WO2016157987A1 - 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム - Google Patents
透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム Download PDFInfo
- Publication number
- WO2016157987A1 WO2016157987A1 PCT/JP2016/052967 JP2016052967W WO2016157987A1 WO 2016157987 A1 WO2016157987 A1 WO 2016157987A1 JP 2016052967 W JP2016052967 W JP 2016052967W WO 2016157987 A1 WO2016157987 A1 WO 2016157987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- transparent conductive
- transparent
- film
- conductive layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000003475 lamination Methods 0.000 title claims abstract description 21
- 229920005989 resin Polymers 0.000 claims abstract description 178
- 239000011347 resin Substances 0.000 claims abstract description 178
- 230000004888 barrier function Effects 0.000 claims abstract description 94
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- 239000002131 composite material Substances 0.000 claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 claims abstract description 55
- 239000002184 metal Substances 0.000 claims abstract description 55
- 230000035699 permeability Effects 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims description 86
- 238000010030 laminating Methods 0.000 claims description 65
- 238000012546 transfer Methods 0.000 claims description 27
- -1 polyethylene Polymers 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 9
- 239000011787 zinc oxide Substances 0.000 claims description 8
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 6
- 229920000620 organic polymer Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 5
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 239000004800 polyvinyl chloride Substances 0.000 claims description 4
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 4
- 239000005033 polyvinylidene chloride Substances 0.000 claims description 4
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 33
- 230000003746 surface roughness Effects 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 506
- 239000010408 film Substances 0.000 description 247
- 239000007789 gas Substances 0.000 description 86
- 230000007797 corrosion Effects 0.000 description 38
- 238000005260 corrosion Methods 0.000 description 38
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 33
- 229910052791 calcium Inorganic materials 0.000 description 33
- 239000011575 calcium Substances 0.000 description 33
- 150000001875 compounds Chemical class 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 20
- 239000010419 fine particle Substances 0.000 description 20
- 239000002585 base Substances 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005468 ion implantation Methods 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 229920001709 polysilazane Polymers 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229920005573 silicon-containing polymer Polymers 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000007756 gravure coating Methods 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 4
- 239000011112 polyethylene naphthalate Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000012945 sealing adhesive Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007607 die coating method Methods 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000009823 thermal lamination Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- PCKZAVNWRLEHIP-UHFFFAOYSA-N 2-hydroxy-1-[4-[[4-(2-hydroxy-2-methylpropanoyl)phenyl]methyl]phenyl]-2-methylpropan-1-one Chemical compound C1=CC(C(=O)C(C)(O)C)=CC=C1CC1=CC=C(C(=O)C(C)(C)O)C=C1 PCKZAVNWRLEHIP-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052945 inorganic sulfide Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007760 metering rod coating Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Chemical class 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920003257 polycarbosilane Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
Definitions
- the present invention relates to a transparent conductive layer laminating film, a production method thereof, and a transparent conductive film.
- Patent Document 1 is provided with a pattern layer of a fine metal wire or a metal paste having a resistance value lower than that of the transparent conductive layer as an auxiliary electrode in the transparent conductive layer.
- a transparent conductive film is laminated on a layer made of a metal film having a transparent resin film in an opening on a transparent substrate made of a plastic resin film.
- a transparent electrode substrate is disclosed.
- the patent document 2 is disclosing the barrier property transparent conductive film which laminated
- Patent Document 1 in this structure, for example, a gas barrier property required for an active layer or the like inside an electronic device such as an organic thin film solar cell or organic EL illumination cannot be satisfied only by a resin base material, and the atmosphere and Due to moisture permeation from the transparent conductive substrate on the contact side, the active layer and the like inside the electronic device are deteriorated, which causes a serious problem of shortening the device life including deterioration of device performance.
- the present invention aims to reduce the resistance of the transparent conductive layer surface of the transparent conductive film and reduce the surface roughness of the transparent conductive layer, and at the same time suppress the water vapor transmission to the transparent conductive layer of the transparent conductive film.
- An object of the present invention is to provide a transparent conductive layer laminating film, a method for producing the same, and a transparent conductive film.
- Another object of the present invention is to provide an organic thin-film solar cell and organic EL lighting that have a reduced device performance and a longer life by using the transparent conductive film of the present invention as a translucent electrode.
- the inventors have made a metal layer having an opening on the transparent gas barrier layer on the transparent resin film substrate and a specific transparent resin layer provided in the opening.
- the transparent resin film base material having the transparent gas barrier layer and the water vapor permeability of the transparent resin layer are set to specific ranges, respectively.
- a transparent resin film substrate including a transparent gas barrier layer means a transparent resin film substrate formed by laminating a transparent gas barrier layer on at least one surface of the transparent resin film substrate. And That is, the present invention provides the following (1) to (11).
- a transparent conductive layer laminating film in which at least a metal layer having an opening and a transparent resin layer provided in the opening are laminated as a composite layer on the transparent gas barrier layer on the transparent resin film substrate.
- the water vapor permeability at 40 ° C. ⁇ 90% RH defined by JIS K7129 of the transparent resin film substrate having the transparent gas barrier layer is 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less
- the transparent gas barrier layer comprises a silicon oxynitride layer, an inorganic oxide layer, or an inorganic nitride layer.
- the root mean square roughness Rq defined by JIS-B0601-1994 of the surface including the step of the interface between the metal layer and the transparent resin layer of the composite layer is 200 nm or less.
- the transparent conductive oxide is indium-tin oxide (ITO) or gallium-zinc oxide (GZO), and the conductive organic polymer is poly (3,4-ethylenedioxythiophene):
- (A) A step of forming a metal layer having the opening on the transfer substrate, and further forming a transparent resin layer in the opening to form a composite layer.
- (B) The composite layer is formed on the transparent gas barrier layer.
- (1) The method for producing a transparent conductive film according to (10), further comprising a step of laminating a transparent conductive layer on the composite layer of the transparent conductive layer laminating film.
- a transparent conductive film that reduces the resistance of the transparent conductive layer surface of the transparent conductive film and reduces the surface roughness of the transparent conductive layer, and at the same time suppresses water vapor permeation to the transparent conductive layer of the transparent conductive film.
- a film for layer lamination, a production method thereof, and a transparent conductive film can be provided.
- the transparent conductive film of the present invention as a translucent electrode, it is possible to provide an organic thin-film solar cell and organic EL lighting that have a reduced device performance and a long lifetime.
- Transparent conductive layer lamination film In the transparent conductive layer laminating film of the present invention, at least a metal layer having an opening and a transparent resin layer provided in the opening are laminated as a composite layer on the transparent gas barrier layer on the transparent resin film substrate.
- FIG. 1 is a cross-sectional view showing an example of a transparent conductive layer laminating film and a transparent conductive film of the present invention.
- a composite layer 4 comprising a transparent gas barrier layer 3, a metal layer 5 having an opening, and a transparent resin layer 6 provided in the opening is laminated on a transparent resin film substrate 2.
- the transparent conductive film 1 is obtained by further laminating a transparent conductive layer 1 b on the composite layer 4.
- the water vapor permeability of the transparent resin film substrate including the transparent gas barrier layer constituting the transparent conductive layer laminating film is set to 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less at 40 ° C. ⁇ 90% RH.
- the water vapor permeability per 100 ⁇ m thickness of the transparent resin layer constituting the transparent conductive layer laminating film is set to 20 (g / m 2 ⁇ day) or less at 40 ° C. ⁇ 90% RH, whereby the composite layer is formed.
- Water vapor permeation in the atmosphere from the end of the transparent resin layer to be configured can be suppressed.
- a transparent conductive layer is laminated on the composite layer of the transparent conductive layer laminating film to form a transparent conductive film
- water vapor passing through the transparent conductive layer is suppressed.
- the surface of the transparent conductive layer is reduced in resistance (reduced surface resistivity) by applying a metal layer (auxiliary electrode layer) of the composite layer. .
- a transparent conductive film obtained by laminating a transparent conductive layer on a composite layer of the transparent conductive layer laminating film of the present invention for example, in an electronic device in which at least one of opposing electrodes is formed of a transparent conductive film,
- an electrode since water vapor passing through the transparent conductive layer is suppressed, it is possible to minimize the deterioration of performance over time due to water vapor to the active layer and the like constituting the adjacent electronic device, and It can lead to longer life.
- the water vapor permeability was evaluated in accordance with JIS K7129.
- the water-vapor permeability in 40 degreeC x 90% RH was measured using the water-vapor-permeability meter (The product name: AQUATRAN) made from Mocon.
- the water vapor permeability at 40 ° C. ⁇ 90% RH of the transparent resin layer was measured using a water vapor permeability meter (manufactured by System Instruments, apparatus name: Lysy L80-5000).
- the measured value was converted to a value (g / m 2 ⁇ day) at a film thickness of 100 ⁇ m.
- the film thickness is 100 ⁇ m, it means that the water vapor permeability is inversely proportional to the film thickness even when measured with other film thicknesses, and thus a value converted per 100 ⁇ m can be adopted.
- the water vapor permeability per unit film thickness is a physical property unique to the material.
- it is difficult to directly measure the water vapor permeability from the end face of the thin film here but the water vapor permeability is a physical property inherent to the material as described above. It can be said that the water vapor permeability is low. Therefore, it is considered that there is no problem in discussing the water vapor transmission rate applied to the end face by the normal comparison of the water vapor transmission rate.
- the transparent resin film substrate used in the present invention has water vapor under high humidity conditions of 40 ° C. ⁇ 90% RH from the transparent resin film substrate surface side that does not have the transparent gas barrier layer.
- the transmittance is appropriately selected so that the total becomes 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less.
- the transparent resin film substrate is not particularly limited as long as it is excellent in flexibility and transparency, for example, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate , Polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic polymer, and the like.
- the polyester include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polyarylate.
- cycloolefin polymer examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
- transparent resin film substrates biaxially stretched polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoints of cost and heat resistance.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- the thickness of the transparent film resin substrate is preferably 10 to 500 ⁇ m, more preferably 10 to 300 ⁇ m, still more preferably 10 to 100 ⁇ m. If it is this range, the mechanical strength and transparency as a transparent resin film base material are securable.
- the transparent gas barrier layer used in the present invention is provided between the transparent resin film substrate 2 and the composite layer 4, and suppresses water vapor in the atmosphere that has passed through the transparent resin film substrate 2, As a result, it has the function of preventing water vapor permeation to the composite layer 4 and the transparent conductive layer 1b.
- the transparent resin film substrate when laminated on the transparent resin film substrate, water vapor permeability under high humidity conditions of 40 ° C. and 90% RH from the transparent resin film substrate surface side without the transparent gas barrier layer. It is necessary to appropriately select a gas barrier material and the number of layers to be described later according to the transparent resin film substrate so that the value becomes 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less.
- an inorganic vapor-deposited film such as an inorganic compound vapor-deposited film or a metal vapor-deposited film; a reforming treatment such as ion implantation on a layer containing a polymer compound (hereinafter sometimes referred to as “polymer layer”)
- polymer layer a layer obtained by applying;
- inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride; inorganic carbides; Inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides and the like.
- Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin. These can be used alone or in combination of two or more.
- Polymer compounds used for the polymer layer include silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester Etc. These polymer compounds can be used alone or in combination of two or more. Among these polymer compounds, silicon-containing polymer compounds having better gas barrier properties are preferable.
- silicon-containing polymer compounds examples include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds.
- a polysilazane compound is preferable from the viewpoint of forming a barrier layer having excellent gas barrier properties.
- inorganic vapor deposition films using inorganic oxides, inorganic nitrides or metals as raw materials are preferable from the viewpoint of gas barrier properties, and moreover, inorganic materials using inorganic oxides or inorganic nitrides as raw materials from the viewpoint of transparency.
- a vapor deposition film is preferred.
- a silicon oxynitride layer formed by subjecting a vapor deposition film of an inorganic compound or a layer containing a polysilazane compound to a modification treatment to have oxygen, nitrogen, and silicon as main constituent atoms has an interlayer adhesion property, a gas barrier. From the viewpoint of having good properties and bending resistance, it is preferably used.
- the transparent gas barrier layer can be formed, for example, by subjecting the polysilazane compound-containing layer to plasma ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, heat treatment, and the like.
- ions implanted by the plasma ion implantation process include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
- a specific processing method of the plasma ion implantation processing a method of injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or a gas barrier without using an external electric field.
- the plasma treatment is a method for modifying a layer containing a silicon-containing polymer by exposing the polysilazane compound-containing layer to plasma.
- plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
- the ultraviolet irradiation treatment is a method for modifying a layer containing a silicon-containing polymer by irradiating a polysilazane compound-containing layer with ultraviolet rays.
- the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
- the ion implantation treatment is preferable because it can efficiently modify the inside of the polysilazane compound-containing layer without roughening the surface and form a gas barrier layer having more excellent gas barrier properties.
- the transparent gas barrier layer may be a single layer or a laminate of two or more layers. Further, when two or more layers are laminated, they may be the same or different.
- the film thickness of the transparent gas barrier layer is preferably 20 nm to 50 ⁇ m, more preferably 30 nm to 1 ⁇ m, still more preferably 40 to 500 nm. When the film thickness of the transparent gas barrier layer is within this range, excellent gas barrier properties and adhesiveness can be obtained, and flexibility and coating strength can be compatible.
- the transparent gas barrier layer alone preferably has a water vapor permeability of 0.1 (g / m 2 ⁇ day) or less under high humidity conditions of 40 ° C. ⁇ 90% RH, more preferably. Is 0.05 (g / m 2 ⁇ day) or less, more preferably 0.01 (g / m 2 ⁇ day) or less. With such a water vapor permeability, the water vapor that has passed through the transparent resin film substrate is blocked, and for example, water vapor permeation to the adjacent composite layer used in the present invention can be suppressed.
- the water vapor permeability of the transparent resin film substrate having a transparent gas barrier layer used in the present invention that is, the laminate of the transparent resin film substrate 2 and the transparent gas barrier layer 3 in FIG. 0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less. If the water vapor transmission rate is more than 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day), the transparent conductive layer is deteriorated due to water vapor transmission in the atmosphere, and the surface resistivity is increased. Further, when used as a translucent electrode of an electronic device, deterioration of the active layer and the like inside the device progresses with time, and the lifetime of the device is shortened.
- the water vapor transmission rate is preferably 7.0 ⁇ 10 ⁇ 4 (g / m 2 ⁇ day) or less, more preferably 5.0 ⁇ 10 ⁇ 4 (g / m 2 ⁇ day) or less, and still more preferably It is 1.0 ⁇ 10 ⁇ 4 (g / m 2 ⁇ day) or less.
- the transparent conductive layer is laminated on the composite layer of the transparent conductive layer laminating film. And when it is set as a transparent conductive film, a surface resistivity can be maintained, without a transparent conductive layer deteriorating. Further, when used as a translucent electrode of an electronic device, it is possible to suppress deterioration over time of the active layer and the like inside the device, leading to a longer life of the device.
- the composite layer of the present invention has a transparent conductive layer laminated on a transparent conductive layer laminating film to form a transparent conductive film, which reduces the resistance of the transparent conductive layer (decreases surface resistivity) and transmits water vapor in the atmosphere. It has a function to suppress.
- the composite layer 4 is formed on, for example, the transparent gas barrier layer 3 and includes a metal layer 5 having an opening and a transparent resin layer 6 provided in the opening.
- a metal layer is provided in order to reduce the surface resistivity of a transparent conductive layer, when a transparent conductive layer is laminated
- it is usually not a solid layer made of only a metal layer, but a patterned metal layer (hereinafter, patterned) having at least an opening (described later). This metal layer is sometimes referred to as an “auxiliary electrode layer”.
- the material for forming the auxiliary electrode layer is not particularly limited, but when patterning is performed using a method such as photolithography, a single metal such as gold, silver, copper, aluminum, nickel, platinum, or aluminum-silicon is used.
- Binary or ternary aluminum alloys such as aluminum-copper and aluminum-titanium-palladium.
- silver, copper, and aluminum alloys are preferable, and copper and aluminum alloys are more preferable from the viewpoints of cost, etching property, and corrosion resistance.
- a conductive paste containing conductive fine particles can be used.
- a paste in which conductive fine particles such as metal fine particles, carbon fine particles, and ruthenium oxide fine particles are dispersed in a solvent containing a binder can be used.
- An auxiliary electrode layer is obtained by printing and curing the conductive paste.
- the material of the metal fine particles is preferably silver, copper, gold or the like from the viewpoint of conductivity, and silver, copper, nickel, iron, cobalt or the like is preferable from the viewpoint of price. From the viewpoint of corrosion resistance and chemical resistance, platinum, rhodium, ruthenium, palladium and the like are preferable. Carbon fine particles are inferior to metal fine particles in terms of conductivity, but are low in price and excellent in corrosion resistance and chemical resistance. In addition, ruthenium oxide (RuO 2 ) fine particles are more expensive than carbon fine particles, but can be used as an auxiliary electrode layer because they are conductive materials having excellent corrosion resistance.
- RuO 2 ruthenium oxide
- the auxiliary electrode layer may be a single layer or a multilayer structure.
- the multilayer structure may be a multilayer structure in which layers made of the same kind of material are laminated, or a multilayer structure in which layers made of at least two kinds of materials are laminated.
- the multilayer structure is more preferably a two-layer structure in which layers of different materials are stacked.
- the pattern of the auxiliary electrode layer of the present invention is not particularly limited, and is a lattice, honeycomb, comb, strip (stripe), linear, curved, wavy (sine curve, etc.), polygonal mesh Shape, circular mesh shape, elliptical mesh shape, and irregular shape.
- a lattice shape, a honeycomb shape, or a comb shape is preferable.
- the thickness of the auxiliary electrode layer is preferably 100 nm to 20 ⁇ m, more preferably 100 nm to 15 ⁇ m, and still more preferably 100 nm to 10 ⁇ m.
- the aperture ratio of the opening portion of the auxiliary electrode layer pattern (the portion where the auxiliary electrode layer is not formed) is preferably 80% or more and less than 100%, more preferably, from the viewpoint of transparency (light transmittance). Is 90% or more and less than 100%, more preferably 95% or more and less than 100%.
- the aperture ratio is the ratio of the total area of the openings to the area of the entire region where the pattern of the auxiliary electrode layer including the openings is formed.
- the line width of the auxiliary electrode layer is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and still more preferably 5 to 50 ⁇ m. If the line width is within this range, the aperture ratio is wide, the transmittance can be secured, and a stable low-resistance transparent conductive film is obtained, which is preferable.
- the transparent resin layer used in the present invention is provided in the opening of the metal layer (auxiliary electrode layer) 5 (transparent resin layer 6), and transmits water vapor from the end of the composite layer 4 in contact with the atmosphere. It has a function to suppress.
- the same film thickness as the auxiliary electrode layer and setting the root mean square roughness Rq of the surface including an interface step between the auxiliary electrode layer and the transparent resin layer, which will be described later, in a specific range an electronic device A short circuit with an internal driving layer or the like can be suppressed.
- the water vapor permeability at a film thickness of 100 ⁇ m is 20 (g / m 2 ⁇ day) or less.
- the transparent conductive layer is deteriorated due to water vapor transmission from the end of the transparent resin layer and the surface resistivity is increased.
- the deterioration of the active layer and the like inside the electronic device with time progresses, and the lifetime of the device is shortened.
- the water vapor permeability is preferably 20 (g / m 2 ⁇ day) or less, more preferably 10 (g / m 2 ⁇ day) or less, and still more preferably 1 (g / m 2 ⁇ day) or less. . If the water vapor transmission rate is in such a range and the water vapor transmission rate of the transparent resin film substrate including the transparent gas barrier layer described above is within the range of the present invention, for example, in the composite layer of the transparent conductive layer laminating film. When the transparent conductive layer is laminated to form a transparent conductive film, the surface resistivity can be maintained without deterioration of the transparent conductive layer. Further, for example, when used as a translucent electrode of an electronic device, deterioration over time of an active layer or the like inside the device can be suppressed, which can lead to a longer life of the device.
- a transparent resin composition which forms a transparent resin layer if water vapor permeability is contained in the range of this invention, it can use without a restriction
- a cured product of an energy beam curable resin, a thermoplastic resin, and the like can be given.
- the energy beam curable resin means a polymerizable compound that has an energy quantum in an electromagnetic wave or a charged particle beam, that is, is crosslinked and cured by irradiation with ultraviolet rays or an electron beam.
- a thermoplastic resin is preferable from the viewpoint of low water vapor permeability and easy lamination.
- thermoplastic resin examples include polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken. , Polyvinyl alcohol, polycarbonate resin, fluorine resin, polyvinyl acetate resin, acetal resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin such as polybutylene naphthalate (PBN), nylon 6, polyamide resins such as nylon 66, and the like.
- polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken.
- said resin may be used individually by 1 type, and may be used in combination of 2 or more type.
- polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyvinylidene chloride are preferable
- polyethylene, polypropylene, and polystyrene are more preferable
- water vapor permeability is low, and high transparency is particularly preferable.
- the film thickness of the transparent resin layer is the same as that of the auxiliary electrode layer, preferably 100 nm to 100 ⁇ m, more preferably 100 nm to 50 ⁇ m, and still more preferably 100 nm to 20 ⁇ m.
- the root mean square roughness Rq defined by JIS-B0601-1994 of the surface including the interface step between the auxiliary electrode layer and the transparent resin layer of the composite layer is preferably 200 nm or less, more preferably 150 nm or less. More preferably, it is 100 nm or less. If the root mean square roughness Rq is within this range, when a transparent conductive layer is laminated to form a transparent conductive film, transparency and surface resistivity are maintained, and occurrence of a short circuit with the driving layer of the electronic device is generated. Since it is suppressed, it is preferable.
