[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016171130A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2016171130A1
WO2016171130A1 PCT/JP2016/062376 JP2016062376W WO2016171130A1 WO 2016171130 A1 WO2016171130 A1 WO 2016171130A1 JP 2016062376 W JP2016062376 W JP 2016062376W WO 2016171130 A1 WO2016171130 A1 WO 2016171130A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
steel sheet
grain
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2016/062376
Other languages
English (en)
French (fr)
Inventor
坂井 辰彦
濱村 秀行
茂木 尚
史明 高橋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112017020753-2A priority Critical patent/BR112017020753B1/pt
Priority to CN201680011890.3A priority patent/CN107250392B/zh
Priority to US15/560,454 priority patent/US10675714B2/en
Priority to KR1020177024140A priority patent/KR102010166B1/ko
Priority to JP2017514133A priority patent/JP6455593B2/ja
Priority to PL16783151T priority patent/PL3287533T3/pl
Priority to EP16783151.0A priority patent/EP3287533B1/en
Priority to RU2017134752A priority patent/RU2682364C1/ru
Publication of WO2016171130A1 publication Critical patent/WO2016171130A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet. This application claims priority based on Japanese Patent Application No. 2015-086300 for which it applied to Japan on April 20, 2015, and uses the content here.
  • grain-oriented electrical steel sheets that exhibit excellent magnetic properties in a specific direction are known as steel sheets for transformer cores.
  • This grain-oriented electrical steel sheet is a steel sheet whose crystal orientation is controlled by a combination of a cold rolling process and an annealing process so that the easy axis of crystal grains coincides with the rolling direction. It is desirable that the iron loss of the grain-oriented electrical steel sheet is as low as possible.
  • Iron loss is classified into eddy current loss and hysteresis loss. Furthermore, eddy current loss is classified into classical eddy current loss and abnormal eddy current loss.
  • a grain-oriented electrical steel sheet in which an insulating film is formed on the surface of a steel sheet (ground iron) whose crystal orientation is controlled as described above is generally known. This insulating film plays a role of giving not only electrical insulation but also tension and heat resistance to the steel sheet.
  • grain-oriented electrical steel sheets in which a glass film is formed between a steel sheet and an insulating film are also known.
  • the width of the 180 ° magnetic domain is narrowed by forming stress-strained portions and groove portions extending in the direction crossing the rolling direction at predetermined intervals along the rolling direction.
  • a magnetic domain control method (which subdivides a 180 ° magnetic domain) is known.
  • the 180 ° magnetic domain refinement effect of the reflux magnetic domain generated at the strained portion is used.
  • a typical method is a method using shock waves or rapid heating by laser irradiation. In this method, the surface shape of the irradiated portion hardly changes.
  • the method of forming a groove utilizes a demagnetizing field effect by a magnetic pole generated on the side wall of the groove. In this case, it is known that the magnetic domain control effect is higher when the cross-sectional shape of the groove is closer to a rectangle (Patent Document 4). That is, the magnetic domain control is classified into a strain imparting type and a groove forming type.
  • a groove forming type is adopted as a method for manufacturing a magnetic domain control material for a wound core.
  • mold can be employ
  • the steel plate surface is slightly melted and has a depth of about 10 ⁇ m. Shallow and gentle depressions may be formed. However, it is known that such shallow and gentle recesses do not generate magnetic poles having a magnetic domain control effect, and as a result, the magnetic domain control effect disappears after strain relief annealing.
  • an electrolytic etching method (see Patent Document 1 below) in which grooves are formed on the steel sheet surface of the grain-oriented electrical steel sheet by electrolytic etching, and a gear is mechanically pressed on the steel sheet surface of the grain-oriented magnetic steel sheet.
  • a gear press method for forming grooves on the steel sheet surface see Patent Document 2 below
  • a laser irradiation method for forming grooves on the steel sheet surface of grain-oriented electrical steel sheets by laser irradiation see Patent Document 3 below.
  • the insulating film (or glass film) on the surface of the steel sheet is linearly removed by laser or mechanical means, and then a groove is formed on the surface of the steel sheet by performing electrolytic etching on the exposed portion of the steel sheet.
  • electrolytic etching method since such an electrolytic etching method is adopted, there is a problem that the manufacturing process of the grain-oriented electrical steel sheet becomes complicated, resulting in an increase in manufacturing cost.
  • gear press method since the steel plate of the grain-oriented electrical steel plate is a very hard steel plate containing about 3% by mass of Si, gear wear and damage are likely to occur.
  • gear press method since such a gear press method is employed, there is a problem that when the gear is worn, the groove becomes shallow and the depth of the groove varies, so that the effect of reducing abnormal eddy current loss cannot be obtained sufficiently.
  • the iron loss is desirably low and the magnetic flux density is desirably high.
  • the magnetic flux density decreases.
  • the closer the groove cross-sectional shape is to a rectangle the larger the volume of iron that is removed from the steel sheet.
  • a magnetic steel sheet having grooves formed using a high heat source such as a laser is bent when used as a wound iron core, there is also a problem that the steel sheet is likely to break starting from the groove.
  • the present invention has been made in view of the above-mentioned problems, and with respect to a grain-oriented electrical steel sheet having grooves formed on the steel sheet surface for magnetic domain subdivision, maximization of iron loss reduction effect and minimization of magnetic flux density decrease are achieved.
  • the aim is to achieve a balance.
  • a grain-oriented electrical steel sheet according to an aspect of the present invention includes a steel sheet having a steel sheet surface extending in a direction intersecting with the rolling direction and having a groove in which a groove depth direction is a sheet thickness direction.
  • the groove center in the groove width direction is defined as the groove width center.
  • the deepest part of the groove is shifted from the groove width center to one side in the groove width direction, and the cross-sectional shape of the groove is asymmetric with respect to the groove width center in the groove width direction,
  • the groove has a first groove surface and a second groove surface which are a pair of inclined surfaces inclined from the steel plate surface toward the deepest portion of the groove.
  • the groove width center is located on the second groove surface side when viewed from the deepest portion.
  • the angle formed between the first groove end straight line obtained by approximating the first groove surface and the plate thickness direction is defined as a first angle ⁇ 1, and the second angle obtained by approximating the second groove surface linearly.
  • the first angle ⁇ 1 and the second angle ⁇ 2 satisfy the following conditional expressions (1) to (3). 0 ° ⁇ ⁇ 1 ⁇ 50 ° (1) ⁇ 1 ⁇ 2 ⁇ 75 ° (2) ⁇ 2 ⁇ 1 ⁇ 10 ° (3)
  • the steel sheet may have a grain size of 5 ⁇ m or more in contact with the groove.
  • the grain thickness direction grain size of the crystal grains present in the lower part of the groove in the steel sheet is: It may be 5 ⁇ m or more and not more than the thickness of the steel plate.
  • the groove when the groove is viewed in a groove longitudinal section including the groove extending direction and the plate thickness direction, the groove
  • the arithmetic average height Ra of the roughness curve forming the contour of the groove bottom region is 1 ⁇ m or more and 3 ⁇ m or less
  • the average length RSm of the roughness curve element forming the contour of the groove bottom region is 10 ⁇ m or more and 150 ⁇ m or less. It may be.
  • the directional electrical steel sheet having grooves formed on the surface of the steel sheet for magnetic domain subdivision can balance both the maximization of the iron loss reduction effect and the minimization of the decrease in magnetic flux density in a balanced manner. Is possible.
  • FIG. 1 is a plan view of a grain-oriented electrical steel sheet 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 (a view of the groove 5 in a cross section including the groove extending direction).
  • FIG. 6 is a cross-sectional view taken along line BB in FIG. 1 (a view of the groove 5 in a cross section orthogonal to the groove extending direction). It is a 1st explanatory view about a method of specifying average depth D of groove. It is the 2nd explanatory view about the method of specifying average depth D of slot. It is the 3rd explanatory view about the method of specifying average depth D of slot.
  • FIG. 3 is a flowchart showing a manufacturing process of the grain-oriented electrical steel sheet 1. It is 1st explanatory drawing regarding laser irradiation process S08 in the manufacturing process of grain-oriented electrical steel sheet 1.
  • FIG. It is 2nd explanatory drawing regarding laser irradiation process S08 in the manufacturing process of grain-oriented electrical steel sheet 1.
  • FIG. It is 3rd explanatory drawing regarding laser irradiation process S08 in the manufacturing process of grain-oriented electrical steel sheet 1.
  • FIG. 1 is a plan view of a grain-oriented electrical steel sheet 1 according to the present embodiment.
  • 2 is a cross-sectional view taken along line AA in FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1 to 3
  • the rolling direction of the grain-oriented electrical steel sheet 1 is X
  • the sheet width direction of the grain-oriented electrical steel sheet 1 is Y
  • the grain-oriented electrical steel sheet 1 The thickness direction (direction orthogonal to the XY plane) is defined as Z.
  • the grain orientation of the grain-oriented electrical steel sheet 1 is controlled so that the easy axis of crystal grains coincides with the rolling direction X by a combination of cold rolling and annealing.
  • a steel plate (ground iron) 2, a glass coating 3 formed on the surface of the steel plate 2 (steel plate surface 2 a), and an insulating coating 4 formed on the surface of the glass coating 3 are provided.
  • FIG. 1 a plurality of grooves 5 extending in a direction intersecting the rolling direction X and having a groove depth direction coinciding with the sheet thickness direction Z are formed on the steel plate surface 2a for magnetic domain subdivision. It is formed at predetermined intervals along the rolling direction X. That is, FIG. 2 is a view of one groove 5 as seen in a cross section including the groove extending direction and the plate thickness direction Z. FIG. 3 is a view of one groove 5 as seen in a cross section perpendicular to the groove extending direction.
  • channel 5 should just be provided so that the rolling direction X may be crossed, and the groove extension direction and the rolling direction X do not necessarily need to be orthogonal.
  • the groove extending direction and the rolling direction X are orthogonal to each other is illustrated for convenience of explanation.
  • the groove 5 may have an arcuate shape when viewed from the plate thickness direction Z (when the groove 5 is viewed in plan).
  • channel 5 which has a linear shape is illustrated for convenience of explanation.
  • Steel plate 2 has chemical fractions of mass fractions of Si: 0.8% to 7%, C: more than 0% to 0.085%, acid-soluble Al: 0% to 0.065%, N: 0% 0.012%, Mn: 0% to 1%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0% to 0.5%, Sn: 0% to 0% .3%, Sb: 0% to 0.3%, Ni: 0% to 1%, S: 0% to 0.015%, Se: 0% to 0.015%, with the balance being Fe and Consists of impurities.
  • the chemical component of the steel sheet 2 is a preferable chemical component for controlling the Goss texture in which the crystal orientation is accumulated in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • Si and C are basic elements
  • acid-soluble Al, N, Mn, Cr, Cu, P, Sn, Sb, Ni, S, and Se are selective elements. Since the above-mentioned selective element may be contained according to the purpose, it is not necessary to limit the lower limit value, and the lower limit value may be 0%. Even if these selective elements are contained as impurities, the effect of the present embodiment is not impaired.
  • the balance of the basic element and the selective element may be made of Fe and impurities.
  • an impurity means the element mixed unavoidable from the ore as a raw material, a scrap, or a manufacturing environment, when manufacturing the steel plate 2 industrially.
  • a magnetic steel sheet it is common for a magnetic steel sheet to undergo purification annealing during secondary recrystallization.
  • the purification annealing the inhibitor forming elements are discharged out of the system.
  • the decrease in the concentration is remarkable, and it becomes 50 ppm or less. Under normal purification annealing conditions, 9 ppm or less, further 6 ppm or less. If the purification annealing is sufficiently performed, it reaches a level that cannot be detected by general analysis (1 ppm or less).
  • the chemical composition of the steel plate 2 may be measured by a general steel analysis method.
  • the chemical component of the steel plate 2 may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, by measuring a 35 mm square test piece from the central position of the steel plate 2 after removal of the film with ICPS-8100 manufactured by Shimadzu Corporation (measuring device) under conditions based on a calibration curve prepared in advance. Can be identified. C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the glass film 3 is made of a complex oxide such as forsterite (Mg 2 SiO 4 ), spinel (MgAl 2 O 4 ), or cordierite (Mg 2 Al 4 Si 5 O 16 ).
  • the glass coating 3 is a coating formed to prevent seizure from occurring in the steel plate 2 in the finish annealing step, which is one of the manufacturing processes of the grain-oriented electrical steel plate 1. Therefore, the glass coating 3 is not an essential element as a component of the grain-oriented electrical steel sheet 1.
  • the insulating film 4 contains, for example, colloidal silica and phosphate, and plays a role of giving the steel sheet 2 not only electrical insulation but also tension, corrosion resistance, heat resistance, and the like.
  • the glass film 3 and the insulating film 4 of the grain-oriented electrical steel sheet 1 can be removed by the following method, for example.
  • the grain-oriented electrical steel sheet 1 having the glass coating 3 or the insulating coating 4 is immersed in a NaOH aqueous solution of NaOH: 10% by mass + H 2 O: 90% by mass at 80 ° C. for 15 minutes.
  • a sulfuric acid aqueous solution of H 2 SO 4 10% by mass + H 2 O: 90% by mass at 80 ° C. for 3 minutes.
  • the substrate is dipped and washed with a nitric acid aqueous solution of HNO 3 : 10% by mass + H 2 O: 90% by mass for 1 minute at room temperature.
  • the groove 5 is viewed in a cross section (groove width direction cross section or groove short cross section) perpendicular to the groove extending direction (in this embodiment, a direction parallel to the plate width direction Y).
  • the depth from the steel plate surface 2a to the deepest part of the groove 5 is defined as the groove depth Da
  • the center of the groove 5 in the groove width direction is defined as the groove width center GC.
  • the deepest portion of the groove 5 is shifted from the groove width center GC to one side in the groove width direction, and the cross-sectional shape of the groove 5 is in the groove width direction.
  • the shape is asymmetric with respect to the groove width center GC.
  • the groove 5 when the groove 5 is viewed in a short cross section, the groove 5 is a first groove surface 5a and a second groove surface 5b which are a pair of inclined surfaces inclined from the steel plate surface 2a toward the deepest portion of the groove 5. have.
  • the groove width center GC When viewed from the deepest portion of the groove 5, the groove width center GC is located on the second groove surface 5 b side.
  • the angle formed by the first groove end straight line Lb1 obtained by linearly approximating the first groove surface 5a and the plate thickness direction Z is defined as a first angle ⁇ 1
  • the second An angle formed by the second groove end straight line Lb2 obtained by linearly approximating the groove surface 5b and the plate thickness direction Z is defined as a second angle ⁇ 2.
  • the average depth D of the grooves 5 is more than 10 ⁇ m and not more than 40 ⁇ m, and when the grooves 5 are viewed in the short cross section of the grooves, the deepest part of the grooves 5 is from the groove width center GC to one side in the groove width direction.
  • the cross-sectional shape of the groove 5 is asymmetrical with respect to the groove width center GC in the groove width direction.
  • channel 5 is called depth condition
  • channel 5 is called shape condition.
  • the first angle ⁇ 1 is always an acute angle regardless of the value of the average depth D, and the second angle ⁇ 2 Is always larger than the first angle ⁇ 1. Further, in a state where the groove width of the groove 5 is fixed to a constant value, the first angle ⁇ 1 decreases as the average depth D increases, and the first angle ⁇ 1 increases as the average depth D decreases. .
  • the volume of iron removed from the steel plate 2 increases, so the amount of decrease in magnetic flux density also increases.
  • the first angle ⁇ 1 is reduced as the average depth D is increased, the demagnetizing effect of the magnetic poles appearing on the side surfaces of the groove 5 is increased, so that the magnetic domain fragmentation effect (iron loss reduction effect) is also increased.
  • the average depth D is reduced, the volume of iron removed from the steel plate 2 is reduced, so that the amount of decrease in magnetic flux density is also reduced.
  • the first angle ⁇ 1 is increased with the decrease in the average depth D, the demagnetizing effect of the magnetic poles appearing on the side surfaces of the groove 5 is reduced, so that the iron loss reduction effect is also reduced.
  • the groove 5 satisfies the above-described shape condition, and then the average of the grooves 5 It has been found that it is important that the depth D satisfies the depth condition of more than 10 ⁇ m and not more than 40 ⁇ m.
  • the average depth D is 10 ⁇ m or less (when the average depth D is shallower than 10 ⁇ m), the volume of iron removed from the steel sheet 2 decreases, so that the amount of decrease in magnetic flux density also decreases, but the first angle ⁇ 1. Therefore, the demagnetizing field effect of the magnetic pole appearing on the side surface of the groove 5 is reduced. As a result, when the average depth D is 10 ⁇ m or less, a sufficient iron loss reduction effect cannot be obtained.
  • the average depth D exceeds 40 ⁇ m (when the average depth D is deeper than 40 ⁇ m)
  • the first angle ⁇ 1 becomes small, so that the demagnetizing field effect of the magnetic pole appearing on the side surface of the groove 5 becomes large. A large iron loss reduction effect can be obtained.
  • the average depth D exceeds 40 ⁇ m, the volume of iron removed from the steel plate 2 increases, so the amount of decrease in magnetic flux density also increases.
  • the average depth D is 10 ⁇ m or less and the case where the average depth D exceeds 40 ⁇ m, it is not possible to achieve a balance between maximizing the iron loss reduction effect and minimizing the decrease in magnetic flux density. . Therefore, in the present embodiment, by providing the steel plate 2 with the groove 5 that satisfies both the above shape condition and the depth condition that the average depth D is greater than 10 ⁇ m and 40 ⁇ m or less, the iron loss reduction effect is maximized and the magnetic flux is reduced. A balance between minimizing density reduction and balancing.
  • the abundance ratio ⁇ of the groove asymmetric region in the groove 5 is larger, the effect of suppressing the decrease in the magnetic flux density is greater. Therefore, the abundance ratio ⁇ of the groove asymmetric region is preferably as large as possible.
  • the groove asymmetric region existence ratio ⁇ only needs to be larger than zero.
  • a groove having an asymmetric cross-sectional shape can suppress the volume of iron removed from the steel sheet as compared with a groove having a rectangular cross-sectional shape, and can suppress a decrease in magnetic flux density.
  • a groove having an asymmetric cross-sectional shape can suppress a reduction in the iron loss effect by leaving a part of the cross-sectional shape having a large iron loss reducing effect close to the side surface of the rectangular groove.
