[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016159200A1 - Exposure device, method for producing flat panel display, method for producing device, and exposure method - Google Patents

Exposure device, method for producing flat panel display, method for producing device, and exposure method Download PDF

Info

Publication number
WO2016159200A1
WO2016159200A1 PCT/JP2016/060592 JP2016060592W WO2016159200A1 WO 2016159200 A1 WO2016159200 A1 WO 2016159200A1 JP 2016060592 W JP2016060592 W JP 2016060592W WO 2016159200 A1 WO2016159200 A1 WO 2016159200A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
optical system
projection optical
mark detection
scanning
Prior art date
Application number
PCT/JP2016/060592
Other languages
French (fr)
Japanese (ja)
Inventor
一夫 内藤
青木 保夫
雅幸 長島
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201680020549.4A priority Critical patent/CN107533303B/en
Priority to JP2017510164A priority patent/JP6855008B2/en
Priority to KR1020177030845A priority patent/KR102549056B1/en
Publication of WO2016159200A1 publication Critical patent/WO2016159200A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706845Calibration, e.g. tool-to-tool calibration, beam alignment, spot position or focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • the present invention relates to an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, and an exposure method. More specifically, the present invention relates to an exposure apparatus that scans an energy beam in a predetermined scanning direction to form a predetermined pattern. The present invention relates to an exposure apparatus and method for forming on an object, and a method of manufacturing a flat panel display or device including the exposure apparatus or method.
  • an energy beam is applied to a pattern formed on a mask or reticle (hereinafter collectively referred to as “mask”).
  • An exposure apparatus is used for transferring onto a glass plate or a wafer (hereinafter collectively referred to as “substrate”).
  • a scanning-type scanning exposure apparatus is known (see, for example, Patent Document 1).
  • the projection optical system in order to correct the position error between the exposure target region on the substrate and the mask, the projection optical system is moved through the projection optical system while moving in the direction opposite to the scanning direction at the time of exposure. Then, the mark on the substrate and the mask is measured (alignment measurement) by the alignment microscope, and the position error between the substrate and the mask is corrected based on the measurement result.
  • the alignment mark on the substrate is measured via the projection optical system, the alignment operation and the exposure operation are executed sequentially (serially), and the processing time (tact time) required for the entire exposure processing of the substrate is calculated. It was difficult to suppress.
  • the present invention has been made under the above circumstances. From the first viewpoint, the object is irradiated with illumination light through the projection optical system, and the projection optical system is driven relative to the object.
  • An exposure apparatus that performs scanning exposure, wherein a mark detection unit that detects a mark provided on the object, a first drive system that drives the mark detection unit, and a second drive system that drives the projection optical system And a control device that controls the first and second drive systems so as to drive the mark detection unit prior to driving the projection optical system.
  • the present invention is a flat panel display manufacturing method including exposing the object using the exposure apparatus of the present invention and developing the exposed object.
  • the present invention is a device manufacturing method including exposing the object using the exposure light apparatus of the present invention and developing the exposed object.
  • an exposure method in which scanning exposure is performed by irradiating an object with illumination light through a projection optical system and driving the projection optical system relative to the object. Performing mark detection of a mark provided on the mark using a mark detection unit, driving the mark detection unit using a first drive system, and driving the projection optical system using a second drive system And controlling the first and second drive systems to drive the mark detection unit prior to driving the projection optical system.
  • the present invention is a flat panel display manufacturing method including exposing the object using the exposure method of the present invention and developing the exposed object.
  • the present invention is a device manufacturing method including exposing the object using the exposure method of the present invention and developing the exposed object.
  • FIG. 1 is a conceptual diagram of a liquid crystal exposure apparatus according to a first embodiment.
  • FIG. 2 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of the liquid crystal exposure apparatus of FIG. 1. It is a figure for demonstrating the structure of the measurement system of a projection system main body and an alignment microscope.
  • FIGS. 4A to 4D are diagrams (Nos. 1 to 4) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation.
  • FIGS. 5A to 5D are views (Nos. 5 to 8) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation.
  • FIGS. 6A to 6C are views (Nos. 9 to 11) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation.
  • FIGS. 1 is a conceptual diagram of a liquid crystal exposure apparatus according to a first embodiment.
  • FIG. 2 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of the liquid
  • FIGS. 7A to 7C are views (Nos. 12 to 15) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation.
  • FIGS. 8A to 8D are views (Nos. 1 to 4) for explaining the operation of the alignment system according to the second embodiment.
  • FIGS. 9A and 9B are views (No. 1 and No. 2) for explaining the operations of the alignment system and the projection optical system according to the third embodiment. It is a figure which shows the modification (the 1) of the drive system of a projection optical system and an alignment system. It is a figure which shows the modification (the 2) of the drive system of a projection optical system and an alignment system. It is a conceptual diagram of module replacement
  • FIG. 1 shows a conceptual diagram of a liquid crystal exposure apparatus 10 according to the first embodiment.
  • the liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object.
  • a projection exposure apparatus a so-called scanner.
  • the liquid crystal exposure apparatus 10 includes an illumination system 20 that irradiates illumination light IL that is an energy beam for exposure, and a projection optical system 40.
  • the direction parallel to the optical axis of the illumination light IL applied to the substrate P from the illumination system 20 via the projection optical system 40 is referred to as the Z-axis direction
  • the X-axis is orthogonal to each other in a plane orthogonal to the Z-axis.
  • the explanation will be given with the Y axis set. In the coordinate system of the present embodiment, it is assumed that the Y axis is substantially parallel to the direction of gravity. Therefore, the XZ plane is substantially parallel to the horizontal plane.
  • the rotation (tilt) direction around the Z axis will be described as the ⁇ z direction.
  • a plurality of exposure target areas (which will be referred to as partition areas or shot areas as appropriate) are set on one substrate P, and a mask pattern is sequentially transferred to the plurality of shot areas. Is done.
  • partition areas or shot areas as appropriate
  • a mask pattern is sequentially transferred to the plurality of shot areas.
  • the liquid crystal exposure apparatus 10 performs a so-called step-and-scan exposure operation.
  • the mask M and the substrate P are substantially stationary, and the illumination system 20 and the projection optical system. 40 (illumination light IL) moves relative to the mask M and the substrate P with a long stroke in the X-axis direction (referred to as the scanning direction as appropriate) (see the white arrow in FIG. 1).
  • the mask M is stepped with a predetermined stroke in the X-axis direction
  • the substrate P is stepped with a predetermined stroke in the Y-axis direction (see FIGS. 1 black arrow).
  • FIG. 2 is a block diagram showing the input / output relationship of the main control device 90 that controls the components of the liquid crystal exposure apparatus 10 in an integrated manner.
  • the liquid crystal exposure apparatus 10 includes an illumination system 20, a mask stage apparatus 30, a projection optical system 40, a substrate stage apparatus 50, an alignment system 60, and the like.
  • the illumination system 20 includes an illumination system body 22 including a light source (for example, a mercury lamp) of illumination light IL (see FIG. 1).
  • the main controller 90 scans the illumination system main body 22 with a predetermined long stroke in the X-axis direction by controlling the drive system 24 including, for example, a linear motor.
  • the main controller 90 obtains position information of the illumination system body 22 in the X-axis direction via the measurement system 26 including, for example, a linear encoder, and performs position control of the illumination system body 22 based on the position information.
  • g-line, h-line, i-line or the like is used as the illumination light IL.
  • the mask stage apparatus 30 includes a stage main body 32 that holds the mask M.
  • the stage main body 32 is configured to be appropriately step-movable in the X axis direction and the Y axis direction by a drive system 34 including, for example, a linear motor.
  • the main controller 90 controls the drive system 34 to step-drive the stage body 32 in the X-axis direction. Further, as will be described later, during the step operation for changing the scanning exposure region (position) in the Y-axis direction in the partition region to be exposed, the main controller 90 controls the drive system 34 to control the stage.
  • the main body 32 is step-driven in the Y-axis direction.
  • the drive system 34 can also appropriately finely drive the mask M in the direction of three degrees of freedom (X, Y, ⁇ z) in the XY plane during an alignment operation described later.
  • the position information of the mask M is obtained by a measurement system 36 including a linear encoder, for example.
  • the projection optical system 40 includes a projection system main body 42 including an optical system that forms an erect image of a mask pattern on a substrate P (see FIG. 1) in the same magnification system.
  • the projection system main body 42 is disposed in a space formed between the substrate P and the mask M (see FIG. 1).
  • the main controller 90 controls the drive system 44 including, for example, a linear motor, so that the projection system main body 42 has a predetermined length in the X-axis direction so as to synchronize with the illumination system main body 22. Scan drive with stroke.
  • the main controller 90 obtains position information in the X-axis direction of the projection system main body 42 via the measurement system 46 including, for example, a linear encoder, and controls the position of the projection system main body 42 based on the position information.
  • the illumination light IL that has passed through the mask M passes through the projection optical system 40.
  • a projection image (partial upright image) of the mask pattern in the illumination area IAM is formed in the irradiation area (exposure area IA) of the illumination light IL conjugate to the illumination area IAM on the substrate P.
  • the scanning light exposure operation is performed when the illumination light IL (the illumination area IAM and the exposure area IA) moves relative to the mask M and the substrate P in the scanning direction. That is, in the liquid crystal exposure apparatus 10, the pattern of the mask M is generated on the substrate P by the illumination system 20 and the projection optical system 40, and the sensitive layer (resist layer) on the substrate P is exposed by the illumination light IL. The pattern is formed.
  • the illumination area IAM generated on the mask M by the illumination system 20 includes a pair of rectangular areas separated in the Y-axis direction.
  • the length in the Y-axis direction of one rectangular area is, for example, 1 in the length in the Y-axis direction of the pattern surface of the mask M (that is, the length in the Y-axis direction of each partition area set on the substrate P). / 4 is set.
  • the distance between the pair of rectangular areas is set to, for example, 1/4 of the length of the pattern surface of the mask M in the Y-axis direction.
  • the exposure area IA generated on the substrate P similarly includes a pair of rectangular areas spaced apart in the Y-axis direction.
  • the illumination system main body 22 and the projection system main body 42 are required. There is an advantage that can be downsized. A specific example of the scanning exposure operation will be described later.
  • the substrate stage apparatus 50 includes a stage body 52 that holds the back surface of the substrate P (the surface opposite to the exposure surface).
  • the main controller 90 controls the drive system 54 including, for example, a linear motor to move the stage main body 52 to the Y-direction. Step drive in the axial direction.
  • the drive system 54 can also minutely drive the substrate P in the direction of three degrees of freedom (X, Y, ⁇ z) in the XY plane during a substrate alignment operation described later.
  • the position information of the substrate P (stage main body 52) is obtained by a measurement system 56 including, for example, a linear encoder.
  • the alignment system 60 includes, for example, two alignment microscopes 62 and 64.
  • the alignment microscopes 62 and 64 are disposed in a space formed between the substrate P and the mask M (position between the substrate P and the mask M with respect to the Z-axis direction), and the alignment microscope is formed on the substrate P.
  • a mark Mk (hereinafter simply referred to as a mark Mk) and a mark (not shown) formed on the mask M are detected.
  • one mark Mk is formed near each of the four corners of each partition area (for example, four for each partition area), and the mark on the mask M is marked via the projection optical system 40. It is formed at a position corresponding to Mk.
  • the numbers and positions of the marks Mk and the marks of the mask M are not limited to this, and can be changed as appropriate. In each drawing, the mark Mk is shown larger than the actual size for easy understanding.
  • One alignment microscope 62 is arranged on the + X side of the projection system main body 42, and the other alignment microscope 64 is arranged on the ⁇ X side of the projection system main body 42.
  • the alignment microscopes 62 and 64 each have a pair of detection visual fields (detection regions) separated in the Y-axis direction, and simultaneously detect, for example, two marks Mk separated in the Y-axis direction in one partition region. Be able to.
  • the alignment microscopes 62 and 64 can simultaneously detect the mark formed on the mask M and the mark Mk formed on the substrate P (in other words, without changing the position of the alignment microscopes 62 and 64). It has become. For example, each time the mask M performs an X-step operation or the substrate P performs a Y-step operation, the main controller 90 performs information on the relative displacement between the mark formed on the mask M and the mark Mk formed on the substrate P. Then, relative positioning of the substrate P and the mask M in the direction along the XY plane is performed so as to correct (cancel or reduce) the positional deviation.
  • the mask detection unit for detecting (observing) the mark on the mask M and the substrate detection unit for detecting (observing) the mark Mk on the substrate P are integrally formed by a common housing or the like.
  • the drive system 66 (refer FIG. 2) is comprised through the common housing
  • the mask detection unit and the substrate detection unit may be configured by separate housings, and in that case, for example, the mask detection unit and the substrate detection unit are substantially equivalent by a common drive system 66. It is preferable to be configured so that it can move with operating characteristics.
  • the main control device 90 (see FIG. 2) independently drives the alignment microscopes 62 and 64 with a predetermined long stroke in the X-axis direction by controlling a drive system 66 including, for example, a linear motor.
  • the main controller 90 obtains position information in the X-axis direction of each of the alignment microscopes 62 and 64 via a measurement system 68 including, for example, a linear encoder, and controls the position of the alignment microscopes 62 and 64 based on the position information.
  • a measurement system 68 including, for example, a linear encoder
  • the projection system main body 42 and the alignment microscopes 62 and 64 have substantially the same position in the Y-axis direction, and their movable ranges partially overlap each other.
  • the alignment microscopes 62 and 64 of the alignment system 60 and the projection system main body 42 of the above-described projection optical system 40 are physically (mechanically) independent (separated) elements, and the main controller 90 (FIG. 2 (see 2), drive (speed and position) control is performed independently of each other.
  • the drive system 66 that drives the alignment microscopes 62 and 64 and the drive system 44 that drives the projection system main body 42 are in the X-axis direction.
  • linear motors, linear guides, and the like are shared, and the drive characteristics of the alignment microscopes 62 and 64 and the projection system main body 42 or the control characteristics of the main controller 90 are substantially equal. It is comprised so that it may become.
  • the alignment microscopes 62 and 64 and the projection system main body 42 are driven in the X-axis direction by a moving coil linear motor, for example, a magnetic body (for example, a permanent magnet) is used as a stator.
  • the unit is shared by the drive system 66 and the drive system 44.
  • the coil unit as a mover has the alignment microscopes 62 and 64 and the projection system main body 42 independently, and the main control device 90 (see FIG. 2) individually supplies power to the coil unit.
  • the drive (speed and position) of the alignment microscopes 62 and 64 in the X-axis direction and the drive (speed and position) of the projection system main body 42 in the X-axis direction are controlled independently.
  • the main controller 90 can change (arbitrarily change) the intervals (distances) between the alignment microscopes 62 and 64 and the projection system main body 42 in the X-axis direction. Further, the main controller 90 can also move the alignment microscopes 62 and 64 and the projection system main body 42 at different speeds in the X-axis direction.
  • the main controller 90 detects a plurality of marks Mk formed on the substrate P using the alignment microscope 62 (or the alignment microscope 64), and the detection results (position information of the plurality of marks Mk). Based on the above, the array information (including information on the position (coordinate value), shape, etc. of the partition area) of the partition area in which the mark Mk to be detected is formed is calculated by a known enhanced global alignment (EGA) method. To do.
  • EGA enhanced global alignment
  • the main controller 90 moves to the + X side of the projection system main body 42 prior to the scanning exposure operation.
  • the arranged alignment microscope 62 the positions of the plurality of marks Mk are detected, and the arrangement information of the partition areas to be exposed is calculated.
  • a plurality of alignment microscopes 64 arranged on the ⁇ X side of the projection system main body 42 are used prior to the scanning exposure operation. The position information of the mark Mk is detected, and the arrangement information of the partition area to be exposed is calculated.
  • main controller 90 appropriately controls illumination system 20 and projection optical system 40 while performing precise positioning (substrate alignment operation) in the three-degree-of-freedom direction of substrate P in the XY plane. Then, the scanning exposure operation (mask pattern transfer) is performed on the target partition region.
  • a measurement system 46 for obtaining position information of the projection system main body 42 included in the projection optical system 40 and a measurement system 68 for obtaining position information of the alignment microscope 62 included in the alignment system 60 will be described.
  • a typical configuration will be described.
  • the liquid crystal exposure apparatus 10 has a guide 80 for guiding the projection system main body 42 in the scanning direction.
  • the guide 80 is made of a member extending in parallel with the scanning direction.
  • the guide 80 also has a function of guiding the movement of the alignment microscope 62 in the scanning direction.
  • the guide 80 is illustrated between the mask M and the substrate P. Actually, however, the guide 80 is disposed at a position avoiding the optical path of the illumination light IL in the Y-axis direction. .
  • a scale 82 including a reflective diffraction grating having a periodic direction at least in a direction parallel to the scanning direction (X-axis direction) is fixed to the guide 80.
  • the projection system main body 42 has a head 84 disposed so as to face the scale 82.
  • the scale 82 and the head 84 form an encoder system that constitutes a measurement system 46 (see FIG. 2) for obtaining position information of the projection system main body 42.
  • the alignment microscopes 62 and 64 each have a head 86 disposed so as to face the scale 82 (the alignment system 64 is not shown in FIG. 3).
  • the scale 82 and the head 86 form an encoder system that constitutes a measurement system 68 (see FIG.
  • each of the heads 84 and 86 irradiates the scale 82 with a beam for encoder measurement, receives a beam (reflected beam by the scale 82) via the scale 82, and based on the light reception result, the scale 82. Relative position information can be output.
  • the scale 82 constitutes the measurement system 46 (see FIG. 2) for obtaining the position information of the projection system main body 42, and the measurement system for obtaining the position information of the alignment microscopes 62 and 64. 68 (see FIG. 2). That is, the position control of the projection system main body 42 and the alignment microscopes 62 and 64 is performed based on a common coordinate system (measurement axis) set by a diffraction grating formed on the scale 82.
  • the drive system 44 (see FIG. 2) for driving the projection system main body 42 and the drive system 66 (see FIG. 2) for driving the alignment microscopes 62 and 64 may have some common elements. It may be good or may be composed of completely independent elements.
  • the encoder system constituting the measuring systems 46 and 68 may be a linear (1 DOF) encoder system whose length measuring axis is only in the X-axis direction (scanning direction), for example. There may be more measuring axes.
  • the rotation amounts of the projection system main body 42 and the alignment microscopes 62 and 64 in the ⁇ z direction may be obtained by arranging a plurality of heads 84 and 86 at predetermined intervals in the Y-axis direction.
  • an XY two-dimensional diffraction grating may be formed on the scale 82, and a 3DOF encoder system having measurement axes in the three degrees of freedom in the X, Y, and ⁇ z directions may be used.
  • the projection system main body 42 and the alignment microscopes 62 and 64 Position information in the direction of 6 degrees of freedom may be obtained.
  • FIGS. 4 (a) to 7 (c) An example of the operation of the liquid crystal exposure apparatus 10 during the scanning exposure operation will be described with reference to FIGS. 4 (a) to 7 (c).
  • the following exposure operation (including alignment measurement operation) is performed under the control of the main controller 90 (not shown in FIGS. 4A to 7C, see FIG. 2).
  • divided areas exposed order is the first (hereinafter referred to as the first shot area S 1) is set on the -X side and -Y side of the substrate P. Further, the reference numerals S 2 to S 4 given to the partition areas on the substrate P indicate that the exposure areas are the second to fourth shot areas, respectively.
  • the projection system main body 42, and the alignment microscopes 62 and 64 respectively, to the initial position set in the -X side of the first shot area S 1 in a plan view Be placed.
  • the projection system main body 42 and the alignment microscopes 62 and 64 are arranged close to each other in the X-axis direction. Further, the position of the detection visual field of the alignment microscope 62 in the Y-axis direction and the position of the mark Mk formed in the first and fourth shot regions S 1 and S 4 in the Y-axis direction substantially coincide.
  • the main controller 90 to drive the alignment microscope 62 in the + X direction, formed in the first shot area S 1, for example, of the four Mark Mk, For example, two marks Mk formed in the vicinity of the end on the ⁇ X side are detected (see the bold circle in FIG. 4B, the same applies hereinafter).
  • the main control unit 90 as shown in FIG. 4 (c), by driving further the + X direction of the alignment microscope 62, formed in the first shot area S 1, for example, among the four marks Mk , For example, two marks Mk formed near the end on the + X side are detected.
  • FIG. 4 (b) to drive the alignment microscope 62 in the + X direction, formed in the first shot area S 1, for example, of the four Mark Mk, for example, two marks Mk formed in the vicinity of the end on the ⁇ X side are detected (see the bold circle in FIG. 4B, the same applies hereinafter).
  • the main control unit 90 as shown in FIG. 4 (c), by driving further the + X direction of the alignment microscope
  • the projection system main body 42 is stopped, even after the alignment microscope 62 starts the detection of the mark Mk in the first shot area S 1, the mark Mk detection During the movement, for example, during the movement to the + X side mark Mk after detecting the ⁇ X side mark Mk (more specifically, immediately before the + X side mark Mk is detected), the projection system The main body 42 may start accelerating.
  • the main control device 90 the formed first shot area S 1, for example based on the four marks Mk detection result (position information) to determine the sequence information of the first shot area S 1.
  • the main control unit 90 as shown in FIG. 4 (d), based on the first shot region the sequence information of the S 1 3 precise positioning of the degrees of freedom in the XY plane of the substrate P (substrate alignment operation) while performing, with respect to the illumination system main body 22 (FIG. 4 (d) the not shown. see FIG. 1) and is driven in synchronism with + X direction, the first shot area S 1 of the projection system main body 42 and the illumination system 20 The first scanning exposure is performed.
  • the main control unit 90 in parallel with the start of the first scanning exposure operation for the first shot area S 1, the fourth shot area S 4 (first shot area S 1 of the + X side using an alignment microscope 62 For example, two marks Mk formed in the vicinity of the end portion on the ⁇ X side among the four marks Mk formed in the partition area) are detected.
  • the main controller 90 the fourth shot area S 4 obtained newly, for example, the detection results of the two marks Mk, which (stored in a memory device (not shown)) which previously acquired in the first shot region in S 1, it may update the first sequence information of the shot areas S 1 by EGA calculation based on the detection result of the example four marks.
  • the main controller 90 while performing the 3 precise positioning of the degrees of freedom in the XY plane of the appropriate substrate P on the basis of the updated sequence information, to continue with scanning exposure operation of the first shot area S 1 it can.
  • the sequence information based only on the four marks Mk provided in the first shot area S 1 than determined it is possible to obtain the sequence information in consideration of the statistical trend over a wide range, it is possible to improve the alignment accuracy for the first shot area S 1.
  • the main controller 90 drives the projection system main body 42 in the + X direction to perform the scanning exposure operation, and further drives the alignment microscope 62 in the + X direction to It formed in 4 shot area S 4, for example, among the four marks Mk, formed near the + X side end, for example, to detect the two marks Mk.
  • the main controller 90, the fourth shot area S 4 obtained newly, for example, the detection results of the two marks Mk, the mark Mk (this example obtained which previously in the first shot area S 1,
  • the arrangement information of the first shot region S 1 may be updated by performing EGA calculation based on the detection results of the four marks Mk and, for example, two marks Mk) in the fourth shot region S 4 .
  • the main controller 90 is able to continue the 3 while performing precise positioning of the degrees of freedom, the scanning exposure operation in the first shot area S 1 in the XY plane of the substrate P on the basis of the updated sequence information .
