WO2016165162A1 - 一种goa电路及液晶显示器 - Google Patents
一种goa电路及液晶显示器 Download PDFInfo
- Publication number
- WO2016165162A1 WO2016165162A1 PCT/CN2015/078000 CN2015078000W WO2016165162A1 WO 2016165162 A1 WO2016165162 A1 WO 2016165162A1 CN 2015078000 W CN2015078000 W CN 2015078000W WO 2016165162 A1 WO2016165162 A1 WO 2016165162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- circuit
- gate
- clock signal
- stage
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims 3
- 238000012423 maintenance Methods 0.000 abstract description 2
- 102100031867 DNA excision repair protein ERCC-6 Human genes 0.000 description 27
- 102100031868 DNA excision repair protein ERCC-8 Human genes 0.000 description 27
- 101000851684 Homo sapiens Chimeric ERCC6-PGBD3 protein Proteins 0.000 description 27
- 101000920783 Homo sapiens DNA excision repair protein ERCC-6 Proteins 0.000 description 27
- 101000920778 Homo sapiens DNA excision repair protein ERCC-8 Proteins 0.000 description 27
- 238000010586 diagram Methods 0.000 description 18
- 230000009471 action Effects 0.000 description 12
- 238000012546 transfer Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0243—Details of the generation of driving signals
- G09G2310/0251—Precharge or discharge of pixel before applying new pixel voltage
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0267—Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
Definitions
- the present invention relates to the field of liquid crystal display, and in particular to a GOA circuit and a liquid crystal display.
- Gate Driver On Array is a technology that uses the existing thin film transistor liquid crystal display Array process to make the Gate scan drive signal circuit on the Array substrate to realize the drive mode of Gate progressive scan.
- LTPS semiconductors have higher mobility, their threshold voltage values are lower (generally lower than about 0V), and the subthreshold region has a small swing, while many components operate in close state with the GOA circuit in the off state. Even higher than Vth, this will increase LTPS due to leakage of TFT and drift of operating current in the circuit.
- the difficulty of GOA circuit design many scan drive circuits for amorphous silicon semiconductors, can not be easily applied to LTPS TFT-LCD, there will be some functional problems, because this will directly lead to IGZO
- the GOA circuit does not work, so the design of the circuit must take into account the effects of such component characteristics on the GOA circuit.
- the technical problem to be solved by the present invention is to provide a GOA circuit and a liquid crystal display, which can ensure better charging of the scan lines in the GOA circuit, and is beneficial to the normal operation of each node of the circuit.
- a technical solution adopted by the present invention is to provide a GOA circuit for a liquid crystal display, wherein the GOA circuit includes a plurality of GOA units, wherein the N-th level GOA unit pairs the display area of the Nth horizontal scanning line G (N) Charging, N-stage pull-up control circuit, N-stage pull-up circuit, N-stage pull-down circuit, N-stage pull-down circuit and N-stage pull-down sustain circuit included in the N-stage GOA unit; wherein, the N-stage pull-up circuit and the N The stage pull-down maintaining circuit is respectively connected with the Nth stage gate signal point Q(N) and the Nth level horizontal scanning line G(N), the N stage pull-up control circuit, the N-stage pull-down circuit, the N-stage down-transmission circuit and the Nth The level gate signal point Q(N) is connected; the N stage pull-up circuit is turned on when the Nth gate signal point Q(N) is at a high level, receives the first clock signal CK
- the N-stage pull-down sustaining circuit includes: a first transistor T1 having a gate and a drain connected to a DC high voltage H; and a second transistor T2 having a gate connected to a source of the first transistor T1 and a drain connected to a DC high voltage H The source is connected to a common point P(N); the third transistor T3 has a gate connected to the Nth gate signal point Q(N), a drain connected to the source of the first transistor T1, and a source connected to the first straight a low voltage VSS1; a fourth transistor T4 having a gate connected to the Nth gate signal point Q(N), a drain connected to the common point P(N), and a fifth transistor T5 having a gate connected to the Nth gate Signal point Q(N), the drain is connected to the common point P(N); the sixth transistor T6
- a technical solution adopted by the present invention is to provide a GOA circuit for a liquid crystal display, wherein the GOA circuit includes a plurality of GOA units, wherein the N-th level GOA unit pairs the display area of the Nth horizontal scanning line G (N) Charging, N-stage pull-up control circuit, N-stage pull-up circuit, N-stage pull-down circuit, N-stage pull-down circuit and N-stage pull-down sustain circuit included in the N-stage GOA unit; wherein, the N-stage pull-up circuit and the N The stage pull-down maintaining circuit is respectively connected with the Nth stage gate signal point Q(N) and the Nth level horizontal scanning line G(N), the N stage pull-up control circuit, the N-stage pull-down circuit, the N-stage down-transmission circuit and the Nth The level gate signal point Q(N) is connected; the N stage pull-up circuit is turned on when the Nth gate signal point Q(N) is at a high level, receives the first clock signal CK
- the N-stage pull-down maintaining circuit includes: a first transistor T1 having a gate and a drain connected to a DC high voltage H; a second transistor T2 having a gate connected to a source of the first transistor T1 and a drain connected to a DC high voltage H The source is connected to a common point P(N); the third transistor T3 has a gate connected to the Nth gate signal point Q(N), a drain connected to the source of the first transistor T1, and a source connected to the first straight a low voltage VSS1; a fourth transistor T4 having a gate connected to the Nth gate signal point Q(N), a drain connected to the common point P(N), and a fifth transistor T5 having a gate connected to the Nth gate Signal point Q(N), the drain is connected to the common point P(N); the sixth transistor T6 has a gate connected to the source of the fourth transistor T4, a drain connected to the source of the fifth transistor T5, and a source connected to the third a DC low voltage VSS3; a seventh transistor T
- the N-stage pull-down maintaining circuit includes: a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, a ninth transistor T9, a tenth transistor T10, and a An eleven transistor T11; wherein the gate of the ninth transistor T9 is connected to a common point P(N).
