[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016148141A1 - Layered film, liquid crystal display using same, touch panel, and organic el display - Google Patents

Layered film, liquid crystal display using same, touch panel, and organic el display Download PDF

Info

Publication number
WO2016148141A1
WO2016148141A1 PCT/JP2016/058157 JP2016058157W WO2016148141A1 WO 2016148141 A1 WO2016148141 A1 WO 2016148141A1 JP 2016058157 W JP2016058157 W JP 2016058157W WO 2016148141 A1 WO2016148141 A1 WO 2016148141A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated film
absorber
film
less
Prior art date
Application number
PCT/JP2016/058157
Other languages
French (fr)
Japanese (ja)
Inventor
合田亘
高橋弘造
松尾雄二
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177024475A priority Critical patent/KR102534378B1/en
Priority to CN201680015977.8A priority patent/CN107407755B/en
Priority to JP2016515553A priority patent/JP6809222B2/en
Publication of WO2016148141A1 publication Critical patent/WO2016148141A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a laminated film that efficiently cuts ultraviolet light and blue light, a liquid crystal display using the same, a touch panel, and an organic EL display.
  • UV conventional ultraviolet
  • blue light absorbers tend to be more yellowish in the color transmitted through the film, and are avoided in terms of design (design) and color design. There was a problem.
  • bleed out means that the sublimation product has high sublimation properties, and a low molecular weight additive having a low melting point is extruded together with a high molecular weight resin (polymer) at a high temperature. Phenomenon that affects the quality and physical properties that lead to defects and defects of products due to pyrolysis products.
  • the UV curing type using a crosslinking agent has a problem in that when a UV absorber is added, a curing reaction due to crosslinking is difficult to occur, and the matrix resin that should be cured does not solidify.
  • the coating layer is made thin, it is necessary to add a high concentration of UV absorber, and there is a problem that the tendency to not solidify becomes stronger.
  • an ultraviolet cut film has been proposed by alternately laminating different transparent resin layers at the optical wavelength level without using a UV absorber and using a light interference reflection phenomenon (Patent Document 1).
  • the optical interference reflection phenomenon has a problem that the interference reflection wavelength shifts depending on the incident angle of light, and has no shielding property against light entering from all directions, and cannot completely protect or prevent deterioration of the human body and members. Had a problem.
  • the resin itself has a problem of deterioration.
  • a light-stable product including a single-layer or multi-layer polyester film in which a UV absorber and a light stabilizer are used together has been proposed for the purpose of preventing resin deterioration even after long-term exposure to ultraviolet rays outdoors (Patent Document 2).
  • Patent Document 2 This is an invention of a combination of a light stabilizer and a UV absorber, which is not a multi-layer structure or a UV shielding property relating to a UV absorber, but merely for extending the life of resin degradation.
  • UV absorber addition to the single layer film by the conventional melt extrusion process and the bleeding out problem of UV absorber has arisen.
  • Patent Document 3 This is a UV absorber added at a high concentration to an optical layer or a non-optical protective layer provided on the film surface in order to prevent deterioration of the UV reflective multilayer optical film itself.
  • the function is to separate reflection and absorption mainly by the film structure.
  • the present invention has the following configuration. That is, a laminated film in which layers of thermoplastic resin A (A layer) and layers of thermoplastic resin B (B layer) are alternately laminated at least 50 layers, and at least one of layer A or layer B
  • the layer of the film contains a dye that absorbs blue light and / or UV absorber, or both, and the product of the film thickness and the concentration of dye or UV absorber that absorbs blue light or both is 0.35 [ ⁇ m ⁇ % / 100] or less, and a maximum reflectance of 15% or more and a minimum transmittance of 70% or less at a wavelength of 300 nm to 500 nm.
  • a dye or UV absorber having a molecular weight exceeding 500 is added only to the B layer, and the lamination ratio is 1 or less, and the dye or UV absorbing blue light from the viewpoint of shielding properties.
  • the long wavelength absorption edge of the absorber is preferably larger than the long wavelength edge of the reflection band due to interference reflection based on the layered structure of the layers.
  • the present invention combines the reflectivity based on interference reflection and the absorptivity by an absorbent, and creates a synergistic effect of both, thereby sharply shielding light with a wavelength of 460 nm or less or with a wavelength of 380 nm or less, and blocking blue light. Achieving low concentration of absorbing dye or UV absorber. In particular, it solves bleed-out and film breakage, which are problems in film formation of UV shielding films containing pigments and UV absorbers that absorb blue light, and has high UV and blue light even when the thickness is thin. A laminated film maintaining the shielding property can be provided.
  • the shielding here includes the concept of reflection and absorption, and the scale is expressed by transmittance.
  • (a) is a schematic front view of an apparatus, (b), (c), (d) is LL ', MM, respectively. It is sectional drawing of the resin flow path cut
  • dye or a UV absorber, and the long wavelength edge of the reflective band of a laminated film Explanatory drawing of spectral transmission spectrum and spectral reflection spectrum of laminated film containing dye Spectral transmission spectrum and spectral reflection spectrum of laminated film containing UV absorber
  • the laminated film of the present invention is a laminated film obtained by alternately laminating at least 50 layers of layers composed of a thermoplastic resin A (A layer) and layers composed of a thermoplastic resin B (B layer).
  • the product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light, or both is included in at least one of the layers B, which contains a dye or UV absorber that absorbs blue light, or both. It is 0.35 [ ⁇ m ⁇ weight% / 100] or less, and it is necessary that the maximum reflectance is 15% or more and the minimum transmittance is 70% or less at a wavelength of 300 to 500 nm.
  • thermoplastic resin used in the laminated film of the present invention examples include chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1) and polyacetal, ring-opening metathesis polymerization of norbornenes, addition polymerization, and other olefins.
  • Biodegradable polymers such as alicyclic polyolefin, polylactic acid, and polybutyl succinate, polyamides such as nylon 6, nylon 11, nylon 12, and nylon 66, aramid, polymethyl methacrylate, polychlorinated Vinyl, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene acrylonitrile copolymer, styrene copolymer polymethyl methacrylate, polycar -Polyesters such as polypropylene, polyethylene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polyarylate, 4 Fluorinated ethylene resin, tri
  • polyester from the viewpoint of good extrusion molding, excellent chemical resistance, strength, heat resistance and transparency, and versatility.
  • polyester from the viewpoint of good extrusion molding, excellent chemical resistance, strength, heat resistance and transparency, and versatility.
  • These may be a homopolymer, a copolymer, or a mixture of a plurality of polymers.
  • the polyester is preferably a polyester obtained by polymerization from an aromatic dicarboxylic acid or aliphatic dicarboxylic acid and a diol or an ester-forming derivative thereof.
  • aromatic dicarboxylic acid for example, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyl
  • aliphatic dicarboxylic acid examples include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof.
  • terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and cyclohexanedicarboxylic acid that exhibit high refractive index and rigidity are preferable.
  • These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol.
  • fluorene ethylene glycol
  • 1,4-cyclohexanedimethanol 1,4-cyclohexanedimethanol
  • spiroglycol isosorbade
  • bisphenol A ethylene oxide are preferably used from the viewpoint of a high glass transition point and low birefringence.
  • these diol components may be used alone or in combination of two or more.
  • thermoplastic resin A is preferably polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, or polyhexamethylene terephthalate from the viewpoint that orientation crystallization can be imparted by biaxial stretching and heat treatment. From the viewpoint of crystallinity, it is preferable to use these copolymers having a copolymerization component of 15 mol% or less.
  • Dicarboxylic acids for copolymerization are terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, and diols are fluorene, ethylene glycol, 1,4-cyclohexanedimethanol, spiroglycol, isosorbade, and bisphenol A ethylene oxide.
  • a quaternary copolymer obtained by combining these may be used. These may be a single copolymer copolymer, or a polymer alloy of a homopolymer and the copolymer.
  • thermoplastic resin B it is preferable to use a copolymer of the polyester resin having 5 to 60 mol% of the copolymer component.
  • the copolymerization rate is high, it is likely to become amorphous, and the UV absorber and the dye tend to stay in the amorphous region.
  • the heat treatment melts in the layer and the refractive index becomes isotropic, the in-plane refractive index difference between the A layer and the B layer increases, and the refractive index difference is also increased with respect to the viewing angle. Therefore, the reflectance can be improved.
  • the copolymerization component is 15 mol% or more and 50 mol% or less.
  • the in-plane refractive index of the B layer is lower than that of the A layer. Refraction of light according to the law occurs at the interface between the A layer and the B layer. At that time, the optical path length in the B layer is longer than that in the A layer. That is, in the laminated film of the present invention, since the B layer is present, the effect of the dye that absorbs blue light and the UV absorber with respect to the viewing angle that is obliquely incident light is composed of only the thermoplastic resin A. Compared to a single layer film, the optical path length is increased, and the absorption performance is improved according to the Lambert-Beer law. Furthermore, in the present invention, since light absorption and interference reflection occur simultaneously, absorption resonance occurs, and a synergistic effect of blue light wavelength and UV shielding occurs.
  • the laminated film of the present invention needs to be a laminated film obtained by alternately laminating at least 50 layers of layers made of thermoplastic resin A (A layer) and layers made of thermoplastic resin B (B layer). This is because if it is less than 50 layers, the reflectivity due to interference reflection is small, and a synergistic effect of the shielding performance of blue light and ultraviolet rays hardly occurs. More preferably, it is 150 layers or more, More preferably, it is 250 layers or more. If the number of layers is too large, the entire thickness of the film becomes thick, so 600 layers or less are preferable. More preferably, it is 300 layers or less.
  • the laminated film of the present invention comprises a layer (A layer) composed of a thermoplastic resin A containing a dye that absorbs blue light, a UV absorber, or both in at least one of the A layer and the B layer. It is a laminated film in which at least 50 or more layers made of plastic resin B (B layer) are alternately laminated, and the product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light, or both is contained. It must be 0.35 or less.
  • the dye absorbing blue light means a dye having absorption characteristics in a wavelength range of 400 to 500 nm centered around 450 nm which is the wavelength of blue light.
  • the pigments here can be classified into pigments (organic / inorganic) and dyes.
  • the laminated film of the present invention is preferably a pigment exhibiting yellow, orange or even blue color from the viewpoint of reflecting in the wavelength region of 300 nm to 500 nm and effectively shielding blue light.
  • the pigments can be roughly classified into inorganic pigments, organic pigments, and classical pigments.
  • As the yellow inorganic pigment chrome yellow, zinc yellow, cadmium yellow, titanium yellow, barium yellow, cobalt yellow, ocher, and fillit yellow are preferable.
  • the blue inorganic pigment ultramarine blue and bitumen are preferable.
  • a pigment is preferable in terms of moisture and heat resistance, and an organic pigment is particularly preferable from the viewpoint of affinity with a thermoplastic resin.
  • Organic pigments are roughly classified into azo pigments, phthalocyanine pigments, dyed lakes, heterocyclic pigments, and the like.
  • Azo pigments are classified into insoluble azo pigments, azo lake pigments, condensed azo pigments, and metal complex azo pigments. Further, insoluble azo pigments are classified into ⁇ -naphthol-based, naphthol-AS-based, acetoacetate arylamide-based insoluble monoazo pigments, acetoacetate arylamide-based, and pyrazolone-based insoluble disazo pigments. Azo lake pigments are classified into ⁇ -naphthol type and ⁇ -oxynaphthoic acid type.
  • the phthalocyanine pigment is classified into copper phthalocyanine, halogenated copper phthalocyanine, metal-free phthalocyanine, and copper phthalocyanine lake.
  • the heterocyclic pigments are classified into anthoraquinone pigments, thioindigo pigments, perinone pigments, perylene pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments, quinophthalone pigments, and isoindoline pigments. From the viewpoint of shielding light steeply with respect to the wavelength, anthoraquinone pigments and isoindoline pigments are preferred.
  • nitrone pigments examples include nitrone pigments, alizarin lakes, metal complex azomethine pigments, aniline black, alkali blue, and natural organic pigments.
  • organic pigments yellow is preferably anthraquinone, auramin lake, quinophthalone, or monoazobenzenesulfonate-based pigment, and blue is preferably a copper phthalocyanine pigment from the viewpoint of heat resistance and difficulty in bleeding out.
  • the UV absorber of the present invention is preferably a benzophenone-type, benzotriazole-type, triazine-type, or benzoxazine-type known as typical UV absorbers that absorb ultraviolet rays and convert them into thermal energy.
  • benzophenone series include 4-methoxy-2-hydroxybenzophenone: molecular weight 228, 4-methoxy-2-hydroxybenzophenone-5-sulfonic acid: molecular weight 308, 2,4-dihydroxybenzophenone: molecular weight 214, 4,4 ' -Dimethoxy 2,2'-dihydroxybenzophenone: molecular weight 274, 4,4'-dimethoxy-2,2'-dihydroxy-5,5'-disulfonic acid benzophenone disodium: molecular weight 478, 2,2'-4,4 ' -Tetrahydroxybenzophenone: molecular weight 246, sodium hydroxymethoxybenzophenone sulfonate: molecular weight 376, oc
  • triazines include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol: molecular weight 426, 2- [4,6- Bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol: molecular weight 509, 2,4,6-tris (2-hydroxy-4- Hexyloxy-3-methylphenyl) -1,3,5-triazine: molecular weight 700, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2- Ethylhexanoyloxy) ethoxy] phenol: molecular weight 512, 1,6-hexanediamine, N, N′-bis (1,2,2,6,6-pentamethyl-4-piperidyl), polymers morpholine-2,4, Examples include, but are not limited to, 6-trich
  • the laminated film of the present invention preferably contains a triazine skeleton or a benzotriazole skeleton having a UV absorber molecular weight of 500 or more. This is because when the molecular weight is 500 or more, the amount of sublimation is small when melt-extruded, and there is little influence on the contamination of the polymer and film production lines and the quality of the film. Moreover, it is preferable that a functional group has polar groups, such as a hydroxyl group, from a compatible viewpoint with polyester.
  • the combined use of the dye for absorbing blue light of the present invention and a UV absorber is preferable from the viewpoint of functional separation and wide blocking of the wavelength of light. It is preferable to use two or more types having different absorption peaks.
  • the combination to be used in combination is preferable because the absorption peak wavelength is different by 30 nm or more, thereby efficiently shielding light of different wavelengths.
  • the UV absorber having a higher molecular weight and lower melting point suppresses the other bleed-out from the viewpoint of the trapping effect that prevents the UV absorber having a higher melting point and higher crystallinity from appearing on the surface.
  • the low melting point side is preferably 160 ° C. or lower, while the high melting point side is preferably 190 ° C. or higher.
  • the product of the film thickness of the laminated film of the present invention and the contained concentration of the dye or UV absorber that absorbs blue light, or both is 0.35 [ ⁇ m ⁇ weight% / 100] or less.
  • the product of the film thickness and the dye or UV absorber that absorbs blue light, or the concentration of both, represents the absolute amount of the dye or UV absorber in the laminated film. It was found that this value is an important parameter affecting bleed-out as well as the type of dye and UV absorber. More preferably, it is 0.25 [ ⁇ m ⁇ weight% / 100] or less, and further preferably 0.15 [ ⁇ m ⁇ weight% / 100] or less. If it exceeds 0.35 [ ⁇ m ⁇ weight% / 100], bleeding out tends to occur, and a synergistic effect of absorption efficiency due to interference reflection becomes difficult to develop.
  • the film thickness is preferably 50 to 3 ⁇ m. More preferably, it is 35 to 5 ⁇ m. More preferably, it is 20 to 6 ⁇ m. If the thickness is too thin, the number of layers required for interference reflection of the wavelength of UV to blue light cannot be secured. Moreover, it is because handling becomes difficult. On the other hand, if it is too thick, the absolute value of the added amount of the dye or UV absorber that absorbs blue light becomes large at the same concentration, so that it becomes easy to bleed out and it becomes difficult to reduce the thickness of the laminated film. Sometimes.
  • the concentration of the absorbent as the whole film is preferably 0.1% by weight or more and 3% by weight or less. Since UV absorbers and organic dyes generally have a low melting point, they bleed out during melt extrusion. The higher the concentration, the easier it is to bleed out, so the lowest possible concentration is preferred. Preferably, they are 0.1 weight% or more and 2.0 weight% or less. More preferably, it is 0.1 wt% or more and 1.5 wt%. More preferably, they are 0.1 weight% or more and 1.0 weight% or less. Most preferably, it is 0.1 wt% or more and 0.6 wt% or less.
  • dye or UV absorber which absorbs blue light, or both may be contained only in A layer, only B layer, and both A layer and B layer.
  • the UV absorber tends to stay in the B layer.
  • the B layer is vulnerable to ultraviolet rays as compared to the A layer that undergoes orientation crystallization. Therefore, from the viewpoint of ultraviolet deterioration and bleed out, it is preferable that the B layer contains a large amount.
  • the laminated film of the present invention needs to have a maximum reflectance of 15% or more and a minimum transmittance of 70% or less at a wavelength of 300 nm to 500 nm. If the reflectance is not more than 15% at a certain wavelength, there is little synergistic effect between interference reflection and the dye or the absorbent, and the contribution of the absorbent is dominant. On the other hand, when 90% or more is reflected, reflection of less than 70% is preferable, and reflection of less than 50% is more preferable from the viewpoint that almost no contribution of the dye or UV absorber is present. More preferably, the reflection is 40% or less.
  • the maximum reflectance at a wavelength of 400 nm to 500 nm is preferably 15% or less from the viewpoint of being colorless and highly transparent. If there is a reflection peak exceeding a reflectance of 15% at a wavelength of 400 nm or more, the color of the laminated film when viewed with transmitted light is strong in yellow, and the appearance of purple to blue is strong in reflected light. In particular, this leads to a decrease in total light transmittance and in-plane color unevenness.
  • the reflection wavelength of the reflection peak having a reflectance exceeding 15% is preferably 400 nm or less, or 390 nm or less, more preferably 380 nm or less, and further preferably 360 nm or less. Most preferably, it is 330 nm or less.
  • An example of spectral reflection and spectral transmission spectrum patterns representing these aspects is shown in FIG.
  • FIG. 1 shows an example of a structure in which a laminated film according to the present invention and a conventional single layer film are added with a dye or a UV absorber that absorbs blue light, or both.
  • the present invention will be described in detail with reference to FIG.
  • 50 layers or more of layers (A layer) 1 made of thermoplastic resin A and layers (B layer) 2 made of thermoplastic resin B are alternately laminated.
  • FIG. 1A when the laminated film 5 is irradiated with incident light 3 having a wavelength in the blue to UV range, a part of the light is reflected at the interface because there is a difference in refractive index between different resin layers. It becomes light 4.
  • incident light 3 having a wavelength in the blue to UV range
  • a dye or UV absorber that absorbs blue light, or both 6 are included in a layer (B layer) 2 made of a thermoplastic resin B, and absorption occurs in this layer. That is, the present invention is a physical phenomenon in which reflection and absorption occur simultaneously in a region other than surface reflection.
  • the conventional single-layer film shown in FIG. 1B only absorbs light except for surface reflection with respect to incident light 3 having a wavelength in the blue to UV range. This absorption phenomenon is generally known to follow Lambert's law expressed by the following formula (1).
  • the laminated film 5 of the present invention is surprisingly different from the single layer film governed by the characteristics of the light absorber, and surprisingly the formula (1) does not hold. It has been found that the laminated film can greatly reduce the concentration of the light absorber because interference reflection is added compared to the amount of the light absorber added to the single layer film. That is, the minimum transmittance of incident light is 70% at a wavelength of 300 to 500 nm even when the product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light, or both is 0.35 or less. It is as follows.
  • the shielding property here can be measured with the minimum transmittance in the spectral transmittance spectrum. That is, a minimum transmittance of 50% at a wavelength of 300 to 500 nm means that 50% of incident light is shielded.
  • the transmittance at a wavelength of 370 nm is preferably 5% or less. If it exceeds 5%, the UV shielding becomes insufficient, so when used as a polarizer protective film for a polarizing plate, the PVA or liquid crystal layer that is a polarizer cannot be protected during the production process. More preferably, it is 4% or less, and more preferably 3% or less.
  • the transmittance is most preferably 2% or less over the entire wavelength range of 370 nm to 300 nm.
  • the laminated structure of the laminated film of the present invention can be easily realized by the same method as described in the paragraphs [0053] to [0063] of JP-A-2007-307893.
  • the gap and length of the slit plate are different because of design values that determine the layer thickness.
  • the laminating apparatus 7 shown in FIG. 2 has the same three slit plates as the apparatus described in Japanese Patent Application Laid-Open No. 2007-307893.
  • An example of the layer thickness distribution of the laminated structure obtained by the laminating apparatus 7 is shown in FIG.
  • the laminated structure has a layer thickness gradient structure 11 and a slit plate 72 by a resin laminate flow formed by the slit plate 71.
  • the three inclined structures are the layered gradient structure 12 formed by the laminated flow of the resin and the layered inclined structure 13 formed by the laminated resin flow formed by the slit plate 73. Further, as shown in FIG.
  • one inclined structure is opposite in direction to any other inclined structure.
  • the inclined structure formed by one slit plate has a layer thickness distribution in which the resin A and the resin B are alternately laminated, and an average layer thickness distribution 21 of the layer made of the adjacent resin A and the layer made of the resin B. expressed.
  • the lamination ratio can be easily adjusted by the ratio of the extrusion amounts of the resin A and the resin B of the two extruders.
  • the number of layers and the thickness of the laminated film are adjusted so that the average layer thickness is in the range of 40 nm to 80 nm in order to strongly reflect light in the UV to blue wavelength region.
  • the average layer thickness is the average layer thickness of the layer pair of the adjacent A layer and B layer. This operation is sequentially performed on all the layers of the laminated film, and the layer thickness distribution obtained for the layer pair number is defined as the average layer thickness distribution.
  • the average layer thickness distribution 21 is , ⁇ (DA 1 + dB 1 ) / 2, (dA 2 + dB 2 ) / 2,... (DA N + dB N ) / 2) ⁇ , respectively.
  • N represents a layer number or a layer pair number, which is the order of layers. Since there are one pair of layer pairs, that is, the A layer and the B layer, about half of the number of layers is generally the total number of layer pairs.
  • d represents the layer thickness
  • the alphabet represents the resin layer.
  • FIG. 3 shows the average layer thickness distribution of the laminated film of the present invention.
  • the laminated film of the present invention interferes and reflects light having a wavelength less than that of blue light. Therefore, the maximum average layer thickness of the average layer thickness means an average layer thickness that reflects 500 nm or less when converted to a reflection wavelength using the formula (5).
  • the maximum average layer thickness in the polymer structure of the present invention is preferably 80 nm or less.
  • interference-reflecting UV light having a wavelength of 400 nm or less it is preferably 60 nm. From the viewpoint of requiring colorless and transparent in the UV shielding film, an average layer thickness of 58 nm or less at which the wavelength at the long wavelength end of the reflection band is 380 nm or less is more preferable.
  • the resin flow having a laminated structure that flows out from each slit plate constituting the laminating apparatus 7 flows out from the outlets 11L, 12L, and 13L of the laminating apparatus, and then the merger 8 Then, rearrangement is performed in the cross-sectional shapes of 11M, 12M, and 13M shown in FIG.
