment treatment.
  • a mechanical alignment process, a physical alignment process, and a chemical alignment process are mentioned.
  • Specific examples of the mechanical alignment treatment include rubbing treatment and stretching treatment.
  • Specific examples of the physical alignment process include a magnetic field alignment process and an electric field alignment process.
  • Specific examples of the chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions may be employ
  • the alignment of the liquid crystal compound is performed by processing at a temperature showing a liquid crystal phase according to the type of the liquid crystal compound.
  • the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method of forming the alignment solidified layer are described in JP-A No. 2006-163343. The description in this publication is incorporated herein by reference.
  • cycloolefin resins such as norbornene resins, olefin resins such as polyethylene and polypropylene, polyester resins, (meth) acrylic resins, and the like can be used. .
  • the thickness of the protective film used in the optical laminate of the present invention is 10 to 50 ⁇ m, preferably 15 to 45 ⁇ m, and a surface treatment layer such as an antiglare layer or an antireflection layer can be appropriately provided.
  • the permeation humidity of the protective film used in the optical layered body of the present invention is 200 g / m 2 or less, preferably 170 g / m 2 or less, more preferably 130 g / m 2 or less, and particularly preferably 90 g / m 2 or less.
  • FIG. 2 is a schematic cross-sectional view of a transparent conductive film according to an embodiment of the present invention.
  • the transparent conductive film in FIG. 2 includes a substrate laminate 1 and a transparent conductive layer 13.
  • the base laminate 1 includes a polycycloolefin film 10, a first cured resin layer 11 formed on the first main surface S1 of the polycycloolefin film 10, and a first main surface S1 of the polycycloolefin film 10. Includes a second cured resin layer 12 formed on the opposite second main surface S2 side.
  • An optical adjustment layer 16 is provided between the first cured resin layer 11 and the transparent conductive layer 13. As shown in FIG.
  • the second cured resin layer 12 includes a plurality of spherical particles 14 and a binder resin layer 15 that fixes the spherical particles to the surface of the polycycloolefin film 10. Since the 2nd cured resin layer 12 has the convex part 12a on the surface, when a transparent conductive film is wound up by the roll to roll manufacturing method, it can suppress that transparent conductive films block. it can. Moreover, although the base-material laminated body 1 can be comprised only by the polycycloolefin film 10 or the polycycloolefin film 10, and the 1st cured resin layer or the 2nd cured resin layer, the said transparent conductive layer 13 is formed. It is preferable that the 1st cured resin layer 11 of the side, the polycycloolefin film 10, and the 2nd cured resin layer 12 are included in this order.
  • the transparent conductive layer is preferably a layer formed of a metal oxide.
  • metal oxide metal oxidation of at least one metal selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A thing is used suitably.
  • the metal oxide may further contain a metal atom shown in the above group, if necessary.
  • ITO indium-tin composite oxide
  • indium zinc composite oxide are preferable.
  • indium oxide (In 2 O 3) doped with tetravalent metal ions or divalent metal ions is used.
  • Such an indium composite oxide layer has a high transmittance of 80% or more in the visible light region (380 nm to 780 nm) and a low surface resistance per unit area (300 ⁇ / ⁇ or less: ohms per square). It has characteristics.
  • the surface resistance value of the indium composite oxide layer is preferably 300 ⁇ / ⁇ or less, and more preferably 270 ⁇ / ⁇ or less.
  • Such a transparent conductive film having a small surface resistance value is formed at 120 ° C. to 200 ° C. after an amorphous layer of indium composite oxide is formed on the cured resin layer by, for example, sputtering or vacuum deposition. It can be obtained by heat-treating for about 30 to 90 minutes to change the amorphous layer into a crystalline layer.
  • the conversion means is not particularly limited, and an air circulation oven, an IR heater, or the like is used.
  • a transparent conductive film having a transparent conductive layer formed on a substrate laminate is dipped in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried, and a resistance between terminals of 15 mm is measured with a tester. When measurement is performed and the inter-terminal resistance does not exceed 10 k ⁇ , it is assumed that the conversion of the ITO film to the crystalline state is completed.
  • the thickness of the transparent conductive layer is preferably 15 to 50 nm, more preferably 20 to 40 nm, and still more preferably 25 to 35 nm.
  • the transparent conductive layer may have a structure in which a plurality of transparent conductive layers having different compositions are laminated.
  • the arithmetic average surface roughness Ra in the field of view of 452 ⁇ m ⁇ 595 ⁇ m on the surface of the transparent conductive layer is preferably greater than 0 nm and less than or equal to 10 nm, more preferably greater than 0 nm and less than or equal to 9 nm, from the viewpoint of improving transparency. Preferably, it is larger than 0 nm and 7 nm or less.
  • the difference between the arithmetic average surface roughness Ra in the 452 ⁇ m ⁇ 595 ⁇ m visual field of the surface of the second cured resin layer and the arithmetic average surface roughness Ra in the 452 ⁇ m ⁇ 595 ⁇ m visual field of the surface of the transparent conductive layer is 5 nm or more. Is preferably 10 nm or more, more preferably 15 nm or more.
  • the transparent conductive layer may include a metal nanowire or a metal mesh.
  • a metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer.
  • the metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that even with a small amount of metal nanowires, a good electrical conduction path can be formed, and transparent with low electrical resistance. A conductive film can be obtained. Furthermore, when the metal nanowire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having high light transmittance can be obtained.
  • any appropriate metal can be used as long as it is a highly conductive metal.
  • a metal which comprises the said metal nanowire silver, gold
  • silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
  • the transparent conductive layer including a metal mesh is formed by forming fine metal wires in a lattice pattern on the substrate laminate. It is possible to use the same metal as that constituting the metal nanowire.
  • the transparent conductive layer containing a metal mesh can be formed by any appropriate method. For example, the transparent conductive layer is formed by applying a photosensitive composition containing silver salt (a composition for forming a transparent conductive layer) onto the substrate laminate, and then performing an exposure process and a development process to form a fine metal wire in a predetermined pattern. It can obtain by forming.
  • the cycloolefin resin itself tends to be very easily damaged. Since the polycycloolefin film 10 is easily scratched in each step such as formation of the transparent conductive layer, patterning of the transparent conductive layer, or mounting on the electronic device, the cured resin layer is formed on both sides of the polycycloolefin film 10 as a first resin layer. It is preferable to form a cured resin layer and a second cured resin layer.
  • the cured resin layer is a layer obtained by curing a curable resin.
  • a curable resin any of a resin that uses thermal curing, active energy ray curing, or both in combination as a curing mechanism may be employed. You may use a crosslinking agent, an initiator, a sensitizer, etc. with curable resin as needed.
  • the thicknesses of the first cured resin layer and the second cured resin layer are preferably independently 0.5 ⁇ m to 5 ⁇ m, more preferably 0.7 ⁇ m to 3 ⁇ m, and most preferably 0.8 ⁇ m to 2 ⁇ m. is there.
  • the first cured resin layer and the second cured resin layer are prepared by applying a resin composition containing each curable resin and a crosslinking agent, an initiator, a sensitizer, and the like to be added as necessary on the transparent resin film.
  • the solvent is dried and cured by application of heat, active energy rays or both.
  • active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.
  • an acrylic resin or an epoxy resin is preferable, and an acrylic resin is more preferable.
  • the first cured resin layer 11 or the second cured resin layer 12 preferably includes a plurality of spherical particles 14 and a binder resin layer 15 that fixes the spherical particles to the surface of the polycycloolefin film 10.
  • the second cured resin layer 12 includes the plurality of spherical particles 14 and the binder resin layer 15.
  • FIG. 3 is a partially enlarged view showing the configuration of the second cured resin layer 12 in FIG.
  • the second cured resin layer 12 includes a plurality of spherical particles 14 and a binder resin layer 15 that fixes the spherical particles 14 to the surface of the polycycloolefin film 10.
  • the mode particle diameter of the spherical particles 14 is described as w, and the thickness of the binder resin layer 15 is described as d.
  • the portion where the spherical particles 14 are present on the outer surface of the second cured resin layer 12, that is, the surface not in contact with the polycycloolefin film 10, has a convex shape protruding by the difference wd.
  • the portion where the spherical particles 14 are not present has a substantially planar shape.
  • a part of the binder resin layer 15 is thinly formed on the upper surface of each spherical particle 14.
  • the “moderate particle diameter” refers to a particle diameter showing a maximum value of the particle distribution.
  • Binder resin layer thickness refers to the thickness of a flat portion where spherical particles do not exist.
  • the relationship between the mode particle diameter w of the spherical particles 14 and the thickness d of the binder resin layer 15 is preferably such that wd is greater than 0 and 1.2 ⁇ m or less. .1 ⁇ m to 1.0 ⁇ m is more preferable, and 0.3 ⁇ m to 0.9 ⁇ m is more preferable.
  • the arithmetic average surface roughness Ra of the surface of the first cured resin layer is preferably greater than 0 nm and less than or equal to 10 nm, more preferably greater than 0 nm and less than or equal to 9 nm, and greater than 0 nm from the viewpoint of improving transparency. More preferably, it is 7 nm or less.
  • the arithmetic average surface roughness Ra of the surface of the second cured resin layer is preferably greater than 5 nm and less than or equal to 100 nm, more preferably greater than 7 nm and less than or equal to 70 nm, and even more preferably greater than 10 nm and less than or equal to 60 nm. .
  • the anti-blocking property that can withstand the roll-to-roll manufacturing method can be improved.
  • the arithmetic average surface roughness Ra on the second cured resin layer side is preferably rougher than the arithmetic average surface roughness Ra on the first cured resin layer side.
  • the white haze (haze) by the side of a transparent conductive layer can be reduced.
  • the difference between the arithmetic average surface roughness Ra in the visual field of 452 ⁇ m ⁇ 595 ⁇ m on the surface of the second cured resin layer and the arithmetic average surface roughness Ra in the visual field of 452 ⁇ m ⁇ 595 ⁇ m of the surface of the first cured resin layer is 5 nm or more. It is preferably 10 nm or more, more preferably 15 nm or more.
  • spherical particles those having transparency such as various metal oxides, glass and plastics can be used without any particular limitation.
  • inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acryl-styrene copolymer, benzoguanamine, melamine, polycarbonate, and other cross-linked or uncrosslinked polymers.
  • examples include crosslinked organic particles and silicone particles.
  • the particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable.
  • acrylic resins are preferable from the viewpoints of sphericity and heat resistance.
  • the content of the spherical particles in the first cured resin layer is preferably 0.0000 to 0.0020 parts by weight, preferably 0.0000 to 0.0015 parts by weight based on 100 parts by weight of the solid content of the resin composition. More preferably, it is 0.0000 to 0.0010 parts by weight.
  • the content of the spherical particles in the second cured resin layer is preferably 0.0010 to 0.0300 parts by weight with respect to 100 parts by weight of the solid content of the resin composition, preferably 0.0015 to 0.00.
  • the amount is more preferably 0200 parts by weight, still more preferably 0.0020 to 0.0150 parts by weight.
  • the arithmetic average surface roughness Ra on both sides can be adjusted separately. Sufficient base bulges are easily formed to impart lubricity, and the haze of the transparent conductive film due to light scattering by the spherical particles is reduced, and the visibility tends to increase.
  • the binder resin used for the binder resin layer
  • any material can be selected as long as it can fix spherical particles.
  • the binder resin is obtained by curing a curable resin composition with ultraviolet rays or an electron beam.
  • the curable resin composition preferably contains a polyfunctional acrylate polymer such as pentaerythritol and dipentaerythritol, a polymer obtained by addition-reacting acrylic acid to a glycidyl acrylate polymer, and a polymerization initiator.
  • the transparent conductive film may further include one or more optical adjustment layers 16 between the first cured resin layer 11 and the transparent conductive layer 13.
  • the transmittance of the transparent conductive film is increased or when the transparent conductive layer 13 is patterned, the transmittance difference or the reflectance difference is reduced between the pattern part where the pattern remains and the opening part where the pattern does not remain, Used to obtain a transparent conductive film with excellent visibility.
  • the optical adjustment layer is formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material.
  • a material for forming the optical adjustment layer NaF, Na3AlF6, LiF, MgF2, CaF2, SiO2, LaF3, CeF3, Al2O3, TiO2, Ta2O5, ZrO2, ZnO, ZnS, SiOx (x is 1.5 or more and less than 2), etc.
  • organic substances such as acrylic resin, urethane resin, melamine resin, alkyd resin, and siloxane polymer.
  • a thermosetting resin made of a mixture of a melamine resin, an alkyd resin, and an organic silane condensate as the organic substance.
  • the optical adjustment layer can be formed using the above materials by a coating method such as a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • the thickness of the optical adjustment layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 20 nm to 130 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. On the other hand, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to decrease, or cracks tend to occur in the optical adjustment layer.
  • the optical adjustment layer may have nanoparticles having an average particle diameter of 1 nm to 500 nm.
  • the content of the nanoparticles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight.
  • the average particle diameter of the nanoparticles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm.
  • the content of the nanoparticles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight.
  • Examples of the inorganic oxide forming the nano fine particles include fine particles such as silicon oxide (silica), hollow nano silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide.
  • fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide are preferable. These may be used alone or in combination of two or more.
  • the polycycloolefin film which is a film substrate that supports the metal wiring layer, may be a single layer or multiple layers.
  • the thickness of the polycycloolefin film is preferably 20 ⁇ m to 200 ⁇ m from the viewpoint of transparency and handleability.
  • the polycycloolefin film has a plurality of protrusions on both sides on which the metal wiring layer is formed.
  • the polycycloolefin film is provided with slipperiness and wear resistance, and the metal wiring layer is continuously formed while maintaining high quality.
  • the film formation rate can be increased to improve productivity.
  • the protrusion has an outer diameter D exceeding 0 and not more than 3 ⁇ m, preferably 0.1 ⁇ m to 2 ⁇ m, in a plan view of the surface of the polycycloolefin film on which the metal wiring layer is formed.
  • the outer diameter of the protrusion can be measured, for example, by observing an image of the surface on the side where the metal wiring layer of the polycycloolefin film is formed at a predetermined magnification.
  • the outer diameter D is 3 ⁇ m or less, it is possible to reliably prevent the metal wiring from being disconnected near the boundary between the surface of the polycycloolefin film and the surface of the protrusion.
  • the height of the protrusion is preferably more than 0 and 3 ⁇ m or less, more preferably 0.1 ⁇ m to 2 ⁇ m, based on the flat surface of the polycycloolefin film.
  • the shape of the protrusion is substantially dome-shaped in this embodiment, and the cross section in the plane direction of the polycycloolefin film is substantially circular, and the cross section in the thickness direction is substantially semicircular.
  • the protrusions in the present invention can provide slipperiness and abrasion resistance to the polycycloolefin film, and can form a high-quality metal wiring layer continuously and at a high speed. Other shapes may be used.
  • Examples of means for providing protrusions on the polycycloolefin film include a method in which a lubricant is dispersed inside the polycycloolefin film, and a method in which a binder in which a plurality of particles are dispersed is applied to the film surface. .
  • Polycycloolefin film can be obtained from, for example, Nippon Zeon Co., Ltd.
  • the metal wiring layer is formed in a pattern, for example, in a mesh shape to impart translucency.
  • the mesh pattern of the metal wiring layer is not particularly limited, and is, for example, a square lattice, a rhombus lattice, or a polygonal lattice.
  • the material for forming the metal wiring layer is not limited as long as it has electrical conductivity, but is preferably silver, copper, or an alloy thereof, and more preferably copper.
  • the line width of the metal wiring layer is more than 5 ⁇ m and less than 8 ⁇ m, preferably more than 5.5 ⁇ m and 7 ⁇ m or less. If it is the range of such a line
  • the line width is 5 ⁇ m or less, the network pattern of the metal wiring layer becomes difficult to be visually recognized, but the frequency of the metal wiring breaks due to the protrusions of the film base, and the quality and reliability are high when mass-produced. Lower.
  • the line width is 8 ⁇ m or more, the mesh pattern of the metal wiring layer is remarkably visually recognized.
  • the thickness of the metal wiring layer is 0.1 ⁇ m or more and less than 0.5 ⁇ m, preferably more than 0.1 ⁇ m and 0.4 ⁇ m or less, and more preferably 0.15 ⁇ m to 0.35 ⁇ m.
  • the metal wiring layer is characterized in that it has a flat shape, and the ratio of the line width to the thickness (line width / thickness) is preferably 10 or more and less than 80, and more preferably 15-50.
  • a touch sensor satisfying such a relationship is excellent in productivity, does not cause disconnection of the metal wiring, and is difficult to visually recognize the mesh pattern of the metal wiring layer.
  • Sectional area of the metal wiring layer in order to obtain the electrical conductivity required for a touch panel sensor, preferably 0.5 [mu] m 2 ⁇ 4 [mu] m 2, more preferably from 0.5 ⁇ m 2 ⁇ 3.2 ⁇ m 2, particularly preferably Is 0.5 ⁇ m 2 to 2.5 ⁇ m 2 .
  • the pitch interval of the metal wiring layers is preferably 200 ⁇ m to 800 ⁇ m, and more preferably 350 ⁇ m to 650 ⁇ m, in order to obtain sufficient translucency.
  • the aperture ratio of the metal wiring layer is preferably 95% to 99%, more preferably 96% to 99%.
  • a predetermined resist pattern for example, after forming a metal layer on the entire surface of the film substrate, a predetermined resist pattern (resist pattern) is stacked on the metal layer, and etching is performed. A method of removing the resist after removing the metal layer in the unnecessary region is used so that a network-like metal wiring layer is formed.
  • the metal layer can be formed by, for example, a sputtering method, a plating method, or a combination thereof.
  • the organic EL display device of the present invention includes the above-described optical unit and an organic EL display panel, the optical unit is arranged on the viewing side with respect to the organic EL display panel, the optical unit is a transparent conductive film is polarized It arrange
  • a window can be arranged on the viewing side with respect to the organic EL display device laminate.
  • FIG. 4 is a cross-sectional view showing one embodiment of an organic EL display device according to the present invention.
  • the organic EL display device 100 includes an optical unit 110 and an organic EL display panel 101.
  • An optical unit 110 is arranged on the viewing side with respect to the organic EL display panel 101.
  • a transparent window 102 can be arranged on the viewing side with respect to the optical unit 110.
  • the optical unit 110 includes a transparent conductive film 116, a polarizing film 121, and a retardation film 123.
  • the polarizing film 121 is disposed on the side opposite to the transparent conductive film 116 with respect to the retardation film 123.
  • the polarizing film 121 and the retardation film 123 constitute the polarizing functional laminate 120.
  • the polarization functional laminate 120 generates, for example, circularly polarized light and compensates the viewing angle in order to prevent light incident on the inside from the viewing side of the polarizing film 121 from being internally reflected and emitted to the viewing side. It is for doing.
  • a protective film can be adhered to one side or both sides of the polarizing film 121.
  • the optical unit 110 is disposed so that the transparent conductive film 116 is positioned between the polarizing film 121 and the organic EL display panel 101.
  • the transparent conductive film 116 includes a polycycloolefin film 115 and a transparent conductive layer 112.
  • the variation in the angle of the slow axis of the polycycloolefin film 115 is in the range of 4 °, and the in-plane retardation of the polycycloolefin film 115 measured with light having a wavelength of 550 nm at 23 ° C. is in the range of 3 to 8 nm. And the variation is in the range of 1.5 nm.
  • the in-plane retardation of the retardation film 123 cancels out the in-plane retardation of the polycycloolefin film 115 so that the entire in-plane retardation of the retardation film 123 and the transparent conductive film 116 becomes a desired value. Has been.
  • the in-plane retardation of the retardation film 123 cancels out the in-plane retardation within a substantially constant range of 3 to 8 nm with almost no variation of the polycycloolefin film 115, and the retardation film 123. Since the in-plane retardation of the entire transparent conductive film 116 is set to about 1 ⁇ 4 wavelength, the reflected hue is good.
  • the retardation film 123 includes a 1 ⁇ 4 wavelength retardation film, and the desired value is about 1 ⁇ 4 wavelength.
  • the retardation film 123 includes a viewing angle compensation retardation film and a quarter-wave retardation film in order from the transparent conductive film 116 side, and the desired value is about 1 ⁇ 4 wavelength.
  • the direction of the slow axis of the quarter-wave retardation film is within a range of ⁇ 3 ° with respect to the direction of the slow axis of the polycycloolefin film 115.
  • the in-plane retardation of the polycycloolefin film 115 can be easily canceled by the retardation film 123, and the reflectance of light incident from the surface on the polarizing film side of the optical unit is reduced. be able to.
  • the direction of the slow axis of the quarter-wave retardation film is in the range of 90 ° ⁇ 3 ° with respect to the direction of the slow axis of the polycycloolefin film 115. Therefore, the in-plane retardation of the polycycloolefin film 115 can be easily canceled by the retardation film 123, and the reflectance of light incident from the surface on the polarizing film side of the optical unit can be reduced.