  • the front (in the scanning direction) of the exposure area IA (illumination light IL).
  • At least a part of the operation for detecting the mark Mk formed in the (+ X direction) and the scanning exposure operation for scanning the projection system main body 42 in the + X direction can be performed simultaneously (in parallel). Thereby, it is possible to shorten the time required for a series of operations including the alignment operation and the scanning exposure operation.
  • the main control device 90 can appropriately perform EGA calculation each time the marks Mk sequentially provided at different positions are measured, for example, and update the arrangement information of the partition areas to be exposed. Thereby, it is possible to improve the alignment accuracy of the partition area to be exposed.
  • the main controller 90 moves the alignment microscope 64 arranged behind the projection system main body 42 in the scanning direction ( ⁇ X direction). Then, it is driven in the + X direction so as to follow the projection system main body 42 (see FIGS. 5A and 5B). At this time, the main controller 90 uses the alignment microscope 64 to detect the mark Mk formed behind the exposure area IA (illumination light IL) in the scanning direction ( ⁇ X direction), and this detection result is detected by the EGA. It may be used for calculation.
  • the illumination area IAM (see FIG. 1) generated on the mask M and the exposure area IA generated on the substrate P are a pair of rectangular areas separated in the Y-axis direction. Therefore, the pattern image of the mask M transferred to the substrate P by one scanning exposure operation is a band-like region extending in the X-axis direction and separated from the Y-axis direction (of the total area of one partition region). Half area).
  • the main controller 90 for scanning exposure operation for the second time in the first shot area S 1 (return path), the step moves the substrate P and the mask M in the -Y direction (See the black arrow in FIG. 5B).
  • the step movement amount of the substrate P at this time is, for example, 1/4 of the length of one partition region in the Y-axis direction.
  • the relative positional relationship between the substrate P and the mask M is not changed (or the relative positional relationship can be corrected).
  • the second scanning exposure operation of the first shot area S 1, as shown in FIG. 5 (c), performing the projection system main body 42 is moved in the -X direction.
  • the main control device 90, the alignment microscope 64 is driven in the -X direction, which is formed in the first shot area S 1 is detected, for example, the + X side end mark Mk formed in the vicinity (not shown) .
  • the main controller 90 while performing a precise positioning of the 3 degrees of freedom in the XY plane of the substrate P based on the detection result and the above-described first arrangement information of the shot areas S 1 and the alignment microscope 64, the first shot performing second scanning exposure operation region S 1.
  • the mask pattern transferred by the first scanning exposure operation, a mask pattern transferred by the second scanning exposure operation in the first shot in region S 1 are joined together, the overall pattern of the mask M is transferred onto the first shot area S 1.
  • the XY plane is based on the two marks (the + X side mark) of the mark of the mask M and the mark Mk of the substrate P. Since it is only necessary to measure the positional deviation in the three degrees of freedom (X, Y, ⁇ z) direction, the time required for alignment can be substantially shortened compared to the first alignment operation.
  • the main controller 90 for scanning exposure operation for the second shot area S 2 (partitioned region of the first shot area S 1 of the + Y side), the substrate P after step moves in the -Y direction to perform scanning exposure for the second shot area S 2 in the scanning exposure operation similar procedure for the first shot area S 1.
  • the second shot region S 2 and the third shot region S 3 sequence information of the second shot area S 2 is obtained based on the second shot area S 2 of the + divided area X side) in the mark Mk result of detecting, 3 in the XY plane of the substrate P on the basis of this sequence information Precise positioning in the direction of freedom is performed.
  • the detection operation of the marks Mk third shot area S 3 (and the update sequence information) is performed in parallel with at least a portion scanning exposure operation for the second shot area S 2.
  • the main control unit 90 after the substrate P and the mask M is moved stepwise in the -Y direction, the alignment microscope 64, for example + mark Mk in the second shot area S 2 formed in the vicinity of an end of the X-side (Not shown) is detected.
  • the main controller 90 while performing the 3 precise positioning of the degrees of freedom in the XY plane of the substrate P based on the sequence information of the detection result and the second shot area S 2 of the alignment microscope 64, FIG. 6 (b as shown in), while moving the projection system main body 42 in the -X direction, a second time scanning exposure operation for the second shot area S 2.
  • main controller 90 When the scanning exposure of the second shot area S 2 has been completed, main controller 90, by step movement mask M (see FIG. 1) in the + X direction, and the third shot area S 3 on the mask M and the substrate P Face each other.
  • the main control device 90 the alignment microscope 62 detects the mark Mk example formed in the vicinity of an end of the -X side of the third shot area S 3.
  • the main control device 90 in this state, as shown in FIG. 6 (c), while moving the projection system main body 42 in the + X direction to perform the first scan exposure operation for the third shot area S 3. (Fine positioning of the substrate P) control alignment at this time is performed in accordance with the detection result of the sequence information of the third shot area S 3 and alignment microscope 62.
  • Sequence information for the third shot area S 3 is calculated on the basis of the mark Mk position of the second and third shot area S 2, S 3 obtained when exposing the second shot area S 2, alignment in the microscope 62, in a state where the mask M third shot area S 3 were opposed, three degrees of freedom in the XY plane on the basis of the marks of the respective two points between the mark Mk mark and the substrate P of the mask M ( It is only necessary to measure the displacement in the X, Y, ⁇ z) direction. Therefore, it is possible to shorten the time required for the third alignment shot area S 3 in comparison with the alignment of the second shot area S 2 substantially.
  • the main controller 90 for the second scanning exposure operation for the third shot area S 3, as shown in FIG. 7 (a), moved stepwise substrate P and the mask M in the + Y direction.
  • the position of the detection visual field of the alignment microscope 64 in the Y-axis direction substantially coincides with the position of the mark Mk formed in the second and third shot regions S 2 and S 3 in the Y-axis direction.
  • the scanning exposure operation is performed. That is, the main controller 90, the second scanning exposure operation for the third shot area S 3, as shown in FIG. 7 (b), the alignment microscope 64 prior to the projection system main body 42 is a third shot region formed in the S 3, it detects, for example, four marks Mk, in response to this detection result, the main controller 90 updates the sequence information of the third shot area S 3.
  • the main controller 90 while performing a precise positioning of the 3 degrees of freedom in the XY plane of the substrate P, and the scanning exposure operation for the third shot area S 3 performed on the basis of the updated sequence information.
  • the alignment microscope 64 In parallel with the scanning exposure operation, the alignment microscope 64, as shown in FIG. 7 (c), formed in the second shot area S 2, detects, for example four marks Mk.
  • the main controller 90 based on the newly acquired positional information of the mark Mk, while updating the sequence information of the third shot area S 3, the second scanning exposure operation for the third shot area S 3 in parallel Do.
  • the main controller 90 while performing the Y stepping of the substrate P as appropriate, performs scanning exposure for the fourth shot area S 4. Scanning exposure operation for the fourth shot area S 4 will be omitted because it is substantially the same as the scanning exposure operation for the third shot area S 3.
  • the mark Mk is detected by the alignment microscope 62 together with the alignment microscope 64, and the division is performed using the outputs of the alignment microscopes 62 and 64. You may update the arrangement
  • the main controller 90 uses a position information of the mark Mk of the first and fourth shot area S 1, S 4, and this In addition, the position information of the mark Mk in the second and third shot areas S 2 and S 3 obtained previously may be used.
  • the alignment microscopes 62 and 64 move in the scanning direction independently of the projection system main body 42, at least a part of the scanning exposure operation and the alignment operation are performed simultaneously (in parallel). be able to. Accordingly, it is possible to shorten a time required for a series of operations including the alignment operation and the scanning exposure operation, that is, a series of processing times (tact time) required for the exposure processing of the substrate P.
  • the alignment microscopes 62 and 64 are arranged on one side and the other side of the projection system main body 42 with respect to the scanning direction, the alignment operation is performed regardless of the scanning direction (forward scanning and backward scanning) during the scanning exposure operation.
  • the time required for a series of operations including the scanning exposure operation can be shortened.
  • FIGS. 8 (a) to 8 (d) a liquid crystal exposure apparatus according to a second embodiment will be described with reference to FIGS. 8 (a) to 8 (d). Since the configuration of the liquid crystal exposure apparatus according to the second embodiment is the same as that of the first embodiment except that the configuration and operation of the alignment system are different, only the differences will be described below. Elements having the same configuration and function as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the alignment microscopes 62 and 64 are respectively arranged before and after (+ X side and ⁇ X side) in the scanning direction with respect to the projection system main body 42.
  • the alignment microscope 162 is provided only on the + X side of the projection system main body 42.
  • the alignment microscopes 62 and 64 of the first embodiment have a pair of detection fields separated in the Y-axis direction (see FIG. 4B and the like), whereas the alignment microscope 162 has a Y-axis. For example, there are four detection fields separated in the direction.
  • the alignment microscope 162 has, for example, four detection fields of view that are spaced apart from each other so that marks Mk that are adjacent to each other in the Y-axis direction, for example, formed over two partition regions can be detected simultaneously. .
  • the main controller 90 (see FIG. 2), as shown in FIG. 8 (b) and FIG. 8 (c), the prior to the scanning exposure operation of the first shot area S 1, while driving the alignment microscope 162 in the + X direction, formed on the substrate P, for example a total of performs 16 marks Mk detection, the first sequence information of the shot areas S 1 based on the detection result of the mark Mk
  • the projection system main body 42 is driven in the + X direction while performing the precise position control of the substrate P according to the arrangement information, and the scanning exposure operation of the first shot region S 1 is performed. I do.
  • the alignment microscope 162 since the alignment microscope 162 has, for example, four detection fields in the Y-axis direction, a wider area of the substrate P can be obtained by moving the alignment microscope 62 once in the + X direction. Can be detected (all marks Mk in the second embodiment). Therefore, as compared with the first embodiment, it is possible to further shorten a series of processing time (tact time) required for the exposure processing of the substrate P.
  • the Y-step operation of the substrate P and / or the X-step operation of the mask M is performed, so that the partition area to be exposed is determined.
  • the second embodiment prior to the scanning exposure of the first shot area S 1, since the detection of all the marks Mk formed on the substrate P, when the second shot area S 2 and subsequent scanning exposure In addition, it is not necessary to perform the EGA calculation again. At the time of the second shot area S 2 and subsequent scanning exposure may update the sequence information of the partitioned regions performed again alignment measurement (EGA calculation).
  • FIGS. 9 (a) and 9 (b) a liquid crystal exposure apparatus according to a third embodiment will be described with reference to FIGS. 9 (a) and 9 (b). Since the configuration of the liquid crystal exposure apparatus according to the third embodiment is the same as that of the first embodiment except that the configurations and operations of the alignment system and the projection optical system are different, only the differences will be described below. Elements having the same configurations and functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the alignment system 60 has the alignment microscopes 62 and 64 in the front and rear (+ X side and ⁇ X side) of the projection system main body 42 in the scanning direction. The difference is that the alignment microscope 62 is provided only on the + X side of the projection system main body 42.
  • the main controller 90 when the substrate P is Y-stepped with respect to the projection system main body 42, the alignment microscope 62 and the projection system main body 42 are set to a predetermined initial stage. Return to position. Specifically, for example, as shown in FIG. 9 (a), when the scanning exposure operation in the first shot area S 1 is completed, the main controller 90, as in the first embodiment, FIG. 9 As shown in FIG. 9B, the substrate P is moved in the ⁇ Y direction by a Y step operation (see the black arrow in FIG. 9B).
  • the main controller 90 drives the alignment microscope 62 and the projection system main body 42 in the ⁇ X direction in parallel with the Y step operation of the substrate P in the ⁇ Y direction, respectively, so that the initial position (FIG. 4) is reached. (See (a)) (see white arrow in FIG. 9B).
  • the initial positions of the alignment microscope 62 and the projection system main body 42 are in the vicinity of the ⁇ X side end of each movable range.
  • the main controller 90 by driving the alignment microscope 62, and a projection system main body 42 in the respective + X direction to perform the second scanning exposure operation for the first shot area S 1.
  • the alignment microscope 62 Prior to the scanning exposure operation in the second, performs detection operation of the marks Mk formed on the substrate P, in accordance with the output, and updates the first sequence information of the shot areas S 1 May be.
  • the alignment microscopes 162 may be arranged on both sides (+ X side and ⁇ X side) of the projection system main body 42 in the scanning direction. In this case, alignment measurement can be performed prior to the movement of the projection system main body 42 even if the scanning direction is the -X direction.
  • the scanning exposure operation for the first shot region S 1 is started after the detection of all the marks Mk in the first shot region S 1 is completed.
  • the present invention is not limited to this. it may start the scanning exposure operation of the first shot area S 1 during the measurement of a plurality of marks Mk formed in the first shot area S 1.
  • the alignment measurement operation and the scanning exposure operation are performed in parallel on a single substrate P.
  • the present invention is not limited to this.
  • two substrates P are prepared. While performing the scanning exposure of the substrate P, the alignment measurement of the other substrate P may be performed.
  • the next scanning exposure of the first shot area S 1 may be performed scanning exposure of the fourth shot area S 4.
  • the first and fourth shot regions S 1 it can be scanned exposing the S 4 sequentially.
  • it may be performed scanning exposure of the fourth shot area S 4 by step movement of the mask M in the + X direction after the scanning exposure of the first shot area S 1.
  • the mark Mk is formed in each partition area (first to fourth shot areas S 1 to S 4 ). It may be formed in a scribe line.
  • illumination area IAM and exposure area IA that are separated in the Y-axis direction are generated on mask M and substrate P, respectively (see FIG. 1), but illumination area IAM and exposure area IA
  • the shape and length are not limited to this, and can be changed as appropriate.
  • the length of the illumination area IAM and the exposure area IA in the Y-axis direction may be equal to the pattern surface of the mask M and the length of one partition area on the substrate P in the Y-axis direction, respectively. In this case, the transfer of the mask pattern is completed with a single scanning exposure operation for each partitioned region.
  • the illumination area IAM and the exposure area IA are one area whose length in the Y-axis direction is half the length in the Y-axis direction of one partition area on the pattern surface of the mask M and the substrate P, respectively. Also good. In this case, similarly to the above embodiment, it is necessary to perform the scanning exposure operation twice for one partitioned area.
  • the joint portion means a joint portion between an area exposed by the forward scanning exposure (area where the pattern is transferred) and an area exposed by the backward scanning exposure (the area where the pattern is transferred).
  • the mark Mk in the vicinity of the joint portion the mark Mk may be formed on the substrate in advance, or an exposed pattern may be used as the mark Mk.
  • the forward alignment microscope is the alignment microscope 62
  • the return alignment microscope is the alignment microscope 64.
  • the scanning exposure operation is performed by driving the projection system main body 42 in the ⁇ X direction
  • the forward alignment microscope is the alignment microscope 64
  • the backward alignment microscope is the alignment microscope 62.
  • the drive system 24 for driving the illumination system body 22 of the illumination system 20 and the drive system 34 for driving the stage body 32 of the mask stage apparatus 30 are used.
  • the case where each of the drive systems 66 (see FIG. 2) includes a linear motor has been described.
  • the type of actuator is not limited to this, and can be changed as appropriate.
  • a feed screw (ball screw) device, a belt It is possible to use various actuators such as braking system appropriately.
  • the projection system main body 42 and the alignment microscope 62 share a part of the drive system in the scanning direction (for example, a linear motor, a guide, etc.).
  • the driving system 66 for driving the alignment microscope 62 and the driving system 44 for driving the projection system main body 42 of the projection optical system 40 are configured completely independently. May be. That is, like the exposure apparatus 10A shown in FIG. 10, the projection optical system main body 42 included in the projection optical system 40A and the alignment microscope 62 included in the alignment system 60A are arranged so that the Y positions do not overlap each other.
  • a drive system 66 (including a linear motor, a guide, etc.) for driving the alignment microscope 62 and a drive system 44 (eg, including a linear motor, a guide, etc.) for driving the projection system main body 42 are completely provided. It can be set as an independent structure. In this case, before the start of the scanning exposure operation for the partitioned area to be exposed, the substrate P is moved stepwise (reciprocated) in the Y-axis direction to measure alignment of the partitioned area. Further, like the exposure apparatus 10B shown in FIG. 11, the alignment system 60B includes a drive system 44 (including a linear motor, a guide, etc.) for driving the projection optical system main body 42 of the projection optical system 40B. The drive system 44 and the drive system 66 are completely independent by arranging the Y positions so as not to overlap with a drive system 66 (including a linear motor, a guide, etc.) for driving the alignment microscope 62. It can also be.
  • the measurement system 68 includes linear encoders.
  • the illumination system main body 22, the stage main body 32, the projection system projection optical system main body 42, the stage main body 52, and the alignment microscope 62 are described.
  • the type of measurement system for performing position measurement is not limited to this, and can be changed as appropriate, for example, an optical interferometer, an There is possible to use various measuring systems such as the measurement system using a combination of linear encoder and optical interferometer as appropriate.
  • the illumination system 20, the mask stage device 30, the projection optical system 40, the substrate stage device 50, and the alignment system 60 may be modularized.
  • the illumination system 20 is called the illumination system module 12M
  • the mask stage device 30 is called the mask stage module 14M
  • the projection optical system 40 is called the projection optical system module 16M
  • the substrate stage device 50 is called the substrate stage module 18M
  • the alignment system 60 is called the alignment system module 20M.
  • each module 12M to 20M they are placed on the corresponding bases 28A to 28E so as to be physically independent of each other.
  • an arbitrary (one or a plurality) of the modules 12M to 20M (the substrate stage module 18M as an example in FIG. 12) is replaced with another module. Can be replaced independently of the module.
  • the module to be exchanged is exchanged integrally with the gantry 28A to 28E (the gantry 28E in FIG. 12) that supports the module.
  • the modules 12M to 20M (and the bases 28A to 28E supporting the modules) to be replaced move in the X-axis direction along the floor 26 surface. Therefore, for example, wheels or an air caster device may be provided on the bases 28A to 28E so that the bases 28A to 28E can be easily moved on the floor 26, for example.
  • an arbitrary module among the modules 12M to 20M can be easily separated from other modules, so that it is excellent in maintainability.
  • the substrate stage module 18M is separated from other elements by moving in the + X direction (back side of the drawing) with respect to the other elements (such as the projection optical system module 16M) together with the gantry 28E.
  • the moving direction of the module to be moved (and the gantry) is not limited to this, and may be, for example, the ⁇ X direction (front of the page) or the + Y direction (upward on the page). good.
  • a positioning device may be provided to ensure position reproducibility after installation on the floor 26 of each gantry 28A to 28E.
  • the positioning device may be provided on each of the gantry 28A to 28E, or the installation position of each of the gantry 28A to 28E by cooperation of a member provided on each of the gantry 28A to 28E and a member provided on the floor 26. May be configured to be reproduced.
  • the liquid crystal exposure apparatus 10 of the present embodiment has a configuration in which the modules 12M to 20M can be separated independently, the modules 12M to 20M can be individually upgraded.
  • the upgrade refers to, for example, an upgrade to cope with an increase in the size of the substrate P to be exposed, and the modules 12M to 20M are replaced with modules having the same performance but with improved performance. This includes cases where
  • the substrate stage module 18M of the liquid crystal exposure apparatus 10 is upgraded in response to an increase in the size of the substrate P, as shown in FIG. 12, a substrate stage module 18AM newly inserted instead of the substrate stage module 18M is used.
  • the gantry 28G that supports the substrate stage module 18AM changes in the X-axis and / or Y-axis direction dimensions, but the Z-axis direction dimension does not change substantially.
  • the dimension in the Z-axis direction of the mask stage module 14M is not substantially changed by the upgrade corresponding to the increase in the size of the mask M.
  • the number of illumination optical systems included in the illumination system module 12M and the number of projection lens modules included in the projection optical system module 16M are increased.
  • each of the illumination system module 12M and the projection optical system module 16M can be upgraded.
  • the illumination system module and the projection optical system module (not shown) after the upgrade only change the dimensions in the X-axis and / or Y-axis direction compared to before the upgrade, and the dimensions in the Z-axis direction do not substantially change. .
  • the bases 28A to 28E that support the modules 12M to 20M and the bases that support the upgraded modules are supported).
  • the gantry 28G is sized in the Z-axis direction.
  • scaling means that the dimensions in the Z-axis direction are the same for the base before and after the replacement, that is, the dimensions in the Z-axis direction of the base supporting the module having the same function are substantially constant. It means that.
  • the dimensions in the Z-axis direction of each of the mounts 28A to 28E are made constant, it is possible to reduce the time for designing each module.
  • the illumination system module 12M, the mask stage module 14M, and the projection optical system module Each module of 16M and the substrate stage module 18M can be installed in series on the floor 26 surface. As described above, since each module does not have its own weight, for example, the substrate stage device, the projection optical system, the mask stage device, and the illumination system corresponding to each module are stacked in the direction of gravity. Unlike the conventional exposure apparatus, it is not necessary to provide a high-rigidity main frame (body) that supports each element.
  • each said module is a structure arrange
  • the wavelength of the light source used in the illumination system 20 and the illumination light IL irradiated from this light source is not specifically limited,
  • ArF excimer laser light wavelength 193 nm
  • KrF excimer laser light Ultraviolet light having a wavelength of 248 nm
  • vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm) may be used.
  • the illumination system main body 22 including the light source is driven in the scanning direction.
  • the present invention is not limited to this.
  • the light source is fixed. Only the illumination light IL may be scanned in the scanning direction.
  • the illumination area IAM and the exposure area IA are formed in a strip shape extending in the Y-axis direction.
  • the present invention is not limited to this.
  • a plurality of regions arranged in a staggered pattern may be combined.
  • the mask M and the substrate P are arranged so as to be orthogonal to the horizontal plane (so-called vertical arrangement).
  • the present invention is not limited to this, and the mask M and the substrate P are parallel to the horizontal plane. It may be arranged.
  • the optical axis of the illumination light IL is substantially parallel to the direction of gravity.
  • the use of the exposure apparatus is not limited to an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate.
  • an exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, a semiconductor The present invention can be widely applied to an exposure apparatus for manufacturing, an exposure apparatus for manufacturing a thin film magnetic head, a micromachine, a DNA chip, and the like.
  • an exposure apparatus for manufacturing a thin film magnetic head a micromachine, a DNA chip, and the like.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
  • the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member).
  • the exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
  • the substrate to be exposed is a flexible sheet, the sheet may be formed in a roll shape. In this case, the partition area to be exposed can be easily changed (stepped) with respect to the illumination area (illumination light) by rotating (winding) the roll regardless of the step operation of the stage device. .
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the exposure apparatus and method of the present invention are suitable for scanning exposure of an object.
  • the manufacturing method of the flat panel display of this invention is suitable for production of a flat panel display.
  • the device manufacturing method of the present invention is suitable for the production of micro devices.
  • DESCRIPTION OF SYMBOLS 10 ... Liquid crystal exposure apparatus, 20 ... Illumination system, 30 ... Mask stage apparatus, 40 ... Projection optical system, 50 ... Substrate stage apparatus, 60 ... Alignment system, M ... Mask, P ... Substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