  • the slit plate has a single structure, there is no rearrangement.
  • the length in the film width direction of the cross section of the flow path is widened inside the connecting pipe 9 and flows into the base 10, and further widened by the manifold and extruded from the lip of the base 10 into a sheet in a molten state.
  • the stretching method at this time is preferably biaxially stretched by a known sequential biaxial stretching method or simultaneous biaxial stretching method from the viewpoint of realizing high reflectance, thermal dimensional stability, and large area.
  • the known biaxial stretching method may be a method of stretching in the width direction after stretching in the longitudinal direction, a method of stretching in the longitudinal direction after stretching in the width direction, and a plurality of stretching in the longitudinal direction and stretching in the width direction. You may carry out in combination.
  • the stretching temperature and the stretching ratio can be appropriately selected.
  • the stretching temperature is 80 ° C. or more and 150 ° C. or less
  • the stretching ratio is 2 times. It is preferably 7 times or more.
  • the stretching method in the longitudinal direction is performed using a change in the peripheral speed between the rolls.
  • the well-known tenter method is utilized for the extending
  • the simultaneous biaxial stretching method the film is conveyed while being gripped at both ends by a simultaneous biaxial tenter and stretched simultaneously and / or stepwise in the longitudinal direction and the width direction. Stretching in the longitudinal direction is achieved by increasing the distance between the clips of the tenter and in the width direction by increasing the distance between the rails on which the clips run.
  • the tenter clip subjected to stretching and heat treatment in the present invention is preferably driven by a linear motor system.
  • a linear motor system there are a pantograph method, a screw method, etc.
  • the linear motor method is excellent in that the stretching ratio can be freely changed because the degree of freedom of each clip is high.
  • the retardation of the laminated film of the present invention is preferably 1 nm or more and 400 nm or less from the viewpoint of suppressing rainbow unevenness. In order to make it 1 nm or more and 400 nm or less, it is necessary to equalize the orientation state of the polymer chains in the vertical and horizontal directions. From the viewpoint of reducing the retardation and thickness unevenness of the laminated film of the present invention, the longitudinal stretching temperature is 95 ° C. or more and 105 ° C. or less, the longitudinal stretching ratio is 3 to 3.6 times, and the transverse stretching temperature is 100 ° C. or more and 140 ° C. or less. A combination of draw ratios of the transverse draw ratio of 3.4 to 4.6 times is preferable.
  • the longitudinal stretching temperature is 130 ° C. or higher and 160 ° C. or lower
  • the lateral stretching temperature is 140 ° C. or higher and 160 ° C. from the viewpoint of high glass transition point.
  • the following is preferred.
  • the phase difference is high, brightness and color spots appear on the display. More preferably, they are 150 nm or less and 1 nm or more, More preferably, they are 100 nm or less and 1 nm or more.
  • the phase difference of the laminated film of the present invention is 4000 nm or more and 20000 nm or less as an opposite measure for obtaining a similar effect.
  • a combination of uniaxial stretching of 4 times or more in the longitudinal or lateral direction, or a combination of stretching ratios of 2.8 times or less and 4.5 times or more in width is preferable.
  • the uniaxial stretching is 5 times or more.
  • the stretched film is then heat treated in a tenter. This heat treatment is generally performed at a temperature higher than the stretching temperature and lower than the melting point.
  • polyester it is preferably carried out in the range of 200 ° C to 250 ° C.
  • the laminated film of the present invention has a layer (A) comprising a thermoplastic resin A that reflects at least part of light in the wavelength range, wherein the absorption peak wavelength of a dye or UV absorber that absorbs blue light is 300 nm to 500 nm.
  • Layer) and a layer made of thermoplastic resin B (layer B) the average value of the layer thickness of a pair of layers is 40 nm to 80 nm, and the layer pair becomes a reflection wall for blue light and UV light. It is preferable that at least two reflection walls exist at different positions in the film thickness direction.
  • the absorption peak wavelength indicates a maximum value of the extinction coefficient, and is preferably a wavelength that indicates the maximum value of the extinction coefficient.
  • the maximum value of the extinction coefficient of the preferred UV absorber is shown below.
  • an anthraquinone-based, isoindolinone-based, quinophthalone-based, or monoazobenzenesulfonate-based organic pigment is preferable because it has a maximum absorption at a wavelength of 380 to 500 nm. You may use combining these.
  • Average layer thickness of a pair of layers composed of a layer (A layer) made of thermoplastic resin A that reflects at least part of light having a wavelength of 300 nm to 500 nm and a layer (B layer) made of thermoplastic resin B It will be described in detail that the value is 40 nm to 80 nm and the layer pair becomes a reflection wall of blue light or UV light.
  • the light incident angle ⁇ is in the range of 0 to 60 degrees, the following formulas (3) and (4) are satisfied, and the following formula (5) is satisfied particularly when the incident light is perpendicular to the laminated film. To do.
  • the reflection wavelength ⁇ based on the following formula (5) is 300 to 500 nm
  • at least one or more layer pairs of dA and dB satisfying the formula (5) exist in the layer thickness distribution of the laminated film. It means to do. Since the equation (5) is satisfied, this layer pair becomes a reflection wall of blue light or UV light, and it means that the average layer thickness is in the range of 80 nm to 40 nm. This can be calculated and confirmed from the layer thicknesses of the A layer and the B layer which can be measured by cross-sectional TEM observation. From the viewpoint of reflection, it is preferably the presence of a layer pair having an average layer thickness of 80 nm to 40 nm of 10 sets or more, more preferably 30 sets or more.
  • Expressions (3) to (5) are expressions of the reflection wavelength ⁇ in a two-layer model in which a resin A layer (A layer) and a resin B layer (B layer) are stacked.
  • 2 ⁇ (nA ⁇ dA ⁇ cos ⁇ A + nB ⁇ dB ⁇ cos ⁇ B ) ⁇ (3)
  • n is a refractive index
  • d is a layer thickness
  • is an incident angle (an angle between an incident vector and an interface normal vector)
  • alphabets A and B are A layer and B layer, respectively. Show. This will be described in detail with reference to FIGS.
  • the A layer is biaxially stretched polyethylene terephthalate
  • the B layer is copolymerized polyethylene terephthalate
  • the respective refractive indexes are 1.66 and 1.58
  • the same operation is performed from a wavelength of 300 to 500 nm, and a set of necessary layer thicknesses is sequentially obtained.
  • Reflecting the obtained average layer thickness distribution if the obtained average layer thickness is at least one set in the layer thickness distribution, preferably 10 sets or more continuously, a reflection wall is obtained.
  • 300 to 500 nm which is the wavelength of UV to blue light, it is preferable that at least two or more reflection walls exist at different positions in the film thickness direction.
  • the reflection wavelength is 389 nm.
  • the value of the average layer thickness 22 that reflects UV light having a wavelength of 300 nm is 46 nm, as shown in FIG. To do.
  • Each inclined structure also has a reflecting wall. Therefore, there are three reflecting walls in the film thickness direction in FIG. 3A and two reflecting walls in FIG. 3B.
  • the presence of at least two or more reflective walls at different positions in the film thickness direction means that the layer number or the layer pair number is different and at least two or more layer pairs having the same or close average layer thickness exist in the laminated film. Means that. It is preferable that there are at least 10 or more layer pairs between layer pairs having the same or close average layer thickness. More preferably, the number is 30 or more.
  • FIG. 4 schematically illustrates a synergistic effect of reflection and absorption in incident light 3 having a certain wavelength. Since two or more reflection walls 23 exist at different positions in the film thickness direction, the incident light 3 is confined between the two reflection walls 23, so that light absorption occurs efficiently.
  • FIG. 4A shows a case where there are three reflecting walls 23, and FIG. 4B shows a case where there are two reflecting walls 23. It has been found that the greater the number of reflection walls, the greater the light confinement effect, and thus the synergistic effect of improving the absorption efficiency of the blue light and UV absorbers added to the resin layer.
  • the long wavelength absorption edge of the dye or UV absorber that absorbs blue light is preferably larger than the long wavelength edge of the reflection band due to interference reflection based on the laminated structure of the layers.
  • Spectral transmission spectrum 81 of the simulation result 80 of the spectral reflectance spectrum of the laminated film that interference-reflects UV to blue light and the monolayer film containing the dye of anthoraquinone pigment that absorbs blue light in cyclohexanedimethanol copolymerized polyethylene terephthalate Is shown in FIG.
  • the horizontal axis represents wavelength W (nm)
  • the left vertical axis represents transmittance T (%)
  • the right vertical axis represents reflectance R (%).
  • the refractive index of the A layer was 1.66
  • the refractive index of the B layer was 1.55.
  • the long wavelength absorption edge 83 means a wavelength at which absorption starts in the spectral transmission spectrum of FIG. 8, and is obtained as an intersection of tangent lines before and after the start of absorption.
  • the contact point for deriving the tangent is an inflection point when the transmission spectrum is differentiated.
  • the long wavelength end 82 of the reflection band due to interference reflection means the wavelength at which reflection starts, and is obtained in the same manner.
  • intersections between the tangent lines of the respective inflection points and the baselines of the transmittance and the reflectance are the long wavelength absorption ends and the long wavelength ends of the reflection bands. Further, when the light shielding effect by the dye or UV absorber is high and the long wavelength end of the reflection band cannot be clearly derived, the reflection peak 86 seen on the long wavelength side shown in FIG. 9 may be used.
  • FIG. 9 explains the spectral transmission spectrum and spectral reflection spectrum of a laminated film containing a pigment.
  • the hatched reflection region 84 is efficiently converted into absorption in accordance with the absorption characteristics of the dye, and the reflection of that portion disappears.
  • the original transmission spectrum 81 completely blocks the speckled transmission region 85 due to reflection from the original reflection spectrum 80. In this way, a slight reflection peak 86 on the long wavelength side that has not disappeared due to the absorption characteristics of the dye is defined as the long wavelength reflection end.
  • the long wavelength absorption edge of the dye or UV absorber that absorbs blue light is the long wavelength of the reflection band due to interference reflection based on the layered structure of the layer It can be considered larger than the edge.
  • the wavelength at the long wavelength end of the reflection band due to interference reflection based on the layered structure of the layer is compared with the long wavelength absorption end of the dye or UV absorber that absorbs blue light. It is preferably 10 nm or less, and more preferably 20 nm or more.
  • the reflection peak 87 on the short wavelength side that occurs when the absorption characteristic of the UV absorber on the short wavelength side is weak is the short wavelength end of the reflection band due to interference reflection.
  • the half width of the reflection spectrum showing the maximum reflectance in the wavelength range of 300 nm to 500 nm of the laminated film of the present invention is preferably less than 30 nm. This is because when the half width is 30 nm or more, reflection is dominant in the UV shielding property, and the synergistic effect due to the combined use with the UV absorber is small. Further, if there is a maximum reflection spectrum having a wide half-value width in the vicinity of 400 nm, it causes coloring. Preferably, it is less than 20 nm.
  • FIG. 10 shows an example in which the full width at half maximum is less than 30 nm, which is a preferred embodiment.
  • the maximum reflectance at a reflection wavelength of 311 nm is 38%, and its half-value width is 28 nm.
  • the half-value width is a distance between reflection wavelengths that takes a half value of the maximum reflectance. If the reflectance is too low, the full width at half maximum is widened. Therefore, the full width at half maximum in the present invention is applied to a maximum reflectance of 25% or more and 90% or less.
  • the full width at half maximum of the reflection spectrum having a maximum reflectance of less than 25% and 15% or more is considered to be absent.
  • the half width is determined by the relationship between the absorption characteristics of the UV absorber and the film resin and the reflection characteristics of the laminated film. When the full width at half maximum is large, it indicates that there is little synergistic effect with the absorption characteristic, and it means that there is little overlap between the reflection band and the absorption band.
  • the molecular weight of the UV absorber added to the laminated film of the present invention preferably includes a triazine skeleton or a benzotriazole skeleton that is 500 or more. This is because when the molecular weight is 500 or more, sublimation hardly occurs, so that bleed-out hardly occurs during casting. More preferably, it is 600 or more.
  • the molecular weight of the dye that absorbs blue light is preferably 500 or more from the viewpoint of being hardly sublimated.
  • anthraquinone, isoindolinone, quinnaphthol, monoazo benzene sulfonate, disazo benzimidazole and the like are preferable.
  • the UV absorber of the present invention is preferably used in combination with an antioxidant having a molecular weight of 10,000 or less from the viewpoint of suppressing oxidative degradation due to ultraviolet rays or heat.
  • Antioxidants include radical scavengers and peroxide decomposers.
  • radical scavengers there are mainly hindered amine and hindered phenol compounds.
  • hindered phenolic compounds include triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5 -Triazine, pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2, 2-thio-diethylenebis [3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-
  • HALS hindered amine
  • the reaction product of cyclohexane and N-butyl peroxide 2,2,6,6-tetramethyl-4-piperidineamine-2,4,6-trichloro 1,3,5-triazine And 2-aminoethanol reaction product, N, N ', N' ', N' '-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6- Tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[ 3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate.
  • HALS hindered amine
  • the B layer having a low refractive index is a low refractive index layer, and only the B layer contains a dye or a UV absorber that absorbs blue light, or both.
  • the refractive index can be measured with a well-known Abbe refractometer or prism coupler, and the refractive index here means the refractive index in the in-plane direction.
  • the B layer has a large amount of copolymerization components, so it tends to be amorphous, and low molecular compounds such as dyes and UV absorbers are easily dissolved.
  • the A layer having a high refractive index is biaxially oriented to form a crystal layer, and thus serves as a barrier layer for preventing bleed out.
  • FIG. 4 shows a state in which the UV absorber 6 is included in the layer (B layer) 2 made of the thermoplastic resin B.
  • the layer (A layer) 1 made of the thermoplastic resin A preferably does not contain UV absorption from the viewpoint of bleeding out. Further, according to Snell's law expressed by the equation (4), in the B layer having a low refractive index compared to the A layer having a high refractive index, the optical path length is increased due to the light propagation angle in the layer being shallow, so that absorption is achieved. It also has the effect of working favorably. More preferably, it is preferable that only the B layer contains a dye or a UV absorber.
  • the extrusion temperature of the layer B is preferably 270 ° C.
  • the A layer is a layer that is oriented and crystallized after being biaxially stretched, and is particularly a resin that forms the outermost layer, so that the UV absorber is likely to precipitate.
  • the extrusion temperature is 280 ° C. or higher, so that the layer A is easily sublimated and bleed out easily occurs due to a biaxial extrusion vent or the like.
  • the laminated film of the present invention preferably has a total light transmittance of 70% or more and a chromaticity b * value in the transmission mode of 5 or less. If the total light transmittance is less than 70%, the brightness as a display or window material and the visibility of an image cannot be secured, which is not preferable.
  • the total light transmittance is 80% or more. More preferably, it is 90% or more. More preferably, it is 92% or more.
  • b * exceeds 5, it is not preferable because it turns yellow when it is made into a polarizing plate. More preferably, it is 3 or less, More preferably, it is 2 or less.
  • the achievement method is to adopt an optical design that does not exhibit absorption or interference reflection at a wavelength of 500 nm or more in the visible light region having a wavelength of 400 to 700 nm.
  • the average layer thickness is 77 nm or less, more preferably 58 nm or less. More preferably, there is no absorption or interference reflection in the visible light region having a wavelength of 400 nm or more.
  • the wavelength of a maximum reflectance shall be 380 nm or less. More preferably, the reflection wavelength on the longest wavelength side is 380 nm or less, more preferably 370 nm or less.
  • the dye and / or UV absorber used in the laminated film of the present invention, or both, has an extinction coefficient of an absorption peak in the wavelength range of 300 nm to 500 nm of 0.06 [wt% ⁇ ⁇ m] ⁇ 1.
  • the above is preferable.
  • the extinction coefficient ⁇ can be obtained from a well-known analysis method from Equation (5) obtained by modifying Equation (1). That is, by determining the thickness x [ ⁇ m] of the laminated film, the addition concentration c [wt%] of the entire film of the dye or UV absorber that absorbs blue light, and the transmittance for each wavelength, the extinction coefficient ⁇ is obtained. Can be sought.
  • the extinction coefficient is a value obtained by dividing the absorption coefficient k of the laminated film by the addition concentration c of the UV absorber.
  • the laminated film of the present invention preferably has a transmittance at a wavelength of 370 nm of 5% or less. If it exceeds 5%, it becomes impossible to protect the liquid crystal layer from UV light as a polarizer protective film and to prevent curing of the photosensitive resin as a cover film. More preferably, it is 2% or less. This is achieved by using an optical design in which the set of layers satisfying the average layer thickness of 45 to 60 nm is 100 or more and using a UV absorber having a long wavelength absorption edge of 380 nm or more.
  • the average layer thickness distribution of the laminated film of the present invention preferably has two or more inclined structures, and the number of layer pairs having an average layer thickness of 40 nm or more and 60 nm or less is 80% or more of the total number of layer pairs. . If the layer pair of the UV reflecting walls is 80% or more, almost all the layers act on the function of shielding blue light and UV light, so that the thinning is possible.
  • a photocurable or thermosetting resin layer C is formed on at least one surface from the viewpoint of preventing scratches.
  • the photocurable type methacrylic resin, photocurable polychlorobiphenyl, alicyclic epoxy resin, photocationic polymerization initiator, acrylate-based resin (containing Si, F), photoradical, polymerization initiator, fluorinated polyimide, etc. are used. be able to.
  • the thermosetting type any resin such as epoxy, phenol, urethane, acrylic, and polyester containing a crosslinking agent may be used.
  • the resin constituting the membrane may be a single polymer or a mixture.
  • the resin layer C is preferably urethane acrylate, polymer acrylate, or organic-inorganic hybrid resin from the viewpoint of optical use.
  • a more preferable one is one that is difficult to curl and has good adhesion to the substrate, and includes low-shrinkage urethane acrylate.
  • Specific examples of urethane acrylates include AT-600, UA-101l, UF-8001, UF-8003, etc. manufactured by Kyoeisha Chemical Co., Ltd., UV7550B, UV-7600B manufactured by Nippon Synthetic Chemical Co., Ltd., and U manufactured by Shin-Nakamura Chemical Co., Ltd.
  • urethane acrylate oligomers and monomers can be obtained by reacting polyhydric alcohols, polyvalent isocyanates, and hydroxyl group-containing acrylates.
  • polyhydric alcohols polyvalent isocyanates
  • hydroxyl group-containing acrylates Specifically, UA-306H, UA-306T, UA-306l manufactured by Kyoeisha Chemical Co., Ltd., UV-1700B, UV-6300B, UV-7600B, UV-7605B, UV-7640B, UV manufactured by Nippon Synthetic Chemical Co., Ltd.
  • the laminated film of the present invention preferably contains a thermoplastic resin copolymerized with a UV absorber. Since the UV absorber is a low molecule, it easily volatilizes and bleeds out easily. Therefore, when a UV absorber is copolymerized with a thermoplastic resin, it has a high molecular weight and is difficult to bleed out.
  • a UV absorber is copolymerized with a polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate.
  • the molecular weight is 10,000 or more, more preferably 20,000 or more.
  • the UV absorber is preferably benzophenone, benzotriazole, or triazine, but is not particularly limited. From the viewpoint of reactivity to become a copolymer, a UV absorber having a hydroxyl group, an end of a carboxyl group, or an ester bond as a functional group is preferable.
  • UV absorbers having a plurality of functional groups THBP (2,2 ′, 4,4′-tetrahydroxybenzophenone), 2-hydroxy-4methoxy-benzophenone, 2,2′-hydroxy-4 , 4'-dimethoxybenzophenone, 2- [2-hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole], particularly bisbenzotriazole compounds are particularly preferred from the viewpoint of copolymerization.
  • bisbenzotriazole compound examples include, for example, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -2,4-dihydroxybenzene], 2,2′-methylenebis [6- (2H -Benzotriazol-2-yl) -4- (hydroxymethyl) phenol], 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol], 2 , 2'-methylenebis [6- (5-chloro-2H-benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol], 2,2'-methylenebis [6- (5-bromo-2H- Benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol], 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4 -(3-Hydroxypropyl) phenol], 2,2'-methylene
  • the bisbenzotriazole compound can be used alone or in combination of two or more.
  • the copolymerization amount of the bisbenzotriazole compound is 0.01 to 50% by weight, preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight. If the amount used is less than 0.01% by weight, the resulting copolymer polyester does not have sufficient UV absorption performance, and if it exceeds 50% by weight, the mechanical properties of the copolymer polyester deteriorate.
  • a UV-absorbing copolymer polyester resin containing 1% by weight or more of the UV absorber as a copolymer component is preferable. More preferably, it is 3% by weight or more. More preferably, it is 5% by weight. Since these UV-absorbing copolyesters do not bleed out, they can be used in either the A layer, the B layer, or both. When used in combination with a UV absorber, it is preferably used for the A layer having high crystallinity.
  • the laminated film according to the present invention is preferably used as a screen protective film.
  • FIG. 5 shows the configuration of a laminated film that is a screen protection film.
  • the laminated film 5 of the present invention in which the hard coat 24 made of the resin layer C is provided on the cover glass 26 on the outermost surface of the casing 27 of a television, personal computer monitor, smartphone, tablet or the like via the adhesive 25.
  • the adhesive 25 By sticking, it is possible to provide an electronic device casing having scattering prevention properties and UV or blue light cutting properties.
  • the laminated film of the present invention is preferably a polarizer protective film.
  • FIG. 6A shows a polarizing plate 30 in which the laminated film 5 and the polarizer protective film 29 of the present invention sandwich the PVA polarizer 28.
  • An example of a configuration diagram of a liquid crystal panel using the laminated film of the present invention is shown in FIG.
  • the laminated film of the present invention is preferably used at the front position of the upper polarizing plate 32 of the liquid crystal panel or the rear position of the lower polarizing plate from the viewpoint of preventing rainbow unevenness and having UV shielding properties.
  • the laminated film 5 of the present invention when used at the front position of the upper polarizing plate 32, the main alignment axis 35 of the laminated film and the linear polarization direction (transmission) of the PVA polarizer.
  • the angle 36 formed with the (azimuth) 34 is preferably 20 degrees or more and 70 degrees or less from the viewpoint of preventing blackout. Blackout is a phenomenon in which the liquid crystal display becomes dark and disappears when an observer views the display through polarized sunglasses.
  • the angle between the main alignment axis of the laminated film of the present invention and the polarization direction of the PVA polarizer is 20 degrees or more and 70 degrees or less, linearly polarized light emitted from the PVA polarizer is caused by the birefringence of the laminated film. Elliptically polarized light leaks. This is a preferable configuration because an observer can visually recognize an image even when wearing polarized sunglasses.
  • the narrow angle of the angle between the main alignment axis and the in-plane orientation of linearly polarized light by the PVA polarizer of the upper polarizing plate of the liquid crystal display is 10 degrees or less. It is preferable that
  • the preferable retardation of the laminated film is preferably 60 to 280 nm from the viewpoint of a large amount of light transmission. From the viewpoint of achromatic color, the phase difference is more preferably 60 to 200 nm. More preferably, it is 80 to 150 nm. On the other hand, the preferred range of the thickness direction retardation is 50 nm or more and 800 nm or less, and more preferably 80 nm or more and 400 nm or less from the viewpoint of light transmittance without interference color. Most preferably, it is 100 nm or more and 300 nm or less.