  • the first angle ⁇ 1 and the second angle ⁇ 2 satisfy the following conditional expressions (1) to (3).
  • the first angle ⁇ 1 and the second angle ⁇ 2 satisfy the following conditional expressions (1) to (3):
  • the balance between maximizing the iron loss reduction effect and minimizing the decrease in magnetic flux density is further optimized. 0 ° ⁇ ⁇ 1 ⁇ 50 ° (1) ⁇ 1 ⁇ 2 ⁇ 75 ° (2) ⁇ 2 ⁇ 1 ⁇ 10 ° (3)
  • the lower limit value of the first angle ⁇ 1 is more preferably 20 °, and the second angle ⁇ 2 and the first angle ⁇ 1
  • the difference value ( ⁇ 2 ⁇ 1) is more preferably 15 ° or more.
  • the boundary between the groove 5 and the steel plate surface 2a, the outline of the groove 5 and the like may be unclear. Therefore, it is important how to specify the average depth D of the grooves 5, the deepest portion (groove depth Da), the groove width center GC, the first groove surface 5a, and the second groove surface 5b. Below, an example of these specific methods is demonstrated.
  • the observation range 50 is set to a part of the groove 5, and a plurality of grooves are provided along the groove extending direction.
  • (N) virtual lines L 1 to Ln are virtually set within the observation range 50.
  • the observation range 50 is desirably set in a region excluding an end in the extending direction of the groove 5 (that is, a region where the shape of the groove bottom is stable).
  • the observation range 50 may be an observation region whose length in the groove extending direction is about 30 ⁇ m to 300 ⁇ m.
  • the band-pass filters (cut-off values ⁇ f and ⁇ c) are applied to the cross-sectional curve.
  • a wavy curve LWC1 that forms the contour in the groove extending direction of the groove 5 is obtained along the virtual line L1, as shown in FIG. 5B.
  • the waviness curve is a kind of contour curve together with the roughness curve described later.
  • the roughness curve is particularly suitable for accurately indicating the surface roughness of the contour, whereas the waviness curve is a contour curve. It is a contour curve suitable for simplifying the shape itself with a smooth line.
  • the plate thickness between the steel plate surface 2a and the contour of the groove 5 (that is, the waviness curve LWC1) at each of a plurality (k) positions along the virtual line L1.
  • a distance in the direction Z (depth e1 to ek: unit is ⁇ m) is obtained.
  • an average value (average depth D1) of these depths e1 to ek is obtained.
  • average depths D2 to Dn are obtained for each of the other virtual lines L2 to Ln.
  • the position (height) of the steel plate surface 2a in the Z direction is measured for each of a plurality of locations on the steel plate surface 2a within the observation range 50 using a laser-type surface roughness measuring instrument, and the average value of the measurement results is determined as the steel plate surface 2a. You may use as the height of.
  • a virtual line that satisfies the condition that the average depth is maximum along the groove extending direction is selected as the groove reference line BL, and the groove reference line BL is selected.
  • the obtained average depth is defined as the average depth D (unit: ⁇ m) of the grooves 5.
  • the virtual line L3 is defined as the groove reference line BL.
  • the average depth D3 obtained for the virtual line L3 is defined as the average depth D of the grooves 5.
  • the direction orthogonal to the groove extending direction (the groove width direction: in the present embodiment, the rolling direction X).
  • Imaginary line LS parallel to the direction) is virtually set within the observation range 50.
  • the virtual line LS can be set to an arbitrary height in the plate thickness direction Z
  • the surface roughness of the steel plate 2 including the groove 5 is measured along the virtual line LS using a laser type surface roughness measuring instrument or the like.
  • the measurement cross-sectional curve MLS which comprises the outline of the groove width direction of the groove
  • the band-pass filters (cut-off values ⁇ f and ⁇ c) are applied to the cross-sectional curve. Is applied to remove the long wavelength component and the short wavelength component from the cross-sectional curve, as shown in FIG. 7B, the waviness curve that forms the contour of the groove 5 in the groove width direction (hereinafter referred to as the groove short waviness curve). SWC is obtained along the virtual line LS.
  • the waviness curve is a kind of contour curve together with the roughness curve described later.
  • the roughness curve is particularly suitable for accurately indicating the surface roughness of the contour, whereas the waviness curve is a contour curve. It is a contour curve suitable for simplifying the shape itself with a smooth line.
  • the contour in the groove width direction of the steel sheet surface 2a and the groove 5 (that is, the groove short side) at each of a plurality (m) of positions along the virtual line LS.
  • a distance (depth d1 to dm: unit is ⁇ m) in the thickness direction Z between the undulation curve SWC) is obtained.
  • the waviness curve SWC has only one local minimum value and no local maximum value.
  • the largest value is defined as the groove depth Da (the depth of the deepest portion of the groove 5).
  • a region satisfying the following conditional expression (4) is defined as a groove region 5c, and the center of the groove region 5c in the groove width direction is defined as a groove center GC.
  • the line segments inclined from the steel plate surface 2 a toward the deepest part of the groove 5 are defined as the first groove surface 5 a and the second groove. Let it be surface 5b.
  • the point where the depth in the plate thickness direction Z from the steel plate surface 2a is 0.05 ⁇ Da is P1
  • P2 be the point where the depth in the plate thickness direction Z is 0.50 ⁇ Da.
  • a straight line connecting the point P1 and the point P2 on the first groove surface 5a is a first groove end straight line Lb1
  • a straight line connecting the point P3 and the point P4 on the second groove surface 5b is a second line.
  • the 1st groove surface 5a is linearly approximated.
  • Another method may be used as a method for this.
  • the first groove surface 5a may be linearly approximated using the least square method.
  • the groove width W of the groove 5 is defined by the intersection of the steel plate surface 2a and the first groove surface 5a and the distance of the intersection of the steel plate surface 2a and the second groove surface 5b. Specifically, as shown in FIG.
  • the length (groove opening) of a line segment connecting the point P ⁇ b> 1 and the point P ⁇ b> 3 may be obtained when viewed in the short cross section of the groove 5.
  • the groove width W is preferably 10 ⁇ m to 250 ⁇ m in order to preferably obtain the effect of magnetic domain fragmentation.
  • the directional electromagnetic steel sheet 1 is bent. It was found that the magnetic steel sheet in which grooves were processed with a laser at the time of bending had a high probability of the steel sheet breaking with the groove as a starting point. Therefore, as a result of detailed analysis of the crystal structure and the like of the groove portion, the present inventors have found that breakage tends to occur when there is a portion having a small particle diameter in the groove portion, that is, when there is a melt-resolidified layer. If the melted and resolidified layer is present in the groove 5 in the steel plate 2, when the grain-oriented electrical steel sheet 1 is bent, the fracture tends to occur starting from the melted and resolidified layer. That is, when the melt resolidified layer is present in the groove 5 in the steel plate 2, the conclusion is that the bending resistance of the grain-oriented electrical steel plate 1 is lowered.
  • the average grain size of the crystal grains in contact with the groove 5 is 5 ⁇ m or more.
  • the average grain size of the crystal grains (secondary recrystallized grains) in contact with the groove 5 is 5 ⁇ m or more.
  • the crystal shape of the melted and resolidified layer may be a long column extending vertically from the surface.
  • the crystal grains (secondary recrystallized grains) in contact with the grooves 5 have a minor axis length of 5 ⁇ m or more, not the major axis length of the columnar crystals. That is, the crystal grains in contact with the grooves 5 preferably have an average grain size of 5 ⁇ m or more when viewed on an observation plane parallel to the plate surface of the grain-oriented electrical steel sheet 1.
  • the crystal grain size may be obtained by referring to a general crystal grain size measurement method such as ASTM E112, or may be obtained by an EBSD (Electron Back Scattering Pattern Pattern) method.
  • the groove 5 having no melt-solidified region can be obtained by, for example, a manufacturing method described later.
  • the grain thickness direction grain size of the crystal grains (secondary recrystallized grains) existing below the groove 5 in the steel sheet 2 is 5 ⁇ m or more and the thickness of the steel sheet 2 is More preferably, it is as follows. This feature means that there is no fine grain layer (melt re-solidified layer) having a grain size in the thickness direction of about 1 ⁇ m below the groove 5 in the steel plate 2.
  • the secondary recrystallized grains present in the steel plate 2 have a maximum particle size of about 100 mm.
  • the grain size direction grain size of the crystal grains (secondary recrystallized grains) existing below the groove 5 in the steel sheet 2 is about 5 ⁇ m at the minimum, and the steel sheet at the maximum.
  • the thickness is about 2 (for example, 0.1 to 0.4 mm).
  • the lower limit value of the grain size in the thickness direction of the secondary recrystallized grains present in the lower part of the groove 5 in the steel plate 2 it is preferable to set the lower limit value of the grain size in the thickness direction of the secondary recrystallized grains present in the lower part of the groove 5 in the steel plate 2 to 5 ⁇ m and the upper limit value to the plate thickness of the steel plate 2. In this way, by adopting a configuration in which no melted / resolidified layer is present in the lower part of the groove 5, the bending resistance of the grain-oriented electrical steel sheet 1 can be improved.
  • channel 5 was formed is larger than the thickness of the insulating film 4 in another area
  • the outline of the groove bottom region 5d of the groove 5 is formed.
  • the arithmetic average height Ra of the roughness curve is 1 ⁇ m or more and 3 ⁇ m or less, preferably 1.2 ⁇ m or more and 2.5 ⁇ m or less, more preferably 1.3 ⁇ m or more and 2.3 ⁇ m or less, and the groove bottom region 5a
  • the average length RSm of the roughness curve elements that form the contour is from 10 ⁇ m to 150 ⁇ m, preferably from 40 ⁇ m to 145 ⁇ m, and more preferably from 60 ⁇ m to 140 ⁇ m.
  • the groove bottom region 5d of the groove 5 becomes a certain degree of rough surface, so that the steel plate 2 and the glass coating 3 or the insulating coating 4 are affected by the anchor effect. Adhesion is improved. For this reason, cracks or peeling hardly occur in the glass coating 3 or the insulating coating 4 around the groove 5. As a result, the rust resistance of the grain-oriented electrical steel sheet 1 can be improved.
  • the depth of the groove 5 is not necessarily constant in the width direction of the groove 5. Therefore, how to specify the groove bottom region 5d when the groove 5 is viewed in the longitudinal section of the groove is important. Below, an example of the identification method of the groove bottom area
  • FIG. 10 is a cross-sectional view taken along the line CC in FIG. That is, FIG. 10 is a view of the groove 5 in the groove longitudinal section including the groove reference line BL and the plate thickness direction Z.
  • a groove cross-sectional wavy curve LWC is defined by converting a measurement cross-sectional curve forming the contour of the groove 5 appearing in the groove long cross-section into a waviness curve.
  • the groove longitudinal waviness curve LWC is obtained by applying a low-pass filter (cut-off value ⁇ s) to the measured cross-sectional curve obtained with respect to the groove reference line BL to obtain a cross-sectional curve, and then applying a band-pass filter (cut-off value) to the cross-sectional curve.
  • FIG. 7 is a cross-sectional view taken along the line CC in FIG. 6. That is, FIG. 10 is a view of the groove 5 in the groove longitudinal section including the groove reference line BL and the plate thickness direction Z.
  • the outline of the groove 5 appearing in the observation range 50 is defined as the groove bottom region 5d. To do.
  • the groove bottom region 5d of the groove 5 is specified by the above method. That is, in this embodiment, as shown in FIG. 11, the measurement cross-sectional curve that forms the contour of the groove bottom region 5d of the groove 5 that appears in the observation range 50 of the groove longitudinal section including the groove reference line BL and the plate thickness direction Z is converted.
  • the arithmetic average height Ra of the roughness curve RC obtained in this way is 1 ⁇ m or more and 3 ⁇ m or less, preferably 1.2 ⁇ m or more and 2.5 ⁇ m or less, more preferably 1.3 ⁇ m or more and 2.3 ⁇ m or less.
  • the average length RSm of the roughness curve element obtained by converting the measurement cross-sectional curve forming the outline of the groove bottom region 5d is 10 ⁇ m or more and 150 ⁇ m or less, preferably 40 ⁇ m or more and 145 ⁇ m or less, more preferably 60 ⁇ m or more and 140 ⁇ m or less.
  • the roughness curve RC is obtained by applying a low-pass filter having a cutoff value ⁇ s to the measured cross-sectional curve obtained for the groove reference line BL, and then obtaining a high-pass filter (cut-off value ⁇ c) on the cross-sectional curve. Is applied to remove a long wavelength component from the cross-sectional curve.
  • the roughness curve RC is a contour curve particularly suitable for accurately indicating the surface roughness of the contour. Note that the definitions of the arithmetic average height Ra of the roughness curve RC and the average length RSm of the roughness curve elements conform to Japanese Industrial Standard JIS B 0601 (2013).
  • the grain-oriented electrical steel sheet 1 since the steel sheet 2 is provided with the groove 5 that satisfies the depth condition and the shape condition, the iron loss reduction effect can be maximized and the magnetic flux density can be obtained. It is possible to achieve a balance between minimization of decrease and balance. Moreover, according to this embodiment, since the structure which does not have a fusion
  • the arithmetic average height Ra of the roughness curve RC defining the groove bottom region 5d is 1 ⁇ m or more and 3 ⁇ m or less, and the average length RSm of the roughness curve element is 10 ⁇ m or more and 150 ⁇ m or less. Since the configuration of being there is employed, the rust resistance of the grain-oriented electrical steel sheet 1 can be improved.
  • the glass film 3 does not exist in the groove
  • a glass film 3 having an average thickness of more than 0 ⁇ m and 5 ⁇ m or less and an insulating film 4 having an average thickness of 1 ⁇ m or more and 5 ⁇ m or less may be arranged.
  • a glass film 3 having an average thickness of 0.5 ⁇ m or more and 5 ⁇ m or less and an insulating film 4 having an average thickness of 1 ⁇ m or more and 5 ⁇ m or less may be disposed on the steel plate surface 2a.
  • the average thickness of the glass coating 3 in the groove 5 may be thinner than the average thickness of the glass coating 3 on the steel plate surface 2a.
  • the thicknesses of the glass coating 3 and the insulating coating 4 As described above, by setting the thicknesses of the glass coating 3 and the insulating coating 4, cracking or peeling is less likely to occur in the insulating coating 4 around the groove 5. Will be improved. Further, by adopting a configuration in which the glass coating 3 does not exist in the groove 5 (that is, a configuration in which the average thickness of the glass coating 3 in the groove 5 is 0 ⁇ m), the distance (groove width) between the walls of the grooves facing each other can be reduced. Since it can be made narrower, the iron loss reduction effect by the groove 5 can be further improved.
  • the directional electromagnetic steel plate 1 provided with the glass film 3 was illustrated, since the glass film 3 is not an essential component as mentioned above, the direction comprised only with the steel plate 2 and the insulating film 4 The above effects can also be obtained by applying the present invention to the magnetic steel sheet.
  • the groove 5 is provided with the insulating film 4 having an average thickness of 1 ⁇ m or more and 5 ⁇ m or less, and the steel sheet surface 2a has an average thickness of 1 ⁇ m or more and 5 ⁇ m or less.
  • the insulating film 4 may be disposed.
  • FIG. 12 is a flowchart showing a manufacturing process of the grain-oriented electrical steel sheet 1.
  • Si 0.8% to 7%
  • C more than 0% to 0.085%
  • acid-soluble Al 0% to 0.065 %
  • N 0% to 0.012%
  • Mn 0% to 1%
  • Cr 0% to 0.3%
  • Cu 0% to 0.4%
  • P 0% to 0.5%
  • Sn 0% to 0.3%
  • Sb 0% to 0.3%
  • Se 0% to 0.015%
  • the molten steel which has a chemical component which the remainder consists of Fe and an impurity is supplied to a continuous casting machine, and a slab is produced continuously.
  • the slab obtained from the casting step S01 is heated to a predetermined temperature (for example, 1150 to 1400 ° C.), and then hot rolling is performed on the slab.
  • a predetermined temperature for example, 1150 to 1400 ° C.
  • the hot-rolled steel sheet obtained from the hot rolling step S02 is annealed under a predetermined temperature condition (for example, a condition of heating at 750 to 1200 ° C. for 30 seconds to 10 minutes).
  • a predetermined temperature condition for example, a condition of heating at 750 to 1200 ° C. for 30 seconds to 10 minutes.
  • the cold rolling process S04 after the pickling process is performed on the surface of the hot-rolled steel sheet subjected to the annealing process in the annealing process S03, the hot-rolled steel sheet is cold-rolled. Thereby, for example, a cold-rolled steel sheet having a thickness of 0.15 to 0.35 mm is obtained.
  • the cold-rolled steel sheet obtained from the cold rolling step S04 is heat-treated under a predetermined temperature condition (for example, a condition of heating at 700 to 900 ° C. for 1 to 3 minutes). That is, decarburization annealing treatment is performed. If such a decarburization annealing process is implemented, in a cold-rolled steel plate, carbon will be reduced to a predetermined amount or less, and a primary recrystallized structure will be formed.
  • a predetermined temperature condition for example, a condition of heating at 700 to 900 ° C. for 1 to 3 minutes. That is, decarburization annealing treatment is performed. If such a decarburization annealing process is implemented, in a cold-rolled steel plate, carbon will be reduced to a predetermined amount or less, and a primary recrystallized structure will be formed.
  • an oxide layer containing silica (SiO 2 ) as a main component is formed on the surface of the cold rolled steel sheet.
  • an annealing separator containing magnesia (MgO) as a main component is applied to the surface of the cold rolled steel sheet (the surface of the oxide layer).
  • the finish annealing step S07 the cold-rolled steel sheet coated with the annealing separator is subjected to a heat treatment (ie, finishing at a temperature of 1100 to 1300 ° C. for 20 to 24 hours) under a predetermined temperature condition. Annealing treatment is performed. When such a finish annealing treatment is performed, secondary recrystallization occurs in the cold-rolled steel sheet, and the cold-rolled steel sheet is purified.
  • the cold-rolled steel sheet that is, the groove 5 of the grain-oriented electrical steel sheet 1 having the chemical composition of the steel sheet 2 and the crystal orientation controlled so that the easy axis of crystal grains and the rolling direction X coincide with each other.
  • a steel plate 2) in a state before formation is obtained.
  • the oxide layer containing silica as a main component reacts with an annealing separator containing magnesia as a main component, so that forsterite ( A glass film 3 containing a complex oxide such as Mg 2 SiO 4 ) is formed.
  • the finish annealing process is performed in a state where the steel plate 2 is wound in a coil shape.
  • the surface of the steel plate 2 on which the glass coating 3 is formed (only one side) is irradiated with laser to thereby extend the surface of the steel plate 2 in a direction intersecting the rolling direction X.
  • the grooves 5 are formed at predetermined intervals along the rolling direction X.
  • the laser light YL emitted from the laser light source (not shown) is transmitted to the laser irradiation apparatus 10 through the optical fiber 9.