- the transparent conductive film of the present invention is formed by laminating a transparent conductive layer on the composite layer in the transparent conductive layer laminating film of the present invention. Therefore, since the water vapor permeability is suppressed, the surface resistivity can be maintained without deterioration of the transparent conductive layer. Moreover, since the auxiliary electrode layer is provided in the composite layer, the surface resistivity of the transparent conductive layer can be lowered at the same time.
- a transparent conductive oxide is preferably used as the transparent conductive layer.
- indium-tin oxide (ITO) and gallium-zinc oxide (GZO) are preferable, and indium-tin oxide (ITO) is more preferable from the viewpoints of transmittance, surface resistivity, and stability.
- a conductive organic polymer is preferably used as the transparent conductive layer.
- the conductive organic polymer include poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) [PEDOT: PSS], polythiophene, polyaniline, polypyrrole, and the like.
- poly (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) [PEDOT: PSS] and polythiophene are preferable.
- More preferred is poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) [PEDOT: PSS].
- the film thickness of the transparent conductive layer is preferably 10 to 500 nm, more preferably 20 to 200 nm. This range is preferable because a thin film having both high transmittance and low surface resistivity can be obtained.
- the total light transmittance of the transparent conductive layer is preferably 70% or more, more preferably 80% or more, more preferably 90% or more, as measured in accordance with JIS K7361-1. Is more preferable.
- the surface resistivity of the transparent conductive layer single layer is preferably 1000 ( ⁇ / ⁇ ) or less, more preferably 100 ( ⁇ / ⁇ ) or less.
- the surface resistivity of the transparent conductive layer of the transparent conductive film having the auxiliary electrode layer of the present invention is preferably 5 ( ⁇ / ⁇ ) or less, more preferably 1 ( ⁇ / ⁇ ) or less. Even when the surface resistivity is 5 ( ⁇ / ⁇ ) or less, the transparent conductive film is used for a translucent electrode of an electronic device that requires a large area such as an organic thin film solar cell or organic EL lighting.
- the power loss for power generation electronic devices such as solar cells
- the farther away from the current collection electrode the lower the current density due to the high electrical resistivity of the transparent electrode layer
- the current density decreases due to the higher electrical resistivity of the transparent electrode layer and the luminance distribution, etc. Can be improved).
- the electronic device of the present invention is an electronic device in which at least one of the opposing electrodes is composed of a transparent conductive film, and the transparent conductive film is the transparent conductive film of the present invention. For this reason, since the water vapor transmission rate from the transparent conductive layer of the transparent conductive film is suppressed, when the transparent conductive film is incorporated in an electronic device, the water vapor transmission into the device is suppressed and the activity of the device is reduced. A long-life electronic device with little deterioration in performance over time, such as a layer, can be obtained. At the same time, the surface resistivity of the transparent conductive layer can be lowered, and since it is flexible, it can be preferably used as an organic thin film solar cell and organic EL lighting that require a large area.
- the method for producing a transparent conductive layer laminating film of the present invention comprises a composite layer comprising at least a metal layer having an opening and a transparent resin layer provided in the opening on the transparent gas barrier layer on the transparent resin film substrate. It is a manufacturing method of the laminated transparent conductive layer lamination film, Comprising: It is a manufacturing method of the transparent conductive layer lamination film containing the following process (A) and (B). (A) A step of forming a metal layer having the opening on the transfer substrate, and further forming a transparent resin layer in the opening to form a composite layer. (B) The composite layer is formed on the transparent gas barrier layer.
- stacking of the transparent conductive layer of this invention is demonstrated using figures.
- FIG. 2 is an explanatory view showing an example of the steps according to the manufacturing method of the present invention in the order of steps, (a) is a cross-sectional view after the metal layer 5 is formed on the transfer substrate 7, and (b) ) Is a cross-sectional view after forming the transparent resin layer 6 in the opening of the metal layer 5 and forming the composite layer 4 composed of the metal layer 5 and the transparent resin layer 6, and (c) is a transparent view of the composite layer 4.
- FIG. 6 is a cross-sectional view after transferring the smoothness of the surface of the material 7 to the composite layer 4.
- the composite layer forming step is a step of forming a metal layer having an opening on the transfer substrate and a transparent resin layer provided in the opening as a composite layer.
- the metal layer forming step and the transparent resin layer forming It consists of a process.
- a metal layer formation process is a process of forming the pattern (auxiliary electrode layer) which consists of a metal layer on the base material for transcription
- the auxiliary electrode layer 5 is formed on the transfer substrate 7.
- the transfer substrate used in the present invention is preferably composed of a substrate film, and a cured layer obtained by curing the silicone resin composition is provided thereon.
- the substrate film is not particularly limited, and examples thereof include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polypropylene and polymethylpentene, polycarbonate films, and polyvinyl acetate films. Among them, a polyester film is preferable, and a biaxially stretched polyethylene terephthalate film is particularly preferable.
- the thickness of the base film is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 300 ⁇ m, and even more preferably 30 ⁇ m to 100 ⁇ m, from the viewpoint of mechanical strength, durability, and transparency.
- the surface roughness of the substrate film is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 10 nm or less in terms of Rq from the viewpoint of the peelability of the transfer product and the surface roughness of the transfer product.
- a coating solution comprising a silicone resin composition and various additive components used as desired is applied onto the base film, for example, a gravure coating method, a bar coating method, a spray coating method.
- an appropriate organic solvent may be added for the purpose of adjusting the viscosity of the coating solution.
- an organic solvent A various thing can be used.
- hydrocarbon compounds such as toluene and hexane, ethyl acetate, methyl ethyl ketone, and mixtures thereof are used.
- a known physical treatment or chemical treatment mainly based on a photolithography method include a method of processing into a predetermined pattern shape by using together, a method of directly forming a pattern of the auxiliary electrode layer by an ink jet method, a screen printing method, or the like.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- thermal CVD thermal CVD or atomic layer deposition (ALD)
- Auxiliary electrode layers include dry processes such as phase growth methods), wet coating processes such as dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, electrodeposition, silver salt method, etc. It is appropriately selected depending on the material.
- the electrically conductive paste containing electroconductive fine particles can be used. Of course, patterning may be performed using a method such as photolithography. From the viewpoint of simplicity of process, cost, and takt time, pattern printing of conductive paste is preferably used.
- a conductive paste in which conductive fine particles such as metal fine particles, carbon fine particles, and ruthenium oxide fine particles are dispersed in a solvent containing a binder can be used.
- An auxiliary electrode layer is obtained by printing and curing the conductive paste. The material for the metal fine particles is as described above.
- the transparent resin layer forming step is a step of laminating a transparent resin layer on the opening of the metal layer.
- the transparent resin composition containing the transparent resin is placed on the transfer substrate 7.
- the transparent resin layer 6 is formed by forming a film in the opening of the metal layer 5.
- Examples of the method for forming the transparent resin layer include thermal lamination, dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, Meyer bar coating, and the like.
- thermal lamination is performed by a known method.
- the lamination conditions are usually a heating temperature of 120 to 180 ° C. and a pressurization amount of 0.1 to 25 MPa.
- energy-beam curable resin as a method of irradiating energy radiation, an ultraviolet-ray, an electron beam, etc. are mentioned, for example.
- the ultraviolet rays are obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, etc., and the amount of light is usually 100 to 500 mJ / cm 2 , while the electron beam is obtained with an electron beam accelerator or the like, Usually 150 to 350 kV. Among these active energy rays, ultraviolet rays are particularly preferable. In addition, when using an electron beam, a cured film can be obtained, without adding a photoinitiator.
- the composite layer transfer step is a step of transferring the composite layer on the transfer substrate obtained in the composite layer forming step to the transparent gas barrier layer surface side of the transparent film substrate.
- the transparent gas barrier layer 3 and the composite layer 4 are opposed to each other, the composite layer 4 is transferred to the transparent gas barrier layer 3, and the composite layer 4 is laminated on the transparent gas barrier layer 3.
- This step further includes a step of peeling the surface composed of the transfer substrate 7 and the composite layer 4.
- the interface between the transfer substrate 7 and the composite layer 4 is peeled off in FIG.
- the transfer method and the peeling method are not particularly limited, and can be performed by a known method.
- a transparent conductive layer formation process is a process of laminating
- the transparent conductive layer As a method for forming the transparent conductive layer, PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD, atomic layer deposition (ALD), etc. Can be mentioned.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- thermal CVD thermal CVD
- atomic layer deposition ALD
- a coating liquid for forming a transparent conductive layer can be used as the transparent conductive layer.
- the method for forming the transparent conductive layer include dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade. After applying and drying by the above method, if necessary, by applying a curing treatment such as heat treatment or ultraviolet irradiation within a range that does not affect other laminates, it has better surface resistivity A transparent conductive layer can be formed.
- the coating liquid for forming a transparent conductive layer used in the present invention includes a solvent and conductive oxide fine particles dispersed in the solvent, and the conductive oxide fine particles are transparent as mentioned as the material for the transparent conductive layer.
- conductive indium-tin oxide (ITO), indium-zinc oxide (IZO), aluminum-zinc oxide (AZO), gallium-zinc oxide (GZO), indium-gallium-zinc oxide (IGZO), niobium oxide, titanium oxide, tin oxide, or the like can be used.
- the average particle diameter of the conductive oxide fine particles is preferably 10 to 100 nm. If it is this range, since high transparency and high electroconductivity can be ensured, it is preferable.
- a binder may be added to the coating liquid for forming a transparent conductive layer.
- the binder either or both of an organic binder and an inorganic binder can be used, and can be appropriately selected in consideration of the influence on the transparent resin layer and auxiliary electrode layer to be formed.
- an organic binder It can select suitably from a thermoplastic resin, a thermosetting resin, an ultraviolet-ray (UV) curable resin, an electron beam curable resin, etc.
- the thermoplastic resin include acrylic resin, polyolefin resin, PET resin, and polyvinyl alcohol resin.
- the thermosetting resin include epoxy resin.
- the ultraviolet curable resin examples include various oligomers, monomers, and photopolymerization.
- the electron beam curable resin such as a resin containing an initiator include resins containing various oligomers and monomers.
- the inorganic binder is not particularly limited, and examples thereof include a binder mainly composed of silica sol.
- the inorganic binder may contain magnesium fluoride fine particles, alumina sol, zirconia sol, titania sol, or the like, or silica sol modified with an organic functional group.
- a transparent conductive layer laminating film in which a composite layer surface comprising an auxiliary electrode layer and a transparent resin layer having a small surface roughness and a small interface step is formed, and water vapor permeability is suppressed. Further, by laminating a transparent conductive layer on the composite layer surface, the surface resistivity is low, and the occurrence of an electrical short circuit with the electrode of the driving layer of the electronic device is suppressed, A transparent conductive film having an auxiliary electrode layer can be produced.
- the obtained value was converted to a value (g / m 2 ⁇ day) at a film thickness of 100 ⁇ m.
