[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016157987A1 - 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム - Google Patents

透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム Download PDF

Info

Publication number
WO2016157987A1
WO2016157987A1 PCT/JP2016/052967 JP2016052967W WO2016157987A1 WO 2016157987 A1 WO2016157987 A1 WO 2016157987A1 JP 2016052967 W JP2016052967 W JP 2016052967W WO 2016157987 A1 WO2016157987 A1 WO 2016157987A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
transparent
film
conductive layer
Prior art date
Application number
PCT/JP2016/052967
Other languages
English (en)
French (fr)
Inventor
亘 森田
務 原
健太 西嶋
豪志 武藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020177026759A priority Critical patent/KR102606932B1/ko
Priority to CN201680017089.XA priority patent/CN107405880B/zh
Priority to JP2017509334A priority patent/JP6627863B2/ja
Publication of WO2016157987A1 publication Critical patent/WO2016157987A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes

Definitions

  • the present invention relates to a transparent conductive layer laminating film, a production method thereof, and a transparent conductive film.
  • Patent Document 1 is provided with a pattern layer of a fine metal wire or a metal paste having a resistance value lower than that of the transparent conductive layer as an auxiliary electrode in the transparent conductive layer.
  • a transparent conductive film is laminated on a layer made of a metal film having a transparent resin film in an opening on a transparent substrate made of a plastic resin film.
  • a transparent electrode substrate is disclosed.
  • the patent document 2 is disclosing the barrier property transparent conductive film which laminated
  • Patent Document 1 in this structure, for example, a gas barrier property required for an active layer or the like inside an electronic device such as an organic thin film solar cell or organic EL illumination cannot be satisfied only by a resin base material, and the atmosphere and Due to moisture permeation from the transparent conductive substrate on the contact side, the active layer and the like inside the electronic device are deteriorated, which causes a serious problem of shortening the device life including deterioration of device performance.
  • the present invention aims to reduce the resistance of the transparent conductive layer surface of the transparent conductive film and reduce the surface roughness of the transparent conductive layer, and at the same time suppress the water vapor transmission to the transparent conductive layer of the transparent conductive film.
  • An object of the present invention is to provide a transparent conductive layer laminating film, a method for producing the same, and a transparent conductive film.
  • Another object of the present invention is to provide an organic thin-film solar cell and organic EL lighting that have a reduced device performance and a longer life by using the transparent conductive film of the present invention as a translucent electrode.
  • the inventors have made a metal layer having an opening on the transparent gas barrier layer on the transparent resin film substrate and a specific transparent resin layer provided in the opening.
  • the transparent resin film base material having the transparent gas barrier layer and the water vapor permeability of the transparent resin layer are set to specific ranges, respectively.
  • a transparent resin film substrate including a transparent gas barrier layer means a transparent resin film substrate formed by laminating a transparent gas barrier layer on at least one surface of the transparent resin film substrate. And That is, the present invention provides the following (1) to (11).
  • a transparent conductive layer laminating film in which at least a metal layer having an opening and a transparent resin layer provided in the opening are laminated as a composite layer on the transparent gas barrier layer on the transparent resin film substrate.
  • the water vapor permeability at 40 ° C. ⁇ 90% RH defined by JIS K7129 of the transparent resin film substrate having the transparent gas barrier layer is 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less
  • the transparent gas barrier layer comprises a silicon oxynitride layer, an inorganic oxide layer, or an inorganic nitride layer.
  • the root mean square roughness Rq defined by JIS-B0601-1994 of the surface including the step of the interface between the metal layer and the transparent resin layer of the composite layer is 200 nm or less.
  • the transparent conductive oxide is indium-tin oxide (ITO) or gallium-zinc oxide (GZO), and the conductive organic polymer is poly (3,4-ethylenedioxythiophene):
  • (A) A step of forming a metal layer having the opening on the transfer substrate, and further forming a transparent resin layer in the opening to form a composite layer.
  • (B) The composite layer is formed on the transparent gas barrier layer.
  • (1) The method for producing a transparent conductive film according to (10), further comprising a step of laminating a transparent conductive layer on the composite layer of the transparent conductive layer laminating film.
  • a transparent conductive film that reduces the resistance of the transparent conductive layer surface of the transparent conductive film and reduces the surface roughness of the transparent conductive layer, and at the same time suppresses water vapor permeation to the transparent conductive layer of the transparent conductive film.
  • a film for layer lamination, a production method thereof, and a transparent conductive film can be provided.
  • the transparent conductive film of the present invention as a translucent electrode, it is possible to provide an organic thin-film solar cell and organic EL lighting that have a reduced device performance and a long lifetime.
  • Transparent conductive layer lamination film In the transparent conductive layer laminating film of the present invention, at least a metal layer having an opening and a transparent resin layer provided in the opening are laminated as a composite layer on the transparent gas barrier layer on the transparent resin film substrate.
  • FIG. 1 is a cross-sectional view showing an example of a transparent conductive layer laminating film and a transparent conductive film of the present invention.
  • a composite layer 4 comprising a transparent gas barrier layer 3, a metal layer 5 having an opening, and a transparent resin layer 6 provided in the opening is laminated on a transparent resin film substrate 2.
  • the transparent conductive film 1 is obtained by further laminating a transparent conductive layer 1 b on the composite layer 4.
  • the water vapor permeability of the transparent resin film substrate including the transparent gas barrier layer constituting the transparent conductive layer laminating film is set to 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less at 40 ° C. ⁇ 90% RH.
  • the water vapor permeability per 100 ⁇ m thickness of the transparent resin layer constituting the transparent conductive layer laminating film is set to 20 (g / m 2 ⁇ day) or less at 40 ° C. ⁇ 90% RH, whereby the composite layer is formed.
  • Water vapor permeation in the atmosphere from the end of the transparent resin layer to be configured can be suppressed.
  • a transparent conductive layer is laminated on the composite layer of the transparent conductive layer laminating film to form a transparent conductive film
  • water vapor passing through the transparent conductive layer is suppressed.
  • the surface of the transparent conductive layer is reduced in resistance (reduced surface resistivity) by applying a metal layer (auxiliary electrode layer) of the composite layer. .
  • a transparent conductive film obtained by laminating a transparent conductive layer on a composite layer of the transparent conductive layer laminating film of the present invention for example, in an electronic device in which at least one of opposing electrodes is formed of a transparent conductive film,
  • an electrode since water vapor passing through the transparent conductive layer is suppressed, it is possible to minimize the deterioration of performance over time due to water vapor to the active layer and the like constituting the adjacent electronic device, and It can lead to longer life.
  • the water vapor permeability was evaluated in accordance with JIS K7129.
  • the water-vapor permeability in 40 degreeC x 90% RH was measured using the water-vapor-permeability meter (The product name: AQUATRAN) made from Mocon.
  • the water vapor permeability at 40 ° C. ⁇ 90% RH of the transparent resin layer was measured using a water vapor permeability meter (manufactured by System Instruments, apparatus name: Lysy L80-5000).
  • the measured value was converted to a value (g / m 2 ⁇ day) at a film thickness of 100 ⁇ m.
  • the film thickness is 100 ⁇ m, it means that the water vapor permeability is inversely proportional to the film thickness even when measured with other film thicknesses, and thus a value converted per 100 ⁇ m can be adopted.
  • the water vapor permeability per unit film thickness is a physical property unique to the material.
  • it is difficult to directly measure the water vapor permeability from the end face of the thin film here but the water vapor permeability is a physical property inherent to the material as described above. It can be said that the water vapor permeability is low. Therefore, it is considered that there is no problem in discussing the water vapor transmission rate applied to the end face by the normal comparison of the water vapor transmission rate.
  • the transparent resin film substrate used in the present invention has water vapor under high humidity conditions of 40 ° C. ⁇ 90% RH from the transparent resin film substrate surface side that does not have the transparent gas barrier layer.
  • the transmittance is appropriately selected so that the total becomes 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less.
  • the transparent resin film substrate is not particularly limited as long as it is excellent in flexibility and transparency, for example, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate , Polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic polymer, and the like.
  • the polyester include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polyarylate.
  • cycloolefin polymer examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • transparent resin film substrates biaxially stretched polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoints of cost and heat resistance.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the thickness of the transparent film resin substrate is preferably 10 to 500 ⁇ m, more preferably 10 to 300 ⁇ m, still more preferably 10 to 100 ⁇ m. If it is this range, the mechanical strength and transparency as a transparent resin film base material are securable.
  • the transparent gas barrier layer used in the present invention is provided between the transparent resin film substrate 2 and the composite layer 4, and suppresses water vapor in the atmosphere that has passed through the transparent resin film substrate 2, As a result, it has the function of preventing water vapor permeation to the composite layer 4 and the transparent conductive layer 1b.
  • the transparent resin film substrate when laminated on the transparent resin film substrate, water vapor permeability under high humidity conditions of 40 ° C. and 90% RH from the transparent resin film substrate surface side without the transparent gas barrier layer. It is necessary to appropriately select a gas barrier material and the number of layers to be described later according to the transparent resin film substrate so that the value becomes 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less.
  • an inorganic vapor-deposited film such as an inorganic compound vapor-deposited film or a metal vapor-deposited film; a reforming treatment such as ion implantation on a layer containing a polymer compound (hereinafter sometimes referred to as “polymer layer”)
  • polymer layer a layer obtained by applying;
  • inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride; inorganic carbides; Inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides and the like.
  • Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin. These can be used alone or in combination of two or more.
  • Polymer compounds used for the polymer layer include silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester Etc. These polymer compounds can be used alone or in combination of two or more. Among these polymer compounds, silicon-containing polymer compounds having better gas barrier properties are preferable.
  • silicon-containing polymer compounds examples include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds.
  • a polysilazane compound is preferable from the viewpoint of forming a barrier layer having excellent gas barrier properties.
  • inorganic vapor deposition films using inorganic oxides, inorganic nitrides or metals as raw materials are preferable from the viewpoint of gas barrier properties, and moreover, inorganic materials using inorganic oxides or inorganic nitrides as raw materials from the viewpoint of transparency.
  • a vapor deposition film is preferred.
  • a silicon oxynitride layer formed by subjecting a vapor deposition film of an inorganic compound or a layer containing a polysilazane compound to a modification treatment to have oxygen, nitrogen, and silicon as main constituent atoms has an interlayer adhesion property, a gas barrier. From the viewpoint of having good properties and bending resistance, it is preferably used.
  • the transparent gas barrier layer can be formed, for example, by subjecting the polysilazane compound-containing layer to plasma ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, heat treatment, and the like.
  • ions implanted by the plasma ion implantation process include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
  • a specific processing method of the plasma ion implantation processing a method of injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or a gas barrier without using an external electric field.
  • the plasma treatment is a method for modifying a layer containing a silicon-containing polymer by exposing the polysilazane compound-containing layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the ultraviolet irradiation treatment is a method for modifying a layer containing a silicon-containing polymer by irradiating a polysilazane compound-containing layer with ultraviolet rays.
  • the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because it can efficiently modify the inside of the polysilazane compound-containing layer without roughening the surface and form a gas barrier layer having more excellent gas barrier properties.
  • the transparent gas barrier layer may be a single layer or a laminate of two or more layers. Further, when two or more layers are laminated, they may be the same or different.
  • the film thickness of the transparent gas barrier layer is preferably 20 nm to 50 ⁇ m, more preferably 30 nm to 1 ⁇ m, still more preferably 40 to 500 nm. When the film thickness of the transparent gas barrier layer is within this range, excellent gas barrier properties and adhesiveness can be obtained, and flexibility and coating strength can be compatible.
  • the transparent gas barrier layer alone preferably has a water vapor permeability of 0.1 (g / m 2 ⁇ day) or less under high humidity conditions of 40 ° C. ⁇ 90% RH, more preferably. Is 0.05 (g / m 2 ⁇ day) or less, more preferably 0.01 (g / m 2 ⁇ day) or less. With such a water vapor permeability, the water vapor that has passed through the transparent resin film substrate is blocked, and for example, water vapor permeation to the adjacent composite layer used in the present invention can be suppressed.
  • the water vapor permeability of the transparent resin film substrate having a transparent gas barrier layer used in the present invention that is, the laminate of the transparent resin film substrate 2 and the transparent gas barrier layer 3 in FIG. 0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day) or less. If the water vapor transmission rate is more than 1.0 ⁇ 10 ⁇ 3 (g / m 2 ⁇ day), the transparent conductive layer is deteriorated due to water vapor transmission in the atmosphere, and the surface resistivity is increased. Further, when used as a translucent electrode of an electronic device, deterioration of the active layer and the like inside the device progresses with time, and the lifetime of the device is shortened.
  • the water vapor transmission rate is preferably 7.0 ⁇ 10 ⁇ 4 (g / m 2 ⁇ day) or less, more preferably 5.0 ⁇ 10 ⁇ 4 (g / m 2 ⁇ day) or less, and still more preferably It is 1.0 ⁇ 10 ⁇ 4 (g / m 2 ⁇ day) or less.
  • the transparent conductive layer is laminated on the composite layer of the transparent conductive layer laminating film. And when it is set as a transparent conductive film, a surface resistivity can be maintained, without a transparent conductive layer deteriorating. Further, when used as a translucent electrode of an electronic device, it is possible to suppress deterioration over time of the active layer and the like inside the device, leading to a longer life of the device.
  • the composite layer of the present invention has a transparent conductive layer laminated on a transparent conductive layer laminating film to form a transparent conductive film, which reduces the resistance of the transparent conductive layer (decreases surface resistivity) and transmits water vapor in the atmosphere. It has a function to suppress.