 This liquid crystal exposure device (10) which performs scanning exposure by irradiating a substrate (P) with illuminating light (IL) via a projection optical system (30), and driving the projection optical system (PL) relative to the substrate (P), is equipped with alignment microscopes (62, 64) which perform mark detection of marks (Mk) provided on a substrate (P), a first drive system that drives the alignment microscopes (62, 64), a second drive system that drives the projection optical system (40), and a control device that controls the first and second drive systems in such a manner that the alignment microscopes (62, 64) are driven before the projection optical system (40) is driven. As a result of this configuration it is possible to minimize tact time required for exposure.

Description

露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
 本発明は、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法に係り、更に詳しくは、物体に対してエネルギビームを所定の走査方向に走査する走査露光により、所定のパターンを物体上に形成する露光装置及び方法、並びに前記露光装置又は方法を含むフラットパネルディスプレイ又はデバイスの製造方法に関する。 The present invention relates to an exposure apparatus, a flat panel display manufacturing method, a device manufacturing method, and an exposure method. More specifically, the present invention relates to an exposure apparatus that scans an energy beam in a predetermined scanning direction to form a predetermined pattern. The present invention relates to an exposure apparatus and method for forming on an object, and a method of manufacturing a flat panel display or device including the exposure apparatus or method.
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、マスク又はレチクル(以下、「マスク」と総称する)に形成されたパターンをエネルギビームを用いてガラスプレート又はウエハ(以下、「基板」と総称する)上に転写する露光装置が用いられている。 2. Description of the Related Art Conventionally, in a lithography process for manufacturing electronic devices (microdevices) such as liquid crystal display elements and semiconductor elements (such as integrated circuits), an energy beam is applied to a pattern formed on a mask or reticle (hereinafter collectively referred to as “mask”). An exposure apparatus is used for transferring onto a glass plate or a wafer (hereinafter collectively referred to as “substrate”).
 この種の露光装置としては、マスクと基板とを実質的に静止させた状態で、露光用照明光(エネルギビーム)を所定の走査方向に走査することで基板上に所定のパターンを形成するビームスキャン式の走査露光装置が知られている(例えば特許文献1参照)。 In this type of exposure apparatus, a beam that forms a predetermined pattern on a substrate by scanning exposure illumination light (energy beam) in a predetermined scanning direction while the mask and the substrate are substantially stationary. A scanning-type scanning exposure apparatus is known (see, for example, Patent Document 1).
 上記特許文献1に記載の露光装置では、基板上の露光対象領域とマスクとの位置誤差を補正するために、投影光学系を露光時の走査方向と逆方向に移動させながら投影光学系を介してアライメント顕微鏡によって基板上及びマスク上のマークの計測(アライメント計測)を行い、該計測結果に基づいて基板とマスクとの位置誤差を補正している。ここで、基板上のアライメントマークが投影光学系を介して計測されるため、アライメント動作と露光動作とは順次(シリアルに)実行され、基板の全体の露光処理にかかる処理時間(タクトタイム)を抑制することが困難であった。 In the exposure apparatus described in Patent Document 1, in order to correct the position error between the exposure target region on the substrate and the mask, the projection optical system is moved through the projection optical system while moving in the direction opposite to the scanning direction at the time of exposure. Then, the mark on the substrate and the mask is measured (alignment measurement) by the alignment microscope, and the position error between the substrate and the mask is corrected based on the measurement result. Here, since the alignment mark on the substrate is measured via the projection optical system, the alignment operation and the exposure operation are executed sequentially (serially), and the processing time (tact time) required for the entire exposure processing of the substrate is calculated. It was difficult to suppress.
特開2000-12422号公報JP 2000-12422 A
 本発明は、上述の事情の下でなされたもので、第1の観点からすると、投影光学系を介して物体に照明光を照射し、前記物体に対して前記投影光学系を相対駆動させて走査露光する露光装置であって、前記物体に設けられたマークのマーク検出を行うマーク検出部と、前記マーク検出部を駆動する第1駆動系と、前記投影光学系を駆動する第2駆動系と、前記投影光学系の駆動よりも先に前記マーク検出部を駆動するように前記第1及び第2駆動系を制御する制御装置と、を備える露光装置である。 The present invention has been made under the above circumstances. From the first viewpoint, the object is irradiated with illumination light through the projection optical system, and the projection optical system is driven relative to the object. An exposure apparatus that performs scanning exposure, wherein a mark detection unit that detects a mark provided on the object, a first drive system that drives the mark detection unit, and a second drive system that drives the projection optical system And a control device that controls the first and second drive systems so as to drive the mark detection unit prior to driving the projection optical system.
 本発明は、第2の観点からすると、本発明の露光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法である。 From a second aspect, the present invention is a flat panel display manufacturing method including exposing the object using the exposure apparatus of the present invention and developing the exposed object.
 本発明は、第3の観点からすると、本発明の露光光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むデバイス製造方法である。 From a third aspect, the present invention is a device manufacturing method including exposing the object using the exposure light apparatus of the present invention and developing the exposed object.
 本発明は、第4の観点からすると、投影光学系を介して物体に照明光を照射し、前記物体に対して前記投影光学系を相対駆動させて走査露光する露光方法であって、前記物体に設けられたマークのマーク検出をマーク検出部を用いて行うことと、前記マーク検出部を第1駆動系を用いて駆動することと、前記投影光学系を第2駆動系を用いて駆動すると、前記投影光学系の駆動よりも先に前記マーク検出部を駆動するように前記第1及び第2駆動系を制御することと、を含む露光方法である。 According to a fourth aspect of the present invention, there is provided an exposure method in which scanning exposure is performed by irradiating an object with illumination light through a projection optical system and driving the projection optical system relative to the object. Performing mark detection of a mark provided on the mark using a mark detection unit, driving the mark detection unit using a first drive system, and driving the projection optical system using a second drive system And controlling the first and second drive systems to drive the mark detection unit prior to driving the projection optical system.
 本発明は、第5の観点からすると、本発明の露光方法を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法である。 From a fifth aspect, the present invention is a flat panel display manufacturing method including exposing the object using the exposure method of the present invention and developing the exposed object.
 本発明は、第6の観点からすると、本発明の露光方法を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むデバイス製造方法である。 From a sixth aspect, the present invention is a device manufacturing method including exposing the object using the exposure method of the present invention and developing the exposed object.
第1の実施形態に係る液晶露光装置の概念図である。1 is a conceptual diagram of a liquid crystal exposure apparatus according to a first embodiment. 図1の液晶露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。FIG. 2 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of the liquid crystal exposure apparatus of FIG. 1. 投影系本体、及びアライメント顕微鏡の計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the measurement system of a projection system main body and an alignment microscope. 図4(a)~図4(d)は、露光動作時における液晶露光装置の動作を説明するための図(その1~その4)である。FIGS. 4A to 4D are diagrams (Nos. 1 to 4) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation. 図5(a)~図5(d)は、露光動作時における液晶露光装置の動作を説明するための図(その5~その8)である。FIGS. 5A to 5D are views (Nos. 5 to 8) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation. 図6(a)~図6(c)は、露光動作時における液晶露光装置の動作を説明するための図(その9~その11)である。FIGS. 6A to 6C are views (Nos. 9 to 11) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation. 図7(a)~図7(c)は、露光動作時における液晶露光装置の動作を説明するための図(その12~その15)である。FIGS. 7A to 7C are views (Nos. 12 to 15) for explaining the operation of the liquid crystal exposure apparatus during the exposure operation. 図8(a)~図8(d)は、第2の実施形態に係るアライメント系の動作を説明するための図(その1~その4)である。FIGS. 8A to 8D are views (Nos. 1 to 4) for explaining the operation of the alignment system according to the second embodiment. 図9(a)及び図9(b)は、第3の実施形態に係るアライメント系、及び投影光学系の動作を説明するための図(その1及びその2)である。FIGS. 9A and 9B are views (No. 1 and No. 2) for explaining the operations of the alignment system and the projection optical system according to the third embodiment. 投影光学系、及びアライメント系の駆動系の変形例(その1)を示す図である。It is a figure which shows the modification (the 1) of the drive system of a projection optical system and an alignment system. 投影光学系、及びアライメント系の駆動系の変形例(その2)を示す図である。It is a figure which shows the modification (the 2) of the drive system of a projection optical system and an alignment system. 液晶露光装置におけるモジュール交換の概念図である。It is a conceptual diagram of module replacement | exchange in a liquid crystal exposure apparatus.
《第1の実施形態》
 以下、第1の実施形態について、図1~図7(c)を用いて説明する。
<< First Embodiment >>
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 7C.
 図1には、第1の実施形態に係る液晶露光装置10の概念図が示されている。液晶露光装置10は、例えば液晶表示装置(フラットパネルディスプレイ)などに用いられる矩形(角型)のガラス基板P(以下、単に基板Pと称する)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。 FIG. 1 shows a conceptual diagram of a liquid crystal exposure apparatus 10 according to the first embodiment. The liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object. A projection exposure apparatus, a so-called scanner.
 液晶露光装置10は、露光用のエネルギビームである照明光ILを照射する照明系20と、投影光学系40とを有している。以下、照明系20から投影光学系40を介して基板Pに照射される照明光ILの光軸と平行な方向をZ軸方向と称するとともに、Z軸に直交する平面内に互いに直交するX軸及びY軸を設定して説明を行う。また、本実施形態の座標系において、Y軸は、重力方向に実質的に平行であるものとする。従って、XZ平面は、水平面に実質的に平行である。また、Z軸回りの回転(傾斜)方向をθz方向として説明する。 The liquid crystal exposure apparatus 10 includes an illumination system 20 that irradiates illumination light IL that is an energy beam for exposure, and a projection optical system 40. Hereinafter, the direction parallel to the optical axis of the illumination light IL applied to the substrate P from the illumination system 20 via the projection optical system 40 is referred to as the Z-axis direction, and the X-axis is orthogonal to each other in a plane orthogonal to the Z-axis. The explanation will be given with the Y axis set. In the coordinate system of the present embodiment, it is assumed that the Y axis is substantially parallel to the direction of gravity. Therefore, the XZ plane is substantially parallel to the horizontal plane. The rotation (tilt) direction around the Z axis will be described as the θz direction.
 ここで、本実施形態では、1枚の基板P上に複数の露光対象領域(適宜、区画領域、又はショット領域と称して説明する)が設定され、これら複数のショット領域に順次マスクパターンが転写される。なお、本実施形態では、基板P上に4つの区画領域が設定されている場合(いわゆる4面取りの場合)について説明するが、区画領域の数は、これに限定されず、適宜変更が可能である。 Here, in this embodiment, a plurality of exposure target areas (which will be referred to as partition areas or shot areas as appropriate) are set on one substrate P, and a mask pattern is sequentially transferred to the plurality of shot areas. Is done. In the present embodiment, a case where four partition areas are set on the substrate P (so-called four-chamfering) will be described, but the number of partition areas is not limited to this and can be changed as appropriate. is there.
 また、液晶露光装置10では、いわゆるステップ・アンド・スキャン方式の露光動作が行われるが、スキャン露光動作時には、マスクM、及び基板Pが実質的に静止状態とされ、照明系20及び投影光学系40(照明光IL)がマスクM、及び基板Pに対してそれぞれX軸方向(適宜、走査方向と称する)に長ストロークで相対移動する(図1の白矢印参照)。これに対し、露光対象の区画領域を変更するためのステップ動作時には、マスクMがX軸方向に所定のストロークでステップ移動し、基板PがY軸方向に所定のストロークでステップ移動する(それぞれ図1の黒矢印参照)。 The liquid crystal exposure apparatus 10 performs a so-called step-and-scan exposure operation. During the scan exposure operation, the mask M and the substrate P are substantially stationary, and the illumination system 20 and the projection optical system. 40 (illumination light IL) moves relative to the mask M and the substrate P with a long stroke in the X-axis direction (referred to as the scanning direction as appropriate) (see the white arrow in FIG. 1). On the other hand, at the time of the step operation for changing the partition area to be exposed, the mask M is stepped with a predetermined stroke in the X-axis direction, and the substrate P is stepped with a predetermined stroke in the Y-axis direction (see FIGS. 1 black arrow).
 図2には、液晶露光装置10の構成各部を統括制御する主制御装置90の入出力関係を示すブロック図が示されている。図2に示されるように、液晶露光装置10は、照明系20、マスクステージ装置30、投影光学系40、基板ステージ装置50、アライメント系60などを備えている。 FIG. 2 is a block diagram showing the input / output relationship of the main control device 90 that controls the components of the liquid crystal exposure apparatus 10 in an integrated manner. As shown in FIG. 2, the liquid crystal exposure apparatus 10 includes an illumination system 20, a mask stage apparatus 30, a projection optical system 40, a substrate stage apparatus 50, an alignment system 60, and the like.
 照明系20は、照明光IL(図1参照)の光源(例えば、水銀ランプ)などを含む照明系本体22を備えている。スキャン露光動作時において、主制御装置90は、例えばリニアモータなどを含む駆動系24を制御することにより、照明系本体22をX軸方向に所定の長ストロークでスキャン駆動する。主制御装置90は、例えばリニアエンコーダなどを含む計測系26を介して照明系本体22のX軸方向の位置情報を求め、該位置情報に基づいて照明系本体22の位置制御を行う。本実施形態において、照明光ILとしては、例えばg線、h線、i線などが用いられる。 The illumination system 20 includes an illumination system body 22 including a light source (for example, a mercury lamp) of illumination light IL (see FIG. 1). During the scan exposure operation, the main controller 90 scans the illumination system main body 22 with a predetermined long stroke in the X-axis direction by controlling the drive system 24 including, for example, a linear motor. The main controller 90 obtains position information of the illumination system body 22 in the X-axis direction via the measurement system 26 including, for example, a linear encoder, and performs position control of the illumination system body 22 based on the position information. In the present embodiment, for example, g-line, h-line, i-line or the like is used as the illumination light IL.
 マスクステージ装置30は、マスクMを保持するステージ本体32を備えている。ステージ本体32は、例えばリニアモータなどを含む駆動系34によってX軸方向及びY軸方向に適宜ステップ移動可能に構成されている。X軸方向に関して露光対象の区画領域を変更するためのステップ動作時において、主制御装置90は、駆動系34を制御することにより、ステージ本体32をX軸方向にステップ駆動する。また、後述するように、露光対象の区画領域内でスキャン露光する領域(位置)をY軸方向に関して変更するためのステップ動作時には、主制御装置90は、駆動系34を制御することにより、ステージ本体32をY軸方向にステップ駆動する。駆動系34は、後述するアライメント動作時にマスクMをXY平面内の3自由度(X、Y、θz)方向に適宜微小駆動することも可能である。マスクMの位置情報は、例えばリニアエンコーダなどを含む計測系36により求められる。 The mask stage apparatus 30 includes a stage main body 32 that holds the mask M. The stage main body 32 is configured to be appropriately step-movable in the X axis direction and the Y axis direction by a drive system 34 including, for example, a linear motor. During the step operation for changing the exposure target partition area with respect to the X-axis direction, the main controller 90 controls the drive system 34 to step-drive the stage body 32 in the X-axis direction. Further, as will be described later, during the step operation for changing the scanning exposure region (position) in the Y-axis direction in the partition region to be exposed, the main controller 90 controls the drive system 34 to control the stage. The main body 32 is step-driven in the Y-axis direction. The drive system 34 can also appropriately finely drive the mask M in the direction of three degrees of freedom (X, Y, θz) in the XY plane during an alignment operation described later. The position information of the mask M is obtained by a measurement system 36 including a linear encoder, for example.
 投影光学系40は、等倍系で基板P(図1参照)上にマスクパターンの正立正像を形成する光学系などを含む投影系本体42を備えている。投影系本体42は、基板PとマスクMとの間に形成される空間内に配置されている(図1参照)。スキャン露光動作時において、主制御装置90は、例えばリニアモータなどを含む駆動系44を制御することにより、投影系本体42を、照明系本体22と同期するように、X軸方向に所定の長ストロークでスキャン駆動する。主制御装置90は、例えばリニアエンコーダなどを含む計測系46を介して投影系本体42のX軸方向に位置情報を求め、該位置情報に基づいて投影系本体42の位置制御を行う。 The projection optical system 40 includes a projection system main body 42 including an optical system that forms an erect image of a mask pattern on a substrate P (see FIG. 1) in the same magnification system. The projection system main body 42 is disposed in a space formed between the substrate P and the mask M (see FIG. 1). During the scan exposure operation, the main controller 90 controls the drive system 44 including, for example, a linear motor, so that the projection system main body 42 has a predetermined length in the X-axis direction so as to synchronize with the illumination system main body 22. Scan drive with stroke. The main controller 90 obtains position information in the X-axis direction of the projection system main body 42 via the measurement system 46 including, for example, a linear encoder, and controls the position of the projection system main body 42 based on the position information.
 図1に戻り、液晶露光装置10では、照明系20からの照明光ILによってマスクM上の照明領域IAMが照明されると、マスクMを通過した照明光ILにより、投影光学系40を介してその照明領域IAM内のマスクパターンの投影像(部分正立像)が、基板P上の照明領域IAMに共役な照明光ILの照射領域(露光領域IA)に形成される。そして、マスクM、及び基板Pに対して、照明光IL(照明領域IAM、及び露光領域IA)が走査方向に相対移動することで走査露光動作が行われる。すなわち、液晶露光装置10では、照明系20、及び投影光学系40によって基板P上にマスクMのパターンが生成され、照明光ILによる基板P上の感応層(レジスト層)の露光によって基板P上にそのパターンが形成される。 Returning to FIG. 1, in the liquid crystal exposure apparatus 10, when the illumination area IAM on the mask M is illuminated by the illumination light IL from the illumination system 20, the illumination light IL that has passed through the mask M passes through the projection optical system 40. A projection image (partial upright image) of the mask pattern in the illumination area IAM is formed in the irradiation area (exposure area IA) of the illumination light IL conjugate to the illumination area IAM on the substrate P. Then, the scanning light exposure operation is performed when the illumination light IL (the illumination area IAM and the exposure area IA) moves relative to the mask M and the substrate P in the scanning direction. That is, in the liquid crystal exposure apparatus 10, the pattern of the mask M is generated on the substrate P by the illumination system 20 and the projection optical system 40, and the sensitive layer (resist layer) on the substrate P is exposed by the illumination light IL. The pattern is formed.
 ここで、本実施形態において、照明系20によりマスクM上に生成される照明領域IAMは、Y軸方向に離間する一対の矩形の領域を含む。ひとつの矩形の領域のY軸方向の長さは、マスクMのパターン面のY軸方向の長さ(すなわち基板P上に設定される各区画領域のY軸方向の長さ)の、例えば1/4に設定されている。また、一対の矩形の領域間の間隔も、同様にマスクMのパターン面のY軸方向の長さの、例えば1/4に設定されている。従って、基板P上に生成される露光領域IAも、同様にY軸方向に離間する一対の矩形の領域を含む。本実施形態では、マスクMのパターンを基板Pに完全に転写するためには、ひとつの区画領域について、2回の走査露光動作を行う必要があるが、照明系本体22、及び投影系本体42を小型化できるメリットがある。走査露光動作の具体例については、後述する。 Here, in the present embodiment, the illumination area IAM generated on the mask M by the illumination system 20 includes a pair of rectangular areas separated in the Y-axis direction. The length in the Y-axis direction of one rectangular area is, for example, 1 in the length in the Y-axis direction of the pattern surface of the mask M (that is, the length in the Y-axis direction of each partition area set on the substrate P). / 4 is set. Similarly, the distance between the pair of rectangular areas is set to, for example, 1/4 of the length of the pattern surface of the mask M in the Y-axis direction. Accordingly, the exposure area IA generated on the substrate P similarly includes a pair of rectangular areas spaced apart in the Y-axis direction. In the present embodiment, in order to completely transfer the pattern of the mask M onto the substrate P, it is necessary to perform two scanning exposure operations for one partition region. However, the illumination system main body 22 and the projection system main body 42 are required. There is an advantage that can be downsized. A specific example of the scanning exposure operation will be described later.
 基板ステージ装置50は、基板Pの裏面(露光面とは反対の面)を保持するステージ本体52を備えている。図2に戻り、Y軸方向に関して露光対象の区画領域を変更するためのステップ動作時において、主制御装置90は、例えばリニアモータなどを含む駆動系54を制御することにより、ステージ本体52をY軸方向にステップ駆動する。駆動系54は、後述する基板アライメント動作時に基板PをXY平面内の3自由度(X、Y、θz)方向に微小駆動することも可能である。基板P(ステージ本体52)の位置情報は、例えばリニアエンコーダなどを含む計測系56により求められる。 The substrate stage apparatus 50 includes a stage body 52 that holds the back surface of the substrate P (the surface opposite to the exposure surface). Returning to FIG. 2, during the step operation for changing the section area to be exposed in the Y-axis direction, the main controller 90 controls the drive system 54 including, for example, a linear motor to move the stage main body 52 to the Y-direction. Step drive in the axial direction. The drive system 54 can also minutely drive the substrate P in the direction of three degrees of freedom (X, Y, θz) in the XY plane during a substrate alignment operation described later. The position information of the substrate P (stage main body 52) is obtained by a measurement system 56 including, for example, a linear encoder.
 図1に戻り、アライメント系60は、例えば2つのアライメント顕微鏡62、64を備えている。アライメント顕微鏡62、64は、基板PとマスクMとの間に形成される空間内(Z軸方向に関して基板PとマスクMとの間の位置)に配置されており、基板Pに形成されたアライメントマークMk(以下、単にマークMkと称する)、及びマスクMに形成されたマーク(不図示)を検出する。本実施形態において、マークMkは、各区画領域の四隅部近傍それぞれに1つ(1つの区画領域につき、例えば4つ)形成されており、マスクMのマークは、投影光学系40を介してマークMkに対応する位置に形成されている。なお、マークMk、及びマスクMのマークの数、及び位置については、これに限定されず、適宜変更が可能である。また、各図面において、マークMkは、理解を容易にするため、実際よりも大きく図示されている。 Returning to FIG. 1, the alignment system 60 includes, for example, two alignment microscopes 62 and 64. The alignment microscopes 62 and 64 are disposed in a space formed between the substrate P and the mask M (position between the substrate P and the mask M with respect to the Z-axis direction), and the alignment microscope is formed on the substrate P. A mark Mk (hereinafter simply referred to as a mark Mk) and a mark (not shown) formed on the mask M are detected. In the present embodiment, one mark Mk is formed near each of the four corners of each partition area (for example, four for each partition area), and the mark on the mask M is marked via the projection optical system 40. It is formed at a position corresponding to Mk. Note that the numbers and positions of the marks Mk and the marks of the mask M are not limited to this, and can be changed as appropriate. In each drawing, the mark Mk is shown larger than the actual size for easy understanding.
 一方のアライメント顕微鏡62は、投影系本体42の+X側に配置され、他方のアライメント顕微鏡64は、投影系本体42の-X側に配置されている。アライメント顕微鏡62、64は、それぞれY軸方向に離間した一対の検出視野(検出領域)を有しており、ひとつの区画領域内のY軸方向に離間した、例えば2つのマークMkを同時に検出することができるようになっている。 One alignment microscope 62 is arranged on the + X side of the projection system main body 42, and the other alignment microscope 64 is arranged on the −X side of the projection system main body 42. The alignment microscopes 62 and 64 each have a pair of detection visual fields (detection regions) separated in the Y-axis direction, and simultaneously detect, for example, two marks Mk separated in the Y-axis direction in one partition region. Be able to.
 また、アライメント顕微鏡62、64は、マスクMに形成されたマークと、基板Pに形成されたマークMkとを同時に(換言すると、アライメント顕微鏡62、64の位置を変えずに)検出することが可能となっている。主制御装置90は、例えばマスクMがXステップ動作、又は基板PがYステップ動作を行う毎に、マスクMに形成されたマークと基板Pに形成されたマークMkとの相対的な位置ずれ情報を求め、該位置ずれを補正する(打ち消す、又は低減する)ように基板PとマスクMとのXY平面に沿った方向の相対的な位置決めを行う。なお、アライメント顕微鏡62、64は、マスクMのマークを検出(観察)するマスク検出部と、基板PのマークMkを検出(観察)する基板検出部とが、共通の筐体等によって一体的に構成されており、その共通の筐体を介して駆動系66(図2参照)により駆動される。あるいは、マスク検出部と基板検出部とが個別の筐体等によって構成されていても良く、その場合には、例えばマスク検出部と基板検出部とが実質的に共通の駆動系66によって同等の動作特性をもって移動できるように構成することが好ましい。 The alignment microscopes 62 and 64 can simultaneously detect the mark formed on the mask M and the mark Mk formed on the substrate P (in other words, without changing the position of the alignment microscopes 62 and 64). It has become. For example, each time the mask M performs an X-step operation or the substrate P performs a Y-step operation, the main controller 90 performs information on the relative displacement between the mark formed on the mask M and the mark Mk formed on the substrate P. Then, relative positioning of the substrate P and the mask M in the direction along the XY plane is performed so as to correct (cancel or reduce) the positional deviation. In the alignment microscopes 62 and 64, the mask detection unit for detecting (observing) the mark on the mask M and the substrate detection unit for detecting (observing) the mark Mk on the substrate P are integrally formed by a common housing or the like. The drive system 66 (refer FIG. 2) is comprised through the common housing | casing. Alternatively, the mask detection unit and the substrate detection unit may be configured by separate housings, and in that case, for example, the mask detection unit and the substrate detection unit are substantially equivalent by a common drive system 66. It is preferable to be configured so that it can move with operating characteristics.
