WO2016158482A1 - 固体撮像素子、撮像装置、並びに電子機器 - Google Patents
固体撮像素子、撮像装置、並びに電子機器 Download PDFInfo
- Publication number
- WO2016158482A1 WO2016158482A1 PCT/JP2016/058647 JP2016058647W WO2016158482A1 WO 2016158482 A1 WO2016158482 A1 WO 2016158482A1 JP 2016058647 W JP2016058647 W JP 2016058647W WO 2016158482 A1 WO2016158482 A1 WO 2016158482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- solid
- pixel
- imaging device
- state imaging
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 89
- 238000009792 diffusion process Methods 0.000 claims abstract description 27
- 238000007667 floating Methods 0.000 claims abstract description 27
- 230000003321 amplification Effects 0.000 claims abstract description 19
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 19
- 230000003287 optical effect Effects 0.000 abstract description 38
- 238000000034 method Methods 0.000 abstract description 37
- 239000003990 capacitor Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 230000003071 parasitic effect Effects 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003796 beauty Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N25/671—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N25/671—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
- H04N25/673—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
Definitions
- the present technology relates to a solid-state imaging device, an imaging device, and an electronic device, and particularly, an appropriate analog gain without increasing an AD (analog / Digital) conversion range more than necessary and without increasing a circuit scale.
- the present invention relates to a solid-state imaging device, an imaging device, and an electronic device that can realize the above.
- the all-pixel simultaneous transfer operation can be broadly divided into two methods.
- a MEM memory
- PD photodiode
- FD floating diffusion
- the reset signal is not read out, the optical signal is transferred at once, the optical signal is read out, the same pixel is reset again with reference to the read out optical signal, The difference is read out.
- the reset signal for all pixels is read out and stored in the frame memory, then exposed and accumulated by photoelectric conversion by the PD. Then, the charges are transferred from the PD to the FD at the same time for all pixels.
- the optical signal is read from the FD by the all-pixel sequential transfer operation.
- the reset signal level may deviate due to chip variations and temperature characteristics.
- a solid-state imaging device includes a source follower circuit that generates a reference voltage, and a gate voltage of an amplification transistor that configures the source follower circuit is generated by a photodiode that configures a pixel circuit for each pixel. It is the same as the reset voltage when resetting the charge accumulated in the floating diffusion for accumulating charge, and a switch is disposed on the wiring between the power source for applying the voltage to the gate and the gate, When the switch is turned off, the voltage applied to the gate is set to the same value as the voltage of the floating diffusion after the reset.
- the source follower circuit can generate the reference voltage when the switch is turned on.
- the source follower circuit is set for each column divided in the horizontal direction, and can be provided for each vertical transfer line for transferring the signal of each pixel in the vertical direction, and the reference voltage is transferred to the vertical transfer line. It can be applied to the line.
- a plurality of adjacent vertical transfer lines can be connected with a common gate of the transistor serving as the switch.
- the adjacent vertical transfer lines can be connected via a switch so that the pixel signal is turned on immediately before the pixel signal is read out.
- the power source that supplies the reset voltage and the power source that supplies the reference voltage via the switch can be the same power source.
- the power source that supplies the reset voltage and the power source that supplies the reference voltage via the switch can be separate power sources.
- the pixel signal output via the vertical transfer line can be output to an auto-zero circuit.
- the pixel signal output via the vertical transfer line can be output to an AD (analog / digital) converter.
- the main body circuit configuration can be configured by a single chip.
- the main body circuit configuration can be constituted by a plurality of chips.
- the pixel circuit is included in the first chip, and the source follower circuit and AD (analog / digital) converter are included in the second chip.
- AD analog / digital
- the pixel circuit and the source follower circuit can be included in the first chip, and AD (analog / Digital) is included in the second chip.
- AD analog / Digital
- a transducer can be included.
- the first chip can include the pixel circuit, the source follower circuit, and an AD (analog / digital) converter comparator
- the second chip may include a counter of the AD (analog / digital) converter.
- the source follower circuit may be provided for each area transfer line for transferring a signal of each pixel for each area divided in a two-dimensional direction, and the reference voltage is applied to the area transfer line. You can make it.
- the main body circuit configuration may be composed of a first chip including the pixel circuit for each region and a second chip including a source follower circuit for each region.
- An imaging device includes a source follower circuit that generates a reference voltage, and a gate voltage of an amplification transistor that configures the source follower circuit is a charge generated by a photodiode that configures a pixel circuit for each pixel. Is the same as the reset voltage when resetting the charge accumulated in the floating diffusion for accumulating, and a switch is disposed on the wiring between the power source for applying the voltage to the gate and the gate, When the switch is turned off, the voltage applied to the gate is set to the same value as the voltage of the floating diffusion after the reset.
- An electronic apparatus includes a source follower circuit that generates a reference voltage, and a gate voltage of an amplification transistor that forms the source follower circuit is a charge generated by a photodiode that forms a pixel circuit for each pixel. Is the same as the reset voltage when resetting the charge accumulated in the floating diffusion for accumulating, and a switch is disposed on the wiring between the power source for applying the voltage to the gate and the gate, When the switch is turned off, the voltage applied to the gate is set to the same value as the voltage of the floating diffusion after the reset.
- a source follower circuit that generates a reference voltage
- a gate voltage of an amplification transistor that configures the source follower circuit is a charge generated by a photodiode that configures a pixel circuit for each pixel.
- the reset voltage is the same as the reset voltage when resetting the charge accumulated in the floating diffusion to be accumulated
- a switch is disposed on the wiring between the power source for applying the voltage to the gate and the gate, and the switch However, when turned off, the voltage applied to the gate is set to the same value as the voltage of the floating diffusion after the reset.
- a solid-state imaging device capable of obtaining an appropriate analog gain without increasing an AD (analog / Digital) conversion range more than necessary and without increasing a circuit scale is realized. It becomes possible.
- FIG. 1 shows the configuration of one of a plurality of vertical signal lines connected to each pixel constituting a solid-state imaging device that is a semiconductor device to which the present technology is applied.
- the solid-state image sensor is an element that captures an image, and includes, for example, an image sensor having the number of pixels of m pixels ⁇ n pixels in the horizontal direction ⁇ vertical direction.
- an image sensor having the number of pixels of m pixels ⁇ n pixels in the horizontal direction ⁇ vertical direction.
- the same number of m vertical signal lines as the horizontal pixel columns are provided, and each vertical signal line has n pixels corresponding to the number of pixels in the vertical direction.