  • the composite layer 4 is formed on, for example, the transparent gas barrier layer 3 and includes a metal layer 5 having an opening and a transparent resin layer 6 provided in the opening.
  • a metal layer is provided in order to reduce the surface resistivity of a transparent conductive layer, when a transparent conductive layer is laminated
  • it is usually not a solid layer made of only a metal layer, but a patterned metal layer (hereinafter, patterned) having at least an opening (described later). This metal layer is sometimes referred to as an “auxiliary electrode layer”.
  • the material for forming the auxiliary electrode layer is not particularly limited, but when patterning is performed using a method such as photolithography, a single metal such as gold, silver, copper, aluminum, nickel, platinum, or aluminum-silicon is used.
  • Binary or ternary aluminum alloys such as aluminum-copper and aluminum-titanium-palladium.
  • silver, copper, and aluminum alloys are preferable, and copper and aluminum alloys are more preferable from the viewpoints of cost, etching property, and corrosion resistance.
  • a conductive paste containing conductive fine particles can be used.
  • a paste in which conductive fine particles such as metal fine particles, carbon fine particles, and ruthenium oxide fine particles are dispersed in a solvent containing a binder can be used.
  • An auxiliary electrode layer is obtained by printing and curing the conductive paste.
  • the material of the metal fine particles is preferably silver, copper, gold or the like from the viewpoint of conductivity, and silver, copper, nickel, iron, cobalt or the like is preferable from the viewpoint of price. From the viewpoint of corrosion resistance and chemical resistance, platinum, rhodium, ruthenium, palladium and the like are preferable. Carbon fine particles are inferior to metal fine particles in terms of conductivity, but are low in price and excellent in corrosion resistance and chemical resistance. In addition, ruthenium oxide (RuO 2 ) fine particles are more expensive than carbon fine particles, but can be used as an auxiliary electrode layer because they are conductive materials having excellent corrosion resistance.
  • RuO 2 ruthenium oxide
  • the auxiliary electrode layer may be a single layer or a multilayer structure.
  • the multilayer structure may be a multilayer structure in which layers made of the same kind of material are laminated, or a multilayer structure in which layers made of at least two kinds of materials are laminated.
  • the multilayer structure is more preferably a two-layer structure in which layers of different materials are stacked.
  • the pattern of the auxiliary electrode layer of the present invention is not particularly limited, and is a lattice, honeycomb, comb, strip (stripe), linear, curved, wavy (sine curve, etc.), polygonal mesh Shape, circular mesh shape, elliptical mesh shape, and irregular shape.
  • a lattice shape, a honeycomb shape, or a comb shape is preferable.
  • the thickness of the auxiliary electrode layer is preferably 100 nm to 20 ⁇ m, more preferably 100 nm to 15 ⁇ m, and still more preferably 100 nm to 10 ⁇ m.
  • the aperture ratio of the opening portion of the auxiliary electrode layer pattern (the portion where the auxiliary electrode layer is not formed) is preferably 80% or more and less than 100%, more preferably, from the viewpoint of transparency (light transmittance). Is 90% or more and less than 100%, more preferably 95% or more and less than 100%.
  • the aperture ratio is the ratio of the total area of the openings to the area of the entire region where the pattern of the auxiliary electrode layer including the openings is formed.
  • the line width of the auxiliary electrode layer is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and still more preferably 5 to 50 ⁇ m. If the line width is within this range, the aperture ratio is wide, the transmittance can be secured, and a stable low-resistance transparent conductive film is obtained, which is preferable.
  • the transparent resin layer used in the present invention is provided in the opening of the metal layer (auxiliary electrode layer) 5 (transparent resin layer 6), and transmits water vapor from the end of the composite layer 4 in contact with the atmosphere. It has a function to suppress.
  • the same film thickness as the auxiliary electrode layer and setting the root mean square roughness Rq of the surface including an interface step between the auxiliary electrode layer and the transparent resin layer, which will be described later, in a specific range an electronic device A short circuit with an internal driving layer or the like can be suppressed.
  • the water vapor permeability at a film thickness of 100 ⁇ m is 20 (g / m 2 ⁇ day) or less.
  • the transparent conductive layer is deteriorated due to water vapor transmission from the end of the transparent resin layer and the surface resistivity is increased.
  • the deterioration of the active layer and the like inside the electronic device with time progresses, and the lifetime of the device is shortened.
  • the water vapor permeability is preferably 20 (g / m 2 ⁇ day) or less, more preferably 10 (g / m 2 ⁇ day) or less, and still more preferably 1 (g / m 2 ⁇ day) or less. . If the water vapor transmission rate is in such a range and the water vapor transmission rate of the transparent resin film substrate including the transparent gas barrier layer described above is within the range of the present invention, for example, in the composite layer of the transparent conductive layer laminating film. When the transparent conductive layer is laminated to form a transparent conductive film, the surface resistivity can be maintained without deterioration of the transparent conductive layer. Further, for example, when used as a translucent electrode of an electronic device, deterioration over time of an active layer or the like inside the device can be suppressed, which can lead to a longer life of the device.
  • a transparent resin composition which forms a transparent resin layer if water vapor permeability is contained in the range of this invention, it can use without a restriction
  • a cured product of an energy beam curable resin, a thermoplastic resin, and the like can be given.
  • the energy beam curable resin means a polymerizable compound that has an energy quantum in an electromagnetic wave or a charged particle beam, that is, is crosslinked and cured by irradiation with ultraviolet rays or an electron beam.
  • a thermoplastic resin is preferable from the viewpoint of low water vapor permeability and easy lamination.
  • thermoplastic resin examples include polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken. , Polyvinyl alcohol, polycarbonate resin, fluorine resin, polyvinyl acetate resin, acetal resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin such as polybutylene naphthalate (PBN), nylon 6, polyamide resins such as nylon 66, and the like.
  • polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken.
  • said resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyvinylidene chloride are preferable
  • polyethylene, polypropylene, and polystyrene are more preferable
  • water vapor permeability is low, and high transparency is particularly preferable.
  • the film thickness of the transparent resin layer is the same as that of the auxiliary electrode layer, preferably 100 nm to 100 ⁇ m, more preferably 100 nm to 50 ⁇ m, and still more preferably 100 nm to 20 ⁇ m.
  • the root mean square roughness Rq defined by JIS-B0601-1994 of the surface including the interface step between the auxiliary electrode layer and the transparent resin layer of the composite layer is preferably 200 nm or less, more preferably 150 nm or less. More preferably, it is 100 nm or less. If the root mean square roughness Rq is within this range, when a transparent conductive layer is laminated to form a transparent conductive film, transparency and surface resistivity are maintained, and occurrence of a short circuit with the driving layer of the electronic device is generated. Since it is suppressed, it is preferable.
  • the transparent conductive film of the present invention is formed by laminating a transparent conductive layer on the composite layer in the transparent conductive layer laminating film of the present invention. Therefore, since the water vapor permeability is suppressed, the surface resistivity can be maintained without deterioration of the transparent conductive layer. Moreover, since the auxiliary electrode layer is provided in the composite layer, the surface resistivity of the transparent conductive layer can be lowered at the same time.
  • a transparent conductive oxide is preferably used as the transparent conductive layer.
  • indium-tin oxide (ITO) and gallium-zinc oxide (GZO) are preferable, and indium-tin oxide (ITO) is more preferable from the viewpoints of transmittance, surface resistivity, and stability.
  • a conductive organic polymer is preferably used as the transparent conductive layer.
  • the conductive organic polymer include poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) [PEDOT: PSS], polythiophene, polyaniline, polypyrrole, and the like.
  • poly (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) [PEDOT: PSS] and polythiophene are preferable.
  • More preferred is poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) [PEDOT: PSS].
  • the film thickness of the transparent conductive layer is preferably 10 to 500 nm, more preferably 20 to 200 nm. This range is preferable because a thin film having both high transmittance and low surface resistivity can be obtained.
  • the total light transmittance of the transparent conductive layer is preferably 70% or more, more preferably 80% or more, more preferably 90% or more, as measured in accordance with JIS K7361-1. Is more preferable.
  • the surface resistivity of the transparent conductive layer single layer is preferably 1000 ( ⁇ / ⁇ ) or less, more preferably 100 ( ⁇ / ⁇ ) or less.
  • the surface resistivity of the transparent conductive layer of the transparent conductive film having the auxiliary electrode layer of the present invention is preferably 5 ( ⁇ / ⁇ ) or less, more preferably 1 ( ⁇ / ⁇ ) or less. Even when the surface resistivity is 5 ( ⁇ / ⁇ ) or less, the transparent conductive film is used for a translucent electrode of an electronic device that requires a large area such as an organic thin film solar cell or organic EL lighting.
  • the power loss for power generation electronic devices such as solar cells
  • the farther away from the current collection electrode the lower the current density due to the high electrical resistivity of the transparent electrode layer
  • the current density decreases due to the higher electrical resistivity of the transparent electrode layer and the luminance distribution, etc. Can be improved).
  • the electronic device of the present invention is an electronic device in which at least one of the opposing electrodes is composed of a transparent conductive film, and the transparent conductive film is the transparent conductive film of the present invention. For this reason, since the water vapor transmission rate from the transparent conductive layer of the transparent conductive film is suppressed, when the transparent conductive film is incorporated in an electronic device, the water vapor transmission into the device is suppressed and the activity of the device is reduced. A long-life electronic device with little deterioration in performance over time, such as a layer, can be obtained. At the same time, the surface resistivity of the transparent conductive layer can be lowered, and since it is flexible, it can be preferably used as an organic thin film solar cell and organic EL lighting that require a large area.
  • the method for producing a transparent conductive layer laminating film of the present invention comprises a composite layer comprising at least a metal layer having an opening and a transparent resin layer provided in the opening on the transparent gas barrier layer on the transparent resin film substrate. It is a manufacturing method of the laminated transparent conductive layer lamination film, Comprising: It is a manufacturing method of the transparent conductive layer lamination film containing the following process (A) and (B). (A) A step of forming a metal layer having the opening on the transfer substrate, and further forming a transparent resin layer in the opening to form a composite layer. (B) The composite layer is formed on the transparent gas barrier layer.
  • stacking of the transparent conductive layer of this invention is demonstrated using figures.
  • FIG. 2 is an explanatory view showing an example of the steps according to the manufacturing method of the present invention in the order of steps, (a) is a cross-sectional view after the metal layer 5 is formed on the transfer substrate 7, and (b) ) Is a cross-sectional view after forming the transparent resin layer 6 in the opening of the metal layer 5 and forming the composite layer 4 composed of the metal layer 5 and the transparent resin layer 6, and (c) is a transparent view of the composite layer 4.
  • FIG. 6 is a cross-sectional view after transferring the smoothness of the surface of the material 7 to the composite layer 4.
  • the composite layer forming step is a step of forming a metal layer having an opening on the transfer substrate and a transparent resin layer provided in the opening as a composite layer.
  • the metal layer forming step and the transparent resin layer forming It consists of a process.
  • a metal layer formation process is a process of forming the pattern (auxiliary electrode layer) which consists of a metal layer on the base material for transcription
  • the auxiliary electrode layer 5 is formed on the transfer substrate 7.
  • the transfer substrate used in the present invention is preferably composed of a substrate film, and a cured layer obtained by curing the silicone resin composition is provided thereon.
  • the substrate film is not particularly limited, and examples thereof include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polypropylene and polymethylpentene, polycarbonate films, and polyvinyl acetate films. Among them, a polyester film is preferable, and a biaxially stretched polyethylene terephthalate film is particularly preferable.
  • the thickness of the base film is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 300 ⁇ m, and even more preferably 30 ⁇ m to 100 ⁇ m, from the viewpoint of mechanical strength, durability, and transparency.
  • the surface roughness of the substrate film is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 10 nm or less in terms of Rq from the viewpoint of the peelability of the transfer product and the surface roughness of the transfer product.
  • a coating solution comprising a silicone resin composition and various additive components used as desired is applied onto the base film, for example, a gravure coating method, a bar coating method, a spray coating method.
  • an appropriate organic solvent may be added for the purpose of adjusting the viscosity of the coating solution.
  • an organic solvent A various thing can be used.
  • hydrocarbon compounds such as toluene and hexane, ethyl acetate, methyl ethyl ketone, and mixtures thereof are used.
  • a known physical treatment or chemical treatment mainly based on a photolithography method include a method of processing into a predetermined pattern shape by using together, a method of directly forming a pattern of the auxiliary electrode layer by an ink jet method, a screen printing method, or the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • thermal CVD thermal CVD or atomic layer deposition (ALD)
  • Auxiliary electrode layers include dry processes such as phase growth methods), wet coating processes such as dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, electrodeposition, silver salt method, etc. It is appropriately selected depending on the material.
  • the electrically conductive paste containing electroconductive fine particles can be used. Of course, patterning may be performed using a method such as photolithography. From the viewpoint of simplicity of process, cost, and takt time, pattern printing of conductive paste is preferably used.
  • a conductive paste in which conductive fine particles such as metal fine particles, carbon fine particles, and ruthenium oxide fine particles are dispersed in a solvent containing a binder can be used.
  • An auxiliary electrode layer is obtained by printing and curing the conductive paste. The material for the metal fine particles is as described above.
  • the transparent resin layer forming step is a step of laminating a transparent resin layer on the opening of the metal layer.
  • the transparent resin composition containing the transparent resin is placed on the transfer substrate 7.
  • the transparent resin layer 6 is formed by forming a film in the opening of the metal layer 5.
  • Examples of the method for forming the transparent resin layer include thermal lamination, dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, Meyer bar coating, and the like.
  • thermal lamination is performed by a known method.
  • the lamination conditions are usually a heating temperature of 120 to 180 ° C. and a pressurization amount of 0.1 to 25 MPa.
  • energy-beam curable resin as a method of irradiating energy radiation, an ultraviolet-ray, an electron beam, etc. are mentioned, for example.