 主制御装置90(図2参照)は、例えばリニアモータなどを含む駆動系66を制御することにより、アライメント顕微鏡62、64を、X軸方向に所定の長ストロークでそれぞれ独立に駆動する。また、主制御装置90は、例えばリニアエンコーダなどを含む計測系68を介してアライメント顕微鏡62、64それぞれのX軸方向の位置情報を求め、該位置情報に基づいてアライメント顕微鏡62、64の位置制御をそれぞれ独立して行う。また、投影系本体42、及びアライメント顕微鏡62、64は、Y軸方向の位置がほぼ同じであり、互いの移動可能範囲が一部重複している。 The main control device 90 (see FIG. 2) independently drives the alignment microscopes 62 and 64 with a predetermined long stroke in the X-axis direction by controlling a drive system 66 including, for example, a linear motor. The main controller 90 obtains position information in the X-axis direction of each of the alignment microscopes 62 and 64 via a measurement system 68 including, for example, a linear encoder, and controls the position of the alignment microscopes 62 and 64 based on the position information. Are performed independently. Further, the projection system main body 42 and the alignment microscopes 62 and 64 have substantially the same position in the Y-axis direction, and their movable ranges partially overlap each other.
 ここで、アライメント系60のアライメント顕微鏡62、64と、上述した投影光学系40の投影系本体42とは、物理的(機械的)に独立(分離)した要素であり、主制御装置90(図2参照)によって互いに独立して駆動(速度、及び位置)制御が行われるが、アライメント顕微鏡62、64を駆動する駆動系66と、投影系本体42を駆動する駆動系44とは、X軸方向の駆動に関して、例えばリニアモータ、リニアガイドなどの一部を共用しており、アライメント顕微鏡62、64、及び投影系本体42の駆動特性、あるいは主制御装置90による制御特性が、実質的に同等になるように構成されている。 Here, the alignment microscopes 62 and 64 of the alignment system 60 and the projection system main body 42 of the above-described projection optical system 40 are physically (mechanically) independent (separated) elements, and the main controller 90 (FIG. 2 (see 2), drive (speed and position) control is performed independently of each other. The drive system 66 that drives the alignment microscopes 62 and 64 and the drive system 44 that drives the projection system main body 42 are in the X-axis direction. For example, linear motors, linear guides, and the like are shared, and the drive characteristics of the alignment microscopes 62 and 64 and the projection system main body 42 or the control characteristics of the main controller 90 are substantially equal. It is comprised so that it may become.
 具体的に一例をあげると、例えばムービングコイル式のリニアモータによってアライメント顕微鏡62、64、投影系本体42それぞれをX軸方向に駆動する場合には、固定子である磁性体(例えば、永久磁石など)ユニットが上記駆動系66と駆動系44とで共用される。これに対し、可動子であるコイルユニットは、アライメント顕微鏡62、64、投影系本体42それぞれが独立に有しており、主制御装置90(図2参照)は、該コイルユニットに対する電力供給を個別に行うことにより、アライメント顕微鏡62、64のX軸方向への駆動(速度、及び位置)と、投影系本体42のX軸方向への駆動(速度、及び位置)とを、独立に制御する。従って、主制御装置90は、X軸方向に関するアライメント顕微鏡62、64と投影系本体42との各々の間隔(距離)を、可変とする(任意に変化させる)ことができる。また、主制御装置90は、X軸方向に関して、アライメント顕微鏡62、64と投影系本体42とを、各々異なるスピードで移動させることもできる。 As a specific example, when the alignment microscopes 62 and 64 and the projection system main body 42 are driven in the X-axis direction by a moving coil linear motor, for example, a magnetic body (for example, a permanent magnet) is used as a stator. ) The unit is shared by the drive system 66 and the drive system 44. On the other hand, the coil unit as a mover has the alignment microscopes 62 and 64 and the projection system main body 42 independently, and the main control device 90 (see FIG. 2) individually supplies power to the coil unit. Thus, the drive (speed and position) of the alignment microscopes 62 and 64 in the X-axis direction and the drive (speed and position) of the projection system main body 42 in the X-axis direction are controlled independently. Therefore, the main controller 90 can change (arbitrarily change) the intervals (distances) between the alignment microscopes 62 and 64 and the projection system main body 42 in the X-axis direction. Further, the main controller 90 can also move the alignment microscopes 62 and 64 and the projection system main body 42 at different speeds in the X-axis direction.
 主制御装置90(図2参照)は、アライメント顕微鏡62(又はアライメント顕微鏡64)を用いて基板P上に形成された複数のマークMkの検出し、該検出結果(複数のマークMkの位置情報)に基づいて、公知のエンハンスト・グローバル・アライメント(EGA)方式によって、検出対象のマークMkが形成された区画領域の配列情報(区画領域の位置(座標値)、形状等に関する情報を含む)を算出する。 The main controller 90 (see FIG. 2) detects a plurality of marks Mk formed on the substrate P using the alignment microscope 62 (or the alignment microscope 64), and the detection results (position information of the plurality of marks Mk). Based on the above, the array information (including information on the position (coordinate value), shape, etc. of the partition area) of the partition area in which the mark Mk to be detected is formed is calculated by a known enhanced global alignment (EGA) method. To do.
 具体的には、走査露光動作において、投影系本体42が+X方向に駆動される場合、主制御装置90(図2参照)は、該走査露光動作に先立って、投影系本体42の+X側に配置されたアライメント顕微鏡62を用いて複数のマークMkの位置検出を行って露光対象の区画領域の配列情報を算出する。また、走査露光動作において、投影系本体42が-X方向に駆動される場合には、該走査露光動作に先立って、投影系本体42の-X側に配置されたアライメント顕微鏡64を用いて複数のマークMkの位置検出を行って露光対象の区画領域の配列情報を算出する。主制御装置90は、算出した配列情報に基づいて、基板PのXY平面内の3自由度方向の緻密な位置決め(基板アライメント動作)を行いつつ、照明系20、及び投影光学系40を適宜制御して、対象の区画領域に対する走査露光動作(マスクパターンの転写)を行う。 Specifically, in the scanning exposure operation, when the projection system main body 42 is driven in the + X direction, the main controller 90 (see FIG. 2) moves to the + X side of the projection system main body 42 prior to the scanning exposure operation. Using the arranged alignment microscope 62, the positions of the plurality of marks Mk are detected, and the arrangement information of the partition areas to be exposed is calculated. In the scanning exposure operation, when the projection system main body 42 is driven in the −X direction, a plurality of alignment microscopes 64 arranged on the −X side of the projection system main body 42 are used prior to the scanning exposure operation. The position information of the mark Mk is detected, and the arrangement information of the partition area to be exposed is calculated. Based on the calculated arrangement information, main controller 90 appropriately controls illumination system 20 and projection optical system 40 while performing precise positioning (substrate alignment operation) in the three-degree-of-freedom direction of substrate P in the XY plane. Then, the scanning exposure operation (mask pattern transfer) is performed on the target partition region.
 次に、投影光学系40が有する投影系本体42の位置情報を求めるための計測系46(図2参照)、及びアライメント系60が有するアライメント顕微鏡62の位置情報を求めるための計測系68の具体的な構成について説明する。 Next, a measurement system 46 (see FIG. 2) for obtaining position information of the projection system main body 42 included in the projection optical system 40 and a measurement system 68 for obtaining position information of the alignment microscope 62 included in the alignment system 60 will be described. A typical configuration will be described.
 図3に示されるように、液晶露光装置10は、投影系本体42を走査方向に案内するためのガイド80を有している。ガイド80は、走査方向に平行に延びる部材から成る。ガイド80は、アライメント顕微鏡62の走査方向への移動を案内する機能も有する。また、図3では、ガイド80がマスクMと基板Pとの間に図示されているが、実際には、ガイド80は、Y軸方向に関して照明光ILの光路を避けた位置に配置されている。 As shown in FIG. 3, the liquid crystal exposure apparatus 10 has a guide 80 for guiding the projection system main body 42 in the scanning direction. The guide 80 is made of a member extending in parallel with the scanning direction. The guide 80 also has a function of guiding the movement of the alignment microscope 62 in the scanning direction. In FIG. 3, the guide 80 is illustrated between the mask M and the substrate P. Actually, however, the guide 80 is disposed at a position avoiding the optical path of the illumination light IL in the Y-axis direction. .
 ガイド80には、少なくとも走査方向に平行な方向(X軸方向)を周期方向とする反射型の回折格子を含むスケール82が固定されている。また、投影系本体42は、スケール82に対向して配置されたヘッド84を有している。本実施形態では、上記スケール82とヘッド84とにより、投影系本体42の位置情報を求めるための計測系46(図2参照)を構成するエンコーダシステムが形成されている。また、アライメント顕微鏡62、64は、スケール82に対向して配置されたヘッド86を各々有している(図3において、アライメント系64は不図示)。本実施形態では、上記スケール82とヘッド86とにより、アライメント顕微鏡62、64の位置情報を求めるための計測系68(図2参照)を構成するエンコーダシステムが形成されている。ここで、ヘッド84、86は、それぞれスケール82に対してエンコーダ計測用のビームを照射し、スケール82を介したビーム(スケール82による反射ビーム)を受光して、その受光結果に基づいてスケール82に対する相対的な位置情報を出力可能となっている。 A scale 82 including a reflective diffraction grating having a periodic direction at least in a direction parallel to the scanning direction (X-axis direction) is fixed to the guide 80. In addition, the projection system main body 42 has a head 84 disposed so as to face the scale 82. In the present embodiment, the scale 82 and the head 84 form an encoder system that constitutes a measurement system 46 (see FIG. 2) for obtaining position information of the projection system main body 42. Further, the alignment microscopes 62 and 64 each have a head 86 disposed so as to face the scale 82 (the alignment system 64 is not shown in FIG. 3). In the present embodiment, the scale 82 and the head 86 form an encoder system that constitutes a measurement system 68 (see FIG. 2) for obtaining positional information of the alignment microscopes 62 and 64. Here, each of the heads 84 and 86 irradiates the scale 82 with a beam for encoder measurement, receives a beam (reflected beam by the scale 82) via the scale 82, and based on the light reception result, the scale 82. Relative position information can be output.
 このように、本実施形態において、スケール82は、投影系本体42の位置情報を求めるための計測系46(図2参照)を構成し、アライメント顕微鏡62、64の位置情報を求めるための計測系68(図2参照)を構成する。すなわち、投影系本体42とアライメント顕微鏡62、64とは、スケール82に形成された回折格子によって設定される共通の座標系(測長軸)に基づいて位置制御が行われる。なお、投影系本体42を駆動するための駆動系44(図2参照)、及びアライメント顕微鏡62、64を駆動するための駆動系66(図2参照)は、要素が一部共通であっても良いし、完全に独立した要素により構成されていても良い。 Thus, in this embodiment, the scale 82 constitutes the measurement system 46 (see FIG. 2) for obtaining the position information of the projection system main body 42, and the measurement system for obtaining the position information of the alignment microscopes 62 and 64. 68 (see FIG. 2). That is, the position control of the projection system main body 42 and the alignment microscopes 62 and 64 is performed based on a common coordinate system (measurement axis) set by a diffraction grating formed on the scale 82. Note that the drive system 44 (see FIG. 2) for driving the projection system main body 42 and the drive system 66 (see FIG. 2) for driving the alignment microscopes 62 and 64 may have some common elements. It may be good or may be composed of completely independent elements.
 なお、上記計測系46、68(それぞれ図2参照)を構成するエンコーダシステムは、測長軸が、例えばX軸方向(走査方向)のみであるリニア(1DOF)エンコーダシステムであっても良いし、より多くの測長軸を有しても良い。例えば、ヘッド84、86をY軸方向に所定間隔で複数配置することにより、投影系本体42、アライメント顕微鏡62、64のθz方向の回転量を求めても良い。また、スケール82にXY2次元回折格子を形成し、X、Y、θz方向の3自由度方向に測長軸を有する3DOFエンコーダシステムとしても良い。さらに、ヘッド84、86として、回折格子の周期方向と併せてスケール面に直交する方向の測長が可能な公知の2次元ヘッドを複数用いることにより、投影系本体42、アライメント顕微鏡62、64の6自由度方向の位置情報を求めても良い。 The encoder system constituting the measuring systems 46 and 68 (see FIG. 2 respectively) may be a linear (1 DOF) encoder system whose length measuring axis is only in the X-axis direction (scanning direction), for example. There may be more measuring axes. For example, the rotation amounts of the projection system main body 42 and the alignment microscopes 62 and 64 in the θz direction may be obtained by arranging a plurality of heads 84 and 86 at predetermined intervals in the Y-axis direction. Alternatively, an XY two-dimensional diffraction grating may be formed on the scale 82, and a 3DOF encoder system having measurement axes in the three degrees of freedom in the X, Y, and θz directions may be used. Furthermore, by using a plurality of known two-dimensional heads that can measure the length in the direction orthogonal to the scale surface in combination with the periodic direction of the diffraction grating as the heads 84 and 86, the projection system main body 42 and the alignment microscopes 62 and 64 Position information in the direction of 6 degrees of freedom may be obtained.
 次に、走査露光動作時における液晶露光装置10の動作の一例を、図4(a)~図7(c)を用いて説明する。以下の露光動作(アライメント計測動作を含む)は、主制御装置90(図4(a)~図7(c)では不図示。図2参照)の管理下で行われる。 Next, an example of the operation of the liquid crystal exposure apparatus 10 during the scanning exposure operation will be described with reference to FIGS. 4 (a) to 7 (c). The following exposure operation (including alignment measurement operation) is performed under the control of the main controller 90 (not shown in FIGS. 4A to 7C, see FIG. 2).
 本実施形態において、露光順が最初である区画領域(以下第1ショット領域Sと称する)は、基板Pの-X側且つ-Y側に設定されている。また、基板P上の区画領域に付されたS~Sの符号は、それぞれ露光順序が2~4番目のショット領域であることを示す。 In this embodiment, divided areas exposed order is the first (hereinafter referred to as the first shot area S 1) is set on the -X side and -Y side of the substrate P. Further, the reference numerals S 2 to S 4 given to the partition areas on the substrate P indicate that the exposure areas are the second to fourth shot areas, respectively.
 図4(a)に示されるように、露光開始前において、投影系本体42、及びアライメント顕微鏡62、64それぞれは、平面視で第1ショット領域Sの-X側に設定された初期位置に配置される。このとき、投影系本体42とアライメント顕微鏡62、64とは、X軸方向に関して互いに近接して配置されている。また、アライメント顕微鏡62の検出視野のY軸方向の位置と、第1及び第4ショット領域S、S内に形成されたマークMkのY軸方向の位置とがほぼ一致している。 As shown in FIG. 4 (a), before starting exposure, the projection system main body 42, and the alignment microscopes 62 and 64, respectively, to the initial position set in the -X side of the first shot area S 1 in a plan view Be placed. At this time, the projection system main body 42 and the alignment microscopes 62 and 64 are arranged close to each other in the X-axis direction. Further, the position of the detection visual field of the alignment microscope 62 in the Y-axis direction and the position of the mark Mk formed in the first and fourth shot regions S 1 and S 4 in the Y-axis direction substantially coincide.
 次いで、主制御装置90は、図4(b)に示されるように、アライメント顕微鏡62を+X方向に駆動して、第1ショット領域S内に形成された、例えば4つのマークMkのうち、-X側の端部近傍に形成された、例えば2つのマークMkを検出(図4(b)における太線の丸印参照。以下同じ)する。また、主制御装置90は、図4(c)に示されるように、アライメント顕微鏡62を更に+X方向に駆動して、第1ショット領域S内に形成された、例えば4つのマークMkのうち、+X側の端部近傍に形成された、例えば2つのマークMkを検出する。なお、図4(b)では、投影系本体42は、停止しているが、アライメント顕微鏡62が第1ショット領域S内のマークMkの検出を開始した後であって、該マークMkの検出を行っている最中、例えば-X側のマークMkを検出してから+X側のマークMkまで移動する最中(さらに具体的には、+X側のマークMkを検出する直前)に、投影系本体42が加速を開始しても良い。 Then, the main controller 90, as shown in FIG. 4 (b), to drive the alignment microscope 62 in the + X direction, formed in the first shot area S 1, for example, of the four Mark Mk, For example, two marks Mk formed in the vicinity of the end on the −X side are detected (see the bold circle in FIG. 4B, the same applies hereinafter). The main control unit 90, as shown in FIG. 4 (c), by driving further the + X direction of the alignment microscope 62, formed in the first shot area S 1, for example, among the four marks Mk , For example, two marks Mk formed near the end on the + X side are detected. In FIG. 4 (b), the projection system main body 42 is stopped, even after the alignment microscope 62 starts the detection of the mark Mk in the first shot area S 1, the mark Mk detection During the movement, for example, during the movement to the + X side mark Mk after detecting the −X side mark Mk (more specifically, immediately before the + X side mark Mk is detected), the projection system The main body 42 may start accelerating.
 主制御装置90は、上記第1ショット領域S内に形成された、例えば4つのマークMkの検出結果(位置情報)に基づいて、第1ショット領域Sの配列情報を求める。主制御装置90は、図4(d)に示されるように、第1ショット領域Sの該配列情報に基づいて基板PのXY平面内の3自由度方向の精密な位置決め(基板アライメント動作)を行いつつ、投影系本体42と照明系20の照明系本体22(図4(d)では不図示。図1参照)とを同期して+X方向に駆動して、第1ショット領域Sに対する1回目の走査露光を行う。 The main control device 90, the formed first shot area S 1, for example based on the four marks Mk detection result (position information) to determine the sequence information of the first shot area S 1. The main control unit 90, as shown in FIG. 4 (d), based on the first shot region the sequence information of the S 1 3 precise positioning of the degrees of freedom in the XY plane of the substrate P (substrate alignment operation) while performing, with respect to the illumination system main body 22 (FIG. 4 (d) the not shown. see FIG. 1) and is driven in synchronism with + X direction, the first shot area S 1 of the projection system main body 42 and the illumination system 20 The first scanning exposure is performed.
 また、主制御装置90は、第1ショット領域Sに対する1回目の走査露光動作の開始と並行して、アライメント顕微鏡62を用いて第4ショット領域S(第1ショット領域Sの+X側の区画領域)内に形成された、例えば4つのマークMkのうち、-X側の端部近傍に形成された、例えば2つのマークMkを検出する。 The main control unit 90, in parallel with the start of the first scanning exposure operation for the first shot area S 1, the fourth shot area S 4 (first shot area S 1 of the + X side using an alignment microscope 62 For example, two marks Mk formed in the vicinity of the end portion on the −X side among the four marks Mk formed in the partition area) are detected.
 主制御装置90は、新たに取得した第4ショット領域S内の、例えば2つのマークMkの検出結果と、これ以前に取得した(不図示のメモリ装置内に蓄積された)第1ショット領域S内の、例えば4つのマークの検出結果とに基づいてEGA計算することにより第1ショット領域Sの配列情報を更新してもよい。主制御装置90は、この更新された配列情報に基づいて適宜基板PのXY平面内の3自由度方向の精密な位置決めを行いつつ、第1ショット領域Sの走査露光動作を続行することができる。第1ショット領域Sの配列情報を求めるために第4ショット領域S内のマーク位置情報を用いることにより、第1ショット領域Sに設けられた4つのマークMkのみに基づいて配列情報を求めるよりも、広い範囲にわたる統計的な傾向を考慮した配列情報を求めることができ、第1ショット領域Sに関するアライメント精度の向上が可能となる。 The main controller 90, the fourth shot area S 4 obtained newly, for example, the detection results of the two marks Mk, which (stored in a memory device (not shown)) which previously acquired in the first shot region in S 1, it may update the first sequence information of the shot areas S 1 by EGA calculation based on the detection result of the example four marks. The main controller 90 while performing the 3 precise positioning of the degrees of freedom in the XY plane of the appropriate substrate P on the basis of the updated sequence information, to continue with scanning exposure operation of the first shot area S 1 it can. By using the mark position information of the fourth shot area S 4 in order to obtain the sequence information of the first shot area S 1, the sequence information based only on the four marks Mk provided in the first shot area S 1 than determined, it is possible to obtain the sequence information in consideration of the statistical trend over a wide range, it is possible to improve the alignment accuracy for the first shot area S 1.
 また、主制御装置90は、図5(a)に示されるように、投影系本体42を+X方向に駆動して走査露光動作を行いつつ、更にアライメント顕微鏡62を+X方向に駆動して、第4ショット領域S内に形成された、例えば4つのマークMkのうち、+X側の端部近傍に形成された、例えば2つのマークMkを検出する。主制御装置90は、新たに取得した第4ショット領域S内の、例えば2つのマークMkの検出結果と、これ以前に取得したマークMk(本例では、第1ショット領域S内の、例えば4つのマークMk、及び第4ショット領域S内の、例えば2つのマークMk)の検出結果とに基づいてEGA計算することにより第1ショット領域Sの配列情報を更新してもよい。主制御装置90は、この更新された配列情報に基づいて基板PのXY平面内の3自由度方向の精密な位置決めを行いつつ、第1ショット領域Sの走査露光動作を続行することができる。 Further, as shown in FIG. 5A, the main controller 90 drives the projection system main body 42 in the + X direction to perform the scanning exposure operation, and further drives the alignment microscope 62 in the + X direction to It formed in 4 shot area S 4, for example, among the four marks Mk, formed near the + X side end, for example, to detect the two marks Mk. The main controller 90, the fourth shot area S 4 obtained newly, for example, the detection results of the two marks Mk, the mark Mk (this example obtained which previously in the first shot area S 1, For example, the arrangement information of the first shot region S 1 may be updated by performing EGA calculation based on the detection results of the four marks Mk and, for example, two marks Mk) in the fourth shot region S 4 . The main controller 90 is able to continue the 3 while performing precise positioning of the degrees of freedom, the scanning exposure operation in the first shot area S 1 in the XY plane of the substrate P on the basis of the updated sequence information .
 このように、本実施形態では、投影系本体42に対して走査方向の前方(+X方向)に配置されたアライメント顕微鏡62を用いて、露光領域IA(照明光IL)よりも走査方向の前方(+X方向)に形成されたマークMkを検出する動作と、投影系本体42を+X方向に走査させる走査露光動作との少なくとも一部を同時に(並行して)実行することができる。これにより、アライメント動作と走査露光動作とを含む一連の動作にかかる時間の短縮化が可能となる。また、主制御装置90は、例えば異なる位置に設けられたマークMk順次計測するごとにEGA計算を適宜行い、露光対象の区画領域の配列情報を更新することができる。これにより、露光対象の区画領域のアライメント精度の向上が可能となる。 As described above, in the present embodiment, using the alignment microscope 62 disposed in the front (+ X direction) in the scanning direction with respect to the projection system main body 42, the front (in the scanning direction) of the exposure area IA (illumination light IL). At least a part of the operation for detecting the mark Mk formed in the (+ X direction) and the scanning exposure operation for scanning the projection system main body 42 in the + X direction can be performed simultaneously (in parallel). Thereby, it is possible to shorten the time required for a series of operations including the alignment operation and the scanning exposure operation. Further, the main control device 90 can appropriately perform EGA calculation each time the marks Mk sequentially provided at different positions are measured, for example, and update the arrangement information of the partition areas to be exposed. Thereby, it is possible to improve the alignment accuracy of the partition area to be exposed.
 また、主制御装置90は、走査露光動作のために投影系本体42を+X方向に駆動する際、投影系本体42に対して走査方向の後方(-X方向)に配置されたアライメント顕微鏡64を、投影系本体42に追従するように+X方向に駆動する(図5(a)及び図5(b)参照)。この際、主制御装置90は、アライメント顕微鏡64を用いて、露光領域IA(照明光IL)よりも走査方向の後方(-X方向)に形成されたマークMkを検出し、この検出結果をEGA計算に用いても良い。 Further, when driving the projection system main body 42 in the + X direction for the scanning exposure operation, the main controller 90 moves the alignment microscope 64 arranged behind the projection system main body 42 in the scanning direction (−X direction). Then, it is driven in the + X direction so as to follow the projection system main body 42 (see FIGS. 5A and 5B). At this time, the main controller 90 uses the alignment microscope 64 to detect the mark Mk formed behind the exposure area IA (illumination light IL) in the scanning direction (−X direction), and this detection result is detected by the EGA. It may be used for calculation.
 上述したように、本実施形態において、マスクM上に生成される照明領域IAM(図1参照)、及び基板P上に生成される露光領域IAは、Y軸方向に離間する一対の矩形の領域であるので、1回の走査露光動作により基板Pに転写されるマスクMのパターン像は、Y軸方向に離間した一対のX軸方向に延びる帯状の領域(ひとつの区画領域の全面積のうち半分の面積)内に形成される。 As described above, in this embodiment, the illumination area IAM (see FIG. 1) generated on the mask M and the exposure area IA generated on the substrate P are a pair of rectangular areas separated in the Y-axis direction. Therefore, the pattern image of the mask M transferred to the substrate P by one scanning exposure operation is a band-like region extending in the X-axis direction and separated from the Y-axis direction (of the total area of one partition region). Half area).
 次いで、主制御装置90は、図5(b)に示されるように、第1ショット領域Sの2回目(復路)の走査露光動作のため、基板PおよびマスクMを-Y方向にステップ移動させる(図5(b)の黒矢印参照)。このときの基板Pのステップ移動量は、ひとつの区画領域のY軸方向の長さの、例えば1/4の長さである。また、この場合、基板PとマスクMの-Y方向へのステップ移動において、基板PとマスクMとの相対的な位置関係を変化させないように(あるいは、その相対位置関係を補正可能なように)ステップ移動させることが好ましい。 Then, the main controller 90, as shown in FIG. 5 (b), for scanning exposure operation for the second time in the first shot area S 1 (return path), the step moves the substrate P and the mask M in the -Y direction (See the black arrow in FIG. 5B). The step movement amount of the substrate P at this time is, for example, 1/4 of the length of one partition region in the Y-axis direction. In this case, in the step movement of the substrate P and the mask M in the −Y direction, the relative positional relationship between the substrate P and the mask M is not changed (or the relative positional relationship can be corrected). ) It is preferable to move the step.