- the N-stage pull-down maintaining circuit includes: a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a sixth transistor T6, a seventh transistor T7, an eighth transistor T8, a ninth transistor T9, and a The tenth transistor T10 and the eleventh transistor T11; wherein the drain of the sixth transistor T6 and the source of the ninth transistor T9 are connected to the source of the fourth transistor T4, the gate of the sixth transistor T6 and the gate of the seventh transistor T7 The pole is connected to the Nth gate signal point Q(N).
- the N-level pull-down maintenance circuit includes: a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a sixth transistor T6, a ninth transistor T9, a tenth transistor T10, and an eleventh transistor T11; wherein, the gate of the ninth transistor T9 The gate of the second transistor T2 is connected.
- the gate of the ninth transistor T9 is connected to the common point P(N).
- the N-stage down-transmission circuit further includes an N-stage bootstrap capacitor Cb; the N-stage bootstrap capacitor Cb is connected between the N-th gate signal point Q(N) and the N-th horizontal scan line G(N).
- the control terminal of the N-stage pull-down circuit inputs a third clock signal XCNK2; wherein, the duty ratio of the first clock signal CKN1 is less than 50%, and the start time of the high level of the first clock signal CKN1 and the second clock signal CKN2 The start time of the high level is the same; the high level of the third clock signal XCNK2 corresponds to the low level of the second clock signal CKN2, and the low level of the third clock signal XCNK2 corresponds to the high level of the second clock signal CKN2 .
- the control terminal of the N-stage pull-down circuit inputs a third clock signal XCNK2; wherein the duty ratio of the first clock signal CKN1 is less than 50%, and the end time of the high level of the first clock signal CKN1 and the second clock signal CKN2 The end time of the high level is the same; the high level of the third clock signal XCNK2 corresponds to the low level of the second clock signal CKN2, and the low level of the third clock signal XCNK2 corresponds to the high level of the second clock signal CKN2 .
- another technical solution adopted by the present invention is to provide a liquid crystal display including the above GOA circuit.
- the beneficial effects of the present invention are: different from the prior art, the present invention inputs two kinds of clock signals with different pulse widths for the N-stage pull-up circuit and the N-stage down-transmission circuit, so that the output signal and the downlink signal are separated.
- the Q(N) point can be raised to a higher high potential, the delay of the output signal is reduced, and the scanning line in the GOA circuit is better charged, which is beneficial to the normal operation of each node of the circuit.
- FIG. 1 is a schematic structural diagram of a cascade of a plurality of GOA units in a first embodiment of a GOA circuit of the present invention
- FIG. 2 is a schematic structural diagram of a GOA unit in a first embodiment of the GOA circuit of the present invention
- FIG. 3 is a schematic diagram showing a specific circuit connection of a GOA unit in a second embodiment of the GOA circuit of the present invention
- FIG. 4 is a schematic diagram of a first voltage waveform of each node of a GOA unit in a second embodiment of the GOA circuit of the present invention
- FIG. 5 is a schematic diagram of a second voltage waveform of each node of the GOA unit in the second embodiment of the GOA circuit of the present invention.
- FIG. 6 is a schematic diagram showing a specific circuit connection of a GOA unit in a third embodiment of the GOA circuit of the present invention.
- FIG. 7 is a schematic diagram showing a specific circuit connection of a GOA unit in a fourth embodiment of the GOA circuit of the present invention.
- FIG. 8 is a schematic diagram showing a specific circuit connection of a GOA unit in a fifth embodiment of the GOA circuit of the present invention.
- FIG. 9 is a schematic diagram showing a specific circuit connection of a GOA unit in a sixth embodiment of the GOA circuit of the present invention.
- the GOA circuit includes a plurality of GOA units, wherein an N-th horizontal GOA unit of the N-level GOA unit pairs display area Charging.
- FIG. 2 a schematic structural diagram of a GOA unit in a first embodiment of the GOA circuit of the present invention, an N-stage pull-up control circuit 101, an N-stage pull-up circuit 102, an N-stage downlink transmission circuit 103, and an N-stage pull-down included in the N-stage GOA unit
- the N-stage pull-up control circuit 101, the N-stage pull-down circuit 104, and the N-stage down-transfer circuit 103 are connected to the N-th gate signal point Q(N); the N-stage pull-up circuit is at the Nth-level gate signal point Q ( When N) is high, it is turned on, receives the first clock signal CKN1, and charges the N-level horizontal scanning line G(N) when
- the N-stage pull-up control circuit 101 turns on and raises the potential of the N-th gate signal point Q(N) to a high level when receiving the high-potential ST(N-1) signal of the upper-level GOA unit to turn on the N-level.
- the pull-up circuit 102 and the N-stage down-transfer circuit 103 are configured to output the first clock signal CKN1 and the second clock signal CKN2 to the N-stage pull-up circuit 102 and the N-stage down-transfer circuit 103, respectively, and output the N-stage pull-down circuit 104 to pull down.
- the potential of the N-stage gate signal point Q(N) is low, and the N-stage pull-down maintaining circuit 105 maintains the potential of the Nth-level gate signal point Q(N) and the N-th horizontal scanning line G(N) to a low potential .
- the present embodiment inputs two kinds of clock signals with different pulse widths for the N-stage pull-up circuit and the N-stage downlink circuit, so that the output signal and the downlink signal are separated, and the Q(N) point can be made. Raising a good high potential reduces the delay of the output signal and ensures better charging of the scan lines in the GOA circuit, which is beneficial to the normal operation of each node of the circuit.