- A-2 Water vapor permeability of a transparent resin film substrate having a transparent gas barrier layer The water vapor permeability of a transparent resin film substrate having a transparent gas barrier layer at 40 ° C. and 90% RH was measured using a water vapor permeability meter (manufactured by Mocon, Device name: AQUATRAN).
- B Surface resistivity of transparent conductive film The surface of the transparent conductive layer surface in an environment of 25 ° C. and 50% RH using a low resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., device name: Loresta AX MCP-T370).
- FIG. 3A shows a cross-sectional view of a sample for calcium corrosion test evaluation prepared in Examples and Comparative Examples of the present invention.
- FIG. 3A shows a cross-sectional view of a sample for calcium corrosion test evaluation prepared in Examples and Comparative Examples of the present invention.
- a calcium corrosion test evaluation sample 11 has a calcium layer 10 formed on a transparent conductive layer 1b laminated on the composite layer 4 used in the present invention via a sealing adhesive layer 8 described below. It is an arranged configuration. Specifically, a sample for calcium corrosion test evaluation was produced by the following procedure.
- a tackifier Zeon Corporation, product name: Quinton R100
- an isobutylene / isoprene copolymer manufactured by Nippon Butyl Co., Ltd., product name: ExxonButyl268
- an adhesive resin composition having a solid content concentration of 20% by mass was prepared, and the adhesive resin composition was applied onto a peelable film (product name: SP-PET38T103-1 manufactured by Lintec Corporation), and 2
- a sealing adhesive material layer 8 water vapor permeability 3.4 g / m 2 ⁇ day
- the prepared evaluation sample was taken out from the glove box and allowed to stand in an environment of 60 ° C. and 95% RH for 100 hours, and the corrosion distance from the end of the calcium layer 10 was measured with an optical microscope (manufactured by KEYENCE, model name: VHX-1000). ).
- the corrosion distance was defined as follows.
- FIG.3 (b) the corrosion progress image of the calcium layer 10 of the sample 11 for calcium corrosion test evaluation is shown with a top view.
- the corrosion distance 10d is, for example, from the calcium layer left end (center portion) 10c to the center portion of the calcium layer 10, that is, from the calcium layer left end (center portion) 10c to the corrosion progression direction 10p in the corrosion area 10k. , Defined as the distance corroded.
- Example 1 Preparation of transparent gas barrier layer A transparent resin film substrate (manufactured by Toyobo Co., Ltd., Cosmo Shine A4300) was coated with the following primer layer forming solution by a bar coating method and heated and dried at 70 ° C for 1 minute. UV light irradiation is performed using a UV light irradiation line (Fusion UV Systems Japan, high-pressure mercury lamp; integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, line speed 20 m / min, number of passes twice), and thickness A 1 ⁇ m primer layer was formed.
- a UV light irradiation line Fusion UV Systems Japan, high-pressure mercury lamp; integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, line speed 20 m / min, number of passes twice
- a perhydropolysilazane-containing liquid manufactured by AZ Electronic Materials, trade name: AZNL110A-20
- the obtained coating film is heated at 120 ° C. for 2 minutes.
- a 150 nm thick perhydropolysilazane layer was formed.
- argon (Ar) was plasma ion-implanted into the obtained perhydropolysilazane layer under the following conditions to form a perhydropolysilazane layer (hereinafter referred to as “inorganic layer A”) in which plasma ions were implanted.
- the water vapor permeability of the obtained transparent resin film substrate having a transparent gas barrier layer is 8.0 ⁇ 10 ⁇ 3 g / (M 2 ⁇ day).
- a perhydropolysilazane-containing liquid manufactured by AZ Electronic Materials, AZNL110A-20 was applied by spin coating, and the resulting coating film was heated at 120 ° C. for 2 minutes, A perhydropolysilazane layer having a thickness of 150 nm was formed.
- a silicon oxynitride layer (inorganic layer) was formed on the inorganic layer A in the same manner as the film forming conditions of the inorganic layer A, except that plasma ion implantation was performed on the obtained perhydropolysilazane layer at ⁇ 6 kV. B) was formed, and a second transparent gas barrier layer was produced on the transparent resin film substrate.
- the water vapor permeability of a transparent resin film substrate having a two-layered transparent gas barrier layer (hereinafter sometimes referred to as “transparent resin film substrate B having a transparent gas barrier layer”) is 7.0 ⁇ 10 ⁇ 4 g. / (M 2 ⁇ day).
- Primer layer forming solution After dissolving 20 parts by mass of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) in 100 parts by mass of methyl isobutyl ketone, a photopolymerization initiator (manufactured by BASF, trade name: Irgacure 127) was added so that it might become 3 mass% with respect to solid content, and the solution for primer layer formation was prepared. Plasma ion implantation was performed using the following apparatus under the following implantation conditions.
- RF power source Model number “RF56000”, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
- a paste (manufactured by Mitsuboshi Belting Co., Ltd., product name: EC-264) was printed, and an auxiliary electrode layer composed of a grid-like fine metal wire pattern having a thickness of 6 ⁇ m, a line width of 50 ⁇ m, and a pitch of 2000 ⁇ m was produced.
- a high-density polyethylene-based resin film in which a high-density polyethylene-based resin (product name: F3001 manufactured by Keiyo Polyethylene Co., Ltd.) is formed into a film as a transparent resin is used using a thermal laminator (Royal Sovereign, apparatus: RSL-382S).
- the obtained composite layer surface was opposed to the surface on the transparent gas barrier layer side of the transparent resin film substrate B having the transparent gas barrier layer, and the composite layer was transferred and laminated on the transparent gas barrier layer.
- a film for layer lamination was produced.
- ITO indium-tin oxide
- a sputtering apparatus manufactured by ULVAC, apparatus name: ISP-4000S-C.
- a conductive film was prepared.
- Water vapor permeability of the transparent resin film substrate B having a transparent gas barrier layer and the transparent resin layer (100 ⁇ m film thickness), the surface resistivity of the produced transparent conductive film, and the root mean square roughness Rq of the transparent conductive layer laminating film Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
- Example 2 For transparent conductive layer lamination as in Example 1, except that the transparent resin was changed to a polystyrene resin film (manufactured by Oji F-Tex Co., Ltd., product name: ALPHA PK-002), and the heating temperature during thermal lamination was changed to 150 ° C. A film and a transparent conductive film were prepared. Water vapor permeability of the transparent resin film substrate B having a transparent gas barrier layer and the transparent resin layer (100 ⁇ m film thickness), the surface resistivity of the produced transparent conductive film, and the root mean square roughness Rq of the transparent conductive layer laminating film Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
- a polystyrene resin film manufactured by Oji F-Tex Co., Ltd., product name: ALPHA PK-002
- Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
- Example 1 Comparative Example 1
- an auxiliary electrode layer composed of a grid-like metal fine line pattern having a thickness of 6 ⁇ m, a line width of 50 ⁇ m, and a pitch of 2000 ⁇ m was produced.
- an acrylic resin product name: UVX-6125, manufactured by Toagosei Co., Ltd.
- UVX-6125 manufactured by Toagosei Co., Ltd.
- a transparent resin layer is provided by filling the opening of the metal fine wire with the transparent resin.
- the auxiliary electrode layer and the transparent resin A composite layer composed of layers (the transparent resin layer was uncured) was laminated.
- the obtained composite layer surface and the transparent gas barrier layer side surface of the transparent resin film substrate B having the transparent gas barrier layer are opposed to each other, the composite layer is laminated on the transparent gas barrier layer, and the transparent resin film base having the transparent gas barrier layer is obtained.
- Auxiliary electrode consisting of a transparent gas barrier layer and a thin metal wire layer filled with a transparent resin on a transparent resin film substrate by UV irradiation from the material side and peeling the transfer substrate from the composite layer
- a transparent conductive layer laminating film having a layer was produced, and a transparent conductive film was produced by laminating a transparent conductive layer in the same manner as in Example 1.
- Example 2 In the same manner as in Example 1, an auxiliary electrode layer composed of a grid-like metal fine line pattern having a thickness of 6 ⁇ m, a line width of 50 ⁇ m, and a pitch of 2000 ⁇ m was produced. Next, a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KER-2500) is applied as a transparent resin, and the transparent resin layer is provided by filling the opening of the metal thin wire with the transparent resin, and the auxiliary electrode layer and the transparent resin A composite layer composed of a resin layer (the transparent resin layer is uncured) was laminated.
- a silicone resin manufactured by Shin-Etsu Chemical Co., Ltd., product name: KER-2500
- a transparent conductive layer laminating film having a transparent gas barrier layer and an auxiliary electrode layer consisting of a thin metal wire layer filled with a transparent resin on the transparent resin film substrate is prepared by peeling the substrate for Further, in the same manner as in Example 1, a transparent conductive film was prepared by laminating a transparent conductive layer.
- Example 3 a transparent resin film base material B having a transparent gas barrier layer was used as a transparent resin film base material having no transparent gas barrier layer (product name: Cosmo Shine A4300, water vapor permeability> 1 (g / m The film for transparent conductive layer lamination and the transparent conductive film were produced like Example 1 except having changed into 2 * day)).
- Table 1 shows the evaluation results of the thickness Rq and the calcium corrosion distance of the transparent conductive film.
- Example 4 In Example 1, except that the transparent resin film substrate B having the transparent gas barrier layer was changed to the transparent resin film substrate A having the transparent gas barrier layer, the transparent conductive layer laminating film and the transparent film were transparent in the same manner as in Example 1. A conductive film was prepared. Water vapor permeability of transparent resin film substrate A having a transparent gas barrier layer and transparent resin layer (100 ⁇ m film thickness), surface resistivity of the produced transparent conductive film, root mean square roughness Rq of the transparent conductive layer laminating film Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
- the transparent conductive layer laminating film and the transparent conductive film of the present invention are used, the resistance of the transparent conductive layer can be reduced. Further, since the water vapor permeability from the transparent resin film substrate and the transparent resin layer is low, as a result, the water vapor permeation from the composite layer composed of the transparent resin layer and the auxiliary electrode layer, and the transparent conductive layer laminated on the composite layer. Therefore, for example, in an electronic device in which at least one transparent conductive film of the opposing electrode is composed of the transparent conductive film of the present invention, performance deterioration of the active layer of the device is suppressed and a long lifetime is achieved. Can be realized. From these things, it can use suitably for electronic devices, such as an organic thin film solar cell and organic EL illumination.