- a pixel circuit is connected.
- the number of vertical signal lines may not match the number of pixels.
- FIG. 1 shows a configuration example of a vertical transfer line VLINE (j) in the j-th column and its periphery in a solid-state imaging device.
- FIG. 2 shows a configuration example of the pixel P (i, j) constituting the pixel circuit.
- Each pixel P (i, j) includes a photodiode PD, a reset transistor TR11, a transfer transistor TR12, an amplification transistor TR13, a selection transistor TR14, and a floating diffusion portion FD.
- the floating diffusion portion FD is also simply referred to as an FD portion
- the photodiode PD is also simply referred to as PD.
- each pixel P (i, j) the charge obtained by the photoelectric conversion action of the PD is transferred to the FD section via the transfer transistor TR12 and held.
- the charge held in the FD portion in this way is amplified by the amplification transistor TR13 when the selection transistor TR14 is turned on in response to the selection signal SEL (i), and is used as a pixel signal for the vertical transfer line VLINE (j). Is output.
- the FD unit converts the charge transferred from the PD into a voltage by accumulating it in a capacitor, and inputs the converted voltage (the voltage of the capacitor of the FD unit) to the gate of the amplification transistor TR13.
- the source follower circuit is formed by the amplification transistor TR13, the selection transistor TR14, and the constant current source TR31 (FIG. 1) connected to the vertical transfer line VLINE (j). Composed.
- a signal constituting the pixel P (i, j) selected by the selection signal SEL (i) is transmitted to the vertical transfer line VLINE (j).
- each P (i, j) in FIG. 1 is the same as that shown in FIG. 2, but in FIG. 1 or thereafter, each circuit constituting P (i, j) However, unless otherwise specified, it is assumed that the configuration is the same as that described with reference to FIG.
- the reference voltage generation circuit 11 includes transistors TR22 and TR23 connected in series between the power supply VDD and the vertical transfer line VLINE (j). Further, the reference voltage generation circuit 11 includes a transistor TR21 that controls opening and closing of the gate of the transistor TR22.
- the transistor TR23 is controlled to be turned on or off by a selection signal SEL_Vref supplied from the same power source as the selection signal SEL (i).
- the transistor TR21 is controlled to be turned on or off by a reset signal RST_Vref supplied from the same power source as the reset signal RST (i).
- the reference voltage generation circuit 11 is supplied with the power supply voltage from the predetermined power supply VDD during the period in which the transistor TR23 is in the on state, and the vertical transfer line VLINE (j ) Has a function to clip voltage.
- the transistors TR21 to TR23 have the same configuration as the transistors TR11, TR13, and TR14 (the same configuration including internal resistance and internal capacitance).
- the reset signal RST_Vref and the selection signal SEL_Vref are set to a high level and all the transistors TR21 to TR23 are turned on
- the reset signal RST (i) and the selection signal SEL (i) are set to a high level
- the voltage of the vertical transfer line VLINE (j) is clipped with a voltage corresponding to the voltage at the time of resetting the FD of each pixel P (i, j). be able to.
- the Bias generation circuit 12 determines a current amount of the vertical signal line VLINE (j) by applying a voltage to the gate of the constant current source transistor TR31 according to the gate voltage.
- the Vampref generation circuit 13 supplies the reference voltage Vampref to the auto zero circuit 14.
- the auto zero circuit 14 includes a comparator Comp, capacitors C1 and C2, and a switch AZ.
- the negative input terminal of the comparator Comp is connected to the vertical transfer line VLINE (j) via the capacitor C1, and the reference voltage Vampref is applied to the positive input terminal.
- the voltage of the vertical transfer line VLINE (j) during the period in which the switch AZ is on is sampled and held by the capacitor C1 and set as a reference voltage.
- the switch AZ when the amplifier is reset, the switch AZ is turned on, so that an amplifier reset for setting a reference voltage for the amplification operation of the amplification unit having the comparator Comp and the capacitors C1 and C2 is performed. Therefore, the comparator Comp inverts and amplifies the fluctuation with respect to the voltage (reference voltage) of the vertical transfer line VLINE (j) during the period when the switch AZ is in the ON state. Note that the reference voltage set by the amplifier reset is held in the capacitor C1 as described above.
- the comparator Comp inverts and amplifies the reset signal (noise signal) output to the vertical transfer line VLINE (j) based on the reference voltage set by the amplifier reset. Then, an inverted and amplified reset signal (noise signal) is output.
- the comparator Comp inverts and amplifies the optical signal output to the vertical transfer line VLINE (j) based on the reference voltage set by the amplifier reset. Then, an inverted and amplified optical signal is output.
- the reset signal (noise signal) is a signal including a noise component obtained when the FD portion is reset
- the optical signal is a signal component corresponding to the charge generated by the PD and the FD portion is reset. It is a signal including a noise component that is sometimes obtained.
- the PD is collectively reset for all the pixels of the solid-state imaging device. That is, in this case, both the reset signal RST (i) and the transfer signal TRG (i) are set to a high level for a predetermined time, and the reset transistor TR11 and the transfer transistor TR12 are turned on. Pixel reset is performed to reset the charge accumulation of the PD. This operation is not particularly shown as a waveform in FIG.
- the PDs of all the pixels are exposed.
- the PD of each pixel charges corresponding to the amount of incident light are accumulated by photoelectric conversion.
- the FD reset signal is read. More specifically, as shown in the upper part of FIG. 3, at time t11, the reset signal RST (i), the reset signal RST_Vref, and the selection signal SEL_Vref are set to a high level. Further, the switch signal AZ for controlling the switch is set to the high level so that the switch AZ of the auto zero circuit 14 is turned on.
- the transistor TR11 is turned on and the FD is set to the voltage of the power supply VDD.
- the transistors TR21 and TR23 of the reference voltage generation circuit 11 are turned on, and accordingly, the power supply VDD is supplied to the gate of the transistor TR22, whereby the transistor TR22 is turned on and a voltage corresponding to the power supply VDD is applied.
- the reference voltage is applied to the vertical transfer line VLINE (j) through the transistors TR22 and TR23.
- the switch AZ of the auto zero circuit 14 is turned on, whereby a voltage corresponding to the reset signal of the FD is accumulated in the capacitor C1.
- the reset signals RST (i) and RST_Vref are set to low level, and the transistors TR11, TR21, and TR22 are turned off.
- the switch AZ is set to a low level.