 本実施形態において、第1ショット領域Sの2回目の走査露光動作は、図5(c)に示されるように、投影系本体42を-X方向に移動させて行う。主制御装置90は、アライメント顕微鏡64を-X方向に駆動して、第1ショット領域S内に形成された、例えば+X側の端部近傍に形成されたマークMk(不図示)を検出する。主制御装置90は、このアライメント顕微鏡64の検出結果および上述した第1ショット領域Sの配列情報に基づいて基板PのXY平面内の3自由度方向の精密な位置決めを行いつつ、第1ショット領域Sの2回目の走査露光動作を行う。これにより、図5(d)に示されるように、1回目の走査露光動作により転写されたマスクパターンと、2回目の走査露光動作により転写されたマスクパターンとが第1ショット領域S内で繋ぎ合わされ、マスクMのパターンの全体が第1ショット領域Sに転写される。なお、第1ショット領域Sの2回目の走査露光に対応するアライメント動作では、マスクMのマークと基板PのマークMkとの各2点のマーク(+X側のマーク)に基づいてXY平面内の3自由度(X,Y,θz)方向の位置ずれを計測するだけでよいため、1回目のアライメント動作に比べてアライメントにかかる時間を実質的に短くすることができる。 In this embodiment, the second scanning exposure operation of the first shot area S 1, as shown in FIG. 5 (c), performing the projection system main body 42 is moved in the -X direction. The main control device 90, the alignment microscope 64 is driven in the -X direction, which is formed in the first shot area S 1 is detected, for example, the + X side end mark Mk formed in the vicinity (not shown) . The main controller 90 while performing a precise positioning of the 3 degrees of freedom in the XY plane of the substrate P based on the detection result and the above-described first arrangement information of the shot areas S 1 and the alignment microscope 64, the first shot performing second scanning exposure operation region S 1. Thus, as shown in FIG. 5 (d), the mask pattern transferred by the first scanning exposure operation, a mask pattern transferred by the second scanning exposure operation in the first shot in region S 1 are joined together, the overall pattern of the mask M is transferred onto the first shot area S 1. In the alignment operation corresponding to the second scanning exposure of the first shot region S 1 , the XY plane is based on the two marks (the + X side mark) of the mark of the mask M and the mark Mk of the substrate P. Since it is only necessary to measure the positional deviation in the three degrees of freedom (X, Y, θz) direction, the time required for alignment can be substantially shortened compared to the first alignment operation.
 第1ショット領域Sに対する走査露光が終了すると、主制御装置90は、第2ショット領域S(第1ショット領域Sの+Y側の区画領域)に対する走査露光動作のために、基板Pを-Y方向にステップ移動させた後、上記第1ショット領域Sに対する走査露光動作と同様の手順で第2ショット領域Sに対する走査露光を行う。 When the scanning exposure of the first shot area S 1 is completed, the main controller 90, for scanning exposure operation for the second shot area S 2 (partitioned region of the first shot area S 1 of the + Y side), the substrate P after step moves in the -Y direction to perform scanning exposure for the second shot area S 2 in the scanning exposure operation similar procedure for the first shot area S 1.
 すなわち、第2ショット領域Sに対する1回目の走査露光動作では、図6(a)に示されるように、アライメント顕微鏡62により検出された第2ショット領域S、及び第3ショット領域S(第2ショット領域Sの+X側の区画領域)内のマークMkの検出結果に基づいて第2ショット領域Sの配列情報が求められ、この配列情報に基づいて基板PのXY平面内の3自由度方向の精密な位置決めが行われる。このうち、第3ショット領域S内のマークMkの検出動作(及び配列情報の更新)は、第2ショット領域Sに対する走査露光動作と少なくとも一部を並行して行われる。また、主制御装置90は、基板PおよびマスクMを-Y方向にステップ移動させた後、アライメント顕微鏡64により、例えば+X側の端部近傍に形成された第2ショット領域S内のマークMk(不図示)を検出する。主制御装置90は、このアライメント顕微鏡64の検出結果と第2ショット領域Sの配列情報とに基づいて基板PのXY平面内の3自由度方向の精密な位置決めを行いつつ、図6(b)に示されるように、投影系本体42を-X方向に移動させつつ、第2ショット領域Sに対する2回目の走査露光動作を行う。 That is, in the first scanning exposure operation for the second shot region S 2 , as shown in FIG. 6A, the second shot region S 2 and the third shot region S 3 ( sequence information of the second shot area S 2 is obtained based on the second shot area S 2 of the + divided area X side) in the mark Mk result of detecting, 3 in the XY plane of the substrate P on the basis of this sequence information Precise positioning in the direction of freedom is performed. Among them, the detection operation of the marks Mk third shot area S 3 (and the update sequence information) is performed in parallel with at least a portion scanning exposure operation for the second shot area S 2. The main control unit 90, after the substrate P and the mask M is moved stepwise in the -Y direction, the alignment microscope 64, for example + mark Mk in the second shot area S 2 formed in the vicinity of an end of the X-side (Not shown) is detected. The main controller 90 while performing the 3 precise positioning of the degrees of freedom in the XY plane of the substrate P based on the sequence information of the detection result and the second shot area S 2 of the alignment microscope 64, FIG. 6 (b as shown in), while moving the projection system main body 42 in the -X direction, a second time scanning exposure operation for the second shot area S 2.
 第2ショット領域Sに対する走査露光が終了すると、主制御装置90は、マスクM(図1参照)を+X方向にステップ移動させることにより、マスクMと基板P上の第3ショット領域Sとを対向させる。主制御装置90は、アライメント顕微鏡62により、例えば第3ショット領域S内の-X側の端部近傍に形成されたマークMkを検出する。主制御装置90は、この状態で、図6(c)に示されるように、投影系本体42を+X方向に移動させつつ、第3ショット領域Sに対する1回目の走査露光動作を行う。このときのアライメント(基板Pの精密な位置決め)制御は、第3ショット領域Sの配列情報およびアライメント顕微鏡62の検出結果に応じて行われる。第3ショット領域Sの配列情報は、第2ショット領域Sを露光する際に求めた第2及び第3ショット領域S、S内のマークMk位置に基づいて計算されており、アライメント顕微鏡62では、第3ショット領域SとマスクMとを対向配置させた状態の、マスクMのマークと基板PのマークMkとの各2点のマークに基づいてXY平面内の3自由度(X,Y,θz)方向の位置ずれを計測するだけでよい。このため、第2ショット領域Sのアライメントに比べて第3ショット領域Sのアライメントにかかる時間を実質的に短くすることができる。 When the scanning exposure of the second shot area S 2 has been completed, main controller 90, by step movement mask M (see FIG. 1) in the + X direction, and the third shot area S 3 on the mask M and the substrate P Face each other. The main control device 90, the alignment microscope 62 detects the mark Mk example formed in the vicinity of an end of the -X side of the third shot area S 3. The main control device 90, in this state, as shown in FIG. 6 (c), while moving the projection system main body 42 in the + X direction to perform the first scan exposure operation for the third shot area S 3. (Fine positioning of the substrate P) control alignment at this time is performed in accordance with the detection result of the sequence information of the third shot area S 3 and alignment microscope 62. Sequence information for the third shot area S 3 is calculated on the basis of the mark Mk position of the second and third shot area S 2, S 3 obtained when exposing the second shot area S 2, alignment in the microscope 62, in a state where the mask M third shot area S 3 were opposed, three degrees of freedom in the XY plane on the basis of the marks of the respective two points between the mark Mk mark and the substrate P of the mask M ( It is only necessary to measure the displacement in the X, Y, θz) direction. Therefore, it is possible to shorten the time required for the third alignment shot area S 3 in comparison with the alignment of the second shot area S 2 substantially.
 この後、主制御装置90は、第3ショット領域Sに対する2回目の走査露光動作のために、図7(a)に示されるように、基板PおよびマスクMを+Y方向にステップ移動させる。これにより、アライメント顕微鏡64の検出視野のY軸方向の位置と、第2及び第3ショット領域S、S内に形成されたマークMkのY軸方向の位置とがほぼ一致する。 Thereafter, the main controller 90, for the second scanning exposure operation for the third shot area S 3, as shown in FIG. 7 (a), moved stepwise substrate P and the mask M in the + Y direction. Thereby, the position of the detection visual field of the alignment microscope 64 in the Y-axis direction substantially coincides with the position of the mark Mk formed in the second and third shot regions S 2 and S 3 in the Y-axis direction.
 主制御装置90は、上述した第1ショット領域Sに対する1回目の走査露光動作と同様の手順(ただし、マークMkの検出に用いるアライメント顕微鏡が異なる)で、第3ショット領域Sに対する2回目の走査露光動作を行う。すなわち、主制御装置90は、第3ショット領域Sに対する2回目の走査露光動作では、図7(b)に示されるように、投影系本体42に先行してアライメント顕微鏡64が第3ショット領域S内に形成された、例えば4つのマークMkを検出し、この検出結果に応じて、主制御装置90は、第3ショット領域Sの配列情報を更新する。主制御装置90は、この更新された配列情報に基づいて基板PのXY平面内の3自由度方向の精密な位置決めを行いつつ、第3ショット領域Sに対する走査露光動作を行う。また、この走査露光動作と並行して、アライメント顕微鏡64は、図7(c)に示されるように、第2ショット領域S内に形成された、例えば4つのマークMkを検出する。主制御装置90は、新たに取得したマークMkの位置情報に基づいて、第3ショット領域Sの配列情報を更新しつつ、並行して第3ショット領域Sに対する2回目の走査露光動作を行う。 The main controller 90, the first shot area S 1 for the first scanning exposure operation similar procedure described above (however, alignment microscope are different to be used for detection of the mark Mk), the second to the third shot area S 3 The scanning exposure operation is performed. That is, the main controller 90, the second scanning exposure operation for the third shot area S 3, as shown in FIG. 7 (b), the alignment microscope 64 prior to the projection system main body 42 is a third shot region formed in the S 3, it detects, for example, four marks Mk, in response to this detection result, the main controller 90 updates the sequence information of the third shot area S 3. The main controller 90 while performing a precise positioning of the 3 degrees of freedom in the XY plane of the substrate P, and the scanning exposure operation for the third shot area S 3 performed on the basis of the updated sequence information. In parallel with the scanning exposure operation, the alignment microscope 64, as shown in FIG. 7 (c), formed in the second shot area S 2, detects, for example four marks Mk. The main controller 90, based on the newly acquired positional information of the mark Mk, while updating the sequence information of the third shot area S 3, the second scanning exposure operation for the third shot area S 3 in parallel Do.
 以下、不図示であるが、主制御装置90は、基板PのYステップ動作を適宜行いつつ、第4ショット領域Sに対する走査露光を行う。この第4ショット領域Sに対する走査露光動作は、第3ショット領域Sに対する走査露光動作と概ね同じであるので説明を省略する。 Hereinafter, although not shown, the main controller 90 while performing the Y stepping of the substrate P as appropriate, performs scanning exposure for the fourth shot area S 4. Scanning exposure operation for the fourth shot area S 4 will be omitted because it is substantially the same as the scanning exposure operation for the third shot area S 3.
 なお、第3及び第4ショット領域S、Sに対する走査露光動作時において、アライメント顕微鏡64と併せてアライメント顕微鏡62によりマークMkの検出を行い、これらアライメント顕微鏡62、64の出力を用いて区画領域の配列情報を更新しても良い。また、第2ショット領域S以降の区画領域を露光するために、当該区画領域の配列情報を求める際、それ以前の区画領域を露光する際に求めたマークMkの位置情報を用いても良い。具体的には、例えば第4ショット領域Sの配列情報を求める際、主制御装置90は、第1及び第4ショット領域S、S内のマークMkの位置情報を用いるが、これと併せて、以前に求めた第2及び第3ショット領域S、S内のマークMkの位置情報を用いても良い。 In the scanning exposure operation for the third and fourth shot regions S 3 and S 4 , the mark Mk is detected by the alignment microscope 62 together with the alignment microscope 64, and the division is performed using the outputs of the alignment microscopes 62 and 64. You may update the arrangement | sequence information of an area | region. Further, in order to expose the divided area of the second shot area S 2 and later, when obtaining the sequence information of the divided areas may be using the position information of the mark Mk obtained when exposing the earlier defined areas . Specifically, for example, for obtaining the sequence information of the fourth shot area S 4, the main controller 90 uses a position information of the mark Mk of the first and fourth shot area S 1, S 4, and this In addition, the position information of the mark Mk in the second and third shot areas S 2 and S 3 obtained previously may be used.
 以上説明した本実施形態によれば、アライメント顕微鏡62、64が投影系本体42に独立して走査方向に移動するので、走査露光動作とアライメント動作との少なくとも一部を同時に(並行して)行うことができる。従って、アライメント動作と走査露光動作とを含む一連の動作にかかる時間、すなわち、基板Pの露光処理にかかる一連の処理時間(タクトタイム)の短縮化が可能となる。 According to the present embodiment described above, since the alignment microscopes 62 and 64 move in the scanning direction independently of the projection system main body 42, at least a part of the scanning exposure operation and the alignment operation are performed simultaneously (in parallel). be able to. Accordingly, it is possible to shorten a time required for a series of operations including the alignment operation and the scanning exposure operation, that is, a series of processing times (tact time) required for the exposure processing of the substrate P.
 また、走査方向に関して投影系本体42の一側及び他側それぞれにアライメント顕微鏡62、64が配置されているので、走査露光動作時の走査方向(往路走査と復路走査)に関わらず、アライメント動作と走査露光動作とを含む一連の動作にかかる時間の短縮化が可能となる。 In addition, since the alignment microscopes 62 and 64 are arranged on one side and the other side of the projection system main body 42 with respect to the scanning direction, the alignment operation is performed regardless of the scanning direction (forward scanning and backward scanning) during the scanning exposure operation. The time required for a series of operations including the scanning exposure operation can be shortened.
《第2の実施形態》
 次に第2の実施形態に係る液晶露光装置について、図8(a)~図8(d)を用いて説明する。第2の実施形態に係る液晶露光装置の構成は、アライメント系の構成及び動作が異なる点を除き、上記第1の実施形態と同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成及び機能を有する要素については、上記第1の実施形態と同じ符号を付してその説明を省略する。
<< Second Embodiment >>
Next, a liquid crystal exposure apparatus according to a second embodiment will be described with reference to FIGS. 8 (a) to 8 (d). Since the configuration of the liquid crystal exposure apparatus according to the second embodiment is the same as that of the first embodiment except that the configuration and operation of the alignment system are different, only the differences will be described below. Elements having the same configuration and function as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 上記第1の実施形態では、投影系本体42に対してスキャン方向の前後(+X側、及び-X側)に、それぞれアライメント顕微鏡62、64(図1参照)が配置されたのに対し、本第2の実施形態では、図8(a)に示されるように、投影系本体42の+X側にのみアライメント顕微鏡162が設けられている。 In the first embodiment, the alignment microscopes 62 and 64 (see FIG. 1) are respectively arranged before and after (+ X side and −X side) in the scanning direction with respect to the projection system main body 42. In the second embodiment, as shown in FIG. 8A, the alignment microscope 162 is provided only on the + X side of the projection system main body 42.
 また、上記第1の実施形態のアライメント顕微鏡62、64がY軸方向に離間した一対の検出視野を有していた(図4(b)など参照)のに対し、アライメント顕微鏡162は、Y軸方向に離間した、例えば4つの検出視野を有している。アライメント顕微鏡162が有する、例えば4つの検出視野は、Y軸方向に隣接する、例えば2つの区画領域に跨って形成されたマークMkを同時検出可能となるように、互いの間隔が設定されている。 The alignment microscopes 62 and 64 of the first embodiment have a pair of detection fields separated in the Y-axis direction (see FIG. 4B and the like), whereas the alignment microscope 162 has a Y-axis. For example, there are four detection fields separated in the direction. The alignment microscope 162 has, for example, four detection fields of view that are spaced apart from each other so that marks Mk that are adjacent to each other in the Y-axis direction, for example, formed over two partition regions can be detected simultaneously. .
 本第2の実施形態において、主制御装置90(図2参照)は、図8(b)及び図8(c)に示されるように、第1ショット領域Sの走査露光動作に先立って、アライメント顕微鏡162を+X方向に駆動しつつ、基板Pに形成された、例えば合計で16個のマークMkの検出を行い、このマークMkの検出結果に基づいて第1ショット領域Sの配列情報を求め、該配列情報に応じて基板Pの精密位置制御を行いつつ、図8(d)に示されるように、投影系本体42を+X方向に駆動して第1ショット領域Sの走査露光動作を行う。 In the second embodiment, the main controller 90 (see FIG. 2), as shown in FIG. 8 (b) and FIG. 8 (c), the prior to the scanning exposure operation of the first shot area S 1, while driving the alignment microscope 162 in the + X direction, formed on the substrate P, for example a total of performs 16 marks Mk detection, the first sequence information of the shot areas S 1 based on the detection result of the mark Mk As shown in FIG. 8D, the projection system main body 42 is driven in the + X direction while performing the precise position control of the substrate P according to the arrangement information, and the scanning exposure operation of the first shot region S 1 is performed. I do.
 本第2の実施形態では、アライメント顕微鏡162がY軸方向に、例えば4つの検出視野を有しているので、アライメント顕微鏡62を+X方向に1回移動させることにより、基板Pのより広範囲な場所に形成されたマークMk(この第2の実施形態では全てのマークMk)を検出することができる。従って、第1の実施形態に比べて、基板Pの露光処理にかかる一連の処理時間(タクトタイム)のいっそうの短縮化が可能となる。 In the second embodiment, since the alignment microscope 162 has, for example, four detection fields in the Y-axis direction, a wider area of the substrate P can be obtained by moving the alignment microscope 62 once in the + X direction. Can be detected (all marks Mk in the second embodiment). Therefore, as compared with the first embodiment, it is possible to further shorten a series of processing time (tact time) required for the exposure processing of the substrate P.
 本第2の実施形態においても、上記第1の実施形態と同様に、基板PのYステップ動作、及び/又はマスクM(図1参照)のXステップ動作を行うことによって露光対象の区画領域の移動を行う。なお、本第2の実施形態では、第1ショット領域Sの走査露光前に、基板Pに形成された全てのマークMkを検出することから、第2ショット領域S以降の走査露光の際に、再度EGA計算を行わなくてもよい。なお、第2ショット領域S以降の走査露光の際に、あらためてアライメント計測(EGA計算)を行って各区画領域の配列情報を更新しても良い。 Also in the second embodiment, similarly to the first embodiment, the Y-step operation of the substrate P and / or the X-step operation of the mask M (see FIG. 1) is performed, so that the partition area to be exposed is determined. Move. Incidentally, in the second embodiment, prior to the scanning exposure of the first shot area S 1, since the detection of all the marks Mk formed on the substrate P, when the second shot area S 2 and subsequent scanning exposure In addition, it is not necessary to perform the EGA calculation again. At the time of the second shot area S 2 and subsequent scanning exposure may update the sequence information of the partitioned regions performed again alignment measurement (EGA calculation).
《第3の実施形態》
 次に第3の実施形態に係る液晶露光装置について、図9(a)及び図9(b)を用いて説明する。第3の実施形態に係る液晶露光装置の構成は、アライメント系及び投影光学系の構成及び動作が異なる点を除き、上記第1の実施形態と同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成及び機能を有する要素については、上記第1の実施形態と同じ符号を付してその説明を省略する。
<< Third Embodiment >>
Next, a liquid crystal exposure apparatus according to a third embodiment will be described with reference to FIGS. 9 (a) and 9 (b). Since the configuration of the liquid crystal exposure apparatus according to the third embodiment is the same as that of the first embodiment except that the configurations and operations of the alignment system and the projection optical system are different, only the differences will be described below. Elements having the same configurations and functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 上記第1の実施形態において、アライメント系60は、投影系本体42の走査方向の前後(+X側及び-X側)にアライメント顕微鏡62、64を有していたのに対し、本第3の実施形態では、投影系本体42の+X側にのみアライメント顕微鏡62が設けられている点が異なる。 In the first embodiment, the alignment system 60 has the alignment microscopes 62 and 64 in the front and rear (+ X side and −X side) of the projection system main body 42 in the scanning direction. The difference is that the alignment microscope 62 is provided only on the + X side of the projection system main body 42.
 本第3の実施形態において、主制御装置90(図2参照)では、基板Pを投影系本体42に対してYステップさせる際に、アライメント顕微鏡62と、投影系本体42とを、所定の初期位置に復帰させる。具体的に説明すると、例えば図9(a)に示されるように、第1ショット領域Sの走査露光動作が終了すると、主制御装置90は、上記第1の実施形態と同様に、図9(b)に示されるように、基板Pを-Y方向にYステップ動作させる(図9(b)の黒矢印参照)。 In the third embodiment, in the main controller 90 (see FIG. 2), when the substrate P is Y-stepped with respect to the projection system main body 42, the alignment microscope 62 and the projection system main body 42 are set to a predetermined initial stage. Return to position. Specifically, for example, as shown in FIG. 9 (a), when the scanning exposure operation in the first shot area S 1 is completed, the main controller 90, as in the first embodiment, FIG. 9 As shown in FIG. 9B, the substrate P is moved in the −Y direction by a Y step operation (see the black arrow in FIG. 9B).
 また、主制御装置90は、上記基板Pの-Y方向へのYステップ動作と並行して、アライメント顕微鏡62と投影系本体42とを、それぞれ-X方向に駆動して、初期位置(図4(a)参照)に復帰させる(図9(b)の白矢印参照)。本実施形態において、アライメント顕微鏡62、及び投影系本体42の初期位置とは、それぞれの移動可能範囲の-X側の端部近傍である。この後、主制御装置90は、アライメント顕微鏡62、及び投影系本体42をそれぞれ+X方向に駆動することにより、第1ショット領域Sに対する2回目の走査露光動作を行う。なお、この2回目の走査露光動作に先立って、アライメント顕微鏡62により、基板Pに形成されたマークMkの検出動作を行い、その出力に応じて、第1ショット領域Sの配列情報を更新しても良い。 Further, the main controller 90 drives the alignment microscope 62 and the projection system main body 42 in the −X direction in parallel with the Y step operation of the substrate P in the −Y direction, respectively, so that the initial position (FIG. 4) is reached. (See (a)) (see white arrow in FIG. 9B). In the present embodiment, the initial positions of the alignment microscope 62 and the projection system main body 42 are in the vicinity of the −X side end of each movable range. Thereafter, the main controller 90, by driving the alignment microscope 62, and a projection system main body 42 in the respective + X direction to perform the second scanning exposure operation for the first shot area S 1. Prior to the scanning exposure operation in the second, the alignment microscope 62, performs detection operation of the marks Mk formed on the substrate P, in accordance with the output, and updates the first sequence information of the shot areas S 1 May be.
 本第3の実施形態によれば、アライメント顕微鏡62がひとつであっても上記第1の実施形態と同様の効果を得ることができる。 According to the third embodiment, even if there is only one alignment microscope 62, the same effect as in the first embodiment can be obtained.
 なお、以上説明した第1~第3の各実施形態の構成は、適宜変更が可能である。例えば、上記第2の実施形態において、上記第1の実施形態と同様に、走査方向に関して投影系本体42の両側(+X側及び-X側)にアライメント顕微鏡162を配置しても良い。この場合、走査方向が-X方向であっても投影系本体42の移動に先立ってアライメント計測を行うことが可能となる。 Note that the configurations of the first to third embodiments described above can be changed as appropriate. For example, in the second embodiment, similarly to the first embodiment, the alignment microscopes 162 may be arranged on both sides (+ X side and −X side) of the projection system main body 42 in the scanning direction. In this case, alignment measurement can be performed prior to the movement of the projection system main body 42 even if the scanning direction is the -X direction.
 また、上記第1の実施形態では、第1ショット領域Sの全てのマークMkの検出が終了した後に、該第1ショット領域Sの走査露光動作を開始したが、これに限定されず、第1ショット領域S内に形成された複数のマークMkの計測中に該第1ショット領域Sの走査露光動作を開始しても良い。 In the first embodiment, the scanning exposure operation for the first shot region S 1 is started after the detection of all the marks Mk in the first shot region S 1 is completed. However, the present invention is not limited to this. it may start the scanning exposure operation of the first shot area S 1 during the measurement of a plurality of marks Mk formed in the first shot area S 1.
 また、上記各実施形態では、アライメント計測動作と走査露光動作とが単一の基板Pに対して並行して行われたが、これに限られず、基板Pを、例えば2枚用意し、一方の基板Pの走査露光を行いつつ、他方の基板Pのアライメント計測を行っても良い。 In each of the above embodiments, the alignment measurement operation and the scanning exposure operation are performed in parallel on a single substrate P. However, the present invention is not limited to this. For example, two substrates P are prepared. While performing the scanning exposure of the substrate P, the alignment measurement of the other substrate P may be performed.
 また、上記各実施形態では、第1ショット領域Sの走査露光の後、該第1ショット領域Sの+Y(上)側に設定された第2ショット領域Sの走査露光を行ったが、これに限られず、第1ショット領域Sの走査露光の次に第4ショット領域Sの走査露光を行っても良い。この場合、例えば第1ショット領域Sに対向するマスクと、第4ショット領域Sに対応するマスクと(合計で2枚のマスク)を用いることにより、第1及び第4ショット領域S、Sを連続して走査露光することができる。また、第1ショット領域Sの走査露光の後にマスクMを+X方向にステップ移動させて第4ショット領域Sの走査露光を行っても良い。 In the above embodiments, after the scanning exposure of the first shot area S 1, it was subjected to second scanning exposure for the shot area S 2 set in the + Y (upper) side of the first shot area S 1 is not limited to this, the next scanning exposure of the first shot area S 1 may be performed scanning exposure of the fourth shot area S 4. In this case, for example, by using a mask facing the first shot region S 1 and a mask corresponding to the fourth shot region S 4 (two masks in total), the first and fourth shot regions S 1 , it can be scanned exposing the S 4 sequentially. Also, it may be performed scanning exposure of the fourth shot area S 4 by step movement of the mask M in the + X direction after the scanning exposure of the first shot area S 1.
 また、上記各実施形態では、マークMkは、各区画領域(第1~第4ショット領域S~S)内に形成されたが、これに限られず、隣接する区画領域間の領域(いわゆるスクライブライン)内に形成されていても良い。 In each of the above embodiments, the mark Mk is formed in each partition area (first to fourth shot areas S 1 to S 4 ). It may be formed in a scribe line.
 また、上記各実施形態では、Y軸方向に離間した一対の照明領域IAM、露光領域IAをそれぞれマスクM、基板P上に生成したが(図1参照)、照明領域IAM、及び露光領域IAの形状、長さは、これに限られず適宜変更可能である。例えば、照明領域IAM、露光領域IAのY軸方向の長さは、それぞれマスクMのパターン面、基板P上のひとつの区画領域のY軸方向の長さと等しくても良い。この場合、各区画領域に対して1回の走査露光動作でマスクパターンの転写が終了する。あるいは、照明領域IAM、露光領域IAは、Y軸方向の長さがそれぞれマスクMのパターン面、基板P上のひとつの区画領域のY軸方向の長さの半分であるひとつの領域であっても良い。この場合は、上記実施形態と同様に、ひとつの区画領域に対して2回の走査露光動作を行う必要がある。 In each of the above embodiments, a pair of illumination area IAM and exposure area IA that are separated in the Y-axis direction are generated on mask M and substrate P, respectively (see FIG. 1), but illumination area IAM and exposure area IA The shape and length are not limited to this, and can be changed as appropriate. For example, the length of the illumination area IAM and the exposure area IA in the Y-axis direction may be equal to the pattern surface of the mask M and the length of one partition area on the substrate P in the Y-axis direction, respectively. In this case, the transfer of the mask pattern is completed with a single scanning exposure operation for each partitioned region. Alternatively, the illumination area IAM and the exposure area IA are one area whose length in the Y-axis direction is half the length in the Y-axis direction of one partition area on the pattern surface of the mask M and the substrate P, respectively. Also good. In this case, similarly to the above embodiment, it is necessary to perform the scanning exposure operation twice for one partitioned area.