- Transparent conductive film 1a Transparent conductive layer laminating film 1b: Transparent conductive layer 2: Transparent resin film substrate 3: Transparent gas barrier layer 4: Composite layer 5: Metal layer (auxiliary electrode layer) 6: Transparent resin layer 7: Transfer base material 8: Sealing adhesive layer 9: Glass substrate 10: Calcium layer 10a: Calcium layer left end (front part) 10b: Calcium layer left end (rear part) 10c: Calcium layer left end (central part) 10d: Corrosion distance 10k: Corrosion area 10p: Corrosion progress direction 11: Sample for calcium corrosion test evaluation
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Electroluminescent Light Sources (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
また、ガスバリア性に関する要求に対しては、特許文献2に、透明フィルム基材上に、透明バリア層、透明樹脂層及び透明導電層をこの順に積層したバリア性透明導電フィルムが開示されている。
また、特許文献2では、大気と接する側の透明フィルム基材面からの水分透過に対しては、透明ガスバリア層により抑制されるものの、一方、透明導電性フィルムを構成する透明樹脂層と大気とが直接接する透明樹脂層の端面からのデバイス内部への水分透過によるガスバリア性が考慮されておらず、透明樹脂層の端面から前記電子デバイスを構成する活性層等への水分透過により、デバイス性能が経時的に劣化し、デバイス寿命を縮めてしまうという問題があった。
すなわち、本発明は、以下の(1)~(11)を提供するものである。
(1)透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m2・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m2・day)以下である、透明導電層積層用フィルム。
(2)前記透明樹脂層が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル又はポリ塩化ビニリデンから形成される、上記(1)に記載の透明導電層積層用フィルム。
(3)前記透明ガスバリア層が酸窒化珪素層、無機酸化物層又は無機窒化物層からなる、上記(1)に記載の透明導電層積層用フィルム。
(4)前記複合層の前記金属層と前記透明樹脂層との界面段差を含む表面のJIS-B0601-1994で規定される二乗平均平方根粗さRqが200nm以下である、上記(1)に記載の透明導電層積層用フィルム。
(5)上記(1)~(4)のいずれかに記載の透明導電層積層用フィルムにおける複合層上に、透明導電層が積層されてなる、透明導電性フィルム。
(6)前記透明導電層が、透明導電性酸化物又は導電性有機高分子を含む、上記(5)に記載の透明導電性フィルム。
(7)前記透明導電性酸化物が、インジウム-スズ酸化物(ITO)、ガリウム-亜鉛酸化物(GZO)であり、導電性有機高分子が、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]である、上記(6)に記載の透明導電性フィルム。
(8)前記透明導電性フィルムの透明導電層の表面抵抗率が5(Ω/□)以下である、上記(5)~(7)のいずれかに記載の透明導電性フィルム。
(9)対向する電極の少なくとも一方が前記透明導電性フィルムで構成された電子デバイスであって、該透明導電性フィルムが上記(5)~(8)のいずれかに記載の透明導電性フィルムである、電子デバイス。
(10)透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムの製造方法であって、下記工程(A)、(B)を含む、透明導電層積層用フィルムの製造方法。
(A)転写用基材上に前記開口部を有する金属層を形成し、さらに該開口部に前記透明樹脂層を形成し複合層を形成する工程
(B)該複合層を前記透明ガスバリア層上に転写する工程
(11)前記透明導電層積層用フィルムの前記複合層上に、さらに透明導電層を積層させる工程を含む、上記(10)に記載の透明導電性フィルムの製造方法。
本発明の透明導電層積層用フィルムは、透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m2・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m2・day)以下である、透明導電層積層用フィルムである。
また、透明導電層を積層し、透明導電性フィルムとした時に、複合層の金属層(補助電極層)の付与により、透明導電層表面が低抵抗化(表面抵抗率減少)されたものとなる。
本発明において、水蒸気透過度の評価は、JIS K7129の規定に従って行った。
本発明に用いた透明ガスバリア層を有する透明樹脂フィルム基材については、40℃×90%RHにおける水蒸気透過度を、水蒸気透過率計(Mocon社製、装置名:AQUATRAN)を用い測定した。
同様に、本発明に用いた透明樹脂層については、透明樹脂層の40℃×90%RHにおける水蒸気透過度を、水蒸気透過率計(Systech Instruments社製、装置名:Lyssy L80-5000)を用い測定し、得られた値を膜厚100μmにおける値(g/m2・day)に換算した。膜厚100μmにおけるとは、水蒸気透過度は、他の膜厚で測った場合であっても、膜厚に反比例することから、100μmあたりに換算した値を採用できることを意味する。この点において単位膜厚あたりの水蒸気透過度は材料に固有の物性である。
さらに、ここで、薄膜厚の端面からの水蒸気透過度を直接測定することは困難であるが、水蒸気透過度は上記のように通常材料固有の物性であるため、水蒸気透過度が低ければ端面からの水蒸気透過度も低いということがいえる。よって、通常の水蒸気透過度の相対比較により、端面にかかる水蒸気透過度の議論をすることに問題はないものと考える。
本発明に用いる透明樹脂フィルム基材は、透明ガスバリア層を積層した時に、該透明ガスバリア層を有さない該透明樹脂フィルム基材面側からの40℃×90%RHの高湿条件下における水蒸気透過度が、トータルで1.0×10-3(g/m2・day)以下となるように、適宜選択される。
透明フィルム樹脂基材の厚みは、10~500μmであることが好ましく、より好ましくは10~300μm、さらに好ましくは10~100μmである。この範囲であれば、透明樹脂フィルム基材としての機械強度、透明性が確保できる。
本発明に用いる透明ガスバリア層は、例えば、図1においては、透明樹脂フィルム基材2と複合層4との間に設けられ、透明樹脂フィルム基材2を透過した大気中の水蒸気を抑制し、結果として、複合層4、透明導電層1bへの水蒸気透過を防ぐ機能を有する。本発明においては、前記透明樹脂フィルム基材上に積層した時に、該透明ガスバリア層を有さない該透明樹脂フィルム基材面側からの40℃、90%RHの高湿条件下における水蒸気透過度が1.0×10-3(g/m2・day)以下となるように、前記透明樹脂フィルム基材に応じて、後述するガスバリア材料及び層数を適宜選択する必要がある。
無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化珪素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化珪素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
高分子層に用いる高分子化合物としては、ポリオルガノシロキサン、ポリシラザン系化合物等の珪素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフエニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。これら高分子化合物の中でも、より優れたガスバリア性を有する珪素含有高分子化合物が好ましい。珪素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。これらの中で、優れたガスバリア性を有するバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。
上述した中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。また、無機化合物の蒸着膜、またはポリシラザン系化合物を含む層に改質処理を施して形成された酸素、窒素、珪素を主構成原子として有する層からなる酸窒化珪素層が、層間密着性、ガスバリア性、及び耐折り曲げ性を有する観点から、好ましく用いられる。
プラズマイオン注入処理の具体的な処理方法としては、外部電界を用いて発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に対して注入する方法、または、外部電界を用いることなく、ガスバリア層形成用材料からなる層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に注入する方法が挙げられる。
プラズマ処理は、ポリシラザン化合物含有層をプラズマ中に晒して、含ケイ素ポリマーを含有する層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。紫外線照射処理は、ポリシラザン化合物含有層に紫外線を照射して含ケイ素ポリマーを含有する層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。これらの中でも、ポリシラザン化合物含有層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
透明ガスバリア層の膜厚は、20nm~50μmであることが好ましく、より好ましくは、30nm~1μm、さらに好ましくは40~500nmである。透明ガスバリア層の膜厚がこの範囲にあると、優れたガスバリア性や密着性が得られるとともに、柔軟性と、被膜強度とを両立させることができる。
本発明の複合層は、透明導電層積層用フィルム上に透明導電層を積層し、透明導電性フィルムとした時に、透明導電層の低抵抗化(表面抵抗率の低下)及び大気中の水蒸気透過を抑制する機能を有する。
図1に示すように、複合層4は、例えば、透明ガスバリア層3上に形成され、開口部を有する金属層5と該開口部に設けた透明樹脂層6とからなる。
金属層は、本発明の透明導電層積層用フィルム上に透明導電層を積層し、透明導電性フィルムとした時に、透明導電層の表面抵抗率を低下させるために設けられる。また、通常、該透明導電層の透過率を低下させないように、金属層のみでなるベタ層ではなく、パターン化し、少なくとも後述する開口部(開口率は後述)を有する金属層(以下、パターン化した金属層を「補助電極層」ということがある。)として用いる。
多層構造としては、異種の材料からなる層を積層した2層構造であることがより好ましい。このような多層構造としては、例えば、最初に銀のパターン層を形成させ、その上から銅のパターン層を形成させると、銀の高導電性を保持しながら耐食性が改善されるため好ましい。
補助電極層のパターンの開口部(補助電極層が形成されてない部分)の開口率としては、透明性(光線透過率)の観点から、80%以上100%未満であることが好ましく、より好ましくは90%以上100%未満であり、さらに好ましくは95%以上100%未満である。なお、開口率とは、開口部を含む補助電極層のパターンが形成されている全領域の面積に対する、開口部の総面積の割合である。
補助電極層の線幅は、1~100μmが好ましく、より好ましくは3~75μm、さらに好ましくは5~50μmである。線幅がこの範囲にあれば、開口率が広く、透過率が確保でき、さらに、安定した低抵抗の透明導電性フィルムが得られるため、好ましい。
本発明に用いる透明樹脂層は、例えば、図1においては、金属層(補助電極層)5の開口部に設けられ(透明樹脂層6)、複合層4の大気と接する端部からの水蒸気透過を抑制する機能を有する。
また、前記補助電極層と同一の膜厚とし、後述する、該補助電極層と前記透明樹脂層との界面段差を含む表面の二乗平均平方根粗さRqを特定の範囲にすることで、電子デバイス内部の駆動層等との短絡を抑制することができる。
この中で、低水蒸気透過度、積層の容易性の観点から、熱可塑性樹脂が好ましい。
熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、エチレン-酢酸ビニル共重合体ケン化物、ポリビニルアルコール、ポリカーボネート系樹脂、フッ素系樹脂、ポリ酢酸ビニル系樹脂、アセタール系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等のポリエステル系樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂等が挙げられる。また、上記の樹脂を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデンが好ましく、ポリエチレン、ポリプロピレン、ポリスチレンがより好ましく、水蒸気透過度が低く、高い透明性を有することから、ポリエチレンが特に好ましい。
透明樹脂層の膜厚は、前記補助電極層の膜厚と同様であり、100nm~100μmであることが好ましく、より好ましくは100nm~50μm、さらに好ましくは100nm~20μmである。