- a specific circuit connection diagram of a GOA unit in a second embodiment of the GOA circuit of the present invention includes an N-stage pull-up control circuit 301, an N-stage pull-up circuit 302, and an N-level downlink transmission circuit 303.
- N-stage pull-down circuit 304 and an N-stage pull-down sustain circuit 305 wherein the N-stage pull-up circuit 302 and the N-stage pull-down sustain circuit 305 are respectively associated with the Nth-level gate signal point Q(N) and the N-th horizontal scanning line G ( N) connection, N-stage pull-up control circuit 301, N-stage pull-down circuit 304, N-stage down-transfer circuit 303 are connected to the N-th gate signal point Q(N); N-stage pull-up circuit 302 and N-stage down-transmission circuit 303 is turned on when Q(N) is high level, and receives the output of the first clock signal CKN1 and the second clock signal CKN2, respectively, and the pulse width of the second clock signal CKN2 is greater than the pulse width of the first clock signal CKN1.
- the N-stage pull-down maintaining circuit 305 includes:
- the first transistor T1 has a gate and a drain connected to the DC high voltage H; the second transistor T2 has a gate connected to the source of the first transistor T1, a drain connected to the DC high voltage H, and a source connected to a common point P ( N); the third transistor T3 has a gate connected to the Nth gate signal point Q(N), a drain connected to the source of the first transistor T1, a source connected to the first DC low voltage VSS1, and a fourth transistor T4 The gate is connected to the Nth gate signal point Q(N), the drain is connected to the common point P(N), and the fifth transistor T5 is connected to the Nth gate signal point Q(N) and the drain.
- a sixth transistor T6 having a gate connected to the source of the fourth transistor T4, a drain connected to the source of the fifth transistor T5, a source connected to the third DC low voltage VSS3, and a seventh transistor T7
- the gate is connected to the source of the fourth transistor T4, the source is connected to the third DC low voltage VSS3, the eighth transistor T8 has a gate and a drain connected to the DC high voltage H, and the ninth transistor T9 is connected to the gate.
- the source of the eight transistor T8 is connected to the DC high voltage H, the source is connected to the source of the fifth transistor T5, and the tenth transistor T10 is connected to the gate.
- FIG. 4 a first voltage waveform diagram of each node of the GOA unit in the second embodiment of the GOA circuit of the present invention, in which the control terminal of the N-stage pull-down circuit inputs XCKN2, and the following is the second clock signal CKN2.
- the cycle is an example to introduce the working principle of the circuit:
- the first action interval since the upper downlink signal ST(N-1) is low, the N-stage pull-up control circuit 301 and the N-level down-transmission circuit are both turned off, and T3, T4, and T5 are also turned off, but due to T1.
- T2 is turned on and the H signal is input, the common point P(N) is high, and when T10 and T11 are turned on, the Nth gate signal point Q(N) and the Nth gate signal point Q(N) are respectively pulled down.
- T2 is turned on and the H signal is input, the common point P(N) is high, and when T10 and T11 are turned on, the Nth gate signal point Q(N) and the Nth gate signal point Q(N) are respectively pulled down.
- T10 and T11 are turned on, the Nth gate signal point Q(N) and the Nth gate signal point Q(N) are respectively pulled down.
- T10 and T11 are turned on, the Nth gate signal point Q(N) and the Nth gate signal point Q(N) are
- the second action interval since only the first clock signal CKN1 changes, the other clock signals and the downlink signals do not change, but because the N-stage pull-up circuit is turned off, the potentials of other nodes are not changed.
- the third action interval the upper downlink signal ST(N-1) is high, the N-stage pull-up control circuit 301 is turned on, the N-th gate signal point Q(N) is raised, and the common point P(N) is lowered to low.
- the fourth action interval due to the bootstrap action of the capacitor Cb, the Nth gate signal point Q(N) continues to remain at a high potential, G(N) is the same as CKN1, and ST(N) is the same as CKN2.
- the fifth action interval the second clock signal CKN2 becomes a high potential, outputs a high-level N-stage down signal ST(N), and raises the potential of the Nth-stage gate signal point Q(N) to a higher level through the capacitor Cb. High, the free output of the N-stage pull-up circuit 302 and the N-stage down-transfer circuit 303 is guaranteed.
- the sixth action interval the potential of the Nth gate signal point Q(N) is again raised to a higher level, CKN1 becomes a high potential, and the Nth horizontal scanning line G(N) smoothly outputs a high potential signal.
- XCKN2 becomes a high potential, and the potential of the Nth gate signal point Q(N) is pulled down, and the N-stage pull-up circuit 302 and the N-stage down-transfer circuit 303 are both turned off, and the N-th horizontal scanning line G ( N) and the down signal ST(N) are low.
- the eighth action interval the potential of each point is similar to the seventh action interval, and each output maintains a low potential.
- the control terminal of the N-stage pull-down circuit inputs the third clock signal XCNK2; wherein the duty ratio of the first clock signal CKN1 is less than 50%, and the start time of the high level of the first clock signal CKN1 is The start time of the high level of the two clock signals CKN2 is the same; the high level of the third clock signal XCNK2 corresponds to the low level of the second clock signal CKN2, and the low level of the third clock signal XCNK2 corresponds to the second clock signal CKN2 High level.
- FIG. 5 a second voltage waveform diagram of each node of the GOA unit in the second embodiment of the GOA circuit of the present invention is shown.
- the second waveform is similar to the first waveform except that the phase of the first clock signal CKN1 is shifted to the left by a quarter period, resulting in the Nth gate signal point Q(N) being in the sixth action interval.
- the potential is slightly lowered, and the Nth horizontal scanning line G(N) is output in the fifth action section.