  • the laser irradiation device 10 incorporates a polygon mirror and its rotation drive device (both not shown).
  • the laser irradiation device 10 irradiates the laser beam YL toward the surface of the steel plate 2 by rotating the polygon mirror and scans the laser beam YL substantially parallel to the plate width direction Y of the steel plate 2.
  • an assist gas 25 such as air or an inert gas is blown onto the portion of the steel plate 2 to which the laser beam YL is irradiated.
  • the inert gas is, for example, nitrogen or argon.
  • the assist gas 25 has a role of removing a component melted or evaporated from the steel plate 2 by laser irradiation. By blowing the assist gas 25, the laser beam YL reaches the steel plate 2 without being hindered by the molten or evaporated component, so that the grooves 5 are stably formed. Moreover, it can suppress that the said component adheres to the steel plate 2 by spraying of the assist gas 25.
  • the groove 5 is formed along the scanning line of the laser beam YL. Further, as described above, as a result of removing the above components by spraying the assist gas 25, it is possible to obtain a configuration in which no melted / resolidified layer exists in the lower portion of the groove 5.
  • the surface of the steel plate 2 is irradiated with the laser beam YL while the steel plate 2 is conveyed along the sheet passing direction that coincides with the rolling direction X.
  • the rotation speed of the polygon mirror is synchronously controlled with respect to the conveying speed of the steel plate 2 so that the grooves 5 are formed at a predetermined interval PL along the rolling direction X.
  • a plurality of grooves 5 intersecting the rolling direction X are formed on the surface of the steel plate 2 at a predetermined interval PL along the rolling direction X.
  • a fiber laser can be used as the laser light source.
  • a high-power laser generally used for industrial use such as a YAG laser, a semiconductor laser, or a CO 2 laser, may be used as the laser light source.
  • a pulse laser or a continuous wave laser may be used as a laser light source as long as the groove 5 can be stably formed.
  • the laser beam YL it is preferable to use a single mode laser which has a high light condensing property and is suitable for forming a groove.
  • the laser output is 200 W to 3000 W
  • the focused spot diameter in the rolling direction X of the laser beam YL that is, the diameter including 86% of the laser output, hereinafter abbreviated as 86% diameter
  • the focal spot diameter (86% diameter) of the laser beam YL in the plate width direction Y is 10 ⁇ m to 1000 ⁇ m
  • the laser scanning speed is 5 m / s to 100 m / s
  • the laser scanning pitch (interval PL) is 10 ⁇ m to 1000 ⁇ m. It is preferably set to 4 mm to 10 mm.
  • These laser irradiation conditions may be adjusted as appropriate so that a desired groove depth D can be obtained. For example, in order to obtain a deep groove depth D, the laser scanning speed may be set slower and the laser output may be set higher.
  • the angle (laser irradiation angle) between the plate thickness direction Z and the irradiation direction of the laser beam YL is defined as ⁇ 1.
  • channel 5 can be made into an asymmetrical shape as shown in FIG.
  • the assist gas 25 is injected so as to follow the laser beam YL.
  • the injection direction (injection angle) of the assist gas 25 is not particularly limited.
  • the cross-sectional shape of the groove 5 can be asymmetrical as shown in FIG.
  • the laser scanning direction SD of the laser light YL (direction parallel to the plate width direction Y).
  • the assist gas 25 is injected from the direction having an inclination of the angle ⁇ 2 so as to follow the laser beam YL. Further, as shown in FIG.
  • the direction has an inclination of an angle ⁇ 3 with respect to the steel plate surface 2a.
  • the assist gas 25 is injected so as to follow the laser beam YL.
  • the angle ⁇ 2 is preferably set in the range of 90 ° to 180 °
  • the angle ⁇ 3 is preferably set in the range of 1 ° to 85 °.
  • the cross-sectional shape of the groove 5 can be controlled to the asymmetric shape shown in FIG.
  • the surface roughness (Ra, RSm) of the region 5d can be controlled with high accuracy.
  • the surface roughness (especially RSm) of the groove bottom region 5d can be more accurately controlled by setting the number of particles having a diameter of 0.5 ⁇ m or more present in the through-plate atmosphere within the above range.
  • the flow rate of the assist gas 25 is preferably set in the range of 10 to 1000 liters per minute.
  • the lower limit value of the flow rate of the assist gas 25 is more preferably more than 50 liters per minute.
  • the inventors of the present application formed a groove having an asymmetric shape satisfying the above equations (1) to (3) in the grain-oriented electrical steel sheet by the novel manufacturing method as described above, and the maximum effect of reducing the iron loss.
  • the present invention has been completed by finding that it is possible to achieve both balance and minimization of decrease in magnetic flux density in a balanced manner and to further improve rust resistance. Therefore, the method for producing a grain-oriented electrical steel sheet according to this embodiment (particularly the laser irradiation step) is a novel production method that cannot be predicted by those skilled in the art. It has a new configuration that cannot be expected (the cross-sectional shape of the groove 5 and the surface roughness of the groove bottom region 5d).
  • a plurality of laser irradiation devices 10 are used. You may form the groove
  • the insulating surface containing colloidal silica and phosphate is applied to the steel plate surface 2a on which the groove 5 is formed by the laser irradiation step S08.
  • a coating solution is applied from above the glass coating 3.
  • heat treatment is performed under a predetermined temperature condition (for example, 840 to 920 ° C.), and finally, the steel plate 2, the glass coating 3 and the groove 5 are formed as shown in FIGS.
  • a grain-oriented electrical steel sheet 1 having an insulating film 4 is obtained.
  • the steel sheet 2 of the grain-oriented electrical steel sheet 1 manufactured as described above has, as chemical components, mass ratios of Si: 0.8% to 7%, C: more than 0% to 0.085%, acid-soluble Al. : 0% to 0.065%, N: 0% to 0.012%, Mn: 0% to 1%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0 % To 0.5%, Sn: 0% to 0.3%, Sb: 0% to 0.3%, Ni: 0% to 1%, S: 0% to 0.015%, Se: 0% to 0.015%, with the balance being Fe and impurities.
  • the manufacturing process of forming the grooves 5 on the steel plate surface 2a by laser irradiation before the insulating coating 4 is formed on the steel plate surface 2a and then forming the insulating coating 4 on the steel plate surface 2a is performed.
  • adopts was illustrated.
  • the laser beam YL is irradiated from above the insulating coating 4 toward the steel plate surface 2a, whereby the groove 5 is formed on the steel plate surface 2a. You may employ
  • the glass film 3 or the insulating film 4 may be formed.
  • the grain-oriented electrical steel sheet according to the present embodiment includes the grain-oriented electrical steel sheet 1 in which the high-temperature annealing for secondary recrystallization is completed and the coating of the glass film 3 and the insulating film 4 is completed. Further, the grain-oriented electrical steel sheet before the coating of the glass film 3 or the insulating film 4 is completed and after the grooves 5 are formed is also included. That is, you may obtain a final product by forming the glass film 3 or the insulating film 4 as a post process using the grain-oriented electrical steel sheet which concerns on this embodiment.
  • the shape and roughness of the groove 5 are as follows. It is confirmed that the glass film 3 or the insulating film 4 is the same as before.
  • laser irradiation process S08 was implemented after finish annealing process S07 was illustrated in the said embodiment, you may implement a laser irradiation process between cold rolling process S04 and decarburization annealing process S05. . That is, by performing laser irradiation and assist gas injection on the cold-rolled steel sheet obtained from the cold rolling step S04, grooves 5 are formed on the steel sheet surface 2a of the cold-rolled steel sheet, and then removed from the cold-rolled steel sheet. Charcoal annealing may be performed.
  • the conditions in the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention.
  • the invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the grain-oriented electrical steel sheet used in this verification 1 was manufactured as follows. By mass fraction, Si: 3.0%, C: 0.08%, acid-soluble Al: 0.05%, N: 0.01%, Mn: 0.12%, Cr: 0.05%, Cu : 0.04%, P: 0.01%, Sn: 0.02%, Sb: 0.01%, Ni: 0.005%, S: 0.007%, Se: 0.001% And the hot rolling was implemented with respect to the slab which has a chemical component which the remainder consists of Fe and an impurity, and the hot-rolled steel plate of thickness 2.3mm was obtained.
  • the above-described hot-rolled steel sheet was annealed under a temperature condition of heating at 1000 ° C. for 1 minute. After the pickling treatment was performed on the surface of the hot-rolled steel sheet that had been annealed, the hot-rolled steel sheet was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.23 mm. Subsequently, after the decarburization annealing treatment is performed under the temperature condition of heating at 800 ° C. for 2 minutes with respect to the cold-rolled steel sheet, an annealing separator containing magnesia (MgO) as a main component, It was applied to the surface of the cold rolled steel sheet.
  • MgO magnesia
  • a finish annealing treatment was performed on the cold-rolled steel sheet coated with the annealing separator under a temperature condition of heating at 1200 ° C. for 20 hours.
  • a cold-rolled steel sheet (steel sheet having a glass coating formed on the surface) having the above-described chemical composition and controlled in crystal orientation so that the easy axis of crystal grains and the rolling direction coincide with each other was obtained.
  • a plurality of grooves extending in the direction intersecting the rolling direction are formed on the surface of the steel sheet along the rolling direction. Formed at predetermined intervals.
  • the irradiation condition of the laser beam YL is that the laser output is in a range of 200 W to 3000 W so that a desired groove depth D is obtained, and the focused spot diameter (86% diameter) in the rolling direction X of the laser beam YL is 10 ⁇ m.
  • the focused spot diameter (86% diameter) of the laser beam YL in the plate width direction Y is in the range of 10 ⁇ m to 1000 ⁇ m
  • the laser scanning speed is in the range of 5 m / s to 100 m / s
  • the laser scanning pitch (Spacing PL) was adjusted in the range of 4 mm to 10 mm.
  • the assist gas injection angle ⁇ 2 with respect to the laser scanning direction is adjusted in the range of 90 ° to 180 ° so that the desired first angle ⁇ 1 and second angle ⁇ 2 can be obtained in the groove short cross section of the groove 5,
  • the assist gas injection angle ⁇ 3 with respect to the steel sheet surface was adjusted in the range of 1 ° to 85 °.
  • the insulating coating liquid containing colloidal silica and phosphate is applied from above the glass film to the steel sheet in which the grooves are formed, it is heated at 850 ° C. for 1 minute. In the end, a grain-oriented electrical steel sheet provided with a steel sheet having a groove, a glass film and an insulating film was obtained.
  • the grain depth D (unit: ⁇ m) and the groove width W (unit: ⁇ m) of the grain-oriented electrical steel sheets corresponding to the test numbers 1 to 8 are different.
  • a grain-oriented electrical steel sheet was prepared.
  • the first angle ⁇ 1 when the groove 5 was viewed in the groove short cross section was set to 45 °
  • the second angle ⁇ 2 was set to 60 °. .
  • the grain-oriented electrical steel sheets corresponding to test numbers 3 to 7 have the condition that the average depth D of the groove is more than 10 ⁇ m and 40 ⁇ m or less (condition 1), and the condition that the first angle ⁇ 1 is 0 ° or more and 50 ° or less (condition 2).
  • the grain-oriented electrical steel sheets corresponding to test numbers 1, 2, and 8 are grain-oriented electrical steel sheets of comparative examples that satisfy only the above conditions 2-4.
  • the iron loss W17 / 50 and the decrease amount ⁇ B8 of the magnetic flux density B8 were measured for each of the grain-oriented electrical steel sheets corresponding to the test numbers 1 to 8. The measurement results are shown in Table 1.
  • the iron loss W17 / 50 means that per unit weight of a grain-oriented electrical steel sheet test piece (for example, a test piece of 100 mm ⁇ 500 mm) measured under excitation conditions at a magnetic flux density of 1.7 T and a frequency of 50 Hz.
  • the decrease amount ⁇ B8 of the magnetic flux density B8 is a value (unit: G) obtained by subtracting the magnetic flux density B8 measured after the groove formation from the magnetic flux density B8 measured before the groove formation.
  • the directional electromagnetic steel sheets corresponding to the test numbers 9 to 14 are directional electromagnetic waves having different combinations of the first angle ⁇ 1 and the second angle ⁇ 2.
  • a steel plate was prepared.
  • the average groove depth D was set to 20 ⁇ m
  • the groove width W was set to 70 ⁇ m.
  • the grain-oriented electrical steel sheets corresponding to the test numbers 11 to 13 are the grain-oriented electrical steel sheets of the invention examples that satisfy all of the above conditions 1 to 4.
  • the grain-oriented electrical steel sheets corresponding to test numbers 9 and 10 are comparative grain-oriented electrical steel sheets that satisfy only condition 1 above.
  • the grain-oriented electrical steel sheet corresponding to test number 14 is a grain-oriented electrical steel sheet of a comparative example that satisfies only the above conditions 1 to 3.
  • the iron loss W17 / 50 and the decrease amount ⁇ B8 of the magnetic flux density B8 were measured in the same manner as in the above verification 1. The measurement results are shown in Table 2.
  • the iron loss W17 / 50 is greatly reduced (that is, the iron loss improvement effect is large) compared to before the groove formation.
  • the decrease amount ⁇ B8 of the magnetic flux density B8 is suppressed to a small value (that is, the effect of suppressing the decrease of the magnetic flux density B8 is large).
  • the grain depth D, the groove width W, and the first angle ⁇ 1 are obtained as the grain oriented electrical steel sheets corresponding to the test numbers 15 to 18 by the same process as in the verification 1. And grain-oriented electrical steel sheets having different combinations with the second angle ⁇ 2.
  • the average depth D of the grooves was set to 15 ⁇ m
  • the groove width W was set to 45 ⁇ m.
  • the average depth D of the grooves was set to 25 ⁇ m
  • the groove width W was set to 70 ⁇ m.
  • the grain-oriented electrical steel sheets corresponding to the test numbers 15 and 17 are the grain-oriented electrical steel sheets according to the invention satisfying all of the above conditions 1 to 4.
  • the grain oriented electrical steel sheets corresponding to test numbers 16 and 18 are comparative grain oriented electrical steel sheets that satisfy only the above conditions 1 to 3.
  • the iron loss W17 / 50 and the decrease amount ⁇ B8 of the magnetic flux density B8 were measured in the same manner as in the above verification 1. The measurement results are shown in Table 3.
  • the directional electrical steel sheet corresponding to the test numbers 19 and 20 is different in the presence or absence of a fine grain layer (melt resolidified layer) in the lower part of the groove by the same process as in the verification 1.
  • a grain-oriented electrical steel sheet was prepared.
  • the average depth D of the grooves is set to 20 ⁇ m
  • the groove width W is set to 70 ⁇ m
  • the first angle ⁇ 1 is set to 45 °
  • the second angle ⁇ 2 is set.
  • the presence / absence of a fine grain layer in the lower portion of the groove was controlled by appropriately adjusting the flow rate of the assist gas 25 in the range of 10 to 1000 liters per minute.
  • the absence of a fine grain layer means that the condition (condition 5) that the grain width direction grain size of the secondary recrystallized grains existing in the lower part of the groove is 5 ⁇ m or more and less than the plate thickness of the steel sheet. That is, the grain-oriented electrical steel sheet corresponding to test number 19 is a grain-oriented electrical steel sheet of a comparative example that satisfies the above conditions 1 to 4 and does not satisfy the above condition 5.
  • the grain-oriented electrical steel sheet corresponding to test number 20 is the grain-oriented electrical steel sheet of the invention example that satisfies all of the above conditions 1 to 5.
  • the assist gas flow rate was 40 liters per minute, and in test number 20, the presence or absence of a molten layer was controlled at 500 liters per minute.
  • grain oriented electrical steel sheets that satisfy the above conditions 1 to 4 and the above conditions 6 and 7 as Invention Examples 1 to 8 were prepared by the same process as in the above verification 1. Further, as Comparative Examples 1 to 4, grain oriented electrical steel sheets that satisfy the above conditions 1 to 4 and that do not satisfy at least one of the above conditions 6 and 7 were prepared.
  • the average depth D of the groove is more than 10 ⁇ m and 40 ⁇ m or less
  • the first angle ⁇ 1 is 0 ° or more and 50 ° or less
  • the second angle ⁇ 2 is larger than the first angle ⁇ 1.
  • the groove width W was 10 ⁇ m to 250 ⁇ m at 75 ° or less.
  • the assist gas injection angle ⁇ 2 with respect to the laser scanning direction, the assist gas injection angle ⁇ 3 with respect to the steel plate surface, the flow rate of the assist gas 25, and the amount of particles in the through plate atmosphere are as described above.
  • the grain-oriented electrical steel sheet that satisfies the above conditions 6 and 7 is obtained by adjusting to the range described in (1).
  • the surface roughness of the groove bottom region can be accurately controlled by adjusting the assist gas injection angles ⁇ 2 and ⁇ 3 and the amount of particles in the through-plate atmosphere.
  • the groove bottom region of the groove was specified by the specifying method described in the above embodiment.
  • a laser surface roughness measuring instrument VK-9700 manufactured by Keyence Corporation
  • Each of the grain-oriented electrical steel sheets corresponding to Invention Examples 1 to 8 and Comparative Examples 1 to 4 was verified for rust resistance. Specifically, a 30 mm square test piece is collected from each grain-oriented electrical steel sheet, and the test piece is left in an atmosphere of a temperature of 50 ° C. and a humidity of 91% for one week, and the test piece before and after the test piece. The weight was evaluated based on the change in weight. Since the weight of the test piece increases when rust occurs, the smaller the weight increase, the better the rust resistance.
  • the rust resistance of a test piece having a weight increase of 5.0 mg / m 2 or less was evaluated as “good”, and the rust resistance of a test piece having a weight increase of more than 10.0 mg / m 2 was evaluated. Rated as “bad”.
  • Table 5 As shown in Table 5, as a result of verifying the rust resistance of the grain-oriented electrical steel sheets corresponding to Invention Examples 1 to 8, by adopting the configuration satisfying the above conditions 6 and 7, It was confirmed that rustability was improved.
  • the groove width W was 10 ⁇ m to 250 ⁇ m or less.
  • the chemical composition of the steel sheet is the same as in the above rust resistance verification 1. Similar to the rust resistance verification 1, in order to satisfy the conditions 6 and 7, the assist gas injection angle ⁇ 2 with respect to the laser scanning direction, the assist gas injection angle ⁇ 3 with respect to the steel plate surface, the flow rate of the assist gas 25, The amount of particles in the through-plate atmosphere was appropriately adjusted within the range described in the above embodiment.
  • rust resistance was verified using the same verification method as in the above-described rust resistance verification 1.
  • Table 6 the rust resistance of the grain-oriented electrical steel sheet is improved by adopting a configuration that satisfies the above conditions 6 and 7 even if the grain-oriented electrical steel sheet does not have a glass coating. It was confirmed.
  • the directional electrical steel sheet having grooves formed on the surface of the steel sheet for magnetic domain subdivision can balance both the maximization of the iron loss reduction effect and the minimization of the decrease in magnetic flux density in a balanced manner.
  • the present invention has sufficient industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