  • a transparent conductive film comprising the polycycloolefin film of the present invention and a transparent conductive layer and a method for producing the same, a roll of a laminate comprising such a transparent conductive film, an optical unit comprising such a transparent conductive film and its A manufacturing method and an organic EL display device including such an optical unit will be further described using the following examples.
  • the manufacturing method and the organic EL display device including such an optical unit are not limited only to these examples.
  • Example A1 [Transparent conductive film] (Formation of cured resin layer) Acrylic spherical particles (trade name, manufactured by Soken Chemical Co., Ltd.) having 100 parts by weight of an ultraviolet curable resin composition (trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC) and a mode particle diameter of 1.9 ⁇ m. A curable resin composition containing spherical particles containing 0.002 part by weight of “MX-180TA”) was prepared.
  • the prepared spherical particle-containing curable resin composition is applied to one surface of a long polycycloolefin film having a thickness of 50 ⁇ m and a width of 1550 mm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.). Formed.
  • the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a second cured resin layer was formed so as to have a thickness of 1.0 ⁇ m.
  • a first cured resin layer was formed on the other surface of the polycycloolefin film by the same method as described above except that spherical particles were not included so that the thickness became 1.0 ⁇ m.
  • an organic-inorganic hybrid resin (trade name: OPSTAR Z7412 (registered trademark, manufactured by JSR Corporation) composed of zirconium oxide particles having an average particle diameter of 30 nm and an acrylic resin binder as an optical adjustment layer on the first cured resin layer. ), Solid content: 20%, solvent: 80%) to form a base laminate, and a roll of the base laminate wound in a roll shape was produced.
  • the roll-to-roll method is used to roll up the obtained substrate laminate from the roll of the substrate laminate into an air circulation oven and wind it up at 150 ° C. for 3 minutes while winding it with a take-up roll.
  • the process was implemented and the roll of the base material laminated body which was wound by roll shape and was heat-up processed was produced.
  • the obtained base material laminate fed out from the roll of the base material laminate that has been heated and rolled up is put into a take-up type sputtering device, and the surface of the first cured resin layer has a thickness of 27 nm.
  • a crystalline indium tin oxide layer was formed.
  • the polycycloolefin film on which the amorphous layer of indium / tin oxide is formed is put into an air circulation oven by a roll-to-roll method, and subjected to a heat treatment at 130 ° C. for 90 minutes to obtain a transparent conductive layer.
  • a heat treatment at 130 ° C. for 90 minutes to obtain a transparent conductive layer.
  • Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Subsequently, the temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was obtained. When a predetermined power is reached, nitrogen is introduced into the reactor, the pressure is restored, the reaction solution is withdrawn in the form of strands, pelletized with a rotary cutter, and BHEPF / ISB / DEG 43.8 / 53.7 / A polycarbonate resin A having a copolymer composition of 2.5 [mol%] was obtained. This polycarbonate resin had a reduced viscosity of 0.430 dL / g and a glass transition temperature of 145 ° C.
  • the obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder setting temperature: 240 ° C.), T-die (width 900 mm, setting temperature: 240). ° C), a chill roll (set temperature: 120 to 130 ° C), and a film forming apparatus equipped with a winder, a 150 ⁇ m thick polycarbonate resin film was produced.
  • a sample having a width of 250 mm and a length of 250 mm was cut out from the polycarbonate resin film obtained as described above. Then, this sample was stretched uniaxially at a fixed end at a stretching temperature of 145.6 ° C. and a stretching ratio of 2.4 times with a batch type biaxial stretching apparatus (Browner Co., Ltd., trade name “KARO-IV”), and a thickness of 70 ⁇ m. A retardation film was prepared.
  • [Polarizing film] A long polyvinyl alcohol film is immersed in the following five baths [1] to [5] through a plurality of sets of rolls having different peripheral speeds while sequentially applying tension in the longitudinal direction of the film, and the final draw ratio is the film. The original length was stretched to 6.0 times. This film was dried in an oven at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 12 ⁇ m.
  • Swelling bath pure water at 30 ° C.
  • Dyeing bath iodine concentration within the range of 0.02 to 0.2% by weight and potassium iodide concentration of 0.14 to 100 parts by weight of water It was made into the range of 1.4 weight%.
  • the concentration ratio of iodine and potassium iodide is 1 to 7.
  • the film was immersed in an aqueous solution containing 30 ° C. for an arbitrary time so that the final transmittance of the polarizing film was 41 to 47%.
  • First crosslinking bath 40 ° C. aqueous solution containing 3% by weight of potassium iodide and 3% by weight of boric acid.
  • Second crosslinking bath 60 ° C. aqueous solution containing 5% by weight of potassium iodide and 4% by weight of boric acid.
  • Washing bath 25 ° C. aqueous solution containing 3% by weight of potassium iodide
  • Hard-coated triacetylcellulose protective film (Konica Minolta, trade name “KC2UA”, thickness 25 ⁇ m), hard-coated triacetylcellulose protective film (Konica Minolta, Konica Minolta) Product name “KC2UA”, thickness 25 ⁇ m) was prepared.
  • the polarizing film and retardation film obtained as described above were cut out to 150 mm ⁇ 300 mm, respectively.
  • the retardation film was cut out so that the slow axis forms an angle of 45 ° with respect to the short side or the long side.
  • said 2 protective film was bonded together on both surfaces of the polarizing film through the polyvinyl alcohol-type adhesive agent, respectively.
  • the slow axis of the retardation film and the absorption axis of the polarizing film form an angle of 45 ° on the side of the protective film on which the protective film is attached to both sides of the polarizing film and the surface treatment is not performed.
  • the retardation film was bonded through an acrylic pressure-sensitive adhesive layer.
  • the produced polarizing functional laminate was trimmed to a size of 70 mm ⁇ 120 mm to produce a polarizing functional laminate that functions as a circularly polarizing plate.
  • optical unit A 70 mm ⁇ 120 mm transparent conductive film was cut out from the long transparent conductive film obtained as described above. At that time, the transparent conductive film is such that the center point of the transparent conductive film substantially coincides with the center in the width direction of the long transparent conductive film and the longitudinal direction is parallel to the MD direction. was cut out.
  • the optical unit was produced by bonding together with an acrylic pressure-sensitive adhesive layer so that the MD direction of the film was parallel.
  • Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A2 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was about 50 mm from the end in the width direction of the long transparent conductive film, the conditions were the same as in Example A1.
  • a material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A3 The same as Example A1 except that the temperature of the heating and winding process was set to 140 ° C. and that the stretching temperature of the retardation film was set to 145.4 ° C. in order to obtain a retardation film having a different in-plane retardation. Under the conditions, a substrate laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A4 Except for the point where the transparent conductive film was cut out so that the center point of the transparent conductive film was positioned at about 50 mm from the end in the width direction of the long transparent conductive film, the conditions were the same as in Example A3.
  • a material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A5 The same as Example A1 except that the temperature of the heating and winding process was set to 145 ° C. and that the stretching temperature of the retardation film was set to 145.4 ° C. in order to obtain a retardation film having a different in-plane retardation. Under the conditions, a substrate laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A6 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was about 50 mm from the end in the width direction of the long transparent conductive film, the same conditions as in Example A5 were used. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A7 Except for the point that the temperature of the heating and winding process was 155 ° C., a substrate laminate, a retardation film, and an optical unit were produced and produced under the same conditions as in Example A1, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A8 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was located at a position of about 50 mm from the end in the width direction of the long transparent conductive film, the same conditions as in Example A7 were used. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A9 Except for the point where the transparent conductive film was cut out so that the center point of the transparent conductive film was located at a position of about 100 mm from the end in the width direction of the long transparent conductive film, the conditions were the same as in Example A1.
  • a material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A10 In the production of the optical unit, except that the transparent conductive film and the polarizing functional laminate are bonded so that the slow axis direction of the retardation film and the MD direction of the transparent conductive film form an angle of 3 °, A base material laminate, a retardation film, and an optical unit were produced and produced under the same conditions as in Example A1, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A11 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was about 50 mm from the end of the long transparent conductive film in the width direction, the same conditions as in Example A10 were used. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A12 In the production of the optical unit, the surface where the transparent conductive film and the polarizing functional laminate are bonded so that the slow axis direction of the retardation film and the MD direction of the transparent conductive film form an angle of 90 °;
  • the substrate laminate, the retardation film, and the optical unit were prepared under the same conditions as in Example A1, except that the stretching temperature of the retardation film was 146.1 ° C.
  • Manufacture and production were performed, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A13 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was located at a position of about 50 mm from the end of the long transparent conductive film in the width direction, the same conditions as in Example A12 were used. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example B1 In order to obtain a retardation film having a different in-plane retardation from the point that a lot different from Example A1 was used as the long polycycloolefin film used for the production of the transparent conductive film, the retardation film A base laminate, a retardation film, and an optical unit were produced and produced under the same conditions as in Example A1 except that the stretching temperature was 146.1 ° C., and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example B2 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was about 50 mm from the end in the width direction of the long transparent conductive film, the base was the same as in Example B1.
  • a material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example B3 Except for the point that the temperature of the heating and winding process was 140 ° C., a substrate laminate, a retardation film, and an optical unit were produced and produced under the same conditions as in Example B1, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example B4 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was about 50 mm from the end in the width direction of the long transparent conductive film, the conditions were the same as in Example B3. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example C A base laminate is manufactured under the same conditions as in Example A1, except that the long polycycloolefin film used for manufacturing the base laminate is a different lot from Examples A1 and B1. And the heat hoisting process was performed, and various evaluations before and after the heat hoisting process were performed as follows. The characteristics of the substrate laminate before and after the heating and winding process are shown in FIGS.
  • Example A1 A transparent conductive film, a retardation film, and an optical unit are manufactured and produced under the same conditions as in Example A1, except that the heating and winding process is not performed and the stretching temperature of the retardation film is 145.0 ° C.
  • Table 1 shows the properties of the obtained substrate laminate, retardation film, and optical unit.
  • Comparative Example A2 Except for the point where the transparent conductive film was cut out so that the center point of the transparent conductive film was located at a position of about 50 mm from the end in the width direction of the long transparent conductive film, the conditions were the same as in Comparative Example A1.
  • a material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the properties of the obtained substrate laminate, retardation film, and optical unit.
  • Comparative Example A4 Except for the point where the transparent conductive film was cut out so that the center point of the transparent conductive film was located at a position of about 50 mm from the end of the long transparent conductive film in the width direction, the same conditions as in Comparative Example A3 were used. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example A5 In the production of the optical unit, except that the transparent conductive film and the polarizing functional laminate are bonded together so that the slow axis direction of the retardation film and the MD direction of the transparent conductive film form an angle of 5 °, A base material laminate, a retardation film, and an optical unit were produced and produced under the same conditions as in Example A1, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Comparative Example A6 Except that the transparent conductive film was cut out so that the center point of the transparent conductive film was about 50 mm from the end of the long transparent conductive film in the width direction, the same conditions as in Comparative Example A5 were used. A material laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example B1 Manufacture and manufacture a transparent conductive film, retardation film, and optical unit under the same conditions as in Example B1 except that the heating and winding process is not performed and the stretching temperature of the retardation film is 145.0 ° C.
  • Table 1 shows the properties of the obtained substrate laminate, retardation film, and optical unit.
  • Comparative Example B2 Except for the point where the transparent conductive film is cut out so that the center point of the transparent conductive film is about 50 mm from the widthwise end of the long transparent conductive film, it functions under the same conditions as in Comparative Example B1 A laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the properties of the obtained substrate laminate, retardation film, and optical unit.
  • Comparative Example B3 A functional laminate, a retardation film, and an optical unit were manufactured and produced under the same conditions as in Comparative Example B1, except that the heating and winding process was performed at 150 ° C. as in Examples B1 and B2. Evaluation was performed. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Example B4 A functional laminate, a retardation film, and an optical unit were produced and produced under the same conditions as in Examples B1 to B4 except that the temperature of the heating and winding process was 130 ° C., and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Comparative Example B5 Except for the point where the transparent conductive film is cut out so that the center point of the transparent conductive film is about 50 mm from the widthwise end of the long transparent conductive film, it functions under the same conditions as in Comparative Example B4 A laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the properties of the obtained substrate laminate, retardation film, and optical unit.
  • Comparative Example B6 The same as Comparative Example B1 except that the temperature of the heating roll-up treatment was 165 ° C. and that the stretching temperature of the retardation film was 146.4 ° C. in order to obtain a retardation film having a different in-plane retardation.
  • a functional laminate, a retardation film, and an optical unit were manufactured and produced under conditions, and various evaluations were performed as follows. Table 1 shows the characteristics of the obtained substrate laminate, retardation film, and optical unit after the heating and winding process.
  • Comparative Example B7 Except for the point where the transparent conductive film is cut out so that the center point of the transparent conductive film is about 50 mm from the widthwise end of the long transparent conductive film, it functions under the same conditions as in Comparative Example B6 A laminate, a retardation film, and an optical unit were manufactured and produced, and various evaluations were performed as follows. Table 1 shows the properties of the obtained substrate laminate, retardation film, and optical unit.
  • the in-plane retardation and slow axis direction of the substrate laminate and the in-plane retardation of the retardation film were measured in a 23 ° C. room using [Axometrics product name “AxoScan”].
  • Axometrics product name “AxoScan” the influence of the first and second cured resin layers and the optical adjustment layer in the substrate laminate.
  • the measured in-plane retardation and slow axis direction of the substrate laminate can be regarded as the in-plane retardation and slow axis direction of the polycycloolefin film.
  • the obtained long base material laminates were cut into a size of 70 mm ⁇ 120 mm. Cut out so that the center point of the cut base laminate is 50 mm from the center or end in the width direction of the long base laminate, and the longitudinal direction is parallel to the MD direction. A sample was prepared. And the direction with respect to the slow axis of a base-material laminated body measured the angle with respect to the longitudinal direction of a sample, ie, MD direction.
  • Example C the base material laminated body of the roll of the obtained base material laminated body before the heating roll-up process and the obtained base material of the roll of the base-material laminated body which was heat-rolled-up processed With respect to the laminate, the in-plane phase difference and the direction of the slow axis were measured at intervals of 50 nm from the end in the width direction without cutting out.
  • Table 1 shows the measurement results. Moreover, the change of the direction of the slow axis before and behind the heating winding process over the width direction of the polycycloolefin film of Example C, and the change of a phase difference are shown to FIG.
  • the first and second cured resin layers and the optical adjustment layer in the substrate laminate were measured. Since the influence is negligible, the measured in-plane retardation and slow axis direction of the substrate laminate can be regarded as the in-plane retardation and slow axis direction of the polycycloolefin film.
  • 7A and 7B show the measurement results of the reflection hues of Examples A1 to A13 and Comparative Examples A1 to A6, Examples B1 to B4, and Comparative Examples B1 to B7.
  • the measurement result of the reflectance of Examples A10 and A11 and Comparative Examples A5 and A6 is shown in FIG.
  • the in-plane retardation increased from the center to the end in the width direction of the polycycloolefin film before the heating and winding process.
  • the minimum value of the in-plane retardation was 1.30 nm, and the maximum value was 2.86 nm.
  • the in-plane retardation value increases to 3.99 nm and the maximum value to 5.11 nm across the width direction.
  • the variation in the in-plane retardation was suppressed from 1.55 nm before the heating winding process to 1.12 nm.
  • the direction of the slow axis is parallel to the MD direction in the central part in the width direction of the polycycloolefin film before the heating and winding process
  • the slow axis with respect to the MD direction is increased from the central part to the end part in the width direction.
  • the deviation of the direction of became larger.
  • the direction of the slow axis with respect to the MD direction was an angle range of ⁇ 7.27 to + 7.08 °, and greatly exceeded the angle range of ⁇ 2 °.
  • the direction of the slow axis with respect to the MD direction is an angle range of ⁇ 1.26 to + 0.67 °, and ⁇ 1, 5 ° with respect to the MD direction. It was within the angle range. That is, by the heating and winding process, the direction of the slow axis of the polycycloolefin film was aligned with the MD direction, and variations in the direction of the slow axis could be suppressed.
  • Table 1 shows the following.
  • the slow axis direction of the polycycloolefin film is in the range of ⁇ 2 ° with respect to the MD direction of the transparent conductive film, and is almost aligned in the MD direction.
  • Comparative Examples A2, A4, B2, and B5 where the ends were cut off the direction of the slow axis of the polycycloolefin film with respect to the MD direction of the transparent conductive film was 2.7 ° or more and exceeded ⁇ 2 °. That is, in the polycycloolefin film of each example, the direction of the slow axis was aligned with the MD direction, and variation in the direction of the slow axis could be suppressed.
  • the temperature of the heating and winding process is 165 ° C. which is the glass transition temperature (Tg) of the polycycloolefin film.
  • Tg glass transition temperature
  • the temperature of the heat hoisting process is 140 to 155 ° C. in Examples A1 to A9 and B1 to B4, 130 ° C. in Comparative Examples A4 and B5, and 165 ° C. in Comparative Examples B6 and B7. From the above, it was found that the temperature of the heat hoisting treatment is preferably 140 to 160 ° C, more preferably 145 to 155 ° C, and even more preferably 148 to 153 ° C.
  • the in-plane retardation of the polycycloolein films of Examples A1 to A9 and B1 to B4 is the in-plane position of Comparative Examples A1 to A4 and B1 to B2 of the long polycycloolefin film without heating and winding up processing.
  • Examples A1, A2 and A9, Examples A3 and A4, Examples A5 and A6, Examples A7 and A8, Examples B1 and B2, and Examples B3 and B4 The variation in the in-plane retardation of the long polycycloolefin film was within a range of 1 nm and the in-plane retardation was almost constant regardless of the position in the polycycloolefin film.
  • the reflection hues of Examples A1 to A9, A12 to A13, and B1 to B4 are close to the reflection hues of the target values, and Examples A2, A4 and A9,
  • the reflection hue of Example B2 was close to the reflection hue of the target value compared to the reflection hues of Comparative Examples A2 and A4 and Comparative Examples B2, B5, and B7.
  • the reflection hues of Examples B1 to B4 are closer to the reflection hue of the target value than the reflection hue of Comparative Example B3.
  • the in-plane retardation of the polycycloolefin film is increased by the heating and winding process, but the slow axis direction of the polycycloolefin film is aligned in the MD direction, and the in-plane retardation is It was almost constant regardless of the position in the polycycloolefin film.
  • the in-plane retardation of the retardation film cancels out the almost constant in-plane retardation with little variation of the polycycloolefin film, and the entire in-plane retardation of the retardation film and the transparent conductive film is Since the wavelength was about 1 ⁇ 4, the reflection hue of the optical unit was good.
  • the reflectances of the comparative examples A5 and A6 in FIG. The reflectances of Examples A1 to A9, A12 to A13, and B1 to B4 in which the direction of the slow axis of the retardation film with respect to the MD direction of the transparent conductive film is 0 ° or 90 ° are higher than those of Examples A10 and A11. Since it was small, in the optical unit of each Example, the reflectance could be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