- the control terminal of the N-stage pull-down circuit inputs the third clock signal XCNK2; wherein the duty ratio of the first clock signal CKN1 is less than 50%, and the end time of the high level of the first clock signal CKN1 is The end time of the high level of the two clock signals CKN2 is the same; the high level of the third clock signal XCNK2 corresponds to the low level of the second clock signal CKN2, and the low level of the third clock signal XCNK2 corresponds to the second clock signal CKN2 High level.
- the start time and the end time of the high level of the first clock signal CKN1 may not be equal to the second clock signal CKN2.
- the start time and the end time of the high level are the same, and the high level interval of the first clock signal CKN1 may be within the high level range of the second clock signal CKN2.
- FIG. 6 a schematic diagram of a specific circuit connection of a GOA unit in a third embodiment of the GOA circuit of the present invention.
- This embodiment differs from the second embodiment in that the N-stage pull-down maintaining circuit 605 does not include the seventh transistor T7 and the eighth transistor T8; the gate of the ninth transistor T9 is connected to the common point P(N).
- This embodiment reduces two TFT transistors, simplifies the circuit, and reduces power consumption.
- FIG. 7 a schematic diagram of a specific circuit connection of a GOA unit in a fourth embodiment of the GOA circuit of the present invention.
- the N-stage pull-down maintaining circuit 705 does not include the fifth transistor T5; the drain of the sixth transistor T6 and the source of the ninth transistor T9 are connected to the source of the fourth transistor T4, The gate of the six transistor T6 and the gate of the seventh transistor T7 are connected to the Nth stage gate signal point Q(N).
- FIG. 8 a schematic diagram of a specific circuit connection of a GOA unit in a fifth embodiment of the GOA circuit of the present invention.
- This embodiment differs from the fourth embodiment in that the N-stage pull-down maintaining circuit 805 does not include the seventh transistor T7 and the eighth transistor T8; the gate of the ninth transistor T9 is connected to the gate of the second transistor T2.
- This embodiment utilizes the existing circuit key points as signals, reduces the connection of the DC high potential signal H, and simplifies the circuit.
- FIG. 9 a schematic diagram of a specific circuit connection of a GOA unit in a sixth embodiment of the GOA circuit of the present invention.
- This embodiment is a modification of the fifth embodiment, and the principle is similar.
- the bootstrap capacitor Cb in the N-stage down-transmission circuit in the above various embodiments can be removed.
- the liquid crystal display comprises a GOA circuit as in all of the above embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Shift Register Type Memory (AREA)
Abstract
Description
Claims (18)