圧延方向と交差する方向に延在し且つ溝深さ方向が板厚方向となる溝が形成された鋼板表面を有する鋼板を備える方向性電磁鋼板において、前記溝の平均深さDが10μm超40μm以下であり、溝延在方向に直交する溝幅方向断面で前記溝を視た場合に、溝幅方向における前記溝の中心を溝幅中心と定義したとき、前記溝の最深部が前記溝幅中心から前記溝幅方向の片側にずれていると共に、前記溝の断面形状が前記溝幅方向において前記溝幅中心を基準として非対称形状である。

Description

方向性電磁鋼板
 本発明は、方向性電磁鋼板に関する。
 本願は、2015年4月20日に日本に出願された特願2015-086300号に基づき優先権を主張し、その内容をここに援用する。
 従来から、変圧器の鉄芯(コア)用の鋼板として、特定の方向に優れた磁気特性を発揮する方向性電磁鋼板が知られている。この方向性電磁鋼板は、冷間圧延処理と焼鈍処理との組み合わせによって、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された鋼板である。方向性電磁鋼板の鉄損は可能な限り低いことが望ましい。
 鉄損は、渦電流損とヒステリシス損とに分類される。さらに、渦電流損は、古典的渦電流損と異常渦電流損とに分類される。古典的渦電流損を低減するために、上記のように結晶方位が制御された鋼板(地鉄)の表面に絶縁皮膜が形成された方向性電磁鋼板が一般的に知られている。この絶縁皮膜は、電気的絶縁性だけでなく、張力及び耐熱性等を鋼板に与える役割も担っている。なお、近年では、鋼板と絶縁皮膜との間にグラス皮膜が形成された方向性電磁鋼板も知られている。
 一方、異常渦電流損を低減するための方法として、圧延方向に交差する方向に延びる応力歪み部や溝部を、圧延方向に沿って所定間隔で形成することにより、180°磁区の幅を狭くする(180°磁区の細分化を行う)磁区制御法が知られている。応力歪みを形成する方法では、歪み部で発生する還流磁区の180°磁区細分化効果を利用する。その代表的な方法はレーザ照射により衝撃波や急加熱を利用する方法である。この方法では照射部の表面形状はほとんど変化しない。一方、溝を形成する方法は、溝側壁で発生する磁極による反磁界効果を利用するものである。この場合、溝の断面形状が矩形に近い方が磁区制御効果が高いことが知られている(特許文献4)。即ち磁区制御は、歪み付与型と溝形成型に分類される。
 方向性電磁鋼板を用いて巻コアの変圧器を製造する場合、方向性電磁鋼板がコイル状に巻かれることに起因して生じる変形歪みを除去するために、歪み取り焼鈍処理を実施する必要がある。歪み付与法で磁区制御を行った方向性電磁鋼板を用いて巻コアを製造する場合、歪み取り焼鈍処理の実施によって歪みが消失するので、磁区細分化効果(つまり異常渦電流損の低減効果)も消失する。
 一方、溝形成法で磁区制御を行った方向性電磁鋼板を用いて巻コアを製造する場合、歪み取り焼鈍処理の実施によっても溝は消失しないので、磁区細分化効果を維持することができる。従って、巻コア用の磁区制御材製造方法としては、溝形成型が採用されている。
 なお、積コアの変圧器を製造する場合には、歪み取り焼鈍を実施しないので、歪み付与型、溝形成型のいずれか一方を選択的に採用することができる。
 尚、歪み付与型の代表的な方法であるレーザ法において、例えば特許文献5に開示されるように、比較的高い強度のレーザを照射した場合、鋼板表面が若干溶融して深さ10μm程度の浅く緩やかな凹みが形成されることがある。しかし、この様な浅く緩やかな凹みでは磁区制御効果のある磁極発生はなく、その結果、歪み取り焼鈍後は磁区制御効果が消失してしまうことが知られている。
 溝形成型の磁区制御法として、電解エッチングによって方向性電磁鋼板の鋼板表面に溝を形成する電解エッチング法(下記特許文献1参照)と、機械的に歯車を方向性電磁鋼板の鋼板表面にプレスすることにより、鋼板表面に溝を形成する歯車プレス法(下記特許文献2参照)と、レーザ照射によって方向性電磁鋼板の鋼板表面に溝を形成するレーザ照射法(下記特許文献3参照)とが、一般的に知られている。
 電解エッチング法では、例えばレーザや機械的手段により鋼板表面の絶縁皮膜(或いはグラス皮膜)を線状に除去した後、鋼板が露出した部分に電解エッチングを施すことにより、鋼板表面に溝を形成する。このような電解エッチング法を採用する場合、方向性電磁鋼板の製造工程が複雑になり、その結果、製造コストが高くなるという問題がある。また、歯車プレス法では、方向性電磁鋼板の鋼板が約3質量%のSiを含む非常に硬い鋼板であるため、歯車の摩耗及び損傷が発生しやすい。このような歯車プレス法を採用する場合、歯車が摩耗すると溝が浅くなり、また溝の深さにばらつきが発生するため、異常渦電流損の低減効果が十分に得られなくなるという問題がある。
 一方、レーザ照射法の場合、直接加工であるためエッチングのような複雑な工程が不要で、また非接触加工であるためプレス加工のような歯形の摩耗等がなく安定的に鋼板表面に溝を形成することができる。例えば、下記特許文献4には、レーザ照射法によって鋼板の表面に溝が形成された方向性電磁鋼板において、溝の延在方向に直交する断面に現れる溝の輪郭の形状(溝断面形状)を矩形に近づけることにより、磁区細分化効果(鉄損低減効果)を向上させる技術が開示されている。
日本国特公昭62-54873号公報 日本国特公昭62-53579号公報 日本国特開平6-57335号公報 日本国特開2012-177164号公報 日本国特開2007-2334号公報
 方向性電磁鋼板の性能を表す指標として、上記の鉄損の他に磁束密度(例えば800A/mの磁界中で発生する磁束密度B8)がある。方向性電磁鋼板において、鉄損は低いことが望ましく、磁束密度は高いことが望ましい。しかしながら、鋼板の表面に溝が形成されると、磁束密度が低下する。特に、上記特許文献4に開示されているように、溝断面形状が矩形に近いほど、鋼板から除去される鉄の体積が大きくなるので、磁束密度の低下が顕著になるという問題があった。また、レーザ等の高熱源を使って溝を形成した電磁鋼板を、巻き鉄芯に使用する際に曲げ加工を行うと、溝部を起点として鋼板が破断しやすくなるという問題もあった。
 本発明は上記課題に鑑みてなされたものであり、磁区細分化のために鋼板表面に溝が形成された方向性電磁鋼板に関して、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させることを目的とする。
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係る方向性電磁鋼板は、圧延方向と交差する方向に延在し且つ溝深さ方向が板厚方向となる溝が形成された鋼板表面を有する鋼板を備え、前記溝の平均深さDが10μm超40μm以下であり、溝延在方向に直交する溝幅方向断面で前記溝を視た場合に、溝幅方向における前記溝の中心を溝幅中心と定義したとき、前記溝の最深部が前記溝幅中心から前記溝幅方向の片側にずれていると共に、前記溝の断面形状が、前記溝幅方向において前記溝幅中心を基準として非対称形状であり、前記溝幅方向断面で前記溝を視た場合に、前記溝は、前記鋼板表面から前記溝の前記最深部に向かって傾斜する一対の傾斜面である第1溝面及び第2溝面を有しており、前記溝幅中心が前記最深部からみて前記第2溝面の側に位置しており、前記第1溝面を直線近似して得られる第1溝端直線と前記板厚方向とが成す角度を第1角度θ1と定義し、前記第2溝面を直線近似して得られる第2溝端直線と前記板厚方向とが成す角度を第2角度θ2と定義したとき、前記第1角度θ1及び前記第2角度θ2が、下記条件式(1)~(3)を満足する。
        0°≦θ1≦50°     …(1)
        θ1<θ2≦75°     …(2)
        θ2-θ1≧10°     …(3)
(2)上記(1)に記載の方向性電磁鋼板において、前記鋼板では前記溝に接する結晶粒の粒径が5μm以上であってもよい。
(3)上記(2)に記載の方向性電磁鋼板において、前記溝幅方向断面で前記溝を視た場合に、前記鋼板における前記溝の下部に存在する結晶粒の板厚方向粒径が、5μm以上、且つ前記鋼板の板厚以下であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の方向性電磁鋼板において、前記溝延在方向及び前記板厚方向を含む溝長手断面で前記溝を視た場合に、前記溝の溝底領域の輪郭を成す粗さ曲線の算術平均高さRaが、1μm以上3μm以下であり、前記溝底領域の前記輪郭を成す粗さ曲線要素の平均長さRSmが、10μm以上150μm以下であってもよい。
 本発明の上記態様によれば、磁区細分化のために鋼板表面に溝が形成された方向性電磁鋼板に関して、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させることが可能である。
本発明の一実施形態に係る方向性電磁鋼板1の平面図である。 図1のA-A線における矢視断面図(溝延在方向を含む断面で溝5を視た図)である。 図1のB-B線における矢視断面図(溝延在方向に直交する断面で溝5を視た図)である。 溝5の平均深さDを特定する方法に関する第1説明図である。 溝5の平均深さDを特定する方法に関する第2説明図である。 溝5の平均深さDを特定する方法に関する第3説明図である。 溝5の平均深さDを特定する方法に関する第4説明図である。 溝幅方向断面における溝5の輪郭を特定する方法に関する第1説明図である。 溝幅方向断面における溝5の輪郭を特定する方法に関する第2説明図である。 溝幅方向断面における溝5の輪郭を特定する方法に関する第3説明図である。 鋼板2に存在する二次再結晶粒を模式的に示す平面図である。 溝長手断面における溝5の溝底領域5dを特定する方法に関する第1説明図である。 溝長手断面における溝5の溝底領域5dを特定する方法に関する第2説明図である。 方向性電磁鋼板1の製造プロセスを示すフローチャートである。 方向性電磁鋼板1の製造プロセスにおけるレーザ照射工程S08に関する第1説明図である。 方向性電磁鋼板1の製造プロセスにおけるレーザ照射工程S08に関する第2説明図である。 方向性電磁鋼板1の製造プロセスにおけるレーザ照射工程S08に関する第3説明図である。 方向性電磁鋼板1の製造プロセスにおけるレーザ照射工程S08に関する第4説明図である。 方向性電磁鋼板1の製造プロセスにおけるレーザ照射工程S08に関する第5説明図である。
 以下、本発明の好適な実施形態について詳細に説明する。ただ、本発明は本実施形態に開示の構成のみに限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。
 ただ、下限値に「超」と示す数値限定範囲には下限値が含まれず、上限値に「未満」と示す数値限定範囲には上限値が含まれない。
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
 図1は、本実施形態に係る方向性電磁鋼板1の平面図である。図2は、図1のA-A線における矢視断面図である。図3は、図1のB-B線における矢視断面図である。なお、図1~図3において、方向性電磁鋼板1の圧延方向をX、方向性電磁鋼板1の板幅方向(同一平面内で圧延方向に直交する方向)をY、方向性電磁鋼板1の板厚方向(XY平面に直交する方向)をZと定義する。
 図1~3に示すように、方向性電磁鋼板1は、冷間圧延処理と焼鈍処理との組み合わせによって、結晶粒の磁化容易軸と圧延方向Xとが一致するように結晶方位が制御された鋼板(地鉄)2と、鋼板2の表面(鋼板表面2a)に形成されたグラス皮膜3と、グラス皮膜3の表面に形成された絶縁皮膜4とを備えている。
 図1に示すように、鋼板表面2aには、磁区細分化のために、圧延方向Xに交差する方向に延在し且つ溝深さ方向が板厚方向Zと一致する複数の溝5が、圧延方向Xに沿って所定間隔で形成されている。すなわち、図2は、1つの溝5を、溝延在方向及び板厚方向Zを含む断面で視た図である。図3は、1つの溝5を、溝延在方向に直交する断面で視た図である。なお、溝5は、圧延方向Xと交差するように設けられていればよく、必ずしも、溝延在方向と圧延方向Xとが直交している必要はない。ただし、本実施形態では、説明の便宜上、溝延在方向と圧延方向Xとが直交している場合を例示する。また、溝5は、板厚方向Zから視た場合(溝5を平面視した場合)に、弓状の形状を有してもよい。ただし、本実施形態では、説明の便宜上、直線形状を有する溝5を例示する。
 鋼板2は、化学成分として、質量分率で、Si:0.8%~7%、C:0%超~0.085%、酸可溶性Al:0%~0.065%、N:0%~0.012%、Mn:0%~1%、Cr:0%~0.3%、Cu:0%~0.4%、P:0%~0.5%、Sn:0%~0.3%、Sb:0%~0.3%、Ni:0%~1%、S:0%~0.015%、Se:0%~0.015%、を含有し、残部がFe及び不純物からなる。
 上記の鋼板2の化学成分は、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御するために好ましい化学成分である。上記元素のうち、Si及びCが基本元素であり、酸可溶性Al、N、Mn、Cr、Cu、P、Sn、Sb、Ni、S、およびSeが選択元素である。上記の選択元素は、その目的に応じて含有させればよいので下限値を制限する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、本実施形態の効果は損なわれない。上記の鋼板2は、上記の基本元素および選択元素の残部がFe及び不純物からなってもよい。なお、不純物とは、鋼板2を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から不可避的に混入する元素を意味する。
 また、電磁鋼板では二次再結晶時に純化焼鈍を経ることが一般的である。純化焼鈍においてはインヒビター形成元素の系外への排出が起きる。特にN、Sについては濃度の低下が顕著で、50ppm以下になる。通常の純化焼鈍条件であれば、9ppm以下、さらには6ppm以下、純化焼鈍を十分に行えば、一般的な分析では検出できない程度(1ppm以下)にまで達する。
 上記鋼板2の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼板2の化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、皮膜除去後の鋼板2の中央の位置から35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより特定できる。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 グラス皮膜3は、例えば、フォルステライト(MgSiO)、スピネル(MgAl)、またはコーディエライト(MgAlSi16)などの複合酸化物によって構成されている。詳細は後述するが、グラス皮膜3は、方向性電磁鋼板1の製造プロセスの1つである仕上げ焼鈍工程において、鋼板2に焼き付きが発生することを防止するために形成された皮膜である。従って、グラス皮膜3は、方向性電磁鋼板1の構成要素として必須の要素ではない。
 絶縁皮膜4は、例えば、コロイダルシリカ及びリン酸塩を含有し、電気的絶縁性だけでなく、張力、耐食性及び耐熱性等を鋼板2に与える役割を担っている。
 なお、方向性電磁鋼板1のグラス皮膜3および絶縁皮膜4は、例えば、次の方法によって除去することができる。グラス皮膜3または絶縁皮膜4を有する方向性電磁鋼板1を、NaOH:10質量%+HO:90質量%の水酸化ナトリウム水溶液に、80℃で15分間、浸漬する。次いで、HSO:10質量%+HO:90質量%の硫酸水溶液に、80℃で3分間、浸漬する。その後、HNO:10質量%+HO:90質量%の硝酸水溶液によって、常温で1分間弱、浸漬して洗浄する。最後に、温風のブロアーで1分間弱、乾燥させる。なお、上記の方法によって方向性電磁鋼板1からグラス皮膜3または絶縁皮膜4を除去した場合、鋼板2の溝5の形状や粗さは、グラス皮膜3または絶縁皮膜4を形成する前と同等であることが確認されている。
 図3に示すように、本実施形態では、溝延在方向(本実施形態では板幅方向Yに平行な方向)に直交する断面(溝幅方向断面あるいは溝短手断面)で溝5を視た場合に、鋼板表面2aから溝5の最深部までの深さを溝深さDaとし、溝幅方向(本実施形態では圧延方向Xに平行な方向)における溝5の中心を溝幅中心GCとする。図3に示すように、本実施形態の方向性電磁鋼板1では、溝5の最深部が溝幅中心GCから溝幅方向の片側にずれていると共に、溝5の断面形状が溝幅方向において溝幅中心GCを基準として非対称形状である。
 また、溝短手断面で溝5を視た場合に、溝5は、鋼板表面2aから溝5の最深部に向かって傾斜する一対の傾斜面である第1溝面5a及び第2溝面5bを有している。溝5の最深部からみて、溝幅中心GCは第2溝面5bの側に位置している。さらに、溝短手断面で溝5を視た場合に、第1溝面5aを直線近似して得られる第1溝端直線Lb1と板厚方向Zとが成す角度を第1角度θ1とし、第2溝面5bを直線近似して得られる第2溝端直線Lb2と板厚方向Zとが成す角度を第2角度θ2とする。