- the selection signal SEL_Vref is set to a low level and the transistor TR23 is turned off. Further, when the selection signal SEL_Vref is set to a low level, the selection signal SEL (i) is simultaneously set to a high level.
- the transistor TR14 is turned on, and the reset signal of FD is output to the vertical transfer line LINE (j).
- the FD reset signal is output to the vertical transfer line VLINE (j)
- the FD reset signal is AD (Analog / Digital) converted from time t15 to t16, and the reset signal is output as a digital signal.
- the selection signal SEL (i) is set to a low level, and the transistor TR14 is turned off.
- Such a process is repeated for every vertical transfer line LINE (j) in units of pixels P (i, j) until the process for all the pixels is completed, and the FD reset signal is read out by the third operation.
- the transfer signal TRG (i), the reset signal RST (i), the selection signal SEL (i), the reset signal RST_Vref to the reference voltage generation circuit 11 and the reference voltage are sequentially arranged from the top.
- the timings of the selection signal SEL_Vref to the generation circuit 11, the control signal AZ of the switch AZ, and AD conversion are shown.
- Each of the high-level and low-level states is shown, and only the processing timing of AD conversion is shown as a high-level state.
- (i) specifies the i-th pixel P (i, j) from the top of the 0th to m-th from the top connected to the vertical transfer line VLINE in the j-th column.
- the electric charge accumulated in the FD section is read out as an optical signal. More specifically, as shown in the lower part of FIG. 3, at time t31, the reset signal RST_Vref of the reference voltage generation circuit 11, the selection signal SEL_Vref, and the control signal AZ of the switch AZ of the auto zero circuit 14 are set to high level. Transistors TR21 to TR23 are turned on. Further, at time t32 when a predetermined time has elapsed, the reset signal RST_Vref is set to low level, and thereafter, at time t33, the control signal AZ is set to low level.
- the selection signal SEL_Vref to the reference voltage generation circuit 11 is set to the low level, and the selection signal SEL (i) to the transistor TR14 is set to the high level, so that the reference voltage is applied to the capacitor C1.
- the transistors TR13 and TR14 are turned on, and an optical signal corresponding to the charge accumulated in the FD portion is output to the vertical transfer line VLINE (j) via the transistors TR13 and TR14.
- the FD optical signal When the FD optical signal is output to the vertical transfer line VLINE (j), the FD optical signal is AD (Analogue to Digital) converted from time t35 to t36, and the optical signal is output as a digital signal.
- AD Analogue to Digital
- the selection signal SEL (i) is set to a low level, and the transistor TR14 is turned off.
- the reference voltage generation circuit 11 With the above operation, it is possible to set a reference voltage substantially the same as the reset voltage by the reference voltage generation circuit 11 for both the reset signal and the optical signal. Further, since the transistors TR21 to TR23 in the reference voltage generation circuit 11 have the same configuration as the transistors TR11, TR13, and TR14, the reference voltage generated by the reference voltage generation circuit 11 resets the FD unit. The same temperature characteristics and process influences can be generated, and even if the temperature and process influences occur, it is possible to generate a reference voltage that is almost the same as the reset voltage. Can be generated. In addition, there is no need to separately adjust the circuit to respond to temperature characteristics and individual differences depending on the effects of temperature and process. It can be simple.
- FIG. 4 shows a configuration example of a solid-state imaging device in which the vertical transfer line VLINE (j) is connected via a switch.
- the same configuration as the configuration in FIG. 1 is given the same name and the same reference numeral, and the description thereof will be omitted as appropriate. That is, the solid-state imaging device of FIG. 4 is different from the solid-state imaging device of FIG. 1 in that the adjacent vertical transfer lines VLINE (j) are connected to each other via the switch VSL_CON.
- the reset signal RST_Vref, the selection signal SEL_Vref, the Bias voltage from the Bias generation circuit 12, and the Vampref voltage from the Vampref generation circuit 13 are shared by the vertical transfer lines VLINE (j).
- the switch VSL_CON is controlled to be turned on immediately before reading the reset signal and reading the optical signal.
- the kTC noise generated in each vertical transfer line VLINE (j) can be made substantially zero.
- the kTC noise changes according to the switching timing.
- the switch VSL_CON is turned on, all the vertical transfer lines VLINE (j) are connected, so that each vertical transfer line VLINE is connected.
- the kTC noise generated in (j) is added and canceled.
- time t101 to t107, time t111 to t112, and time t121 to t127 in the timing chart of FIG. 5 correspond to time t11 to t17, time t21 to t22, and time t31 to t37 in FIG.
- items different from the timing chart of FIG. 3 are newly provided in the second stage from the bottom in the upper stage and the lower stage of FIG. 5 to indicate control signals for controlling the operation of the switch VSC_CON. This is the point.
- control signal for controlling the operation of the switch VSC_CON is set to a high level from time t101 to t104 at the timing of reading the reset signal, and all the vertical transfer lines VLINE (j) The switch VSC_CON is controlled to be turned on.
- control signal for controlling the operation of the switch VSC_CON is set to a high level from time t121 to t124 at the timing of reading the optical signal, and all the vertical transfer lines VLINE (j ) Switch VSC_CON is controlled to be on.
- the reference voltage generated by the reference voltage generation circuit 11 can have the same temperature characteristics and process effects when resetting the FD unit. It is possible to generate a voltage substantially the same as the reset voltage as the reference voltage. Further, since a circuit for dealing with temperature characteristics is not required separately, it is not necessary to increase the size of the apparatus unnecessarily.
- FIG. 6 shows a configuration example of a solid-state imaging device in which power supplies supplied to the transistors TR11 and TR13 are independent from each other. That is, the power supplies supplied to the transistors TR11 and TR13 are independent power supplies VR and VDD, respectively. Therefore, in the reference voltage generation circuit 11 as well, the power supplies supplied to the transistors TR21 and TR22 are set to independent power supplies VR and VDD, respectively.
- FIG. 7 shows a configuration example of a solid-state imaging device in which the reset signal and the optical signal of the pixel P (i, j) are output to the AD converter via the vertical transfer line VLINE (j).
- the same components as those in FIG. 6 are given the same names and the same reference numerals, and the description thereof will be omitted as appropriate.
- the solid-state imaging device of FIG. 7 differs from the solid-state imaging device of FIG. 6 in that a Ramp generation circuit 32 and an AD converter 31 are provided instead of the Vampref generation circuit 13 and the comparator Comp. .