積層体の長尺体がロール状に巻かれた積層体のロールであって、前記積層体は、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルムを含み、前記積層体の長尺体の全幅に対する5%の幅の両側の各端部を除く全体にわたって、前記ポリシクロオレフィンフィルムの遅相軸の方向が、前記積層体の長尺体の長手方向に対して±2°の範囲内にあるロール。

Description

積層体のロール、光学ユニット、有機EL表示装置、透明導電性フィルム及び光学ユニットの製造方法
 本発明は、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルム及びその製造方法、そのような透明導電性フィルムを含む積層体のロール、そのような透明導電性フィルムを含む光学ユニット及びその製造方法、そのような光学ユニットを含む有機EL表示装置に関する。
 ポリシクロオレフィンフィルムを基材とした透明導電性フィルムが従来知られている(特許文献1)。ポリシクロオレフィンフィルムは光学的に等方性を有するため、偏光膜や位相差膜といった光の位相を制御する膜と組み合わせて使用するのに好適である。
 一方、透明導電性フィルムを用いたタッチセンサ一体型の有機EL表示装置が、例えば特許文献2に示されるように公知である。この公知の有機EL表示装置においては、図1に示されるように、有機EL表示パネル901の視認側に、タッチパネル積層体916が設けられ、タッチパネル積層体916の視認側に円偏光機能を有する偏光機能積層体920が設けられている。偏光機能積層体920は、偏光膜921と位相差膜923とを含み、位相差膜923の視認側に偏光膜921が設けられている。また、タッチパネル積層体916は、誘電体層915と誘電体層915の両面に設けられたパターン電極912-1、912-2とを積層した構造を有する。また、偏光機能積層体920に対して視認側にウインドウ902が配置されている。
 この有機EL表示装置において、位相差膜923の典型的な例は1/4波長位相差膜であるが、その場合、視認側から入射した光が偏光膜921により直線偏光となり、その直線偏光が1/4波長位相差膜により円偏光とされ、内部に入射した光が内部反射して円偏光が逆位相となり、逆位相となった円偏光が1/4波長位相差膜により入射直線偏光の偏光方向とは直交する直線偏光に変換され、偏光膜921により視認側に射出されることが防止される。そこで、誘電体層915として、光学的に等方性を有する誘電体層を用いることによって、光が誘電体層915を通過する際の光の位相の変化を防止し、内部反射防止機能が悪化したり、色相ずれが生じたりすることを防止することが考えられる。したがって、誘電体層915として、例えばポリシクロオレフィンフィルム等の光学的に等方性を有するものを使用することが考えられる。
特開2014-229279号公報 特開2012-133312号公報
 しかしながら、ポリシクロオレフィンフィルムは完全に光学的に等方性を有するわけではなく、わずかではあるが光学的に異方性を有する。このポリシクロオレフィンフィルムフィルムの異方性はわずかであり、これまでは問題と認識されていなかった。しかしながら、近時の表示装置の視認性についての厳しい要求に対して、このわずかな異方性による視認性の悪化が問題となる。
 本発明者らは、ポリシクロオレフィンフィルム原反の幅方向において中央部では遅相軸の方向はMD方向と平行であるが、幅方向において中央部から端部に向かうにつれて、MD方向に対する遅相軸の方向のずれが大きくなり、面内位相差も大きくなるというこれまで認知されていなかった現象を発見した。すなわち、ポリシクロオレフィンフィルム原反から、幅方向において、いくつかのフィルムを切り出す場合、切り出されたそれぞれのフィルムの光学特性にばらつきが発生するという問題が生じ、また大きな1つのフィルムを切り出す場合においても、切り出されたフィルムの端部において光学特性が悪化する。また、例えば、上述のような公知のタッチセンサ一体型の有機EL表示装置において、色相ずれ等の視認性の悪化が生じたりする。このようなこれまで認知されていなかった問題を本発明者らは発見した。
 そこで、本発明は、透明導電性フィルムの遅相軸の方向や面内位相差のばらつきを抑制すること、有機EL表示装置において、色相ずれ等の光学特性の悪化を抑制することを目的の1つとする。
 本発明の1つの態様は、積層体の長尺体がロール状に巻かれた積層体のロールであって、前記積層体は、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルムを含み、前記積層体の長尺体の全幅に対する5%の幅の両側の各端部を除く全体にわたって、前記ポリシクロオレフィンフィルムの遅相軸の方向が、前記積層体の長尺体の長手方向に対して±2°の範囲内にあるロールを提供するものである。
 本発明の別の態様は、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルムと、位相差フィルムと、を含み、前記ポリシクロオレフィンフィルムの遅相軸の角度のばらつきは4°の角度範囲内にあり、23℃において波長550nmの光で測定した前記ポリシクロオレフィンフィルムの面内位相差は、3~8nmの範囲内であり、そのばらつきが1.5nmの範囲内であり、前記位相差フィルムの面内位相差は、前記ポリシクロオレフィンフィルムの面内位相差を相殺して、前記位相差フィルムと前記透明導電性フィルムの全体の面内位相差が所望の値となるようにされている光学ユニットを提供するものである。
 本態様の1つの実施形態においては、前記位相差フィルムは1/4波長位相差膜を含み、前記所望の値を約1/4波長とすることができる。
 本態様の1つの実施形態においては、前記位相差フィルムは、前記透明導電性フィルム側から順に視野角補償用位相差膜と1/4波長位相差膜を含み、前記所望の値を約1/4波長とすることができる。
 これらの場合において、前記1/4波長位相差膜の遅相軸の方向を、前記ポリシクロオレフィンフィルムの遅相軸の方向に対して0°±3°の範囲内とすることができる。
 これらの場合において、前記1/4波長位相差膜の遅相軸の方向を、前記ポリシクロオレフィンフィルムの遅相軸の方向に対して90°±3°の範囲内とすることができる。
 本態様の1つの実施形態においては、前記透明導電層はインジウム・スズ酸化物(ITO)により形成されているものとすることができる。
 本態様の1つの実施形態においては、前記光学ユニットは更に偏光機能積層体を含み、前記偏光機能積層体は、偏光膜と前記位相差フィルムを含み、前記位相差フィルムは、前記透明導電性フィルムの前記透明導電層側に配置され、前記偏光膜は前記位相差フィルムに対して前記透明導電性フィルムとは反対側に配置されているものとすることができる。
 この場合において、前記偏光機能積層体は、円偏光を生成する機能を有するものとすることができる。
 本発明の別の態様は、上記の光学ユニットと、有機EL表示パネルと、を含み、前記光学ユニットが、前記有機EL表示パネルに対して視認側に配置され、前記光学ユニットが、前記透明導電性フィルムが前記偏光膜と前記有機EL表示パネルとの間に位置するように配置されている有機EL表示装置を提供するものである。
 本発明の更に別の態様は、ポリシクロオレフィンフィルムの長尺体がロール状に巻かれたポリシクロオレフィンフィルムのロールから、前記ポリシクロオレフィンフィルムを繰り出すステップと、繰り出された前記ポリシクロオレフィンフィルムを、巻き取りロールで巻き取りながら、加熱温度140~160℃で加熱巻き上げ処理するステップと、加熱巻き上げ処理された前記ポリシクロオレフィンフィルム上に透明導電層を成膜し、透明導電性フィルムを生成するステップと、を含む透明導電性フィルムの製造方法を提供するものである。
 本態様の1つの実施形態においては、前記加熱温度は、145~155℃とすることができる。
 この場合において、前記加熱温度は、148~153℃とすることができる。
 本発明の更に別の態様は、上記光学ユニットを製造する方法であって、前記偏光機能積層体と、上記製造方法により製造された透明導電性フィルムを貼り合わせ、前記光学ユニットを生成する光学ユニットの製造方法を提供するものである。
 本発明によれば、透明導電性フィルムの遅相軸の方向や面内位相差のばらつきを抑制すること、有機EL表示装置において、色相ずれ等の光学特性の悪化を抑制することができる。
 以下、本発明による、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルム及びその製造方法、そのような透明導電性フィルムを含む積層体のロール、そのような透明導電性フィルムを含む光学ユニット及びその製造方法、そのような光学ユニットを含む有機EL表示装置の実施形態を、図面を参照しながら詳細に説明する。
従来の有機EL表示装置を示す断面図である。 本発明の一実施形態による透明導電性フィルムの断面図である。 図2における第2硬化樹脂層の構成を示す部分拡大図である。 本発明の一実施形態による有機EL表示装置を示す断面図である。 ポリシクロオレフィンフィルムの幅方向の加熱巻き上げ処理前後の正面位相差の変化の一例を示す図である。 ポリシクロオレフィンフィルムの幅方向の加熱巻き上げ処理前後の遅相軸の方向の変化の一例を示す図である。 実施例及び比較例の光学ユニットの反射色相を示す図である。 実施例A10及びA11、比較例A5及びA6の反射率の測定結果を示す図である。
[積層体のロール]
 本発明の積層体のロールは、積層体の長尺体がロール状に巻かれた積層体のロールである。
 本発明の積層体のロールに用いる積層体は、透明導電性フィルムを含む。
 本発明の積層体のロールに用いる透明導電性フィルムは、ポリシクロオレフィンフィルムと透明導電層とを含む。
 本発明の積層体のロールに用いるポリシクロオレフィンフィルムの遅相軸の方向は、積層体の長尺体の全幅に対する5%の幅の両側の各端部を除く全体にわたって、積層体の長尺体の長手方向に対して±2°、好ましくは±1.5°の範囲内にある。
[光学ユニット]
 本発明の光学ユニットは、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルムと、位相差フィルムとを含む。位相差フィルムは、透明導電性フィルムの透明導電層側に配置される。
 本発明の光学ユニットに用いられるポリシクロオレフィンフィルムの遅相軸の角度ばらつきは4°の範囲内にある。23℃ において波長550nmの光で測定したポリシクロオレフィンフィルムの面内位相差は、3~8nmの範囲内であり、そのばらつきが1.5nmの範囲内である。
 本明細書において、Re[550]とは、23℃における波長550nmの光で測定した面内の位相差値をいう。Re[550]は、波長550nmにおけるフィルムの遅相軸方向、進相軸方向の屈折率を、それぞれnx、nyとし、d(nm)をフィルムの厚みとしたとき、式:Re[550]=(nx-ny)×dによって求めることができる。なお、遅相軸とは面内の屈折率の最大となる方向をいう。
 本発明の光学ユニットに用いられる位相差フィルムの面内位相差は、ポリシクロオレフィンフィルムのばらつきがほとんどないほぼ一定の面内位相差を相殺して、位相差フィルムと透明導電性フィルムの全体の面内位相差が所望の値となるようにされている。
 本発明の光学ユニットに用いられる位相差フィルムは、1/4波長位相差膜を含み、上記所望の値を約1/4波長とすることができる。また、本発明の光学ユニットに用いられる位相差フィルムは、透明導電性フィルム側から順に視野角補償用位相差膜と1/4波長位相差膜を含み、上記所望の値を約1/4波長とすることができる。ここで、上記所望の値を約1/4波長とするとは、理想的には可視光領域の全ての波長において上記所望の値を約1/4波長とするという意味である。波長550nmにおける面内位相差は、130~150nmであることが好ましく、140~146nmであることがより好ましい。
 1/4波長位相差膜の遅相軸の方向は、ポリシクロオレフィンフィルムの遅相軸の方向とほぼ平行、すなわちポリシクロオレフィンフィルムの遅相軸の方向に対して±2°の範囲内とすることができる。このような構成により、ポリシクロオレフィンフィルムの面内位相差の位相差フィルムによる相殺を容易に行うことができる。
 光学ユニットは更に偏光機能積層体を含み、偏光機能積層体は、偏光膜と前記位相差フィルムを含み、位相差フィルムは、透明導電性フィルムの透明導電層側に配置され、偏光膜は位相差フィルムに対して透明導電性フィルムとは反対側に配置されることができる。
 偏光機能積層体は、円偏光を生成する機能を有することができる。
[透明導電性フィルムの製造方法]
 本発明の透明導電性フィルムの製造方法は、ポリシクロオレフィンフィルムを含む積層体の長尺体がロール状に巻かれたポリシクロオレフィンフィルムのロールから、前記ポリシクロオレフィンフィルムを繰り出すステップと、繰り出された前記ポリシクロオレフィンフィルムを、巻き取りロールで巻き取りながら 、加熱温度140~160℃で加熱巻き上げ処理するステップと、加熱巻き上げ処理された前記ポリシクロオレフィンフィルム上に透明導電層を成膜し、透明導電性フィルムを生成するステップと、を含む。
 このように、ポリシクロオレフィンフィルムを含む積層体の長尺体を巻き取りロールで巻き取りながら、すなわち一定の張力をポリシクロオレフィンフィルムに与えながら、ポリシクロオレフィンフィルムのガラス転移温度(Tg)である165℃に近い温度で加熱巻き上げ処理を行うことによって、遅相軸の方向をMD方向に揃えることができる。
 上記加熱温度は、145~155℃であることがより好ましく、148~153℃であることが更により好ましい。
[光学ユニットの製造方法]
 本発明の光学ユニットの製造方法は、位相差フィルムと偏光膜とを含む偏光機能積層体と、上記製造方法により製造された透明導電性フィルムを貼り合わせ、光学ユニットを生成する。
<偏光膜>
 本発明の光学ユニットに用いる偏光膜は、空中延伸(乾式延伸)やホウ酸水中延伸工程等の延伸工程によって延伸された、ヨウ素を配向させたポリビニルアルコール系樹脂を用いることができる。
 偏光膜の製造方法としては、代表的には、特開2004-341515号公報に記載のあるような、PVA系樹脂の単層体を染色する工程と延伸する工程を含む製法(単層延伸法)がある。また、特開昭51-069644号公報、特開2000-338329号公報、特開2001-343521号公報、国際公開第2010/100917号、特開2012-073563号公報、特開2011-2816号公報に記載のあるような、PVA系樹脂層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法が挙げられる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。
 積層体の状態で延伸する工程と染色する工程を含む製法には、上述の特開昭51-069644号公報、特開2000-338329号公報、特開2001-343521号公報に記載のあるような空中延伸(乾式延伸)法がある。そして、高倍率に延伸できて偏光性能を向上させることのできる点で、国際公開第2010/100917号、特開2012-073563号公報に記載のあるような、ホウ酸水溶液中で延伸する工程を含む製法が好ましく、特に特開2012-073563号公報のようなホウ酸水溶液中で延伸する前に空中補助延伸を行う工程を含む製法(2段延伸法)が好ましい。また、特開2011-2816号公報に記載のあるような、PVA系樹脂層と延伸用樹脂基材を積層体の状態で延伸した後に、PVA系樹脂層を過剰に染色し、その後脱色する製法(過剰染色脱色法)も好ましい。本発明の光学積層体に用いる偏光膜は、上述のようなヨウ素を配向させたポリビニルアルコール系樹脂からなり、空中補助延伸とホウ酸水中延伸とからなる2段延伸工程で延伸された偏光膜とすることができる。また、本発明の光学積層体に用いる偏光膜は、上述のようなヨウ素を配向させたポリビニルアルコール系樹脂からなり、延伸されたPVA系樹脂層と延伸用樹脂基材の積層体を過剰に染色し、その後脱色することにより作製された偏光膜とすることができる。
<位相差フィルム>
 本発明の光学ユニットに用いる位相差フィルムは、単層又は多層の位相差膜を含む。
<位相差膜>
 本発明の光学ユニットに用いる位相差膜は、高分子フィルムを延伸させて得られるものや液晶材料を配向、固定化させたものを用いることができる。本明細書において、位相差膜は、面内及び/又は厚み方向に複屈折を有し、それによって所定の機能を実現するものをいう。
 位相差膜としては、反射防止用位相差膜(特開2012-133303号公報〔0221〕、〔0222〕〔0228〕参照)、視野角補償用相差膜(特開2012-133303号公報〔0225〕、〔0226〕参照)、視野角補償用の傾斜配向位相差膜(特開2012-133303号公報〔0227〕参照)等が挙げられる。
 位相差膜としては、実質的に上記の機能を有するものであれば、例えば、位相差値、配置角度、3次元複屈折率、単層か多層かなどは特に限定されず公知の位相差膜を使用することができる。
 本発明の位相差膜のnx-nyである面内複屈折Δnは、0.001~0.2、好ましくは0.002~0.15である。
 上記位相差膜は、好ましくは23℃において、波長550nmの光で測定した面内の位相差値(Re[550])が、波長450nmの光で測定した面内の位相差値(Re[450])よりも大きい。このような波長分散特性を有する位相差膜は、前記比率がこの範囲であれば、長波長ほど位相差が発現し、可視領域の各波長において理想的な位相差特性を得ることができる。例えば、有機ELディスプレイに用いた場合、1/4波長板としてこのような波長依存性を有する位相差膜を作製し、偏光板と貼り合わせることにより、円偏光板等を作製することができ、色相の波長依存性が少ない、ニュートラルな偏光板および表示装置の実現が可能である。一方、前記比率がこの範囲外の場合には、反射色相の波長依存性が大きくなり、偏光板や表示装置に着色の問題が生じる。
 上記位相差膜のRe[550]とRe[450]の比(Re[450]/Re[550])は、0.8 以上1.0未満、より好ましくは0.8~0.98である。
 上記位相差膜は、好ましくは23℃において、波長550nmの光で測定した面内の位相差値(Re[550])が、波長650nmの光で測定した面内の位相差値(Re[650])よりも小さい。このような波長分散特性を有する位相差膜は、赤色の領域で位相差値が一定になり、例えば、液晶表示装置に用いた場合に、見る角度によって光漏れが生じる現象や、表示画像が赤味を帯びる現象(レッドイッシュ現象ともいう)を改善することができる。