  • the ultraviolet rays are obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, etc., and the amount of light is usually 100 to 500 mJ / cm 2 , while the electron beam is obtained with an electron beam accelerator or the like, Usually 150 to 350 kV. Among these active energy rays, ultraviolet rays are particularly preferable. In addition, when using an electron beam, a cured film can be obtained, without adding a photoinitiator.
  • the composite layer transfer step is a step of transferring the composite layer on the transfer substrate obtained in the composite layer forming step to the transparent gas barrier layer surface side of the transparent film substrate.
  • the transparent gas barrier layer 3 and the composite layer 4 are opposed to each other, the composite layer 4 is transferred to the transparent gas barrier layer 3, and the composite layer 4 is laminated on the transparent gas barrier layer 3.
  • This step further includes a step of peeling the surface composed of the transfer substrate 7 and the composite layer 4.
  • the interface between the transfer substrate 7 and the composite layer 4 is peeled off in FIG.
  • the transfer method and the peeling method are not particularly limited, and can be performed by a known method.
  • a transparent conductive layer formation process is a process of laminating
  • the transparent conductive layer As a method for forming the transparent conductive layer, PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD, atomic layer deposition (ALD), etc. Can be mentioned.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • thermal CVD thermal CVD
  • atomic layer deposition ALD
  • a coating liquid for forming a transparent conductive layer can be used as the transparent conductive layer.
  • the method for forming the transparent conductive layer include dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade. After applying and drying by the above method, if necessary, by applying a curing treatment such as heat treatment or ultraviolet irradiation within a range that does not affect other laminates, it has better surface resistivity A transparent conductive layer can be formed.
  • the coating liquid for forming a transparent conductive layer used in the present invention includes a solvent and conductive oxide fine particles dispersed in the solvent, and the conductive oxide fine particles are transparent as mentioned as the material for the transparent conductive layer.
  • conductive indium-tin oxide (ITO), indium-zinc oxide (IZO), aluminum-zinc oxide (AZO), gallium-zinc oxide (GZO), indium-gallium-zinc oxide (IGZO), niobium oxide, titanium oxide, tin oxide, or the like can be used.
  • the average particle diameter of the conductive oxide fine particles is preferably 10 to 100 nm. If it is this range, since high transparency and high electroconductivity can be ensured, it is preferable.
  • a binder may be added to the coating liquid for forming a transparent conductive layer.
  • the binder either or both of an organic binder and an inorganic binder can be used, and can be appropriately selected in consideration of the influence on the transparent resin layer and auxiliary electrode layer to be formed.
  • an organic binder It can select suitably from a thermoplastic resin, a thermosetting resin, an ultraviolet-ray (UV) curable resin, an electron beam curable resin, etc.
  • the thermoplastic resin include acrylic resin, polyolefin resin, PET resin, and polyvinyl alcohol resin.
  • the thermosetting resin include epoxy resin.
  • the ultraviolet curable resin examples include various oligomers, monomers, and photopolymerization.
  • the electron beam curable resin such as a resin containing an initiator include resins containing various oligomers and monomers.
  • the inorganic binder is not particularly limited, and examples thereof include a binder mainly composed of silica sol.
  • the inorganic binder may contain magnesium fluoride fine particles, alumina sol, zirconia sol, titania sol, or the like, or silica sol modified with an organic functional group.
  • a transparent conductive layer laminating film in which a composite layer surface comprising an auxiliary electrode layer and a transparent resin layer having a small surface roughness and a small interface step is formed, and water vapor permeability is suppressed. Further, by laminating a transparent conductive layer on the composite layer surface, the surface resistivity is low, and the occurrence of an electrical short circuit with the electrode of the driving layer of the electronic device is suppressed, A transparent conductive film having an auxiliary electrode layer can be produced.
  • the obtained value was converted to a value (g / m 2 ⁇ day) at a film thickness of 100 ⁇ m.
  • A-2 Water vapor permeability of a transparent resin film substrate having a transparent gas barrier layer The water vapor permeability of a transparent resin film substrate having a transparent gas barrier layer at 40 ° C. and 90% RH was measured using a water vapor permeability meter (manufactured by Mocon, Device name: AQUATRAN).
  • B Surface resistivity of transparent conductive film The surface of the transparent conductive layer surface in an environment of 25 ° C. and 50% RH using a low resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., device name: Loresta AX MCP-T370).
  • FIG. 3A shows a cross-sectional view of a sample for calcium corrosion test evaluation prepared in Examples and Comparative Examples of the present invention.
  • FIG. 3A shows a cross-sectional view of a sample for calcium corrosion test evaluation prepared in Examples and Comparative Examples of the present invention.
  • a calcium corrosion test evaluation sample 11 has a calcium layer 10 formed on a transparent conductive layer 1b laminated on the composite layer 4 used in the present invention via a sealing adhesive layer 8 described below. It is an arranged configuration. Specifically, a sample for calcium corrosion test evaluation was produced by the following procedure.
  • a tackifier Zeon Corporation, product name: Quinton R100
  • an isobutylene / isoprene copolymer manufactured by Nippon Butyl Co., Ltd., product name: ExxonButyl268
  • an adhesive resin composition having a solid content concentration of 20% by mass was prepared, and the adhesive resin composition was applied onto a peelable film (product name: SP-PET38T103-1 manufactured by Lintec Corporation), and 2
  • a sealing adhesive material layer 8 water vapor permeability 3.4 g / m 2 ⁇ day
  • the prepared evaluation sample was taken out from the glove box and allowed to stand in an environment of 60 ° C. and 95% RH for 100 hours, and the corrosion distance from the end of the calcium layer 10 was measured with an optical microscope (manufactured by KEYENCE, model name: VHX-1000). ).
  • the corrosion distance was defined as follows.
  • FIG.3 (b) the corrosion progress image of the calcium layer 10 of the sample 11 for calcium corrosion test evaluation is shown with a top view.
  • the corrosion distance 10d is, for example, from the calcium layer left end (center portion) 10c to the center portion of the calcium layer 10, that is, from the calcium layer left end (center portion) 10c to the corrosion progression direction 10p in the corrosion area 10k. , Defined as the distance corroded.
  • Example 1 Preparation of transparent gas barrier layer A transparent resin film substrate (manufactured by Toyobo Co., Ltd., Cosmo Shine A4300) was coated with the following primer layer forming solution by a bar coating method and heated and dried at 70 ° C for 1 minute. UV light irradiation is performed using a UV light irradiation line (Fusion UV Systems Japan, high-pressure mercury lamp; integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, line speed 20 m / min, number of passes twice), and thickness A 1 ⁇ m primer layer was formed.
  • a UV light irradiation line Fusion UV Systems Japan, high-pressure mercury lamp; integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, line speed 20 m / min, number of passes twice
  • a perhydropolysilazane-containing liquid manufactured by AZ Electronic Materials, trade name: AZNL110A-20
  • the obtained coating film is heated at 120 ° C. for 2 minutes.
  • a 150 nm thick perhydropolysilazane layer was formed.
  • argon (Ar) was plasma ion-implanted into the obtained perhydropolysilazane layer under the following conditions to form a perhydropolysilazane layer (hereinafter referred to as “inorganic layer A”) in which plasma ions were implanted.
  • the water vapor permeability of the obtained transparent resin film substrate having a transparent gas barrier layer is 8.0 ⁇ 10 ⁇ 3 g / (M 2 ⁇ day).
  • a perhydropolysilazane-containing liquid manufactured by AZ Electronic Materials, AZNL110A-20 was applied by spin coating, and the resulting coating film was heated at 120 ° C. for 2 minutes, A perhydropolysilazane layer having a thickness of 150 nm was formed.
  • a silicon oxynitride layer (inorganic layer) was formed on the inorganic layer A in the same manner as the film forming conditions of the inorganic layer A, except that plasma ion implantation was performed on the obtained perhydropolysilazane layer at ⁇ 6 kV. B) was formed, and a second transparent gas barrier layer was produced on the transparent resin film substrate.
  • the water vapor permeability of a transparent resin film substrate having a two-layered transparent gas barrier layer (hereinafter sometimes referred to as “transparent resin film substrate B having a transparent gas barrier layer”) is 7.0 ⁇ 10 ⁇ 4 g. / (M 2 ⁇ day).
  • Primer layer forming solution After dissolving 20 parts by mass of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) in 100 parts by mass of methyl isobutyl ketone, a photopolymerization initiator (manufactured by BASF, trade name: Irgacure 127) was added so that it might become 3 mass% with respect to solid content, and the solution for primer layer formation was prepared. Plasma ion implantation was performed using the following apparatus under the following implantation conditions.
  • RF power source Model number “RF56000”, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
  • a paste (manufactured by Mitsuboshi Belting Co., Ltd., product name: EC-264) was printed, and an auxiliary electrode layer composed of a grid-like fine metal wire pattern having a thickness of 6 ⁇ m, a line width of 50 ⁇ m, and a pitch of 2000 ⁇ m was produced.
  • a high-density polyethylene-based resin film in which a high-density polyethylene-based resin (product name: F3001 manufactured by Keiyo Polyethylene Co., Ltd.) is formed into a film as a transparent resin is used using a thermal laminator (Royal Sovereign, apparatus: RSL-382S).
  • the obtained composite layer surface was opposed to the surface on the transparent gas barrier layer side of the transparent resin film substrate B having the transparent gas barrier layer, and the composite layer was transferred and laminated on the transparent gas barrier layer.
  • a film for layer lamination was produced.
  • ITO indium-tin oxide
  • a sputtering apparatus manufactured by ULVAC, apparatus name: ISP-4000S-C.
  • a conductive film was prepared.
  • Water vapor permeability of the transparent resin film substrate B having a transparent gas barrier layer and the transparent resin layer (100 ⁇ m film thickness), the surface resistivity of the produced transparent conductive film, and the root mean square roughness Rq of the transparent conductive layer laminating film Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
  • Example 2 For transparent conductive layer lamination as in Example 1, except that the transparent resin was changed to a polystyrene resin film (manufactured by Oji F-Tex Co., Ltd., product name: ALPHA PK-002), and the heating temperature during thermal lamination was changed to 150 ° C. A film and a transparent conductive film were prepared. Water vapor permeability of the transparent resin film substrate B having a transparent gas barrier layer and the transparent resin layer (100 ⁇ m film thickness), the surface resistivity of the produced transparent conductive film, and the root mean square roughness Rq of the transparent conductive layer laminating film Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
  • a polystyrene resin film manufactured by Oji F-Tex Co., Ltd., product name: ALPHA PK-002
  • Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
  • Example 1 Comparative Example 1
  • an auxiliary electrode layer composed of a grid-like metal fine line pattern having a thickness of 6 ⁇ m, a line width of 50 ⁇ m, and a pitch of 2000 ⁇ m was produced.
  • an acrylic resin product name: UVX-6125, manufactured by Toagosei Co., Ltd.
  • UVX-6125 manufactured by Toagosei Co., Ltd.
  • a transparent resin layer is provided by filling the opening of the metal fine wire with the transparent resin.
  • the auxiliary electrode layer and the transparent resin A composite layer composed of layers (the transparent resin layer was uncured) was laminated.
  • the obtained composite layer surface and the transparent gas barrier layer side surface of the transparent resin film substrate B having the transparent gas barrier layer are opposed to each other, the composite layer is laminated on the transparent gas barrier layer, and the transparent resin film base having the transparent gas barrier layer is obtained.
  • Auxiliary electrode consisting of a transparent gas barrier layer and a thin metal wire layer filled with a transparent resin on a transparent resin film substrate by UV irradiation from the material side and peeling the transfer substrate from the composite layer
  • a transparent conductive layer laminating film having a layer was produced, and a transparent conductive film was produced by laminating a transparent conductive layer in the same manner as in Example 1.
  • Example 2 In the same manner as in Example 1, an auxiliary electrode layer composed of a grid-like metal fine line pattern having a thickness of 6 ⁇ m, a line width of 50 ⁇ m, and a pitch of 2000 ⁇ m was produced. Next, a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KER-2500) is applied as a transparent resin, and the transparent resin layer is provided by filling the opening of the metal thin wire with the transparent resin, and the auxiliary electrode layer and the transparent resin A composite layer composed of a resin layer (the transparent resin layer is uncured) was laminated.
  • a silicone resin manufactured by Shin-Etsu Chemical Co., Ltd., product name: KER-2500
  • a transparent conductive layer laminating film having a transparent gas barrier layer and an auxiliary electrode layer consisting of a thin metal wire layer filled with a transparent resin on the transparent resin film substrate is prepared by peeling the substrate for Further, in the same manner as in Example 1, a transparent conductive film was prepared by laminating a transparent conductive layer.
  • Example 3 a transparent resin film base material B having a transparent gas barrier layer was used as a transparent resin film base material having no transparent gas barrier layer (product name: Cosmo Shine A4300, water vapor permeability> 1 (g / m The film for transparent conductive layer lamination and the transparent conductive film were produced like Example 1 except having changed into 2 * day)).
  • Table 1 shows the evaluation results of the thickness Rq and the calcium corrosion distance of the transparent conductive film.
  • Example 4 In Example 1, except that the transparent resin film substrate B having the transparent gas barrier layer was changed to the transparent resin film substrate A having the transparent gas barrier layer, the transparent conductive layer laminating film and the transparent film were transparent in the same manner as in Example 1. A conductive film was prepared. Water vapor permeability of transparent resin film substrate A having a transparent gas barrier layer and transparent resin layer (100 ⁇ m film thickness), surface resistivity of the produced transparent conductive film, root mean square roughness Rq of the transparent conductive layer laminating film Table 1 shows the evaluation results of the calcium corrosion distance of the transparent conductive film.
  • the transparent conductive layer laminating film and the transparent conductive film of the present invention are used, the resistance of the transparent conductive layer can be reduced. Further, since the water vapor permeability from the transparent resin film substrate and the transparent resin layer is low, as a result, the water vapor permeation from the composite layer composed of the transparent resin layer and the auxiliary electrode layer, and the transparent conductive layer laminated on the composite layer. Therefore, for example, in an electronic device in which at least one transparent conductive film of the opposing electrode is composed of the transparent conductive film of the present invention, performance deterioration of the active layer of the device is suppressed and a long lifetime is achieved. Can be realized. From these things, it can use suitably for electronic devices, such as an organic thin film solar cell and organic EL illumination.
  • Transparent conductive film 1a Transparent conductive layer laminating film 1b: Transparent conductive layer 2: Transparent resin film substrate 3: Transparent gas barrier layer 4: Composite layer 5: Metal layer (auxiliary electrode layer) 6: Transparent resin layer 7: Transfer base material 8: Sealing adhesive layer 9: Glass substrate 10: Calcium layer 10a: Calcium layer left end (front part) 10b: Calcium layer left end (rear part) 10c: Calcium layer left end (central part) 10d: Corrosion distance 10k: Corrosion area 10p: Corrosion progress direction 11: Sample for calcium corrosion test evaluation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