- the AD converter 31 includes capacitors C11 and C12, a switch AZ corresponding to each of the capacitors C11 and C12, a comparator Comp11, and a counter 51.
- the AD converter 31 is a so-called single slope type AD converter, and is a pixel obtained from the difference between the optical signal and the reset signal using the counter 51 based on the lamp voltage supplied from the ramp generation circuit 32.
- the signal is converted from an analog signal to a digital signal and output.
- the AD converter 31 may be other than a single slope type.
- the reference voltage generation circuit 11 causes the influence of individual differences due to temperature characteristics and processes. It is possible to generate a reference voltage that is substantially the same as the reset voltage in the pixel P (i, j) without receiving the signal.
- the main body circuit configuration constituting the solid-state imaging device may be configured by a single chip (substrate) 101, but may be configured by a larger number of chips.
- the wiring 111 may be electrically connected therebetween.
- the pixel P (i, j) and the reference voltage generation circuit 11 are provided on the chip 101-1.
- the Bias generation circuit 12, the transistor TR31, the Ramp generation circuit 32, and the AD converter 31 may be provided on the chip 101-2.
- the pixel P (i, j) is provided on the chip 101-1, and the reference voltage generation circuit 11, the bias generation circuit 12, and the transistor TR31 are provided on the chip 101-2.
- the Ramp generation circuit 32 and the AD converter 31 may be provided.
- a pixel P (i, j), a reference voltage generation circuit 11, a bias generation circuit 12, and a transistor TR31 are provided on the chip 101-1, and the chip 101-2 is provided.
- a ramp generation circuit 32 and an AD converter 31 may be provided.
- the pixel P (i, j), the reference voltage generation circuit 11, the bias generation circuit 12, the transistor TR31, the ramp generation circuit 32, and the AD conversion The comparator Comp11, the switch AZ, and the capacitors C11 and C12 of the converter 31 may be provided, and the counter 51 of the AD converter 31 may be provided on the chip 101-2.
- the pixel P (i, j), the reference voltage generation circuit 11, the bias generation circuit 12, the transistor TR31, the ramp generation circuit 32, and the AD converter 31 are divided into a large number of chips of three or more. You may make it provide.
- the plurality of vertical transfer lines VLINE (j) are connected to the reset signal RST_Vref and the selection signal SEL_Vref by using the gates of the transistors TR21 and TR23 of the reference voltage generation circuit 11 in common or adjacent to each other.
- the example in which the vertical transfer lines VLINE (j) are connected by the switch VSC_CON has been described.
- the plurality of vertical transfer lines VLINE (j) may be connected only by sharing the gates of the transistors TR21 and TR23 of the reference voltage generation circuit 11.
- FIG. 11 shows a configuration example of a solid-state imaging device in which a plurality of vertical transfer lines VLINE (j) are connected only by sharing the gates of the transistors TR21, TR23, TR31 of the reference voltage generation circuit 11. Yes.
- the reference voltage generation circuit 11 can apply, to the vertical transfer line VLINE (j), a voltage that is substantially the same as the voltage after the reset of the FD unit as the reference voltage.
- FIG. 12 shows a configuration example of a solid-state imaging device of a system provided with an AD converter that performs AD conversion on pixel signals output in units of pixel units. That is, in the case of a solid-state image pickup device of a type provided with an AD converter that AD-converts a pixel signal output in units of pixel units, as shown in the upper left part of FIG.
- the pixel unit 121 is divided into a plurality of pixel units 121 composed of P (i, j). Then, as shown in the lower left part of FIG. 12, the AD converter 31 is provided for each divided pixel unit 121 on one chip 131.
- pixel units 121-1 to 121-3 in which the effective area is divided into three are provided, and AD converters 31-1 to 31-3 are connected to the pixel units, respectively.
- An example is shown.
- the pixel unit 121 transfers, for example, pixel signals of a plurality of pixels P (i, j) and pixels P (i, j) in the effective area.
- a transfer line corresponding to the vertical transfer line VLINE (j) a reference voltage generation circuit 11, a Bias generation circuit 12, a Ramp generation circuit 32, and a transistor TR31.
- the configurations of the transistors TR21 to TR23 in the reference voltage generation circuit 11 are the same as the configurations of the transistors TR11, TR13, and TR14 in the pixel P (i, j), respectively, and are substantially the same as the reset voltage.
- a reference voltage can be generated.
- a plurality of pixel units 121 are provided on a chip 151-1 made of a pixel substrate, and an AD converter 31 is provided on a chip 151-2 made of a circuit board. You may comprise so that it may connect.
- a so-called optical black (OPB) so-called dummy pixel that cannot receive light can be used.
- the dummy pixels used for OPB are usually provided at the edge of the imaging area (effective area) in the solid-state imaging device.
- an effective area is divided into 16 areas each consisting of 4 areas ⁇ 4 areas
- a pixel unit 121 and an AD converter 31 are provided in association with each area. It becomes composition.
- each edge portion becomes a boundary with another region, and thus a dummy pixel such as optical black cannot be provided.
- the pixel unit By providing the reference voltage generation circuit 11 described above, the same reference voltage as the reset voltage of the FD unit can be generated.
- the FD voltage may vary due to coupling between FDs in adjacent pixel columns.
- the parasitic coupling capacitance Cx in FIG. 14 is a schematic representation of the capacitance parasitic on the circuit, and does not actually exist as a circuit.
- the voltages change as shown in FIG. 15 when the FDs are FD0 to FD2.
- all of FD0 to FD2 are the power supply voltage VDD.
- the reset voltage is written in FD0, so that the voltage of FD0 is written as the reset voltage (VDD ⁇ V1).
- a voltage (VDD ⁇ V1) that is a reset voltage is written to FD1.
- the voltage drop occurs in the FD0 in which the voltage (VDD ⁇ V1) has already been written as the reset voltage due to the influence of the parasitic coupling capacitance, and the voltage V2 is further higher than the voltage (VDD ⁇ V1) that is the reset voltage.
- the voltage drops to a voltage (VDD ⁇ V1 ⁇ V2). Note that the voltage V2 is about 1/100 of the voltage V1, for example.
- a voltage (VDD ⁇ V1) is written as a reset voltage in FD2.
- the voltage drop in the FD1 in which the voltage (VDD-V1) has already been written as the reset voltage is further reduced due to the parasitic coupling capacitance, and the voltage is further lower than the reset voltage (VDD-V1-V2).
- FD0 is also affected, so the reset voltage of FD0 is set to a lower voltage (VDD ⁇ V1-2 ⁇ V2).