 上記位相差膜のRe[650]とRe[550]の比(Re[550]/Re[650])は、0.8以上1.0未満、好ましくは0.8~097である。Re[550]/Re[650]を上記の範囲とすることによって、例えば、上記位相差膜を有機ELディスプレイに用いた場合に、より一層優れた表示特性を得ることができる。
 Re[450]、Re[550]、Re[650]は、Axometrics社製 製品名「AxoScan」を用いて測定することができる。
 本明細書において、NZは、厚み方向複屈折であるnx-nzと面内複屈折であるnx-nyとの比をいう(Nz係数ともいう)。
 本発明の位相差膜のNZは、-10~1.5、好ましくは-8~1.4、より好ましくは-6~1.3である。
 例えば、通常縦延伸を行う場合は、フィルムの長手方向の延伸に対し、幅方向が固定されていないため、幅収縮が起こる。そのため、より一軸方向に分子が配向した状態となり、屈折率の関係としては、例えば、nx>ny=nzとなる。この場合は、延伸方向であるフィルムの長手方向の耐折強さは強くなるが、幅方向の耐折強さは非常に弱くなる。これを解決するために、延伸方向に対して交差する角度方向に、幅を規制する力を発生した状態(例えば、横一軸延伸の場合、延伸方向であるフィルムの幅方向に対して直角方向であるフィルムの長手方向の長さを一定にする力が発生している)で、延伸を施すことで、延伸方向のみならず、延伸方向と交差する角度方向にも分子を配向させることができ、屈折率の関係としては、nx>ny>nzとすることができる。これより、延伸方向の耐折強さと幅方向の耐折強さを、高いレベルで両立することができる。
 上記位相差膜の23℃における光弾性係数の絶対値;C(m2/N)は、0.5×10-12~100×10-12(m2/N)、好ましくは1×10-12~80×10-12(m2/N)である。偏光膜の収縮応力や、表示パネルの熱や、周囲の環境(耐湿・耐熱)によって、位相差膜に力がかかり、それにより発生する位相差値の変化を防ぐことができ、その結果、良好な表示均一性を有する表示パネル装置を得ることができる。好ましくは、上記位相差膜のCは3×10-12~45×10-12であり、特に好ましくは5×10-12~40×10-12以下である。Cを上記の範囲とすることによって、上記位相差膜に力がかかった時に発生する位相差値の変化やムラを低減することができる。また、光弾性係数とΔnはトレードオフの関係になりやすく、この光弾性係数範囲であれば、位相差発現性を低減させることなく、表示品位を保つことが可能となる。
 本発明の位相差膜としては、一枚のフィルムにより逆分散の波長依存性(逆分散波長特性)を示す位相差膜が好適に用いることができる。この逆分散性を示す位相膜としては、帝人社製、商品名「ピュアエースWR」や特許第4938151号記載のポリカーボネート樹脂や特願2013-214986記載のオリゴフルオレンを含有する樹脂が用いることができる。
 1つの実施形態において、本発明の位相差膜は、高分子フィルムを延伸することによって、配向させて作製される。
 上記高分子フィルムを延伸する方法としては、目的に応じて、任意の適切な延伸方法が採用され得る。本発明に適した上記延伸方法としては、例えば、横一軸延伸方法、縦横同時二軸延伸方法、縦横逐次二軸延伸方法等が挙げられる。延伸する手段としては、テンター延伸機、二軸延伸機等々の、任意の適切な延伸機が用いられ得る。好ましくは、上記延伸機は、温度制御手段を備える。加熱して延伸を行う場合は、延伸機の内部温度は連続的に変化させてもよいし、連続的に変化させてもよい。工程は1回でも2回以上に分割してもいい。延伸方向はフィルム幅方向(TD方向)や斜め方向に延伸するのがよい。
 斜め延伸は、未延伸樹脂フィルムを長手方向に送出しつつ、幅方向に対して前記特定の範囲の角度をなす方向に延伸する斜め延伸処理を連続的に行う。これにより、フィルムの幅方向と遅相軸とがなす角度(配向角θ)が前記特定の範囲となる長尺位相差膜を得ることができる。
 斜め延伸する方法としては、未延伸樹脂フィルムの幅方向に対して前記特定の範囲の角度をなす方向に連続的に延伸して、遅相軸をフィルムの幅方向に対して前記特定の範囲の角度をなす方向に形成できるものであれば特に制約されない。特開2005-319660、特開2007-30466、特開2014-194482、特開2014-199483、特開2014-199483等、従前公知のこのような延伸方法から任意の適切な方法を採用することができる。
 未延伸樹脂フィルムを延伸する温度(延伸温度)は、目的に応じて、適宜、適切な値が選択され得る。好ましくは、延伸は、高分子フィルムのガラス転移温度(Tg)に対し、Tg-20℃~Tg+30℃の範囲で行なう。このような条件を選択することによって、位相差値が均一になり易く、かつ、フィルムが結晶化(白濁)しにくくなる。具体的には、上記延伸温度は90℃~210℃であり、さらに好ましくは100℃~200℃であり、特に好ましくは100℃~180℃である。なお、ガラス転移温度は、JIS K 7121(1987)に準じたDSC法によって求めることができる。
 上記延伸温度を制御する手段としては、任意の適切な手段が採用され得る。上記温度制御手段としては、例えば、熱風または冷風が循環する空気循環式恒温オーブン、マイクロ波または遠赤外線を利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロール、金属ベルト等が挙げられる。
 上記未延伸樹脂フィルムを延伸する倍率(延伸倍率)は、目的に応じて、適宜、選択され得る。上記延伸倍率は、好ましくは1を超え6倍以下であり、さらに好ましくは1.5倍を超え4倍以下である。
 また、延伸時の送り速度は、特に制限はないが、機械精度、安定性等から好ましくは0.5m/分~30m/分であり、より好ましくは1m/分~20m/分である。上記の延伸条件であれば、目的とする光学特性が得られ得るのみならず、光学均一性に優れた位相差膜を得ることができる。
 また。この別の実施形態として、ポリシクロオレフィンフィルムやポリカーボネートフィルムなどを用いて、偏光板の吸収軸と1/2波長板の遅相軸とのなす角が15°、偏光板の吸収軸と1/4波長板の遅相軸とのなす角が75°となるようにアクリル系粘着剤を用いて枚葉貼り合せされた位相差膜を用いてもよい。
 他の実施形態において、本発明の位相差膜は、液晶材料を配向、固定化させることによって作製される位相差層を積層させたものを用いることができる。それぞれの位相差層は、液晶化合物の配向固化層であり得る。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、円偏光板(最終的には、有機EL表示装置)のさらなる薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。本実施形態においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)や面内方向に対して法線方向に遅相軸が並んだ状態で配向している(ホメオトロピック配向)などがある。液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。
 液晶化合物の配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された配向固化層は、偏光膜の表面に転写され得る。この時偏光膜の吸収軸と液晶配向固化層の遅相軸とのなす角が15°となるように配置される。また、液晶配向固化層の位相差は550nmの波長に対してλ/2(約270nm)である。さらに、前述と同様に550nmの波長に対してλ/4(約140nm)である液晶配向固化層を転写可能な基材上に形成し、偏光膜と1/2波長板の積層体の1/2波長板側に、偏光膜の吸収軸と1/4波長板の遅相軸とのなす角が75°になるように積層される。
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。
[保護膜]
 本発明の光学ユニットに用いる透明樹脂材料の保護膜は、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリエステル系樹脂、(メタ)アクリル系樹脂などを用いることができる。
 本発明の光学積層体に用いる保護膜の厚さは、10~50μm、好ましくは15~45μmであり、適宜アンチグレア層又は反射防止層などの表面処理層を設けることができる。
 本発明の光学積層体に用いる保護膜の透過湿度は、200g/m2以下、好ましくは170g/m2以下、より好ましくは130g/m2以下、特に好ましくは90g/m2以下である。
[透明導電性フィルム]
 図2は本発明の一実施形態に係る透明導電性フィルムの模式的断面図である。図2の透明導電性フィルムは、基材積層体1と透明導電層13とを含む。前記基材積層体1は、ポリシクロオレフィンフィルム10と、ポリシクロオレフィンフィルム10の第1主面S1に形成された第1硬化樹脂層11と、ポリシクロオレフィンフィルム10の第1主面S1とは反対側の第2主面S2側に形成された第2硬化樹脂層12とを含んでいる。また、前記第1硬化樹脂層11と前記透明導電層13との間に光学調整層16が設けられている。第2硬化樹脂層12は、図3に示すように、複数の球状粒子14と、前記球状粒子をポリシクロオレフィンフィルム10の表面に固定するバインダー樹脂層15とを有している。第2硬化樹脂層12は表面に凸部12aを有しているため、透明導電性フィルムをロールtoロール製法にて巻き取った場合に、透明導電性フィルム同士がブロッキングすることを抑制することができる。また、基材積層体1は、ポリシクロオレフィンフィルム10のみ又はポリシクロオレフィンフィルム10と第1硬化樹脂層若しくは第2硬化樹脂層で構成することができるが、前記透明導電層13が形成される側の第1硬化樹脂層11と、ポリシクロオレフィンフィルム10と、第2硬化樹脂層12とをこの順で含むことが好ましい。
[透明導電層]
 透明導電層は、金属酸化物により形成された層であることが好ましい。金属酸化物としては、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。中でも、インジウム・スズ複合酸化物(ITO)やインジウム亜鉛複合酸化物が好ましい。この他にも4価金属イオン又は2価金属イオンがドープされた酸化インジウム(In2O3)が用いられる。このようなインジウム系複合酸化物層は、可視光領域(380nm~780nm)で透過率が80%以上と高く、且つ単位面積当りの表面抵抗値が低い(300Ω/□以下:ohms per square)という特徴を有している。
 上記インジウム系複合酸化物層の表面抵抗値は、好ましくは300Ω/□以下であり、さらに好ましくは270Ω/□以下である。このような表面抵抗値の小さい透明導電性フィルムは、例えば、スパッタリング法又は真空蒸着法により、インジウム系複合酸化物の非晶質層を硬化樹脂層上に形成した後、120℃~200℃で30~90分間程度加熱処理して、非晶質層を結晶質層に変化させることにより得られる。この転化させる手段は、特に限定されないが空気循環式オーブンやIRヒーターなどが用いられる。
(結晶質の定義)
 基材積層体上に透明導電層が形成された透明導電性フィルムを、20℃、濃度5重量%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定を行い、端子間抵抗が10kΩを超えない場合、ITO膜の結晶質への転化が完了したものとする。
 透明導電層の厚みは、15nm~50nmとするのが好ましく、20~40nmであることがより好ましく、更に好ましくは25~35nmの範囲内である。透明導電層の厚みが15nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。また、透明導電層の厚みが50nmを超えると透明性の低下などをきたす場合がある。透明導電層としては、異なる組成の透明導電層を複数層積層した構造であってもよい。
 前記透明導電層の表面の452μm×595μmの視野における算術平均表面粗さRaは、透明性を向上させる観点から、0nmより大きく10nm以下であることが好ましく、0nmより大きく9nm以下であることがより好ましく、0nmより大きく7nm以下であることが更に好ましい。第2硬化樹脂層の表面の452μm×595μmの視野における算術平均表面粗さRaと前記透明導電層の表面の452μm×595μmの視野における算術平均表面粗さRaとの差は、5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることが更に好ましい。
 前記透明導電層は、金属ナノワイヤまたは金属メッシュを含むことができる。
(金属ナノワイヤ)
 金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電性フィルムを得ることができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電性フィルムを得ることができる。
 前記金属ナノワイヤを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。前記金属ナノワイヤを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。なかでも好ましくは、導電性の観点から、銀、銅または金であり、より好ましくは銀である。
 (金属メッシュ)
 金属メッシュを含む透明導電層は、前記基材積層体上に、金属細線が格子状のパターンに形成されてなる。前記金属ナノワイヤを構成する金属と同様の金属を使用することが可能である。金属メッシュを含む透明導電層は、任意の適切な方法により形成させることができる。透明導電層は、例えば、銀塩を含む感光性組成物(透明導電層形成用組成物)を基材積層体上に塗布し、その後、露光処理および現像処理を行い、金属細線を所定のパターンに形成することにより得ることができる。
[硬化樹脂層]
 シクロオレフィン系樹脂自体は非常に傷つきやすい傾向にある。透明導電層の形成や透明導電層のパターン化または電子機器への搭載などの各工程でポリシクロオレフィンフィルム10に傷が入りやすいので、ポリシクロオレフィンフィルム10の両面に硬化樹脂層として、第1硬化樹脂層及び第2硬化樹脂層を形成することが好ましい。
 硬化樹脂層は、それぞれ硬化型樹脂を硬化させることにより得られた層である。硬化型樹脂には、硬化メカニズムとして熱硬化、活性エネルギー線硬化、またはその両方を併用する樹脂のいずれを採用してもよい。必要に応じて架橋剤、開始剤、増感剤などを硬化型樹脂とともに使用してもよい。第1硬化樹脂層および第2硬化樹脂層の厚みは、いずれも独立して好ましくは0.5μm~5μmであり、より好ましくは0.7μm~3μmであり、最も好ましくは0.8μm~2μmである。第1硬化樹脂層および第2硬化樹脂層は、各硬化型樹脂と必要に応じて加える架橋剤、開始剤、増感剤などを含む樹脂組成物を透明樹脂フィルム上に塗布し、樹脂組成物が溶剤を含む場合には、溶剤の乾燥を行い、熱、活性エネルギー線またはその両方のいずれかの適用により硬化させることにより得られる。熱は空気循環式オーブンやIRヒーターなど公知の手段を用いることができるがこれらの方法に限定されない。活性エネルギー線の例としては紫外線、電子線、ガンマ線などがあるが特に限定されない。硬化型樹脂としては、アクリル系樹脂やエポキシ系樹脂が好ましく、より好ましくはアクリル系樹脂である。
 第1硬化樹脂層11又は第2硬化樹脂層12は、複数の球状粒子14と、前記球状粒子をポリシクロオレフィンフィルム10の表面に固定するバインダー樹脂層15とを含むことが好ましい。特に、第2硬化樹脂層12に、前記複数の球状粒子14と、前記バインダー樹脂層15とを含むことがより好ましい。図3は、図2における第2硬化樹脂層12の構成を示す部分拡大図である。第2硬化樹脂層12は、複数の球状粒子14と、前記球状粒子14をポリシクロオレフィンフィルム10の表面に固定するバインダー樹脂層15とを有している。球状粒子14の最頻粒子径はwと、バインダー樹脂層15の厚みはdと記載している。第2硬化樹脂層12の外側表面、すなわちポリシクロオレフィンフィルム10と接しない側の表面において、球状粒子14が存在する部分は、およそ差w-dの分だけ突出した凸形状を有しており、球状粒子14が存在しない部分は、略平面形状を有している。また各球状粒子14の上面にはバインダー樹脂層15の一部が薄く形成されている。ここで「最頻粒子径」とは、粒子分布の極大値を示す粒径をいう。「バインダー樹脂層の厚み」とは、球状粒子が存在しない平坦部分の厚みをいう。第2硬化樹脂層12においては、球状粒子14の最頻粒子径wと、バインダー樹脂層15の厚みdとの関係は、w-dが0より大きく1.2μm以下であることが好ましく、0.1μm~1.0μmがより好ましく、0.3μm~0.9μmがさらに好ましい。これにより、ヘイズへの影響を抑えつつ、ロールtoロール製法に耐えうるアンチブロッキング性をより確実に実現できるようになる。
 第1硬化樹脂層の表面の算術平均表面粗さRaは、透明性を向上させる観点から、0nmより大きく10nm以下であることが好ましく、0nmより大きく9nm以下であることがより好ましく、0nmより大きく7nm以下であることが更に好ましい。
 第2硬化樹脂層の表面の算術平均表面粗さRaは、5nmより大きく100nm以下であることが好ましく、7nmより大きく70nm以下であることがより好ましく、10nmより大きく60nm以下であることが更に好ましい。算術平均表面粗さRaが上記範囲内であることにより、ロールtoロール製法に耐えうるアンチブロッキング性を向上させることができる。
 第2硬化樹脂層側の算術平均表面粗さRaの方が、第1硬化樹脂層側の算術平均表面粗さRaよりも粗い方が好ましい。これにより、ロールtoロール製法に耐えうるアンチブロッキング性を有するとともに、透明導電層側の白モヤ感(ヘイズ)を低減させることができる。また、第2硬化樹脂層の表面の452μm×595μmの視野における算術平均表面粗さRaと第1硬化樹脂層の表面の452μm×595μmの視野における算術平均表面粗さRaとの差は、5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることが更に好ましい。
 前記球状粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、真球性と耐熱性の観点から、アクリル系樹脂が好ましい。