  • the thickness direction phase difference in this invention is a phase difference in the viewing angle of 50 degree
  • the lamination ratio is preferably 1 or less from the viewpoint of thickness retardation and bleed out. More preferably, it is 0.7 or less. More preferably, it is 0.5 or less.
  • the laminated film of the present invention is preferably used for a liquid crystal display.
  • FIG. 6B shows a liquid crystal panel using the laminated film of the present invention.
  • the liquid crystal display has three configurations: a front panel made of an antireflection film, a touch panel, etc., the liquid crystal panel shown in FIG. 6B, and a backlight.
  • a backlight an LCD backlight system composed of at least an LED light source, a reflective film, a light guide plate, a light diffusing sheet, and a prism sheet is preferably used in terms of luminance and versatility.
  • the laminated film of the present invention preferably has a total light transmittance of 91% or more and a haze of 2% or less from the viewpoint of transparency used in a display. More preferably, they are 92% or more and 1% or less, respectively. More preferably, it is 93% or more.
  • the thickness of all layers is preferably 60 nm or less.
  • the optical distance configuration does not affect the transmittance in the visible light region, and the high total light transmittance Can be realized.
  • the transmittance can be particularly improved by forming an acrylic easy-adhesion layer having a refractive index of 1.51 or less with a coating thickness of 70 nm or more.
  • the laminated film of this invention is a polarizer on the opposite surface to the liquid crystal layer side. It is preferable that it is a liquid crystal display which arrange
  • the laminated film of the present invention is preferably used for a touch panel.
  • An example of a schematic diagram of an out-cell type touch panel including the laminated film of the present invention is shown in FIG.
  • the touch sensor unit is composed of at least a cover glass 37 and a conductive layer 38.
  • the touch panel of the present invention may be any of a resistance film type, an optical type, and a capacitance type. Capacitance type can be roughly divided into projection type and surface type. From the viewpoint of enabling multi-touch, the projection capacitance type is most preferable.
  • the conductive layer is made of metal such as gold, silver, platinum, palladium, rhodium, indium, copper, aluminum, nickel, chromium, titanium, iron, cobalt, tin, and alloys thereof, tin oxide, indium oxide, titanium oxide, It can be formed by a composite film such as a metal oxide film such as antimony oxide, zinc oxide, cadmium oxide, indium tin oxide (ITO), or copper iodide. A thin film can be obtained from these transparent conductive films by vacuum deposition, sputtering, reactive RF ion plating, spray pyrolysis, chemical plating, electroplating, CVD, coating, or a combination thereof.
  • the conductive polymer polypyrrole, polyaniline, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly-p-phenylene, polyheterocycle vinylene, particularly preferably (3,4-ethylenedioxythiophene) ) (PEDOT).
  • PEDOT polyethylenedioxythiophene
  • carbon nanotubes and nano silver are preferable because they exhibit high conductivity.
  • ⁇ Out-cell type touch sensors can be broadly divided into glass sensors and film sensors.
  • Glass sensor types include GG, GG2, G2, and G1M.
  • GG is cover glass / ITO / glass / ITO
  • GG2 is cover glass / glass / ITO / insulating layer / ITO
  • G2 (OGS) is cover glass / ITO / insulating layer / ITO
  • G1M is cover glass / ITO Is a basic configuration.
  • FIG. 7B shows a configuration example using the laminated film 5 of the present invention.
  • GFF is cover glass / ITO / film / ITO / film
  • GF2 is cover glass / ITO / film / ITO, or cover glass / ITO / insulating layer / ITO / film
  • G1F is cover glass / ITO / ITO.
  • GF1 is a cover glass / ITO / film
  • PFF is a cover plastic / ITO / film / ITO / film
  • P1M cover plastic / ITO.
  • FIG. 7C shows an example of a GF1 type TP structure in which an ITO electrode layer 38 is formed using the laminated film 5 of the present invention as a base film.
  • the thickness of the laminated film 5 as a base material is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less from the viewpoint of thinning. If it is too thin, it is preferably 10 ⁇ m or more and 40 ⁇ m or less from the viewpoint of the handleability of the film.
  • the GF1 type is preferred as a touch sensor due to the recent trend of thinning displays.
  • the laminated film of the present invention is preferably used for protecting a polarizer at the front position of a circularly polarizing plate used for preventing reflection of external light in an organic EL display.
  • the organic EL light emission method may be a RGB primary color type or a white type.
  • the layer structure of the layered film was determined by observation with a transmission electron microscope (TEM) for a sample obtained by cutting a cross section using a microtome. That is, using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), the cross section of the film was magnified 10,000 to 40,000 times under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, Each layer thickness was measured. In some cases, in order to obtain high contrast, a staining technique using a known RuO 4 or OsO 4 was used.
  • TEM transmission electron microscope
  • the data obtained by periodically changing the brightness is differentiated, and the maximum value and the minimum value of the differential curve are read by a VBA (Visual Basic For Applications) program. It was calculated as the layer thickness of one layer. This operation was performed for each photograph, and the layer thicknesses of all layers were calculated. Then, the average layer thickness distribution for each layer pair of the adjacent A layer and B layer is calculated by data processing for all layers, and the horizontal axis indicates the layer pair number and the vertical axis indicates the average layer thickness distribution. It was created.
  • VBA Visual Basic For Applications
  • the minimum value of the spectral transmittance in the wavelength range of 300 to 500 nm and its wavelength were determined. Moreover, about the laminated
  • Retardation (Retardation) Value A phase difference measuring device (KOBRA-WPR) manufactured by Oji Scientific Instruments was used. A film sample cut out at 3.5 cm ⁇ 3.5 cm was placed in the apparatus, and retardation at a wavelength of 590 nm at an incident angle of 0 ° was measured. When measuring the retardation in the thickness direction, the value of Rth at an incident angle of 50 ° was used. Sampling was performed from the center in the film width direction, and sampling was performed from three points at 50 mm intervals in the film longitudinal direction, and the average value was used. Moreover, the narrow angle formed by the film width direction and the slow axis was determined as the orientation angle, and was used as the main orientation axis of the laminated film.
  • Bleed-out Bleed-out is a haze after heat treatment of the obtained film at 150 ° C. for 1 hour in about 2 hours of film formation and the degree of deposition of the strands of the electrostatic application device and the UV absorber around the cast drum
  • the following criteria were used for evaluation of the increase in S: No deposit and haze increase of 0.5% or less
  • In-plane color unevenness The obtained laminated film was cut into A4 size from the central part in the film width direction, a black layer was applied to the back surface by a black spray, and light was projected from the film surface using a three-wavelength fluorescent lamp.
  • the in-plane color unevenness state of the film due to the reflected light was evaluated according to the following criteria.
  • D Reflection colors such as purple and blue can be visually recognized in the entire area.
  • the film thickness was measured using an electronic micrometer manufactured by Millitron with a set of main body model 1240, gauge head, measuring stand and the like. The sample was cut out from the center of the film width direction position at 5 cm ⁇ 5 cm square, and the thickness measurement result was read to the submicron unit.
  • the concentration (%) of the UV absorber in the laminated film was determined from the added weight of the raw material of the UV absorber in the production process of the laminated film. Specifically, a UV master chip containing 10% by weight of a UV absorber in advance in the thermoplastic resin A or B used for the A or B layer is prepared, and diluted to obtain UV contained in the laminated film. The concentration of the absorbent was adjusted.
  • the method of determining the concentration of the UV absorber from the laminated film is to obtain the absorption coefficient k from the relationship between the thickness and the transmittance using the formula (1). Moreover, since the absorption coefficient k is a product of the concentration c and the absorption coefficient, the laminated film is dissolved with a solvent, a test body with the concentration c changed is produced, and the concentration c is determined by measuring the respective transmittances. it can. In addition, the concentration of the UV absorber in the laminated film can be easily determined by using a known analysis technique. The analysis method from a film is shown below.
  • the weight of the laminated film cut out in 1 cm square is measured and dissolved sufficiently in methylene chloride or HFIP / methylene chloride solvent. In the range of 1 mL to 5 mL of solvent, dissolve the film sequentially and collect the concentration dependence data of the spectrum in the ultraviolet wavelength region.
  • a ⁇ 1 represents the absorbance derived from a known UV absorber measured at 0.02 [mg / mL]
  • a ⁇ 2 represents the absorbance obtained from the film solution diluted x-fold.
  • the UVA concentration in the film can be calculated as 0.02 ⁇ A ⁇ 2 / A ⁇ 1 ⁇ x [mg].
  • the weight percent concentration of UVA added in the film is expressed by the formula of 0.02 ⁇ A ⁇ 2 / A ⁇ 1 ⁇ x / y ⁇ 100 [wt%]. It is obtained by.
  • the product was calculated as the product of the thickness [ ⁇ m] of the laminated film and the value obtained by dividing the weight percent of the UV absorber by 100 as shown in Table 2. .
  • thermoplastic resin was measured according to JIS K7142 (1996) A method. That is, a sheet was produced by pressing from a molten state and then rapidly cooling to prepare a sample. Regarding the refractive indexes of the A layer and the B layer, orientation and thermal crystallization are accompanied by stretching and heat treatment. The refractive index in the biaxial stretching direction in the film surface obtained by sequential biaxial stretching using IV) and heat treatment was measured according to JIS K7142 (1996) A method.
  • Thermoplastic resin The following were prepared as the resin A.
  • Resin A-1 To a mixture of 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol was added 0.09 parts by weight of magnesium acetate and 0.03 parts by weight of antimony trioxide with respect to the amount of dimethyl terephthalate. Transesterification is performed by heating and raising the temperature by a conventional method. Subsequently, 0.020 part by weight of 85% aqueous phosphoric acid solution is added to the transesterification product with respect to the amount of dimethyl terephthalate, and then the polycondensation reaction layer is transferred.
  • the refractive index is 1.66 after biaxial stretching and after heat treatment.
  • Resin A-4 It is a thermoplastic resin in which a UV absorber is copolymerized.
  • IV 0.75, polybutylene terephthalate (TK1058C01 manufactured by Bell Polyester Products) obtained by copolymerizing 18% by weight of UV absorber B3 (benzotriazole-based UV absorber). Melting point 180 ° C, glass transition point 61 ° C.
  • Refractive index 1.6 (Resin B-4) Copolymerized polyethylene terephthalate obtained by mixing Resin A-1 and Resin B-2 at 1: 3.
  • Refractive index 1.6 (Resin B-5) Copolymerized polyethylene terephthalate in which resin A-1 and resin B-2 are mixed at a ratio of 1: 1.
  • Refractive index 1.62 (Resin B-6) Polyethylene terephthalate copolymerized with 30 mol% of naphthalenedicarboxylic acid component. Refractive index 1.6.
  • Example 1 (Laminated film production) After the resin A-1 as the thermoplastic resin A is vacuum-dried at 180 ° C. for 3 hours, the resin B-1 as the thermoplastic resin B is dried under nitrogen at 80 ° C. Then, they were respectively put into a single screw extruder and a twin screw extruder, melted at extrusion temperatures of 280 ° C. and 265 ° C., respectively, and kneaded. A nitrogen purge was performed on the lower part of the hopper. Subsequently, foreign matters such as oligomers and impurities were removed by vacuum venting at a vacuum pressure of 0.1 kPa or less at two vent holes of the twin screw extruder.
  • Q / Ns which is the ratio of the feedstock to the twin screw extruder and the screw rotation speed was set to 1.5.
  • each of the A layer and the B layer was a laminate having two inclined structures shown in FIG. In the two inclined structures, A layer and B layer are alternately laminated with 291 layers, and the two inclined structures are arranged so that the layer thickness is the thinnest in the vicinity of both surfaces of the laminated film. .
  • the slit design which makes the inclination which is ratio of maximum layer thickness / minimum thickness 1.25 was employ
  • the laminate is supplied to a T-die and formed into a sheet, and then rapidly cooled and solidified on a casting drum whose surface temperature is maintained at 25 ° C. while applying an electrostatic applied voltage of 8 kV with a wire, and unstretched A film was obtained.
  • This unstretched film was stretched 3.2 times in the longitudinal direction of the film at 105 ° C. with a longitudinal stretching machine, subjected to corona treatment, and a primer coat was applied to both sides with a # 4 metabar.
  • both ends are guided to a tenter gripped by clips, and stretched by a factor of 3.4 in the film width direction at 110 ° C., followed by a heat treatment at 200 ° C., and a relaxation treatment in the film width direction of about 3% at 150 ° C.
  • the laminated film having a thickness of 14 ⁇ m was obtained.
  • the layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer. From the surface layer side to the 145th layer in the center in the thickness direction, both the A layer and the B layer have a layer thickness. Had an inclined structure that increased asymptotically.
  • the average layer thickness distribution of the adjacent A layer and B layer had a convex layer thickness distribution in which the average layer thickness of 60 nm was an asymptotic line.
  • the obtained laminated film has a UV absorber concentration of 0.6% by weight, a maximum value of relative reflectance by a spectrophotometer of 81%, a half width of 15 nm, and a transmittance of 1 in a wavelength range of 380 nm or less. %, Which is a good UV shielding property of not more than%.
  • Example 2 The number of slits of the slit plate of Example 1 was changed to be a 271 layer laminating apparatus with two inclined structures. Further, 271 layers were added to the thermoplastic resins A-1 and B-1 in the same manner as in Example 1 except that 0.5 wt% and 1.5 wt% of the UV absorber A-1 were added, respectively. A laminated film having a thickness of 13.5 ⁇ m was obtained. The obtained laminated film has a UV absorber concentration of 1.17% by weight, a maximum relative reflectance by a spectrophotometer of 70%, and a good UV having a transmittance of 1% or less in a wavelength range of 380 nm or less. It showed shielding properties.
  • the obtained laminated film has a UV absorber concentration of 1.0% by weight, a maximum relative reflectance of 90% by a spectrophotometer, and a good UV having a transmittance of 1% or less in a wavelength range of 380 nm or less. It showed shielding properties. Further, it was a laminated film suitable for a colorless and transparent polarizer protective film without bleeding out and without in-plane color unevenness. The product of the film thickness and the UV absorber concentration was 0.14. Table 2 shows the evaluation results of the laminated film obtained.
  • Example 4 In the thermoplastic resin B-1, a laminated film having 271 layers and a thickness of 13 ⁇ m was obtained in the same manner as in Example 3 except that the UV absorber A1 was changed to C and the concentration was added by 1.8% by weight. .
  • the obtained laminated film has a UV absorber concentration of 0.9% by weight, a maximum value of relative reflectance by a spectrophotometer of 42%, and a good UV having a transmittance of 1% or less in a wavelength range of 370 nm or less. It showed shielding properties. Further, it was a laminated film suitable for a colorless and transparent polarizer protective film without bleeding out and without in-plane color unevenness. The product of the film thickness and the UV absorber concentration was 0.12. Table 2 shows the evaluation results of the laminated film obtained.
  • Example 5 As shown in Table 2, UV absorbers A1 and A2 were added to only the B layer on the low refractive index layer side so as to be 1.3% and 0.5%, respectively.
  • a laminated film having a thickness of 13 ⁇ m was obtained in the same manner as in Example 3 except that 7.
  • the obtained laminated film has a UV absorber concentration of 0.14% by weight, a maximum value of relative reflectance by a spectrophotometer of 40%, and a good UV having a transmittance of 1% or less in a wavelength range of 375 nm or less. It showed shielding properties. Furthermore, the transmittance at a wavelength of 370 nm was 1% or less even at a viewing angle of 60 °.
  • Example 6 to 9 As shown in Table 2, Examples 6 to 9 are the same as the resin types A-1 and B-1 of the A layer and the B layer, the lamination ratio 1, the number of laminations 251 and the concentration of the UV absorber 1% by weight. Thus, a laminated film was obtained by changing only the number of UV absorber addition layers and the number of UV absorbers. The evaluation results are shown in Table 2. From the viewpoint of bleed out, Example 9 in which the UV absorber was added only to the surface layer A side was inferior to the others. In Example 7 where the reflectance at a wavelength of 402 nm was 72%, a purple reflected color was partially visible in the plane in the in-plane color unevenness evaluation. Example 6 and Example 8 were most balanced in terms of UV shielding and bleed out suppression.
  • Example 10 A laminated film was obtained in the same manner as in Example 7 except that the lamination ratio was changed to 0.5.
  • the rainbow unevenness evaluation is also good because of the low phase difference, and both UV shielding and bleed-out suppression are compatible.
  • the evaluation results are shown in Table 2.
  • Example 11 to 14 In Examples 11 to 14, using the same laminating apparatus as in Example 10, as shown in Table 3, the thermoplastic resin A, the thermoplastic resin B, the lamination ratio, and the addition layer were changed to obtain laminated films. .
  • the thermoplastic resin A-2 of Example 11 was extruded at an extrusion temperature of 300 ° C.
  • the thermoplastic resin B-2 was extruded at an extrusion temperature of 290 ° C.
  • the thermoplastic resin A-2 has a resin-derived absorption characteristic from a wavelength of 400 nm or less.
  • the extruded unstretched film is subjected to sequential biaxial stretching 3.2 times at a longitudinal stretching temperature of 145 ° C.
  • thermoplastic resin A-2 is 300 ° C. or higher in spite of the reduced amount of the A1 UV absorber added, so that the bleed out is inferior to that of Example 1. It was. Further, since the maximum reflectance is 85% at a wavelength of 405 nm, in-plane color unevenness, which is a purple reflection color, was slightly confirmed. In the rainbow unevenness evaluation, which is a transmitted light evaluation, a slight coloring was observed. Moreover, because of the in-plane orientation peculiar to PEN, the thickness retardation was high. The half width of the reflection peak was 29 nm.
  • Example 12 a laminated film was obtained in the same manner as in Example 10 except that the thermoplastic resin A-1 and the thermoplastic resin B-2 were further changed to a lamination ratio of 1. It was excellent in UV shielding without bleeding out. The UV shielding property at an incident angle of light of 60 ° and the rainbow unevenness evaluation were inferior to those of Example 3 and were at a satisfactory level.
  • Example 13 a thermoplastic film B-3 was used, the addition layer of the UV absorber was only B layer, and the laminated film was formed in the same manner as in Example 10 except that the UV absorber and the lamination ratio were changed. Obtained.
  • Example 13 although an increase in haze was confirmed due to the molecular weight of the UV absorber C, it was a level with no problem as a bleed-out.
  • Example 14 a laminated film was obtained in the same manner as in Example 6 except that the thermoplastic resin B-3 was used. Since the UV absorber was added only to the B layer, there was no problem with bleeding out. In addition, since reflection was observed at a wavelength of 395 nm, in-plane unevenness that was a purple reflection color was slightly confirmed.
  • Example 15 to 18 laminated films were produced under the same conditions except for the laminated structure, and the relationship between the UV reflecting wall and the UV light shielding property was examined.
  • Example 15 obtained laminated films under the same conditions as in Example 6 described in Table 3 except that the concentration of the UV absorber in the B layer was reduced to 1.5% by weight.
  • the laminated structure of the obtained laminated film was a two-stage inclined structure described in FIG. 3B, and two UV light reflecting walls were present at different positions in the film thickness.
  • the product of film thickness and UV absorber concentration was very low at 0.09 and there was no bleed out.
  • the long-wavelength absorption edge of the UV absorber is the long-wavelength end 380 nm of the reflection band due to interference reflection based on the layered structure of the layer. The effect was exhibited and the UV shielding property was excellent. This is because, as described in FIG. 4B, the two inclined structures serve as reflecting walls that reflect the UV light, and the absorption efficiency of the UV light is improved. From the above, it was a laminated film suitable for a colorless and transparent polarizer protective film without in-plane color unevenness.
  • Example 16 a 201-layer laminated film was obtained in the same manner as in Example 15 except that the laminating apparatus was changed.
  • a laminating apparatus in which the slit length was adjusted so that the layer thickness monotonously changed from one surface of the film to the opposite surface was used.
  • the gradient which is the ratio of maximum layer thickness / minimum thickness
  • Each of the B layers was a laminated film having one inclined structure.
  • the obtained layer thickness distribution was a laminated structure that monotonously changed from the surface layer to a layer thickness of 40 nm to 60 nm.
  • the transmittance at a wavelength of 370 nm was about 4%, which was inferior in terms of UV light shielding properties compared to Example 15.
  • the half width of the reflection peak was 29 nm.
  • Example 17 a 251 layer laminated film was obtained in the same manner as in Example 15 except that the laminating apparatus was changed. The slit length and the gap were adjusted so that the layer thickness distribution as shown in FIG. 3A was obtained, and a single-layer laminating apparatus using only the slit plate 72 in the laminating apparatus 7 of FIG. 2 was obtained.
  • a laminated film having three inclined structures as shown in FIG. There was no bleed out and the UV light shielding property was excellent. The reason is that as shown in FIG. 4A, the three inclined structures serve as reflecting walls that reflect the UV light, and the absorption efficiency of the UV light is improved. From the above, it was a laminated film suitable for a colorless and transparent polarizer protective film without in-plane color unevenness.
  • Example 18 the slit length and the gap were adjusted so that the layer thickness distribution was W-shaped, and a single-layer laminating apparatus using only the slit plate 72 of the laminating apparatus 7 in FIG. A laminated film having four inclined structures was formed for each of the A layer and the B layer. There was no bleed out and the UV light shielding property was excellent. From the above, it was a laminated film suitable for a colorless and transparent polarizer protective film without in-plane color unevenness.
  • Examples 19 to 24 employ a slit design in which the gradient that is the ratio of the maximum layer thickness / minimum thickness is 1.4, and the slit length, the layer thickness distribution as shown in FIG.
  • the gap was adjusted, and an unstretched film was obtained using a two-layer laminating apparatus using the slit plate 71 and the slit plate 73 in the laminating apparatus 7 of FIG.
  • the types and added layers of the UV absorber used are as described in Table 4.
  • the unstretched film was stretched 3.4 times in the longitudinal direction of the film at 100 ° C. with a longitudinal stretching machine, subjected to corona treatment, and a primer coat was applied to both sides with a # 4 metabar.
  • the film was transversely stretched 3.5 times in the film width direction at 110 ° C., and then heat-treated at 210 ° C., and relaxed in the film width direction of about 1% at 150 ° C. This was carried out to obtain a laminated film.
  • the layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of the A layer and the B layer are asymptotically from the surface layer side to the center in the thickness direction. It had an increasing slope structure.
  • the average layer thickness distribution of the adjacent A layer and B layer was a convex layer thickness distribution in which both surface layer portions were 43 nm and the central portion 60 nm was an asymptote.
  • the obtained laminated film had an overall thickness of 30 to 35 ⁇ m having two inclined structures. Moreover, it was layer thickness distribution reflecting more than the absorption edge wavelength 310nm derived from the resin of polyethylene terephthalate.