 また、上記実施形態のように、ひとつのマスクパターンを区画領域に形成するために、投影系本体42を往復させて繋ぎ合わせ露光を行う場合、互いに異なる検出視野を有する往路用及び復路用のアライメント顕微鏡を走査方向(X方向)に関して投影系本体42の前後に配置しても良い。この場合、例えば往路用(1回目の露光動作用)のアライメント顕微鏡により、区画領域の四隅のマークMkを検出し、復路用(2回目の露光動作用)のアライメント顕微鏡によって、継ぎ部近傍のマークMkを検出しても良い。ここで、継ぎ部とは、往路の走査露光で露光された領域(パターンが転写された領域)と復路の走査露光で露光された領域(パターンが転写された領域)との継ぎ合わせ部分を意味する。継ぎ部近傍のマークMkとしては、予め基板にマークMkを形成しても良いし、露光済みのパターンをマークMkとしても良い。上記各実施形態では、投影系本体42を+X方向に駆動して走査露光動作を行う場合、往路用のアライメント顕微鏡はアライメント顕微鏡62、復路用のアライメント顕微鏡はアライメント顕微鏡64である。また、投影系本体42を-X方向に駆動して走査露光動作を行う場合、往路用のアライメント顕微鏡はアライメント顕微鏡64、復路用のアライメント顕微鏡はアライメント顕微鏡62である。 Further, as in the above-described embodiment, when joint exposure is performed by reciprocating the projection system main body 42 in order to form a single mask pattern in a partitioned area, alignment for the forward path and the backward path having different detection fields of view. You may arrange | position a microscope before and behind the projection system main body 42 regarding a scanning direction (X direction). In this case, for example, the mark Mk at the four corners of the partitioned area is detected by an alignment microscope for the forward path (for the first exposure operation), and the mark near the joint is detected by the alignment microscope for the backward path (for the second exposure operation). Mk may be detected. Here, the joint portion means a joint portion between an area exposed by the forward scanning exposure (area where the pattern is transferred) and an area exposed by the backward scanning exposure (the area where the pattern is transferred). To do. As the mark Mk in the vicinity of the joint portion, the mark Mk may be formed on the substrate in advance, or an exposed pattern may be used as the mark Mk. In each of the above embodiments, when the scanning system main body 42 is driven in the + X direction to perform the scanning exposure operation, the forward alignment microscope is the alignment microscope 62 and the return alignment microscope is the alignment microscope 64. When the scanning exposure operation is performed by driving the projection system main body 42 in the −X direction, the forward alignment microscope is the alignment microscope 64, and the backward alignment microscope is the alignment microscope 62.
 また、上記実施形態(及び第1、第2変形例)では、照明系20の照明系本体22を駆動するための駆動系24、マスクステージ装置30のステージ本体32を駆動するための駆動系34、投影光学系40の投影光学系本体42を駆動するための駆動系44、基板ステージ装置50のステージ本体52を駆動するための駆動系54、及びアライメント系60のアライメント顕微鏡62を駆動するための駆動系66(それぞれ図2参照)が、それぞれリニアモータを含む場合について説明したが、上記照明系本体22、ステージ本体32、投影光学系本体42、ステージ本体52、及びアライメント顕微鏡62を駆動するためのアクチュエータの種類は、これに限られず、適宜変更が可能であり、例えば送りネジ(ボールネジ)装置、ベルト駆動装置などの各種アクチュエータを適宜用いることが可能である。 In the above-described embodiment (and the first and second modifications), the drive system 24 for driving the illumination system body 22 of the illumination system 20 and the drive system 34 for driving the stage body 32 of the mask stage apparatus 30 are used. A drive system 44 for driving the projection optical system main body 42 of the projection optical system 40, a drive system 54 for driving the stage main body 52 of the substrate stage apparatus 50, and an alignment microscope 62 for driving the alignment system 60. The case where each of the drive systems 66 (see FIG. 2) includes a linear motor has been described. However, in order to drive the illumination system main body 22, the stage main body 32, the projection optical system main body 42, the stage main body 52, and the alignment microscope 62. The type of actuator is not limited to this, and can be changed as appropriate. For example, a feed screw (ball screw) device, a belt It is possible to use various actuators such as braking system appropriately.
 また、上記各実施形態では、投影系本体42とアライメント顕微鏡62とが、スキャン方向への駆動系の一部(例えばリニアモータ、ガイドなど)を共用したが、投影系本体42とアライメント顕微鏡62とを個別に駆動できればこれに限られず、アライメント顕微鏡62を駆動するための駆動系66と、投影光学系40の投影系本体42を駆動するための駆動系44とが、完全に独立して構成されていても良い。すなわち、図10に示される露光装置10Aのように、投影光学系40Aが有する投影光学系本体42と、アライメント系60Aが有するアライメント顕微鏡62とを、Y位置が互いに重複しないように配置することによって、アライメント顕微鏡62を駆動するための駆動系66(例えばリニアモータ、ガイドなどを含む)と、投影系本体42を駆動するための駆動系44(例えばリニアモータ、ガイドなどを含む)とを、完全に独立した構成とすることができる。この場合、露光対象の区画領域の走査露光動作の開始前に、基板PをY軸方向へステップ移動(往復移動)させることによって、該区画領域のアライメント計測を行う。また、図11に示される露光装置10Bのように、投影光学系40Bが有する投影光学系本体42を駆動するための駆動系44(例えばリニアモータ、ガイドなどを含む)と、アライメント系60Bが有するアライメント顕微鏡62を駆動するための駆動系66(例えばリニアモータ、ガイドなどを含む)とのY位置を重複しないように配置することによって、駆動系44と駆動系66とを、完全に独立した構成とすることもできる。 In each of the above embodiments, the projection system main body 42 and the alignment microscope 62 share a part of the drive system in the scanning direction (for example, a linear motor, a guide, etc.). The driving system 66 for driving the alignment microscope 62 and the driving system 44 for driving the projection system main body 42 of the projection optical system 40 are configured completely independently. May be. That is, like the exposure apparatus 10A shown in FIG. 10, the projection optical system main body 42 included in the projection optical system 40A and the alignment microscope 62 included in the alignment system 60A are arranged so that the Y positions do not overlap each other. A drive system 66 (including a linear motor, a guide, etc.) for driving the alignment microscope 62 and a drive system 44 (eg, including a linear motor, a guide, etc.) for driving the projection system main body 42 are completely provided. It can be set as an independent structure. In this case, before the start of the scanning exposure operation for the partitioned area to be exposed, the substrate P is moved stepwise (reciprocated) in the Y-axis direction to measure alignment of the partitioned area. Further, like the exposure apparatus 10B shown in FIG. 11, the alignment system 60B includes a drive system 44 (including a linear motor, a guide, etc.) for driving the projection optical system main body 42 of the projection optical system 40B. The drive system 44 and the drive system 66 are completely independent by arranging the Y positions so as not to overlap with a drive system 66 (including a linear motor, a guide, etc.) for driving the alignment microscope 62. It can also be.
 また、上記各実施形態では、照明系20の照明系本体22の位置計測を行うための計測系26、マスクステージ装置30のステージ本体32の位置計測を行うための計測系36、投影光学系40の投影光学系本体42の位置計測を行うための計測系46、基板ステージ装置50のステージ本体52の位置計測を行うための計測系56、及びアライメント系60のアライメント顕微鏡62の位置計測を行うための計測系68(それぞれ図2参照)が、それぞれリニアエンコーダを含む場合について説明したが、上記照明系本体22、ステージ本体32、投影系投影光学系本体42、ステージ本体52、及びアライメント顕微鏡62の位置計測を行うための計測システムの種類は、これに限られず、適宜変更が可能であり、例えば光干渉計、あるいはリニアエンコーダと光干渉計とを併用した計測系などの各種計測システムを適宜用いることが可能である。 In each of the above embodiments, the measurement system 26 for measuring the position of the illumination system body 22 of the illumination system 20, the measurement system 36 for measuring the position of the stage body 32 of the mask stage apparatus 30, and the projection optical system 40. A measurement system 46 for measuring the position of the projection optical system main body 42, a measurement system 56 for measuring the position of the stage main body 52 of the substrate stage device 50, and a position measurement of the alignment microscope 62 of the alignment system 60. The measurement system 68 (see FIG. 2) includes linear encoders. However, the illumination system main body 22, the stage main body 32, the projection system projection optical system main body 42, the stage main body 52, and the alignment microscope 62 are described. The type of measurement system for performing position measurement is not limited to this, and can be changed as appropriate, for example, an optical interferometer, an There is possible to use various measuring systems such as the measurement system using a combination of linear encoder and optical interferometer as appropriate.
 ここで、照明系20、マスクステージ装置30、投影光学系40、基板ステージ装置50、アライメント系60は、モジュール化されていても良い。照明系20は照明系モジュール12M、マスクステージ装置30はマスクステージモジュール14M、投影光学系40は投影光学系モジュール16M、基板ステージ装置50は基板ステージモジュール18M、アライメント系60はアライメント系モジュール20Mと称する。以下、適宜「各モジュール12M~20M」と称するが、対応する架台28A~28E上に載置されることにより、互いに物理的に独立して配置されている。 Here, the illumination system 20, the mask stage device 30, the projection optical system 40, the substrate stage device 50, and the alignment system 60 may be modularized. The illumination system 20 is called the illumination system module 12M, the mask stage device 30 is called the mask stage module 14M, the projection optical system 40 is called the projection optical system module 16M, the substrate stage device 50 is called the substrate stage module 18M, and the alignment system 60 is called the alignment system module 20M. . Hereinafter, although appropriately referred to as “each module 12M to 20M”, they are placed on the corresponding bases 28A to 28E so as to be physically independent of each other.
 従って、図12に示されるように、液晶露光装置10では、上記各モジュール12M~20M(図12では、一例として基板ステージモジュール18M)のうちの任意(1つ、あるいは複数)モジュールを、他のモジュールから独立して交換することができる。この際、交換対象のモジュールは、該モジュールを支持する架台28A~28E(図12では、架台28E)と一体的に交換される。 Accordingly, as shown in FIG. 12, in the liquid crystal exposure apparatus 10, an arbitrary (one or a plurality) of the modules 12M to 20M (the substrate stage module 18M as an example in FIG. 12) is replaced with another module. Can be replaced independently of the module. At this time, the module to be exchanged is exchanged integrally with the gantry 28A to 28E (the gantry 28E in FIG. 12) that supports the module.
 上記各モジュール12M~20Mの交換動作時において、交換対象となる各モジュール12M~20M(及び該モジュールを支持する架台28A~28E)は、床26面に沿ってX軸方向に移動する。このため、架台28A~28Eには、例えば床26上を容易に移動可能となるように、例えば車輪、あるいはエアキャスタ装置などを設けると良い。このように、本実施形態の液晶露光装置10では、各モジュール12M~20Mのうち、任意のモジュールを個別に他のモジュールから容易に分離することができるので、メンテナンス性に優れる。なお、図12では、基板ステージモジュール18Mが架台28Eと共に、他の要素(投影光学系モジュール16Mなど)に対して+X方向(紙面奥側)に移動することにより、他の要素から分離する態様が示されているが、移動対象のモジュール(及び架台)の移動方向は、これに限定されず、例えば-X方向(紙面手前)であっても良いし、+Y方向(紙面上方)であっても良い。また、各架台28A~28Eの床26上における設置後の位置再現性を確保するための位置決め装置を設けても良い。該位置決め装置は、各架台28A~28Eに設けられても良いし、各架台28A~28Eに設けられた部材と床26に設けられた部材との協働により、各架台28A~28Eの設置位置が再現されるように構成しても良い。 During the replacement operation of the modules 12M to 20M, the modules 12M to 20M (and the bases 28A to 28E supporting the modules) to be replaced move in the X-axis direction along the floor 26 surface. Therefore, for example, wheels or an air caster device may be provided on the bases 28A to 28E so that the bases 28A to 28E can be easily moved on the floor 26, for example. As described above, in the liquid crystal exposure apparatus 10 according to the present embodiment, an arbitrary module among the modules 12M to 20M can be easily separated from other modules, so that it is excellent in maintainability. In FIG. 12, the substrate stage module 18M is separated from other elements by moving in the + X direction (back side of the drawing) with respect to the other elements (such as the projection optical system module 16M) together with the gantry 28E. Although shown, the moving direction of the module to be moved (and the gantry) is not limited to this, and may be, for example, the −X direction (front of the page) or the + Y direction (upward on the page). good. Further, a positioning device may be provided to ensure position reproducibility after installation on the floor 26 of each gantry 28A to 28E. The positioning device may be provided on each of the gantry 28A to 28E, or the installation position of each of the gantry 28A to 28E by cooperation of a member provided on each of the gantry 28A to 28E and a member provided on the floor 26. May be configured to be reproduced.
 また、本実施形態の液晶露光装置10は、上記各モジュール12M~20Mを独立に分離することができる構成であるため、各モジュール12M~20Mを個別にアップグレードすることもできる。なお、アップグレードとは、例えば露光対象の基板Pの大型化などに対応するためのアップグレードの他に、基板Pの大きさは同じであるが各モジュール12M~20Mをより性能が向上したものに交換する場合も含む。 In addition, since the liquid crystal exposure apparatus 10 of the present embodiment has a configuration in which the modules 12M to 20M can be separated independently, the modules 12M to 20M can be individually upgraded. The upgrade refers to, for example, an upgrade to cope with an increase in the size of the substrate P to be exposed, and the modules 12M to 20M are replaced with modules having the same performance but with improved performance. This includes cases where
 ここで、例えば基板Pが大型化する場合、基板Pの面積(本実施形態では、X軸及びY軸方向の寸法)が大きくなるのみで、通常基板Pの厚み(Z軸方向の寸法)は、実質的に変化しない。従って、例えば基板Pの大型化に対応して液晶露光装置10の基板ステージモジュール18Mをアップグレードする場合、図12に示されるように、基板ステージモジュール18Mに替わり、新たに挿入される基板ステージモジュール18AM、及び基板ステージモジュール18AMを支持する架台28Gは、X軸及び/又はY軸方向の寸法が変わるが、Z軸方向の寸法は、実質的に変化しない。同様に、マスクステージモジュール14Mも、マスクMの大型化に応じたアップグレードによって、Z軸方向の寸法が実質的に変化しない。 Here, for example, when the substrate P is increased in size, only the area of the substrate P (in this embodiment, the dimensions in the X-axis and Y-axis directions) is increased, and the thickness of the normal substrate P (the dimension in the Z-axis direction) is Does not change substantially. Therefore, for example, when the substrate stage module 18M of the liquid crystal exposure apparatus 10 is upgraded in response to an increase in the size of the substrate P, as shown in FIG. 12, a substrate stage module 18AM newly inserted instead of the substrate stage module 18M is used. The gantry 28G that supports the substrate stage module 18AM changes in the X-axis and / or Y-axis direction dimensions, but the Z-axis direction dimension does not change substantially. Similarly, the dimension in the Z-axis direction of the mask stage module 14M is not substantially changed by the upgrade corresponding to the increase in the size of the mask M.
 また、例えば照明領域IAM、露光領域IA(それぞれ図1など参照)を拡大するためには、照明系モジュール12Mが有する照明光学系の数、投影光学系モジュール16Mが有する投影レンズモジュールの数を増やすことで、照明系モジュール12M、投影光学系モジュール16Mそれぞれをアップグレードすることができる。アップグレード後の照明系モジュール、投影光学系モジュール(それぞれ不図示)は、アップグレード前に比べてX軸及び/又はY軸方向の寸法が変わるのみで、Z軸方向の寸法は、実質的に変化しない。 For example, in order to enlarge the illumination area IAM and the exposure area IA (see FIG. 1 and the like), the number of illumination optical systems included in the illumination system module 12M and the number of projection lens modules included in the projection optical system module 16M are increased. Thus, each of the illumination system module 12M and the projection optical system module 16M can be upgraded. The illumination system module and the projection optical system module (not shown) after the upgrade only change the dimensions in the X-axis and / or Y-axis direction compared to before the upgrade, and the dimensions in the Z-axis direction do not substantially change. .
 このため、本実施形態の液晶露光装置10では、各モジュール12M~20Mを支持する架台28A~28E、及びアップグレード後の各モジュールそれぞれを支持する架台(図12に示される基板ステージモジュール18AMを支持する架台28G参照)は、Z軸方向の寸法が定尺化されている。ここで、定尺化とは、交換前の架台と交換後の架台とで、Z軸方向の寸法が共通であること、すなわち機能の同じモジュールを支持する架台のZ軸方向の寸法が概ね一定であることを意味する。このように、本実施形態の液晶露光装置10では、各架台28A~28EのZ軸方向寸法が定尺化されているため、各モジュールを設計する際の時間短縮を図ることが可能となる。 For this reason, in the liquid crystal exposure apparatus 10 of this embodiment, the bases 28A to 28E that support the modules 12M to 20M and the bases that support the upgraded modules (the substrate stage module 18AM shown in FIG. 12 are supported). The gantry 28G) is sized in the Z-axis direction. Here, the term “scaling” means that the dimensions in the Z-axis direction are the same for the base before and after the replacement, that is, the dimensions in the Z-axis direction of the base supporting the module having the same function are substantially constant. It means that. As described above, in the liquid crystal exposure apparatus 10 of the present embodiment, since the dimensions in the Z-axis direction of each of the mounts 28A to 28E are made constant, it is possible to reduce the time for designing each module.
 また、液晶露光装置10は、基板Pの露光面、及びマスクMのパターン面それぞれが重力方向に平行(いわゆる縦置き配置)であるので、照明系モジュール12M、マスクステージモジュール14M、投影光学系モジュール16M、及び基板ステージモジュール18Mの各モジュールを、床26面上に直列的に設置することができる。このように、上記各モジュールには、相互に自重が作用しないので、例えば上記各モジュールに相当する、基板ステージ装置、投影光学系、マスクステージ装置、及び照明系が重力方向に積み重なって配置された従来の露光装置のように、各要素を支持する高剛性のメインフレーム(ボディ)を設ける必要がない。また、構造が簡単なので、装置の設置(据え付け)工事、各モジュール12M~20Mのメンテナンス作業、交換作業などを容易且つ短時間で行うことができる。また、上記各モジュールが床26面に沿って配置される構成であるので、装置全体の高さを低くすることができる。これにより、上記各モジュールを収容するチャンバを小型化することができ、コスト低減を図れるとともに、設置工期を短縮できる。 Further, in the liquid crystal exposure apparatus 10, since the exposure surface of the substrate P and the pattern surface of the mask M are parallel to the direction of gravity (so-called vertical arrangement), the illumination system module 12M, the mask stage module 14M, and the projection optical system module Each module of 16M and the substrate stage module 18M can be installed in series on the floor 26 surface. As described above, since each module does not have its own weight, for example, the substrate stage device, the projection optical system, the mask stage device, and the illumination system corresponding to each module are stacked in the direction of gravity. Unlike the conventional exposure apparatus, it is not necessary to provide a high-rigidity main frame (body) that supports each element. Further, since the structure is simple, installation (installation) work of the apparatus, maintenance work of each module 12M to 20M, replacement work, etc. can be performed easily and in a short time. Moreover, since each said module is a structure arrange | positioned along the floor 26 surface, the height of the whole apparatus can be made low. Thereby, the chamber which accommodates each said module can be reduced in size, cost can be reduced, and an installation construction period can be shortened.
 また、上記各実施形態では、照明系20で用いられる光源、及び該光源から照射される照明光ILの波長は、特に限定されず、例えばArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。 Moreover, in each said embodiment, the wavelength of the light source used in the illumination system 20 and the illumination light IL irradiated from this light source is not specifically limited, For example, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light ( Ultraviolet light having a wavelength of 248 nm) or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm) may be used.
 また、上記実施形態では、光源を含む照明系本体22が走査方向に駆動されたが、これに限られず、例えば特開2000-12422号公報に開示される露光装置と同様に、光源を固定とし、照明光ILのみが走査方向に走査されるようにしても良い。 In the above embodiment, the illumination system main body 22 including the light source is driven in the scanning direction. However, the present invention is not limited to this. For example, as in the exposure apparatus disclosed in Japanese Patent Laid-Open No. 2000-12422, the light source is fixed. Only the illumination light IL may be scanned in the scanning direction.
 また、照明領域IAM、露光領域IAは、上記実施形態ではY軸方向に延びる帯状に形成されたが、これに限られず、例えば米国特許第5,729,331号明細書に開示されるように、千鳥状に配置された複数の領域を組み合わせても良い。 Further, in the above embodiment, the illumination area IAM and the exposure area IA are formed in a strip shape extending in the Y-axis direction. However, the present invention is not limited to this. For example, as disclosed in US Pat. No. 5,729,331. A plurality of regions arranged in a staggered pattern may be combined.
 また、上記各実施形態では、マスクM、及び基板Pが、水平面に直交するように配置(いわゆる縦置き配置)されたが、これに限られず、マスクM、及び基板Pは、水平面に平行に配置されても良い。この場合、照明光ILの光軸は、重力方向とほぼ平行とされる。 In each of the above embodiments, the mask M and the substrate P are arranged so as to be orthogonal to the horizontal plane (so-called vertical arrangement). However, the present invention is not limited to this, and the mask M and the substrate P are parallel to the horizontal plane. It may be arranged. In this case, the optical axis of the illumination light IL is substantially parallel to the direction of gravity.
 また走査露光動作時にアライメント計測の結果に応じて基板PのXY平面内の精密な位置決めを行ったが、これと併せて、走査露光動作前に(あるいは走査露光動作と並行して)基板Pの面位置情報を求め、走査露光動作中に基板Pの面位置制御(いわゆるオートフォーカス制御)を行っても良い。 In addition, precise positioning in the XY plane of the substrate P was performed in accordance with the alignment measurement result during the scanning exposure operation. At the same time, before the scanning exposure operation (or in parallel with the scanning exposure operation), Surface position information may be obtained, and surface position control (so-called autofocus control) of the substrate P may be performed during the scanning exposure operation.
 また、露光装置の用途としては、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、例えば有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。 Further, the use of the exposure apparatus is not limited to an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate. For example, an exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, a semiconductor The present invention can be widely applied to an exposure apparatus for manufacturing, an exposure apparatus for manufacturing a thin film magnetic head, a micromachine, a DNA chip, and the like. Moreover, in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
 また、露光対象となる物体はガラスプレートに限られず、例えばウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、例えばフィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。また、露光対象の基板が可撓性を有するシート状である場合には、該シートがロール状に形成されていても良い。この場合、ステージ装置のステップ動作によらず、ロールを回転させる(巻き取る)ことによって、容易に照明領域(照明光)に対して露光対象の区画領域を変更する(ステップ移動させる)ことができる。 The object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank. Moreover, when the exposure target is a substrate for a flat panel display, the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member). The exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target. Further, when the substrate to be exposed is a flexible sheet, the sheet may be formed in a roll shape. In this case, the partition area to be exposed can be easily changed (stepped) with respect to the illumination area (illumination light) by rotating (winding) the roll regardless of the step operation of the stage device. .
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 For electronic devices such as liquid crystal display elements (or semiconductor elements), the step of designing the function and performance of the device, the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer) A lithography step for transferring a mask (reticle) pattern to a glass substrate by the exposure apparatus and the exposure method of each embodiment described above, a development step for developing the exposed glass substrate, and a portion where the resist remains. It is manufactured through an etching step for removing the exposed member of the portion by etching, a resist removing step for removing a resist that has become unnecessary after etching, a device assembly step, an inspection step, and the like. In this case, in the lithography step, the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
 以上説明したように、本発明の露光装置及び方法は、物体を走査露光するのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの生産に適している。また、本発明のデバイス製造方法は、マイクロデバイスの生産に適している。 As described above, the exposure apparatus and method of the present invention are suitable for scanning exposure of an object. Moreover, the manufacturing method of the flat panel display of this invention is suitable for production of a flat panel display. The device manufacturing method of the present invention is suitable for the production of micro devices.
 10…液晶露光装置、20…照明系、30…マスクステージ装置、40…投影光学系、50…基板ステージ装置、60…アライメント系、M…マスク、P…基板。 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal exposure apparatus, 20 ... Illumination system, 30 ... Mask stage apparatus, 40 ... Projection optical system, 50 ... Substrate stage apparatus, 60 ... Alignment system, M ... Mask, P ... Substrate.