 前記第1硬化樹脂層中の球状粒子の含有量は、樹脂組成物の固形分100重量部に対して0.0000~0.0020重量部が好ましく、0.0000~0.0015重量部であることがより好ましく、0.0000~0.0010重量部であることがさらに好ましい。また、前記第2硬化樹脂層中の球状粒子の含有量は、樹脂組成物の固形分100重量部に対して0.0010~0.0300重量部であることが好ましく、0.0015~0.0200重量部であることがより好ましく、0.0020~0.0150重量部であることがさらに好ましい。前記第1硬化樹脂層又は前記第2硬化樹脂層中の球状粒子の含有量が前記範囲であると、両面の算術平均表面粗さRaを別々に調整することができるため、アンチブロッキング性や易滑性を付与するのに十分なベース隆起部が形成されやすくなるとともに、球状粒子による光散乱に起因した透明導電性フィルムのヘイズが小さくなり、視認性が上がる傾向がある。
 前記バインダー樹脂層に用いられるバインダー樹脂の材料としては、球状粒子を固定できるものであれば、任意の材料を選択することができる。このバインダー樹脂は、例えば、硬化性樹脂組成物を紫外線や電子線によって硬化させたものである。硬化性樹脂組成物は、好ましくは、ペンタエリスリトールやジペンタエリスリトール等の多官能アクリレート重合体、グリシジルアクリレート系重合体にアクリル酸を付加反応させた重合体および重合開始剤を含む。
 [光学調整層]
 図2に示すように、透明導電性フィルムは第1硬化樹脂層11と透明導電層13との間に、1層以上の光学調整層16をさらに含むことができる。透明導電性フィルムの透過率の上昇や、透明導電層13がパターン化される場合には、パターンが残るパターン部とパターンが残らない開口部の間で透過率差や反射率差の低減し、視認性に優れた透明導電性フィルムを得るために用いられる。
 光学調整層は、無機物、有機物、あるいは無機物と有機物との混合物により形成される。光学調整層を形成する材料としては、NaF、Na3AlF6、LiF、MgF2、CaF2、SiO2、LaF3、CeF3、Al2O3、TiO2、Ta2O5、ZrO2、ZnO、ZnS、SiOx(xは1.5以上2未満)などの無機物や、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマーなどの有機物が挙げられる。特に、有機物として、メラミン樹脂とアルキド樹脂と有機シラン縮合物の混合物からなる熱硬化型樹脂を使用することが好ましい。光学調整層は、上記の材料を用いて、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。
 光学調整層の厚みは、10nm~200nmであることが好ましく、20nm~150nmであることがより好ましく、20nm~130nmであることがさらに好ましい。光学調整層の厚みが過度に小さいと連続被膜となりにくい。また、光学調整層の厚みが過度に大きいと、透明導電性フィルムの透明性が低下したり、光学調整層にクラックが生じ易くなったりする傾向がある。
 光学調整層は、平均粒径が1nm~500nmのナノ微粒子を有していてもよい。光学調整層中のナノ微粒子の含有量は0.1重量%~90重量%であることが好ましい。光学調整層に用いられるナノ微粒子の平均粒径は、上述のように1nm~500nmの範囲であることが好ましく、5nm~300nmであることがより好ましい。また、光学調整層中のナノ微粒子の含有量は10重量%~80重量%であることがより好ましく、20重量%~70重量%であることがさらに好ましい。光学調整層中にナノ微粒子を含有することによって、光学調整層自体の屈折率の調整を容易に行うことができる。
 ナノ微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブの微粒子が好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
[ポリシクロオレフィンフィルム]
 金属配線層を支持するフィルム基材であるポリシクロオレフィンフィルムは、単層であってもよいし、複層であってもよい。ポリシクロオレフィンフィルムの厚みは、透明性や取扱性の観点から、好ましくは20μm~200μmである。
 ポリシクロオレフィンフィルムは、金属配線層が形成される両面に複数の突起を有している。ポリシクロオレフィンフィルムの表面に複数の突起を設けることによって、ポリシクロオレフィンフィルムに滑り性や耐磨耗性を付与し、金属配線層を連続的に成膜する際に、品質を高く維持しながら、その成膜速度を高めて生産性を向上させることができる。
 突起は、ポリシクロオレフィンフィルムの金属配線層が形成される側の表面の平面視において、その外径Dが0を超え3μm以下、好ましくは、0.1μm~2μmである。突起の外径は、例えばポリシクロオレフィンフィルムの金属配線層が形成される側の表面を所定倍率で画像観察することにより測定することができる。外径Dが3μm以下である場合、ポリシクロオレフィンフィルムの表面と突起表面の境界部近傍で金属配線が断線するのを確実に防止することができる。
 突起の高さは、ポリシクロオレフィンフィルムの平坦な面を基準として、好ましくは0を超え3μm以下であり、さらに好ましくは0.1μm~2μmである。
 突起の形状は、本実施形態では略ドーム型であり、ポリシクロオレフィンフィルムの面方向断面は略円形、厚み方向断面は略半円形である。ただし、本発明における突起は、ポリシクロオレフィンフィルムに滑り性や耐磨耗性を付与し、また、高品質な金属配線層を連続的且つ速い速度で成膜し得るものであれば、ドーム型以外の他の形状であってもよい。
 ポリシクロオレフィンフィルム上に突起を設ける手段としては、該ポリシクロオレフィンフィルムの内部に滑剤を分散させる方法、フィルム表面に、複数の粒子を分散させたバインダー(binder)を塗布する方法などが挙げられる。
 ポリシクロオレフィンフィルムは、例えば日本ゼオン株式会社等から入手できる。
 (金属配線層)
 金属配線層は、透光性を付与するために、例えば網目状にパターン形成されたものである。上記金属配線層の網目状パターンは、特に制限はなく、例えば、正方形格子、ひし形格子、又は多角形格子である。
 上記金属配線層を形成する材料は、電気伝導性を有するものであれば制限はないが、好ましくは銀、銅又はそれらの合金であり、さらに好ましくは銅である。
 上記金属配線層の線幅は、5μmを超え8μm未満であり、好ましくは5.5μmを超え7μm以下である。このような線幅の範囲であれば、フィルム基材の突起に起因する断線を防ぐことができる。線幅が5μm以下である場合は、金属配線層の網目状パターンが視認され難くはなるものの、フィルム基材の突起によって、金属配線が断線する頻度が高くなり、大量生産すると品質及び信頼性が低くなる。一方、線幅が8μm以上である場合は、金属配線層の網目状パターンが顕著に視認される。
 金属配線層の厚みは、0.1μm以上0.5μm未満であり、好ましくは0.1μmを超え0.4μm以下、さらに好ましくは0.15μm~0.35μmである。金属配線層は、その厚みを例えば2μmよりも薄くすることによって、より一層、網目状パターンが視認されることを防ぐ。このような構成は、タッチセンサに対して、斜め方向から外光が入射したとき、金属配線層の側面が光輝せず、視認され難い。
 金属配線層は、扁平形状を有している点に特徴があり、厚みに対する線幅の比率(線幅/厚み)は、好ましくは10以上80未満であり、さらに好ましくは15~50である。このような関係を満足するタッチセンサは、生産性に優れ、金属配線の断線を生じず、且つ金属配線層の網目状パターンが視認され難い。
 金属配線層の断面積は、タッチパネルセンサに必要な電気伝導性を得るために、好ましくは0.5μm2~4μm2であり、さらに好ましくは0.5μm2~3.2μm2であり、特に好ましくは0.5μm2~2.5μm2である。
 金属配線層のピッチ間隔は、十分な透光性を得るために、好ましくは200μm~800μmであり、さらに好ましくは350μm~650μmである。金属配線層の開口率は、好ましくは95%~99%であり、さらに好ましくは96%~99%である。
 上記金属配線層を形成する方法としては、例えば、フィルム基材の表面全体に金属層を成膜した後、金属層上に所定のレジストパターン(resist pattern)を積層し、エッチング(etching)により、網目状の金属配線層が形成されるように、不要領域の金属層を除去した後、レジストを剥離する方法が用いられる。上記金属層は、例えば、スパッタリング(spattering)法、メッキ(plating)法、又はそれらの組み合わせにより成膜することができる。
[有機EL表示装置]
 本発明の有機EL表示装置は、上記の光学ユニットと、有機EL表示パネルとを含み、光学ユニットが、有機EL表示パネルに対して視認側に配置され、光学ユニットが、透明導電性フィルムが偏光膜と有機EL表示パネルとの間に位置するように配置されている。
 任意ではあるが、有機EL表示装置用積層体に対して視認側にウインドウが配置されることができる。
 図4は、本発明による有機EL表示装置の1つの実施形態を示す断面図である。この有機EL表示装置100は、光学ユニット110と、有機EL表示パネル101とを含む。そして、有機EL表示パネル101に対して視認側に光学ユニット110が配置されている。
 任意ではあるが、光学ユニット110に対して視認側に透明なウインドウ102が配置されることができる。
 光学ユニット110は、透明導電性フィルム116と、偏光膜121と、位相差フィルム123とを含む。
 偏光膜121は位相差フィルム123に対して透明導電性フィルム116とは反対側に配置される。そして、この場合、偏光膜121と位相差フィルム123は、偏光機能積層体120を構成する。偏光機能積層体120は、例えば、偏光膜121の視認側から内部に入射した光が内部反射して視認側に射出されることを防止するために円偏光を生成したり、視野角を補償したりするためのものである。
 任意ではあるが、偏光膜121の片面又は両面に、保護フィルムが接着されることができる。
 光学ユニット110は、透明導電性フィルム116が偏光膜121と有機EL表示パネル101との間に位置するように配置されている。
 透明導電性フィルム116は、ポリシクロオレフィンフィルム115と透明導電層112とを含む。
 ポリシクロオレフィンフィルム115の遅相軸の角度ばらつきは4°の角度範囲内にあり、23℃において波長550nmの光で測定した前記ポリシクロオレフィンフィルム115の面内位相差は、3~8nmの範囲内であり、そのばらつきが1.5nmの範囲内である。位相差フィルム123の面内位相差は、ポリシクロオレフィンフィルム115の面内位相差を相殺して、位相差フィルム123と透明導電性フィルム116の全体の面内位相差が所望の値となるようにされている。
 本実施形態においては、位相差フィルム123の面内位相差が、ポリシクロオレフィンフィルム115のばらつきがほとんどないほぼ一定の3~8nmの範囲内の面内位相差を相殺して、位相差フィルム123と透明導電性フィルム116の全体の面内位相差が、約1/4波長となるようにされたので、反射色相が良好なものとなる。
 任意ではあるが、位相差フィルム123は、1/4波長位相差膜を含み、上記所望の値が約1/4波長である。
 任意ではあるが、位相差フィルム123は、透明導電性フィルム116側から順に視野角補償用位相差膜と1/4波長位相差膜を含み、上記所望の値が約1/4波長である。
 任意ではあるが、上記1/4波長位相差膜の遅相軸の方向が、ポリシクロオレフィンフィルム115の遅相軸の方向に対して±3°の範囲内にある。このような構成により、ポリシクロオレフィンフィルム115の面内位相差の位相差フィルム123による相殺を容易に行うことができると共に、光学ユニットの偏光膜側の表面から入射する光の反射率を低減することができる。
 任意ではあるが、上記1/4波長位相差膜の遅相軸の方向が、ポリシクロオレフィンフィルム115の遅相軸の方向に対して90°±3°の範囲内にある。したがって、ポリシクロオレフィンフィルム115の面内位相差の位相差フィルム123による相殺を容易に行うことができると共に、光学ユニットの偏光膜側の表面から入射する光の反射率を低減することができる。
 本発明のポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルム及びその製造方法、そのような透明導電性フィルムを含む積層体のロール、そのような透明導電性フィルムを含む光学ユニット及びその製造方法、そのような光学ユニットを含む有機EL表示装置について、以下の実施例を用いて更に説明する。なお、本発明のポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルム及びその製造方法、そのような透明導電性フィルムを含む積層体のロール、そのような透明導電性フィルムを含む光学ユニット及びその製造方法、そのような光学ユニットを含む有機EL表示装置は、これらの実施例のみに限定されるものではない。
〔実施例A1〕
[透明導電性フィルム]
(硬化樹脂層の形成)
 紫外線硬化性樹脂組成物(DIC社製 商品名「UNIDIC(登録商標)RS29-120」)を100重量部と、最頻粒子径が1.9μmであるアクリル系球状粒子(綜研化学社製 商品名「MX-180TA」)を0.002重量部とを含む、球状粒子入り硬化性樹脂組成物を準備した。準備した球状粒子入り硬化性樹脂組成物を厚みが50μm、幅1550mmの長尺状のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)の一方の面に塗布し、塗布層を形成した。
 次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが1.0μmとなる様に第2硬化樹脂層を形成した。ポリシクロオレフィンフィルムの他方の面に、球状粒子を含まない以外は上記と同様の方法で、厚みが1.0μmとなる様に第1硬化樹脂層を形成した。
 さらに、第1硬化樹脂層上に、光学調整層として平均粒径が30nmの酸化ジルコニウム粒子とアクリル系樹脂のバインダーで構成された有機無機ハイブリッド樹脂(JSR社製、商品名:オプスターZ7412(登録商標)、固形分:20%、溶媒:80%)を形成して基材積層体とし、ロール状に巻かれた基材積層体のロールを作製した。
(加熱巻き上げ処理)
 次いで、ロールtoロール方式で、得られた基材積層体のロールから繰り出された基材積層体を空気循環式オーブンに投入し、巻き取りロールで巻き取りながら、150℃で3分の加熱巻き上げ処理を実施し、ロール状に巻かれた、加熱巻き上げ処理された基材積層体のロールを作製した。
(透明導電層の形成)
 次に、得られた加熱巻き上げ処理された基材積層体のロールから繰り出された基材積層体を、巻き取り式スパッタ装置に投入し、第1硬化樹脂層の表面に、厚みが27nmの非晶質のインジウム・スズ酸化物層を形成した。その後、該インジウム・スズ酸化物の非晶質層が形成されたポリシクロオレフィンフィルムを、ロールtoロール方式で空気循環式オーブンに投入し、130℃で90分間の加熱処理を行い、透明導電層を非晶質から結晶質に転化させ、透明導電層の表面抵抗値が100Ω/□の透明導電性フィルムを形成し、ロール状に巻かれた透明導電性フィルムのロールを作製した。
[位相差膜]
  撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、および酢酸マグネシウム4水和物を、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.438/0.537/0.025/1.005/1.00×10-5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005~0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
 第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレット化を行い、BHEPF/ISB/DEG=43.8/53.7/2.5[mol%]の共重合組成のポリカーボネート樹脂Aを得た。このポリカーボネート樹脂の還元粘度は0.430dL/g、ガラス転移温度は145℃であった。
 得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:240℃)、Tダイ(幅900mm、設定温度:240℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み150μmのポリカーボネート樹脂フィルムを作製した。
 上記のようにして得られたポリカーボネート樹脂フィルムから幅250mm、長さ250mmの試料を切り出した。そして、この試料を、バッチ式二軸延伸装置(ブルックナー社製 商品名「KARO-IV」)にて、延伸温度145.6℃、延伸倍率2.4倍で固定端一軸横延伸し、厚み70μmの位相差膜を作製した。
[偏光膜]
 長尺状のポリビニルアルコールフィルムを下記[1]~[5]の5浴に周速の異なる複数セットのロール間を通して順次フィルム長手方向に張力を付与しながら浸漬し、最終的な延伸倍率がフィルム元長に対し、6.0倍になるように延伸した。このフィルムを50℃オーブンで4分間乾燥させ、厚み12μmの偏光膜を得た。
[1]膨潤浴:30℃の純水
[2]染色浴:水100重量部に対し、ヨウ素濃度を0.02~0.2重量%の範囲内とし、ヨウ化カリウム濃度を0.14~1.4重量%の範囲内とした。ヨウ素とヨウ化カリウムの濃度の比は1対7である。これらを含む30℃の水溶液へ、最終的な偏光膜の単体透過率が41~47%となるように任意の時間浸漬した。
[3]第1の架橋浴:3重量%のヨウ化カリウムと3重量%のホウ酸とを含む、40℃の水溶液。
[4]第2の架橋浴:5重量%のヨウ化カリウムと4重量%のホウ酸とを含む、60℃の水溶液。
[5]洗浄浴:3重量%のヨウ化カリウムを含む、25℃の水溶液
[偏光機能積層体]
 ハードコート処理されたトリアセチルセルロース製の保護フィルム(コニカミノルタ社製 商品名「KC2UA」、厚み25μm)にハードコート処理したフィルム、表面処理がされていないトリアセチルセルロース製の保護フィルム(コニカミノルタ社製 商品名「KC2UA」、厚み25μm)を準備した。上記のようにして得られた偏光膜、位相差フィルムを、それぞれ150mm×300mmに切り出した。位相差フィルムは、遅相軸が短辺又は長辺に対して45°の角度をなすように切り出した。そして偏光膜の両面に上記の2つの保護フィルムをそれぞれポリビニルアルコール系接着剤を介して貼り合わせた。更に、偏光膜両面に保護フィルムが貼り付けられた積層体の表面処理がされていない保護フィルムの側に、位相差フィルムの遅相軸と偏光膜の吸収軸が45°の角度をなすように、位相差フィルムを、アクリル系粘着剤層を介して貼り合わせた。次いで、作製した偏光機能積層体を70mm×120mmのサイズにトリミングし、円偏光板として機能する偏光機能積層体を作製した。
[光学ユニット]