  • the UV absorber addition concentration is lower than in Examples 1 to 18, but the absolute amount is large because the thickness is thick, and the product of the film thickness and the UV absorber concentration exceeds 0.2. is there.
  • the thickness of both surface layers of a film was 2.3 micrometers, and the thickness of the intermediate
  • a laminated film having a thickness of 35 ⁇ m was obtained by alternately stacking 551 layers in the thickness direction by a 551 layer laminating apparatus based on the same principle as the laminating apparatus described in No. 4552936. Other conditions are as described in Table 4.
  • the obtained laminated film had a UV absorber concentration of 0.74% by weight, and the maximum relative reflectance by a spectrophotometer was 70% at a wavelength of 320 nm, and then a reflectance of 63% at a wavelength of 385 nm.
  • UV absorber B1 has a high molecular weight, the additive layer is not a surface layer, and the extrusion temperature of the additive layer is as low as 265 ° C. It was a laminated film. The product of the film thickness and the UV absorber concentration was 0.26. Table 4 shows the evaluation results of the laminated film obtained.
  • Example 24 the extrusion conditions of Example 24 were as follows.
  • the extrusion temperature of the thermoplastic resin A-1 and the thermoplastic resin B-2 was 280 ° C.
  • the discharge ratio (lamination ratio) with the gear pump was thermoplastic resin A / thermoplastic resin B.
  • Other conditions are as described in Table 4.
  • the resulting laminated film had a UV absorber concentration of 0.85% by weight, a maximum relative reflectance by a spectrophotometer of 74% at a wavelength of 397 nm, and a half-value width of the reflection peak of about 25 nm.
  • the product of the film thickness and the UV absorber concentration was 0.35.
  • a laminated film having a thickness of 30 ⁇ m was obtained by alternately laminating 491 layers in the thickness direction by a 491 layer laminating apparatus on the same principle as the laminating apparatus described in Japanese Patent No. 4552936.
  • Other conditions are as described in Table 4.
  • Example 20 since the molecular weight of the UV absorber was high, there was no bleed out even in the outermost layer side, and the UV shielding property was good. On the other hand, since reflection was seen in the visible light region, in-plane color unevenness was observed. In Example 21, compared with Example 20, the amount of UV absorber added was large and the molecular weight was also small, so a slight bleed out was observed. Other performance was good. In Example 22, as in Example 20, since the molecular weight of the UV absorber was large, no bleed out was observed. On the other hand, the UV shielding property at an incident angle of 60 ° was slightly inferior.
  • Example 23 although the molecular weight of the UV absorber was lower than that in Example 20, the bleed-out was suppressed because the additive layer was a B layer and the thickness of the outermost layer was 2.5 ⁇ m. Other performance was also good.
  • Example 25 was a laminated body in which 271 layers were alternately laminated in the thickness direction by a 271 layer laminating apparatus on the same principle as the laminating apparatus described in Japanese Patent No. 4552936. Note that 4 wt% of the UV absorber B1 was added to the thermoplastic resin B-1. A slit design in which the gradient that is the ratio of maximum layer thickness / minimum thickness is 1.23 is adopted, and the slit length and gap are adjusted so that the layer thickness distribution as shown in FIG. Of the laminating apparatus 7, an unstretched film was obtained using a laminating apparatus having a single sheet configuration using only the slit plate 72. The types and added layers of the UV absorber used are as described in Table 4.
  • This unstretched film was stretched 3.3 times in the longitudinal direction of the film at 100 ° C. with a longitudinal stretching machine, subjected to corona treatment, and a primer coat was applied to both sides with a # 4 metabar.
  • heat treatment at 200 ° C. is performed, followed by relaxation treatment at 150 ° C. in the film width direction of about 2%. This was carried out to obtain a laminated film.
  • the addition of the high molecular weight and the B layer was effective, and a laminated film was obtained without breaking on the film formation.
  • the layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of the A layer and the B layer are asymptotically from the surface layer side to the center in the thickness direction. It had an increasing slope structure.
  • the average layer thickness distribution of the adjacent A layer and B layer was a convex layer thickness distribution in which both surface layer portions were 43 nm and the central portion 58 nm was an asymptotic line.
  • the obtained laminated film had an overall thickness of 14.5 ⁇ m having two inclined structures. Although some bleed out was observed, other performance was good. These were laminated films suitable for the polarizer protective film. Table 4 shows the evaluation results of the laminated film obtained.
  • Comparative Examples 1 to 3 A laminated film having a thickness of 30 ⁇ m was obtained in the same manner as in Example 21 except that the type and addition concentration of the UV absorber were changed. Since the product of the film thickness and the UV absorber concentration all exceeded 0.35, the problem of bleed out occurred. Further, except for Comparative Example 3, Comparative Example 1 and Comparative Example 2 were slightly inferior to Example 21 in terms of UV shielding properties and coloring at an incident angle of 60 °. These were not laminated films suitable as a polarizer protective film. The evaluation result of the laminated film obtained in Table 5 is shown.
  • Comparative Examples 4 to 5 In Comparative Example 4, the same kind of laminated film was obtained except that the thermoplastic resin B of Example 20 and the extrusion temperature thereof were changed to 280 ° C., and the addition concentration of the UV absorber and the total thickness were 15 ⁇ m. . Since the obtained film had no synergistic effect of interference reflection, the UV shielding property was insufficient, and it was not a laminated film suitable as a polarizer protective film. Since the laminated film was substantially a single film, the UV absorber was liable to precipitate and was inferior to the multilayer film.
  • Comparative Example 5 a laminated film was obtained in the same manner except that the addition concentration and the overall thickness of the UV absorber of Example 20 were changed.
  • the obtained laminated film had a layer thickness structure in which interference reflection did not occur at a wavelength of 310 to 380 nm which is a wavelength band of UV light. From the results of cross-sectional TEM observation, the maximum layer thickness was very thin, less than 30 nm. Since there was no synergistic effect of interference reflection and UV absorber, UV shielding was insufficient. It was not a laminated film suitable as a polarizer protective film. The evaluation result of the laminated film obtained in Table 5 is shown.
  • Example 26 (Laminated film production) After the resin A-1 as the thermoplastic resin A is vacuum-dried at 180 ° C. for 3 hours, the resin B-5 as the thermoplastic resin B is dried under a vacuum at 150 ° C. Then, each was put into a single screw extruder and a twin screw extruder, melted at an extrusion temperature of 280 ° C., and kneaded. A nitrogen purge was performed on the lower part of the hopper. Subsequently, foreign matters such as oligomers and impurities were removed by vacuum venting at a vacuum pressure of 0.1 kPa or less at two vent holes of the twin screw extruder.
  • thermoplastic resin B 1/1
  • a laminated film having a thickness of 16 ⁇ m was obtained in the same manner as in Example 1 so as to obtain an upwardly convex layer thickness distribution. It is a laminated film in which 0.04% of aggregated silica particles having an average particle diameter of 2.5 ⁇ m are added to the A layer without performing coating treatment.
  • the layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of both the A layer and the B layer from the surface layer side to the 125th layer in the center in the thickness direction. Had an inclined structure that increased asymptotically.
  • the average layer thickness distribution of the adjacent A layer and B layer had a convex layer thickness distribution in which the average layer thickness of 70 nm was an asymptotic line.
  • the resulting laminated film has a pigment concentration of 0.2% by weight, a maximum value of relative reflectance by a spectrophotometer of 32%, a transmittance at a wavelength of 460 nm of 62%, and good blue light cut performance. Was showing.
  • the molecular weight of the dye E was high, the additive layer did not appear on the surface layer, bleed out, and was a laminated film suitable for a blue light cut film having no in-plane color unevenness.
  • the product of the film thickness 15 ( ⁇ m) and the pigment concentration 0.2 was 0.03.
  • the rainbow unevenness has no problem because it shows blue as the reflection color.
  • Table 6 shows the evaluation results of the laminated film obtained.
  • Examples 27 to 28 (Laminated film production) After the resin A-1 as the thermoplastic resin A is vacuum-dried at 180 ° C. for 3 hours, the resin B-5 as the thermoplastic resin B is dried under nitrogen at 150 ° C. Then, each was put into a single screw extruder and a twin screw extruder, melted at an extrusion temperature of 280 ° C., and kneaded. A nitrogen purge was performed on the lower part of the hopper. Subsequently, foreign matters such as oligomers and impurities were removed by vacuum venting at a vacuum pressure of 0.1 kPa or less at two vent holes of the twin screw extruder.
  • thermoplastic resin B 1/1
  • a laminated film having a thickness of 40 ⁇ m was obtained in the same manner as in Example 1 so as to obtain an upwardly convex layer thickness distribution. It is a laminated film in which 0.04% of aggregated silica particles having an average particle diameter of 2.5 ⁇ m are added to the A layer without performing coating treatment.
  • the layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of both the A layer and the B layer from the surface layer side to the 125th layer in the center in the thickness direction. Had an inclined structure that increased asymptotically.
  • the average layer thickness distribution of the adjacent A layer and B layer had a convex layer thickness distribution in which the average layer thickness of 70 nm was an asymptotic line.
  • the resulting laminated film has a pigment concentration of 0.1% by weight, a maximum relative reflectance by a spectrophotometer of 42%, a transmittance at a wavelength of 460 nm of 55%, and good blue light cutting properties. Was showing.
  • the molecular weight of the dye E was high, the additive layer did not appear on the surface layer, bleed out, and was a laminated film suitable for a blue light cut film having no in-plane color unevenness.
  • the product of the film thickness 40 ( ⁇ m) and the pigment concentration 0.1 was 0.04.
  • the rainbow unevenness has no problem because it shows blue as the reflection color.
  • Table 6 shows the evaluation results of the laminated film obtained.
  • Example 28 obtained a laminated film in the same manner as in Example 26 except that the thermoplastic resin B was changed.
  • the rainbow unevenness has no problem because it shows blue as the reflection color.
  • Table 6 shows the evaluation results of the laminated film obtained.
  • Comparative Examples 7 to 9 In Comparative Example 7, a laminated film was obtained in the same manner as in Example 27 except that no pigment was added. Table 6 shows the evaluation results of the laminated film obtained. On the other hand, in Comparative Examples 6 to 7, a laminated film having a thickness of 15 ⁇ m was obtained by the same method except that the laminating apparatus was changed to a 491-layer laminating apparatus and the dye was changed to a monoazo benzenesulfonate.
  • Comparative Examples 8 to 9 obtained the same type of laminated film in the same manner as in Example 5 except that the contents described in Table 6 were changed. Since it was a laminated film of the same kind of PET, there was no shielding effect of the UV absorber due to the layer interface, and any of these did not bleed out and were not suitable blue light cut films.
  • Example 29 The main orientation axis of the laminated film obtained in Example 6 was pasted on a liquid crystal display using a 42-inch LED backlight liquid crystal panel manufactured by TCL in VA mode as the film width direction. At this time, the narrow angle of the angle between the main orientation axis of the laminated film and the in-plane orientation of linearly polarized light by the polarizer of the upper polarizing plate of the liquid crystal display was 0 °. In addition, if the narrow angle is 10 ° or less, when the white display is confirmed with the polarized sunglasses, the display is black, and there is no change before and after the bonding, and it is confirmed that it can be used well even if it is replaced with the conventional triacetylcellulose. .
  • Example 30 Subsequently, using a liquid crystal panel of ipad6 LED backlight manufactured by Apple in IPS mode, the laminated film obtained in Example 10 was pasted as a front polarizer of the upper polarizing plate, and brightness was obtained during both white display and extinction. It was confirmed that the film was suitable as a polarizer protective film for liquid crystal displays without problems such as color unevenness. In particular, when the direction of the linearly polarized light from the panel and the angle formed by the laminated film was set to 20 to 70 °, black display did not occur when wearing polarized sunglasses.
  • Example 31 Using the laminated film of Example 6, as in Example 29, the angle of the narrow angle among the angles formed with the in-plane orientation of linearly polarized light by the polarizer of the upper polarizing plate of the liquid crystal display is 45 degrees. Arranged. When white display was confirmed with polarized sunglasses, it was confirmed that the liquid crystal display was suitable because it did not display black at all azimuth angles.
  • Example 32 The laminated film obtained in Example 26 was pasted on iPhone 5s manufactured by Apple, and it was confirmed that the film was a screen protective film having a blue light cut property independent of the viewing angle.
  • Example 33 A laminated film was obtained in the same manner as in Example 6 except that the UV absorber of Example 6 was changed to a two-component system in which the mixing ratio of A1 and B1 was blended at a ratio of 6: 4. The evaluation results are shown in Table 4. Due to the effect of A1, there was almost no bleed-out, the reflectance at a wavelength of 339 nm was 49%, and in the evaluation of in-plane color unevenness, it was confirmed that it was colorless and had no problem. There was a balance between UV shielding and bleed-out suppression.
  • Example 34 The resin A-1 in Example 6 was changed to a resin having a UV absorber concentration of 3 wt% in the resin A-3, and the resin was put into a twin screw vent extruder. Otherwise, a laminated film was obtained in the same manner as in Example 6.
  • the evaluation results are shown in Table 4. Despite the presence of the UVA absorbing component on the A layer side, it was a copolymer, so there was no bleeding out and the reflectance at a wavelength of 405 nm was 65%. In the transmitted color, a yellow tendency was observed, but it was confirmed that there was no particular problem. There was a balance between UV shielding and bleed-out suppression.
  • Example 35 The resin A-1 was diluted with the resin A-1 so that the concentration of the UV absorber component of the resin A-1 to the resin A-4 in Example 6 was 3% by weight, and charged into a twin screw vent extruder. Otherwise, a laminated film was obtained in the same manner as in Example 6.
  • the evaluation results are shown in Table 4. Despite the presence of UVA absorbing component on the A layer side, it is a copolymer, so there is no bleed out, the reflectance at a wavelength of 320 nm is 49%, and in-plane color unevenness evaluation is colorless and has no problem. I was able to confirm that. There was a balance between UV shielding and bleed-out suppression.
  • Example 36 In Example 36, the thermoplastic resin A-5 was added to the A layer, and the UV absorber A1 was added to the thermoplastic resin B-3 to the B layer, and each was extruded with a biaxial vent extruder.
  • a laminated body was obtained in which 151 slit layers were alternately laminated in the thickness direction by a laminating apparatus having one sheet.
  • the average layer thickness was 40 to 58 nm, which was a layer thickness distribution of two inclined structures.
  • Subsequent film forming conditions were the same as in Example 11 to obtain a laminated film. Despite being as thin as 7.5 ⁇ m, no bleed-out was observed and other performances were good.
  • Table 4 shows the evaluation results of the laminated film obtained. Although a small amount of UVA was added to the B layer side, it was confirmed that it was colorless and had no problem. Rainbow unevenness was also suppressed, and it was excellent in terms of UV shielding and bleed out suppression. The product of the film thickness and the UV absorber concentration was 0.04. The half width was 20 nm.
  • the present invention can provide a laminated film excellent in blue light and UV shielding properties without bleed-out of dyes and UV absorbers and film breakage despite being a very thin film
  • It can be suitably used for process films for information communication equipment such as personal computers, smartphones, tablets, polarizer protection for polarizing plates for LCD and OLED, retardation films, circularly polarizing films, and screen protective films.
  • It can also be used in the manufacturing process of electronic paper and semiconductor resist.
  • it is suitable as a laminated film used for packaging materials for automobiles, building material window films, agricultural houses, makeup, foods, medicines, medical treatments and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The drawbacks of bleedout and/or film breakage and yellowing occur in film formation when an absorbent such as a UV absorber or a dye is added at a high concentration during melt extrusion in the kneading and addition of the absorbent to conventional single-layer films and multi-layer films, and a thin film having high ability to shield light in the UV-to-blue wavelength region is difficult to obtain. The prior art also has the drawback that a synergism with the absorbent in shielding properties in the UV-to-blue wavelength region is not obtained even when the reflecting ability of a multilayer structure is jointly used. The present invention is a layered film in which at least 50 layers including layers (A layers) comprising a thermoplastic resin A and layers (B layers) comprising a thermoplastic resin B are layered in alternating fashion, wherein at least either the A layers or the B layers include one or both of a dye and a UV absorbent for absorbing blue light, the product of the film thickness and the concentration of the dye, UV absorbent, or both for absorbing blue light is 0.35 or less, and, in the wavelength range of 300 nm to 500 nm, the maximum reflectance is 15% or greater and the minimum transmittance is 70% or less.

Description

積層フィルム、それを用いた液晶ディスプレイ、タッチパネルおよび有機ELディスプレイLaminated film, liquid crystal display using the same, touch panel and organic EL display
 本発明は、紫外光や青色光を効率良くカットする積層フィルム、それを用いた液晶ディスプレイ、タッチパネルおよび有機ELディスプレイ
に関する。
The present invention relates to a laminated film that efficiently cuts ultraviolet light and blue light, a liquid crystal display using the same, a touch panel, and an organic EL display.
 従来から自動車・建材、エレクトロニクス分野で紫外線をカットするフィルムの需要がある。紫外線をカットする目的は、太陽光からの紫外線による人体への悪影響や部材の劣化を防止するためである。自動車や建材分野では、ウィンドウフィルムとして合わせガラスや単板ガラスにラミネートして用いられることにより人の肌や室内の部材劣化を抑制する役割を果たす。エレクトロニクス分野では、感光性樹脂の硬化を抑制するための保護フィルムや液晶ディスプレイパネルの液晶層を外光による劣化から保護する目的で紫外線(UV)吸収剤が添加された偏光子保護フィルムなどが知られている。近年、液晶ディスプレイの光源が青色の光が強いLEDになったことから、青色の光が人の目の網膜や人体のサーカディズムへ悪影響を及ぼす危険があるため、青色光をカットする需要も増えている。 Conventionally, there is a demand for films that cut ultraviolet rays in the fields of automobiles, building materials, and electronics. The purpose of cutting off the ultraviolet rays is to prevent adverse effects on the human body and deterioration of the members due to ultraviolet rays from sunlight. In the field of automobiles and building materials, it is used as a window film by laminating and laminating laminated glass or single plate glass to play a role in suppressing human skin and indoor member deterioration. In the electronics field, protective films for suppressing the curing of photosensitive resins and polarizer protective films added with ultraviolet (UV) absorbers for the purpose of protecting the liquid crystal layer of liquid crystal display panels from deterioration due to external light are known. It has been. In recent years, since the light source of liquid crystal displays has become a strong blue light LED, there is a risk that the blue light will adversely affect the retina of the human eye and the circadism of the human body. ing.
 これらの光を遮蔽する手法は、従来から有機、無機の紫外線や黄色の光吸収剤をフィルム内部に添加、あるいはフィルム上にコーディングして用いられるのが一般的であった。しかしながら、従来の紫外線(以後、UVと称す。)や青色の光吸収剤の光吸収特性は、フィルム透過色において黄色味が強くなる傾向があり、デザイン(意匠)や色設計の面で敬遠される問題があった。 Conventionally, these light blocking methods have been generally used by adding organic or inorganic ultraviolet or yellow light absorbers inside the film, or by coding on the film. However, the light absorption characteristics of conventional ultraviolet (hereinafter referred to as “UV”) and blue light absorbers tend to be more yellowish in the color transmitted through the film, and are avoided in terms of design (design) and color design. There was a problem.
 特に樹脂にUV吸収剤を練り込む場合、耐熱不足のために昇華性が高く、溶融押出のフィルム製膜ではブリードアウトやUV吸収剤の熱分解によるフィルム破れの問題があった。そのためUV吸収剤の添加量は少なくする必要があり、フィルム厚みを厚くして、UV遮蔽性能を補う対策が取られていた。ここでブリードアウトとは、昇華性が高く、低融点の低分子量の添加剤が高い温度で高分子量樹脂(ポリマー)とともに押し出されるために、その昇華物による製造ラインの汚染、及びその汚染物質や熱分解物によって製品の欠陥や欠点に繋がる品位や物性に影響を与える現象をいう。 In particular, when a UV absorber is kneaded into a resin, it has high sublimation properties due to insufficient heat resistance, and film formation by melt extrusion has a problem of film breakage due to bleeding out or thermal decomposition of the UV absorber. Therefore, it is necessary to reduce the addition amount of the UV absorber, and measures have been taken to compensate for the UV shielding performance by increasing the film thickness. Here, bleed out means that the sublimation product has high sublimation properties, and a low molecular weight additive having a low melting point is extruded together with a high molecular weight resin (polymer) at a high temperature. Phenomenon that affects the quality and physical properties that lead to defects and defects of products due to pyrolysis products.
 一方、コーティングの場合、架橋剤を用いるUV硬化タイプは、UV吸収剤を添加すると架橋による硬化反応を発現し難く、硬化するはずのマトリクス樹脂が固まらない問題が発生していた。コーティング層を薄膜化する場合は、UV吸収剤の高濃度添加が必要となり、益々、固化しない傾向が強くなる問題があった。 On the other hand, in the case of coating, the UV curing type using a crosslinking agent has a problem in that when a UV absorber is added, a curing reaction due to crosslinking is difficult to occur, and the matrix resin that should be cured does not solidify. When the coating layer is made thin, it is necessary to add a high concentration of UV absorber, and there is a problem that the tendency to not solidify becomes stronger.
 最近ではスマートフォンやタブレットが薄型・高精細化してきており、フィルムへのUV吸収剤の添加量は、増加傾向にもかかわらず、限界濃度にきており、解決すべき喫緊の課題となっている。 Recently, smartphones and tablets have become thinner and more precise, and the amount of UV absorber added to films has reached a critical concentration despite an increasing trend, which is an urgent issue to be solved. .
 そこで、UV吸収剤を用いずに、異なる透明樹脂層を交互に光学波長レベルで積層し、光干渉反射現象を用いることにより紫外線カットフィルムが提案されている(特許文献1)。しかしながら、光干渉反射現象は、光の入射角により干渉反射波長がシフトする問題があり、あらゆる方向から進入する光に対して遮蔽性はなく、人体や部材の劣化を完全には保護、防止できない問題を有していた。さらに樹脂自体の劣化の問題も有していた。 Therefore, an ultraviolet cut film has been proposed by alternately laminating different transparent resin layers at the optical wavelength level without using a UV absorber and using a light interference reflection phenomenon (Patent Document 1). However, the optical interference reflection phenomenon has a problem that the interference reflection wavelength shifts depending on the incident angle of light, and has no shielding property against light entering from all directions, and cannot completely protect or prevent deterioration of the human body and members. Had a problem. In addition, the resin itself has a problem of deterioration.
 一方、屋外での紫外線の長期暴露でも樹脂劣化しない目的でUV吸収剤と光安定剤を併用した単層または多層ポリエステルフィルムを含む光安定性の製品が提案されている(特許文献2)。これは多層構造あるいはUV吸収剤に係るUV遮蔽性でなく、単に樹脂劣化の寿命を延ばす事を目的とした光安定剤とUV吸収剤の組合せの発明である。また、従来の溶融押出プロセスによる単層フィルムへのUV吸収剤添加の事例であり、UV吸収剤のブリードアウト問題が生じていた。 On the other hand, a light-stable product including a single-layer or multi-layer polyester film in which a UV absorber and a light stabilizer are used together has been proposed for the purpose of preventing resin deterioration even after long-term exposure to ultraviolet rays outdoors (Patent Document 2). This is an invention of a combination of a light stabilizer and a UV absorber, which is not a multi-layer structure or a UV shielding property relating to a UV absorber, but merely for extending the life of resin degradation. Moreover, it is an example of UV absorber addition to the single layer film by the conventional melt extrusion process, and the bleeding out problem of UV absorber has arisen.