 本実施形態では、溝5の平均深さDが10μm超40μm以下であり、溝短手断面で溝5を視た場合に、溝5の最深部が溝幅中心GCから溝幅方向の片側にずれていると共に、溝5の断面形状が溝幅方向において溝幅中心GCを基準として非対称形状である。以下では、溝5の平均深さDに関する上記の特徴を深さ条件と呼称し、溝5の断面形状に関する上記の特徴を形状条件と呼称する。
 上記のような深さ条件及び形状条件を満たす溝5の溝幅が一定値に固定された状態では、平均深さDの値に関わらず、第1角度θ1は常に鋭角となり、第2角度θ2は常に第1角度θ1より大きくなる。また、溝5の溝幅が一定値に固定された状態では、平均深さDの増大に伴って第1角度θ1は小さくなり、平均深さDの減少に伴って第1角度θ1は大きくなる。
 平均深さDが増大すると、鋼板2から除去される鉄の体積が増大するので、磁束密度の低下量も増大する。しかしながら、平均深さDの増大に伴って第1角度θ1が小さくなると、溝5の側面に現れる磁極の反磁界効果が大きくなるので、磁区細分化効果(鉄損低減効果)も大きくなる。一方、平均深さDが減少すると、鋼板2から除去される鉄の体積が減少するので、磁束密度の低下量も減少する。しかしながら、平均深さDの減少に伴って第1角度θ1が大きくなると、溝5の側面に現れる磁極の反磁界効果が小さくなるので、鉄損低減効果も小さくなる。
 このように、鉄損低減効果の最大化を優先して溝5の平均深さDを大きくすると、磁束密度の低下が顕著となる一方、磁束密度低下の最小化を優先して溝5の平均深さDを小さくすると、十分な鉄損低減効果を得られない。本発明者による検証の結果、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させるためには、溝5が、上記の形状条件を満たした上で、溝5の平均深さDが10μm超40μm以下という深さ条件を満たしていることが重要であることが判明した。
 平均深さDが10μm以下の場合(平均深さDが10μmよりも浅い場合)、鋼板2から除去される鉄の体積が減少するので、磁束密度の低下量も減少するが、第1角度θ1が大きくなるので、溝5の側面に現れる磁極の反磁界効果が小さくなる。その結果、平均深さDが10μm以下の場合、十分な鉄損低減効果が得られない。一方、平均深さDが40μmを超える場合(平均深さDが40μmよりも深い場合)、第1角度θ1が小さくなるので、溝5の側面に現れる磁極の反磁界効果が大きくなり、その結果、大きな鉄損低減効果を得られる。しかしながら、平均深さDが40μmを超える場合、鋼板2から除去される鉄の体積が増大するので、磁束密度の低下量も増大する。
 このように、平均深さDが10μm以下の場合と、平均深さDが40μmを超える場合とでは、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させることができない。従って、本実施形態では、上記の形状条件と、平均深さDが10μm超40μm以下という深さ条件との両方を満たす溝5を鋼板2に設けることにより、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させている。
 なお、溝5において上記深さ条件及び形状条件を満たす領域を溝非対称領域と定義し、溝延在方向における溝非対称領域の存在率をα(=溝延在方向における溝非対称領域の合計長さ/溝5の全長)と定義したとき、溝5における溝非対称領域の存在率αが大きいほど、磁束密度の低下を抑制する効果がより大きくなる。従って、溝非対称領域の存在率αは、可能な限り大きいことが好ましい。しかしながら、溝5の少なくとも一部の区間に溝非対称領域が存在すれば、上記の効果が得られるので、溝非対称領域の存在率αはゼロより大きければよい。
 溝断面形状を非対称とすることにより、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させることができる。すなわち、断面形状が非対称の溝は、断面形状が矩形の溝に比べて鋼板から除去される鉄の体積が抑えられ、磁束密度の低下を抑えることができる。また、断面形状が非対称の溝は、鉄損低減効果が大きい断面形状が矩形の溝の側面に近い形状を一部残すことにより鉄損効果の減退を抑制することができる。
 溝5の非対称形状については、第1角度θ1と第2角度θ2とが下記条件式(1)~(3)を満たすことが好ましい。本発明者による検証の結果、溝5が上記深さ条件及び形状条件を満たしたうえで、第1角度θ1と第2角度θ2とが下記条件式(1)~(3)を満たすことにより、鉄損低減効果の最大化と磁束密度低下の最小化とのバランスがより最適化される。
             0°≦θ1≦50°     …(1)
             θ1<θ2≦75°     …(2)
             θ2-θ1≧10°     …(3)
 鉄損低減効果の最大化と磁束密度低下の最小化とのバランスを最適化する観点から、第1角度θ1の下限値は20°がより好ましく、また、第2角度θ2と第1角度θ1との差分値(θ2-θ1)は15°以上であることがより好ましい。
 ところで、溝5の溝短手断面を電子顕微鏡等で観察する場合、溝5と鋼板表面2aとの境界、及び溝5の輪郭等が不明瞭な場合がある。そこで、溝5の平均深さD、溝5の最深部(溝深さDa)、溝幅中心GC、第1溝面5a及び第2溝面5bをどのように特定するのかが重要となる。以下では、これらの特定方法の一例について説明する。
 図4に示すように、板厚方向Zから溝5を視た場合(溝5を平面視した場合)に、観察範囲50を溝5の一部に設定すると共に、溝延在方向に沿って複数(n本)の仮想線L1~Lnを観察範囲50内に仮想的に設定する。観察範囲50は、溝5の延在方向における端部を除く領域(すなわち、溝底の形状が安定している領域)に設定することが望ましい。例えば、観察範囲50は、溝延在方向の長さが30μm~300μm程度となるような観察領域とすればよい。次に、レーザ式表面粗さ測定器等を用いて、溝5の表面粗さを仮想線L1に沿って測定すると、図5Aに示すように、溝5の溝延在方向の輪郭を成す測定断面曲線MCL1が仮想線L1に沿う形で得られる。
 上記のように仮想線L1について得られた測定断面曲線MCL1に低域フィルタ(カットオフ値λs)を適用して断面曲線を得た後、その断面曲線に帯域フィルタ(カットオフ値λf、λc)を適用して、断面曲線から長い波長成分と短い波長成分を除去すると、図5Bに示すように、溝5の溝延在方向の輪郭を成すうねり曲線LWC1が仮想線L1に沿う形で得られる。うねり曲線は、後述の粗さ曲線とともに輪郭曲線の一種であるが、粗さ曲線が特に輪郭の表面粗さを精度良く示すのに適した輪郭曲線であるのに対して、うねり曲線は輪郭の形状そのものを滑らかな線で単純化するのに適した輪郭曲線である。
 図5Bに示すように、うねり曲線LWC1を用いると、仮想線L1に沿う複数(k個)の位置のそれぞれにおいて、鋼板表面2aと溝5の輪郭(つまりうねり曲線LWC1)との間の板厚方向Zの距離(深さe1~ek:単位はμm)が得られる。さらに、これらの深さe1~ekの平均値(平均深さD1)が得られる。
 同様な測定手法によって、他の仮想線L2~Lnのそれぞれについても、平均深さD2~Dnが得られる。
 なお、鋼板表面2aと溝5の輪郭(うねり曲線LWC1)との間の距離を測定するためには、Z方向における鋼板表面2aの位置(高さ)を予め測定しておく必要がある。例えば、観察範囲50内の鋼板表面2aにおける複数箇所のそれぞれについて、レーザ式表面粗さ測定器を用いてZ方向の位置(高さ)を測定し、それらの測定結果の平均値を鋼板表面2aの高さとして利用してもよい。
 本実施形態では、上記の仮想線L1~Lnのうち、溝延在方向に沿い且つ平均深さが最大になるという条件を満足する仮想線を溝基準線BLとして選択し、その溝基準線BLについて得られた平均深さを溝5の平均深さD(単位はμm)と定義する。例えば、仮想線L1~Lnのそれぞれについて得られた平均深さD1~Dnのうち、平均深さD3が最大である場合、図6に示すように、仮想線L3が溝基準線BLと定義され、仮想線L3について得られた平均深さD3が溝5の平均深さDと定義される。
 また、図6に示すように、板厚方向Zから溝5を視た場合(溝5を平面視した場合)に、溝延在方向に直交する方向(溝幅方向:本実施形態では圧延方向Xに平行な方向)に平行な仮想線LSを観察範囲50内に仮想的に設定する。仮想線LSは板厚方向Zには任意の高さに設定できるものとして、レーザ式表面粗さ測定器等を用いて、溝5を含む鋼板2の表面粗さを仮想線LSに沿って測定すると、図7Aに示すように、溝5の溝幅方向の輪郭を成す測定断面曲線MLSが仮想線LSに沿う形で得られる。
 上記のように仮想線LSについて得られた測定断面曲線MLSに低域フィルタ(カットオフ値λs)を適用して断面曲線を得た後、その断面曲線に帯域フィルタ(カットオフ値λf、λc)を適用して、断面曲線から長い波長成分と短い波長成分を除去すると、図7Bに示すように、溝5の溝幅方向の輪郭を成すうねり曲線(以下、溝短手うねり曲線と呼称する)SWCが仮想線LSに沿う形で得られる。うねり曲線は、後述の粗さ曲線とともに輪郭曲線の一種であるが、粗さ曲線が特に輪郭の表面粗さを精度良く示すのに適した輪郭曲線であるのに対して、うねり曲線は輪郭の形状そのものを滑らかな線で単純化するのに適した輪郭曲線である。
 図7Bに示すように、溝短手うねり曲線SWCを用いると、仮想線LSに沿う複数(m個)の位置のそれぞれにおいて、鋼板表面2aと溝5の溝幅方向の輪郭(つまり溝短手うねり曲線SWC)との間の板厚方向Zの距離(深さd1~dm:単位はμm)が得られる。本実施形態では、図7Bに示すように、うねり曲線SWCが極小値を1個のみ有し極大値は有さない。本実施形態では、上記のように得られた深さd1~dmのうち、最も大きい値を溝深さDa(溝5の最深部の深さ)とする。また、図7Bに示すように、溝短手うねり曲線SWCにおいて、下記条件式(4)を満足する領域を溝領域5cと定義し、その溝領域5cの溝幅方向の中心を溝中心GCとする。
           di ≧ 0.05×Da  …(4)
          (ただし、iは、1~mの整数)
 また、図8に示すように、溝5の輪郭を示す溝短手うねり曲線SWC上において、鋼板表面2aから溝5の最深部に向かって傾斜する線分を第1溝面5a及び第2溝面5bとする。図8に示すように、溝短手うねり曲線SWC上の第1溝面5aにおいて、鋼板表面2aからの板厚方向Zの深さが0.05×Daとなる点をP1とし、鋼板表面2aからの板厚方向Zの深さが0.50×Daとなる点をP2とする。溝短手うねり曲線SWC上の第2溝面5bにおいて、鋼板表面2aからの板厚方向Zの深さが0.05×Daとなる点をP3とし、鋼板表面2aからの板厚方向Zの深さが0.50×Daとなる点をP4とする。
 さらに、図8に示すように、第1溝面5aにおける点P1と点P2とを結ぶ直線を第1溝端直線Lb1とし、第2溝面5bにおける点P3と点P4とを結ぶ直線を第2溝端直線Lb2とする。このように、溝短手うねり曲線SWCから得られた第1溝端直線Lb1と板厚方向Zとの成す角度が第1角度θ1であり、溝短手うねり曲線SWCから得られた第2溝端直線Lb2と板厚方向Zとの成す角度が第2角度θ2である。
 このように、本実施形態では、第1溝面5a上の2点間を結ぶ直線によって、第1溝面5aが直線近似されている場合を例示したが、第1溝面5aを直線近似するための方法として別の方法を用いてもよい。例えば、最小二乗法を用いて第1溝面5aを直線近似してもよい。第2溝面5bの直線近似についても同様である。
 なお、溝5の溝幅Wは、鋼板表面2aと第1溝面5aの交点、および鋼板表面2aと第2溝面5bの交点の距離で定義する。具体的には、図8に示すように、溝5の溝短手断面で見た場合に、上記P1点と上記P3点とを結ぶ線分の長さ(溝開口部)を求めてもよい。この溝幅Wは、磁区細分化の効果を好ましく得るためには、10μm~250μmであることが好ましい。
 ところで、巻コアの製造工程では、方向性電磁鋼板1に曲げ加工が施される。曲げの際、レーザで溝を加工した電磁鋼板では溝部を起点に鋼板が破断する確率が高いことが分かった。そこで本発明者らは溝部の結晶構造等を詳細に解析した結果、溝部に粒径の小さい部位がある場合、すなわち溶融再凝固層がある場合に破断が発生しやすいことを見出した。
 鋼板2における溝5に溶融再凝固層が存在すると、方向性電磁鋼板1が曲げられたときに、溶融再凝固層を起点として破断が発生しやすくなる。つまり、鋼板2における溝5に溶融再凝固層が存在すると、方向性電磁鋼板1の耐曲げ特性が低くなるとの結論に至った。
 そこで、本実施形態では、鋼板2において、溝5に接する結晶粒の粒径が平均で5μm以上であることが好ましい。溝5の周辺に、溝5の形成に由来する溶融再凝固層が存在する場合、好ましい耐曲げ特性が得られない可能性が高くなる。従って、溝5の周辺には、溶融再凝固層が存在しないことが好ましい。溝5の周辺に溶融再凝固層が存在しない場合には、溝5に接する結晶粒(二次再結晶粒)の粒径が平均で5μm以上となる。例えば、溶融再凝固層の結晶形状は表面から垂直方向に伸びる長い柱状となることがある。そのため、溝5に接する結晶粒(二次再結晶粒)の粒径は、柱状晶の長軸長さではなく、短軸長さが5μm以上であることが好ましい。すなわち、溝5に接する結晶粒は、方向性電磁鋼板1の板面と平行な観察面上で視た場合に、その粒径が平均で5μm以上であることが好ましい。結晶粒の粒径は、例えばASTM E112などの一般的な結晶粒径測定法を参考にして求めればよく、またはEBSD(Electron Back Scattering Diffraction Pattern)法によって求めてもよい。上記の溶融凝固領域を有さない溝5は、例えば、後述の製造方法によって得ることが可能である。
 特に、溝短手断面で溝5を視た場合にも、鋼板2における溝5の下部に存在する結晶粒(二次再結晶粒)の板厚方向粒径が5μm以上且つ鋼板2の板厚以下であることがさらに好ましい。この特徴は、鋼板2における溝5の下部に、結晶粒の板厚方向粒径が1μm程度の微細粒層(溶融再凝固層)が存在しないことを意味する。
 図9に示すように、板厚方向Zから鋼板2を視た場合、鋼板2に存在する二次再結晶粒の粒径は、最大で100mm程度となる。一方、溝短手断面で溝5を視た場合、鋼板2における溝5の下部に存在する結晶粒(二次再結晶粒)の板厚方向粒径は、最小で5μm程度となり、最大で鋼板2の板厚(例えば0.1~0.4mm)程度となる。従って、鋼板2における溝5の下部に存在する二次再結晶粒の板厚方向粒径の下限値を5μmに設定し、上限値を鋼板2の板厚に設定することが好ましい。このように、溝5の下部に溶融再凝固層が存在しない構成を採用することにより、方向性電磁鋼板1の耐曲げ特性を向上させることができる。
 また、溝5が形成された領域での絶縁皮膜4の厚さは、他の領域での絶縁皮膜4の厚さより大きいので、溝5が形成された領域での鋼板2と絶縁皮膜4との密着性は、他の領域と比較して悪くなる。その結果、溝5の周辺の絶縁皮膜4にクラック或いは剥離が発生しやすくなる。絶縁皮膜4にクラック或いは剥離が発生すると、鋼板2に錆が発生する。
 そこで、本実施形態において、図2に示すように、溝延在方向及び板厚方向Zを含む断面(溝長手断面)で溝5を視た場合に、溝5の溝底領域5dの輪郭を成す粗さ曲線の算術平均高さRaが、1μm以上3μm以下であり、好適には1.2μm以上2.5μm以下、更に好適には1.3μm以上2.3μm以下であり、上記溝底領域5aの輪郭を成す粗さ曲線要素の平均長さRSmが、10μm以上150μm以下であり、好適には40μm以上145μm以下、更に好適には60μm以上140μm以下であることが好ましい。
 表面粗さパラメータ(Ra、RSm)が上記の範囲を満たすことにより、溝5の溝底領域5dが一定度合いの粗面となるので、アンカー効果によって鋼板2とグラス皮膜3または絶縁皮膜4との密着性が向上する。そのため、溝5の周辺のグラス皮膜3または絶縁皮膜4にクラック或いは剥離が発生しにくくなる。その結果、方向性電磁鋼板1の耐錆性を向上させることができる。
 しかしながら、図3に示すように、溝5の幅方向において、溝5の深さは必ずしも一定ではない。そこで、溝長手断面で溝5を視た場合の溝底領域5dをどのように特定するのかが重要となる。以下では、溝長手断面で溝5を視た場合の溝底領域5dの特定方法の一例について説明する。
 図10は、図6のC-C線における矢視断面図である。すなわち、図10は、上記の溝基準線BL及び板厚方向Zを含む溝長手断面で溝5を視た図である。図10に示すように、溝長手断面に現れる溝5の輪郭を成す測定断面曲線をうねり曲線に変換したものを溝長手うねり曲線LWCと定義する。この溝長手うねり曲線LWCは、溝基準線BLについて得られた測定断面曲線に低域フィルタ(カットオフ値λs)を適用して断面曲線を得た後、その断面曲線に帯域フィルタ(カットオフ値λf、λc)を適用して、断面曲線から長い波長成分と短い波長成分を除くことで得られる。図6のC-C線における矢視断面図である。すなわち、図10は、上記の溝基準線BL及び板厚方向Zを含む溝長手断面で溝5を視た図である。本実施形態では、図10に示すように、溝基準線BL及び板厚方向Zを含む溝長手断面で溝5を視た場合に、観察範囲50に現れる溝5の輪郭を溝底領域5dとする。