Claims (36)

  1.  投影光学系を介して物体に照明光を照射し、前記物体に対して前記投影光学系を相対駆動させて走査露光する露光装置であって、
     前記物体に設けられたマークのマーク検出を行うマーク検出部と、
     前記マーク検出部を駆動する第1駆動系と、
     前記投影光学系を駆動する第2駆動系と、
     前記投影光学系の駆動よりも先に前記マーク検出部を駆動するように前記第1及び第2駆動系を制御する制御装置と、を備える露光装置。
    An exposure apparatus that irradiates an object with illumination light via a projection optical system, scans and exposes the object by relatively driving the projection optical system,
    A mark detection unit that performs mark detection of a mark provided on the object;
    A first drive system for driving the mark detection unit;
    A second drive system for driving the projection optical system;
    An exposure apparatus comprising: a control device that controls the first and second drive systems so as to drive the mark detection unit before driving the projection optical system.
  2.  前記制御装置は、前記マーク検出部による少なくとも一部の前記マーク検出が完了した後に前記投影光学系を駆動するように前記第1及び第2駆動系を制御する請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the control device controls the first and second drive systems so as to drive the projection optical system after at least a part of the mark detection by the mark detection unit is completed.
  3.  前記マーク検出部は、前記物体に対して前記投影光学系を相対駆動させる走査方向に関して、前記投影光学系の一方側に設けられた第1検出装置と前記投影光学系の他方側に設けられた第2検出装置とを有し、
     前記制御装置は、
     前記他方側から前記一方側への前記走査露光において、前記第1検出装置による検出結果に基づいて前記投影光学系を駆動し、
     前記一方側から前記他方側への前記走査露光において、前記第2検出装置による検出結果に基づいて前記投影光学系を駆動するように前記第1及び第2駆動系を制御する請求項1又は2に記載の露光装置。
    The mark detection unit is provided on a first detection device provided on one side of the projection optical system and on the other side of the projection optical system with respect to a scanning direction in which the projection optical system is relatively driven with respect to the object. A second detection device,
    The controller is
    In the scanning exposure from the other side to the one side, the projection optical system is driven based on a detection result by the first detection device,
    3. The first and second drive systems are controlled so as to drive the projection optical system based on a detection result by the second detection device in the scanning exposure from the one side to the other side. The exposure apparatus described in 1.
  4.  前記物体は、互いに位置が異なる第1及び第2区画領域を少なくとも有し、
     前記制御装置は、前記第2区画領域に対する前記一方側から他方側への前記走査露光を行う前に、前記第2検出装置を前記第2区画領域内の前記マーク検出が可能な位置に駆動制御するよう前記第2駆動系を制御する請求項3に記載の露光装置。
    The object has at least first and second partition regions whose positions are different from each other,
    The control device drives and controls the second detection device to a position where the mark can be detected in the second partition region before performing the scanning exposure from the one side to the other side with respect to the second partition region. The exposure apparatus according to claim 3, wherein the second drive system is controlled to do so.
  5.  前記制御装置は、前記他方側から一方側への前記走査露光において、前記第1検出装置及び前記投影光学系を前記他方側から前記一方側に駆動しつつ、前記第2検出装置を前記他方側から前記一方側へ駆動するように前記第1及び第2駆動系を制御する請求項3又は4に記載の露光装置。 In the scanning exposure from the other side to the one side, the control device drives the first detection device and the projection optical system from the other side to the one side while moving the second detection device to the other side. 5. The exposure apparatus according to claim 3, wherein the first and second drive systems are controlled so as to be driven from one side to the other side.
  6.  前記制御装置は、前記マーク検出を含むマーク検出動作と前記走査露光を含む走査露光動作との少なくとも一部の動作を並行して行うよう制御する請求項1~5の何れか一項に記載の露光装置。 6. The control device according to claim 1, wherein the control device performs control so that at least a part of a mark detection operation including the mark detection and a scanning exposure operation including the scanning exposure are performed in parallel. Exposure device.
  7.  前記マーク検出動作は、前記マーク検出部が前記マーク検出動作を行う位置へ移動する検出位置移動動作を含み、
     前記走査露光動作は、前記走査露光の開始前の前記投影光学系の移動動作を含む請求項6に記載の露光装置。
    The mark detection operation includes a detection position movement operation in which the mark detection unit moves to a position where the mark detection operation is performed,
    The exposure apparatus according to claim 6, wherein the scanning exposure operation includes a movement operation of the projection optical system before the start of the scanning exposure.
  8.  前記制御装置は、前記マーク検出動作及び前記走査露光動作の少なくとも一方の動作中に前記投影光学系の駆動速度と前記マーク検出部の駆動速度とを異ならせる請求項6又は7に記載の露光装置。 The exposure apparatus according to claim 6 or 7, wherein the control device makes the drive speed of the projection optical system different from the drive speed of the mark detection unit during at least one of the mark detection operation and the scanning exposure operation. .
  9.  前記マーク検出部の駆動速度は、前記マーク検出動作のみを行うときよりも前記走査露光動作と並列して前記マーク検出動作を行うときの方が遅い請求項8に記載の露光装置。 The exposure apparatus according to claim 8, wherein the drive speed of the mark detection unit is slower when the mark detection operation is performed in parallel with the scanning exposure operation than when only the mark detection operation is performed.
  10.  前記マーク検出部は、前記物体に対して前記投影光学系を相対駆動させる走査方向に交差する方向に関して、前記照明光が照射される領域の長さよりも前記物体上に設けられた複数の前記マーク間の距離が長いマークを検出可能に設けられる請求項1~9の何れか一項に記載の露光装置。 The mark detection unit includes a plurality of marks provided on the object with respect to a direction intersecting a scanning direction in which the projection optical system is relatively driven with respect to the object, rather than a length of a region irradiated with the illumination light. The exposure apparatus according to any one of claims 1 to 9, wherein a mark having a long distance is provided so as to be detectable.
  11.  前記物体は、前記走査方向に交差する方向に並んで設けられた第1及び第2区画領域を有し、
     前記マーク検出部は、前記走査方向に交差する方向に関して、前記第1区画領域上の少なくとも1つの前記マークと前記第2区画領域上の少なくとも1つの前記マークとを同時に検出可能に設けられた請求項10に記載の露光装置。
    The object has first and second partition regions provided side by side in a direction intersecting the scanning direction,
    The mark detection unit is provided so as to be capable of simultaneously detecting at least one of the marks on the first partition area and at least one of the marks on the second partition area in a direction intersecting the scanning direction. Item 15. The exposure apparatus according to Item 10.
  12.  前記制御装置は、前記第1区画領域から第2区画領域に前記露光動作を行う領域を変更する場合に、前記物体と前記投影光学系とを前記走査方向に交差する方向に相対移動させ、前記相対移動と並行して、前記マーク検出部と前記投影光学系とを検出開始位置に移動させる請求項11に記載の露光装置。 The control device moves the object and the projection optical system relative to each other in a direction intersecting the scanning direction when changing the region where the exposure operation is performed from the first partition region to the second partition region, The exposure apparatus according to claim 11, wherein the mark detection unit and the projection optical system are moved to a detection start position in parallel with the relative movement.
  13.  前記投影光学系の光軸が水平面に平行であり、
     前記物体は、前記照明光が照射される露光面が前記水平面に対して直交した状態で配置される請求項1~12の何れか一項に記載の露光装置。
    The optical axis of the projection optical system is parallel to a horizontal plane;
    The exposure apparatus according to any one of claims 1 to 12, wherein the object is disposed in a state where an exposure surface irradiated with the illumination light is orthogonal to the horizontal plane.
  14.  前記マーク検出部と前記投影光学系は、互いに分離可能に配置される請求項13に記載の露光装置。 14. The exposure apparatus according to claim 13, wherein the mark detection unit and the projection optical system are arranged so as to be separable from each other.
  15.  前記物体は、フラットパネルディスプレイ装置に用いられる基板である請求項1~14の何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 14, wherein the object is a substrate used in a flat panel display device.
  16.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上である請求項15に記載の露光装置。 The exposure apparatus according to claim 15, wherein the substrate has a length of at least one side or a diagonal length of 500 mm or more.
  17.  請求項1~16の何れか一項に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing the object using the exposure apparatus according to any one of claims 1 to 16,
    Developing the exposed object. A method of manufacturing a flat panel display.
  18.  請求項1~16の何れか一項に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むデバイス製造方法。
    Exposing the object using the exposure apparatus according to any one of claims 1 to 16,
    Developing the exposed object.
  19.  投影光学系を介して物体に照明光を照射し、前記物体に対して前記投影光学系を相対駆動させて走査露光する露光方法であって、
     前記物体に設けられたマークのマーク検出をマーク検出部を用いて行うことと、
     前記マーク検出部を第1駆動系を用いて駆動することと、
     前記投影光学系を第2駆動系を用いて駆動すると、
     前記投影光学系の駆動よりも先に前記マーク検出部を駆動するように前記第1及び第2駆動系を制御することと、を含む露光方法。
    An exposure method of irradiating an object with illumination light through a projection optical system, and performing scanning exposure by relatively driving the projection optical system with respect to the object,
    Performing mark detection of a mark provided on the object using a mark detection unit;
    Driving the mark detection unit using a first drive system;
    When the projection optical system is driven using the second drive system,
    Controlling the first and second drive systems to drive the mark detection unit prior to driving the projection optical system.
  20.  前記制御することでは、前記マーク検出部による少なくとも一部の前記マーク検出が完了した後に前記投影光学系を駆動するように前記第1及び第2駆動系を制御する請求項19に記載の露光方法。 20. The exposure method according to claim 19, wherein in the control, the first and second drive systems are controlled to drive the projection optical system after at least a part of the mark detection by the mark detection unit is completed. .
  21.  前記マーク検出部は、前記物体に対して前記投影光学系を相対駆動させる走査方向に関して、前記投影光学系の一方側に設けられた第1検出装置と前記投影光学系の他方側に設けられた第2検出装置とを有し、
     前記制御することでは、
     前記他方側から前記一方側への前記走査露光において、前記第1検出装置による検出結果に基づいて前記投影光学系を駆動し、
     前記一方側から前記他方側への前記走査露光において、前記第2検出装置による検出結果に基づいて前記投影光学系を駆動するように前記第1及び第2駆動系を制御する請求項19又は20に記載の露光方法。
    The mark detection unit is provided on a first detection device provided on one side of the projection optical system and on the other side of the projection optical system with respect to a scanning direction in which the projection optical system is relatively driven with respect to the object. A second detection device,
    In the control,
    In the scanning exposure from the other side to the one side, the projection optical system is driven based on a detection result by the first detection device,
    21. In the scanning exposure from the one side to the other side, the first and second drive systems are controlled so as to drive the projection optical system based on a detection result by the second detection device. An exposure method according to 1.
  22.  前記物体は、互いに位置が異なる第1及び第2区画領域を少なくとも有し、
     前記制御することでは、前記第2区画領域に対する前記一方側から他方側への前記走査露光を行う前に、前記第2検出装置を前記第2区画領域内の前記マーク検出が可能な位置に駆動制御するよう前記第2駆動系を制御する請求項21に記載の露光方法。
    The object has at least first and second partition regions whose positions are different from each other,
    In the control, before the scanning exposure from the one side to the other side of the second partitioned area is performed, the second detection device is driven to a position where the mark can be detected in the second partitioned area. The exposure method according to claim 21, wherein the second drive system is controlled to be controlled.
  23.  前記制御することでは、前記他方側から一方側への前記走査露光において、前記第1検出装置及び前記投影光学系を前記他方側から前記一方側に駆動しつつ、前記第2検出装置を前記他方側から前記一方側へ駆動するように前記第1及び第2駆動系を制御する請求項21又は22に記載の露光方法。 In the control, in the scanning exposure from the other side to the one side, the second detection device is moved to the other side while driving the first detection device and the projection optical system from the other side to the one side. The exposure method according to claim 21 or 22, wherein the first and second drive systems are controlled so as to be driven from the side to the one side.
  24.  前記制御することでは、前記マーク検出を含むマーク検出動作と前記走査露光を含む走査露光動作との少なくとも一部の動作を並行して行うよう制御する請求項19~23の何れか一項に記載の露光方法。 The control is performed so that at least a part of the mark detection operation including the mark detection and the scanning exposure operation including the scanning exposure are performed in parallel. Exposure method.
  25.  前記マーク検出動作は、前記マーク検出部が前記マーク検出動作を行う位置へ移動する検出位置移動動作を含み、
     前記走査露光動作は、前記走査露光の開始前の前記投影光学系の移動動作を含む請求項24に記載の露光方法。
    The mark detection operation includes a detection position movement operation in which the mark detection unit moves to a position where the mark detection operation is performed,
    The exposure method according to claim 24, wherein the scanning exposure operation includes a moving operation of the projection optical system before the start of the scanning exposure.
  26.  前記制御することでは、前記マーク検出動作及び前記走査露光動作の少なくとも一方の動作中に前記投影光学系の駆動速度と前記マーク検出部の駆動速度とを異ならせる請求項24又は25に記載の露光方法。 26. The exposure according to claim 24 or 25, wherein the controlling makes a driving speed of the projection optical system different from a driving speed of the mark detection unit during at least one of the mark detection operation and the scanning exposure operation. Method.
  27.  前記マーク検出部の駆動速度は、前記マーク検出動作のみを行うときよりも前記走査露光動作と並列して前記マーク検出動作を行うときの方が遅い請求項26に記載の露光方法。 27. The exposure method according to claim 26, wherein the drive speed of the mark detection unit is slower when the mark detection operation is performed in parallel with the scanning exposure operation than when only the mark detection operation is performed.
  28.  前記マーク検出部は、前記物体に対して前記投影光学系を相対駆動させる走査方向に交差する方向に関して、前記照明光が照射される領域の長さよりも前記物体上に設けられた複数の前記マーク間の距離が長いマークを検出可能に設けられる請求項19~27の何れか一項に記載の露光方法。 The mark detection unit includes a plurality of marks provided on the object with respect to a direction intersecting a scanning direction in which the projection optical system is relatively driven with respect to the object, rather than a length of a region irradiated with the illumination light. The exposure method according to any one of claims 19 to 27, wherein marks having a long distance are provided so as to be detectable.
  29.  前記物体は、前記走査方向に交差する方向に並んで設けられた第1及び第2区画領域を有し、
     前記マーク検出部は、前記走査方向に交差する方向に関して、前記第1区画領域上の少なくとも1つの前記マークと前記第2区画領域上の少なくとも1つの前記マークとを同時に検出可能に設けられた請求項28に記載の露光方法。
    The object has first and second partition regions provided side by side in a direction intersecting the scanning direction,
    The mark detection unit is provided so as to be capable of simultaneously detecting at least one of the marks on the first partition area and at least one of the marks on the second partition area in a direction intersecting the scanning direction. Item 28. The exposure method according to Item 28.
  30.  前記制御することでは、前記第1区画領域から第2区画領域に前記露光動作を行う領域を変更する場合に、前記物体と前記投影光学系とを前記走査方向に交差する方向に相対移動させ、前記相対移動と並行して、前記マーク検出部と前記投影光学系とを検出開始位置に移動させる請求項29に記載の露光方法。 In the control, when changing the region where the exposure operation is performed from the first partition region to the second partition region, the object and the projection optical system are relatively moved in a direction intersecting the scanning direction, 30. The exposure method according to claim 29, wherein the mark detection unit and the projection optical system are moved to a detection start position in parallel with the relative movement.
  31.  前記投影光学系の光軸が水平面に平行であり、
     前記物体は、前記照明光が照射される露光面が前記水平面に対して直交した状態で配置される請求項19~30の何れか一項に記載の露光方法。
    The optical axis of the projection optical system is parallel to a horizontal plane;
    The exposure method according to any one of claims 19 to 30, wherein the object is arranged in a state where an exposure surface irradiated with the illumination light is orthogonal to the horizontal plane.
  32.  前記マーク検出部と前記投影光学系は、互いに分離可能に配置される請求項31に記載の露光方法。 32. The exposure method according to claim 31, wherein the mark detection unit and the projection optical system are arranged so as to be separable from each other.
  33.  前記物体は、フラットパネルディスプレイ装置に用いられる基板である請求項19~32の何れか一項に記載の露光方法。 The exposure method according to any one of claims 19 to 32, wherein the object is a substrate used in a flat panel display device.
  34.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上である請求項33に記載の露光方法。 34. The exposure method according to claim 33, wherein the substrate has a length of at least one side or a diagonal length of 500 mm or more.
  35.  請求項19~34の何れか一項に記載の露光方法を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing the object using the exposure method according to any one of claims 19 to 34;
    Developing the exposed object. A method of manufacturing a flat panel display.
  36.  請求項19~34の何れか一項に記載の露光方法を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むデバイス製造方法。
    Exposing the object using the exposure method according to any one of claims 19 to 34;
    Developing the exposed object.
PCT/JP2016/060592 2015-03-31 2016-03-31 Exposure device, method for producing flat panel display, method for producing device, and exposure method WO2016159200A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680020549.4A CN107533303B (en) 2015-03-31 2016-03-31 Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and exposure method
JP2017510164A JP6855008B2 (en) 2015-03-31 2016-03-31 Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
KR1020177030845A KR102549056B1 (en) 2015-03-31 2016-03-31 Exposure device, method for producing flat panel display, method for producing device, and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-072702 2015-03-31
JP2015072702 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159200A1 true WO2016159200A1 (en) 2016-10-06