本発明の透明導電性フィルムは、前述したとおり本発明の透明導電層積層用フィルムにおける複合層上に、透明導電層が積層されてなるものである。したがって、水蒸気透過度が抑制されていることから、透明導電層が劣化することなく、表面抵抗率を維持できる。また、複合層に補助電極層が設けられているので、同時に透明導電層の表面抵抗率を低くすることができる。
透明導電層としては、透明導電性酸化物が好ましく用いられる。具体的には、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、アルミニウム-亜鉛酸化物(AZO)、ガリウム-亜鉛酸化物(GZO)、インジウム-ガリウム-亜鉛酸化物(IGZO)、酸化ニオブ、酸化チタン、酸化スズ等が挙げられ、これらを単独で、もしくは複数を用いることができる。この中で、インジウム-スズ酸化物(ITO)、ガリウム-亜鉛酸化物(GZO)が好ましく、透過率、表面抵抗率、安定性の観点からインジウム-スズ酸化物(ITO)がさらに好ましい。
また、透明導電層の全光線透過率は、JIS K7361-1に準拠して測定される全光線透過率が70%以上のものが好ましく、80%以上のものがより好ましく、90%以上のものがさらに好ましい。
さらに、透明導電層単層の表面抵抗率は1000(Ω/□)以下が好ましく、より好ましくは100(Ω/□)以下である。
加えて、本発明の補助電極層を有する透明導電性フィルムの透明導電層の表面抵抗率は5(Ω/□)以下であることが好ましく、より好ましくは1(Ω/□)以下である。
表面抵抗率が5(Ω/□)以下であると、透明導電性フィルムを、有機薄膜太陽電池、有機EL照明等の大面積を必要とする電子デバイスの透光性電極等に用いた場合でも、デバイス動作(集電や電圧印加)時の、電力損失(太陽電池等の発電用電子バイスにあっては、集電電極から離れるほど透明電極層の高い電気抵抗率により電流密度が低下し、電池の性能を決める変換効率が低下)や特性分布(有機EL照明等の発光用電子デバイスにあっては、印加電極から離れるほど透明電極層の高い電気抵抗率により電流密度が低下し輝度分布等が発生)を改善することができる。
本発明の電子デバイスは、対向する電極の少なくとも一方が透明導電性フィルムで構成された電子デバイスであって、該透明導電性フィルムが本発明の透明導電性フィルムである。このため、透明導電性フィルムの透明導電層からの水蒸気透過度が抑制されていることから、該透明導電性フィルムを電子デバイスに組み込んだ場合、デバイス内部への水蒸気透過が抑制され、デバイスの活性層等の経時的な性能劣化が少ない長寿命の電子デバイスとすることができる。同時に、透明導電層の表面抵抗率を低くすることができ、フレキシブルであることから、大面積化が要求される有機薄膜太陽電池、有機EL照明として好ましく用いることができる。
本発明の透明導電層積層用フィルムの製造方法は、透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムの製造方法であって、下記工程(A)、(B)を含む、透明導電層積層用フィルムの製造方法である。
(A)転写用基材上に前記開口部を有する金属層を形成し、さらに該開口部に前記透明樹脂層を形成し複合層を形成する工程
(B)該複合層を前記透明ガスバリア層上に転写する工程
本発明の透明導電層積層用の製造方法について、図を用いて説明する。
複合層形成工程は、転写用基材上に、開口部を有する金属層と、該開口部に設けた透明樹脂層とを複合層として形成する工程であり、金属層形成工程及び透明樹脂層形成工程からなる。
金属層形成工程は、転写用基材上に、金属層からなるパターン(補助電極層)を形成する工程である。図2(a)においては、転写用基材7上に、補助電極層5を形成する工程である。
基材フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリプロピレンやポリメチルペンテン等のポリオレフィンフィルム、ポリカーボネートフィルム、ポリ酢酸ビニルフィルム等を挙げることができるが、これらの中でポリエステルフィルムが好ましく、特に二軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。基材フィルムの厚さは、機械強度、耐久性、及び透明性の観点から、10μm~500μmが好ましく、より好ましくは20μm~300μmであり、さらに好ましくは30μm~100μmである。基材フィルムの表面粗さは、転写物の剥離性、転写物の表面粗さの観点から、Rqで30nm以下が好ましく、より好ましくは20nm以下であり、さらに好ましくは10nm以下である。
硬化層の形成方法としては、シリコーン樹脂組成物と、所望により用いられる各種添加剤成分からなる塗工液を、前記の基材フィルム上に、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法などにより塗工することができる。この際、塗工液の粘度調整の目的で、適当な有機溶剤を加えてもよい。有機溶剤としては、特に制限は無く、様々なものを用いることができる。例えばトルエン、ヘキサンなどの炭化水素化合物をはじめ、酢酸エチル、メチルエチルケトン及び、これらの混合物などが用いられる。
パターンが形成されていない補助電極層の形成方法としては、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)などのドライプロセス、又はディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティングや電着等のウェットプロセス、銀塩法等が挙げられ、補助電極層の材料に応じて適宜選択される。
また、スクリーン印刷等の方法で、補助電極層のパターンを形成する場合は、導電性微粒子を含む導電ペーストを用いることができる。フォトリソグラフィー等の方法を用いてパターン化を行っても勿論かまわない。工程の簡便さ、コスト、タクトタイムの短縮の観点から、導電ペーストのパターン印刷が好ましく用いられる。
導電ペーストとしては、前述したように、バインダーを含む溶媒中に、金属微粒子、カーボン微粒子、酸化ルテニウム微粒子等の導電性微粒子を分散させたものを用いることができる。この導電ペーストを印刷し、硬化することにより、補助電極層が得られる。
上記金属微粒子の材料としては、前述したとおりである。
透明樹脂層形成工程は、金属層の開口部に透明樹脂層を積層する工程であり、例えば、図2(b)においては、透明樹脂を含む透明樹脂組成物を、転写用基材7上の金属層5の開口部に成膜して、透明樹脂層6を形成する工程である。
また、エネルギー線硬化型樹脂を用いる場合、エネルギー放射線を照射する方法としては、例えば、紫外線や電子線などが挙げられる。上記紫外線は、高圧水銀ランプ、フュージョンHランプ、キセノンランプなどで得られ、光量は、通常100~500mJ/cm2であり、一方、電子線は、電子線加速器などによって得られ、照射量は、通常150~350kVである。この活性エネルギー線の中では、特に紫外線が好適である。なお、電子線を使用する場合は、光重合開始剤を添加することなく、硬化膜を得ることができる。
複合層転写工程は、複合層形成工程で得られた転写用基材上の複合層を透明フィルム基材の透明ガスバリア層表面側に転写する工程であり、例えば、図2(c)においては、透明ガスバリア層3と複合層4とを対向させ、複合層4を透明ガスバリア層3に転写し、透明ガスバリア層3に複合層4を積層する工程である。この工程においては、さらに転写用基材7と複合層4とからなる面を剥離する工程が含まれる。例えば、複合層4を転写積層後、図2(d)において、転写用基材7と複合層4との界面を剥離することにより、転写用基材7の面の平滑性を複合層4の面に転写して、表面粗さが小さく、段差の小さい、補助電極層と透明樹脂層とからなる面を形成することができる。転写方法及び剥離方法は、特に制限はなく、公知の方法で行うことができる。
透明導電層形成工程は、前記工程で得られた透明導電層積層用フィルムの補助電極層と透明樹脂層とからなる複合層面側に、透明導電層を積層する工程である。
有機バインダーとしては、特に限定されないが、熱可塑性樹脂、熱硬化性樹脂、紫外線(UV)硬化性樹脂、電子線硬化性樹脂等から適宜選定することができる。例えば、熱可塑性樹脂としては、アクリル樹脂、ポリオレフィン樹脂、PET樹脂、ポリビニルアルコール樹脂等が挙げられ、熱硬化性樹脂としては、エポキシ樹脂等、紫外線硬化性樹脂としては、各種オリゴマー、モノマー、光重合開始剤を含有する樹脂等、電子線硬化性樹脂としては、各種オリゴマー、モノマーを含有する樹脂等をそれぞれ挙げることができる。
また、無機バインダーとしては、特に限定されないが、シリカゾルを主成分とするバインダーを挙げることができる。無機バインダーは、フッ化マグネシウム微粒子、アルミナゾル、ジルコニアゾル、チタニアゾル等や、有機官能基で修飾されたシリカゾルを含んでいてもよい。
(a)水蒸気透過度の評価
水蒸気透過度の評価は、JIS K7129にしたがって行った。
(a-1)透明樹脂の水蒸気透過度
透明樹脂層の40℃90%RHにおける水蒸気透過度を、水蒸気透過率計(Systech Instruments社製、装置名:Lyssy L80-5000)を用い測定し、得られた値を膜厚100μmにおける値(g/m2・day)に換算した。
(a-2)透明ガスバリア層を有する透明樹脂フィルム基材の水蒸気透過度
40℃90%RHにおける透明ガスバリア層を有する透明樹脂フィルム基材の水蒸気透過度を、水蒸気透過率計(Mocon社製、装置名:AQUATRAN)を用い測定した。
(b)透明導電性フィルムの表面抵抗率
低抵抗率計(三菱化学アナリテック社製、装置名:ロレスタAX MCP-T370)により、25℃50%RHの環境下で、透明導電層表面の表面抵抗率(Ω/□)を測定した。
(c)界面段差、表面粗さ
透明導電層積層用フィルムの複合層の補助電極層と透明樹脂層間の転写面における界面部位表面を、光干渉式表面粗さ計(Veeco社製、型名:Wyko NT1100)を用い、JIS-B0601-1994で規定される二乗平均平方根粗さRqを測定し、界面部位の段差を含む表面粗さを評価した。
(d)透明導電性フィルムのカルシウム腐食評価
図3(a)に本発明の実施例、比較例で作製したカルシウム腐食試験評価用サンプルの断面図を示す。図3(a)において、カルシウム腐食試験評価用サンプル11は、本発明に用いた複合層4に積層した透明導電層1b上に、下述する封止粘着材層8を介し、カルシウム層10が配置された構成となっている。具体的には、カルシウム腐食試験評価用サンプルを、以下の手順で作製した。
イソブチレン・イソプレン共重合体(日本ブチル社製、品名:ExxonButyl268)100質量部に対して、粘着付与材(日本ゼオン社製、品名:クイントンR100)50質量部を添加し、トルエンに溶解することで、固形分濃度20質量%の接着性樹脂組成物を調製し、該接着性樹脂組成物を剥離性フィルム(リンテック社製、品名:SP-PET38T103-1)上に塗工し、120℃で2分乾燥させることで、膜厚20μmの封止粘着材層8(水蒸気透過度3.4g/m2・day)を形成した。
一方、蒸着装置(エイエルエステクノロジー社製、装置名:E2000LL)を用い、45mm角(厚さ:0.685mm)のガラス基板9(CORNING社製、無アルカリガラス基板)表面の中心35mm角上に、カルシウムを150nm蒸着し、カルシウム層10を形成した。そして、グローブボックス中で、透明導電性フィルムの透明導電層1bの表面に、前記封止粘着材層8をラミネートし、100℃で10分乾燥させた後に剥離性フィルムを剥離し、次いで、封止粘着材層8の剥離した面を、ガラス基板9のカルシウム層10面側にラミネートすることにより、カルシウム腐食試験評価用サンプル11を作製した。
作製した評価サンプルはグローブボックスから取出し、60℃、95%RHの環境下に100時間静置し、カルシウム層10の端部からの腐食距離を光学顕微鏡(KEYENCE社製、型名:VHX-1000)で観察した。
なお、ここで上記腐食距離は以下のように定義した。
図3(b)に、カルシウム腐食試験評価用サンプル11のカルシウム層10の腐食進行イメージを平面図で示す。腐食距離10dは、カルシウム層10の、例えば、カルシウム層左端(中央部)10cからカルシウム層10の中央部方向に、すなわち、カルシウム層左端(中央部)10cから腐食エリア10kにおける腐食進行方向10pに、腐食した距離として定義した。
(1)透明ガスバリア層の作製
透明樹脂フィルム基材(東洋紡社製、コスモシャインA4300)に、下記のプライマー層形成用溶液をバーコート法により塗布し、70℃で、1分間加熱乾燥した後、UV光照射ライン(Fusion UV Systems JAPAN社製、高圧水銀灯;積算光量100mJ/cm2、ピーク強度1.466W、ライン速度20m/分、パス回数2回)を用いてUV光照射を行い、厚さ1μmのプライマー層を形成した。得られたプライマー層上に、ペルヒドロポリシラザン含有液(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱することにより、厚み150nmのペルヒドロポリシラザン層を形成した。さらに、得られたペルヒドロポリシラザン層に、下記の条件により、アルゴン(Ar)をプラズマイオン注入し、プラズマイオン注入したペルヒドロポリシラザン層(以下、「無機層A」という。)を形成した。得られた透明ガスバリア層を有する透明樹脂フィルム基材(以下、「透明ガスバリア層を有する透明樹脂フィルム基材A」ということがある。)の水蒸気透過度は、8.0×10-3g/(m2・day)であった。
次いで、無機層A上に、ペルヒドロポリシラザン含有液(AZエレクトロニックマテリアルズ社製、AZNL110A-20、)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱することにより、厚み150nmのペルヒドロポリシラザン層を形成した。さらに、得られたペルヒドロポリシラザン層に、印加電圧を-6kVとしプラズマイオン注入を行った以外は、無機層Aの製膜条件と同様にして、無機層A上に酸窒化珪素層(無機層B)を形成し、透明樹脂フィルム基材上に2層目の透明ガスバリア層を作製した。2層構成の透明ガスバリア層を有する透明樹脂フィルム基材(以下、「透明ガスバリア層を有する透明樹脂フィルム基材B」ということがある。)の水蒸気透過度は、7.0×10-4g/(m2・day)であった。
(プライマー層形成用溶液)
ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20質量部をメチルイソブチルケトン100質量部に溶解させた後、光重合性開始剤(BASF社製、商品名:Irgacure127)を、固形分に対して3質量%となるように添加して、プライマー層形成用溶液を調製した。
プラズマイオン注入は、下記の装置を用い、以下の注入条件で行った。
〈プラズマイオン注入装置〉
RF電源:型番号「RF56000」、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
〈プラズマイオン注入条件〉
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-6kV
・RF電源:周波数 13.56MHz、印加電力 1000 W
・チャンバー内圧:0.2Pa
・パルス幅:5sec
・処理時間(イオン注入時間):200sec
・搬送速度:0.2m/min
(2)透明導電層積層用フィルム及び透明導電性フィルムの作製
スクリーン印刷装置(マイクロ・テック社製、装置名:MT-320TV)により、転写用基材(リンテック社製、品名:PLD8030)に導電ペースト(三ツ星ベルト社製、品名:EC-264)を印刷し、厚み6μm、線幅50μm、ピッチ2000μmの格子状の金属細線パターンからなる補助電極層を作製した。
次に、透明樹脂として高密度ポリエチレン系樹脂(京葉ポリエチレン社製、品名:F3001)をフィルム成膜した高密度ポリエチレン系樹脂フィルムを熱ラミネーター(Royal Sovereign社製、装置:RSL-382S)を用い、加熱温度を125℃、0.3m/minで、4回熱ラミネートし、金属細線の開口部に透明樹脂を充填することにより透明樹脂層を設け、補助電極層と透明樹脂層とからなる複合層を積層した。得られた複合層面と、透明ガスバリア層を有する透明樹脂フィルム基材Bの透明ガスバリア層側の面とを対向させ、複合層を透明ガスバリア層上にラミネートすることにより転写し積層した。
次に、複合層から転写用基材を剥離することで、透明樹脂フィルム基材上に、透明ガスバリア層と、開口部が透明樹脂で充填された金属細線層からなる補助電極層を有する透明導電層積層用フィルムを作製した。
さらに、スパッタリング装置(アルバック社製、装置名:ISP-4000S-C)により、得られた透明導電層積層用フィルムの複合層面にインジウム-スズ酸化物(ITO)を100nm積層することにより、透明導電性フィルムを作製した。透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
透明樹脂をポリスチレン系樹脂フィルム(王子エフテックス社製、品名:ALPHAN PK-002)に、また熱ラミネート時の加熱温度を150℃に変更した以外、実施例1と同様にして透明導電層積層用フィルム及び透明導電性フィルムを作製した。透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
実施例1と同様に、厚み6μm、線幅50μm、ピッチ2000μmの格子状の金属細線パターンからなる補助電極層を作製した。
次に、透明樹脂としてアクリル系樹脂(東亞合成社製、品名:UVX-6125)を塗布し、金属細線の開口部に透明樹脂を充填することにより透明樹脂層を設け、補助電極層と透明樹脂層とからなる複合層(透明樹脂層は未硬化)を積層した。得られた複合層面と、透明ガスバリア層を有する透明樹脂フィルム基材Bの透明ガスバリア層側の面とを対向させ、複合層を透明ガスバリア層上にラミネートし、透明ガスバリア層を有する透明樹脂フィルム基材側からUV照射をし、複合層から転写用基材を剥離することで、透明樹脂フィルム基材上に、透明ガスバリア層と、開口部が透明樹脂で充填された金属細線層からなる補助電極層を有する透明導電層積層用フィルムを作製し、さらに、実施例1と同様に、透明導電層を積層することにより透明導電性フィルムを作製した。
透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
実施例1と同様に、厚み6μm、線幅50μm、ピッチ2000μmの格子状の金属細線パターンからなる補助電極層を作製した。
次に、透明樹脂としてシリコーン系樹脂(信越化学工業社製、品名:KER-2500)を塗布し、金属細線の開口部に透明樹脂を充填することにより透明樹脂層を設け、補助電極層と透明樹脂層とからなる複合層(透明樹脂層は未硬化)を積層した。得られた複合層面と、透明ガスバリア層を有する透明樹脂フィルム基材Bの透明ガスバリア層側の面とを対向させ、複合層を透明ガスバリア層上にラミネートし、熱硬化させた後に複合層から転写用基材を剥離することで、透明樹脂フィルム基材上に、透明ガスバリア層と、開口部が透明樹脂で充填された金属細線層からなる補助電極層を有する透明導電層積層用フィルムを作製し、さらに、実施例1と同様に、透明導電層を積層することにより透明導電性フィルムを作製した。
透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
実施例1において、透明ガスバリア層を有する透明樹脂フィルム基材Bを、透明ガスバリア層を有さない透明樹脂フィルム基材(東洋紡社製、品名:コスモシャインA4300、水蒸気透過度>1(g/m2・day))に変更した以外は、実施例1と同様に、透明導電層積層用フィルム及び透明導電性フィルムを作製した。上記透明ガスバリア層を有さない透明樹脂フィルム基材及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
実施例1において、透明ガスバリア層を有する透明樹脂フィルム基材Bを、透明ガスバリア層を有する透明樹脂フィルム基材Aに変更した以外は、実施例1と同様に、透明導電層積層用フィルム及び透明導電性フィルムを作製した。透明ガスバリア層を有する透明樹脂フィルム基材A及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
なお、比較例3、4においてカルシウム腐食距離の測定が不可であったのは、透明ガスバリア層を有さない透明樹脂フィルム基材もしくは透明ガスバリア層を有する透明樹脂フィルム基材Aからの水蒸気透過度が高いことから、それにより腐食の進行が律速(腐食速度大)されたためと考えられる。
1a:透明導電層積層用フィルム
1b:透明導電層
2:透明樹脂フィルム基材
3:透明ガスバリア層
4:複合層
5:金属層(補助電極層)
6:透明樹脂層
7:転写用基材
8:封止粘着材層
9:ガラス基板
10:カルシウム層
10a:カルシウム層左端(前方部)
10b:カルシウム層左端(後方部)
10c:カルシウム層左端(中央部)
10d:腐食距離
10k:腐食エリア
10p:腐食進行方向
11:カルシウム腐食試験評価用サンプル
Claims (11)
- 透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m2・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m2・day)以下である、透明導電層積層用フィルム。
- 前記透明樹脂層が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル又はポリ塩化ビニリデンから形成される、請求項1に記載の透明導電層積層用フィルム。
- 前記透明ガスバリア層が酸窒化珪素層、無機酸化物層又は無機窒化物層からなる、請求項1に記載の透明導電層積層用フィルム。
- 前記複合層の前記金属層と前記透明樹脂層との界面段差を含む表面のJIS-B0601-1994で規定される二乗平均平方根粗さRqが200nm以下である、請求項1に記載の透明導電層積層用フィルム。
- 請求項1~4のいずれか1項に記載の透明導電層積層用フィルムにおける複合層上に、透明導電層が積層されてなる、透明導電性フィルム。
- 前記透明導電層が、透明導電性酸化物又は導電性有機高分子を含む、請求項5に記載の透明導電性フィルム。
- 前記透明導電性酸化物が、インジウム-スズ酸化物(ITO)、又はガリウム-亜鉛酸化物(GZO)であり、導電性有機高分子が、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]である、請求項6に記載の透明導電性フィルム。
- 前記透明導電性フィルムの透明導電層の表面抵抗率が5(Ω/□)以下である、請求項5~7のいずれか1項に記載の透明導電性フィルム。
- 対向する電極の少なくとも一方が前記透明導電性フィルムで構成された電子デバイスであって、該透明導電性フィルムが請求項5~8のいずれか1項に記載の透明導電性フィルムである、電子デバイス。
- 透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムの製造方法であって、下記工程(A)、(B)を含む、透明導電層積層用フィルムの製造方法。
(A)転写用基材上に前記開口部を有する金属層を形成し、さらに該開口部に前記透明樹脂層を形成し複合層を形成する工程
(B)該複合層を前記透明ガスバリア層上に転写する工程 - 前記透明導電層積層用フィルムの前記複合層上に、さらに透明導電層を積層させる工程を含む、請求項10に記載の透明導電性フィルムの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177026759A KR102606932B1 (ko) | 2015-03-27 | 2016-02-01 | 투명 도전층 적층용 필름, 그의 제조 방법 및 투명 도전성 필름 |
CN201680017089.XA CN107405880B (zh) | 2015-03-27 | 2016-02-01 | 透明导电层叠层用膜、其制造方法及透明导电膜 |
JP2017509334A JP6627863B2 (ja) | 2015-03-27 | 2016-02-01 | 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-066837 | 2015-03-27 | ||
JP2015066837 | 2015-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157987A1 true WO2016157987A1 (ja) | 2016-10-06 |
Family
ID=57004930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052967 WO2016157987A1 (ja) | 2015-03-27 | 2016-02-01 | 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6627863B2 (ja) |
KR (1) | KR102606932B1 (ja) |
CN (1) | CN107405880B (ja) |
TW (1) | TW201638259A (ja) |
WO (1) | WO2016157987A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018081816A (ja) * | 2016-11-16 | 2018-05-24 | リンテック株式会社 | 透明導電積層体の製造方法及び透明導電積層体 |
WO2018180961A1 (ja) * | 2017-03-31 | 2018-10-04 | リンテック株式会社 | 透明導電性積層体及びその製造方法 |
WO2018181181A1 (ja) * | 2017-03-27 | 2018-10-04 | 凸版印刷株式会社 | 透明導電性ガスバリア積層体及びこれを備えたデバイス |
WO2018180963A1 (ja) * | 2017-03-30 | 2018-10-04 | リンテック株式会社 | ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法 |
EP3503210A1 (en) * | 2017-12-21 | 2019-06-26 | Beijing Juntai Innovation Technology Co., Ltd | Heterojunction solar cell and fabrication method thereof |
CN111093973A (zh) * | 2017-09-06 | 2020-05-01 | 富士胶片株式会社 | 阻气膜及阻气膜的制造方法 |
WO2022050045A1 (ja) * | 2020-09-04 | 2022-03-10 | デクセリアルズ株式会社 | 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 |
JP2022043998A (ja) * | 2020-09-04 | 2022-03-16 | デクセリアルズ株式会社 | 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 |
WO2023238844A1 (ja) * | 2022-06-06 | 2023-12-14 | 大日本印刷株式会社 | 集電シート用樹脂フィルム、集電シート用フィルム、集電シート、集電シート付き太陽電池素子、および太陽電池 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6490262B2 (ja) * | 2017-05-09 | 2019-03-27 | 日東電工株式会社 | 光透過性導電層付きフィルム、調光フィルムおよび調光装置 |
CN109986599B (zh) * | 2017-12-29 | 2020-10-02 | 北京纳米能源与系统研究所 | 摩擦电光智能皮肤、机械手及机器人 |
WO2019205494A1 (zh) * | 2018-04-27 | 2019-10-31 | 北京铂阳顶荣光伏科技有限公司 | 导电电极膜层和光伏元件 |
KR102294027B1 (ko) | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102294031B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102294026B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102300537B1 (ko) | 2018-10-26 | 2021-09-10 | 주식회사 엘지화학 | 배리어 필름 |