透明導電性フィルムの透明導電層表面の低抵抗化及び透明導電層の表面粗さの低減を図り、同時に透明導電性フィルムの透明導電層への水蒸気透過を抑制した透明導電層積層用フィルム、その製造方法及び透明導電性フィルムを提供するものであり、透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m・day)以下である、透明導電層積層用フィルム、その製造方法、及び透明導電性フィルムである。

Description

透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム
 本発明は、透明導電層積層用フィルム、その製造方法、及び透明導電性フィルムに関する。
 近年、プリンテッドエレクトロニクスの発展により、今後普及が期待される有機薄膜太陽電池や有機EL照明等をはじめとする、主として有機材料を用いた電子デバイスの大面積化、加えてフレキシブル化が進められている。高性能で大面積の電子デバイスとする観点から、それら電子デバイスの透光性電極として用いられる透明導電性フィルムには、デバイス動作(集電又は電圧印加)時に、透明導電層が一般に高い電気抵抗率を有することから生じる、電力損失(太陽電池等の発電用電子デバイスにあっては、集電電極から離れるほど透明導電層の高い電気抵抗率により電流密度が低下し、電池の性能を決める変換効率が低下)又は特性分布(有機EL照明等の発光用電子デバイスにあっては、電圧印加電極から離れるほど透明導電層の高い電気抵抗率により電流密度が低下し、輝度分布等が発生)を改善するために、透明導電層表面の低抵抗率化が要求されている。さらに、デバイス性能及びフレキシブル性を維持し、かつ長寿命の電子デバイスとする観点から、前記透明導電性フィルムの透明導電層を透過した水蒸気や酸素等による、電子デバイス内部の活性層等の材料、又は金属配線材料の劣化を抑制するために、ガスバリア性が要求されている。
 このような中、前記透明導電層表面の低抵抗化(透明導電層への補助金属電極層付与、該補助金属電極層付与による構造由来(段差)の電子デバイス内部における透明導電層と駆動層部との短絡発生等の解消含む)に関する要求に対しては、例えば、特許文献1に、透明導電層に補助電極として、透明導電層より低い抵抗値を有する金属細線や金属ペーストのパターン層を設けた構造が開示され、同時に上記短絡発生等の問題を解消する方法として、プラスチック樹脂フィルムからなる透明基板上の開口部に透明樹脂膜を有する金属膜からなる層に、透明導電膜が積層された透明電極基板が開示されている。
 また、ガスバリア性に関する要求に対しては、特許文献2に、透明フィルム基材上に、透明バリア層、透明樹脂層及び透明導電層をこの順に積層したバリア性透明導電フィルムが開示されている。
特許第4615250号公報 国際公開第2011/046011号
 しかしながら、特許文献1では、この構造では、例えば、有機薄膜太陽電池や有機EL照明等の電子デバイス内部の活性層等に要求されるガスバリア性を樹脂基材のみでは満たすことができず、大気と接する側の透明導電性基板からの水分透過により、電子デバイス内部の活性層等が劣化し、デバイス性能の劣化を含めデバイス寿命を縮める要因となるという深刻な問題があった。
 また、特許文献2では、大気と接する側の透明フィルム基材面からの水分透過に対しては、透明ガスバリア層により抑制されるものの、一方、透明導電性フィルムを構成する透明樹脂層と大気とが直接接する透明樹脂層の端面からのデバイス内部への水分透過によるガスバリア性が考慮されておらず、透明樹脂層の端面から前記電子デバイスを構成する活性層等への水分透過により、デバイス性能が経時的に劣化し、デバイス寿命を縮めてしまうという問題があった。
 本発明は、上記問題を鑑み、透明導電性フィルムの透明導電層表面の低抵抗化及び透明導電層の表面粗さの低減を図り、同時に透明導電性フィルムの透明導電層への水蒸気透過を抑制した透明導電層積層用フィルム、その製造方法及び透明導電性フィルムを提供することを課題とする。また、本発明の透明導電性フィルムを透光性電極として用いることにより、デバイス性能の劣化が少なく長寿命化した、有機薄膜太陽電池及び有機EL照明を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、透明樹脂フィルム基材上の透明ガスバリア層上に、開口部を有する金属層と該開口部に設けた特定の透明樹脂層とが複合層として積層された透明導電層積層用フィルムにおいて、該透明ガスバリア層を有する該透明樹脂フィルム基材及び該透明樹脂層の水蒸気透過度をそれぞれ特定の範囲にすることにより、透明樹脂フィルム基材からの水蒸気透過が抑制され、かつ透明樹脂層端面からの水蒸気透過が抑制された透明導電層積層用フィルムを見出し、さらに、透明導電層積層用フィルムに透明導電層を積層した透明導電性フィルムを、電子デバイスの透光性電極として用いることにより、透明導電層の低抵抗化と同時にデバイス性能の劣化が少なく長寿命化できることを見出し、本発明を完成した。なお、本発明において、「透明ガスバリア層を含む透明樹脂フィルム基材」とは、透明ガスバリア層を透明樹脂フィルム基材の少なくとも何れかの面に積層してなる透明樹脂フィルム基材を意味するものとする。
 すなわち、本発明は、以下の(1)~(11)を提供するものである。
(1)透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m・day)以下である、透明導電層積層用フィルム。
(2)前記透明樹脂層が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル又はポリ塩化ビニリデンから形成される、上記(1)に記載の透明導電層積層用フィルム。
(3)前記透明ガスバリア層が酸窒化珪素層、無機酸化物層又は無機窒化物層からなる、上記(1)に記載の透明導電層積層用フィルム。
(4)前記複合層の前記金属層と前記透明樹脂層との界面段差を含む表面のJIS-B0601-1994で規定される二乗平均平方根粗さRqが200nm以下である、上記(1)に記載の透明導電層積層用フィルム。
(5)上記(1)~(4)のいずれかに記載の透明導電層積層用フィルムにおける複合層上に、透明導電層が積層されてなる、透明導電性フィルム。
(6)前記透明導電層が、透明導電性酸化物又は導電性有機高分子を含む、上記(5)に記載の透明導電性フィルム。
(7)前記透明導電性酸化物が、インジウム-スズ酸化物(ITO)、ガリウム-亜鉛酸化物(GZO)であり、導電性有機高分子が、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]である、上記(6)に記載の透明導電性フィルム。
(8)前記透明導電性フィルムの透明導電層の表面抵抗率が5(Ω/□)以下である、上記(5)~(7)のいずれかに記載の透明導電性フィルム。
(9)対向する電極の少なくとも一方が前記透明導電性フィルムで構成された電子デバイスであって、該透明導電性フィルムが上記(5)~(8)のいずれかに記載の透明導電性フィルムである、電子デバイス。
(10)透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムの製造方法であって、下記工程(A)、(B)を含む、透明導電層積層用フィルムの製造方法。
(A)転写用基材上に前記開口部を有する金属層を形成し、さらに該開口部に前記透明樹脂層を形成し複合層を形成する工程
(B)該複合層を前記透明ガスバリア層上に転写する工程
(11)前記透明導電層積層用フィルムの前記複合層上に、さらに透明導電層を積層させる工程を含む、上記(10)に記載の透明導電性フィルムの製造方法。
 本発明によれば、透明導電性フィルムの透明導電層表面の低抵抗化及び透明導電層の表面粗さの低減を図り、同時に透明導電性フィルムの透明導電層への水蒸気透過を抑制した透明導電層積層用フィルム、その製造方法及び透明導電性フィルムを提供することができる。また、本発明の透明導電性フィルムを透光性電極として用いることにより、デバイス性能の劣化が少なく長寿命化した、有機薄膜太陽電池及び有機EL照明を提供することができる。
本発明の透明導電層積層用フィルム及び透明導電性フィルムの一例を示す断面図である。 本発明の製造方法に従った工程の一例を工程順に示す説明図である。 本発明の実施例、比較例で作製したカルシウム腐食試験評価用サンプルを説明するための図であり、(a)はカルシウム腐食試験評価用サンプルの断面図であり、(b)は腐食進行後のカルシウム層の腐食イメージを示す平面図である。
[透明導電層積層用フィルム]
 本発明の透明導電層積層用フィルムは、透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m・day)以下である、透明導電層積層用フィルムである。
 図1は、本発明の透明導電層積層用フィルム及び透明導電性フィルムの一例を示す断面図である。透明導電層積層用フィルム1aは、透明樹脂フィルム基材2の上に、透明ガスバリア層3、開口部を有する金属層5と該開口部に設けた透明樹脂層6とからなる複合層4が積層されてなるものであり、透明導電性フィルム1は、さらに複合層4の上に透明導電層1bが積層されてなるものである。
 透明導電層積層用フィルムを構成する透明ガスバリア層を含む透明樹脂フィルム基材の水蒸気透過度を、40℃×90%RHにおいて1.0×10-3(g/m・day)以下とすることで、透明導電層積層用フィルムの透明樹脂フィルム基材面からの大気中の水蒸気透過を抑制することができる。同時に、透明導電層積層用フィルムを構成する透明樹脂層の膜厚100μmあたりの水蒸気透過度を、40℃×90%RHにおいて20(g/m・day)以下とすることで、複合層を構成する透明樹脂層の端部からの大気中の水蒸気透過を抑制することができる。それらの結果として、透明導電層積層用フィルムの複合層に、例えば、透明導電層を積層し、透明導電性フィルムとした時に、透明導電層を透過する水蒸気が抑制されたものとなる。
 また、透明導電層を積層し、透明導電性フィルムとした時に、複合層の金属層(補助電極層)の付与により、透明導電層表面が低抵抗化(表面抵抗率減少)されたものとなる。
 本発明の透明導電層積層用フィルムの複合層に透明導電層を積層させた透明導電性フィルムを、例えば、対向する電極の少なくとも一方が透明導電性フィルムで構成された電子デバイスにおいて、透光性電極として用いた場合、透明導電層を透過する水蒸気が抑制されているため、隣接する電子デバイスを構成する活性層等に対し、水蒸気による経時的な性能劣化を最小限にすることができ、かつ長寿命化に繋げることができる。
(水蒸気透過度の評価)
 本発明において、水蒸気透過度の評価は、JIS K7129の規定に従って行った。
本発明に用いた透明ガスバリア層を有する透明樹脂フィルム基材については、40℃×90%RHにおける水蒸気透過度を、水蒸気透過率計(Mocon社製、装置名:AQUATRAN)を用い測定した。
 同様に、本発明に用いた透明樹脂層については、透明樹脂層の40℃×90%RHにおける水蒸気透過度を、水蒸気透過率計(Systech Instruments社製、装置名:Lyssy L80-5000)を用い測定し、得られた値を膜厚100μmにおける値(g/m・day)に換算した。膜厚100μmにおけるとは、水蒸気透過度は、他の膜厚で測った場合であっても、膜厚に反比例することから、100μmあたりに換算した値を採用できることを意味する。この点において単位膜厚あたりの水蒸気透過度は材料に固有の物性である。
 さらに、ここで、薄膜厚の端面からの水蒸気透過度を直接測定することは困難であるが、水蒸気透過度は上記のように通常材料固有の物性であるため、水蒸気透過度が低ければ端面からの水蒸気透過度も低いということがいえる。よって、通常の水蒸気透過度の相対比較により、端面にかかる水蒸気透過度の議論をすることに問題はないものと考える。
(透明樹脂フィルム基材)
 本発明に用いる透明樹脂フィルム基材は、透明ガスバリア層を積層した時に、該透明ガスバリア層を有さない該透明樹脂フィルム基材面側からの40℃×90%RHの高湿条件下における水蒸気透過度が、トータルで1.0×10-3(g/m・day)以下となるように、適宜選択される。
 透明樹脂フィルム基材としては、例えば、柔軟性及び透明性に優れるものであれば特に限定されず、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。これらの中で、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリアリレート等が挙げられる。また、シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。このような透明樹脂フィルム基材の中で、コスト、耐熱性の観点から、二軸延伸されたポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
 透明フィルム樹脂基材の厚みは、10~500μmであることが好ましく、より好ましくは10~300μm、さらに好ましくは10~100μmである。この範囲であれば、透明樹脂フィルム基材としての機械強度、透明性が確保できる。
(透明ガスバリア層)
 本発明に用いる透明ガスバリア層は、例えば、図1においては、透明樹脂フィルム基材2と複合層4との間に設けられ、透明樹脂フィルム基材2を透過した大気中の水蒸気を抑制し、結果として、複合層4、透明導電層1bへの水蒸気透過を防ぐ機能を有する。本発明においては、前記透明樹脂フィルム基材上に積層した時に、該透明ガスバリア層を有さない該透明樹脂フィルム基材面側からの40℃、90%RHの高湿条件下における水蒸気透過度が1.0×10-3(g/m・day)以下となるように、前記透明樹脂フィルム基材に応じて、後述するガスバリア材料及び層数を適宜選択する必要がある。