- the second reset voltage writing operation is performed for all the FDs.
- FD0 to FD2 write voltages V11, V11 ′, and V11 ′′ that have some variations at time t11 by writing the first reset voltage. It shall be assumed.
- the solid-state imaging device described above can be applied to various electronic devices such as an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. .
- FIG. 17 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
- An imaging apparatus 201 illustrated in FIG. 17 includes an optical system 202, a shutter device 203, a solid-state imaging device 204, a drive circuit 205, a signal processing circuit 206, a monitor 207, and a memory 208, and displays still images and moving images. Imaging is possible.
- the optical system 202 includes one or more lenses, guides light (incident light) from a subject to the solid-state image sensor 204, and forms an image on the light receiving surface of the solid-state image sensor 204.
- the shutter device 203 is disposed between the optical system 202 and the solid-state imaging device 204, and controls the light irradiation period and the light-shielding period to the solid-state imaging device 204 according to the control of the drive circuit 1005.
- the solid-state imaging device 204 is configured by a package including the above-described solid-state imaging device of FIGS. 1, 4, 6 to 12.
- the solid-state imaging device 204 accumulates signal charges for a certain period in accordance with light imaged on the light receiving surface via the optical system 202 and the shutter device 203.
- the signal charge accumulated in the solid-state image sensor 204 is transferred according to a drive signal (timing signal) supplied from the drive circuit 205.
- the drive circuit 205 outputs a drive signal for controlling the transfer operation of the solid-state image sensor 204 and the shutter operation of the shutter device 203 to drive the solid-state image sensor 204 and the shutter device 203.
- the signal processing circuit 206 performs various types of signal processing on the signal charges output from the solid-state imaging device 204.
- An image (image data) obtained by the signal processing by the signal processing circuit 206 is supplied to the monitor 207 and displayed, or supplied to the memory 208 and stored (recorded).
- FIG. 18 is a diagram showing a usage example in which the solid-state imaging device of FIGS. 1, 4 and 6 to 12 described above is used.
- the above-described solid-state imaging device shown in FIGS. 1, 4 and 6 to 12 is used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows. can do.
- Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
- Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
- Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
- Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
- this technique can also take the following structures.
- the gate voltage of the amplification transistor constituting the source follower circuit is the same as the reset voltage when resetting the charge accumulated in the floating diffusion that accumulates the charge generated by the photodiode constituting the pixel circuit for each pixel.
- a switch is disposed on a wiring between a power source for applying a voltage to the gate and the gate, and when the switch is turned off, the voltage applied to the gate is changed to the floating state after the reset.
- a solid-state imaging device that has the same value as the diffusion voltage.
- the source follower circuit is set for each column divided in the horizontal direction, and is provided for each vertical transfer line for transferring a signal of each pixel in the vertical direction, and the reference voltage is applied to the vertical transfer line.
- the solid-state imaging device according to (1) in which a plurality of adjacent vertical transfer lines are connected with a common gate of the transistor serving as the switch.
- the solid-state imaging device according to (3) wherein the adjacent vertical transfer lines are connected via a switch and turned on at a timing immediately before the signal of the pixel is read out.
- the solid-state imaging device according to any one of (1) to (5), wherein a power source that supplies the reset voltage and a power source that supplies the reference voltage via the switch are separate power sources.
- a power source that supplies the reset voltage and a power source that supplies the reference voltage via the switch are separate power sources.
- the solid-state imaging device according to any one of (1) to (7), wherein the pixel signal output through the vertical transfer line is output to an auto-zero circuit.
- the solid-state imaging device according to any one of (1) to (8), wherein the signal of the pixel output via the vertical transfer line is output to an AD (analog / Digital) converter.
- AD analog / Digital
- the solid-state imaging device according to any one of (1) to (10), wherein the main body circuit configuration includes a plurality of chips. (12) When the main body circuit configuration is composed of two chips, the first chip includes the pixel circuit, and the second chip includes the source follower circuit and an AD (analog / digital) converter. The solid-state imaging device according to (11). (13) When the main body circuit configuration is composed of two chips, the first chip includes the pixel circuit and the source follower circuit, and the second chip includes an AD (analog / digital) converter. The solid-state imaging device according to (11).
- the first chip includes the pixel circuit, the source follower circuit, and an AD (analog / digital) converter comparator
- the solid-state imaging device according to (11), wherein a chip includes a counter of the AD (analog / Digital) converter.
- the source follower circuit is provided for each area transfer line for transferring a signal of each pixel for each area divided in a two-dimensional direction, and applies the reference voltage to the area transfer line. ).
- the solid-state imaging device according to (15), wherein the main body circuit configuration includes a first chip including the pixel circuit for each region and a second chip including a source follower circuit for each region.
- (17) includes a source follower circuit for generating a reference voltage;
- the gate voltage of the amplification transistor constituting the source follower circuit is the same as the reset voltage when resetting the charge accumulated in the floating diffusion that accumulates the charge generated by the photodiode constituting the pixel circuit for each pixel.
- a switch is disposed on a wiring between a power source for applying a voltage to the gate and the gate, and when the switch is turned off, the voltage applied to the gate is changed to the floating state after the reset.
- An imaging device that has the same value as the diffusion voltage.
- the gate voltage of the amplification transistor constituting the source follower circuit is the same as the reset voltage when resetting the charge accumulated in the floating diffusion that accumulates the charge generated by the photodiode constituting the pixel circuit for each pixel.
- a switch is disposed on a wiring between a power source for applying a voltage to the gate and the gate, and when the switch is turned off, the voltage applied to the gate is changed to the floating state after the reset.
- An electronic device that has the same value as the diffusion voltage.