 上記のようにして得られた長尺状の透明導電性フィルムから70mm×120mmのサイズの透明導電性フィルムを切り出した。その際に、透明導電性フィルムの中心点が、長尺状の透明導電性フィルムの幅方向の中央とほぼ一致するように、かつ長手方向がMD方向に平行となるように、透明導電性フィルムを切り出した。切り出した透明導電性フィルムの透明導電層側の面と、上記のようにして得られた偏光機能積層体の位相差膜側の面とを、位相差膜の遅相軸の方向と透明導電性フィルムのMD方向とが平行になるように、アクリル系粘着剤層を介して貼り合せ、光学ユニットを作製した。
 得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットについて、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A2〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A3〕
 加熱巻き上げ処理の温度を140℃とした点と、面内位相差が異なる位相差膜を得るために、位相差膜の延伸温度を145.4℃とした点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。
得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A4〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A3と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A5〕
 加熱巻き上げ処理の温度を145℃とした点と、面内位相差が異なる位相差膜を得るために、位相差膜の延伸温度を145.4℃とした点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A6〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A5と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A7〕
 加熱巻き上げ処理の温度を155℃とした点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A8〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A7と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A9〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約100mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A10〕
 光学ユニットの作製において、位相差膜の遅相軸の方向と透明導電性フィルムのMD方向が3°の角度をなすように、透明導電性フィルムと偏光機能積層体を貼り合わせた点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A11〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A10と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A12〕
 光学ユニットの作製において、位相差膜の遅相軸の方向と透明導電性フィルムのMD方向が90°の角度をなすように、透明導電性フィルムと偏光機能積層体を貼り合わせた点と、面内位相差が異なる位相差膜を得るために、位相差膜の延伸温度を146.1℃とした点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例A13〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例A12と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例B1〕
 透明導電性フィルムの製造に用いた長尺状のポリシクロオレフィンフィルムとして実施例A1とはロットの異なるものを用いた点と、面内位相差が異なる位相差膜を得るために、位相差膜の延伸温度を146.1℃とした点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例B2〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例B1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例B3〕
 加熱巻き上げ処理の温度を140℃とした点を除き、実施例B1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例B4〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、実施例B3と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔実施例C〕
 基材積層体の製造に用いた長尺状のポリシクロオレフィンフィルムとして実施例A1及びB1とはロットの異なるものを用いた点を除き、実施例A1と同様の条件で基材積層体を製造及び加熱巻き上げ処理し、以下のように加熱巻き上げ処理前後の各種評価を行った。加熱巻き上げ処理前後の基材積層体の特性を図5、6に示す。
〔比較例A1〕
 加熱巻き上げ処理を行わない点と、位相差膜の延伸温度が145.0℃である点とを除き、実施例A1と同様の条件で透明導電性フィルム、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例A2〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、比較例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例A3〕
 加熱巻き上げ処理の温度を130℃とした点を除き、比較例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例A4〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、比較例A3と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例A5〕
 光学ユニットの作製において、位相差膜の遅相軸の方向と透明導電性フィルムのMD方向が5°の角度をなすように、透明導電性フィルムと偏光機能積層体を貼り合わせた点を除き、実施例A1と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例A6〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、比較例A5と同様の条件で基材積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B1〕
 加熱巻き上げ処理を行わない点と、位相差膜の延伸温度が145.0℃である点とを除き、実施例B1と同様の条件で透明導電性フィルム、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B2〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、比較例B1と同様の条件で機能積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B3〕
 加熱巻き上げ処理を実施例B1、B2と同様に150℃で行った点を除き、比較例B1と同様の条件で機能積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B4〕
 加熱巻き上げ処理の温度を130℃とした点を除き、実施例B1~B4と同様の条件で機能積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B5〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、比較例B4と同様の条件で機能積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B6〕
 加熱巻き上げ処理の温度を165℃とした点と、面内位相差が異なる位相差膜を得るために、位相差膜の延伸温度を146.4℃とした点を除き、比較例B1と同様の条件で機能積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた加熱巻き上げ処理後の基材積層体、位相差膜、光学ユニットの特性を表1に示す。
〔比較例B7〕
 透明導電性フィルムの中心点が長尺状の透明導電性フィルムの幅方向の端から約50mmの位置となるように透明導電性フィルムを切り出した点を除き、比較例B6と同様の条件で機能積層体、位相差膜、光学ユニットを製造及び作製し、以下のように各種評価を行った。得られた基材積層体、位相差膜、光学ユニットの特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-I000002
[評価]
(厚みの測定)
 偏光膜、位相差膜、保護膜の厚みは、ダイヤルゲージ(ミツトヨ製)を用いて測定した。
(面内位相差及び遅相軸の方向の測定)
 基材積層体の面内位相差及び遅相軸の方向、並びに位相差膜の面内位相差は、[Axometrics社製 製品名「AxoScan」]を用いて23℃の室内で測定した。ここで、得られた基材積層体の面内位相差及び遅相軸の方向の測定において、基材積層体中の第1及び第2の硬化樹脂層及び光学調整層の影響は無視できるため、測定された基材積層体の面内位相差及び遅相軸の方向は、ポリシクロオレフィンフィルムの面内位相差及び遅相軸の方向とみなすことができる。実施例A1~A4、B1~B2、比較例A1~A4、B1~B3の基材積層体については、得られた長尺状の基材積層体から70mm×120mmのサイズに切り出し、その際に、切り出された基材積層体の中心点が、長尺状の基材積層体の幅方向の中央又は端から50mmの位置となるように、かつ長手方向がMD方向に平行となるように切り出してサンプルを作製した。そして、基材積層体の遅相軸の方向は、サンプルの長手方向すなわちMD方向に対する角度を測定した。また、実施例Cの基材積層体については、得られた加熱巻き上げ処理前の基材積層体のロールの基材積層体と得られた加熱巻き上げ処理された基材積層体のロールの基材積層体について、切り出さずにそのまま幅方向の端から50nm間隔で面内位相差及び遅相軸の方向を測定した。
(光学ユニットの反射率及び色相の測定)
 得られた光学ユニットの透明導電性フィルム側にアクリル系粘着剤(厚み23μm)を用いて、PETにアルミ蒸着した反射板(東レフィルム加工製 製品名「セラピールDMS-X42」)を貼り合せ測定サンプルとした。光学ユニットの偏光膜側の表面の中心点付近の反射率と反射色相(a*, b*)を、反射分光スペクトルを分光測色計[コニカミノルタセンシング(株)製 製品名「CM-2600d」]を用いて、23℃の室内で測定した。光源はD65の時の値を使用し、SCI(Specular Component Included)方式(正反射光含む)で測定した。
 測定結果を表1に示す。また、実施例Cのポリシクロオレフィンフィルムの幅方向にわたる加熱巻き上げ処理前後の遅相軸の方向の変化及び位相差の変化を図5、6に示す。ここで、上述のように、得られた基材積層体の面内位相差及び遅相軸の方向の測定において、基材積層体中の第1及び第2の硬化樹脂層及び光学調整層の影響は無視できるため、測定された基材積層体の面内位相差及び遅相軸の方向は、ポリシクロオレフィンフィルムの面内位相差及び遅相軸の方向とみなすことができる。また、実施例A1~A13及び比較例A1~A6、実施例B1~B4及び比較例B1~B7の反射色相の測定結果を図7(a)、(b)に示す。図7(a)、(b)において、比較例で用いた位相差膜単体の反射色相(a*, b*)=(-0.59,-2.15)を目標値として示す。また、実施例A10及びA11、比較例A5及びA6の反射率の測定結果を図8に示す。
(評価)
 図5から以下のことが分かった。加熱巻き上げ処理前のポリシクロオレフィンフィルムの幅方向において中央部から端部に向かうにつれて、面内位相差が大きくなった。面内位相差の最小値は1.30nm、最大値は2.86nmであった。これに対して、加熱巻き上げ処理後のポリシクロオレフィンフィルムでは、面内位相差の最小値が3.99nm、最大値が5.11nmと、幅方向にわたって、面内位相差の値が大きくなるものの、面内位相差のばらつきは、加熱巻き上げ処理前の1.55nmから1.12nmに抑制された。
 また、加熱巻き上げ処理前のポリシクロオレフィンフィルムの幅方向において中央部では遅相軸の方向はMD方向と平行であるが、幅方向において中央部から端部に向かうにつれて、MD方向に対する遅相軸の方向のずれが大きくなった。MD方向に対する遅相軸の方向は、-7.27~+7.08°の角度範囲をとり、±2°の角度範囲を大幅に超えるものとなった。これに対して、加熱巻き上げ処理後のポリシクロオレフィンフィルムでは、MD方向に対する遅相軸の方向は、-1.26~+0.67°の角度範囲と、MD方向に対して±1、5°の角度範囲内にあった。すなわち、加熱巻き上げ処理によって、ポリシクロオレフィンフィルムの遅相軸の方向をMD方向に揃え、遅相軸の方向のばらつきを抑制することができた。
 表1から以下のことが分かった。実施例A1~A9及びB1~B4では、ポリシクロオレフィンフィルムの遅相軸の方向が、透明導電性フィルムのMD方向に対して±2°の範囲内にあり、ほぼMD方向に揃っているが、端部を切り取った比較例A2、A4、B2、B5では、透明導電性フィルムのMD方向に対するポリシクロオレフィンフィルムの遅相軸の方向が、2.7°以上と±2°を超えた。すなわち、各実施例のポリシクロオレフィンフィルムにおいて、遅相軸の方向をMD方向に揃え、遅相軸の方向のばらつきを抑制できた。
 そして、実施例A2、A4、A6、A8及び比較例A4、実施例B2、B4及び比較例B5において、加熱巻き上げ処理の温度が、ポリシクロオレフィンフィルムのガラス転移温度(Tg)である165℃に近づくにつれて、より遅相軸の方向がMD方向に近づき、遅相軸の方向のばらつきが抑制されたことが分かった。
 また、比較例B6、B7では、ポリシクロオレフィンフィルムの面内位相差が9.5nm以上となった。すなわち、加熱巻き上げ処理の温度がポリシクロオレフィンフィルムのTgである165℃となると、ポリシクロオレフィンフィルムの面内位相差が8nmを超えた。
 したがって、加熱巻き上げ処理の温度が、実施例A1~A9及びB1~B4においては140~155℃であり、比較例A4、B5においては130℃であり、比較例B6、B7においては165℃であることから、加熱巻き上げ処理の温度は、140~160℃であることが好ましく、145~155℃であることがより好ましく、148~153℃であることが更により好ましいことが分かった。
 また、実施例A1~A9、B1~B4のポリシクロオレインフィルムの面内位相差は、加熱巻き上げ処理なしの長尺状のポリシクロオレフィンフィルムの比較例A1~A4、B1~B2の面内位相差に比べて大きくなっているが、実施例A1、A2及びA9、実施例A3及びA4、実施例A5及びA6、実施例A7及びA8、実施例B1及びB2、実施例B3及びB4の各々において、長尺状のポリシクロオレフィンフィルムの面内位相差のばらつきは1nmの範囲内と、ポリシクロオレフィンフィルム内の位置によらず、面内位相差がほぼ一定であった。
 また、図7(a)、(b)から分かるように、実施例A1~A9、A12~A13、B1~B4の反射色相は、目標値の反射色相に近く、実施例A2、A4及びA9、実施例B2の反射色相は、比較例A2及びA4、比較例B2、B5及びB7の反射色相に比べて目標値の反射色相に近くなった。また、実施例B1~B4の反射色相は、比較例B3の反射色相に比べて目標値の反射色相に近くなった。
 すなわち、各実施例の光学ユニットにおいて、加熱巻き上げ処理によってポリシクロオレフィンフィルムの面内位相差は大きくなるが、ポリシクロオレフィンフィルムの遅相軸の方向はMD方向に揃い、また面内位相差がポリシクロオレフィンフィルム内の位置によらずほぼ一定となった。そして、位相差膜の面内位相差が、ポリシクロオレフィンフィルムのばらつきがほとんどないほぼ一定の面内位相差を相殺して、位相差膜と透明導電性フィルムの全体の面内位相差が、約1/4波長となるようにされたので、光学ユニットの反射色相が良好なものとなった。
 また、空気から偏光膜に光が入射すること自体で、偏光膜表面において反射率が約5%の反射が生じることを考慮すると、図8から分かるように、透明導電性フィルムのMD方向に対する位相差膜の遅相軸の方向が3°(ポリシクロオレフィンフィルムの遅相軸に対する位相差膜の遅相軸の方向が3°、3.5°)の実施例A10、A11の光学ユニットの反射率は、透明導電性フィルムのMD方向に対する位相差膜の遅相軸の方向が5°(ポリシクロオレフィンフィルムの遅相軸に対する位相差膜の遅相軸の方向が5°、5.5°)の比較例A5、A6の反射率に比較して大幅に小さくなったことが分かる。透明導電性フィルムのMD方向に対する位相差膜の遅相軸の方向が0°又は90°である実施例A1~A9、A12~A13、B1~B4の反射率は、実施例A10、A11よりも小さかったから、各実施例の光学ユニットにおいて、反射率を抑制できた。
 以上、本発明を特定の実施形態について図面を参照して説明したが、本発明は、図示し説明した構成以外にも、幾多の変更が可能である。したがって、本発明は、図示し説明した構成に限定されるものではなく、その範囲は、添付の特許請求の範囲及びその均等範囲によってのみ定められるべきである。
1   基材積層体
10  ポリシクロオレフィンフィルム
11  第1硬化樹脂層
12  第2硬化樹脂層
12a (第2硬化樹脂層表面の)凸部
13  透明導電層
14  球状粒子
16  光学調整層
S1  (ポリシクロオレフィンフィルムの)第1主面
S2  (ポリシクロオレフィンフィルムの)第2主面
w   球場粒子の最頻粒子径
d   バインダー樹脂層の厚み
100 有機EL表示装置
101 有機EL表示パネル
102 ウィンドウ
110 光学ユニット
112 透明導電層
115 ポリシクロオレフィンフィルム
116 透明導電性フィルム
120 偏光機能積層体
121 偏光膜
123 位相差フィルム
900 有機EL表示装置
901 有機EL表示パネル
912-1、912-2 パターン電極
915 誘電体層
920 偏光機能積層体
921 偏光膜
923 位相差層