 以上のような手法によって溝5の溝底領域5dが特定される。すなわち、本実施形態では、図11に示すように、溝基準線BL及び板厚方向Zを含む溝長手断面の観察範囲50に現れる溝5の溝底領域5dの輪郭を成す測定断面曲線を変換して得られた粗さ曲線RCの算術平均高さRaが、1μm以上3μm以下であり、好適には1.2μm以上2.5μm以下、更に好適には1.3μm以上2.3μm以下であり、上記溝底領域5dの輪郭を成す測定断面曲線を変換して得られた粗さ曲線要素の平均長さRSmが、10μm以上150μm以下であり、好適には40μm以上145μm以下、更に好適には60μm以上140μm以下である。粗さ曲線RCは、溝基準線BLについて得られた測定断面曲線にカットオフ値λsの低域フィルタを適用して断面曲線を得た後、その断面曲線に高域フィルタ(カットオフ値λc)を適用して、断面曲線から長い波長成分を除くことで得られる。上記のように、粗さ曲線RCは、特に輪郭の表面粗さを精度良く示すのに適した輪郭曲線である。なお、粗さ曲線RCの算術平均高さRa及び粗さ曲線要素の平均長さRSmの定義は、日本工業規格JIS B 0601(2013)に準じる。
 以上のように、本実施形態に係る方向性電磁鋼板1によれば、上記深さ条件及び形状条件を満たす溝5が鋼板2に設けられているので、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させることが可能である。
 また、本実施形態によれば、鋼板2における溝5の下部に溶融再凝固層が存在しない構成を採用しているので、方向性電磁鋼板1の耐曲げ特性を向上させることができる。
 さらに、本実施形態によれば、溝底領域5dの輪郭を成す粗さ曲線RCの算術平均高さRaが1μm以上3μm以下であり、粗さ曲線要素の平均長さRSmが10μm以上150μm以下であるという構成を採用しているので、方向性電磁鋼板1の耐錆性を向上させることができる。
 また、図3に示すように、上記実施形態では、溝5にグラス皮膜3が存在しない状態(つまりグラス皮膜3の平均厚さが0μmの状態)を例示しているが、溝5には、平均厚さが0μm超5μm以下のグラス皮膜3と、平均厚さが1μm以上5μm以下の絶縁皮膜4とが配置されていてもよい。また、鋼板表面2aには、平均厚さが0.5μm以上5μm以下のグラス皮膜3と、平均厚さが1μm以上5μm以下の絶縁皮膜4とが配置されていてもよい。さらに、溝5におけるグラス皮膜3の平均厚さが、鋼板表面2aにおけるグラス皮膜3の平均厚さよりも薄くてもよい。
 上記のように、グラス皮膜3及び絶縁皮膜4の厚さを設定することにより、溝5の周辺の絶縁皮膜4にクラック或いは剥離がより発生しにくくなるので、方向性電磁鋼板1の耐錆性がより向上する。また、溝5にグラス皮膜3が存在しない構成(つまり溝5におけるグラス皮膜3の平均厚さが0μmである構成)を採用することにより、互いに対向する溝の壁間の距離(溝幅)をより狭くすることが可能なので、溝5による鉄損低減効果をより向上させることができる。
 また、上記実施形態では、グラス皮膜3を備える方向性電磁鋼板1を例示したが、上記のようにグラス皮膜3は必須の構成要素ではないので、鋼板2と絶縁皮膜4だけで構成された方向性電磁鋼板についても、本発明を適用することにより、上記効果を得ることができる。鋼板2と絶縁皮膜4だけで構成された方向性電磁鋼板では、溝5に、平均厚さが1μm以上5μm以下の絶縁皮膜4が配置され、鋼板表面2aに、平均厚さが1μm以上5μm以下の絶縁皮膜4が配置されていてもよい。
 次に、本実施形態に係る方向性電磁鋼板1の製造方法について説明する。
 図12は、方向性電磁鋼板1の製造プロセスを示すフローチャートである。図12に示すように、最初の鋳造工程S01では、質量分率で、Si:0.8%~7%、C:0%超~0.085%、酸可溶性Al:0%~0.065%、N:0%~0.012%、Mn:0%~1%、Cr:0%~0.3%、Cu:0%~0.4%、P:0%~0.5%、Sn:0%~0.3%、Sb:0%~0.3%、Ni:0%~1%、S:0%~0.015%、Se:0%~0.015%、を含有し、残部がFe及び不純物からなる化学成分を有する溶鋼が連続鋳造機に供給されて、スラブが連続的に製出される。
 続いて、熱間圧延工程S02では、鋳造工程S01から得られたスラブが所定の温度(例えば1150~1400℃)に加熱された後、そのスラブに対して熱間圧延が実施される。これにより、例えば、1.8~3.5mmの厚さを有する熱延鋼板が得られる。
 続いて、焼鈍工程S03では、熱間圧延工程S02から得られた熱延鋼板に対して、所定の温度条件(例えば750~1200℃で30秒~10分間加熱する条件)の下で焼鈍処理が実施される。続いて、冷間圧延工程S04では、焼鈍工程S03にて焼鈍処理が実施された熱延鋼板の表面に酸洗処理が実施された後、熱延鋼板に対して冷間圧延が実施される。これにより、例えば、0.15~0.35mmの厚さを有する冷延鋼板が得られる。
 続いて、脱炭焼鈍工程S05では、冷間圧延工程S04から得られた冷延鋼板に対して、所定の温度条件(例えば700~900℃で1~3分間加熱する条件)の下で熱処理(すなわち、脱炭焼鈍処理)が実施される。このような脱炭焼鈍処理が実施されると、冷延鋼板において、炭素が所定量以下に低減され、一次再結晶組織が形成される。また、脱炭焼鈍工程S05では、冷延鋼板の表面に、シリカ(SiO)を主成分として含有する酸化物層が形成される。
 続いて、焼鈍分離剤塗布工程S06では、マグネシア(MgO)を主成分として含有する焼鈍分離剤が、冷延鋼板の表面(酸化物層の表面)に塗布される。続いて、仕上焼鈍工程S07では、焼鈍分離剤が塗布された冷延鋼板に対して、所定の温度条件(例えば1100~1300℃で20~24時間加熱する条件)の下で熱処理(すなわち、仕上げ焼鈍処理)が実施される。このような仕上焼鈍処理が実施されると、二次再結晶が冷延鋼板に生じるとともに、冷延鋼板が純化される。その結果、上述の鋼板2の化学組成を有し、結晶粒の磁化容易軸と圧延方向Xとが一致するように結晶方位が制御された冷延鋼板(つまり方向性電磁鋼板1の溝5を形成する前の状態の鋼板2)が得られる。
 また、上記のような仕上焼鈍処理が実施されると、シリカを主成分として含有する酸化物層が、マグネシアを主成分として含有する焼鈍分離剤と反応して、鋼板2の表面にフォルステライト(MgSiO)等の複合酸化物を含むグラス皮膜3が形成される。仕上焼鈍工程S07では、鋼板2がコイル状に巻かれた状態で仕上げ焼鈍処理が実施される。仕上げ焼鈍処理中に鋼板2の表面にグラス皮膜3が形成されることにより、コイル状に巻かれた鋼板2に焼き付きが発生することを防止することができる。
 続いて、レーザ照射工程S08では、グラス皮膜3が形成された鋼板2の表面(片面のみ)に対してレーザを照射することにより、鋼板2の表面に、圧延方向Xに交差する方向に延びる複数の溝5が、圧延方向Xに沿って所定間隔で形成される。以下、図13~図15を参照しながら、レーザ照射工程S08について詳細に説明する。
 図13に示すように、レーザ照射工程S08では、レーザ光源(図示省略)から出射されたレーザ光YLが、光ファイバ9を介してレーザ照射装置10に伝送される。レーザ照射装置10は、ポリゴンミラーとその回転駆動装置(ともに図示省略)を内蔵している。
 レーザ照射装置10は、ポリゴンミラーの回転駆動によって、レーザ光YLを鋼板2の表面に向けて照射すると共に、レーザ光YLを鋼板2の板幅方向Yと略平行に走査する。
 レーザ光YLの照射と同時に、空気又は不活性ガス等のアシストガス25が、レーザ光YLが照射される鋼板2の部位に吹き付けられる。不活性ガスとは、例えば、窒素又はアルゴン等である。アシストガス25は、レーザ照射によって鋼板2から溶融又は蒸発した成分を除去する役割を担っている。アシストガス25の吹き付けにより、レーザ光YLが上記の溶融又は蒸発した成分によって阻害されずに鋼板2に到達するため、溝5が安定的に形成される。また、アシストガス25の吹き付けにより、上記成分が鋼板2に付着することを抑制することができる。以上の結果、レーザ光YLの走査ラインに沿って溝5が形成される。また、上記のように、アシストガス25の吹き付けによって、上記成分が除去された結果、溝5の下部に溶融再凝固層が存在しない構成を得ることができる。
 レーザ照射工程S08では、鋼板2が圧延方向Xと一致する通板方向に沿って搬送されながら、鋼板2の表面に対してレーザ光YLが照射される。ここで、溝5が圧延方向Xに沿って所定の間隔PLで形成されるように、ポリゴンミラーの回転速度は、鋼板2の搬送速度に対して同期制御される。その結果、図13に示すように、鋼板2の表面に、圧延方向Xに交差する複数の溝5が、圧延方向Xに沿って所定間隔PLで形成される。
 レーザ光源としては、例えばファイバレーザを用いることができる。YAGレーザ、半導体レーザ、またはCOレーザ等の一般的に工業用に用いられる高出力レーザをレーザ光源として使用してもよい。また、溝5を安定的に形成することができさえすれば、パルスレーザ、または連続波レーザをレーザ光源として使用してもよい。レーザ光YLとしては、集光性が高く、溝の形成に適したシングルモードレーザを用いることが好ましい。
 レーザ光YLの照射条件として、例えば、レーザ出力を200W~3000Wに、レーザ光YLの圧延方向Xにおける集光スポット径(すなわちレーザ出力の86%を含む直径、以下86%径と省略記載)を10μm~1000μmに、レーザ光YLの板幅方向Yにおける集光スポット径(86%径)を10μm~1000μmに、レーザ走査速度を5m/s~100m/sに、レーザ走査ピッチ(間隔PL)を4mm~10mmに設定することが好ましい。所望の溝深さDが得られるように、これらのレーザ照射条件を適宜調整すればよい。例えば、深い溝深さDを得る場合には、レーザ走査速度を遅く設定し、レーザ出力を高く設定すればよい。
 図14Aに示すように、レーザ走査方向(溝延在方向)から溝5を視た場合に、板厚方向Zとレーザ光YLの照射方向との間の角度(レーザ照射角度)をφ1と定義したとき、溝5の溝短手断面において所望の第1角度θ1が得られるように、レーザ照射角度φ1を10~45°の範囲内で設定することが好ましい。これにより、溝5の断面形状を図3に示すような非対称形状にすることができる。なお、アシストガス25はレーザ光YLを追従するように噴射されるが、レーザ照射角度φ1を上記の範囲で設定する場合には、アシストガス25の噴射方向(噴射角度)は特に限定されない。
 一方、アシストガス25の噴射方向を以下のように設定することにより、溝5の断面形状を図3に示すような非対称形状にすることができる。図14Bに示すように、圧延方向Xに平行な通板方向TDに沿って搬送される鋼板2を平面視したとき、レーザ光YLのレーザ走査方向SD(板幅方向Yに平行な方向)に対して角度φ2の傾きを持つ方向から、レーザ光YLを追従するようにアシストガス25が噴射される。また、図14Cに示すように、通板方向TDに沿って搬送される鋼板2を板幅方向Y(レーザ走査方向SD)から視たとき、鋼板表面2aに対して角度φ3の傾きを持つ方向から、レーザ光YLを追従するようにアシストガス25が噴射される。角度φ2は、90°以上180°以下の範囲で設定されることが好ましく、角度φ3は、1°以上85°以下の範囲で設定されることが好ましい。
 さらに、鋼板2の通板雰囲気に存在する、0.5μm以上の径を有する粒子の数量が、1CF(キュービックフィート)当たり10個以上10000個未満となるように雰囲気制御を行うことが好ましい。
 特に、レーザ走査方向に対するアシストガス噴射角φ2及び鋼板表面2aに対するアシストガス噴射角φ3を上記の範囲で設定することによって、溝5の断面形状を図3に示す非対称形状に制御できると共に、溝底領域5dの表面粗さ(Ra、RSm)を精度良く制御できる。これに加えて、通板雰囲気に存在する0.5μm以上の径を有する粒子の数量も上記の範囲に設定することにより、溝底領域5dの表面粗さ(特にRSm)をより精度良く制御できる。また、アシストガス25の流量を、毎分10~1000リットル以下の範囲で設定することが好ましい。しかしながら、アシストガス25の流量が毎分50リットル以下の場合、溝5の下部に溶融再凝固層が発生しやすくなる。従って、アシストガス25の流量の下限値は、毎分50リットル超であることがより好ましい。
 従来では、レーザ照射によって溝を形成する場合、断面が矩形状の溝(つまり左右対称形状を有する溝)を効率よく形成するために、鋼板表面に対して垂直な方向(板厚方向)から、レーザを追従するようにアシストガスを鋼板表面に向かって噴射していた。これに対して、本願発明者らは鋭意研究の結果、図14A~図14Cに示すようにレーザ光YLの照射方向及びアシストガス25の噴射方向を3次元的に規定することにより、溝5の断面形状を上記(1)式~(3)式を満たす非対称形状に精度良く制御できるだけでなく、レーザ照射時の通板雰囲気中の粒子量も規定することにより、溝底領域5dの表面粗さ(Ra、RSm)を精度良く制御できることを見出した。
 そして、本願発明者らは、上記のような新規の製造方法により、上記(1)式~(3)式を満たす非対称形状を有する溝を方向性電磁鋼板に形成すると、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立でき、さらに耐錆性を向上できることを見出し、本発明を完成するに至ったのである。従って、本実施形態に係る方向性電磁鋼板の製造方法(特にレーザ照射工程)は、当業者が予想し得ない新規の製造方法であって、それによって得られる方向性電磁鋼板1も当業者が予想し得ない新規の構成(溝5の断面形状及び溝底領域5dの表面粗さ)を有するものである。
 1台のレーザ照射装置10によって、鋼板2の板幅方向Yの全体に溝5を形成することが困難な場合には、図15に示すように、複数台のレーザ照射装置10を用いて、鋼板2の板幅方向Yの全体に溝5を形成してもよい。この場合、図15に示すように、複数台のレーザ照射装置10は、圧延方向Xに沿って所定間隔で配置される。また、圧延方向Xから視たときに、各レーザ照射装置10のレーザ走査ラインが互いに重ならないように、各レーザ照射装置10の板幅方向Yにおける位置が設定されている。このような図15に示すレーザ照射方法を採用することで、図1に示したような複数の溝5を鋼板表面2aに形成することができる。
 図12に戻って説明を続けると、最後の絶縁皮膜成形工程S09では、上記のレーザ照射工程S08によって溝5が形成された鋼板表面2aに対して、例えばコロイダルシリカ及びリン酸塩を含有する絶縁コーティング液が、グラス皮膜3の上から塗布される。その後、所定の温度条件(例えば840~920℃)の下で熱処理が実施されることにより、最終的に、図1~3に示すような、溝5が形成された鋼板2、グラス皮膜3及び絶縁皮膜4とを備える方向性電磁鋼板1が得られる。
 上記のように製造された方向性電磁鋼板1の鋼板2は、化学成分として、質量分率で、Si:0.8%~7%、C:0%超~0.085%、酸可溶性Al:0%~0.065%、N:0%~0.012%、Mn:0%~1%、Cr:0%~0.3%、Cu:0%~0.4%、P:0%~0.5%、Sn:0%~0.3%、Sb:0%~0.3%、Ni:0%~1%、S:0%~0.015%、Se:0%~0.015%、を含有し、残部がFe及び不純物からなる。
 なお、上記実施形態では、鋼板表面2aに絶縁皮膜4が形成される前に、レーザ照射によって鋼板表面2aに溝5を形成し、その後に鋼板表面2aに絶縁皮膜4を形成するという製造プロセスを採用する場合を例示した。本実施形態では、これに限らず、鋼板表面2aに絶縁皮膜4が形成された後に、絶縁皮膜4の上方から鋼板表面2aに向けてレーザ光YLを照射することにより、鋼板表面2aに溝5を形成するという製造プロセスを採用してもよい。この場合、レーザ照射直後の溝5は外部に露出しているので、溝5の形成後に、再度、絶縁皮膜4を鋼板2上に形成する必要がある。または、本実施形態では、鋼板2に溝5が形成された後に、グラス皮膜3または絶縁皮膜4が形成されてもよい。
 従って、本実施形態に係る方向性電磁鋼板には、二次再結晶のための高温焼鈍が完了し且つグラス皮膜3及び絶縁皮膜4のコーティングが完了した方向性電磁鋼板1が含まれるが、同様に、グラス皮膜3または絶縁皮膜4のコーティングが完了する前であり且つ溝5が形成された後の方向性電磁鋼板も含まれる。すなわち、本実施形態に係る方向性電磁鋼板を用いて、後工程として、グラス皮膜3または絶縁皮膜4の形成を行うことで最終製品を得てもよい。なお、上記したように、グラス皮膜3または絶縁皮膜4が形成された方向性電磁鋼板1から上記の皮膜除去方法によってグラス皮膜3または絶縁皮膜4を除去した場合、溝5の形状や粗さは、グラス皮膜3または絶縁皮膜4を形成する前と同等であることが確認されている。