 そして最近では、UV吸収剤とUV干渉反射を併用したUV遮蔽フィルムが提案されている。(特許文献3)これは、UV反射性多層光学フィルム自体の劣化を防止するためにUV吸収剤を光学層またはフィルム表面に設けられた非光学的保護層に高濃度添加したものである。主にフィルム構成によって反射と吸収を機能分離したものである。 Recently, a UV shielding film using a UV absorber and UV interference reflection has been proposed. (Patent Document 3) This is a UV absorber added at a high concentration to an optical layer or a non-optical protective layer provided on the film surface in order to prevent deterioration of the UV reflective multilayer optical film itself. The function is to separate reflection and absorption mainly by the film structure.
特開平7-507152号公報(第2頁)JP 7-507152 A (second page) 特表2003-532752号公報(第2項)Special Table 2003-532752 (paragraph 2) 特表2013-511746号公報(第2頁)Special table 2013-511746 gazette (2nd page)
 上述の通り、従来の単層フィルムおよび多層フィルムへのUV吸収剤や色素等の吸収剤の練り込み添加では、溶融押出の際に吸収剤を高濃度添加した場合、フィルム製膜においてブリードアウト、フィルム破れ及び黄色味の問題があり、UV~青色領域波長の光の遮蔽性能が高い薄膜フィルムは困難であった。そして、特許文献3のように多層構造による反射性能を併用しようとしても、フィルム厚みが厚い上に、フィルム全体でのUV吸収剤の添加濃度は2重量%以上と多いため、干渉反射の効果はなかった。また、UV吸収剤についても検討が不十分であった。そのために最外層の保護層からUV吸収剤ブリードアウトするばかりでなく、UV吸収性能が支配的なため、UV反射性能が効果的に作用していない大きな問題があった。つまりは、UV吸収剤と多層構造による反射性能とのUV~青色領域波長帯の遮蔽性の相乗効果がおこらない問題があった。 As described above, in the kneading addition of absorbers such as UV absorbers and pigments to conventional single layer films and multilayer films, when adding a high concentration of absorbent during melt extrusion, bleeding out in film formation, There are problems of film breakage and yellowishness, and it has been difficult to produce a thin film having a high light shielding performance in the wavelength range of UV to blue. And even if it is going to use the reflection performance by a multilayer structure like patent document 3, since the addition thickness of UV absorber in the whole film is as much as 2 weight% or more, the effect of interference reflection is large. There wasn't. Moreover, examination was insufficient about the UV absorber. Therefore, not only the UV absorber bleeds out from the outermost protective layer, but also the UV absorption performance is dominant, so there is a big problem that the UV reflection performance does not work effectively. That is, there is a problem that the synergistic effect of the shielding property in the wavelength band of UV to blue region between the UV absorber and the reflection performance by the multilayer structure does not occur.
 かかる課題を解決するために、本発明は、次のような構成をとる。すなわち、熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)を、交互に少なくとも50層以上積層した積層フィルムであって、A層またはB層の少なくともいずれかの層に青色の光を吸収する色素またはUV吸収剤、あるいは両方を含み、フィルム厚みと青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積が0.35[μm・重量%/100]以下であり、波長300nm~500nmにおいて、最大反射率が15%以上であり、また、最小透過率が70%以下である積層フィルム。 In order to solve this problem, the present invention has the following configuration. That is, a laminated film in which layers of thermoplastic resin A (A layer) and layers of thermoplastic resin B (B layer) are alternately laminated at least 50 layers, and at least one of layer A or layer B The layer of the film contains a dye that absorbs blue light and / or UV absorber, or both, and the product of the film thickness and the concentration of dye or UV absorber that absorbs blue light or both is 0.35 [μm · % / 100] or less, and a maximum reflectance of 15% or more and a minimum transmittance of 70% or less at a wavelength of 300 nm to 500 nm.
 特に、ブリードアウトを抑制する観点から、分子量が500を超える色素やUV吸収剤をB層のみに添加し、且つ積層比を1以下とし、遮蔽性の観点から青色の光を吸収する色素またはUV吸収剤の長波長吸収端が、層の積層構造に基づいた干渉反射による反射帯域の長波長端より大きいことが好ましい。 In particular, from the viewpoint of suppressing bleed out, a dye or UV absorber having a molecular weight exceeding 500 is added only to the B layer, and the lamination ratio is 1 or less, and the dye or UV absorbing blue light from the viewpoint of shielding properties. The long wavelength absorption edge of the absorber is preferably larger than the long wavelength edge of the reflection band due to interference reflection based on the layered structure of the layers.
 本発明は、干渉反射に基づく反射性と吸収剤による吸収性を上手く併用し、両者の相乗効果を生み出すことによって、波長460nm以下、または波長380nm以下の光を急峻に遮蔽し、青色の光を吸収する色素またはUV吸収剤の低濃度化を実現する。特に、青色の光を吸収する色素やUV吸収剤を練り込んだUV遮蔽フィルムの製膜上の課題であったブリードアウトやフィルム破れを解決し、厚みが薄くてもUV光や青色光の高い遮蔽性を維持した積層フィルムを提供することができる。ここでの遮蔽とは、反射や吸収の概念を含んでおり、その尺度は透過率で表される。 The present invention combines the reflectivity based on interference reflection and the absorptivity by an absorbent, and creates a synergistic effect of both, thereby sharply shielding light with a wavelength of 460 nm or less or with a wavelength of 380 nm or less, and blocking blue light. Achieving low concentration of absorbing dye or UV absorber. In particular, it solves bleed-out and film breakage, which are problems in film formation of UV shielding films containing pigments and UV absorbers that absorb blue light, and has high UV and blue light even when the thickness is thin. A laminated film maintaining the shielding property can be provided. The shielding here includes the concept of reflection and absorption, and the scale is expressed by transmittance.
 また、多層構造による干渉反射特有の視野角依存性を解消することでウィンドウフィルム、ブルーライトカットフィルム、およびドライフィルムフォトレジスト用工程フィルム等の各種保護フィルム用途に好適である。特に、位相差を制御することにより液晶ディスプレイの偏光子保護フィルムや円偏光フィルム用途に好適な積層フィルムを提供することができる。 Moreover, it is suitable for various protective film applications such as window films, blue light cut films, and process films for dry film photoresists by eliminating the viewing angle dependence peculiar to interference reflection due to the multilayer structure. In particular, by controlling the phase difference, it is possible to provide a laminated film suitable for use in a polarizer protective film or a circularly polarizing film for liquid crystal displays.
(a)青色の光を吸収する色素またはUV吸収剤、あるいは両方を添加した層をもつ積層フィルムの構成図、(b)青色の光を吸収する色素またはUV吸収剤、あるいは両方を添加した単層フィルムの構成図(A) Composition diagram of a laminated film having a layer to which a blue light absorbing dye or UV absorber, or both are added, (b) a single film to which a blue light absorbing dye or UV absorber, or both are added Diagram of layer film 本発明に用いる積層フィルムの製造方法の一例を説明する説明図であり、(a)は装置の概略正面図、(b)、(c)、(d)はそれぞれL-L’、M-M’、N-N’で切った樹脂流路の断面図である。It is explanatory drawing explaining an example of the manufacturing method of the laminated film used for this invention, (a) is a schematic front view of an apparatus, (b), (c), (d) is LL ', MM, respectively. It is sectional drawing of the resin flow path cut | disconnected by ', NN'. (a)傾斜構造を3つもつ積層フィルムの層厚み分布の例、(b)傾斜構造を2つもつ積層フィルムの層厚み分布の例(A) Example of layer thickness distribution of laminated film having three inclined structures, (b) Example of layer thickness distribution of laminated film having two inclined structures (a)反射の壁を3つもつ積層フィルムにおける吸収増大の説明図(b)反射の壁を2つもつ積層フィルムにおける吸収増大の説明図(A) Explanatory view of absorption increase in laminated film having three reflection walls (b) Explanatory view of absorption increase in laminated film having two reflective walls 液晶ディスプレイ等の電子機器上のカバーガラスに貼り付けた画面保護フィルムの例Example of screen protection film affixed to a cover glass on an electronic device such as a liquid crystal display (a)積層フィルムを用いた偏光板の例、(b)液晶セルを偏光板で挟んだ構造のLCDパネルの模式図、(c)積層フィルムの主配向軸と上偏光板の偏光子からの直線偏光軸とでなす角度を表した図(A) An example of a polarizing plate using a laminated film, (b) A schematic diagram of an LCD panel having a structure in which a liquid crystal cell is sandwiched between polarizing plates, (c) From a main alignment axis of the laminated film and a polarizer of an upper polarizing plate A diagram showing the angle between the linear polarization axis (a)積層フィルムを偏光子保護フィルムとして用いたタッチパネルの構成例(b)積層フィルムを飛散防止フィルム、円偏光板として用いたときのタッチパネル構成例。(c)積層フィルムをフィルムセンサーとしてのITO基材のGF1タイプとして用いたときのタッチパネル構成例。(A) Configuration example of touch panel using laminated film as polarizer protective film (b) Touch panel configuration example when using laminated film as scattering prevention film and circularly polarizing plate. (C) Touch panel configuration example when the laminated film is used as a GF1 type ITO base material as a film sensor. 色素またはUV吸収剤の長波長吸収端と積層フィルムの反射帯域の長波長端の関係を示した図The figure which showed the relationship between the long wavelength absorption edge of a pigment | dye or a UV absorber, and the long wavelength edge of the reflective band of a laminated film 色素を含んだ積層フィルムの分光透過スペクトルと分光反射スペクトルの説明図Explanatory drawing of spectral transmission spectrum and spectral reflection spectrum of laminated film containing dye UV吸収剤を含んだ積層フィルムの分光透過スペクトルと分光反射スペクトル図Spectral transmission spectrum and spectral reflection spectrum of laminated film containing UV absorber
 以下に、本発明について説明する。本発明の積層フィルムは、熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)とを、交互に少なくとも50層以上積層した積層フィルムであって、A層またはB層の少なくともいずれかの層に青色の光を吸収する色素またはUV吸収剤、あるいは両方を含み、フィルム厚みと青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積が0.35[μm・重量%/100]以下であり、波長300nm~500nmにおいて、最大反射率が15%以上であり、また、最小透過率が70%以下であることが必要である。 The present invention will be described below. The laminated film of the present invention is a laminated film obtained by alternately laminating at least 50 layers of layers composed of a thermoplastic resin A (A layer) and layers composed of a thermoplastic resin B (B layer). The product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light, or both is included in at least one of the layers B, which contains a dye or UV absorber that absorbs blue light, or both. It is 0.35 [μm · weight% / 100] or less, and it is necessary that the maximum reflectance is 15% or more and the minimum transmittance is 70% or less at a wavelength of 300 to 500 nm.
 本発明の積層フィルムに用いられる熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン-1)、ポリアセタールなどの鎖状ポリオレフィン、ノルボルネン類の開環メタセシス重合,付加重合,他のオレフィン類との付加共重合体である脂環族ポリオレフィン、ポリ乳酸、ポリブチルサクシネートなどの生分解性ポリマー、ナイロン6、ナイロン11、ナイロン12、ナイロン66などのポリアミド、アラミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、エチレン酢酸ビニルコポリマー、ポリアセタール、ポリグルコール酸、ポリスチレン、スチレンアクリロニトリルコポリマー、スチレン共重合ポリメタクリル酸メチル、ポリカーボーネート、ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル、ポリエーテルサルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリアリレート、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデン、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体、フェノールおよびフタル酸とパラヒドロキシ安息香酸との重縮合体、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体など、パラヒドロキシ安息香酸などを基本構造としつつ、各種の成分と直鎖状にエステル結合させた芳香族ポリエステル系樹脂の液晶ポリマーを用いることができる。この中で、押出成形が良く、耐薬品性・強度・耐熱性・透明性に優れ、汎用性の観点から、特にポリエステルを用いることが好ましい。これらは、ホモポリマーでも共重合ポリマー、さらには複数のポリマーの混合物であってもよい。 Examples of the thermoplastic resin used in the laminated film of the present invention include chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1) and polyacetal, ring-opening metathesis polymerization of norbornenes, addition polymerization, and other olefins. Biodegradable polymers such as alicyclic polyolefin, polylactic acid, and polybutyl succinate, polyamides such as nylon 6, nylon 11, nylon 12, and nylon 66, aramid, polymethyl methacrylate, polychlorinated Vinyl, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene acrylonitrile copolymer, styrene copolymer polymethyl methacrylate, polycar -Polyesters such as polypropylene, polyethylene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polyarylate, 4 Fluorinated ethylene resin, trifluoroethylene resin, trifluorochloroethylene resin, tetrafluoroethylene-6-fluoropropylene copolymer, polyvinylidene fluoride, polycondensate of ethylene terephthalate and parahydroxybenzoic acid, phenol and Basic composition of parahydroxybenzoic acid, such as polycondensate of phthalic acid and parahydroxybenzoic acid, polycondensate of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid, etc. And then while it is possible to use a liquid crystal polymer various component and an aromatic polyester resin obtained by ester bonding to linear. Among them, it is particularly preferable to use polyester from the viewpoint of good extrusion molding, excellent chemical resistance, strength, heat resistance and transparency, and versatility. These may be a homopolymer, a copolymer, or a mixture of a plurality of polymers.
 このポリエステルとしては、芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールあるいはこれらのエステル形成性誘導体からの重合により得られるポリエステルが好ましい。ここで、芳香族ジカルボン酸として、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、4,4′-ジフェニルスルホンジカルボン酸、6,6′‐(エチレンジオキシ)ジ‐2‐ナフトエ酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも高い屈折率と剛性を発現するテレフタル酸、イソフタル酸、ナフタレンジカルボン酸、及びシクロヘキサンジカルボン酸が好ましい。これらの酸成分は1種のみ用いてもよく、2種以上併用してもよく、さらには、ヒドロキシ安息香酸等のオキシ酸などを一部共重合してもよい。 The polyester is preferably a polyester obtained by polymerization from an aromatic dicarboxylic acid or aliphatic dicarboxylic acid and a diol or an ester-forming derivative thereof. Here, as the aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyl Examples thereof include dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylsulfone dicarboxylic acid, 6,6 '-(ethylenedioxy) di-2-naphthoic acid and the like. Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof. Among these, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and cyclohexanedicarboxylic acid that exhibit high refractive index and rigidity are preferable. These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
 また、ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、イソソルベート、スピログリコール、水素化ビスフェノールA、ビスフェノールA・プロピレンオキサイド、ビスフェノールA・エチレンオキサイド、グリセリン、トリメチロールプロパン、トリメチロールエタン、エチレンオキサイド、プロピレンオキサイドなどを挙げることができる。中でも、高いガラス転移点と低複屈折性の観点から、フルオレン、エチレングリコール、1,4-シクロヘキサンジメタノール、スピログリコール、イソソルベード、ビスフェノールAエチレンオキサイドが好ましく用いられる。特にこれらのジオール成分は1種のみ用いてもよく、2種以上併用してもよい。 Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, isosorbate, spiroglycol, hydrogenated bisphenol A, bisphenol A / propylene oxide, bisphenol A / ethylene oxide, glycerin, trimethylol Propane, trimethylol ether Emissions, ethylene oxide, propylene oxide and the like. Of these, fluorene, ethylene glycol, 1,4-cyclohexanedimethanol, spiroglycol, isosorbade, and bisphenol A ethylene oxide are preferably used from the viewpoint of a high glass transition point and low birefringence. In particular, these diol components may be used alone or in combination of two or more.
 上記ポリエステルのうち、青色~UVの波長領域において高い反射率を実現し、熱寸法安定性が良好であり、高い生産性、及びUV吸収剤や色素との溶解性に優れる観点から、何れか一方の樹脂である熱可塑性樹脂Aは、二軸延伸と熱処理により配向結晶化が付与できる観点から、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリヘキサメチレンテレフタレートが好ましい。また、結晶性の観点から、共重合成分15モル%以下のこれらの共重合体を用いることが好ましい。共重合成分のジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、ジオールとしては、フルオレン、エチレングリコール、1,4-シクロヘキサンジメタノール、スピログリコール、イソソルベード、ビスフェノールAエチレンオキサイドが好ましく、これらを組み合わせた4元共重合体を用いても良い。これらは、共重合ポリマーの単独使用、またはホモポリマーとその共重合ポリマーによるポリマーアロイであってもよい。 Among the above polyesters, either one is realized from the viewpoint of realizing high reflectivity in the blue to UV wavelength region, good thermal dimensional stability, high productivity, and excellent solubility in UV absorbers and pigments. The thermoplastic resin A is preferably polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, or polyhexamethylene terephthalate from the viewpoint that orientation crystallization can be imparted by biaxial stretching and heat treatment. From the viewpoint of crystallinity, it is preferable to use these copolymers having a copolymerization component of 15 mol% or less. Dicarboxylic acids for copolymerization are terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, and diols are fluorene, ethylene glycol, 1,4-cyclohexanedimethanol, spiroglycol, isosorbade, and bisphenol A ethylene oxide. Preferably, a quaternary copolymer obtained by combining these may be used. These may be a single copolymer copolymer, or a polymer alloy of a homopolymer and the copolymer.
 一方、熱可塑性樹脂Bは、共重合成分5モル%以上60モル%以下の前記ポリエステル樹脂の共重合体を用いることが好ましい。このように共重合率が高いと非晶性になりやすく、UV吸収剤や色素が非晶領域に滞在し易い。また、熱処理により層内で溶融し、屈折率が等方性となるため、A層とB層との層間の面内屈折率差が上昇し、かつ視野角に対しても屈折率差を高めることができるため反射率を向上させることができる。より好ましくは、共重合成分が15モル%以上50モル%以下である。また、本発明の好ましい態様では、熱可塑性樹脂Bの共重合率が高いとA層に比べてB層の面内屈折率は低屈折率となるため、光が斜めから入射したときに、スネル法則に従った光の屈折がA層とB層の界面で生じる。そのとき、B層での光路長は、A層に比べて長くなる。つまり、本発明の積層フィルムでは、B層が存在することにより、斜めからの光入射である視野角に対する青色の光を吸収する色素やUVの吸収剤の効果は、熱可塑性樹脂Aのみから構成される単層フィルムに比べて、光路長が増大し、ランベルト・ベール則に従い吸収性能が向上する。さらに、本発明は、光の吸収と干渉反射現象が同時におこるため、吸収共鳴が発生し、青色の光の波長やUV遮蔽性の相乗効果が起こる。 On the other hand, as the thermoplastic resin B, it is preferable to use a copolymer of the polyester resin having 5 to 60 mol% of the copolymer component. Thus, when the copolymerization rate is high, it is likely to become amorphous, and the UV absorber and the dye tend to stay in the amorphous region. Moreover, since the heat treatment melts in the layer and the refractive index becomes isotropic, the in-plane refractive index difference between the A layer and the B layer increases, and the refractive index difference is also increased with respect to the viewing angle. Therefore, the reflectance can be improved. More preferably, the copolymerization component is 15 mol% or more and 50 mol% or less. In a preferred embodiment of the present invention, when the copolymerization rate of the thermoplastic resin B is high, the in-plane refractive index of the B layer is lower than that of the A layer. Refraction of light according to the law occurs at the interface between the A layer and the B layer. At that time, the optical path length in the B layer is longer than that in the A layer. That is, in the laminated film of the present invention, since the B layer is present, the effect of the dye that absorbs blue light and the UV absorber with respect to the viewing angle that is obliquely incident light is composed of only the thermoplastic resin A. Compared to a single layer film, the optical path length is increased, and the absorption performance is improved according to the Lambert-Beer law. Furthermore, in the present invention, since light absorption and interference reflection occur simultaneously, absorption resonance occurs, and a synergistic effect of blue light wavelength and UV shielding occurs.
 本発明の積層フィルムは、熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)を、交互に少なくとも50層以上積層した積層フィルムであることが必要である。50層未満であると、干渉反射による反射率が小さく、青色の光や紫外線の遮蔽性能の相乗効果が起こり難いためである。より好ましくは150層以上であり、さらに好ましくは250層以上である。層数が多すぎるとフィルムの全体の厚みが厚くなるため、600層以下が好ましい。より好ましくは300層以下である。 The laminated film of the present invention needs to be a laminated film obtained by alternately laminating at least 50 layers of layers made of thermoplastic resin A (A layer) and layers made of thermoplastic resin B (B layer). This is because if it is less than 50 layers, the reflectivity due to interference reflection is small, and a synergistic effect of the shielding performance of blue light and ultraviolet rays hardly occurs. More preferably, it is 150 layers or more, More preferably, it is 250 layers or more. If the number of layers is too large, the entire thickness of the film becomes thick, so 600 layers or less are preferable. More preferably, it is 300 layers or less.
        本発明の積層フィルムは、A層またはB層の少なくともいずれかの層に青色の光を吸収する色素またはUV吸収剤、あるいは両方を含んでいる熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)を、交互に少なくとも50層以上積層した積層フィルムであって、フィルム厚みと青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積が0.35以下であることが必要である。 The laminated film of the present invention comprises a layer (A layer) composed of a thermoplastic resin A containing a dye that absorbs blue light, a UV absorber, or both in at least one of the A layer and the B layer. It is a laminated film in which at least 50 or more layers made of plastic resin B (B layer) are alternately laminated, and the product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light, or both is contained. It must be 0.35 or less.
 ここで、青色の光を吸収する色素とは、青色の光の波長である450nm近傍を中心とした波長400~500nmの領域に吸収特性をもつ色素のことを意味する。ここでの色素とは、顔料(有機・無機)及び染料とに分類できる。本発明の積層フィルムは、波長300nm~500nmの領域に反射を有し、効果的に青色の光を遮蔽する観点から、黄色や橙色、さらに青色を呈する顔料が好ましい。顔料としは、無機顔料、有機顔料、クラシカル顔料に大別できる。黄色の無機顔料としては、クロムエロー、亜鉛黄、カドミウムエロー、チタンエロー、バリウムエロー、コバルトエロー、黄土、フィリットエローが好ましい。青色の無機顔料としては、群青や紺青が好ましい。耐湿熱性の面で顔料が好ましく、特に熱可塑性樹脂との親和性の観点から、有機顔料が好ましい。有機顔料は、アゾ顔料、フタロシアニン顔料、染付けレーキ、複素環式顔料、その他に大別される。 Here, the dye absorbing blue light means a dye having absorption characteristics in a wavelength range of 400 to 500 nm centered around 450 nm which is the wavelength of blue light. The pigments here can be classified into pigments (organic / inorganic) and dyes. The laminated film of the present invention is preferably a pigment exhibiting yellow, orange or even blue color from the viewpoint of reflecting in the wavelength region of 300 nm to 500 nm and effectively shielding blue light. The pigments can be roughly classified into inorganic pigments, organic pigments, and classical pigments. As the yellow inorganic pigment, chrome yellow, zinc yellow, cadmium yellow, titanium yellow, barium yellow, cobalt yellow, ocher, and fillit yellow are preferable. As the blue inorganic pigment, ultramarine blue and bitumen are preferable. A pigment is preferable in terms of moisture and heat resistance, and an organic pigment is particularly preferable from the viewpoint of affinity with a thermoplastic resin. Organic pigments are roughly classified into azo pigments, phthalocyanine pigments, dyed lakes, heterocyclic pigments, and the like.