- 一种GOA电路,用于液晶显示器,其中,所述GOA电路包括多个GOA单元,其中N级GOA单元对显示区域的第N级水平扫描线(G(N))充电,所述N级GOA单元包括的N级上拉控制电路、N级上拉电路、N级下传电路、N级下拉电路及N级下拉维持电路;其中,所述N级上拉电路及所述N级下拉维持电路分别与第N级栅极信号点(Q(N))和所述第N级水平扫描线(G(N))连接,所述N级上拉控制电路、N级下拉电路、N级下传电路与所述第N级栅极信号点(Q(N))连接;所述N级上拉电路在所述第N级栅极信号点(Q(N))为高电平时开启,接收第一时钟信号(CKN1),并在第一时钟信号(CKN1)为高电位时对所述N级水平扫描线(G(N))充电;所述N级下传电路在所述第N级栅极信号点(Q(N))为高电平时开启,接收第二时钟信号(CKN2),并输出N级下传信号ST(N)以控制N+1级GOA单元的工作;其中,所述第二时钟信号(CKN2)的脉宽大于所述第一时钟信号(CKN1)的脉宽;所述N级下拉维持电路包括:第一晶体管(T1),其栅极和漏极连接直流高电压(H);第二晶体管(T2),其栅极连接所述第一晶体管(T1)的源极,漏极连接所述直流高电压(H),源极连接一公共点(P(N));第三晶体管(T3),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接第一晶体管(T1)的源极,源极连接第一直流低电压(VSS1);第四晶体管(T4),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接所述公共点(P(N));第五晶体管(T5),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接所述公共点(P(N));第六晶体管(T6),其栅极连接所述第四晶体管(T4)的源极,漏极连接所述第五晶体管(T5)的源极,源极连接第三直流低电压(VSS3);第七晶体管(T7),其栅极连接所述第四晶体管(T4)的源极,源极连接所述第三直流低电压(VSS3);第八晶体管(T8),其栅极及漏极连接所述直流高电压(H);第九晶体管(T9),其栅极连接所述第八晶体管(T8)的源极,漏极连接所述直流高电压(H),源极连接所述第五晶体管(T5)的源极;第十晶体管(T10),其栅极连接所述公共点(P(N)),漏极连接所述第N级栅极信号点(Q(N)),源极连接第二直流低电压(VSS2);第十一晶体管(T11),其栅极连接所述公共点(P(N)),漏极连接所述第N级水平扫描线(G(N)),源极连接第二直流低电压(VSS2);其中,所述第一直流低电压(VSS1)大于所述第二直流低电压(VSS2),所述第二直流低电压(VSS2)大于所述第三直流低电压(VSS3);所述N级下传电路还包括N级自举电容(Cb);所述N级自举电容(Cb)连接于所述第N级栅极信号点(Q(N))与所述第N级水平扫描线(G(N))之间。
- 根据权利要求1所述的GOA电路,其中,所述N级下拉维持电路包括:所述第一晶体管(T1)、所述第二晶体管(T2)、所述第三晶体管(T3)、所述第四晶体管(T4)、所述第五晶体管(T5)、所述第六晶体管(T6)、所述第九晶体管(T9)、所述第十晶体管(T10)及所述第十一晶体管(T11);其中,所述第九晶体管(T9)的栅极连接所述公共点(P(N))。
- 根据权利要求2所述的GOA电路,其中,所述N级下拉维持电路包括:所述第一晶体管(T1)、所述第二晶体管(T2)、所述第三晶体管(T3)、所述第四晶体管(T4)、所述第六晶体管(T6)、所述第七晶体管(T7)、所述第八晶体管(T8)、所述第九晶体管(T9)、所述第十晶体管(T10)及所述第十一晶体管(T11);其中,所述第六晶体管(T6)的漏极及第九晶体管(T9)的源极连接第四晶体管(T4)的源极,第六晶体管(T6)的栅极及第七晶体管(T7)的栅极连接所述第N级栅极信号点(Q(N))。
- 根据权利要求3所述的GOA电路,其中,所述N级下拉维持电路包括:所述第一晶体管(T1)、所述第二晶体管(T2)、所述第三晶体管(T3)、所述第四晶体管(T4)、所述第六晶体管(T6)、所述第九晶体管(T9)、所述第十晶体管(T10)及所述第十一晶体管(T11);其中,所述第九晶体管(T9)的栅极连接所述第二晶体管(T2)的栅极。
- 根据权利要求4所述的GOA电路,其中,所述第九晶体管(T9)的栅极连接所述公共点(P(N))。
- 根据权利要求5所述的GOA电路,其中,所述N级下拉电路的控制端输入第三时钟信号(XCNK2);其中,所述第一时钟信号(CKN1)的占空比小于50%,且所述第一时钟信号(CKN1)的高电平的开始时刻与所述第二时钟信号(CKN2)的高电平的开始时刻相同;所述第三时钟信号(XCNK2)的高电平对应于所述第二时钟信号(CKN2)的低电平,所述第三时钟信号(XCNK2)的低电平对应于所述第二时钟信号(CKN2)的高电平。
- 根据权利要求5所述的GOA电路,其中,所述N级下拉电路的控制端输入所述第三时钟信号(XCNK2);其中,所述第一时钟信号(CKN1)的占空比小于50%,且所述第一时钟信号(CKN1)的高电平的结束时刻与所述第二时钟信号(CKN2)的高电平的结束时刻相同;所述第三时钟信号(XCNK2)的高电平对应于所述第二时钟信号(CKN2)的低电平,所述第三时钟信号(XCNK2)的低电平对应于所述第二时钟信号(CKN2)的高电平。
- 一种GOA电路,用于液晶显示器,其中,所述GOA电路包括多个GOA单元,其中N级GOA单元对显示区域的第N级水平扫描线(G(N))充电,所述N级GOA单元包括的N级上拉控制电路、N级上拉电路、N级下传电路、N级下拉电路及N级下拉维持电路;其中,所述N级上拉电路及所述N级下拉维持电路分别与第N级栅极信号点(Q(N))和所述第N级水平扫描线(G(N))连接,所述N级上拉控制电路、N级下拉电路、N级下传电路与所述第N级栅极信号点(Q(N))连接;所述N级上拉电路在所述第N级栅极信号点(Q(N))为高电平时开启,接收第一时钟信号(CKN1),并在第一时钟信号(CKN1)为高电位时对所述N级水平扫描线(G(N))充电;所述N级下传电路在所述第N级栅极信号点(Q(N))为高电平时开启,接收第二时钟信号(CKN2),并输出N级下传信号ST(N)以控制N+1级GOA单元的工作;其中,所述第二时钟信号(CKN2)的脉宽大于所述第一时钟信号(CKN1)的脉宽。
- 根据权利要求8所述的GOA电路,其中,所述N级下拉维持电路包括:第一晶体管(T1),其栅极和漏极连接直流高电压(H);第二晶体管(T2),其栅极连接所述第一晶体管(T1)的源极,漏极连接所述直流高电压(H),源极连接一公共点(P(N));第三晶体管(T3),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接第一晶体管(T1)的源极,源极连接第一直流低电压(VSS1);第四晶体管(T4),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接所述公共点(P(N));第五晶体管(T5),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接所述公共点(P(N));第六晶体管(T6),其栅极连接所述第四晶体管(T4)的源极,漏极连接所述第五晶体管(T5)的源极,源极连接第三直流低电压(VSS3);第七晶体管(T7),其栅极连接所述第四晶体管(T4)的源极,源极连接所述第三直流低电压(VSS3);第八晶体管(T8),其栅极及漏极连接所述直流高电压(H);第九晶体管(T9),其栅极连接所述第八晶体管(T8)的源极,漏极连接所述直流高电压(H),源极连接所述第五晶体管(T5)的源极;第十晶体管(T10),其栅极连接所述公共点(P(N)),漏极连接所述第N级栅极信号点(Q(N)),源极连接第二直流低电压(VSS2);第十一晶体管(T11),其栅极连接所述公共点(P(N)),漏极连接所述第N级水平扫描线(G(N)),源极连接第二直流低电压(VSS2);其中,所述第一直流低电压(VSS1)大于所述第二直流低电压(VSS2),所述第二直流低电压(VSS2)大于所述第三直流低电压(VSS3)。
- 根据权利要求9所述的GOA电路,其中,所述N级下拉维持电路包括:所述第一晶体管(T1)、所述第二晶体管(T2)、所述第三晶体管(T3)、所述第四晶体管(T4)、所述第五晶体管(T5)、所述第六晶体管(T6)、所述第九晶体管(T9)、所述第十晶体管(T10)及所述第十一晶体管(T11);其中,所述第九晶体管(T9)的栅极连接所述公共点(P(N))。