 透明ガスバリア層としては、無機化合物の蒸着膜や金属の蒸着膜等の無機蒸着膜;高分子化合物を含む層(以下、「高分子層」ということがある。)にイオン注入等の改質処理を施して得られる層;等が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化珪素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化珪素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 高分子層に用いる高分子化合物としては、ポリオルガノシロキサン、ポリシラザン系化合物等の珪素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフエニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。これら高分子化合物の中でも、より優れたガスバリア性を有する珪素含有高分子化合物が好ましい。珪素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。これらの中で、優れたガスバリア性を有するバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。
 上述した中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。また、無機化合物の蒸着膜、またはポリシラザン系化合物を含む層に改質処理を施して形成された酸素、窒素、珪素を主構成原子として有する層からなる酸窒化珪素層が、層間密着性、ガスバリア性、及び耐折り曲げ性を有する観点から、好ましく用いられる。
 透明ガスバリア層は、例えば、ポリシラザン化合物含有層に、プラズマイオン注入処理、プラズマ処理、紫外線照射処理、熱処理等を施すことにより形成できる。プラズマイオン注入処理により注入されるイオンとしては、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトン等が挙げられる。
 プラズマイオン注入処理の具体的な処理方法としては、外部電界を用いて発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に対して注入する方法、または、外部電界を用いることなく、ガスバリア層形成用材料からなる層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に注入する方法が挙げられる。
 プラズマ処理は、ポリシラザン化合物含有層をプラズマ中に晒して、含ケイ素ポリマーを含有する層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。紫外線照射処理は、ポリシラザン化合物含有層に紫外線を照射して含ケイ素ポリマーを含有する層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。これらの中でも、ポリシラザン化合物含有層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
 透明ガスバリア層は、1層であっても2層以上積層されていてもよい。また、2層以上積層される場合は、それらが同じであっても異なっていてもよい。
 透明ガスバリア層の膜厚は、20nm~50μmであることが好ましく、より好ましくは、30nm~1μm、さらに好ましくは40~500nmである。透明ガスバリア層の膜厚がこの範囲にあると、優れたガスバリア性や密着性が得られるとともに、柔軟性と、被膜強度とを両立させることができる。
 また、透明ガスバリア層単体(複数層含む)での40℃×90%RHの高湿条件下における水蒸気透過度は、0.1(g/m・day)以下であることが好ましく、より好ましくは0.05(g/m・day)以下、さらに好ましくは0.01(g/m・day)以下である。このような水蒸気透過度であると、前記透明樹脂フィルム基材を透過した水蒸気をバリアし、例えば、本発明に用いた隣接する複合層への水蒸気透過を抑制することができる。
 本発明に用いる透明ガスバリア層を有する透明樹脂フィルム基材、すなわち、図1における透明樹脂フィルム基材2と透明ガスバリア層3との積層体の水蒸気透過度は、40℃×90%RHにおいて1.0×10-3(g/m・day)以下である。該水蒸気透過度が、1.0×10-3(g/m・day)超であると、大気中の水蒸気透過により、透明導電層が劣化し、表面抵抗率が増大してしまう。また、電子デバイスの透光性電極として用いた時に、それらデバイス内部の活性層等の経時的な劣化が進行し、デバイスの寿命が短くなる。水蒸気透過度は、7.0×10-4(g/m・day)以下であることが好ましく、より好ましくは5.0×10-4(g/m・day)以下、さらに好ましくは1.0×10-4(g/m・day)以下である。水蒸気透過度がこのような範囲にあり、かつ後述する、透明樹脂層の水蒸気透過度が本発明の範囲内にあれば、例えば、透明導電層積層用フィルムの複合層に、透明導電層を積層し、透明導電性フィルムとした時に、透明導電層が劣化することなく、表面抵抗率を維持できる。また、電子デバイスの透光性電極として用いた時に、それらデバイス内部の活性層等の経時的な劣化を抑制することができ、デバイスの長寿命化に繋げることができる。
〈複合層〉
 本発明の複合層は、透明導電層積層用フィルム上に透明導電層を積層し、透明導電性フィルムとした時に、透明導電層の低抵抗化(表面抵抗率の低下)及び大気中の水蒸気透過を抑制する機能を有する。
 図1に示すように、複合層4は、例えば、透明ガスバリア層3上に形成され、開口部を有する金属層5と該開口部に設けた透明樹脂層6とからなる。
(金属層)
 金属層は、本発明の透明導電層積層用フィルム上に透明導電層を積層し、透明導電性フィルムとした時に、透明導電層の表面抵抗率を低下させるために設けられる。また、通常、該透明導電層の透過率を低下させないように、金属層のみでなるベタ層ではなく、パターン化し、少なくとも後述する開口部(開口率は後述)を有する金属層(以下、パターン化した金属層を「補助電極層」ということがある。)として用いる。
 補助電極層を形成するための材料は、特に制限されないが、フォトリソグラフィー等の方法を用いてパターン化を行う場合は、金、銀、銅、アルミニウム、ニッケル、白金等の単金属、アルミニウム-シリコン、アルミニウム-銅、アルミニウム-チタン-パラジウム等の2元ないし3元系のアルミニウム合金等を挙げることができる。これらの材料の中で、銀、銅、アルミニウム合金が好ましく、コスト、エッチング性、耐食性の観点から、銅、アルミニウム合金がより好ましい。
 また、導電性微粒子を含む導電ペーストを用いることができる。導電ペーストとしては、バインダーを含む溶媒中に、金属微粒子、カーボン微粒子、酸化ルテニウム微粒子等の導電性微粒子を分散させたものを用いることができる。この導電ペーストを印刷し、硬化することにより、補助電極層が得られる。
 上記金属微粒子の材質としては、導電性の観点からは、銀、銅、金等が好ましく、価格の面からは銀、銅、ニッケル、鉄、コバルト等が好ましい。また、耐食性や耐薬品性の面からは、白金、ロジウム、ルテニウム、パラジウム等が好ましい。カーボン微粒子は、導電性の面では金属微粒子に比べて劣っているが、低価格であり、耐食性及び耐薬品性に優れている。また、酸化ルテニウム(RuO)微粒子は、カーボン微粒子に比べて高価ではあるが、優れた耐食性を有する導電性物質であるため、補助電極層として使用できる。
 補助電極層は、単層であってもよく、多層構造であってもよい。多層構造としては、同種の材料からなる層を積層した多層構造であってもよく、少なくとも2種類以上の材料からなる層を積層した多層構造であってもよい。
 多層構造としては、異種の材料からなる層を積層した2層構造であることがより好ましい。このような多層構造としては、例えば、最初に銀のパターン層を形成させ、その上から銅のパターン層を形成させると、銀の高導電性を保持しながら耐食性が改善されるため好ましい。
 本発明の補助電極層のパターンとしては、特に限定されず、格子状、ハニカム状、櫛歯状、帯状(ストライプ状)、直線状、曲線状、波線状(サイン曲線等)、多角形状の網目状、円形状の網目状、楕円状の網目状、不定形等が挙げられる。これらの中でも、格子状、ハニカム状、櫛歯状のものが好ましい。
 補助電極層の膜厚は、100nm~20μmであることが好ましく、より好ましくは100nm~15μm、さらに好ましくは100nm~10μmである。
 補助電極層のパターンの開口部(補助電極層が形成されてない部分)の開口率としては、透明性(光線透過率)の観点から、80%以上100%未満であることが好ましく、より好ましくは90%以上100%未満であり、さらに好ましくは95%以上100%未満である。なお、開口率とは、開口部を含む補助電極層のパターンが形成されている全領域の面積に対する、開口部の総面積の割合である。
 補助電極層の線幅は、1~100μmが好ましく、より好ましくは3~75μm、さらに好ましくは5~50μmである。線幅がこの範囲にあれば、開口率が広く、透過率が確保でき、さらに、安定した低抵抗の透明導電性フィルムが得られるため、好ましい。
(透明樹脂層)
 本発明に用いる透明樹脂層は、例えば、図1においては、金属層(補助電極層)5の開口部に設けられ(透明樹脂層6)、複合層4の大気と接する端部からの水蒸気透過を抑制する機能を有する。
 また、前記補助電極層と同一の膜厚とし、後述する、該補助電極層と前記透明樹脂層との界面段差を含む表面の二乗平均平方根粗さRqを特定の範囲にすることで、電子デバイス内部の駆動層等との短絡を抑制することができる。
 本発明に用いる透明樹脂層の40℃×90%RHの高湿条件下、膜厚100μmにおける水蒸気透過度は20(g/m・day)以下である。該水蒸気透過度が、20(g/m・day)超であると、透明樹脂層端部からの大気中の水蒸気透過により、透明導電層が劣化し表面抵抗率が上昇することはもとより、電子デバイス内部の活性層等の経時的な劣化が進行し、デバイスの寿命が短くなる。水蒸気透過度は、20(g/m・day)以下であることが好ましく、より好ましくは10(g/m・day)以下、さらに好ましくは1(g/m・day)以下である。水蒸気透過度がこのような範囲であり、かつ前述した透明ガスバリア層を含む透明樹脂フィルム基材の水蒸気透過度が本発明の範囲内にあれば、例えば、透明導電層積層用フィルムの複合層に、透明導電層を積層し、透明導電性フィルムとした時に、透明導電層が劣化することなく、表面抵抗率を維持できる。また、例えば、電子デバイスの透光性電極として用いた時に、それらデバイス内部の活性層等の経時的な劣化を抑制することができ、デバイスの長寿命化に繋げることができる。
 透明樹脂層を形成する透明樹脂組成物としては、水蒸気透過度が本発明の範囲に含まれるものであれば、特に制限なく用いることができる。例えば、エネルギー線硬化型樹脂の硬化物、熱可塑性樹脂などが挙げられる。ここで、エネルギー線硬化型樹脂とは、電磁波又は荷電粒子線の中でエネルギー量子を有するもの、すなわち、紫外線又は電子線などを照射することにより、架橋、硬化する重合性化合物を意味する。
 この中で、低水蒸気透過度、積層の容易性の観点から、熱可塑性樹脂が好ましい。
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、エチレン-酢酸ビニル共重合体ケン化物、ポリビニルアルコール、ポリカーボネート系樹脂、フッ素系樹脂、ポリ酢酸ビニル系樹脂、アセタール系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等のポリエステル系樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂等が挙げられる。また、上記の樹脂を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデンが好ましく、ポリエチレン、ポリプロピレン、ポリスチレンがより好ましく、水蒸気透過度が低く、高い透明性を有することから、ポリエチレンが特に好ましい。
 透明樹脂層の膜厚は、前記補助電極層の膜厚と同様であり、100nm~100μmであることが好ましく、より好ましくは100nm~50μm、さらに好ましくは100nm~20μmである。
 前記複合層の補助電極層と透明樹脂層との界面段差を含む表面のJIS-B0601-1994で規定される二乗平均平方根粗さRqは200nm以下であることが好ましく、より好ましくは150nm以下であり、さらに好ましくは100nm以下である。二乗平均平方根粗さRqがこの範囲であれば、透明導電層を積層し、透明導電性フィルムとした場合に、透明性及び表面抵抗率が維持され、電子デバイスの駆動層間との短絡の発生が抑制されるため好ましい。
[透明導電性フィルム]
 本発明の透明導電性フィルムは、前述したとおり本発明の透明導電層積層用フィルムにおける複合層上に、透明導電層が積層されてなるものである。したがって、水蒸気透過度が抑制されていることから、透明導電層が劣化することなく、表面抵抗率を維持できる。また、複合層に補助電極層が設けられているので、同時に透明導電層の表面抵抗率を低くすることができる。
(透明導電層)