 アゾ顔料は、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、金属錯塩アゾ顔料に分類される。さらに、不溶性アゾ顔料は、βナフトール系、ナフトールAS系、アセト酢酸アリールアミド系の不溶性モノアゾ顔料とアセト酢酸アリールアミド系、ピラゾロン系の不溶性ジスアゾ顔料に分類される。また、アゾレーキ顔料は、βナフトール系、βオキシナフトエ酸系に分類される。 Azo pigments are classified into insoluble azo pigments, azo lake pigments, condensed azo pigments, and metal complex azo pigments. Further, insoluble azo pigments are classified into β-naphthol-based, naphthol-AS-based, acetoacetate arylamide-based insoluble monoazo pigments, acetoacetate arylamide-based, and pyrazolone-based insoluble disazo pigments. Azo lake pigments are classified into β-naphthol type and β-oxynaphthoic acid type.
 フタロシアニン顔料は、銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン、銅フタロシアニンレーキに分類される。 The phthalocyanine pigment is classified into copper phthalocyanine, halogenated copper phthalocyanine, metal-free phthalocyanine, and copper phthalocyanine lake.
 複素環式顔料としては、アンソラキノン系顔料、チオインジゴ顔料、ペリノン顔料、ペリレン顔料、キナクリドン顔料、ジオキサジン顔料、イソインドリノン顔料、キノフタロン顔料、イソインドリン顔料に分類される。波長に対して急峻に光を遮蔽する観点から、アンソラキノン系顔料、イソインドリン顔料が好ましい。 The heterocyclic pigments are classified into anthoraquinone pigments, thioindigo pigments, perinone pigments, perylene pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments, quinophthalone pigments, and isoindoline pigments. From the viewpoint of shielding light steeply with respect to the wavelength, anthoraquinone pigments and isoindoline pigments are preferred.
 その他としては、ニトロン顔料、アリザリンレーキ、金属錯塩アゾメチン顔料、アニリンブラック、アルカリブルー、天然有機顔料が挙げられる。有機顔料では、耐熱性やブリードアウトし難い観点から黄色はアンスラキノン、オーラミンレーキ、キノフタロン、モノアゾベンゼンスルホン酸塩系の顔料が好ましく、青色は銅フタロシアニン顔料が好ましい。 Other examples include nitrone pigments, alizarin lakes, metal complex azomethine pigments, aniline black, alkali blue, and natural organic pigments. Among organic pigments, yellow is preferably anthraquinone, auramin lake, quinophthalone, or monoazobenzenesulfonate-based pigment, and blue is preferably a copper phthalocyanine pigment from the viewpoint of heat resistance and difficulty in bleeding out.
 本発明のUV吸収剤は、紫外線を吸収し、熱エネルギーに変換する代表的UV吸収剤として知られるベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、及びベンズオキサジン系であることが好ましい。ベンゾフェノン系としては、例えば、4-メトキシ-2-ヒドロキシベンゾフェノン:分子量228、4-メトキシ-2-ヒドロキシベンゾフェノン-5-スルホン酸:分子量308、2,4-ジヒドロキシベンゾフェノン:分子量214、4,4'-ジメトキシ2,2'-ジヒドロキシベンゾフェノン:分子量274、4,4'-ジメトキシ-2,2'-ジヒドロキシ-5,5'-ジスルホン酸ベンゾフェノンジナトリウム:分子量478、2,2'-4,4'-テトラヒドロキシベンゾフェノン:分子量246、ヒドロキシメトキシベンゾフェノンスルホン酸ナトリウム:分子量376 、オクタベンゾン:分子量326、 2-ヒドロキシ-4-m-オクトキシ-ベンゾフェノン:分子量345、2-ヒドロキシ-4-n-オクトキシベンゾフェノン:分子量326 、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン:分子量468などが挙げられる。 The UV absorber of the present invention is preferably a benzophenone-type, benzotriazole-type, triazine-type, or benzoxazine-type known as typical UV absorbers that absorb ultraviolet rays and convert them into thermal energy. Examples of the benzophenone series include 4-methoxy-2-hydroxybenzophenone: molecular weight 228, 4-methoxy-2-hydroxybenzophenone-5-sulfonic acid: molecular weight 308, 2,4-dihydroxybenzophenone: molecular weight 214, 4,4 ' -Dimethoxy 2,2'-dihydroxybenzophenone: molecular weight 274, 4,4'-dimethoxy-2,2'-dihydroxy-5,5'-disulfonic acid benzophenone disodium: molecular weight 478, 2,2'-4,4 ' -Tetrahydroxybenzophenone: molecular weight 246, sodium hydroxymethoxybenzophenone sulfonate: molecular weight 376, octabenzone: molecular weight 326, 2-hydroxy-4-m-octoxy-benzophenone: molecular weight 345, 2-hydroxy-4-n-octoxybenzophenone: And a molecular weight of 326, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane: molecular weight of 468, and the like.
 また、ベンゾトリアゾール系としては、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール:分子量225、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール:分子量448、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール:分子量316、2,4-ジ-tert-ブチル-6-(5-クロロ-2H-1,2,3-ベンゾトリアゾール-2-イル)フェノール:分子量358、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール:分子量352、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール:分子量323、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]:分子量659、2(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)5クロロベンゾトリアゾール:分子量315 、 2(2'-ヒドロキシ-3'5-ジ-tert-ブチル-フェニル)5クロロベンゾトリアゾール:分子量357 、2(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール:分子量225 、2-(2-ヒドロキシ-5-オクチルフェニル)-ベンゾトリアゾ-ル:分子量323などが挙げられる。 As the benzotriazole series, 2- (2H-benzotriazol-2-yl) -p-cresol: molecular weight 225, 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl) -1-phenylethyl) phenol: molecular weight 448, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol: molecular weight 316, 2,4-di -tert-Butyl-6- (5-chloro-2H-1,2,3-benzotriazol-2-yl) phenol: molecular weight 358, 2- (2H-benzotriazol-2-yl) -4,6-tert -Pentylphenol: molecular weight 352, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol: molecular weight 323, 2,2'-methylenebis [6- ( 2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol]: molecular weight 659, 2 (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) ) 5 Chlorobenzotriazole: molecular weight 315, 2 (2'-hydroxy-3'5- Di-tert-butyl-phenyl) 5-chlorobenzotriazole: molecular weight 357, 2 (2'-hydroxy-5'-methylphenyl) benzotriazole: molecular weight 225, 2- (2-hydroxy-5-octylphenyl) -benzotriazo- Lu: molecular weight 323 and the like.
 さらに、トリアジン系としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール:分子量426、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノ-ル:分子量509、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン:分子量700、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]フェノール:分子量512、1,6-ヘキサンジアミン,N,N'-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、ポリマーズモルホリン-2,4,6-トリクロロ-1,3,5-トリアジンなどが挙げられるが、これらに限定されない。 Further, triazines include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol: molecular weight 426, 2- [4,6- Bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol: molecular weight 509, 2,4,6-tris (2-hydroxy-4- Hexyloxy-3-methylphenyl) -1,3,5-triazine: molecular weight 700, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2- Ethylhexanoyloxy) ethoxy] phenol: molecular weight 512, 1,6-hexanediamine, N, N′-bis (1,2,2,6,6-pentamethyl-4-piperidyl), polymers morpholine-2,4, Examples include, but are not limited to, 6-trichloro-1,3,5-triazine.
 また、ベンズオキサジン系としては、2,2’-(1,4-フェニレン)ビス (4H-3,1-ベンズオキサジン-4-オン):分子量368が挙げられる。その他、マロン酸エステル構造をもつテトラ-エチル-2,2-(1,4-フェニレン-ジメチリデン-ビスマロン酸:分子量418、シュウ酸アニリド構造をもつ2エチル,2’-エトキシ-オキサミド:分子量312などが挙げられる。上記した成分は、2種以上を混合して使用することもできる。 As the benzoxazine series, 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazine-4-one): molecular weight 368 can be mentioned. In addition, tetra-ethyl-2,2- (1,4-phenylene-dimethylidene-bismalonic acid with malonic ester structure: molecular weight 418, 2-ethyl 2,2'-ethoxy-oxamide with oxalic anilide structure: molecular weight 312, etc. The above-mentioned components can be used in combination of two or more.
 本発明の積層フィルムは、UV吸収剤の分子量が500以上であるトリアジン骨格またはベンゾトリアゾール骨格を含んでいることが好ましい。分子量が500以上であると、溶融押出されたときに昇華物の量が少なく、ポリマーやフィルム製造ラインの汚染やフィルムの品位への影響が少ないためである。また、ポリエステルとの相溶性の観点から、官能基はヒドロキシルキ基等の極性基を有することが好ましい。 The laminated film of the present invention preferably contains a triazine skeleton or a benzotriazole skeleton having a UV absorber molecular weight of 500 or more. This is because when the molecular weight is 500 or more, the amount of sublimation is small when melt-extruded, and there is little influence on the contamination of the polymer and film production lines and the quality of the film. Moreover, it is preferable that a functional group has polar groups, such as a hydroxyl group, from a compatible viewpoint with polyester.
 本発明の青色の光を吸収する色素とUV吸収剤を併用することは、機能分離し、光の波長を広く遮蔽する観点から好ましい。それぞれ、吸収ピークが異なるものを2種以上併用することが好ましい。併用する組合せは、吸収ピーク波長が30nm以上異なることにより、異なる波長の光を効率的に遮蔽するため好ましい。また、分子量が大きく、融点が低い方のUV吸収剤は、融点および結晶性が高いUV吸収剤が表面にでることを防ぐ捕捉効果の観点から、他方のブリードアウトを抑制する。低融点側は、160℃以下、一方、高融点側は、190℃以上が好ましい。例えば、波長350nm以上に吸収ピークをもつ2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジンと波長320nm以下に吸収ピークをもつ2-(4,6-(4-ビフェニル)-1,3,5-トリアジン-2-イル)-5-(2-エチルヘキシルオキシ)-フェノールとの組合せは、前者が後者のブリードアウトを抑制する効果があるため、好ましい。 The combined use of the dye for absorbing blue light of the present invention and a UV absorber is preferable from the viewpoint of functional separation and wide blocking of the wavelength of light. It is preferable to use two or more types having different absorption peaks. The combination to be used in combination is preferable because the absorption peak wavelength is different by 30 nm or more, thereby efficiently shielding light of different wavelengths. Further, the UV absorber having a higher molecular weight and lower melting point suppresses the other bleed-out from the viewpoint of the trapping effect that prevents the UV absorber having a higher melting point and higher crystallinity from appearing on the surface. The low melting point side is preferably 160 ° C. or lower, while the high melting point side is preferably 190 ° C. or higher. For example, 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine having an absorption peak at a wavelength of 350 nm or more and 2 having an absorption peak at a wavelength of 320 nm or less. -(4,6- (4-biphenyl) -1,3,5-triazin-2-yl) -5- (2-ethylhexyloxy) -phenol in combination with the former suppresses the latter bleed-out This is preferable.
 本発明の積層フィルムのフィルム厚みと青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積が0.35[μm・重量%/100]以下であることが必要である。フィルム厚みと青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積は、積層フィルム中の色素またはUV吸収剤の絶対量的な意味を表す。色素やUV吸収剤の種類だけでなく、この値がブリードアウトに影響を及ぼす重要なパラメータであることを見出した。より好ましくは、0.25[μm・重量%/100]以下であり、さらに好ましくは、0.15[μm・重量%/100]以下である。0.35[μm・重量%/100]を超えると、ブリードアウトしやすく、また、干渉反射による吸収効率の相乗効果が発現し難くなる。 It is necessary that the product of the film thickness of the laminated film of the present invention and the contained concentration of the dye or UV absorber that absorbs blue light, or both is 0.35 [μm · weight% / 100] or less. The product of the film thickness and the dye or UV absorber that absorbs blue light, or the concentration of both, represents the absolute amount of the dye or UV absorber in the laminated film. It was found that this value is an important parameter affecting bleed-out as well as the type of dye and UV absorber. More preferably, it is 0.25 [μm · weight% / 100] or less, and further preferably 0.15 [μm · weight% / 100] or less. If it exceeds 0.35 [μm · weight% / 100], bleeding out tends to occur, and a synergistic effect of absorption efficiency due to interference reflection becomes difficult to develop.
 薄膜化の観点から、フィルム厚みは50~3μmが好ましい。より好ましくは35~5μmである。さらに好ましくは、20~6μmである。厚みが薄すぎると、UV~青色の光の波長を干渉反射するのに必要な積層数が確保できなくなる。また、取扱性も難しくなるためである。一方、厚すぎると、同濃度では、青色の光を吸収する色素やUV吸収剤の添加量の絶対値が大きくなるため、ブリードアウトしやすくなるばかりか、積層フィルムを薄膜化することが難しくなることがある。 From the viewpoint of thinning, the film thickness is preferably 50 to 3 μm. More preferably, it is 35 to 5 μm. More preferably, it is 20 to 6 μm. If the thickness is too thin, the number of layers required for interference reflection of the wavelength of UV to blue light cannot be secured. Moreover, it is because handling becomes difficult. On the other hand, if it is too thick, the absolute value of the added amount of the dye or UV absorber that absorbs blue light becomes large at the same concentration, so that it becomes easy to bleed out and it becomes difficult to reduce the thickness of the laminated film. Sometimes.
 また、フィルム全体としての吸収剤の濃度は、0.1重量%以上3重量%以下が好ましい。UV吸収剤や有機系色素は、一般に低融点であるため溶融押出時にブリードアウトする。濃度が高ければ高いほど、ブリードアウトしやすいため、できるだけ低濃度が好ましい。好ましくは、0.1重量%以上2.0重量%以下である。より好ましくは、0.1重量%以上1.5重量%である。さらに好ましくは、0.1重量%以上1.0重量%以下である。最も好ましくは、0.1重量%以上0.6重量%以下である。また、青色の光を吸収する色素またはUV吸収剤、あるいは両方は、A層のみ、B層のみ、A層とB層の両方に含まれていてもよい。特にB層にポリエステル樹脂の共重合体を主として用いる場合は、非晶領域が多く存在するため、UV吸収剤がB層に留まり易い。また、配向結晶化するA層に比べて、B層は紫外線に弱い。そのため、紫外線劣化とブリードアウトの観点からは、B層に多く含まれていることが好ましい。A層とB層の吸収剤濃度比としては、A:B=1:4~2:3が好ましい。 Further, the concentration of the absorbent as the whole film is preferably 0.1% by weight or more and 3% by weight or less. Since UV absorbers and organic dyes generally have a low melting point, they bleed out during melt extrusion. The higher the concentration, the easier it is to bleed out, so the lowest possible concentration is preferred. Preferably, they are 0.1 weight% or more and 2.0 weight% or less. More preferably, it is 0.1 wt% or more and 1.5 wt%. More preferably, they are 0.1 weight% or more and 1.0 weight% or less. Most preferably, it is 0.1 wt% or more and 0.6 wt% or less. Moreover, the pigment | dye or UV absorber which absorbs blue light, or both may be contained only in A layer, only B layer, and both A layer and B layer. In particular, when a polyester resin copolymer is mainly used for the B layer, since many amorphous regions exist, the UV absorber tends to stay in the B layer. Further, the B layer is vulnerable to ultraviolet rays as compared to the A layer that undergoes orientation crystallization. Therefore, from the viewpoint of ultraviolet deterioration and bleed out, it is preferable that the B layer contains a large amount. The absorbent concentration ratio between the A layer and the B layer is preferably A: B = 1: 4 to 2: 3.
 本発明の積層フィルムは、波長300nm~500nmにおいて、最大反射率が15%以上であり、また、最小透過率が70%以下であることが必要である。ある波長で少なくとも反射率が15%以上でないと、干渉反射と色素や吸収剤の相乗効果が少なく、単に吸収剤の寄与が支配的になる。一方、90%以上反射すると、殆ど色素やUV吸収剤の寄与がない観点から、70%未満の反射が好ましく、より好ましくは50%未満の反射である。さらに好ましくは、40%以下の反射である。相乗効果の寄与が大きい場合、反射が吸収に効率良く置き換わるため反射率は低下するが、同時に吸収効果が強くみられる。特に、UV遮蔽フィルムの場合は、無色高透明の観点から波長400nm~500nmにおける最大反射率は、15%以下であることが好ましい。波長400nm以上に反射率15%を超える反射ピークが存在すると透過光でみたときの積層フィルムの色目は黄色味が強くなり、反射光では紫色から青色の外観が強くなり好ましくない。特に全光線透過率の低下や面内の色ムラの原因にも繋がる。反射率が15%を超える反射ピークの反射波長は、好ましくは400nm以下、または390nm以下、より好ましくは380nm以下、さらに好ましくは360nm以下である。最も好ましくは、330nm以下である。これらの態様を表した分光反射と分光透過スペクトルのパターンの一例を図10に示す。 The laminated film of the present invention needs to have a maximum reflectance of 15% or more and a minimum transmittance of 70% or less at a wavelength of 300 nm to 500 nm. If the reflectance is not more than 15% at a certain wavelength, there is little synergistic effect between interference reflection and the dye or the absorbent, and the contribution of the absorbent is dominant. On the other hand, when 90% or more is reflected, reflection of less than 70% is preferable, and reflection of less than 50% is more preferable from the viewpoint that almost no contribution of the dye or UV absorber is present. More preferably, the reflection is 40% or less. When the contribution of the synergistic effect is large, the reflection is efficiently replaced by the absorption, so that the reflectance is lowered, but at the same time, the absorption effect is strong. In particular, in the case of a UV shielding film, the maximum reflectance at a wavelength of 400 nm to 500 nm is preferably 15% or less from the viewpoint of being colorless and highly transparent. If there is a reflection peak exceeding a reflectance of 15% at a wavelength of 400 nm or more, the color of the laminated film when viewed with transmitted light is strong in yellow, and the appearance of purple to blue is strong in reflected light. In particular, this leads to a decrease in total light transmittance and in-plane color unevenness. The reflection wavelength of the reflection peak having a reflectance exceeding 15% is preferably 400 nm or less, or 390 nm or less, more preferably 380 nm or less, and further preferably 360 nm or less. Most preferably, it is 330 nm or less. An example of spectral reflection and spectral transmission spectrum patterns representing these aspects is shown in FIG.
 図1は、本発明に係る積層フィルムと従来の単層フィルムに青色の光を吸収する色素またはUV吸収剤、あるいは両方を添加した構成の例を示している。図1を用いて本発明を詳細に説明する。本発明の積層フィルム5は、熱可塑性樹脂Aからなる層(A層)1と熱可塑性樹脂Bからなる層(B層)2とを交互に50層以上積層している。図1(a)に示したように青色~UV領域の波長の入射光3を積層フィルム5に照射すると、異なる樹脂層間で屈折率差があるために光はその界面で一部の光は反射光4となる。図1(a)では、青色の光を吸収する色素またはUV吸収剤、あるいは両方6を熱可塑性樹脂Bからなる層(B層)2に含んでおり、この層で吸収が起こる。すなわち、本発明は表面反射以外の領域で反射と吸収が同時に起こる物理現象である。一方、図1(b)に示す従来の単層フィルムは、青色~UV領域の波長の入射光3に対して表面反射を除けば、光の吸収のみが発生する。この吸収現象は、一般に下記式(1)に示すランベルトの法則に従うことが知られている。
I= IoExp(-kx) ・・・ 式(1)
(但し、Io:入射光強度、I:出射光強度、k:吸収係数、x:光の通過する距離(光路長))
 本発明の積層フィルム5は、光吸収剤の特性に支配される単層フィルムとは異なり、驚くべきことに式(1)が成立しない。光吸収剤を単層フィルムに添加する量に比べて、積層フィルムは干渉反射が加わるために光吸収剤の濃度を大きく低減できることを見出した。すなわち、フィルム厚みと青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積が0.35以下であっても、波長300~500nmにおいて、入射光の最小透過率が70%以下である。遮蔽性の観点から、より好ましくは50%以下である。ここでの遮蔽性は、分光透過率スペクトルにおける最小透過率で測定することが可能である。すなわち、波長300~500nmにおける最小透過率50%は、入射光の50%を遮蔽したことを意味する。本発明の積層フィルムにおいて、UV吸収剤を添加した場合では、波長370nmの透過率が5%以下であることが好ましい。5%を超えるとUV遮蔽不足となるため、偏光板の偏光子保護フィルムとして用いたときに、製造工程中で偏光子であるPVAや液晶層を保護できない。より好ましくは、4%以下であり、さらに好ましくは3%以下である。特に波長370nm~300nmの全域において、透過率が2%以下であることが最も好ましい。
FIG. 1 shows an example of a structure in which a laminated film according to the present invention and a conventional single layer film are added with a dye or a UV absorber that absorbs blue light, or both. The present invention will be described in detail with reference to FIG. In the laminated film 5 of the present invention, 50 layers or more of layers (A layer) 1 made of thermoplastic resin A and layers (B layer) 2 made of thermoplastic resin B are alternately laminated. As shown in FIG. 1A, when the laminated film 5 is irradiated with incident light 3 having a wavelength in the blue to UV range, a part of the light is reflected at the interface because there is a difference in refractive index between different resin layers. It becomes light 4. In FIG. 1A, a dye or UV absorber that absorbs blue light, or both 6 are included in a layer (B layer) 2 made of a thermoplastic resin B, and absorption occurs in this layer. That is, the present invention is a physical phenomenon in which reflection and absorption occur simultaneously in a region other than surface reflection. On the other hand, the conventional single-layer film shown in FIG. 1B only absorbs light except for surface reflection with respect to incident light 3 having a wavelength in the blue to UV range. This absorption phenomenon is generally known to follow Lambert's law expressed by the following formula (1).
I = IoExp (−kx) (1)
(However, Io: incident light intensity, I: outgoing light intensity, k: absorption coefficient, x: distance through which light passes (optical path length))
The laminated film 5 of the present invention is surprisingly different from the single layer film governed by the characteristics of the light absorber, and surprisingly the formula (1) does not hold. It has been found that the laminated film can greatly reduce the concentration of the light absorber because interference reflection is added compared to the amount of the light absorber added to the single layer film. That is, the minimum transmittance of incident light is 70% at a wavelength of 300 to 500 nm even when the product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light, or both is 0.35 or less. It is as follows. From the viewpoint of shielding properties, it is more preferably 50% or less. The shielding property here can be measured with the minimum transmittance in the spectral transmittance spectrum. That is, a minimum transmittance of 50% at a wavelength of 300 to 500 nm means that 50% of incident light is shielded. In the laminated film of the present invention, when a UV absorber is added, the transmittance at a wavelength of 370 nm is preferably 5% or less. If it exceeds 5%, the UV shielding becomes insufficient, so when used as a polarizer protective film for a polarizing plate, the PVA or liquid crystal layer that is a polarizer cannot be protected during the production process. More preferably, it is 4% or less, and more preferably 3% or less. In particular, the transmittance is most preferably 2% or less over the entire wavelength range of 370 nm to 300 nm.