- 根据权利要求10所述的GOA电路,其中,所述N级下拉维持电路包括:所述第一晶体管(T1)、所述第二晶体管(T2)、所述第三晶体管(T3)、所述第四晶体管(T4)、所述第六晶体管(T6)、所述第七晶体管(T7)、所述第八晶体管(T8)、所述第九晶体管(T9)、所述第十晶体管(T10)及所述第十一晶体管(T11);其中,所述第六晶体管(T6)的漏极及第九晶体管(T9)的源极连接第四晶体管(T4)的源极,第六晶体管(T6)的栅极及第七晶体管(T7)的栅极连接所述第N级栅极信号点(Q(N))。
- 根据权利要求11所述的GOA电路,其中,所述N级下拉维持电路包括:所述第一晶体管(T1)、所述第二晶体管(T2)、所述第三晶体管(T3)、所述第四晶体管(T4)、所述第六晶体管(T6)、所述第九晶体管(T9)、所述第十晶体管(T10)及所述第十一晶体管(T11);其中,所述第九晶体管(T9)的栅极连接所述第二晶体管(T2)的栅极。
- 根据权利要求12所述的GOA电路,其中,所述第九晶体管(T9)的栅极连接所述公共点(P(N))。
- 根据权利要求12所述的GOA电路,其中,所述N级下拉电路的控制端输入第三时钟信号(XCNK2);其中,所述第一时钟信号(CKN1)的占空比小于50%,且所述第一时钟信号(CKN1)的高电平的开始时刻与所述第二时钟信号(CKN2)的高电平的开始时刻相同;所述第三时钟信号(XCNK2)的高电平对应于所述第二时钟信号(CKN2)的低电平,所述第三时钟信号(XCNK2)的低电平对应于所述第二时钟信号(CKN2)的高电平。
- 根据权利要求12所述的GOA电路,其中,所述N级下拉电路的控制端输入所述第三时钟信号(XCNK2);其中,所述第一时钟信号(CKN1)的占空比小于50%,且所述第一时钟信号(CKN1)的高电平的结束时刻与所述第二时钟信号(CKN2)的高电平的结束时刻相同;所述第三时钟信号(XCNK2)的高电平对应于所述第二时钟信号(CKN2)的低电平,所述第三时钟信号(XCNK2)的低电平对应于所述第二时钟信号(CKN2)的高电平。
- 根据权利要求8所述的GOA电路,其中,所述N级下传电路还包括N级自举电容(Cb);所述N级自举电容(Cb)连接于所述第N级栅极信号点(Q(N))与所述第N级水平扫描线(G(N))之间。
- 一种液晶显示器,其中,所述液晶显示器包括GOA电路,所述GOA电路包括多个GOA单元,其中N级GOA单元对显示区域的第N级水平扫描线(G(N))充电,所述N级GOA单元包括的N级上拉控制电路、N级上拉电路、N级下传电路、N级下拉电路及N级下拉维持电路;其中,所述N级上拉电路及所述N级下拉维持电路分别与第N级栅极信号点(Q(N))和所述第N级水平扫描线(G(N))连接,所述N级上拉控制电路、N级下拉电路、N级下传电路与所述第N级栅极信号点(Q(N))连接;所述N级上拉电路在所述第N级栅极信号点(Q(N))为高电平时开启,接收第一时钟信号(CKN1),并在第一时钟信号(CKN1)为高电位时对所述N级水平扫描线(G(N))充电;所述N级下传电路在所述第N级栅极信号点(Q(N))为高电平时开启,接收第二时钟信号(CKN2),并输出N级下传信号ST(N)以控制N+1级GOA单元的工作;其中,所述第二时钟信号(CKN2)的脉宽大于所述第一时钟信号(CKN1)的脉宽。
- 根据权利要求17所述的GOA电路,其中,所述N级下拉维持电路包括:第一晶体管(T1),其栅极和漏极连接直流高电压(H);第二晶体管(T2),其栅极连接所述第一晶体管(T1)的源极,漏极连接所述直流高电压(H),源极连接一公共点(P(N));第三晶体管(T3),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接第一晶体管(T1)的源极,源极连接第一直流低电压(VSS1);第四晶体管(T4),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接所述公共点(P(N));第五晶体管(T5),其栅极连接所述第N级栅极信号点(Q(N)),漏极连接所述公共点(P(N));第六晶体管(T6),其栅极连接所述第四晶体管(T4)的源极,漏极连接所述第五晶体管(T5)的源极,源极连接第三直流低电压(VSS3);第七晶体管(T7),其栅极连接所述第四晶体管(T4)的源极,源极连接所述第三直流低电压(VSS3);第八晶体管(T8),其栅极及漏极连接所述直流高电压(H);第九晶体管(T9),其栅极连接所述第八晶体管(T8)的源极,漏极连接所述直流高电压(H),源极连接所述第五晶体管(T5)的源极;第十晶体管(T10),其栅极连接所述公共点(P(N)),漏极连接所述第N级栅极信号点(Q(N)),源极连接第二直流低电压(VSS2);第十一晶体管(T11),其栅极连接所述公共点(P(N)),漏极连接所述第N级水平扫描线(G(N)),源极连接第二直流低电压(VSS2);其中,所述第一直流低电压(VSS1)大于所述第二直流低电压(VSS2),所述第二直流低电压(VSS2)大于所述第三直流低电压(VSS3)。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177023829A KR102019578B1 (ko) | 2015-04-17 | 2015-04-30 | Goa 회로 및 액정 디스플레이 |
RU2017134894A RU2667458C1 (ru) | 2015-04-17 | 2015-04-30 | Схема goa и жидкокристаллический дисплей |
US14/765,791 US9589523B2 (en) | 2015-04-17 | 2015-04-30 | GOA circuit and liquid crystal display |
JP2017540746A JP6542901B2 (ja) | 2015-04-17 | 2015-04-30 | Goa回路と液晶ディスプレイ |
GB1708787.5A GB2548275B (en) | 2015-04-17 | 2015-04-30 | GOA circuit and liquid crystal display |
DE112015005435.9T DE112015005435T5 (de) | 2015-04-17 | 2015-04-30 | GOA-Schaltung und Flüssigkristallanzeige |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510186029.8A CN104795034B (zh) | 2015-04-17 | 2015-04-17 | 一种goa电路及液晶显示器 |
CN201510186029.8 | 2015-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016165162A1 true WO2016165162A1 (zh) | 2016-10-20 |
Family
ID=53559796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/078000 WO2016165162A1 (zh) | 2015-04-17 | 2015-04-30 | 一种goa电路及液晶显示器 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9589523B2 (zh) |
JP (1) | JP6542901B2 (zh) |
KR (1) | KR102019578B1 (zh) |
CN (1) | CN104795034B (zh) |
DE (1) | DE112015005435T5 (zh) |
GB (1) | GB2548275B (zh) |
RU (1) | RU2667458C1 (zh) |