- 11 reference voltage generation circuit 12 Bias generation circuit, 13 Vampref generation circuit, 14 auto zero circuit, 31, 31-1 to 31-3 AD converter, 32 Ramp generation circuit, 51 counter, 101, 101-1, 101-2 Chip, 121, 121-1 to 121-3 pixel unit, 151,152 chip
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
<固体撮像素子の構成例>
図1は、本技術を適用した半導体装置である固体撮像素子を構成する各画素に接続される複数の垂直信号線のうちのいずれかの構成を示すものである。
次に、図3のタイミングチャートを参照して、図1の固体撮像素子の動作について説明する。
以上においては、垂直転送線VLINE(j)単位で動作する例について説明してきたが、例えば、隣接する垂直転送線VLINE(j)間を、スイッチを介して接続し、リセット信号を読み出すとき、および光信号を読み出すときに、その直前でスイッチをオンにして接続するようにしても良い。
次に、図5のタイミングチャートを参照して、図4の固体撮像素子の動作について説明する。尚、図5のタイミングチャートにおける時刻t101乃至t107、時刻t111乃至t112、および時刻t121乃至t127は、図3における時刻t11乃至t17、時刻t21乃至t22、および時刻t31乃至t37に対応するものである。また、図5のタイミングチャートにおいて、図3のタイミングチャートと異なる項目は、図5の上段および下段において、新たに、スイッチVSC_CONの動作を制御する制御信号を示す項目が下から2段目に設けられた点である。
以上においては、各画素P(i,j)の構成において、リセット信号RST(i)により開閉されるトランジスタTR11がオンにされるとき、設定されるリセットレベルとなる電圧と、増幅トランジスタTR13のドレインに供給される電圧とが、いずれも共通の電源VDDより供給される例について説明してきた。しかしながら、トランジスタTR11,TR13に供給される電源は、それぞれ独立したものであっても良いものである。このような場合、基準電圧生成回路11のトランジスタTR21,TR22においても、同様の構造とする。これにより基準電圧生成回路11により設定される基準電圧をリセット電圧と略同一の適切な電圧に設定することが可能となる。
以上においては、画素P(i,j)のリセット信号および光信号を、垂直転送線VLINE(j)を介して、コンパレータCompに出力する例について説明してきたが、直接、AD(analog/Digital)変換器に出力するようにしてもよい。
固体撮像素子を構成する本体回路構成は、例えば、図8で示されるように、一枚のチップ(基板)101により構成されるものとしても良いが、それ以上の枚数のチップにより構成されるようにしても良い。すなわち、例えば、図9の左部で示されるように、2枚のチップ101-1,101-2より構成し、その間を配線111で電気的に接続するようにしても良い。
以上においては、複数の垂直転送線VLINE(j)を独立して、または、基準電圧生成回路11のトランジスタTR21,TR23のゲートを共通化してリセット信号RST_Vrefおよび選択信号SEL_Vrefと接続すると共に、隣接する垂直転送線VLINE(j)間をスイッチVSC_CONで接続する例について説明してきた。しかしながら、複数の垂直転送線VLINE(j)については、基準電圧生成回路11のトランジスタTR21,TR23のゲートを共通化するのみで接続するようにしてもよい。
以上においては、垂直転送線VLINE(j)毎にAD変換器31を設ける、いわゆるカラムADC方式について説明してきたが、例えば、固体撮像素子の有効領域を複数の領域に分割し、それぞれの領域に属する複数の画素P(i,j)からなる画素ユニットを設け、画素ユニット単位で出力される画素信号をAD変換するAD変換器を設けた方式にしてもよい。
上述した固体撮像素子においては、FD蓄積型のグローバルシャッタ動作を行う際、増幅トランジスタTR13のばらつきを抑えるため、図13の矢印で示されるように、FDに所定の電圧であるリセット電圧を書き込むようにする手法がある。
上述した固体撮像素子は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
<固体撮像素子の使用例>
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
(1) 基準電圧を生成するソースフォロワ回路を含み、
前記ソースフォロワ回路を構成する増幅トランジスタのゲート電圧は、画素毎に画素回路を構成するフォトダイオードにより生成された電荷を蓄積するフローティングディフュージョンに蓄積された電荷をリセットする際のリセット電圧と同一であり、
前記ゲートに電圧を印加する電源と、前記ゲートとの間の配線上にスイッチが配設されており、前記スイッチは、オフした際に、前記ゲートに印加する電圧を、前記リセット後の前記フローティングディフュージョンの電圧と同値とするものである
固体撮像素子。
(2) 前記ソースフォロワ回路は、前記スイッチをオンにするとき、前記基準電圧を生成する
(1)に記載の固体撮像素子。
(3) 前記ソースフォロワ回路は、水平方向に分割されたカラム毎に設定され、垂直方向に各画素の信号を転送する垂直転送線毎に設けられ、前記基準電圧を、前記垂直転送線に対して印加する
(1)に記載の固体撮像素子。
(4) 隣接する複数の前記垂直転送線間を、前記スイッチとなるトランジスタのゲートを共通化して接続する
(3)に記載の固体撮像素子。
(5) 隣接する前記垂直転送線間を、スイッチを介して接続し、前記画素の信号が読み出される直前のタイミングでオンにされる
(3)に記載の固体撮像素子。
(6) 前記リセット電圧を供給する電源と、前記スイッチを介して前記基準電圧として供給する電源とは、同一の電源である
(1)乃至(5)のいずれかに記載の固体撮像素子。
(7) 前記リセット電圧を供給する電源と、前記スイッチを介して前記基準電圧として供給する電源とは、個別の電源である
(1)乃至(5)のいずれかに記載の固体撮像素子。
(8) 前記垂直転送線を介して出力される前記画素の信号は、オートゼロ回路に出力される
(1)乃至(7)のいずれかに記載の固体撮像素子。
(9) 前記垂直転送線を介して出力される前記画素の信号は、AD(analog/Digital)変換器に出力される
(1)乃至(8)に記載の固体撮像素子。
(10) 本体回路構成は1枚のチップにより構成される
(1)乃至(9)のいずれかに記載の固体撮像素子。
(11) 本体回路構成は複数のチップにより構成される
(1)乃至(10)のいずれかに記載の固体撮像素子。
(12) 前記本体回路構成が2枚のチップより構成される場合、第1のチップに、前記画素回路を含み、第2のチップに、前記ソースフォロワ回路およびAD(analog/Digital)変換器を含む
(11)に記載の固体撮像素子。
(13) 前記本体回路構成が2枚のチップより構成される場合、第1のチップに、前記画素回路、および前記ソースフォロワ回路を含み、第2のチップに、AD(analog/Digital)変換器を含む
(11)に記載の固体撮像素子。
(14) 前記本体回路構成が2枚のチップより構成される場合、第1のチップに、前記画素回路、前記ソースフォロワ回路、およびAD(analog/Digital)変換器のコンパレータを含み、第2のチップに、前記AD(analog/Digital)変換器のカウンタを含む
(11)に記載の固体撮像素子。
(15) 前記ソースフォロワ回路は、2次元方向に分割された領域毎の各画素の信号を転送する領域転送線毎に設けられ、前記基準電圧を、前記領域転送線に対して印加する
(1)に記載の固体撮像素子。
(16) 本体回路構成は、前記領域毎の前記画素回路を含む第1のチップと、前記領域毎のソースフォロワ回路を含む第2のチップとからなる
(15)に記載の固体撮像素子。
(17) 基準電圧を生成するソースフォロワ回路を含み、
前記ソースフォロワ回路を構成する増幅トランジスタのゲート電圧は、画素毎に画素回路を構成するフォトダイオードにより生成された電荷を蓄積するフローティングディフュージョンに蓄積された電荷をリセットする際のリセット電圧と同一であり、
前記ゲートに電圧を印加する電源と、前記ゲートとの間の配線上にスイッチが配設されており、前記スイッチは、オフした際に、前記ゲートに印加する電圧を、前記リセット後の前記フローティングディフュージョンの電圧と同値とするものである