 なお、上記実施形態では、仕上焼鈍工程S07の後にレーザ照射工程S08を実施する場合を例示したが、冷間圧延工程S04と脱炭焼鈍工程S05との間にレーザ照射工程を実施してもよい。すなわち、冷間圧延工程S04から得られる冷延鋼板に対してレーザ照射及びアシストガス噴射を行うことにより、冷延鋼板の鋼板表面2aに溝5を形成した後、その冷延鋼板に対して脱炭焼鈍を実施してもよい。
 以下、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
〔鉄損低減効果の最大化と磁束密度低下の最小化とのバランスの検証1〕
 まず、本検証1で使用した方向性電磁鋼板は以下のように製造された。
質量分率で、Si:3.0%、C:0.08%、酸可溶性Al:0.05%、N:0.01%、Mn:0.12%、Cr:0.05%、Cu:0.04%、P:0.01%、Sn:0.02%、Sb:0.01%、Ni:0.005%、S:0.007%、Se:0.001%、を含有し、残部がFe及び不純物からなる化学成分を有するスラブに対して熱間圧延が実施され、厚さ2.3mmの熱延鋼板が得られた。
 続いて、上記の熱延鋼板に対して、1000℃で1分間加熱するという温度条件の下で焼鈍処理が実施された。焼鈍処理が実施された熱延鋼板の表面に酸洗処理が実施された後、熱延鋼板に対して冷間圧延が実施され、厚さ0.23mmの冷延鋼板が得られた。続いて、上記の冷延鋼板に対して、800℃で2分間加熱するという温度条件の下で脱炭焼鈍処理が実施された後、マグネシア(MgO)を主成分として含有する焼鈍分離剤が、冷延鋼板の表面に塗布された。
 続いて、焼鈍分離剤が塗布された冷延鋼板に対して、1200℃で20時間加熱するという温度条件の下で仕上げ焼鈍処理が実施された。その結果、上述の化学組成を有し、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された冷延鋼板(グラス皮膜が表面に形成された鋼板)が得られた。
 続いて、上記のように、グラス皮膜が形成された鋼板の表面に対してレーザが照射されることにより、鋼板の表面に、圧延方向に交差する方向に延びる複数の溝が、圧延方向に沿って所定間隔で形成された。
 レーザ光YLの照射条件としては、所望の溝深さDが得られるように、レーザ出力が200W~3000Wの範囲で、レーザ光YLの圧延方向Xにおける集光スポット径(86%径)が10μm~1000μmの範囲で、レーザ光YLの板幅方向Yにおける集光スポット径(86%径)が10μm~1000μmの範囲で、レーザ走査速度が5m/s~100m/sの範囲で、レーザ走査ピッチ(間隔PL)が4mm~10mmの範囲で調整された。
 さらに、溝5の溝短手断面において所望の第1角度θ1及び第2角度θ2が得られるように、レーザ走査方向に対するアシストガス噴射角φ2が、90°以上180°以下の範囲で調整され、鋼板表面に対するアシストガス噴射角φ3が、1°以上85°以下の範囲で調整された。
 上記のように、溝が形成された鋼板に対して、コロイダルシリカ及びリン酸塩を含有する絶縁コーティング液がグラス皮膜の上から塗布された後、850℃で1分間加熱するという温度条件の下で熱処理が実施され、最終的に、溝が形成された鋼板、グラス皮膜及び絶縁皮膜を備える方向性電磁鋼板が得られた。
 最終的に得られた上記方向性電磁鋼板中の鋼板(溝が形成された鋼板)は、主に、Si:3.0%を含有していた。
 以上のようなプロセスによって、表1に示すように、試験番号1~8に対応する方向性電磁鋼板として、溝の平均深さD(単位はμm)及び溝幅W(単位はμm)が異なる方向性電磁鋼板を用意した。試験番号1~8に対応する全ての方向性電磁鋼板において、溝5を溝短手断面で視た場合の第1角度θ1が45°に設定され、第2角度θ2が60°に設定された。
 試験番号3~7に対応する方向性電磁鋼板は、溝の平均深さDが10μm超40μm以下という条件(条件1)と、第1角度θ1が0°以上50°以下という条件(条件2)と、第2角度θ2が第1角度θ1より大きく且つ75°以下という条件(条件3)と、第2角度θ2と第1角度θ1との差分値(θ2-θ1)が10°以上という条件(条件4)を満たす発明例の方向性電磁鋼板である。試験番号1、2及び8に対応する方向性電磁鋼板は、上記条件2~4のみを満たす比較例の方向性電磁鋼板である。また、試験番号1~8に対応する方向性電磁鋼板の全てにおいて、溝延在方向における溝非対称領域の存在率をαが70%以上であった。なお、上記実施形態で説明した範囲内でレーザ照射条件を調整したものが実施例であり、その範囲から外れたものが比較例である。
 試験番号1~8に対応する方向性電磁鋼板のそれぞれについて、鉄損W17/50と、磁束密度B8の低下量ΔB8とを測定した。それらの測定結果を表1に示す。なお、鉄損W17/50とは、方向性電磁鋼板の試験片(例えば、100mm×500mmの試験片)について、磁束密度1.7T、周波数50Hzでの励磁条件下で測定された単位重量当たりのエネルギー損失(単位はW/kg)である。また、磁束密度B8の低下量ΔB8とは、溝形成前に測定した磁束密度B8から溝形成後に測定した磁束密度B8を差し引いた値(単位はG)である。溝形成前の磁束密度B8は、1.910T(=19100G)であり、溝形成前の鉄損W17/50は、0.97W/kgであった。
 表1に示すように、試験番号1及び2に対応する比較例(溝の平均深さDが10μm以下)の方向性電磁鋼板では、溝形成前と比較して鉄損W17/50がほとんど変化しない(つまり鉄損改善効果が小さい)。また、試験番号8に対応する比較例(溝の平均深さDが40μm超)の方向性電磁鋼板では、磁束密度B8の低下量ΔB8が非常に大きい(つまり磁束密度B8の低下抑制効果が小さい)。
 一方、表1に示すように、試験番号3~7に対応する発明例の方向性電磁鋼板では、溝形成前と比較して鉄損W17/50が大きく低下する(つまり鉄損改善効果が大きい)と共に、磁束密度B8の低下量ΔB8が比較的小さい値に抑制されている(つまり磁束密度B8の低下抑制効果が大きい)。以上のような本検証1により、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させるためには、上記条件1~4の全てを満たす必要があることが確認された。
Figure JPOXMLDOC01-appb-T000001
〔鉄損低減効果の最大化と磁束密度低下の最小化とのバランスの検証2〕
 続いて、表2に示すように、上記検証1と同様のプロセスにより、試験番号9~14に対応する方向性電磁鋼板として、第1角度θ1と第2角度θ2との組み合せが異なる方向性電磁鋼板を用意した。試験番号9~14に対応する全ての方向性電磁鋼板において、溝の平均深さDが20μmに設定され、溝幅Wが70μmに設定された。
 試験番号11~13に対応する方向性電磁鋼板は、上記条件1~4の全てを満たす発明例の方向性電磁鋼板である。試験番号9及び10に対応する方向性電磁鋼板は、上記条件1のみを満たす比較例の方向性電磁鋼板である。試験番号14に対応する方向性電磁鋼板は、上記条件1~3のみを満たす比較例の方向性電磁鋼板である。試験番号9~14に対応する方向性電磁鋼板のそれぞれについて、上記検証1と同様に、鉄損W17/50と、磁束密度B8の低下量ΔB8とを測定した。それらの測定結果を表2に示す。
 表2に示すように、試験番号11~13に対応する発明例の方向性電磁鋼板では、溝形成前と比較して鉄損W17/50が大きく低下する(つまり鉄損改善効果が大きい)と共に、磁束密度B8の低下量ΔB8が小さい値に抑制されている(つまり磁束密度B8の低下抑制効果が大きい)。
 一方、試験番号9及び10に対応する比較例の方向性電磁鋼板(θ1>50°)では、試験番号11~13と比較して鉄損改善効果が小さい。また、試験番号14に対応する比較例(θ1=θ2)の方向性電磁鋼板では、試験番号11~13と比較して鉄損改善効果はほぼ同等であるが、磁束密度B8の低下量ΔB8が大きい(つまり磁束密度B8の低下抑制効果が小さい)。以上のような本検証2により、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させるためには、上記条件1~4の全てを満たす必要があることが確認された。
 また、試験番号11-2に対応する発明例の方向性電磁鋼板、および試験番号11-3に対応する比較例の電磁鋼板では、試験番号11と同じθ1条件にてθ2を増加させた。
 θ2が条件3を満たさない試験番号11-3(θ2>75°)では磁束密度B8の低下量ΔB8が大きい(つまり磁束密度B8の低下抑制効果が小さい)。以上のような本検証2により、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させるためには、上記条件1~4の全てを満たす必要があることが確認された。
Figure JPOXMLDOC01-appb-T000002
〔鉄損低減効果の最大化と磁束密度低下の最小化とのバランスの検証3〕
 続いて、表3に示すように、上記検証1と同様のプロセスにより、試験番号15~18に対応する方向性電磁鋼板として、溝の平均深さDと、溝幅Wと、第1角度θ1と、第2角度θ2との組み合せが異なる方向性電磁鋼板を用意した。試験番号15及び16に対応する方向性電磁鋼板において、溝の平均深さDが15μmに設定され、溝幅Wが45μmに設定された。試験番号17及び18に対応する方向性電磁鋼板において、溝の平均深さDが25μmに設定され、溝幅Wが70μmに設定された。
 試験番号15及び17に対応する方向性電磁鋼板は、上記条件1~4の全てを満たす発明例の方向性電磁鋼板である。試験番号16及び18に対応する方向性電磁鋼板は、上記条件1~3のみを満たす比較例の方向性電磁鋼板である。試験番号15~18に対応する方向性電磁鋼板のそれぞれについて、上記検証1と同様に、鉄損W17/50と、磁束密度B8の低下量ΔB8とを測定した。それらの測定結果を表3に示す。
 表3に示すように、溝の平均深さDが同一であれば、鉄損改善効果も同等である。しかしながら、溝の断面形状(溝短手うねり曲線の形状)が対称である場合(θ1=θ2の場合)と比較して、溝の断面形状が非対称である場合(θ1<θ2の場合)には、磁束密度B8の低下量ΔB8がより小さい(つまり磁束密度B8の低下抑制効果が大きい)。以上のような本検証3により、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させるためには、上記条件1~4の全てを満たす必要があることが確認された。
Figure JPOXMLDOC01-appb-T000003
〔耐曲げ特性の検証〕
 続いて、表4に示すように、上記検証1と同様のプロセスにより、試験番号19及び20に対応する方向性電磁鋼板として、溝の下部における微細粒層(溶融再凝固層)の有無が異なる方向性電磁鋼板を用意した。試験番号19及び20に対応する方向性電磁鋼板において、溝の平均深さDが20μmに設定され、溝幅Wが70μmに設定され、第1角度θ1が45°に設定され、第2角度θ2が60°に設定された。
 図12に示すレーザ照射工程S08において、アシストガス25の流量を毎分10リットル~1000リットルの範囲で適切に調整することによって、溝の下部における微細粒層の有無を制御した。なお、微細粒層の無しとは、溝の下部に存在する二次再結晶粒の板幅方向粒径が5μm以上鋼板の板厚以下という条件(条件5)を満足することを意味する。すなわち、試験番号19に対応する方向性電磁鋼板は、上記条件1~4を満たし、上記条件5を満たさない比較例の方向性電磁鋼板である。試験番号20に対応する方向性電磁鋼板は、上記条件1~5の全てを満たす発明例の方向性電磁鋼板である。
 試験番号19ではアシストガス流量を毎分40リットルとし、試験番号20では毎分500リットルとして、溶融層の有無を制御した。
 試験番号19及び20に対応する方向性電磁鋼板のそれぞれについて、5回の繰り返し曲げ試験を行い、溝の周辺での破断の発生を確認した。その結果、試験番号20に対応する発明例の方向性電磁鋼板では、溝の周辺で破断が発生しなかった。このような検証により、上記条件1~4に加えて、上記条件5を満たすことにより、方向性電磁鋼板の曲げ特性が向上することが確認された。
Figure JPOXMLDOC01-appb-T000004
〔耐錆性の検証1〕
 続いて、上記条件1~4を満足するとともに、以下の条件6及び条件7を満足する方向性電磁鋼板の耐錆性を検証した。
 (条件6)
 溝長手断面で溝を視た場合に、溝の溝底領域の輪郭を成す粗さ曲線の算術平均高さRaが、1μm以上3μm以下である。
 (条件7)
溝長手断面で溝を視た場合に、溝の溝底領域の輪郭を成す粗さ曲線要素の平均長さRSmが、10μm以上150μm以下である。
 表5に示すように、上記検証1と同様のプロセスにより、発明例1~8として、上記条件1~4を満足するとともに、上記条件6及び条件7を満足する方向性電磁鋼板を用意した。また、比較例1~4として、上記条件1~4を満足するとともに、上記条件6及び条件7の少なくとも一方を満足しない方向性電磁鋼板を用意した。なお、発明例1~8及び比較例1~4ともに、溝の平均深さDが10μm超40μm以下、第1角度θ1が0°以上50°以下、第2角度θ2が第1角度θ1より大きく且つ75°以下、溝幅Wが10μm~250μmであった。
 図12に示すレーザ照射工程S08において、レーザ走査方向に対するアシストガス噴射角φ2と、鋼板表面に対するアシストガス噴射角φ3と、アシストガス25の流量と、通板雰囲気中の粒子量とを上記実施形態で説明した範囲に調整することにより、上記条件6及び条件7を満足する方向性電磁鋼板が得られる。特に、アシストガス噴射角φ2及びφ3と通板雰囲気中の粒子量との調整によって、溝底領域の表面粗さを精度良く制御できる。
 なお、実施例1~8及び比較例1~4に対応する方向性電磁鋼板のそれぞれについて、上記実施形態で説明した特定方法によって溝の溝底領域を特定した。溝底領域の表面粗さを示す表面粗さパラメータ(Ra、RSm)の測定には、レーザ式表面粗さ測定器(キーエンス社製のVK-9700)を用いた。
 発明例1~8及び比較例1~4に対応する方向性電磁鋼板のそれぞれについて、耐錆性の検証を行った。具体的には、各方向性電磁鋼板から30mm角の試験片を採取し、その試験片を、温度50℃及び湿度91%の雰囲気中に試験片を1週間放置して、その前後における試験片の重量変化に基づいて評価した。錆が発生すると試験片の重量が増加するため、重量増加量が少ないものほど耐錆性が良いと判断した。具体的には、重量増加量が5.0mg/m以下の試験片の耐錆性を“良”と評価し、重量増加量が10.0mg/m超の試験片の耐錆性を“不良”と評価した。表5に示すように、発明例1~8に対応する方向性電磁鋼板の耐錆性を検証した結果、上記の条件6及び条件7を満たす構成を採用することにより、方向性電磁鋼板の耐錆性が向上することが確認された。
Figure JPOXMLDOC01-appb-T000005
〔耐錆性の検証2〕
 続いて、表6に示すように、公知の製造方法を用いて、発明例9として、上記条件1~4を満足するとともに、上記条件6及び条件7を満足し、且つグラス皮膜を備えない方向性電磁鋼板を用意した。また、比較例5~7として、上記条件1~4を満足するとともに、上記条件6及び条件7の少なくとも一方を満足せず、且つグラス皮膜を備えない方向性電磁鋼板を用意した。なお、発明例9及び比較例5~7ともに、溝の平均深さDが10μm超40μm以下、第1角度θ1が0°以上50°以下、第2角度θ2が第1角度θ1より大きく且つ75°以下、溝幅Wが10μm~250μmであった。
 鋼板の化学組成は、上記耐錆性の検証1と同じである。上記耐錆性の検証1と同様に、上記条件6及び条件7を満たすために、レーザ走査方向に対するアシストガス噴射角φ2と、鋼板表面に対するアシストガス噴射角φ3と、アシストガス25の流量と、通板雰囲気中の粒子量とを上記実施形態で説明した範囲内で適切に調整した。
 発明例9及び比較例5~7に対応する方向性電磁鋼板のそれぞれについて、上記耐錆性の検証1と同様の検証方法を用いて耐錆性の検証を行った。その結果、表6に示すように、グラス皮膜を備えない方向性電磁鋼板であっても、上記条件6及び条件7を満たす構成を採用することにより、方向性電磁鋼板の耐錆性が向上することが確認された。
Figure JPOXMLDOC01-appb-T000006
 本発明の上記態様によれば、磁区細分化のために鋼板表面に溝が形成された方向性電磁鋼板に関して、鉄損低減効果の最大化と磁束密度低下の最小化とをバランスよく両立させることが可能であり、また曲げ特性にも優れるので、本発明は産業上の利用可能性を十分に有する。
1 方向性電磁鋼板
2 鋼板
2a 鋼板表面
3 グラス皮膜
4 絶縁皮膜
5 溝
5a 第1溝面
5b 第2溝面
5c 溝領域
5d 溝底領域
BL 溝基準線
LWC 溝長手うねり曲線
SWC 溝短手うねり曲線
RC 粗さ曲線
D 溝の平均深さ
W 溝幅
X 圧延方向
Y 板幅方向
Z 板厚方向