Family

ID=57005805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060592 WO2016159200A1 (en) 2015-03-31 2016-03-31 Exposure device, method for producing flat panel display, method for producing device, and exposure method

Country Status (5)

Country Link
JP (1) JP6855008B2 (en)
KR (1) KR102549056B1 (en)
CN (1) CN107533303B (en)
TW (4) TW202041978A (en)
WO (1) WO2016159200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111572A (en) * 2017-03-31 2018-10-11 우시오덴키 가부시키가이샤 Exposure device and exposure method
WO2022009456A1 (en) * 2020-07-06 2022-01-13 株式会社 ベアック Exposure device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
JPH09251952A (en) * 1996-03-14 1997-09-22 Nikon Corp Aligner and exposing method
JP2002313716A (en) * 2001-02-28 2002-10-25 Asml Us Inc Lithographic method having separated dual system and method of constituting the same
JP2010107596A (en) * 2008-10-28 2010-05-13 Canon Inc Reflection type projection optical system, exposure device, and method of manufacturing device
JP2010114347A (en) * 2008-11-10 2010-05-20 Ushio Inc Exposure device
JP2010192744A (en) * 2009-02-19 2010-09-02 Canon Inc Exposure apparatus, exposure method and device manufacturing method
WO2013176178A1 (en) * 2012-05-22 2013-11-28 株式会社ニコン Exposure device, exposure method, and method for manufacturing device
WO2014185232A1 (en) * 2013-05-13 2014-11-20 株式会社ブイ・テクノロジー Exposure device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530516A (en) * 1994-10-04 1996-06-25 Tamarack Scientific Co., Inc. Large-area projection exposure system
JP4110606B2 (en) * 1998-02-12 2008-07-02 株式会社ニコン Scanning exposure apparatus and exposure method
JP2000012422A (en) * 1998-06-18 2000-01-14 Nikon Corp Aligner
KR101148811B1 (en) * 2003-06-19 2012-05-24 가부시키가이샤 니콘 Exposure device and device producing method
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
CN101261306B (en) * 2008-04-14 2010-12-08 无锡市易控系统工程有限公司 Full-automatic wafer test method and equipment accomplishing the method
EP2329322B1 (en) * 2008-09-22 2016-09-07 ASML Netherlands BV Lithographic apparatus and lithographic method
JP2010103394A (en) * 2008-10-27 2010-05-06 Pre-Tech Co Ltd Method of holding substrate, substrate holding jig, and cleaning apparatus
JP2010205867A (en) * 2009-03-03 2010-09-16 Canon Inc Position detector and aligner
US8514395B2 (en) * 2009-08-25 2013-08-20 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US9297642B2 (en) * 2011-08-10 2016-03-29 V Technology Co., Ltd. Alignment device for exposure device, and alignment mark
JP6286813B2 (en) * 2012-03-26 2018-03-07 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP6082884B2 (en) * 2012-06-12 2017-02-22 サンエー技研株式会社 Exposure apparatus and exposure method
JP6131607B2 (en) * 2013-01-21 2017-05-24 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
JPH09251952A (en) * 1996-03-14 1997-09-22 Nikon Corp Aligner and exposing method
JP2002313716A (en) * 2001-02-28 2002-10-25 Asml Us Inc Lithographic method having separated dual system and method of constituting the same
JP2010107596A (en) * 2008-10-28 2010-05-13 Canon Inc Reflection type projection optical system, exposure device, and method of manufacturing device
JP2010114347A (en) * 2008-11-10 2010-05-20 Ushio Inc Exposure device
JP2010192744A (en) * 2009-02-19 2010-09-02 Canon Inc Exposure apparatus, exposure method and device manufacturing method
WO2013176178A1 (en) * 2012-05-22 2013-11-28 株式会社ニコン Exposure device, exposure method, and method for manufacturing device
WO2014185232A1 (en) * 2013-05-13 2014-11-20 株式会社ブイ・テクノロジー Exposure device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111572A (en) * 2017-03-31 2018-10-11 우시오덴키 가부시키가이샤 Exposure device and exposure method
CN108693719A (en) * 2017-03-31 2018-10-23 优志旺电机株式会社 Exposure device and exposure method
JP2018173468A (en) * 2017-03-31 2018-11-08 ウシオ電機株式会社 Exposure equipment and exposure method
CN108693719B (en) * 2017-03-31 2021-11-05 优志旺电机株式会社 Exposure apparatus and exposure method
KR102375197B1 (en) * 2017-03-31 2022-03-16 우시오덴키 가부시키가이샤 Exposure device and exposure method
WO2022009456A1 (en) * 2020-07-06 2022-01-13 株式会社 ベアック Exposure device

Also Published As

Publication number Publication date
CN107533303B (en) 2021-04-30
KR102549056B1 (en) 2023-06-28
KR20170128601A (en) 2017-11-22
TWI846603B (en) 2024-06-21
TW201643558A (en) 2016-12-16
TW202401146A (en) 2024-01-01
TW202041978A (en) 2020-11-16
JP6855008B2 (en) 2021-04-07
JPWO2016159200A1 (en) 2018-02-01
TW202316204A (en) 2023-04-16
CN107533303A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US11126094B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
US11009799B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
JP6791154B2 (en) Exposure equipment, flat panel display manufacturing method, and device manufacturing method
US11392042B2 (en) Exposure apparatus and exposure method, and flat panel display manufacturing method
TWI721023B (en) Exposure apparatus and exposure method, and manufacturing method of flat panel display
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
KR102558072B1 (en) Exposure device, method for producing flat panel display, method for producing device, and exposure method
JP6744588B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP6575796B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
JP6701597B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
JP6701596B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030845

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16773080

Country of ref document: EP

Kind code of ref document: A1