 透明導電層としては、透明導電性酸化物が好ましく用いられる。具体的には、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、アルミニウム-亜鉛酸化物(AZO)、ガリウム-亜鉛酸化物(GZO)、インジウム-ガリウム-亜鉛酸化物(IGZO)、酸化ニオブ、酸化チタン、酸化スズ等が挙げられ、これらを単独で、もしくは複数を用いることができる。この中で、インジウム-スズ酸化物(ITO)、ガリウム-亜鉛酸化物(GZO)が好ましく、透過率、表面抵抗率、安定性の観点からインジウム-スズ酸化物(ITO)がさらに好ましい。
 さらに、透明導電層として、導電性有機高分子が好ましく用いられる。導電性有機高分子としては、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]、ポリチオフェン、ポリアニリン、ポリピロール等が挙げられる。この中で、導電性、透明性の観点から、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]、ポリチオフェンが好ましく、導電性、透明性の観点から、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]がさらに好ましい。
 透明導電層の膜厚は10~500nmであることが好ましく、より好ましくは20~200nmである。この範囲では、高い透過率、低い表面抵抗率を併せ持つ薄膜が得られるため好ましい。
 また、透明導電層の全光線透過率は、JIS K7361-1に準拠して測定される全光線透過率が70%以上のものが好ましく、80%以上のものがより好ましく、90%以上のものがさらに好ましい。
 さらに、透明導電層単層の表面抵抗率は1000(Ω/□)以下が好ましく、より好ましくは100(Ω/□)以下である。
 加えて、本発明の補助電極層を有する透明導電性フィルムの透明導電層の表面抵抗率は5(Ω/□)以下であることが好ましく、より好ましくは1(Ω/□)以下である。
表面抵抗率が5(Ω/□)以下であると、透明導電性フィルムを、有機薄膜太陽電池、有機EL照明等の大面積を必要とする電子デバイスの透光性電極等に用いた場合でも、デバイス動作(集電や電圧印加)時の、電力損失(太陽電池等の発電用電子バイスにあっては、集電電極から離れるほど透明電極層の高い電気抵抗率により電流密度が低下し、電池の性能を決める変換効率が低下)や特性分布(有機EL照明等の発光用電子デバイスにあっては、印加電極から離れるほど透明電極層の高い電気抵抗率により電流密度が低下し輝度分布等が発生)を改善することができる。
(電子デバイス)
 本発明の電子デバイスは、対向する電極の少なくとも一方が透明導電性フィルムで構成された電子デバイスであって、該透明導電性フィルムが本発明の透明導電性フィルムである。このため、透明導電性フィルムの透明導電層からの水蒸気透過度が抑制されていることから、該透明導電性フィルムを電子デバイスに組み込んだ場合、デバイス内部への水蒸気透過が抑制され、デバイスの活性層等の経時的な性能劣化が少ない長寿命の電子デバイスとすることができる。同時に、透明導電層の表面抵抗率を低くすることができ、フレキシブルであることから、大面積化が要求される有機薄膜太陽電池、有機EL照明として好ましく用いることができる。
[透明導電層積層用フィルムの製造方法]
 本発明の透明導電層積層用フィルムの製造方法は、透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムの製造方法であって、下記工程(A)、(B)を含む、透明導電層積層用フィルムの製造方法である。
(A)転写用基材上に前記開口部を有する金属層を形成し、さらに該開口部に前記透明樹脂層を形成し複合層を形成する工程
(B)該複合層を前記透明ガスバリア層上に転写する工程
 本発明の透明導電層積層用の製造方法について、図を用いて説明する。
 図2は、本発明の製造方法に従った工程の一例を工程順に示す説明図を示し、(a)は転写用基材7上に金属層5を形成した後の断面図であり、(b)は透明樹脂層6を金属層5の開口部に形成させ、金属層5と透明樹脂層6とからなる複合層4として形成した後の断面図であり、(c)は複合層4を透明樹脂フィルム基材2上の透明ガスバリア層3に転写させる工程を示す断面図であり、(d)は複合層4を転写し、さらに複合層4から転写用基材7を剥離し、転写用基材7面の平滑性を複合層4に転写した後の断面図である。
<複合層形成工程>
 複合層形成工程は、転写用基材上に、開口部を有する金属層と、該開口部に設けた透明樹脂層とを複合層として形成する工程であり、金属層形成工程及び透明樹脂層形成工程からなる。
(金属層形成工程)
 金属層形成工程は、転写用基材上に、金属層からなるパターン(補助電極層)を形成する工程である。図2(a)においては、転写用基材7上に、補助電極層5を形成する工程である。
 本発明に用いる転写用基材は、基材フィルムからなり、その上にシリコーン樹脂組成物を硬化した硬化層を設けていることが好ましい。
 基材フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリプロピレンやポリメチルペンテン等のポリオレフィンフィルム、ポリカーボネートフィルム、ポリ酢酸ビニルフィルム等を挙げることができるが、これらの中でポリエステルフィルムが好ましく、特に二軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。基材フィルムの厚さは、機械強度、耐久性、及び透明性の観点から、10μm~500μmが好ましく、より好ましくは20μm~300μmであり、さらに好ましくは30μm~100μmである。基材フィルムの表面粗さは、転写物の剥離性、転写物の表面粗さの観点から、Rqで30nm以下が好ましく、より好ましくは20nm以下であり、さらに好ましくは10nm以下である。
 硬化層の形成方法としては、シリコーン樹脂組成物と、所望により用いられる各種添加剤成分からなる塗工液を、前記の基材フィルム上に、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法などにより塗工することができる。この際、塗工液の粘度調整の目的で、適当な有機溶剤を加えてもよい。有機溶剤としては、特に制限は無く、様々なものを用いることができる。例えばトルエン、ヘキサンなどの炭化水素化合物をはじめ、酢酸エチル、メチルエチルケトン及び、これらの混合物などが用いられる。
 補助電極層の形成方法としては、転写用基材上に、パターンが形成されていないベタ金属層を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、またインクジェット法、スクリーン印刷法等により直接補助電極層のパターンを形成する方法等が挙げられる。
 パターンが形成されていない補助電極層の形成方法としては、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)などのドライプロセス、又はディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティングや電着等のウェットプロセス、銀塩法等が挙げられ、補助電極層の材料に応じて適宜選択される。
 また、スクリーン印刷等の方法で、補助電極層のパターンを形成する場合は、導電性微粒子を含む導電ペーストを用いることができる。フォトリソグラフィー等の方法を用いてパターン化を行っても勿論かまわない。工程の簡便さ、コスト、タクトタイムの短縮の観点から、導電ペーストのパターン印刷が好ましく用いられる。
 導電ペーストとしては、前述したように、バインダーを含む溶媒中に、金属微粒子、カーボン微粒子、酸化ルテニウム微粒子等の導電性微粒子を分散させたものを用いることができる。この導電ペーストを印刷し、硬化することにより、補助電極層が得られる。
 上記金属微粒子の材料としては、前述したとおりである。
(透明樹脂層形成工程)
 透明樹脂層形成工程は、金属層の開口部に透明樹脂層を積層する工程であり、例えば、図2(b)においては、透明樹脂を含む透明樹脂組成物を、転写用基材7上の金属層5の開口部に成膜して、透明樹脂層6を形成する工程である。
 透明樹脂層の形成方法としては、熱ラミネート、ディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード、マイヤーバーコーティング等が挙げられる。この中で、透明樹脂層として熱可塑性樹脂を用いる場合は、製造が簡便にできることから、熱ラミネートが好ましい。熱ラミネートは、公知の方法で行われるが、ラミネート条件は、通常、加熱温度120~180℃、加圧量0.1~25MPaである。
 また、エネルギー線硬化型樹脂を用いる場合、エネルギー放射線を照射する方法としては、例えば、紫外線や電子線などが挙げられる。上記紫外線は、高圧水銀ランプ、フュージョンHランプ、キセノンランプなどで得られ、光量は、通常100~500mJ/cmであり、一方、電子線は、電子線加速器などによって得られ、照射量は、通常150~350kVである。この活性エネルギー線の中では、特に紫外線が好適である。なお、電子線を使用する場合は、光重合開始剤を添加することなく、硬化膜を得ることができる。
<複合層転写工程>
 複合層転写工程は、複合層形成工程で得られた転写用基材上の複合層を透明フィルム基材の透明ガスバリア層表面側に転写する工程であり、例えば、図2(c)においては、透明ガスバリア層3と複合層4とを対向させ、複合層4を透明ガスバリア層3に転写し、透明ガスバリア層3に複合層4を積層する工程である。この工程においては、さらに転写用基材7と複合層4とからなる面を剥離する工程が含まれる。例えば、複合層4を転写積層後、図2(d)において、転写用基材7と複合層4との界面を剥離することにより、転写用基材7の面の平滑性を複合層4の面に転写して、表面粗さが小さく、段差の小さい、補助電極層と透明樹脂層とからなる面を形成することができる。転写方法及び剥離方法は、特に制限はなく、公知の方法で行うことができる。
<透明導電層形成工程>
 透明導電層形成工程は、前記工程で得られた透明導電層積層用フィルムの補助電極層と透明樹脂層とからなる複合層面側に、透明導電層を積層する工程である。
 透明導電層の形成方法としては、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)などが挙げられる。上記手法により成膜した後、必要に応じて、他の積層体に影響を及ぼさない範囲で加熱処理を施すことにより、より優れた表面抵抗率を有する透明導電層を形成することができる。
 また、透明導電層として、透明導電層形成用塗布液を用いることができる。該透明導電層の形成方法としては、ディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等が挙げられる。上記手法により塗布し、乾燥させた後、必要に応じて、他の積層体に影響を及ぼさない範囲で、加熱処理や紫外線照射等の硬化処理を施すことにより、より優れた表面抵抗率を有する透明導電層を形成することができる。
 本発明で用いる透明導電層形成用塗布液は、溶媒と、該溶媒中に分散された導電性酸化物微粒子を含み、導電性酸化物微粒子としては、前記透明導電層用材料としても挙げた透明性と導電性を有するインジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、アルミニウム-亜鉛酸化物(AZO)、ガリウム-亜鉛酸化物(GZO)、インジウム-ガリウム-亜鉛酸化物(IGZO)、酸化ニオブ、酸化チタン、酸化スズ等を用いることができる。該導電性酸化物微粒子の平均粒径は、10~100nmが好ましい。この範囲であれば、高い透明性と高い導電性を確保できるため、好ましい。
 透明導電層形成用塗布液には、単層での膜強度を高めるために、バインダーを添加してもよい。該バインダーとしては、有機バインダーと無機バインダーの両方、またはいずれか一方を用いることができ、形成面となる透明樹脂層、補助電極層への影響を考慮して、適宜選定することができる。
 有機バインダーとしては、特に限定されないが、熱可塑性樹脂、熱硬化性樹脂、紫外線(UV)硬化性樹脂、電子線硬化性樹脂等から適宜選定することができる。例えば、熱可塑性樹脂としては、アクリル樹脂、ポリオレフィン樹脂、PET樹脂、ポリビニルアルコール樹脂等が挙げられ、熱硬化性樹脂としては、エポキシ樹脂等、紫外線硬化性樹脂としては、各種オリゴマー、モノマー、光重合開始剤を含有する樹脂等、電子線硬化性樹脂としては、各種オリゴマー、モノマーを含有する樹脂等をそれぞれ挙げることができる。
 また、無機バインダーとしては、特に限定されないが、シリカゾルを主成分とするバインダーを挙げることができる。無機バインダーは、フッ化マグネシウム微粒子、アルミナゾル、ジルコニアゾル、チタニアゾル等や、有機官能基で修飾されたシリカゾルを含んでいてもよい。
 本発明の製造方法によれば、表面粗さが小さく、界面段差の小さい補助電極層と透明樹脂層とからなる複合層面が形成され、かつ水蒸気透過度が抑制された透明導電層積層用フィルムを製造することができ、さらに該複合層面上に透明導電層を積層することにより、表面抵抗率が低く、しかも、電子デバイスの駆動層の電極等との電気的な短絡の発生が抑制された、補助電極層を有する透明導電性フィルムを製造することができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 実施例、比較例で用いた、又は作製した、透明樹脂、透明ガスバリア層を有する透明樹脂フィルム基材の水蒸気透過度、透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの表面粗さの評価及び透明導電性フィルムのカルシウム腐食評価は、以下の方法で行った。
(a)水蒸気透過度の評価