WO (1) | WO2016165162A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105185347B (zh) * | 2015-10-29 | 2018-01-26 | 武汉华星光电技术有限公司 | 一种基于ltps的goa电路及显示面板 |
CN105304044B (zh) * | 2015-11-16 | 2017-11-17 | 深圳市华星光电技术有限公司 | 液晶显示设备及goa电路 |
CN105575349B (zh) * | 2015-12-23 | 2018-03-06 | 武汉华星光电技术有限公司 | Goa电路及液晶显示装置 |
CN105405382B (zh) * | 2015-12-24 | 2018-01-12 | 深圳市华星光电技术有限公司 | 阵列栅极驱动电路与显示面板 |
CN106251816B (zh) | 2016-08-31 | 2018-10-12 | 深圳市华星光电技术有限公司 | 一种栅极驱动电路及液晶显示装置 |
CN106531109A (zh) | 2016-12-30 | 2017-03-22 | 深圳市华星光电技术有限公司 | 一种goa电路以及液晶显示器 |
TWI606435B (zh) * | 2017-04-06 | 2017-11-21 | 敦泰電子股份有限公司 | 閘極線驅動電路及包含其之顯示裝置 |
CN106910484B (zh) * | 2017-05-09 | 2019-06-21 | 惠科股份有限公司 | 一种显示装置及其驱动电路和方法 |
CN107039016B (zh) * | 2017-06-07 | 2019-08-13 | 深圳市华星光电技术有限公司 | Goa驱动电路及液晶显示器 |
CN107578757B (zh) * | 2017-10-17 | 2020-04-28 | 深圳市华星光电技术有限公司 | 一种goa电路及液晶面板、显示装置 |
CN110197697B (zh) * | 2018-02-24 | 2021-02-26 | 京东方科技集团股份有限公司 | 移位寄存器、栅极驱动电路以及显示设备 |
CN108847193A (zh) * | 2018-06-20 | 2018-11-20 | 深圳市华星光电半导体显示技术有限公司 | Goa电路及具有该goa电路的液晶显示装置 |
CN109192167A (zh) * | 2018-10-12 | 2019-01-11 | 深圳市华星光电半导体显示技术有限公司 | 阵列基板行驱动电路及液晶显示器 |
CN110021279A (zh) * | 2019-03-05 | 2019-07-16 | 深圳市华星光电技术有限公司 | Goa电路 |
CN110070838A (zh) * | 2019-04-04 | 2019-07-30 | 深圳市华星光电半导体显示技术有限公司 | Goa电路结构及驱动方法 |
CN110335572B (zh) | 2019-06-27 | 2021-10-01 | 重庆惠科金渝光电科技有限公司 | 阵列基板行驱动电路单元与其驱动电路及液晶显示面板 |
CN110827776B (zh) * | 2019-10-16 | 2021-07-06 | Tcl华星光电技术有限公司 | Goa器件及栅极驱动电路 |
CN111477155A (zh) | 2020-05-13 | 2020-07-31 | 武汉华星光电技术有限公司 | 驱动电路及显示面板 |
CN114115783B (zh) * | 2021-11-29 | 2023-11-28 | 武汉华星光电技术有限公司 | 分布式sop显示面板及显示系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040189585A1 (en) * | 2003-03-25 | 2004-09-30 | Seung-Hwan Moon | Shift register and display device having the same |
CN103928007A (zh) * | 2014-04-21 | 2014-07-16 | 深圳市华星光电技术有限公司 | 一种用于液晶显示的goa电路及液晶显示装置 |
CN104464660A (zh) * | 2014-11-03 | 2015-03-25 | 深圳市华星光电技术有限公司 | 基于低温多晶硅半导体薄膜晶体管的goa电路 |
CN104464665A (zh) * | 2014-12-08 | 2015-03-25 | 深圳市华星光电技术有限公司 | 一种扫描驱动电路 |
CN104464656A (zh) * | 2014-11-03 | 2015-03-25 | 深圳市华星光电技术有限公司 | 基于低温多晶硅半导体薄膜晶体管的goa电路 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100803163B1 (ko) * | 2001-09-03 | 2008-02-14 | 삼성전자주식회사 | 액정표시장치 |
TW200933577A (en) * | 2008-01-17 | 2009-08-01 | Novatek Microelectronics Corp | Driving device for a gate driver in a flat panel display |
TWI410941B (zh) * | 2009-03-24 | 2013-10-01 | Au Optronics Corp | 可改善畫面閃爍之液晶顯示器和相關驅動方法 |
US8605077B2 (en) * | 2009-07-10 | 2013-12-10 | Sharp Kabushiki Kaisha | Display device |
BR112012008660A2 (pt) * | 2009-10-16 | 2016-04-19 | Sharp Kk | circuito de acionamento de exibição, dispositivo de exibição, e método de acionamento de exibição |
US9275585B2 (en) * | 2010-12-28 | 2016-03-01 | Semiconductor Energy Laboratory Co., Ltd. | Driving method of field sequential liquid crystal display device |
CN102654982B (zh) * | 2011-05-16 | 2013-12-04 | 京东方科技集团股份有限公司 | 移位寄存器单元电路、移位寄存器、阵列基板及液晶显示器 |
CN102629444B (zh) * | 2011-08-22 | 2014-06-25 | 北京京东方光电科技有限公司 | 栅极集成驱动电路、移位寄存器及显示屏 |
CN102681273A (zh) * | 2011-09-22 | 2012-09-19 | 京东方科技集团股份有限公司 | Tft-lcd面板及其驱动方法 |
CN103730094B (zh) * | 2013-12-30 | 2016-02-24 | 深圳市华星光电技术有限公司 | Goa电路结构 |
CN104064158B (zh) * | 2014-07-17 | 2016-05-04 | 深圳市华星光电技术有限公司 | 具有自我补偿功能的栅极驱动电路 |
CN104464662B (zh) * | 2014-11-03 | 2017-01-25 | 深圳市华星光电技术有限公司 | 基于低温多晶硅半导体薄膜晶体管的goa电路 |