 本発明の積層フィルムの積層構造は、特開2007-307893号公報の〔0053〕~〔0063〕段の記載の内容と同様の方法により簡便に実現できる。但し、スリット板の間隙、長さは層厚みを決定する設計値のため異なる。以下に、図2を参照して積層フィルムを造る過程を説明する。 The laminated structure of the laminated film of the present invention can be easily realized by the same method as described in the paragraphs [0053] to [0063] of JP-A-2007-307893. However, the gap and length of the slit plate are different because of design values that determine the layer thickness. Below, the process of making a laminated film is demonstrated with reference to FIG.
 図2で表される積層装置7は、前記特開2007-307893号公報に説明される装置と同様の3つのスリット板を有している。係る積層装置7によって得られる積層構造の層厚み分布の例を図3に示す。横軸に層の並び順18、縦軸に各層の平均層厚み(nm)19をとると、積層構造は、スリット板71によって形成された樹脂積層流による層厚みの傾斜構造11、スリット板72によって形成された樹脂の積層流による層厚みの傾斜構造12、スリット板73によって形成された樹脂の積層流による層厚みの傾斜構造13の3つの傾斜構造を有している。また、図3(a)に示すように1つの傾斜構造は、他の何れかの傾斜構造と向きが反対であることが好ましい。また、1つのスリット板から形成される傾斜構造は、樹脂Aと樹脂Bが交互に積層された層厚み分布となり、隣接する樹脂Aからなる層と樹脂Bからなる層の平均層厚み分布21で表される。その積層比は、2台の押出機の樹脂Aおよび樹脂Bの押出量の比により容易に調整することができる。 The laminating apparatus 7 shown in FIG. 2 has the same three slit plates as the apparatus described in Japanese Patent Application Laid-Open No. 2007-307893. An example of the layer thickness distribution of the laminated structure obtained by the laminating apparatus 7 is shown in FIG. When the horizontal axis indicates the layer arrangement order 18 and the vertical axis indicates the average layer thickness (nm) 19 of each layer, the laminated structure has a layer thickness gradient structure 11 and a slit plate 72 by a resin laminate flow formed by the slit plate 71. The three inclined structures are the layered gradient structure 12 formed by the laminated flow of the resin and the layered inclined structure 13 formed by the laminated resin flow formed by the slit plate 73. Further, as shown in FIG. 3A, it is preferable that one inclined structure is opposite in direction to any other inclined structure. In addition, the inclined structure formed by one slit plate has a layer thickness distribution in which the resin A and the resin B are alternately laminated, and an average layer thickness distribution 21 of the layer made of the adjacent resin A and the layer made of the resin B. expressed. The lamination ratio can be easily adjusted by the ratio of the extrusion amounts of the resin A and the resin B of the two extruders.
 各部位の層厚みの範囲は、UV~青色の波長域の光を強く反射させるために、平均層厚みが40nm~80nmの層厚みの範囲となるように積層数と積層フィルムの厚みを調整して製膜を行う。平均層厚みとは、隣接するA層とB層の層対の平均値の層厚みの事である。積層フィルムの全ての層に対して、順次、この操作を実施し、層対番号に対して得られる層厚み分布を平均層厚みの分布と定義する。樹脂Aの層厚み分布(dA1, dA2・・・・dAN)、樹脂Bの層厚み分布(dB1, dB2・・・・dBN)と表したとき、平均層厚み分布21は、それぞれ、{(dA1+dB1)/2,  (dA2+dB2)/2,・・・・(dAN+dBN)/2) }で求まる。Nは層の並び順である層番号または層対番号を表す。層対は、A層とB層の2層で1組であるため、通常、積層数の約半分が層対の全組数となる。dは層厚みを表し、アルファベットは、樹脂層を表す。 The number of layers and the thickness of the laminated film are adjusted so that the average layer thickness is in the range of 40 nm to 80 nm in order to strongly reflect light in the UV to blue wavelength region. To form a film. The average layer thickness is the average layer thickness of the layer pair of the adjacent A layer and B layer. This operation is sequentially performed on all the layers of the laminated film, and the layer thickness distribution obtained for the layer pair number is defined as the average layer thickness distribution. When the layer thickness distribution of resin A (dA 1 , dA 2 ... DA N ) and the layer thickness distribution of resin B (dB 1 , dB 2 ... DB N ) are expressed, the average layer thickness distribution 21 is , {(DA 1 + dB 1 ) / 2, (dA 2 + dB 2 ) / 2,... (DA N + dB N ) / 2)}, respectively. N represents a layer number or a layer pair number, which is the order of layers. Since there are one pair of layer pairs, that is, the A layer and the B layer, about half of the number of layers is generally the total number of layer pairs. d represents the layer thickness, and the alphabet represents the resin layer.
 また、図3は、本発明の積層フィルムの平均層厚み分布を示す。本発明の積層フィルムは、青色の光の波長以下の光を干渉反射させる。そのため、平均層厚みの最大平均層厚みは、式(5)を用いた反射波長に換算すると500nm以下を反射する平均層厚みを意味する。本発明のポリマー構成における最大平均層厚みは、80nm以下であることが好ましい。また、波長400nm以下のUV光を干渉反射させる場合は、60nmであることが好ましい。UV遮蔽フィルムにおいて無色透明が求められる観点から、反射帯域の長波長端の波長が380nm以下となる平均層厚み58nm以下がより好ましい。 FIG. 3 shows the average layer thickness distribution of the laminated film of the present invention. The laminated film of the present invention interferes and reflects light having a wavelength less than that of blue light. Therefore, the maximum average layer thickness of the average layer thickness means an average layer thickness that reflects 500 nm or less when converted to a reflection wavelength using the formula (5). The maximum average layer thickness in the polymer structure of the present invention is preferably 80 nm or less. Moreover, when interference-reflecting UV light having a wavelength of 400 nm or less, it is preferably 60 nm. From the viewpoint of requiring colorless and transparent in the UV shielding film, an average layer thickness of 58 nm or less at which the wavelength at the long wavelength end of the reflection band is 380 nm or less is more preferable.
 積層装置7を構成する各々のスリット板から流れ出た積層構造を有した樹脂流は、図2(b)に示したように積層装置の流出口11L、12L、13Lから流れ出て、次いで合流器8にて、図2(c)に示した11M、12M、13Mの断面形状で再配置される。スリット板が1枚構成の場合は、再配置はない。次いで、接続管9内部にて、流路断面のフィルム幅方向の長さが拡幅されて口金10へ流入されて、さらにマニホールドにて拡幅されて口金10のリップから溶融状態でシート状に押し出されてキャスティングドラム上に冷却固化されて未延伸フィルムを得ることができる。次いで、必要により得られた未延伸フィルムを構成する樹脂のガラス転移点温度(Tg)以上の温度で延伸する方法で得ることもできる。 As shown in FIG. 2B, the resin flow having a laminated structure that flows out from each slit plate constituting the laminating apparatus 7 flows out from the outlets 11L, 12L, and 13L of the laminating apparatus, and then the merger 8 Then, rearrangement is performed in the cross-sectional shapes of 11M, 12M, and 13M shown in FIG. When the slit plate has a single structure, there is no rearrangement. Next, the length in the film width direction of the cross section of the flow path is widened inside the connecting pipe 9 and flows into the base 10, and further widened by the manifold and extruded from the lip of the base 10 into a sheet in a molten state. Then, it is cooled and solidified on the casting drum to obtain an unstretched film. Subsequently, it can also obtain by the method of extending | stretching at the temperature more than the glass transition point temperature (Tg) of resin which comprises the unstretched film obtained as needed.
 この際の延伸の方法は、高い反射率、熱寸法安定性および大面積化の実現の観点から、公知の逐次2軸延伸法、もしくは同時二軸延伸法で2軸延伸することが好ましい。公知の2軸延伸法とは、長手方向に延伸した後に幅方向に延伸する方法、幅方向に延伸した後に長手方向に延伸する方法で行えばよく、長手方向の延伸、幅方向の延伸を複数回組み合わせて行ってもよい。例えば、ポリエステルから構成された延伸フィルムの場合、延伸温度及び延伸倍率は適宜選択することができるが、通常のポリエステルフィルムの場合、延伸温度は80℃以上150℃以下であり、延伸倍率は2倍以上7倍以下が好ましい。長手方向の延伸方法は、ロール間の周速度変化を利用して行う。また、幅方向の延伸方法は、公知のテンター法を利用する。また、同時二軸延伸法としては、同時二軸テンターにてフィルムの両端をクリップで把持しながら搬送して、長手方向と幅方向に同時および/または段階的に延伸する。長手方向の延伸は、テンターのクリップ間の距離を広げることで、また、幅方向はクリップが走行するレールの間隔を広げることで達成される。 The stretching method at this time is preferably biaxially stretched by a known sequential biaxial stretching method or simultaneous biaxial stretching method from the viewpoint of realizing high reflectance, thermal dimensional stability, and large area. The known biaxial stretching method may be a method of stretching in the width direction after stretching in the longitudinal direction, a method of stretching in the longitudinal direction after stretching in the width direction, and a plurality of stretching in the longitudinal direction and stretching in the width direction. You may carry out in combination. For example, in the case of a stretched film composed of polyester, the stretching temperature and the stretching ratio can be appropriately selected. In the case of a normal polyester film, the stretching temperature is 80 ° C. or more and 150 ° C. or less, and the stretching ratio is 2 times. It is preferably 7 times or more. The stretching method in the longitudinal direction is performed using a change in the peripheral speed between the rolls. Moreover, the well-known tenter method is utilized for the extending | stretching method of the width direction. In the simultaneous biaxial stretching method, the film is conveyed while being gripped at both ends by a simultaneous biaxial tenter and stretched simultaneously and / or stepwise in the longitudinal direction and the width direction. Stretching in the longitudinal direction is achieved by increasing the distance between the clips of the tenter and in the width direction by increasing the distance between the rails on which the clips run.
 本発明における延伸・熱処理を施すテンタークリップは、リニアモータ方式で駆動することが好ましい。その他、パンタグラフ方式、スクリュー方式などがあるが、中でもリニアモータ方式は、個々のクリップの自由度が高いため延伸倍率を自由に変更できる点で優れている。 The tenter clip subjected to stretching and heat treatment in the present invention is preferably driven by a linear motor system. In addition, there are a pantograph method, a screw method, etc. Among them, the linear motor method is excellent in that the stretching ratio can be freely changed because the degree of freedom of each clip is high.
 本発明の積層フィルムの位相差は、虹ムラ抑制の観点から1nm以上400nm以下であることが好ましい。1nm以上400nm以下とするためには、縦横方向の高分子鎖の配向状態を等しくする必要がある。本発明の積層フィルムの位相差および厚みムラを小さくする観点から、縦延伸温度は95℃以上105℃以下、縦延伸倍率を3~3.6倍とし、横延伸温度を100℃以上140℃以下、横延伸倍率を3.4~4.6倍の延伸倍率の組合せが好ましい。なお、ポリエチレンナフタレート、およびその共重合体を熱可塑性樹脂Aの主として用いる場合は、ガラス転移点が高い観点から、縦延伸温度は130℃以上160℃以下、横延伸温度は140℃以上160℃以下が好ましい。また、偏光子保護用途では、位相差が高いとディスプレイ上に輝度や色の斑が現れるため、好ましくは、1nm以上200nm以下である。より好ましくは、150nm以下1nm以上、さらに好ましくは100nm以下1nm以上である。 The retardation of the laminated film of the present invention is preferably 1 nm or more and 400 nm or less from the viewpoint of suppressing rainbow unevenness. In order to make it 1 nm or more and 400 nm or less, it is necessary to equalize the orientation state of the polymer chains in the vertical and horizontal directions. From the viewpoint of reducing the retardation and thickness unevenness of the laminated film of the present invention, the longitudinal stretching temperature is 95 ° C. or more and 105 ° C. or less, the longitudinal stretching ratio is 3 to 3.6 times, and the transverse stretching temperature is 100 ° C. or more and 140 ° C. or less. A combination of draw ratios of the transverse draw ratio of 3.4 to 4.6 times is preferable. When polyethylene naphthalate and its copolymer are mainly used as the thermoplastic resin A, the longitudinal stretching temperature is 130 ° C. or higher and 160 ° C. or lower, and the lateral stretching temperature is 140 ° C. or higher and 160 ° C. from the viewpoint of high glass transition point. The following is preferred. In addition, in polarizer protection applications, if the phase difference is high, brightness and color spots appear on the display. More preferably, they are 150 nm or less and 1 nm or more, More preferably, they are 100 nm or less and 1 nm or more.
 一方、類似の効果が得られる逆の対策として、本発明の積層フィルムの位相差は、4000nm以上20000nm以下であることが好ましい。4000nm以上20000nm以下の高位相差とするためには、縦、もしくは横方向に4倍以上の一軸延伸、もしくは、縦2.8倍以下、横4.5倍以上の延伸倍率の組合せが好ましい。好ましくは、5倍以上の一軸延伸である。次いで、この延伸されたフィルムを、テンター内で熱処理する。この熱処理は、延伸温度より高く、融点より低い温度で行うのが一般的である。ポリエステルを用いた場合、200℃ないし250℃の範囲で行うのが好ましい。さらに、フィルムの熱寸法安定性を付与するために幅方向、もしくは長手方向に2~10%程度の弛緩熱処理を施すことも好ましい。 On the other hand, it is preferable that the phase difference of the laminated film of the present invention is 4000 nm or more and 20000 nm or less as an opposite measure for obtaining a similar effect. In order to obtain a high phase difference of 4000 nm or more and 20000 nm or less, a combination of uniaxial stretching of 4 times or more in the longitudinal or lateral direction, or a combination of stretching ratios of 2.8 times or less and 4.5 times or more in width is preferable. Preferably, the uniaxial stretching is 5 times or more. The stretched film is then heat treated in a tenter. This heat treatment is generally performed at a temperature higher than the stretching temperature and lower than the melting point. When polyester is used, it is preferably carried out in the range of 200 ° C to 250 ° C. Further, it is preferable to perform a relaxation heat treatment of about 2 to 10% in the width direction or the longitudinal direction in order to impart thermal dimensional stability of the film.
 本発明の積層フィルムは、青色の光を吸収する色素またはUV吸収剤の吸収ピーク波長が300nm~500nmであり、前記波長範囲の少なくとも一部の光を反射する熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)で構成された一組の層対の層厚みの平均値が40nmから80nmであり、前記層対は青色の光やUV光の反射壁となり、前記反射壁は、フィルム厚み方向の異なる位置に少なくとも2つ以上存在することが好ましい。吸収ピーク波長とは、吸光係数の極大値を示し、吸光係数の最大値を示す波長であることが好ましい。 The laminated film of the present invention has a layer (A) comprising a thermoplastic resin A that reflects at least part of light in the wavelength range, wherein the absorption peak wavelength of a dye or UV absorber that absorbs blue light is 300 nm to 500 nm. Layer) and a layer made of thermoplastic resin B (layer B), the average value of the layer thickness of a pair of layers is 40 nm to 80 nm, and the layer pair becomes a reflection wall for blue light and UV light. It is preferable that at least two reflection walls exist at different positions in the film thickness direction. The absorption peak wavelength indicates a maximum value of the extinction coefficient, and is preferably a wavelength that indicates the maximum value of the extinction coefficient.
 好ましいUV吸収剤の吸光係数の極大値を次に示す。ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール] 、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジンなどのこれらは、波長340~360nmに吸収の極大値をもつためUV吸収剤として好ましい。一方、青色の光を吸収する色素は、アンソラキノン系、イソインドリノン系、キノフタロン系、モノアゾベンゼンスルホン酸塩系有機顔料が、波長380~500nmに吸収の極大値をもつため好ましい。これらを組み合わせて用いてもよい。 The maximum value of the extinction coefficient of the preferred UV absorber is shown below. Bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethyl Butyl) phenol], 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy] phenol, 2,4,6- These such as tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine are preferable as UV absorbers because they have a maximum absorption at a wavelength of 340 to 360 nm. On the other hand, an anthraquinone-based, isoindolinone-based, quinophthalone-based, or monoazobenzenesulfonate-based organic pigment is preferable because it has a maximum absorption at a wavelength of 380 to 500 nm. You may use combining these.
 波長300nm~500nmの少なくとも一部の光を反射する熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)で構成された一組の層対の層厚みの平均値が40nmから80nmであり、前記層対は青色の光またはUV光の反射壁となることについて、詳しく説明する。光の入射角度θが0~60度の範囲のとき、下記式(3)、下記式(4)の一般式が成立し、特に積層フィルムへの垂直入射においては、下記式(5)が成立する。本発明は、下記式(5)に基づく反射波長λを300~500nmとしたとき、積層フィルムの層厚み分布において、式(5)を満たすdAとdBの層対組合せが、少なくとも1組以上存在することを意味する。式(5)を満たすことから、この層対は、青色の光またはUV光の反射壁となり、その平均層厚みは、80nmから40nmまでの範囲にあることを意味する。これは、断面TEM観察により測定できるA層とB層の層厚みから算出することが可能であり、確認することができる。反射の観点から、好ましくは、10組以上、より好ましくは30組以上の平均層厚みが80nmから40nmの層対の存在である。なお、式(3)~式(5)は、樹脂Aの層(A層)と樹脂Bの層(B層)を積層した2層モデルでの反射波長λの式である。
2・(nA・dA・cosθA+nB・dB・cosθB)=λ・・・式(3)
sinθ=nA・sinθA=nB・sinθB        ・・・式(4)
ここで、nは屈折率、dは層厚み、θは入射角(入射ベクトルと界面の法線ベクトルで挟まれた角度)を表し、アルファベット字のA,Bは、それぞれA層、B層を示す。図3と図4を用いて詳細に説明する。積層フィルムに光が垂直に入射した場合は、θ=θA=θB=0(度)であり、式(3)は、式(5)となる。
2・(nA・dA+nB・dB)=λ・・・式(5)
 A層が二軸延伸ポリエチレンテレフタレートであり、B層を共重合ポリエチレンテレフタレートとし、各々の屈折率を1.66と1.58、積層比dA/dB=1とする場合、λ=300nmを満足するdAとdBの組合せは、dA=dB=46nmの層厚みの組となる。すなわち、平均層厚みが概ね46nmとなる組の存在が必要となる。このように波長300~500nmまで同様の操作を行い、順次、必要な層厚みの組を求める。得られた平均層厚み分布と照らし合わせて、求めた平均層厚みが、層厚み分布中に少なくとも1組、好ましくは、連続的に10組以上あれば反射壁となる。UV~青色の光の波長である300~500nmにおいて、この反射壁がフィルム厚み方向の異なる位置に少なくとも2つ以上存在することが好ましい。
Average layer thickness of a pair of layers composed of a layer (A layer) made of thermoplastic resin A that reflects at least part of light having a wavelength of 300 nm to 500 nm and a layer (B layer) made of thermoplastic resin B It will be described in detail that the value is 40 nm to 80 nm and the layer pair becomes a reflection wall of blue light or UV light. When the light incident angle θ is in the range of 0 to 60 degrees, the following formulas (3) and (4) are satisfied, and the following formula (5) is satisfied particularly when the incident light is perpendicular to the laminated film. To do. In the present invention, when the reflection wavelength λ based on the following formula (5) is 300 to 500 nm, at least one or more layer pairs of dA and dB satisfying the formula (5) exist in the layer thickness distribution of the laminated film. It means to do. Since the equation (5) is satisfied, this layer pair becomes a reflection wall of blue light or UV light, and it means that the average layer thickness is in the range of 80 nm to 40 nm. This can be calculated and confirmed from the layer thicknesses of the A layer and the B layer which can be measured by cross-sectional TEM observation. From the viewpoint of reflection, it is preferably the presence of a layer pair having an average layer thickness of 80 nm to 40 nm of 10 sets or more, more preferably 30 sets or more. Expressions (3) to (5) are expressions of the reflection wavelength λ in a two-layer model in which a resin A layer (A layer) and a resin B layer (B layer) are stacked.
2 · (nA · dA · cos θ A + nB · dB · cos θ B ) = λ (3)
sinθ = nA · sinθ A = nB · sinθ B (4)
Here, n is a refractive index, d is a layer thickness, θ is an incident angle (an angle between an incident vector and an interface normal vector), and alphabets A and B are A layer and B layer, respectively. Show. This will be described in detail with reference to FIGS. When light is vertically incident on the laminated film, θ = θ A = θ B = 0 (degrees), and Equation (3) becomes Equation (5).
2 · (nA · dA + nB · dB) = λ (5)
When the A layer is biaxially stretched polyethylene terephthalate, the B layer is copolymerized polyethylene terephthalate, the respective refractive indexes are 1.66 and 1.58, and the lamination ratio is dA / dB = 1, λ = 300 nm is satisfied. The combination of dA and dB is a set having a layer thickness of dA = dB = 46 nm. That is, a group having an average layer thickness of about 46 nm is required. In this way, the same operation is performed from a wavelength of 300 to 500 nm, and a set of necessary layer thicknesses is sequentially obtained. Reflecting the obtained average layer thickness distribution, if the obtained average layer thickness is at least one set in the layer thickness distribution, preferably 10 sets or more continuously, a reflection wall is obtained. At 300 to 500 nm, which is the wavelength of UV to blue light, it is preferable that at least two or more reflection walls exist at different positions in the film thickness direction.
 図3を用いて詳細に説明する。図3(a)の層厚み分布において、平均層厚みの最大値20の値が60nmである場合、各々の屈折率を1.66と1.58、積層比dA/dB=1とすると、式(5)から反射波長は389nmである。一方、波長300nmのUV光を反射する平均層厚み22の値が46nmとした場合、図3(a)から分かるように連続的に10個以上の層対が存在するため、反射壁23が存在する。また、各傾斜構造にも反射壁が存在する。ゆえに、反射壁が、フィルム厚み方向に図3(a)では3つ、図3(b)では2つ存在している。すなわち、反射壁がフィルム厚み方向の異なる位置に少なくとも2つ以上存在するとは、層番号または層対番号が異なり、同一もしくは近しい平均層厚みをもつ層対が積層フィルム中に少なくとも2つ以上存在することを意味する。同一もしくは近しい平均層厚みをもつ層対との間には、少なくとも10組以上の層対があることが好ましい。より好ましくは30組以上である。ある波長の入射光3における反射と吸収の相乗効果を模式的に説明した図を図4に示す。反射壁23は、フィルム厚み方向の異なる位置に2つ以上存在することにより、入射光3は、2つの反射壁23の間に閉じ込められるため、光の吸収が効率的に起こる。図4(a)は反射壁23が3つある場合、(b)は反射壁23が2つある場合である。反射壁は多いほど、光の閉じ込め効果が大きくなるため樹脂層に添加された青色の光やUVの吸収剤の吸収効率が向上するという相乗効果が発現することを見出した。 This will be described in detail with reference to FIG. In the layer thickness distribution of FIG. 3A, when the maximum value 20 of the average layer thickness is 60 nm, assuming that the respective refractive indexes are 1.66 and 1.58 and the lamination ratio dA / dB = 1, the equation From (5), the reflection wavelength is 389 nm. On the other hand, if the value of the average layer thickness 22 that reflects UV light having a wavelength of 300 nm is 46 nm, as shown in FIG. To do. Each inclined structure also has a reflecting wall. Therefore, there are three reflecting walls in the film thickness direction in FIG. 3A and two reflecting walls in FIG. 3B. That is, the presence of at least two or more reflective walls at different positions in the film thickness direction means that the layer number or the layer pair number is different and at least two or more layer pairs having the same or close average layer thickness exist in the laminated film. Means that. It is preferable that there are at least 10 or more layer pairs between layer pairs having the same or close average layer thickness. More preferably, the number is 30 or more. FIG. 4 schematically illustrates a synergistic effect of reflection and absorption in incident light 3 having a certain wavelength. Since two or more reflection walls 23 exist at different positions in the film thickness direction, the incident light 3 is confined between the two reflection walls 23, so that light absorption occurs efficiently. FIG. 4A shows a case where there are three reflecting walls 23, and FIG. 4B shows a case where there are two reflecting walls 23. It has been found that the greater the number of reflection walls, the greater the light confinement effect, and thus the synergistic effect of improving the absorption efficiency of the blue light and UV absorbers added to the resin layer.