撮像装置。
(18) 基準電圧を生成するソースフォロワ回路を含み、
前記ソースフォロワ回路を構成する増幅トランジスタのゲート電圧は、画素毎に画素回路を構成するフォトダイオードにより生成された電荷を蓄積するフローティングディフュージョンに蓄積された電荷をリセットする際のリセット電圧と同一であり、
前記ゲートに電圧を印加する電源と、前記ゲートとの間の配線上にスイッチが配設されており、前記スイッチは、オフした際に、前記ゲートに印加する電圧を、前記リセット後の前記フローティングディフュージョンの電圧と同値とするものである
電子機器。
Claims (18)
- 基準電圧を生成するソースフォロワ回路を含み、
前記ソースフォロワ回路を構成する増幅トランジスタのゲート電圧は、画素毎に画素回路を構成するフォトダイオードにより生成された電荷を蓄積するフローティングディフュージョンに蓄積された電荷をリセットする際のリセット電圧と同一であり、
前記ゲートに電圧を印加する電源と、前記ゲートとの間の配線上にスイッチが配設されており、前記スイッチは、オフした際に、前記ゲートに印加する電圧を、前記リセット後の前記フローティングディフュージョンの電圧と同値とするものである
固体撮像素子。 - 前記ソースフォロワ回路は、前記スイッチをオンにするとき、前記基準電圧を生成する
請求項1に記載の固体撮像素子。 - 前記ソースフォロワ回路は、水平方向に分割されたカラム毎に設定され、垂直方向に各画素の信号を転送する垂直転送線毎に設けられ、前記基準電圧を、前記垂直転送線に対して印加する
請求項1に記載の固体撮像素子。 - 隣接する複数の前記垂直転送線間を、前記スイッチとなるトランジスタのゲートを共通化して接続する
請求項3に記載の固体撮像素子。 - 隣接する前記垂直転送線間を、スイッチを介して接続し、前記画素の信号が読み出される直前のタイミングでオンにされる
請求項3に記載の固体撮像素子。 - 前記リセット電圧を供給する電源と、前記スイッチを介して前記基準電圧として供給する電源とは、同一の電源である
請求項1に記載の固体撮像素子。 - 前記リセット電圧を供給する電源と、前記スイッチを介して前記基準電圧として供給する電源とは、個別の電源である
請求項1に記載の固体撮像素子。 - 前記垂直転送線を介して出力される前記画素の信号は、オートゼロ回路に出力される
請求項1に記載の固体撮像素子。 - 前記垂直転送線を介して出力される前記画素の信号は、AD変換器に出力される
請求項1に記載の固体撮像素子。 - 本体回路構成は1枚のチップにより構成される
請求項1に記載の固体撮像素子。 - 本体回路構成は複数のチップにより構成される
請求項1に記載の固体撮像素子。 - 前記本体回路構成が2枚のチップより構成される場合、第1のチップに、前記画素回路を含み、第2のチップに、前記ソースフォロワ回路およびAD(analog/Digital)変換器を含む
請求項11に記載の固体撮像素子。 - 前記本体回路構成が2枚のチップより構成される場合、第1のチップに、前記画素回路、および前記ソースフォロワ回路を含み、第2のチップに、AD(analog/Digital)変換器を含む
請求項11に記載の固体撮像素子。 - 前記本体回路構成が2枚のチップより構成される場合、第1のチップに、前記画素回路、前記ソースフォロワ回路、およびAD(analog/Digital)変換器のコンパレータを含み、第2のチップに、前記AD変換器のカウンタを含む
請求項11に記載の固体撮像素子。 - 前記ソースフォロワ回路は、2次元方向に分割された前記領域毎の各画素の信号を転送する領域転送線毎に設けられ、前記基準電圧を、前記領域転送線に対して印加する
請求項1に記載の固体撮像素子。 - 本体回路構成は、前記領域毎の前記画素回路を含む第1のチップと、前記領域毎のソースフォロワ回路を含む第2のチップとからなる
請求項15に記載の固体撮像素子。 - 基準電圧を生成するソースフォロワ回路を含み、
前記ソースフォロワ回路を構成する増幅トランジスタのゲート電圧は、画素毎に画素回路を構成するフォトダイオードにより生成された電荷を蓄積するフローティングディフュージョンに蓄積された電荷をリセットする際のリセット電圧と同一であり、
前記ゲートに電圧を印加する電源と、前記ゲートとの間の配線上にスイッチが配設されており、前記スイッチは、オフした際に、前記ゲートに印加する電圧を、前記リセット後の前記フローティングディフュージョンの電圧と同値とするものである
撮像装置。 - 基準電圧を生成するソースフォロワ回路を含み、
前記ソースフォロワ回路を構成する増幅トランジスタのゲート電圧は、画素毎に画素回路を構成するフォトダイオードにより生成された電荷を蓄積するフローティングディフュージョンに蓄積された電荷をリセットする際のリセット電圧と同一であり、
前記ゲートに電圧を印加する電源と、前記ゲートとの間の配線上にスイッチが配設されており、前記スイッチは、オフした際に、前記ゲートに印加する電圧を、前記リセット後の前記フローティングディフュージョンの電圧と同値とするものである
電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680018466.1A CN107360738B (zh) | 2015-04-03 | 2016-03-18 | 固态成像元件、成像设备和电子器械 |
US15/560,682 US10186512B2 (en) | 2015-04-03 | 2016-03-18 | Solid-state image sensor, image capturing device, and electronic device |
JP2017509562A JP6789925B2 (ja) | 2015-04-03 | 2016-03-18 | 固体撮像素子、撮像装置、並びに電子機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015076731 | 2015-04-03 | ||
JP2015-076731 | 2015-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016158482A1 true WO2016158482A1 (ja) | 2016-10-06 |
Family
ID=57005674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058647 WO2016158482A1 (ja) | 2015-04-03 | 2016-03-18 | 固体撮像素子、撮像装置、並びに電子機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10186512B2 (ja) |
JP (1) | JP6789925B2 (ja) |
CN (1) | CN107360738B (ja) |
WO (1) | WO2016158482A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021525472A (ja) * | 2018-06-09 | 2021-09-24 | フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc | 拡張されたダイナミックレンジをもつデジタルピクセル |
WO2023080180A1 (ja) * | 2021-11-05 | 2023-05-11 | 株式会社ニコン | 撮像素子および撮像装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10721427B2 (en) * | 2018-06-25 | 2020-07-21 | Primesensor Technology Inc. | Image sensor circuit and ramp signal generator thereof |
JP7146483B2 (ja) | 2018-06-27 | 2022-10-04 | ソニーセミコンダクタソリューションズ株式会社 | 受光装置およびその制御方法、並びに電子機器 |
JP2020031402A (ja) * | 2018-08-24 | 2020-02-27 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像装置及び電子機器 |