 水蒸気透過度の評価は、JIS K7129にしたがって行った。
(a-1)透明樹脂の水蒸気透過度
 透明樹脂層の40℃90%RHにおける水蒸気透過度を、水蒸気透過率計(Systech Instruments社製、装置名:Lyssy L80-5000)を用い測定し、得られた値を膜厚100μmにおける値(g/m・day)に換算した。
(a-2)透明ガスバリア層を有する透明樹脂フィルム基材の水蒸気透過度
 40℃90%RHにおける透明ガスバリア層を有する透明樹脂フィルム基材の水蒸気透過度を、水蒸気透過率計(Mocon社製、装置名:AQUATRAN)を用い測定した。
(b)透明導電性フィルムの表面抵抗率
 低抵抗率計(三菱化学アナリテック社製、装置名:ロレスタAX MCP-T370)により、25℃50%RHの環境下で、透明導電層表面の表面抵抗率(Ω/□)を測定した。
(c)界面段差、表面粗さ
 透明導電層積層用フィルムの複合層の補助電極層と透明樹脂層間の転写面における界面部位表面を、光干渉式表面粗さ計(Veeco社製、型名:Wyko NT1100)を用い、JIS-B0601-1994で規定される二乗平均平方根粗さRqを測定し、界面部位の段差を含む表面粗さを評価した。
(d)透明導電性フィルムのカルシウム腐食評価
 図3(a)に本発明の実施例、比較例で作製したカルシウム腐食試験評価用サンプルの断面図を示す。図3(a)において、カルシウム腐食試験評価用サンプル11は、本発明に用いた複合層4に積層した透明導電層1b上に、下述する封止粘着材層8を介し、カルシウム層10が配置された構成となっている。具体的には、カルシウム腐食試験評価用サンプルを、以下の手順で作製した。
 イソブチレン・イソプレン共重合体(日本ブチル社製、品名:ExxonButyl268)100質量部に対して、粘着付与材(日本ゼオン社製、品名:クイントンR100)50質量部を添加し、トルエンに溶解することで、固形分濃度20質量%の接着性樹脂組成物を調製し、該接着性樹脂組成物を剥離性フィルム(リンテック社製、品名:SP-PET38T103-1)上に塗工し、120℃で2分乾燥させることで、膜厚20μmの封止粘着材層8(水蒸気透過度3.4g/m・day)を形成した。
 一方、蒸着装置(エイエルエステクノロジー社製、装置名:E2000LL)を用い、45mm角(厚さ:0.685mm)のガラス基板9(CORNING社製、無アルカリガラス基板)表面の中心35mm角上に、カルシウムを150nm蒸着し、カルシウム層10を形成した。そして、グローブボックス中で、透明導電性フィルムの透明導電層1bの表面に、前記封止粘着材層8をラミネートし、100℃で10分乾燥させた後に剥離性フィルムを剥離し、次いで、封止粘着材層8の剥離した面を、ガラス基板9のカルシウム層10面側にラミネートすることにより、カルシウム腐食試験評価用サンプル11を作製した。
 作製した評価サンプルはグローブボックスから取出し、60℃、95%RHの環境下に100時間静置し、カルシウム層10の端部からの腐食距離を光学顕微鏡(KEYENCE社製、型名:VHX-1000)で観察した。
 なお、ここで上記腐食距離は以下のように定義した。
図3(b)に、カルシウム腐食試験評価用サンプル11のカルシウム層10の腐食進行イメージを平面図で示す。腐食距離10dは、カルシウム層10の、例えば、カルシウム層左端(中央部)10cからカルシウム層10の中央部方向に、すなわち、カルシウム層左端(中央部)10cから腐食エリア10kにおける腐食進行方向10pに、腐食した距離として定義した。
(実施例1)
(1)透明ガスバリア層の作製
 透明樹脂フィルム基材(東洋紡社製、コスモシャインA4300)に、下記のプライマー層形成用溶液をバーコート法により塗布し、70℃で、1分間加熱乾燥した後、UV光照射ライン(Fusion UV Systems JAPAN社製、高圧水銀灯;積算光量100mJ/cm、ピーク強度1.466W、ライン速度20m/分、パス回数2回)を用いてUV光照射を行い、厚さ1μmのプライマー層を形成した。得られたプライマー層上に、ペルヒドロポリシラザン含有液(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱することにより、厚み150nmのペルヒドロポリシラザン層を形成した。さらに、得られたペルヒドロポリシラザン層に、下記の条件により、アルゴン(Ar)をプラズマイオン注入し、プラズマイオン注入したペルヒドロポリシラザン層(以下、「無機層A」という。)を形成した。得られた透明ガスバリア層を有する透明樹脂フィルム基材(以下、「透明ガスバリア層を有する透明樹脂フィルム基材A」ということがある。)の水蒸気透過度は、8.0×10-3g/(m・day)であった。
 次いで、無機層A上に、ペルヒドロポリシラザン含有液(AZエレクトロニックマテリアルズ社製、AZNL110A-20、)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱することにより、厚み150nmのペルヒドロポリシラザン層を形成した。さらに、得られたペルヒドロポリシラザン層に、印加電圧を-6kVとしプラズマイオン注入を行った以外は、無機層Aの製膜条件と同様にして、無機層A上に酸窒化珪素層(無機層B)を形成し、透明樹脂フィルム基材上に2層目の透明ガスバリア層を作製した。2層構成の透明ガスバリア層を有する透明樹脂フィルム基材(以下、「透明ガスバリア層を有する透明樹脂フィルム基材B」ということがある。)の水蒸気透過度は、7.0×10-4g/(m・day)であった。
(プライマー層形成用溶液)
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20質量部をメチルイソブチルケトン100質量部に溶解させた後、光重合性開始剤(BASF社製、商品名:Irgacure127)を、固形分に対して3質量%となるように添加して、プライマー層形成用溶液を調製した。
 プラズマイオン注入は、下記の装置を用い、以下の注入条件で行った。
〈プラズマイオン注入装置〉
RF電源:型番号「RF56000」、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
〈プラズマイオン注入条件〉
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-6kV
・RF電源:周波数 13.56MHz、印加電力 1000 W
・チャンバー内圧:0.2Pa
・パルス幅:5sec
・処理時間(イオン注入時間):200sec
・搬送速度:0.2m/min
(2)透明導電層積層用フィルム及び透明導電性フィルムの作製
 スクリーン印刷装置(マイクロ・テック社製、装置名:MT-320TV)により、転写用基材(リンテック社製、品名:PLD8030)に導電ペースト(三ツ星ベルト社製、品名:EC-264)を印刷し、厚み6μm、線幅50μm、ピッチ2000μmの格子状の金属細線パターンからなる補助電極層を作製した。
 次に、透明樹脂として高密度ポリエチレン系樹脂(京葉ポリエチレン社製、品名:F3001)をフィルム成膜した高密度ポリエチレン系樹脂フィルムを熱ラミネーター(Royal Sovereign社製、装置:RSL-382S)を用い、加熱温度を125℃、0.3m/minで、4回熱ラミネートし、金属細線の開口部に透明樹脂を充填することにより透明樹脂層を設け、補助電極層と透明樹脂層とからなる複合層を積層した。得られた複合層面と、透明ガスバリア層を有する透明樹脂フィルム基材Bの透明ガスバリア層側の面とを対向させ、複合層を透明ガスバリア層上にラミネートすることにより転写し積層した。
 次に、複合層から転写用基材を剥離することで、透明樹脂フィルム基材上に、透明ガスバリア層と、開口部が透明樹脂で充填された金属細線層からなる補助電極層を有する透明導電層積層用フィルムを作製した。
 さらに、スパッタリング装置(アルバック社製、装置名:ISP-4000S-C)により、得られた透明導電層積層用フィルムの複合層面にインジウム-スズ酸化物(ITO)を100nm積層することにより、透明導電性フィルムを作製した。透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
(実施例2)
 透明樹脂をポリスチレン系樹脂フィルム(王子エフテックス社製、品名:ALPHAN PK-002)に、また熱ラミネート時の加熱温度を150℃に変更した以外、実施例1と同様にして透明導電層積層用フィルム及び透明導電性フィルムを作製した。透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
(比較例1)
 実施例1と同様に、厚み6μm、線幅50μm、ピッチ2000μmの格子状の金属細線パターンからなる補助電極層を作製した。
 次に、透明樹脂としてアクリル系樹脂(東亞合成社製、品名:UVX-6125)を塗布し、金属細線の開口部に透明樹脂を充填することにより透明樹脂層を設け、補助電極層と透明樹脂層とからなる複合層(透明樹脂層は未硬化)を積層した。得られた複合層面と、透明ガスバリア層を有する透明樹脂フィルム基材Bの透明ガスバリア層側の面とを対向させ、複合層を透明ガスバリア層上にラミネートし、透明ガスバリア層を有する透明樹脂フィルム基材側からUV照射をし、複合層から転写用基材を剥離することで、透明樹脂フィルム基材上に、透明ガスバリア層と、開口部が透明樹脂で充填された金属細線層からなる補助電極層を有する透明導電層積層用フィルムを作製し、さらに、実施例1と同様に、透明導電層を積層することにより透明導電性フィルムを作製した。
 透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
(比較例2)
 実施例1と同様に、厚み6μm、線幅50μm、ピッチ2000μmの格子状の金属細線パターンからなる補助電極層を作製した。
 次に、透明樹脂としてシリコーン系樹脂(信越化学工業社製、品名:KER-2500)を塗布し、金属細線の開口部に透明樹脂を充填することにより透明樹脂層を設け、補助電極層と透明樹脂層とからなる複合層(透明樹脂層は未硬化)を積層した。得られた複合層面と、透明ガスバリア層を有する透明樹脂フィルム基材Bの透明ガスバリア層側の面とを対向させ、複合層を透明ガスバリア層上にラミネートし、熱硬化させた後に複合層から転写用基材を剥離することで、透明樹脂フィルム基材上に、透明ガスバリア層と、開口部が透明樹脂で充填された金属細線層からなる補助電極層を有する透明導電層積層用フィルムを作製し、さらに、実施例1と同様に、透明導電層を積層することにより透明導電性フィルムを作製した。
 透明ガスバリア層を有する透明樹脂フィルム基材B及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
(比較例3)
 実施例1において、透明ガスバリア層を有する透明樹脂フィルム基材Bを、透明ガスバリア層を有さない透明樹脂フィルム基材(東洋紡社製、品名:コスモシャインA4300、水蒸気透過度>1(g/m・day))に変更した以外は、実施例1と同様に、透明導電層積層用フィルム及び透明導電性フィルムを作製した。上記透明ガスバリア層を有さない透明樹脂フィルム基材及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
(比較例4)
 実施例1において、透明ガスバリア層を有する透明樹脂フィルム基材Bを、透明ガスバリア層を有する透明樹脂フィルム基材Aに変更した以外は、実施例1と同様に、透明導電層積層用フィルム及び透明導電性フィルムを作製した。透明ガスバリア層を有する透明樹脂フィルム基材A及び透明樹脂層(膜厚100μm換算)の水蒸気透過度、作製した透明導電性フィルムの表面抵抗率、透明導電層積層用フィルムの二乗平均平方根粗さRq及び透明導電性フィルムのカルシウム腐食距離の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1、2では、透明樹脂層の水蒸気透過度が高い比較例1に比べ、カルシウム腐食距離が著しく小さく、耐腐食性が高いことがわかった。比較例2にいたっては、カルシウムの劣化が著しく大きく、腐食距離の正確な測定が不可となった。
 なお、比較例3、4においてカルシウム腐食距離の測定が不可であったのは、透明ガスバリア層を有さない透明樹脂フィルム基材もしくは透明ガスバリア層を有する透明樹脂フィルム基材Aからの水蒸気透過度が高いことから、それにより腐食の進行が律速(腐食速度大)されたためと考えられる。
 本発明の透明導電層積層用フィルム及び透明導電性フィルムを用いると、透明導電層の低抵抗化が実現できる。また、透明樹脂フィルム基材及び透明樹脂層からの水蒸気透過度が低いため、結果として透明樹脂層と補助電極層とからなる複合層、及び該複合層に積層される透明導電層からの水蒸気透過が抑制されることから、例えば、対向する電極の少なくとも一方の透明導電性フィルムが、本発明の透明導電性フィルムで構成された電子デバイスでは、デバイスの活性層等の性能劣化が抑制され長寿命化が実現できる。これらのことから、有機薄膜太陽電池や有機EL照明等の電子デバイスに好適に用いることができる。
1:透明導電性フィルム
1a:透明導電層積層用フィルム
1b:透明導電層
2:透明樹脂フィルム基材
3:透明ガスバリア層
4:複合層
5:金属層(補助電極層)
6:透明樹脂層
7:転写用基材
8:封止粘着材層
9:ガラス基板
10:カルシウム層
10a:カルシウム層左端(前方部)
10b:カルシウム層左端(後方部)
10c:カルシウム層左端(中央部)
10d:腐食距離
10k:腐食エリア
10p:腐食進行方向
11:カルシウム腐食試験評価用サンプル