Claims (4)

  1.  圧延方向と交差する方向に延在し且つ溝深さ方向が板厚方向となる溝が形成された鋼板表面を有する鋼板を備える方向性電磁鋼板において、
     前記溝の平均深さDが10μm超40μm以下であり、
     溝延在方向に直交する溝幅方向断面で前記溝を視た場合に、
     溝幅方向における前記溝の中心を溝幅中心と定義したとき、
     前記溝の最深部が前記溝幅中心から前記溝幅方向の片側にずれていると共に、前記溝の断面形状が前記溝幅方向において前記溝幅中心を基準として非対称形状であり、
     前記溝幅方向断面で前記溝を視た場合に、
     前記溝は、前記鋼板表面から前記溝の前記最深部に向かって傾斜する一対の傾斜面である第1溝面及び第2溝面を有しており、
     前記溝幅中心が前記最深部からみて前記第2溝面の側に位置しており、
     前記第1溝面を直線近似して得られる第1溝端直線と前記板厚方向とが成す角度を第1角度θ1と定義し、
     前記第2溝面を直線近似して得られる第2溝端直線と前記板厚方向とが成す角度を第2角度θ2と定義したとき、
     前記第1角度θ1及び前記第2角度θ2が、下記条件式(1)~(3)を満足する
    ことを特徴とする方向性電磁鋼板。
             0°≦θ1≦50°     …(1)
             θ1<θ2≦75°     …(2)
             θ2-θ1≧10°     …(3)
  2.  前記鋼板では前記溝に接する結晶粒の粒径が5μm以上であることを特徴とする請求項1に記載の方向性電磁鋼板。
  3.  前記溝幅方向断面で前記溝を視た場合に、
     前記鋼板における前記溝の下部に存在する結晶粒の板厚方向粒径が、5μm以上、且つ前記鋼板の板厚以下である
    ことを特徴とする請求項2に記載の方向性電磁鋼板。
  4.  前記溝延在方向及び前記板厚方向を含む溝長手断面で前記溝を視た場合に、
     前記溝の溝底領域の輪郭を成す粗さ曲線の算術平均高さRaが、1μm以上3μm以下であり、
     前記溝底領域の前記輪郭を成す粗さ曲線要素の平均長さRSmが、10μm以上150μm以下である
    ことを特徴とする請求項1~3のいずれか一項に記載の方向性電磁鋼板。
PCT/JP2016/062376 2015-04-20 2016-04-19 方向性電磁鋼板 WO2016171130A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112017020753-2A BR112017020753B1 (pt) 2015-04-20 2016-04-19 Chapa de aço elétrica com grão orientado
CN201680011890.3A CN107250392B (zh) 2015-04-20 2016-04-19 方向性电磁钢板
US15/560,454 US10675714B2 (en) 2015-04-20 2016-04-19 Grain-oriented electrical steel sheet
KR1020177024140A KR102010166B1 (ko) 2015-04-20 2016-04-19 방향성 전자기 강판
JP2017514133A JP6455593B2 (ja) 2015-04-20 2016-04-19 方向性電磁鋼板
PL16783151T PL3287533T3 (pl) 2015-04-20 2016-04-19 Blacha ze zorientowanej stali magnetycznej
EP16783151.0A EP3287533B1 (en) 2015-04-20 2016-04-19 Oriented magnetic steel plate
RU2017134752A RU2682364C1 (ru) 2015-04-20 2016-04-19 Электротехнический стальной лист с ориентированной зеренной структурой

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-086300 2015-04-20
JP2015086300 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016171130A1 true WO2016171130A1 (ja) 2016-10-27

Family

ID=57143099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062376 WO2016171130A1 (ja) 2015-04-20 2016-04-19 方向性電磁鋼板

Country Status (9)

Country Link
US (1) US10675714B2 (ja)
EP (1) EP3287533B1 (ja)
JP (1) JP6455593B2 (ja)
KR (1) KR102010166B1 (ja)
CN (1) CN107250392B (ja)
BR (1) BR112017020753B1 (ja)
PL (1) PL3287533T3 (ja)
RU (1) RU2682364C1 (ja)
WO (1) WO2016171130A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117641A1 (ko) * 2016-12-22 2018-06-28 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
JP2019024039A (ja) * 2017-07-24 2019-02-14 新日鐵住金株式会社 巻鉄心
CN110088312A (zh) * 2016-12-23 2019-08-02 Posco公司 取向电工钢板及其磁畴细化方法
WO2019156220A1 (ja) 2018-02-08 2019-08-15 日本製鉄株式会社 方向性電磁鋼板
WO2019156127A1 (ja) * 2018-02-09 2019-08-15 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
JP2019147980A (ja) * 2018-02-26 2019-09-05 日本製鉄株式会社 方向性電磁鋼板の製造方法
JP2019166566A (ja) * 2018-03-26 2019-10-03 日本製鉄株式会社 溝加工方法、溝加工装置及び鋼板
JP2020138226A (ja) * 2019-03-01 2020-09-03 日本製鉄株式会社 溝加工装置
EP3604565A4 (en) * 2017-03-27 2020-10-14 Baoshan Iron & Steel Co., Ltd. LASER ETCHED GRAIN ORIENTED SILICON STEEL WITH RESISTANCE TO STRESS RELEASE / ANNEALING AND MANUFACTURING PROCESS FOR IT
US20210023659A1 (en) * 2018-03-30 2021-01-28 Baoshan Iron & Steel Co., Ltd. A grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
JP2021025128A (ja) * 2019-07-31 2021-02-22 Jfeスチール株式会社 方向性電磁鋼板
JP2022509866A (ja) * 2018-11-30 2022-01-24 ポスコ 方向性電磁鋼板およびその製造方法
JP2022515235A (ja) * 2018-12-19 2022-02-17 ポスコ 方向性電磁鋼板およびその製造方法
WO2023140363A1 (ja) 2022-01-20 2023-07-27 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板製造装置、及び方向性電磁鋼板製造方法
WO2023204244A1 (ja) * 2022-04-19 2023-10-26 日本製鉄株式会社 鋼板加工装置及び鋼板加工装置の制御方法
WO2024075789A1 (ja) * 2022-10-04 2024-04-11 日本製鉄株式会社 方向性電磁鋼板およびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112354A (ko) * 2017-04-03 2018-10-12 삼성전기주식회사 자성 시트 및 이를 포함하는 무선 전력 충전 장치
CN111742068B (zh) * 2018-02-26 2022-05-13 日本制铁株式会社 方向性电磁钢板
KR102133910B1 (ko) 2018-12-19 2020-07-14 주식회사 포스코 방향성 전기강판 및 그의 제조 방법
CN110975964B (zh) * 2019-10-25 2021-10-26 散裂中子源科学中心 一种磁性器件的设计方法及其应用
CN111438443B (zh) * 2019-11-05 2022-03-22 南京工业大学 一种通过激光多次扫描烧蚀在工件表面加工可控微沟槽的方法
CN111931310B (zh) * 2020-08-28 2021-08-13 西南交通大学 一种考虑相异磁边值的卷铁心层间短路涡流损耗评估方法
RU2763025C1 (ru) * 2021-02-04 2021-12-24 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Лист из анизотропной электротехнической стали со стабилизацией магнитных потерь и термостабильными лазерными барьерами
RU2767370C1 (ru) * 2021-02-04 2022-03-17 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали с термостабильными лазерными барьерами

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121224A (ja) * 1991-10-24 1993-05-18 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板及びその製造方法
JPH0949024A (ja) * 1995-08-08 1997-02-18 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2002292484A (ja) * 2001-03-30 2002-10-08 Nippon Steel Corp レーザによる溝加工装置
WO2012033197A1 (ja) * 2010-09-09 2012-03-15 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
JP2015510543A (ja) * 2011-12-29 2015-04-09 ポスコ 電気鋼板およびその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1804208B1 (de) 1968-10-17 1970-11-12 Mannesmann Ag Verfahren zur Herabsetzung der Wattverluste von kornorientierten Elektroblechen,insbesondere von Wuerfeltexturblechen
JPS5518566A (en) 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS59197520A (ja) 1983-04-20 1984-11-09 Kawasaki Steel Corp 鉄損の低い一方向性電磁鋼板の製造方法
JPS61117284A (ja) 1984-11-10 1986-06-04 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JPS61117218A (ja) 1984-11-10 1986-06-04 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JPS6254873A (ja) 1985-09-03 1987-03-10 Sanyo Electric Co Ltd 固定ヘツド型デイジタル磁気再生装置
JPS6253579A (ja) 1985-09-03 1987-03-09 Seiko Epson Corp 携帯用受信機器
JPH0772300B2 (ja) 1985-10-24 1995-08-02 川崎製鉄株式会社 低鉄損方向性珪素鋼板の製造方法
JPS6376819A (ja) 1986-09-18 1988-04-07 Kawasaki Steel Corp 低鉄損方向性電磁鋼板およびその製造方法
JP2563729B2 (ja) 1992-08-07 1996-12-18 新日本製鐵株式会社 パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法および装置
JP2003129138A (ja) 2001-10-19 2003-05-08 Nkk Corp 使用済み自動車又は使用済み家電機器のリサイクル処理方法
JP4189143B2 (ja) 2001-10-22 2008-12-03 新日本製鐵株式会社 低鉄損一方向性電磁鋼板の製造方法
JP4846429B2 (ja) * 2005-05-09 2011-12-28 新日本製鐵株式会社 低鉄損方向性電磁鋼板およびその製造方法
US7883586B2 (en) 2005-11-01 2011-02-08 Nippon Steel Corporation Method for production and apparatus for production of grain-oriented electrical steel sheet excellent in magnetic properties
PL2412832T3 (pl) 2009-03-11 2021-11-02 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych oraz sposób jej wytwarzania
KR101141283B1 (ko) 2009-12-04 2012-05-04 주식회사 포스코 저철손 고자속밀도 방향성 전기강판
KR101389647B1 (ko) 2010-04-01 2014-04-30 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판 및 그 제조 방법
JP5696380B2 (ja) 2010-06-30 2015-04-08 Jfeスチール株式会社 方向性電磁鋼板の鉄損改善装置および鉄損改善方法
EP2615189B1 (en) * 2010-09-10 2017-02-01 JFE Steel Corporation Grain-oriented magnetic steel sheet and process for producing same
CN101979676B (zh) * 2010-11-26 2012-02-08 武汉钢铁(集团)公司 通过激光刻痕改善取向硅钢磁性能的方法
JP5742294B2 (ja) 2011-02-25 2015-07-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN103717761B (zh) 2011-05-27 2015-03-04 新日铁住金株式会社 取向性电磁钢板及取向性电磁钢板的制造方法
CN104284994B (zh) * 2012-04-26 2017-03-01 杰富意钢铁株式会社 取向性电磁钢板及其制造方法
US10131018B2 (en) 2012-04-27 2018-11-20 Nippon Steel & Sumitomo Metal Corporation Grain-oriented magnetic steel sheet and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121224A (ja) * 1991-10-24 1993-05-18 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板及びその製造方法
JPH0949024A (ja) * 1995-08-08 1997-02-18 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2002292484A (ja) * 2001-03-30 2002-10-08 Nippon Steel Corp レーザによる溝加工装置
WO2012033197A1 (ja) * 2010-09-09 2012-03-15 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
JP2015510543A (ja) * 2011-12-29 2015-04-09 ポスコ 電気鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287533A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509215A (ja) * 2016-12-22 2020-03-26 ポスコPosco 方向性電磁鋼板およびその磁区微細化方法
JP2021167467A (ja) * 2016-12-22 2021-10-21 ポスコPosco 方向性電磁鋼板およびその磁区微細化方法
JP7245285B2 (ja) 2016-12-22 2023-03-23 ポスコ カンパニー リミテッド 方向性電磁鋼板およびその磁区微細化方法
CN110088308B (zh) * 2016-12-22 2022-03-04 Posco公司 取向电工钢板及其磁畴细化方法
US11318562B2 (en) 2016-12-22 2022-05-03 Posco Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
CN110088308A (zh) * 2016-12-22 2019-08-02 Posco公司 取向电工钢板及其磁畴细化方法
WO2018117641A1 (ko) * 2016-12-22 2018-06-28 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
US11772199B2 (en) 2016-12-22 2023-10-03 Posco Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
KR101884429B1 (ko) * 2016-12-22 2018-08-01 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
KR20180073306A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
EP3561087A4 (en) * 2016-12-22 2019-11-27 Posco ORIENTED GRAIN MAGNETIC STEEL SHEET AND METHOD FOR MAGNETIC DOMAIN REFINING
CN110088312B (zh) * 2016-12-23 2021-09-10 Posco公司 取向电工钢板及其磁畴细化方法
CN110088312A (zh) * 2016-12-23 2019-08-02 Posco公司 取向电工钢板及其磁畴细化方法
EP3604565A4 (en) * 2017-03-27 2020-10-14 Baoshan Iron & Steel Co., Ltd. LASER ETCHED GRAIN ORIENTED SILICON STEEL WITH RESISTANCE TO STRESS RELEASE / ANNEALING AND MANUFACTURING PROCESS FOR IT
US11355275B2 (en) 2017-03-27 2022-06-07 Baoshan Iron & Steel Co., Ltd. Laser-scribed grain-oriented silicon steel resistant to stress-relief annealing and manufacturing method therefor
JP7166748B2 (ja) 2017-07-24 2022-11-08 日本製鉄株式会社 巻鉄心
JP2019024039A (ja) * 2017-07-24 2019-02-14 新日鐵住金株式会社 巻鉄心
WO2019156220A1 (ja) 2018-02-08 2019-08-15 日本製鉄株式会社 方向性電磁鋼板
US11551838B2 (en) 2018-02-08 2023-01-10 Nippon Steel Corporation Grain-oriented electrical steel sheet
JP6597940B1 (ja) * 2018-02-09 2019-10-30 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
EP3751013A4 (en) * 2018-02-09 2021-07-14 Nippon Steel Corporation ORIENTED ELECTROMAGNETIC STEEL SHEET AND ITS PRODUCTION PROCESS
WO2019156127A1 (ja) * 2018-02-09 2019-08-15 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
US11697856B2 (en) 2018-02-09 2023-07-11 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
JP2019147980A (ja) * 2018-02-26 2019-09-05 日本製鉄株式会社 方向性電磁鋼板の製造方法
JP7031364B2 (ja) 2018-02-26 2022-03-08 日本製鉄株式会社 方向性電磁鋼板の製造方法
JP7052472B2 (ja) 2018-03-26 2022-04-12 日本製鉄株式会社 溝加工方法、溝加工装置及び鋼板
JP2019166566A (ja) * 2018-03-26 2019-10-03 日本製鉄株式会社 溝加工方法、溝加工装置及び鋼板
JP7231642B2 (ja) 2018-03-30 2023-03-01 宝山鋼鉄股▲ふん▼有限公司 耐熱磁区細分化型方向性珪素鋼及びその製造方法
US20210023659A1 (en) * 2018-03-30 2021-01-28 Baoshan Iron & Steel Co., Ltd. A grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
US11633809B2 (en) * 2018-03-30 2023-04-25 Baoshan Iron & Steel Co., Ltd. Grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
JP2021516725A (ja) * 2018-03-30 2021-07-08 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. 耐熱磁区細分化型方向性珪素鋼及びその製造方法
JP2022509866A (ja) * 2018-11-30 2022-01-24 ポスコ 方向性電磁鋼板およびその製造方法
JP2022515235A (ja) * 2018-12-19 2022-02-17 ポスコ 方向性電磁鋼板およびその製造方法
JP7192575B2 (ja) 2019-03-01 2022-12-20 日本製鉄株式会社 溝加工装置
JP2020138226A (ja) * 2019-03-01 2020-09-03 日本製鉄株式会社 溝加工装置
JP2021025128A (ja) * 2019-07-31 2021-02-22 Jfeスチール株式会社 方向性電磁鋼板
JP7147810B2 (ja) 2019-07-31 2022-10-05 Jfeスチール株式会社 方向性電磁鋼板
WO2023140363A1 (ja) 2022-01-20 2023-07-27 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板製造装置、及び方向性電磁鋼板製造方法
KR20240110624A (ko) 2022-01-20 2024-07-15 닛폰세이테츠 가부시키가이샤 방향성 전자 강판, 방향성 전자 강판 제조 장치, 및 방향성 전자 강판 제조 방법
WO2023204244A1 (ja) * 2022-04-19 2023-10-26 日本製鉄株式会社 鋼板加工装置及び鋼板加工装置の制御方法
WO2024075789A1 (ja) * 2022-10-04 2024-04-11 日本製鉄株式会社 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
US20180071869A1 (en) 2018-03-15
EP3287533A1 (en) 2018-02-28
EP3287533A4 (en) 2018-11-14
JP6455593B2 (ja) 2019-01-23
RU2682364C1 (ru) 2019-03-19
CN107250392B (zh) 2019-03-05
KR102010166B1 (ko) 2019-08-12
PL3287533T3 (pl) 2020-07-27
BR112017020753B1 (pt) 2021-08-10
JPWO2016171130A1 (ja) 2017-12-21
BR112017020753A2 (ja) 2018-06-26
KR20170107085A (ko) 2017-09-22
US10675714B2 (en) 2020-06-09
EP3287533B1 (en) 2020-01-15
CN107250392A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6455593B2 (ja) 方向性電磁鋼板
JP6409960B2 (ja) 方向性電磁鋼板
JP6575592B2 (ja) 方向性電磁鋼板
JP6418322B2 (ja) 方向性電磁鋼板
JP7010311B2 (ja) 方向性電磁鋼板
JP6597940B1 (ja) 方向性電磁鋼板及びその製造方法
CN111566232B (zh) 方向性电磁钢板
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
JP2019135323A (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514133

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024140

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016783151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15560454

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017134752

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020753

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017020753

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170927