CN104505048A (zh) * | 2014-12-31 | 2015-04-08 | 深圳市华星光电技术有限公司 | 一种goa电路及液晶显示装置 |
-
2015
- 2015-04-17 CN CN201510186029.8A patent/CN104795034B/zh active Active
- 2015-04-30 WO PCT/CN2015/078000 patent/WO2016165162A1/zh active Application Filing
- 2015-04-30 JP JP2017540746A patent/JP6542901B2/ja active Active
- 2015-04-30 US US14/765,791 patent/US9589523B2/en active Active
- 2015-04-30 KR KR1020177023829A patent/KR102019578B1/ko active IP Right Grant
- 2015-04-30 DE DE112015005435.9T patent/DE112015005435T5/de not_active Ceased
- 2015-04-30 GB GB1708787.5A patent/GB2548275B/en active Active
- 2015-04-30 RU RU2017134894A patent/RU2667458C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040189585A1 (en) * | 2003-03-25 | 2004-09-30 | Seung-Hwan Moon | Shift register and display device having the same |
CN103928007A (zh) * | 2014-04-21 | 2014-07-16 | 深圳市华星光电技术有限公司 | 一种用于液晶显示的goa电路及液晶显示装置 |
CN104464660A (zh) * | 2014-11-03 | 2015-03-25 | 深圳市华星光电技术有限公司 | 基于低温多晶硅半导体薄膜晶体管的goa电路 |
CN104464656A (zh) * | 2014-11-03 | 2015-03-25 | 深圳市华星光电技术有限公司 | 基于低温多晶硅半导体薄膜晶体管的goa电路 |
CN104464665A (zh) * | 2014-12-08 | 2015-03-25 | 深圳市华星光电技术有限公司 | 一种扫描驱动电路 |
Also Published As
Publication number | Publication date |
---|---|
CN104795034A (zh) | 2015-07-22 |
DE112015005435T5 (de) | 2017-09-07 |
JP2018511071A (ja) | 2018-04-19 |
RU2667458C1 (ru) | 2018-09-19 |
US9589523B2 (en) | 2017-03-07 |
JP6542901B2 (ja) | 2019-07-10 |
GB2548275B (en) | 2021-08-18 |
KR102019578B1 (ko) | 2019-09-06 |
KR20170108093A (ko) | 2017-09-26 |
US20160307535A1 (en) | 2016-10-20 |
GB201708787D0 (en) | 2017-07-19 |
GB2548275A (en) | 2017-09-13 |
CN104795034B (zh) | 2018-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016165162A1 (zh) | 一种goa电路及液晶显示器 | |
WO2016106803A1 (zh) | 用于液晶显示装置的goa电路 | |
WO2018072304A1 (zh) | Goa驱动电路及液晶显示装置 | |
WO2018094807A1 (zh) | Goa驱动电路及液晶显示装置 | |
WO2018072303A1 (zh) | Goa驱动电路及液晶显示装置 | |
WO2018072288A1 (zh) | Goa驱动电路及液晶显示装置 | |
WO2016070519A1 (zh) | 基于低温多晶硅半导体薄膜晶体管的goa电路 | |
WO2016161679A1 (zh) | 一种goa电路及液晶显示器 | |
WO2020238013A1 (zh) | Goa 电路及阵列基板 | |
WO2016106802A1 (zh) | 用于液晶显示装置的goa电路 | |
WO2018223519A1 (zh) | Goa驱动电路及液晶显示器 | |
WO2018218718A1 (zh) | 双向移位寄存器单元、双向移位寄存器及显示面板 | |
WO2016106823A1 (zh) | 液晶显示装置及其栅极驱动器 | |
WO2016070510A1 (zh) | 基于低温多晶硅半导体薄膜晶体管的goa电路 | |
WO2019010810A1 (zh) | 一种goa电路及液晶显示器 | |
WO2018018724A1 (zh) | 扫描驱动电路及具有该电路的平面显示装置 | |
JP6773305B2 (ja) | Goa回路及び液晶ディスプレイ | |
WO2017080082A1 (zh) | 液晶显示设备及goa电路 | |
WO2016070508A1 (zh) | 基于低温多晶硅半导体薄膜晶体管的goa电路 | |
WO2017028350A1 (zh) | 液晶显示装置及其goa扫描电路 | |
WO2018188119A1 (zh) | 液晶显示装置及其goa电路 | |
WO2017045220A1 (zh) | 一种goa电路及液晶显示器 | |
WO2017201810A1 (zh) | 基于ltps半导体薄膜晶体管的goa电路 | |
WO2020215435A1 (zh) | Goa电路及显示面板 | |
WO2017113443A1 (zh) | 阵列基板行驱动电路及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14765791 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15888866 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 201708787 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20150430 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015005435 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017540746 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177023829 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017134894 Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15888866 Country of ref document: EP Kind code of ref document: A1 |