Claims (11)

  1.  透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムであって、該透明ガスバリア層を有する該透明樹脂フィルム基材のJIS K7129で規定される40℃×90%RHにおける水蒸気透過度が1.0×10-3(g/m・day)以下、かつ該透明樹脂層100μmあたりの、JIS K7129で規定される40℃×90%RHにおける水蒸気透過度が20(g/m・day)以下である、透明導電層積層用フィルム。
  2.  前記透明樹脂層が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル又はポリ塩化ビニリデンから形成される、請求項1に記載の透明導電層積層用フィルム。
  3.  前記透明ガスバリア層が酸窒化珪素層、無機酸化物層又は無機窒化物層からなる、請求項1に記載の透明導電層積層用フィルム。
  4.  前記複合層の前記金属層と前記透明樹脂層との界面段差を含む表面のJIS-B0601-1994で規定される二乗平均平方根粗さRqが200nm以下である、請求項1に記載の透明導電層積層用フィルム。
  5.  請求項1~4のいずれか1項に記載の透明導電層積層用フィルムにおける複合層上に、透明導電層が積層されてなる、透明導電性フィルム。
  6.  前記透明導電層が、透明導電性酸化物又は導電性有機高分子を含む、請求項5に記載の透明導電性フィルム。
  7.  前記透明導電性酸化物が、インジウム-スズ酸化物(ITO)、又はガリウム-亜鉛酸化物(GZO)であり、導電性有機高分子が、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)[PEDOT:PSS]である、請求項6に記載の透明導電性フィルム。
  8.  前記透明導電性フィルムの透明導電層の表面抵抗率が5(Ω/□)以下である、請求項5~7のいずれか1項に記載の透明導電性フィルム。
  9.  対向する電極の少なくとも一方が前記透明導電性フィルムで構成された電子デバイスであって、該透明導電性フィルムが請求項5~8のいずれか1項に記載の透明導電性フィルムである、電子デバイス。
  10.  透明樹脂フィルム基材上の透明ガスバリア層上に、少なくとも、開口部を有する金属層と該開口部に設けた透明樹脂層とが複合層として積層された透明導電層積層用フィルムの製造方法であって、下記工程(A)、(B)を含む、透明導電層積層用フィルムの製造方法。
    (A)転写用基材上に前記開口部を有する金属層を形成し、さらに該開口部に前記透明樹脂層を形成し複合層を形成する工程
    (B)該複合層を前記透明ガスバリア層上に転写する工程
  11.  前記透明導電層積層用フィルムの前記複合層上に、さらに透明導電層を積層させる工程を含む、請求項10に記載の透明導電性フィルムの製造方法。
PCT/JP2016/052967 2015-03-27 2016-02-01 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム WO2016157987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177026759A KR102606932B1 (ko) 2015-03-27 2016-02-01 투명 도전층 적층용 필름, 그의 제조 방법 및 투명 도전성 필름
CN201680017089.XA CN107405880B (zh) 2015-03-27 2016-02-01 透明导电层叠层用膜、其制造方法及透明导电膜
JP2017509334A JP6627863B2 (ja) 2015-03-27 2016-02-01 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-066837 2015-03-27
JP2015066837 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016157987A1 true WO2016157987A1 (ja) 2016-10-06

Family

ID=57004930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052967 WO2016157987A1 (ja) 2015-03-27 2016-02-01 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム

Country Status (5)

Country Link
JP (1) JP6627863B2 (ja)
KR (1) KR102606932B1 (ja)
CN (1) CN107405880B (ja)
TW (1) TW201638259A (ja)
WO (1) WO2016157987A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081816A (ja) * 2016-11-16 2018-05-24 リンテック株式会社 透明導電積層体の製造方法及び透明導電積層体
WO2018180961A1 (ja) * 2017-03-31 2018-10-04 リンテック株式会社 透明導電性積層体及びその製造方法
WO2018181181A1 (ja) * 2017-03-27 2018-10-04 凸版印刷株式会社 透明導電性ガスバリア積層体及びこれを備えたデバイス
WO2018180963A1 (ja) * 2017-03-30 2018-10-04 リンテック株式会社 ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法
EP3503210A1 (en) * 2017-12-21 2019-06-26 Beijing Juntai Innovation Technology Co., Ltd Heterojunction solar cell and fabrication method thereof
CN111093973A (zh) * 2017-09-06 2020-05-01 富士胶片株式会社 阻气膜及阻气膜的制造方法
WO2022050045A1 (ja) * 2020-09-04 2022-03-10 デクセリアルズ株式会社 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
JP2022043998A (ja) * 2020-09-04 2022-03-16 デクセリアルズ株式会社 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
WO2023238844A1 (ja) * 2022-06-06 2023-12-14 大日本印刷株式会社 集電シート用樹脂フィルム、集電シート用フィルム、集電シート、集電シート付き太陽電池素子、および太陽電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490262B2 (ja) * 2017-05-09 2019-03-27 日東電工株式会社 光透過性導電層付きフィルム、調光フィルムおよび調光装置
CN109986599B (zh) * 2017-12-29 2020-10-02 北京纳米能源与系统研究所 摩擦电光智能皮肤、机械手及机器人
WO2019205494A1 (zh) * 2018-04-27 2019-10-31 北京铂阳顶荣光伏科技有限公司 导电电极膜层和光伏元件
KR102294027B1 (ko) 2018-10-26 2021-08-27 주식회사 엘지화학 배리어 필름
KR102294031B1 (ko) * 2018-10-26 2021-08-27 주식회사 엘지화학 배리어 필름
KR102294026B1 (ko) * 2018-10-26 2021-08-27 주식회사 엘지화학 배리어 필름
KR102300537B1 (ko) 2018-10-26 2021-09-10 주식회사 엘지화학 배리어 필름
CN113631370B (zh) * 2019-03-29 2023-06-09 东丽Kp薄膜股份有限公司 金属化膜及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140750A (ja) * 2007-12-06 2009-06-25 Konica Minolta Holdings Inc 透明導電フィルム
JP2011155155A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 透明導電フィルム、その製造方法及び有機薄膜太陽電池
JP2013016670A (ja) * 2011-07-05 2013-01-24 Fujifilm Corp 透明導電フィルムおよびその製造方法並びに有機薄膜太陽電池
WO2013128932A1 (ja) * 2012-02-29 2013-09-06 富士フイルム株式会社 透明導電フィルム及びそれを備えた有機薄膜太陽電池
JP2014216175A (ja) * 2013-04-25 2014-11-17 リンテック株式会社 透明導電性積層体の製造方法及び透明導電性積層体
JP2015028857A (ja) * 2013-07-30 2015-02-12 ペクセル・テクノロジーズ株式会社 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法
JP2015147362A (ja) * 2014-02-07 2015-08-20 リンテック株式会社 透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイス
JP2015185440A (ja) * 2014-03-25 2015-10-22 コニカミノルタ株式会社 透明導電膜およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615250B2 (ja) 2004-05-20 2011-01-19 藤森工業株式会社 透明電極基板とその製造方法及びこの基板を用いた色素増感型太陽電池
JP5673547B2 (ja) 2009-10-14 2015-02-18 コニカミノルタ株式会社 バリア性透明導電フィルムの製造方法、及び該バリア性透明導電フィルムを用いた有機el素子及び有機太陽電池
JP5343058B2 (ja) * 2010-10-15 2013-11-13 リンテック株式会社 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
US9603268B2 (en) * 2010-11-19 2017-03-21 Konica Minolta, Inc. Gas barrier film, method of producing a gas barrier film, and electronic device
JP5988867B2 (ja) * 2012-12-27 2016-09-07 リンテック株式会社 透明導電性フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140750A (ja) * 2007-12-06 2009-06-25 Konica Minolta Holdings Inc 透明導電フィルム
JP2011155155A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 透明導電フィルム、その製造方法及び有機薄膜太陽電池
JP2013016670A (ja) * 2011-07-05 2013-01-24 Fujifilm Corp 透明導電フィルムおよびその製造方法並びに有機薄膜太陽電池
WO2013128932A1 (ja) * 2012-02-29 2013-09-06 富士フイルム株式会社 透明導電フィルム及びそれを備えた有機薄膜太陽電池
JP2014216175A (ja) * 2013-04-25 2014-11-17 リンテック株式会社 透明導電性積層体の製造方法及び透明導電性積層体
JP2015028857A (ja) * 2013-07-30 2015-02-12 ペクセル・テクノロジーズ株式会社 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法
JP2015147362A (ja) * 2014-02-07 2015-08-20 リンテック株式会社 透明導電性積層体、透明導電性積層体の製造方法、および透明導電性積層体を用いてなる電子デバイス
JP2015185440A (ja) * 2014-03-25 2015-10-22 コニカミノルタ株式会社 透明導電膜およびその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081816A (ja) * 2016-11-16 2018-05-24 リンテック株式会社 透明導電積層体の製造方法及び透明導電積層体
EP3603960A4 (en) * 2017-03-27 2020-03-18 Toppan Printing Co., Ltd. TRANSPARENT CONDUCTIVE GAS BARRIER LAMINATE AND DEVICE PROVIDED WITH SAME
CN110431008B (zh) * 2017-03-27 2022-05-06 凸版印刷株式会社 透明导电性阻气层叠体以及具有该透明导电性阻气层叠体的装置
WO2018181181A1 (ja) * 2017-03-27 2018-10-04 凸版印刷株式会社 透明導電性ガスバリア積層体及びこれを備えたデバイス
US11364704B2 (en) 2017-03-27 2022-06-21 Toppan Printing Co., Ltd. Transparent conductive gas barrier laminate and device including the laminate
CN110431008A (zh) * 2017-03-27 2019-11-08 凸版印刷株式会社 透明导电性阻气层叠体以及具有该透明导电性阻气层叠体的装置
JPWO2018181181A1 (ja) * 2017-03-27 2020-02-06 凸版印刷株式会社 透明導電性ガスバリア積層体及びこれを備えたデバイス
JP7238767B2 (ja) 2017-03-27 2023-03-14 凸版印刷株式会社 透明導電性ガスバリア積層体及びこれを備えたデバイス
WO2018180963A1 (ja) * 2017-03-30 2018-10-04 リンテック株式会社 ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法
JPWO2018180963A1 (ja) * 2017-03-30 2020-02-06 リンテック株式会社 ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法
JP7082972B2 (ja) 2017-03-30 2022-06-09 リンテック株式会社 ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法
WO2018180961A1 (ja) * 2017-03-31 2018-10-04 リンテック株式会社 透明導電性積層体及びその製造方法
CN111093973A (zh) * 2017-09-06 2020-05-01 富士胶片株式会社 阻气膜及阻气膜的制造方法
CN111093973B (zh) * 2017-09-06 2021-12-21 富士胶片株式会社 阻气膜及阻气膜的制造方法
EP3503210A1 (en) * 2017-12-21 2019-06-26 Beijing Juntai Innovation Technology Co., Ltd Heterojunction solar cell and fabrication method thereof
JP2022043998A (ja) * 2020-09-04 2022-03-16 デクセリアルズ株式会社 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
JP7230131B2 (ja) 2020-09-04 2023-02-28 デクセリアルズ株式会社 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
WO2022050045A1 (ja) * 2020-09-04 2022-03-10 デクセリアルズ株式会社 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
WO2023238844A1 (ja) * 2022-06-06 2023-12-14 大日本印刷株式会社 集電シート用樹脂フィルム、集電シート用フィルム、集電シート、集電シート付き太陽電池素子、および太陽電池

Also Published As

Publication number Publication date
TW201638259A (zh) 2016-11-01
KR20170131440A (ko) 2017-11-29
JP6627863B2 (ja) 2020-01-08
JPWO2016157987A1 (ja) 2018-01-18
CN107405880A (zh) 2017-11-28
CN107405880B (zh) 2020-06-30
KR102606932B1 (ko) 2023-11-27

Similar Documents

Publication Publication Date Title
JP6627863B2 (ja) 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム
TWI757255B (zh) 透明導電層層合用薄膜、該製造方法及透明導電性薄膜
JP5548428B2 (ja) 透明導電性フィルムの製造方法及び透明導電性フィルム
EP2567421B1 (en) METHOD OF MANUFACTURE of COMPOSITE ELECTRODE
US20150179973A1 (en) Electro-optic component and method of manufacturing the same
JP5814843B2 (ja) フレキシブル有機電子デバイス
KR102257729B1 (ko) 적층 필름, 및 복합 필름의 제조 방법
US10333100B2 (en) Organic electroluminescent device
EP2696384A1 (en) Electrode sheet for organic device, organic device module, and method for producing same
JP6816916B2 (ja) 透明導電積層体の製造方法及び透明導電積層体
JP5606450B2 (ja) 電気光学素子およびその製造方法
WO2018180961A1 (ja) 透明導電性積層体及びその製造方法
WO2018180963A1 (ja) ガスバリア性積層体、封止体、導電性積層体、及び導電性積層体の製造方法
CN109585056A (zh) 一种复合薄膜的制备方法
CN114335379A (zh) 一种银纳米线透明电极及银纳米线透明电极在oled上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509334

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026759

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771871

Country of ref document: EP

Kind code of ref document: A1