JP7336320B2 (ja) * | 2019-09-04 | 2023-08-31 | キヤノン株式会社 | 撮像装置及びその制御方法、プログラム、記憶媒体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010288218A (ja) * | 2009-06-15 | 2010-12-24 | Sharp Corp | A/d変換器、固体撮像装置、及び電子情報機器 |
JP2013090234A (ja) * | 2011-10-20 | 2013-05-13 | Sony Corp | 固体撮像素子およびカメラシステム |
JP2013168880A (ja) * | 2012-02-16 | 2013-08-29 | Sony Corp | 比較器、ad変換器、固体撮像装置、カメラシステム、および電子機器 |
WO2014097857A1 (ja) * | 2012-12-20 | 2014-06-26 | ソニー株式会社 | 撮像素子、撮像装置、電子機器、閾値算出装置および撮像方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4230406B2 (ja) * | 2004-04-27 | 2009-02-25 | 富士通マイクロエレクトロニクス株式会社 | 固体撮像装置 |
US8154541B2 (en) * | 2004-07-30 | 2012-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Display device, driving method thereof and electronic appliance |
JP4324202B2 (ja) * | 2007-01-25 | 2009-09-02 | シャープ株式会社 | A/d変換器 |
WO2010023903A1 (ja) | 2008-09-01 | 2010-03-04 | 株式会社ニコン | 撮像素子および撮像装置 |
JP5675157B2 (ja) * | 2009-05-12 | 2015-02-25 | キヤノン株式会社 | 焦点検出装置 |
US8957359B2 (en) * | 2012-10-12 | 2015-02-17 | Omnivision Technologies, Inc. | Compact in-pixel high dynamic range imaging |
JP2014222863A (ja) * | 2013-05-14 | 2014-11-27 | キヤノン株式会社 | 撮像装置 |
-
2016
- 2016-03-18 JP JP2017509562A patent/JP6789925B2/ja not_active Expired - Fee Related
- 2016-03-18 US US15/560,682 patent/US10186512B2/en active Active
- 2016-03-18 CN CN201680018466.1A patent/CN107360738B/zh active Active
- 2016-03-18 WO PCT/JP2016/058647 patent/WO2016158482A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010288218A (ja) * | 2009-06-15 | 2010-12-24 | Sharp Corp | A/d変換器、固体撮像装置、及び電子情報機器 |
JP2013090234A (ja) * | 2011-10-20 | 2013-05-13 | Sony Corp | 固体撮像素子およびカメラシステム |
JP2013168880A (ja) * | 2012-02-16 | 2013-08-29 | Sony Corp | 比較器、ad変換器、固体撮像装置、カメラシステム、および電子機器 |
WO2014097857A1 (ja) * | 2012-12-20 | 2014-06-26 | ソニー株式会社 | 撮像素子、撮像装置、電子機器、閾値算出装置および撮像方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021525472A (ja) * | 2018-06-09 | 2021-09-24 | フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc | 拡張されたダイナミックレンジをもつデジタルピクセル |
JP7279082B2 (ja) | 2018-06-09 | 2023-05-22 | メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー | 拡張されたダイナミックレンジをもつデジタルピクセル |
WO2023080180A1 (ja) * | 2021-11-05 | 2023-05-11 | 株式会社ニコン | 撮像素子および撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107360738A (zh) | 2017-11-17 |
JPWO2016158482A1 (ja) | 2018-02-01 |
US20180108658A1 (en) | 2018-04-19 |
CN107360738B (zh) | 2020-10-27 |
US10186512B2 (en) | 2019-01-22 |
JP6789925B2 (ja) | 2020-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11050955B2 (en) | Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus | |
WO2016158482A1 (ja) | 固体撮像素子、撮像装置、並びに電子機器 | |
WO2017141727A1 (ja) | 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器 | |
WO2017018188A1 (ja) | イメージセンサ、及び、電子機器 | |
WO2016129408A1 (ja) | イメージセンサ、読み出し制御方法、および電子機器 | |
WO2017150240A1 (ja) | 固体撮像素子、駆動方法、および電子機器 | |
JP2017084892A (ja) | 撮像装置 | |
JP2018074268A (ja) | 固体撮像素子およびその制御方法、並びに電子機器 | |
JPWO2016163228A1 (ja) | 固体撮像装置、電子機器、およびad変換装置 | |
WO2016158484A1 (ja) | 固体撮像装置および電子機器 | |
JP2017183563A (ja) | 撮像装置、駆動方法、および、電子機器 | |
JP2017175345A (ja) | 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器 | |
WO2019026632A1 (ja) | 固体撮像素子および撮像装置 | |
JP6821590B2 (ja) | 撮像素子、撮像方法、および電子機器 | |
JP6954268B2 (ja) | 固体撮像装置、信号処理方法、および電子機器 | |
US9325924B2 (en) | Solid-state image-capturing device having lines that connect input units and electronic camera using the same | |
JP6740230B2 (ja) | 固体撮像装置および電子機器 | |
JPWO2017014070A1 (ja) | 撮像素子、及び、電子機器 | |
KR20240109985A (ko) | 고체 촬상 장치 및 그 구동 방법, 그리고 전자 기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16772365 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017509562 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15560682 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16772365 Country of ref document: EP Kind code of ref document: A1 |