CN113631370B (zh) * | 2019-03-29 | 2023-06-09 | 东丽Kp薄膜股份有限公司 | 金属化膜及其制造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140750A (ja) * | 2007-12-06 | 2009-06-25 | Konica Minolta Holdings Inc | 透明導電フィルム |
JP2011155155A (ja) * | 2010-01-27 | 2011-08-11 | Fujifilm Corp | 透明導電フィルム、その製造方法及び有機薄膜太陽電池 |
JP2013016670A (ja) * | 2011-07-05 | 2013-01-24 | Fujifilm Corp | 透明導電フィルムおよびその製造方法並びに有機薄膜太陽電池 |
WO2013128932A1 (ja) * | 2012-02-29 | 2013-09-06 | 富士フイルム株式会社 | 透明導電フィルム及びそれを備えた有機薄膜太陽電池 |
JP2014216175A (ja) * | 2013-04-25 | 2014-11-17 | リンテック株式会社 | 透明導電性積層体の製造方法及び透明導電性積層体 |
JP2015028857A (ja) * | 2013-07-30 | 2015-02-12 | ペクセル・テクノロジーズ株式会社 | 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法 |
JP2015147362A (ja) * | 2014-02-07 | 2015-08-20 | リンテック株式会社 | 透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイス |
JP2015185440A (ja) * | 2014-03-25 | 2015-10-22 | コニカミノルタ株式会社 | 透明導電膜およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4615250B2 (ja) | 2004-05-20 | 2011-01-19 | 藤森工業株式会社 | 透明電極基板とその製造方法及びこの基板を用いた色素増感型太陽電池 |
JP5673547B2 (ja) | 2009-10-14 | 2015-02-18 | コニカミノルタ株式会社 | バリア性透明導電フィルムの製造方法、及び該バリア性透明導電フィルムを用いた有機el素子及び有機太陽電池 |
JP5343058B2 (ja) * | 2010-10-15 | 2013-11-13 | リンテック株式会社 | 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス |
US9603268B2 (en) * | 2010-11-19 | 2017-03-21 | Konica Minolta, Inc. | Gas barrier film, method of producing a gas barrier film, and electronic device |
JP5988867B2 (ja) * | 2012-12-27 | 2016-09-07 | リンテック株式会社 | 透明導電性フィルム |
-
2016
- 2016-02-01 JP JP2017509334A patent/JP6627863B2/ja active Active
- 2016-02-01 KR KR1020177026759A patent/KR102606932B1/ko active IP Right Grant
- 2016-02-01 CN CN201680017089.XA patent/CN107405880B/zh active Active
- 2016-02-01 WO PCT/JP2016/052967 patent/WO2016157987A1/ja active Application Filing
- 2016-02-04 TW TW105103861A patent/TW201638259A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140750A (ja) * | 2007-12-06 | 2009-06-25 | Konica Minolta Holdings Inc | 透明導電フィルム |
JP2011155155A (ja) * | 2010-01-27 | 2011-08-11 | Fujifilm Corp | 透明導電フィルム、その製造方法及び有機薄膜太陽電池 |
JP2013016670A (ja) * | 2011-07-05 | 2013-01-24 | Fujifilm Corp | 透明導電フィルムおよびその製造方法並びに有機薄膜太陽電池 |
WO2013128932A1 (ja) * | 2012-02-29 | 2013-09-06 | 富士フイルム株式会社 | 透明導電フィルム及びそれを備えた有機薄膜太陽電池 |
JP2014216175A (ja) * | 2013-04-25 | 2014-11-17 | リンテック株式会社 | 透明導電性積層体の製造方法及び透明導電性積層体 |
JP2015028857A (ja) * | 2013-07-30 | 2015-02-12 | ペクセル・テクノロジーズ株式会社 | 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法 |
JP2015147362A (ja) * | 2014-02-07 | 2015-08-20 | リンテック株式会社 | 透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイス |
JP2015185440A (ja) * | 2014-03-25 | 2015-10-22 | コニカミノルタ株式会社 | 透明導電膜およびその製造方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018081816A (ja) * | 2016-11-16 | 2018-05-24 | リンテック株式会社 | 透明導電積層体の製造方法及び透明導電積層体 |
EP3603960A4 (en) * | 2017-03-27 | 2020-03-18 | Toppan Printing Co., Ltd. | TRANSPARENT CONDUCTIVE GAS BARRIER LAMINATE AND DEVICE PROVIDED WITH SAME |
CN110431008B (zh) * | 2017-03-27 | 2022-05-06 | 凸版印刷株式会社 | 透明导电性阻气层叠体以及具有该透明导电性阻气层叠体的装置 |
WO2018181181A1 (ja) * | 2017-03-27 | 2018-10-04 | 凸版印刷株式会社 | 透明導電性ガスバリア積層体及びこれを備えたデバイス |
US11364704B2 (en) | 2017-03-27 | 2022-06-21 | Toppan Printing Co., Ltd. | Transparent conductive gas barrier laminate and device including the laminate |
CN110431008A (zh) * | 2017-03-27 | 2019-11-08 | 凸版印刷株式会社 | 透明导电性阻气层叠体以及具有该透明导电性阻气层叠体的装置 |
JPWO2018181181A1 (ja) * | 2017-03-27 | 2020-02-06 | 凸版印刷株式会社 | 透明導電性ガスバリア積層体及びこれを備えたデバイス |
JP7238767B2 (ja) | 2017-03-27 | 2023-03-14 | 凸版印刷株式会社 | 透明導電性ガスバリア積層体及びこれを備えたデバイス |
WO2018180963A1 (ja) * | 2017-03-30 | 2018-10-04 | リンテック株式会社 | ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法 |
JPWO2018180963A1 (ja) * | 2017-03-30 | 2020-02-06 | リンテック株式会社 | ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法 |
JP7082972B2 (ja) | 2017-03-30 | 2022-06-09 | リンテック株式会社 | ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法 |
WO2018180961A1 (ja) * | 2017-03-31 | 2018-10-04 | リンテック株式会社 | 透明導電性積層体及びその製造方法 |
CN111093973A (zh) * | 2017-09-06 | 2020-05-01 | 富士胶片株式会社 | 阻气膜及阻气膜的制造方法 |
CN111093973B (zh) * | 2017-09-06 | 2021-12-21 | 富士胶片株式会社 | 阻气膜及阻气膜的制造方法 |
EP3503210A1 (en) * | 2017-12-21 | 2019-06-26 | Beijing Juntai Innovation Technology Co., Ltd | Heterojunction solar cell and fabrication method thereof |
JP2022043998A (ja) * | 2020-09-04 | 2022-03-16 | デクセリアルズ株式会社 | 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 |
JP7230131B2 (ja) | 2020-09-04 | 2023-02-28 | デクセリアルズ株式会社 | 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 |
WO2022050045A1 (ja) * | 2020-09-04 | 2022-03-10 | デクセリアルズ株式会社 | 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 |
WO2023238844A1 (ja) * | 2022-06-06 | 2023-12-14 | 大日本印刷株式会社 | 集電シート用樹脂フィルム、集電シート用フィルム、集電シート、集電シート付き太陽電池素子、および太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
TW201638259A (zh) | 2016-11-01 |
KR20170131440A (ko) | 2017-11-29 |
JP6627863B2 (ja) | 2020-01-08 |
JPWO2016157987A1 (ja) | 2018-01-18 |
CN107405880A (zh) | 2017-11-28 |
CN107405880B (zh) | 2020-06-30 |
KR102606932B1 (ko) | 2023-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6627863B2 (ja) | 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム | |
TWI757255B (zh) | 透明導電層層合用薄膜、該製造方法及透明導電性薄膜 | |
JP5548428B2 (ja) | 透明導電性フィルムの製造方法及び透明導電性フィルム | |
EP2567421B1 (en) | METHOD OF MANUFACTURE of COMPOSITE ELECTRODE | |
US20150179973A1 (en) | Electro-optic component and method of manufacturing the same | |
JP5814843B2 (ja) | フレキシブル有機電子デバイス | |
KR102257729B1 (ko) | 적층 필름, 및 복합 필름의 제조 방법 | |
US10333100B2 (en) | Organic electroluminescent device | |
EP2696384A1 (en) | Electrode sheet for organic device, organic device module, and method for producing same | |
JP6816916B2 (ja) | 透明導電積層体の製造方法及び透明導電積層体 | |
JP5606450B2 (ja) | 電気光学素子およびその製造方法 | |
WO2018180961A1 (ja) | 透明導電性積層体及びその製造方法 | |
WO2018180963A1 (ja) | ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法 | |
CN109585056A (zh) | 一种复合薄膜的制备方法 | |
CN114335379A (zh) | 一种银纳米线透明电极及银纳米线透明电极在oled上的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771871 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017509334 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177026759 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16771871 Country of ref document: EP Kind code of ref document: A1 |