Claims (14)

  1.  積層体の長尺体がロール状に巻かれた積層体のロールであって、
     前記積層体は、ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルムを含み、
     前記積層体の長尺体の全幅に対する5%の幅の両側の各端部を除く全体にわたって、前記ポリシクロオレフィンフィルムの遅相軸の方向が、前記積層体の長尺体の長手方向に対して±2°の範囲内にあるロール。
  2.  ポリシクロオレフィンフィルムと透明導電層とを含む透明導電性フィルムと、
     位相差フィルムと、
    を含み、
     前記ポリシクロオレフィンフィルムの遅相軸の方向のばらつきは4°の角度範囲内にあり、
    23℃において波長550nmの光で測定した前記ポリシクロオレフィンフィルムの面内位相差は、3~8nmの範囲内であり、そのばらつきが1.5nmの範囲内であり、
     前記位相差フィルムの面内位相差は、前記ポリシクロオレフィンフィルムの面内位相差を相殺して、前記位相差フィルムと前記透明導電性フィルムの全体の面内位相差が所望の値となるようにされている光学ユニット。
  3.  前記位相差フィルムは、1/4波長位相差膜を含み、前記所望の値が、約1/4波長である請求項2に記載の光学ユニット。
  4.  前記位相差フィルムは、前記透明導電性フィルム側から順に視野角補償用位相差膜と1/4波長位相差膜を含み、前記所望の値が、約1/4波長である請求項2に記載の光学ユニット。
  5.  前記1/4波長位相差膜の遅相軸の方向が、前記ポリシクロオレフィンフィルムの遅相軸の方向に対して0°±3°の範囲内にある請求項3又は4に記載の光学ユニット。
  6.  前記1/4波長位相差膜の遅相軸の方向が、前記ポリシクロオレフィンフィルムの遅相軸の方向に対して90°±3°の範囲内にある請求項3又は4に記載の光学ユニット。
  7.  前記透明導電層はインジウム・スズ酸化物(ITO)により形成されている請求項2~6のいずれかに記載の光学ユニット。
  8.  前記光学ユニットは更に偏光機能積層体を含み、
     前記偏光機能積層体は、偏光膜と前記位相差フィルムを含み、
     前記位相差フィルムは、前記透明導電性フィルムの前記透明導電層側に配置され、
     前記偏光膜は前記位相差フィルムに対して前記透明導電性フィルムとは反対側に配置されている請求項2~7のいずれかに記載の光学ユニット。
  9.  前記偏光機能積層体は、円偏光を生成する機能を有する請求項8に記載の光学ユニット。
  10.  請求項9に記載の光学ユニットと、
     有機EL表示パネルと、
    を含み、
     前記光学ユニットが、前記有機EL表示パネルに対して視認側に配置され、
     前記光学ユニットが、前記透明導電性フィルムが前記偏光膜と前記有機EL表示パネルとの間に位置するように配置されている有機EL表示装置。
  11.  ポリシクロオレフィンフィルムの長尺体がロール状に巻かれたポリシクロオレフィンフィルムのロールから、前記ポリシクロオレフィンフィルムを繰り出すステップと、
     繰り出された前記ポリシクロオレフィンフィルムを、巻き取りロールで巻き取りながら、加熱温度140~160℃で加熱巻き上げ処理するステップと、
     加熱巻き上げ処理された前記ポリシクロオレフィンフィルム上に透明導電層を成膜し、透明導電性フィルムを生成するステップと、
    を含む透明導電性フィルムの製造方法。
  12.  前記加熱温度は、145~155℃である請求項11に記載の透明導電性フィルムの製造方法。
  13.  前記加熱温度は、148~153℃である請求項11に記載の透明導電性フィルムの製造方法。
  14.  請求項8に記載の光学ユニットを製造する方法であって、前記偏光機能積層体と、請求項11~13のいずれかに記載の製造方法により製造された透明導電性フィルムを貼り合わせ、前記光学ユニットを生成する光学ユニットの製造方法。
PCT/JP2016/062026 2015-05-29 2016-04-14 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法 WO2016194488A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/575,600 US20180155511A1 (en) 2015-05-29 2016-04-14 Laminate roll, optical unit, organic el display device, and methods for manufacturing transparent electrically conductive film and optical unit
KR1020177033087A KR102684825B1 (ko) 2015-05-29 2016-04-14 적층체의 롤, 광학 유닛, 유기 el 표시 장치, 투명 도전성 필름 및 광학 유닛의 제조 방법
CN201680030382.XA CN107615118B (zh) 2015-05-29 2016-04-14 层叠体的卷、光学单元、有机el显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015110402 2015-05-29
JP2015-110402 2015-05-29
JP2016011550A JP6560133B2 (ja) 2015-05-29 2016-01-25 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法
JP2016-011550 2016-01-25

Publications (1)

Publication Number Publication Date
WO2016194488A1 true WO2016194488A1 (ja) 2016-12-08

Family

ID=57441053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062026 WO2016194488A1 (ja) 2015-05-29 2016-04-14 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法

Country Status (1)

Country Link
WO (1) WO2016194488A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012733A1 (ja) * 2017-07-10 2019-01-17 東山フイルム株式会社 透明導電性フィルム用の光学調整層付きハードコートフィルム、および透明導電性フィルム
JPWO2020241732A1 (ja) * 2019-05-30 2020-12-03
CN116879993A (zh) * 2020-03-31 2023-10-13 大日本印刷株式会社 光学用的塑料膜、以及使用了该塑料膜的光学层积体、偏振片和图像显示装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156624A (ja) * 2000-11-16 2002-05-31 Fuji Photo Film Co Ltd 液晶表示装置
JP2002196137A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 光学補償シート、楕円偏光板および液晶表示装置
JP2005242345A (ja) * 2004-01-30 2005-09-08 Nippon Zeon Co Ltd 液晶表示装置
JP2006182865A (ja) * 2004-12-27 2006-07-13 Konica Minolta Opto Inc ハードコートフィルム、その製造方法、それを用いた偏光板及び表示装置
JP2007002027A (ja) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp 飽和ノルボルネン樹脂フィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム並びに液晶表示装置
JP2008273059A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp シクロオレフィン樹脂フィルムの製造方法、シクロオレフィン樹脂フィルム、該フィルムを用いた偏光板、光学補償フィルム、反射防止フィルム、液晶表示装置
JP2008273029A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp シクロオレフィン樹脂フィルム、およびこれらを用いた偏光板、光学補償フィルム、反射防止フィルム、液晶表示装置、ならびに、シクロオレフィン樹脂フィルムの製造方法
JP2009009079A (ja) * 2007-05-30 2009-01-15 Nippon Zeon Co Ltd 偏光板および液晶表示装置
JP2009117071A (ja) * 2007-11-02 2009-05-28 Kaneka Corp 透明導電膜
JP2013015563A (ja) * 2011-06-30 2013-01-24 Nippon Zeon Co Ltd パターン位相差フィルムの評価方法
JP2013029827A (ja) * 2011-06-22 2013-02-07 Nippon Zeon Co Ltd パターン位相差板及びその製造方法、並びに液晶表示装置
JP2013235234A (ja) * 2012-04-13 2013-11-21 Fujifilm Corp 位相差フィルム、偏光板、液晶表示装置、及び位相差フィルムの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156624A (ja) * 2000-11-16 2002-05-31 Fuji Photo Film Co Ltd 液晶表示装置
JP2002196137A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 光学補償シート、楕円偏光板および液晶表示装置
JP2005242345A (ja) * 2004-01-30 2005-09-08 Nippon Zeon Co Ltd 液晶表示装置
JP2006182865A (ja) * 2004-12-27 2006-07-13 Konica Minolta Opto Inc ハードコートフィルム、その製造方法、それを用いた偏光板及び表示装置
JP2007002027A (ja) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp 飽和ノルボルネン樹脂フィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム並びに液晶表示装置
JP2008273059A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp シクロオレフィン樹脂フィルムの製造方法、シクロオレフィン樹脂フィルム、該フィルムを用いた偏光板、光学補償フィルム、反射防止フィルム、液晶表示装置
JP2008273029A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp シクロオレフィン樹脂フィルム、およびこれらを用いた偏光板、光学補償フィルム、反射防止フィルム、液晶表示装置、ならびに、シクロオレフィン樹脂フィルムの製造方法
JP2009009079A (ja) * 2007-05-30 2009-01-15 Nippon Zeon Co Ltd 偏光板および液晶表示装置
JP2009117071A (ja) * 2007-11-02 2009-05-28 Kaneka Corp 透明導電膜
JP2013029827A (ja) * 2011-06-22 2013-02-07 Nippon Zeon Co Ltd パターン位相差板及びその製造方法、並びに液晶表示装置
JP2013015563A (ja) * 2011-06-30 2013-01-24 Nippon Zeon Co Ltd パターン位相差フィルムの評価方法
JP2013235234A (ja) * 2012-04-13 2013-11-21 Fujifilm Corp 位相差フィルム、偏光板、液晶表示装置、及び位相差フィルムの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012733A1 (ja) * 2017-07-10 2019-01-17 東山フイルム株式会社 透明導電性フィルム用の光学調整層付きハードコートフィルム、および透明導電性フィルム
JPWO2019012733A1 (ja) * 2017-07-10 2019-07-11 東山フイルム株式会社 透明導電性フィルム用の光学調整層付きハードコートフィルム、および透明導電性フィルム
KR20190139125A (ko) * 2017-07-10 2019-12-17 히가시야마 필름 가부시키가이샤 투명 도전성 필름용의 광학 조정층 부착 하드 코트 필름 및 투명 도전성 필름
KR102361847B1 (ko) 2017-07-10 2022-02-14 히가시야마 필름 가부시키가이샤 투명 도전성 필름용의 광학 조정층 부착 하드 코트 필름 및 투명 도전성 필름
JPWO2020241732A1 (ja) * 2019-05-30 2020-12-03
WO2020241732A1 (ja) * 2019-05-30 2020-12-03 大日本印刷株式会社 光学用のプラスチックフィルム、偏光板及び画像表示装置
CN116879993A (zh) * 2020-03-31 2023-10-13 大日本印刷株式会社 光学用的塑料膜、以及使用了该塑料膜的光学层积体、偏振片和图像显示装置

Similar Documents

Publication Publication Date Title
JP6560133B2 (ja) 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法
CN203930282U (zh) 图像显示装置
CN104995553A (zh) 图像显示装置
CN111556976B (zh) 相位差板、带光学补偿层的偏振片、图像显示装置及带触控面板的图像显示装置
JP7281025B2 (ja) 偏光膜の製造方法
JP7294908B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
CN108627901B (zh) 带防反射层及防映入层的偏振片及其制造方法
WO2016194488A1 (ja) 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法
JP6797499B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP7321005B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
CN111542770A (zh) 相位差膜、带光学补偿层的偏振片、图像显示装置及带触控面板的图像显示装置
JP7294909B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064280A (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP6804168B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP7321004B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
CN116670547A (zh) 偏振膜及偏振膜的制造方法
JP7500531B2 (ja) 位相差フィルム、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置
JP6521149B2 (ja) 画像表示装置
KR20230161475A (ko) 폴리에스테르 필름 및 그것을 이용한 화상 표시 장치
KR20240115165A (ko) 광학 적층체 및 해당 광학 적층체를 이용한 화상 표시 장치
JP2023118722A (ja) 位相差フィルム、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置
JP2020115225A (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064275A (ja) 位相差層付偏光板およびそれを用いた画像表示装置
CN116107010A (zh) 带相位差层的偏振片及使用了该带相位差层的偏振片的图像显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033087

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802925

Country of ref document: EP

Kind code of ref document: A1