 本発明の積層フィルムは、青色の光を吸収する色素またはUV吸収剤の長波長吸収端が、層の積層構造に基づいた干渉反射による反射帯域の長波長端より大きいことが好ましい。図8を用いて詳細に説明する。UV~青色の光を干渉反射する積層フィルムの分光反射スペクトルのシミュレーション結果80とシクロヘキサンジメタノール共重合ポリエチレンテレフタレートに青の光を吸収するアンソラキノン系顔料の色素を含有した単層フィルムの分光透過スペクトル81を図8に示す。横軸は波長W(nm)、左縦軸は透過率T(%)、右縦軸は反射率R(%)を表す。図9、図10も同様である。積層フィルムの光学計算は、積層数251、厚み13.5μm、かつ積層構造は図3(b)を採用した。A層の屈折率1.66、B層の屈折率を1.55とした。長波長吸収端83とは、図8の分光透過スペクトルにおいて、吸収が始まる波長を意味し、吸収開始前後のそれぞれの接線の交点として求まる。接線を導出する接点は、透過スペクトルを微分したときの変曲点である。一方、干渉反射による反射帯域の長波長端82は反射が開始する波長を意味しており、同様にして求まる。この各々の変曲点の接線と透過率および反射率のベースラインとの交点が各々の長波長吸収端および反射帯域の長波長端である。また、色素やUV吸収剤による光の遮蔽効果が高く、反射帯域の長波長端が明確に導出できない場合は、図9に示す長波長側にみられる反射のピーク86としてもよい。 In the laminated film of the present invention, the long wavelength absorption edge of the dye or UV absorber that absorbs blue light is preferably larger than the long wavelength edge of the reflection band due to interference reflection based on the laminated structure of the layers. This will be described in detail with reference to FIG. Spectral transmission spectrum 81 of the simulation result 80 of the spectral reflectance spectrum of the laminated film that interference-reflects UV to blue light and the monolayer film containing the dye of anthoraquinone pigment that absorbs blue light in cyclohexanedimethanol copolymerized polyethylene terephthalate Is shown in FIG. The horizontal axis represents wavelength W (nm), the left vertical axis represents transmittance T (%), and the right vertical axis represents reflectance R (%). The same applies to FIGS. 9 and 10. In the optical calculation of the laminated film, the number of laminated layers 251 and the thickness 13.5 μm, and the laminated structure shown in FIG. The refractive index of the A layer was 1.66, and the refractive index of the B layer was 1.55. The long wavelength absorption edge 83 means a wavelength at which absorption starts in the spectral transmission spectrum of FIG. 8, and is obtained as an intersection of tangent lines before and after the start of absorption. The contact point for deriving the tangent is an inflection point when the transmission spectrum is differentiated. On the other hand, the long wavelength end 82 of the reflection band due to interference reflection means the wavelength at which reflection starts, and is obtained in the same manner. The intersections between the tangent lines of the respective inflection points and the baselines of the transmittance and the reflectance are the long wavelength absorption ends and the long wavelength ends of the reflection bands. Further, when the light shielding effect by the dye or UV absorber is high and the long wavelength end of the reflection band cannot be clearly derived, the reflection peak 86 seen on the long wavelength side shown in FIG. 9 may be used.
 遮蔽効果が高い場合の分光透過スペクトルおよび分光反射スペクトルについて図9を用いて説明する。すなわち、図9は、色素を含んだ積層フィルムの分光透過スペクトルと分光反射スペクトルを説明したものである。元の反射スペクトル80が、色素の吸収特性に合わせて斜線部の反射領域84が効率良く吸収に変換されるため、その部分の反射が消失する。一方、元の透過スペクトル81は、元の反射スペクトル80からの反射により、斑模様の透過領域85を完全に遮蔽する。このように色素の吸収特性により消失していない長波長側の僅かな反射ピーク86を長波長反射端とする。反射ピークが確認できず、反射スペクトルのベースラインとみなせるときは、青色の光を吸収する色素またはUV吸収剤の長波長吸収端が、層の積層構造に基づいた干渉反射による反射帯域の長波長端より大きいとみなせる。面内の色ムラを抑制する観点から、青色の光を吸収する色素またはUV吸収剤の長波長吸収端に比べて、層の積層構造に基づいた干渉反射による反射帯域の長波長端の波長は10nm以上小さいことが好ましく、さらには20nm以上小さいことが好ましい。 The spectral transmission spectrum and spectral reflection spectrum when the shielding effect is high will be described with reference to FIG. That is, FIG. 9 explains the spectral transmission spectrum and spectral reflection spectrum of a laminated film containing a pigment. In the original reflection spectrum 80, the hatched reflection region 84 is efficiently converted into absorption in accordance with the absorption characteristics of the dye, and the reflection of that portion disappears. On the other hand, the original transmission spectrum 81 completely blocks the speckled transmission region 85 due to reflection from the original reflection spectrum 80. In this way, a slight reflection peak 86 on the long wavelength side that has not disappeared due to the absorption characteristics of the dye is defined as the long wavelength reflection end. When the reflection peak cannot be confirmed and can be regarded as the baseline of the reflection spectrum, the long wavelength absorption edge of the dye or UV absorber that absorbs blue light is the long wavelength of the reflection band due to interference reflection based on the layered structure of the layer It can be considered larger than the edge. From the viewpoint of suppressing in-plane color unevenness, the wavelength at the long wavelength end of the reflection band due to interference reflection based on the layered structure of the layer is compared with the long wavelength absorption end of the dye or UV absorber that absorbs blue light. It is preferably 10 nm or less, and more preferably 20 nm or more.
 一方、短波長側でのUV吸収剤の吸収特性が弱い場合に生じる短波長側の反射ピーク87は、干渉反射による反射帯域の短波長端である。 On the other hand, the reflection peak 87 on the short wavelength side that occurs when the absorption characteristic of the UV absorber on the short wavelength side is weak is the short wavelength end of the reflection band due to interference reflection.
 本発明の積層フィルムの波長300nm~500nmの範囲における最大反射率を示す反射スペクトルの半値幅は、30nm未満であることが好ましい。半値幅が、30nm以上であるとUV遮蔽性において反射が支配的となり、UV吸収剤との併用による相乗効果が少ないためである。また、400nm近傍に半値幅が広い最大反射スペクトルが存在すると色付きの原因となるためである。好ましくは、20nm未満である。その好ましい態様である半値幅が30nm未満である例を図10に示す。これは、反射と吸収の相乗効果があるため、反射波長311nmでの最大反射率は38%であり、その半値幅は28nmである。半値幅は、最大反射率の半分の値をとる反射波長間距離のことである。反射率が低すぎると半値幅が広がるため、本発明における半値幅は、最大反射率25%以上90%以下に適用するものとする。最大反射率が25%未満15%以上の反射スペクトルの半値幅は、ないものとみなす。半値幅は、UV吸収剤とフィルム樹脂の吸収特性と積層フィルムの反射特性との関係で決定される。半値幅が大きい場合は、吸収特性との相乗効果が少ないことを示しており、反射帯域と吸収帯域の重なりが少ないこと意味する。 The half width of the reflection spectrum showing the maximum reflectance in the wavelength range of 300 nm to 500 nm of the laminated film of the present invention is preferably less than 30 nm. This is because when the half width is 30 nm or more, reflection is dominant in the UV shielding property, and the synergistic effect due to the combined use with the UV absorber is small. Further, if there is a maximum reflection spectrum having a wide half-value width in the vicinity of 400 nm, it causes coloring. Preferably, it is less than 20 nm. FIG. 10 shows an example in which the full width at half maximum is less than 30 nm, which is a preferred embodiment. Since this has a synergistic effect of reflection and absorption, the maximum reflectance at a reflection wavelength of 311 nm is 38%, and its half-value width is 28 nm. The half-value width is a distance between reflection wavelengths that takes a half value of the maximum reflectance. If the reflectance is too low, the full width at half maximum is widened. Therefore, the full width at half maximum in the present invention is applied to a maximum reflectance of 25% or more and 90% or less. The full width at half maximum of the reflection spectrum having a maximum reflectance of less than 25% and 15% or more is considered to be absent. The half width is determined by the relationship between the absorption characteristics of the UV absorber and the film resin and the reflection characteristics of the laminated film. When the full width at half maximum is large, it indicates that there is little synergistic effect with the absorption characteristic, and it means that there is little overlap between the reflection band and the absorption band.
 本発明の積層フィルムに添加するUV吸収剤の分子量は、500以上であるトリアジン骨格またはベンゾトリアゾール骨格を含むことが好ましい。分子量が500以上であれば昇華しにくいため、キャスト時にブリードアウトが殆ど生じないためである。より好ましくは600以上である。例えば、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]:分子量659、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン:分子量700が好ましい。同様に青色の光を吸収する色素の分子量も昇華されにくい観点から、分子量500以上が好ましい。例えば、アンスラキノン、イソインドリノン、キナフトロン、モノアゾ系ベンゼンスルホン酸塩、ジスアゾ系ベンズイミダゾールなどが好ましい。 The molecular weight of the UV absorber added to the laminated film of the present invention preferably includes a triazine skeleton or a benzotriazole skeleton that is 500 or more. This is because when the molecular weight is 500 or more, sublimation hardly occurs, so that bleed-out hardly occurs during casting. More preferably, it is 600 or more. For example, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol]: molecular weight 659, 2,4,6-tris (2-Hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine: A molecular weight of 700 is preferred. Similarly, the molecular weight of the dye that absorbs blue light is preferably 500 or more from the viewpoint of being hardly sublimated. For example, anthraquinone, isoindolinone, quinnaphthol, monoazo benzene sulfonate, disazo benzimidazole and the like are preferable.
 本発明のUV吸収剤は、紫外線や熱による酸化劣化を抑制する観点から、分子量1万以下の酸化防止剤との併用により用いることが好ましい。酸化防止剤には、ラジカル補足剤と過酸化物分解剤がある。ラジカル補足剤としては、主にヒンダードアミン系、ヒンダードフェノール系の化合物がある。 The UV absorber of the present invention is preferably used in combination with an antioxidant having a molecular weight of 10,000 or less from the viewpoint of suppressing oxidative degradation due to ultraviolet rays or heat. Antioxidants include radical scavengers and peroxide decomposers. As radical scavengers, there are mainly hindered amine and hindered phenol compounds.
 ヒンダーフェノール系の化合物としては、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2, 2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N'-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、オクチル化ジフェニルアミン、2, 4,-ビス[(オクチルチオ)メチル]-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートがある。 Examples of hindered phenolic compounds include triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5 -Triazine, pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2, 2-thio-diethylenebis [3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-t-butyl -4-hydroxy-hydrocinnamamide), 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3, 5-di-t-bu Ru-4-hydroxybenzyl) benzene, bis (3,5-di-t-butyl-4-hydroxybenzylphosphonate ethyl) calcium, tris- (3,5-di-t-butyl-4-hydroxybenzyl)- There are isocyanurates, octylated diphenylamines, 2,4, -bis [(octylthio) methyl] -O-cresol, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
 ヒンダードアミン系(HALS)としては、シクロヘキサンと過酸化N-ブチル2,2,6,6-テトラメチル-4-ピペリジンアミン-2,4,6-トリクロロ1,3,5-トリアジンとの反応生成物と2-アミノエタノールとの反応生成物、 N,N',N'',N'''-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネートなどがある。 As a hindered amine (HALS), the reaction product of cyclohexane and N- butyl peroxide 2,2,6,6-tetramethyl-4-piperidineamine-2,4,6- trichloro 1,3,5-triazine And 2-aminoethanol reaction product, N, N ', N' ', N' ''-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6- Tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[ 3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate.
 本発明の積層フィルムは、低屈折率であるB層が低屈折率層であり、B層にのみ青色の光を吸収する色素またはUV吸収剤、あるいは両方が含まれていることが好ましい。屈折率は、公知のアッベの屈折率計やプリズムカプラーで測定することが可能であり、ここでの屈折率は面内方向の屈折率を意味する。B層は共重合成分が多いため非晶質となりやすく、色素やUV吸収剤等の低分子化合物が溶解しやすい。一方、高屈折率であるA層は、二軸配向し、結晶層を形成するため、ブリードアウトを防止するバリア層として働くためである。 In the laminated film of the present invention, it is preferable that the B layer having a low refractive index is a low refractive index layer, and only the B layer contains a dye or a UV absorber that absorbs blue light, or both. The refractive index can be measured with a well-known Abbe refractometer or prism coupler, and the refractive index here means the refractive index in the in-plane direction. The B layer has a large amount of copolymerization components, so it tends to be amorphous, and low molecular compounds such as dyes and UV absorbers are easily dissolved. On the other hand, the A layer having a high refractive index is biaxially oriented to form a crystal layer, and thus serves as a barrier layer for preventing bleed out.
 図4では、UV吸収剤6が熱可塑性樹脂Bからなる層(B層)2に含まれている様子を示す。熱可塑性樹脂Aからなる層(A層)1には、ブリードアウトの観点からUV吸収を含まないことが好ましい。さらに、式(4)で示したスネル法則により、高屈折率であるA層に比べて低屈折率であるB層では、層内の光の伝搬角度が浅くなることによって光路長が延びるため吸収に有利に働く効果もある。より好ましくは、B層のみに色素やUV吸収剤が含まれていることが好ましい。B層の押出温度は、低いほど色素やUV吸収剤が昇華され難いため、270℃以下が好ましく。より好ましくは、265℃以下である。一方、A層は、二軸延伸された後に配向結晶化する層であり、特に最表層を形成する樹脂であるため、UV吸収剤が析出しやすい。例えば、A層がポリエチレンテレフタレートの場合、押出温度は280℃以上となるため、昇華されやすく、二軸押出ベントなどでブリードアウトが起こりやすい。 FIG. 4 shows a state in which the UV absorber 6 is included in the layer (B layer) 2 made of the thermoplastic resin B. The layer (A layer) 1 made of the thermoplastic resin A preferably does not contain UV absorption from the viewpoint of bleeding out. Further, according to Snell's law expressed by the equation (4), in the B layer having a low refractive index compared to the A layer having a high refractive index, the optical path length is increased due to the light propagation angle in the layer being shallow, so that absorption is achieved. It also has the effect of working favorably. More preferably, it is preferable that only the B layer contains a dye or a UV absorber. The extrusion temperature of the layer B is preferably 270 ° C. or lower because the lower the dye or UV absorber is, the lower the extrusion temperature. More preferably, it is 265 ° C. or lower. On the other hand, the A layer is a layer that is oriented and crystallized after being biaxially stretched, and is particularly a resin that forms the outermost layer, so that the UV absorber is likely to precipitate. For example, when the A layer is polyethylene terephthalate, the extrusion temperature is 280 ° C. or higher, so that the layer A is easily sublimated and bleed out easily occurs due to a biaxial extrusion vent or the like.
 本発明の積層フィルムは、全光線透過率が70%以上であり、透過モードでの色度b*値が5以下であることが好ましい。全光線透過率が70%未満であるとディスプレイや窓材としての明るさや画像の視認性が確保できないため好ましくない。好ましくは、全光線透過率は80%以上である。より好ましくは90%以上である。さらに好ましくは、92%以上である。一方、b*が、5を超えると偏光板化したときに黄色く着色するため好ましくない。より好ましくは3以下、さらに好ましくは2以下である。 The laminated film of the present invention preferably has a total light transmittance of 70% or more and a chromaticity b * value in the transmission mode of 5 or less. If the total light transmittance is less than 70%, the brightness as a display or window material and the visibility of an image cannot be secured, which is not preferable. Preferably, the total light transmittance is 80% or more. More preferably, it is 90% or more. More preferably, it is 92% or more. On the other hand, if b * exceeds 5, it is not preferable because it turns yellow when it is made into a polarizing plate. More preferably, it is 3 or less, More preferably, it is 2 or less.
 達成方法は、波長400~700nmの可視光領域において、波長500nm以上に吸収、または干渉反射を発現しない光学設計とすることである。具体的には、平均層厚みを77nm以下、より好ましくは58nm以下とすることである。より好ましくは、波長400nm以上の可視光領域に吸収および干渉反射が存在しないことである。特に、UV遮蔽フィルムにおいては、最大反射率の波長を380nm以下とすることが色付きを抑制する面から好ましい。より好ましくは、最も長波長側の反射波長を380nm以下、さらに好ましくは、370nm以下とすることである。 The achievement method is to adopt an optical design that does not exhibit absorption or interference reflection at a wavelength of 500 nm or more in the visible light region having a wavelength of 400 to 700 nm. Specifically, the average layer thickness is 77 nm or less, more preferably 58 nm or less. More preferably, there is no absorption or interference reflection in the visible light region having a wavelength of 400 nm or more. In particular, in a UV shielding film, it is preferable from the surface which suppresses coloring that the wavelength of a maximum reflectance shall be 380 nm or less. More preferably, the reflection wavelength on the longest wavelength side is 380 nm or less, more preferably 370 nm or less.
 本発明の積層フィルムに用いる色素またはUV吸収剤、あるいは両方は、色素またはUV吸収剤、あるいは両方の波長300nm~500nmの範囲における吸収ピークの吸光係数が0.06[重量%・μm]-1以上であることが好ましい。吸光係数εは、式(1)を変形した式(5)から、公知の分析方法から求めることができる。すなわち、積層フィルムの厚みx[μm]と青色の光を吸収する色素やUV吸収剤のフィルム全体での添加濃度c[重量%]、さらに各波長に対する透過率を求めることにより、吸光係数εを求めることができる。なお、吸光係数は、積層フィルムの吸収係数kをUV吸収剤の添加濃度cで除した値である。
I= IoExp(-εcx) 
ln(I/Io)=-εcx          ・・・ 式(6)。
The dye and / or UV absorber used in the laminated film of the present invention, or both, has an extinction coefficient of an absorption peak in the wavelength range of 300 nm to 500 nm of 0.06 [wt% · μm] −1. The above is preferable. The extinction coefficient ε can be obtained from a well-known analysis method from Equation (5) obtained by modifying Equation (1). That is, by determining the thickness x [μm] of the laminated film, the addition concentration c [wt%] of the entire film of the dye or UV absorber that absorbs blue light, and the transmittance for each wavelength, the extinction coefficient ε is obtained. Can be sought. The extinction coefficient is a value obtained by dividing the absorption coefficient k of the laminated film by the addition concentration c of the UV absorber.
I = IoExp (−εcx)
ln (I / Io) = − εcx (6)
 本発明の積層フィルムは、波長370nmの透過率が5%以下であることが好ましい。5%を超えると偏光子保護フィルムとしてUV光から液晶層の保護やカバーフィルムとして感光性樹脂の硬化防止ができなくなる。より好ましくは、2%以下である。平均層厚み45~60nmを満足する層の組が100以上となる光学設計をし、長波長吸収端が380nm以上に存在するUV吸収剤を用いることで達成される。 The laminated film of the present invention preferably has a transmittance at a wavelength of 370 nm of 5% or less. If it exceeds 5%, it becomes impossible to protect the liquid crystal layer from UV light as a polarizer protective film and to prevent curing of the photosensitive resin as a cover film. More preferably, it is 2% or less. This is achieved by using an optical design in which the set of layers satisfying the average layer thickness of 45 to 60 nm is 100 or more and using a UV absorber having a long wavelength absorption edge of 380 nm or more.
 本発明の積層フィルムの平均層厚み分布は、2つ以上の傾斜構造を有し、平均層厚み40nm以上60nm以下となる層対の数が全層対の数の8割以上であることが好ましい。UV反射壁の層対が8割以上であれば、殆ど全ての層が青の光やUV光を遮蔽する働きに作用するため、最も薄膜化が可能となる。 The average layer thickness distribution of the laminated film of the present invention preferably has two or more inclined structures, and the number of layer pairs having an average layer thickness of 40 nm or more and 60 nm or less is 80% or more of the total number of layer pairs. . If the layer pair of the UV reflecting walls is 80% or more, almost all the layers act on the function of shielding blue light and UV light, so that the thinning is possible.
 本発明の積層フィルムは、耐傷つき防止の観点から、少なくとも片面に、光硬化型もしくは熱硬化型の樹脂層Cが形成されていることが好ましい。光硬化型としては、メタクリル樹脂、光硬化型ポリクロロビフェニール、脂環エポキシ樹脂、光カチオン重合開始剤、アクリレート系樹脂(Si、F含有)、光ラジカル、重合開始剤、フッ素化ポリイミドなどを用いることができる。また、熱硬化型としては、架橋剤が含まれたエポキシ、フェノール、ウレタン、アクリル、ポリエステル系などの如何なる樹脂であっても良い。膜を構成する樹脂は単一の高分子からなる場合であっても混合物であっても良い。 In the laminated film of the present invention, it is preferable that a photocurable or thermosetting resin layer C is formed on at least one surface from the viewpoint of preventing scratches. As the photocurable type, methacrylic resin, photocurable polychlorobiphenyl, alicyclic epoxy resin, photocationic polymerization initiator, acrylate-based resin (containing Si, F), photoradical, polymerization initiator, fluorinated polyimide, etc. are used. be able to. Further, as the thermosetting type, any resin such as epoxy, phenol, urethane, acrylic, and polyester containing a crosslinking agent may be used. The resin constituting the membrane may be a single polymer or a mixture.
 樹脂層Cとしては、光学用途の観点から、ウレタンアクリレート、ポリマーアクリレート、有機無機ハイブリッド樹脂が好ましい。樹脂層Cとして、より好ましいものは、カールし難く、且つ基材との密着性が良いものが必要となり、低収縮のウレタンアクリレートが挙げられる。ウレタンアクリレートとして具体的には、共栄社化学社製のAT-600、UA-101l、UF-8001、UF-8003等、日本合成化学社製のUV7550B、UV-7600B等、新中村化学社製のU-2PPA、UA-NDP等、ダイセルユーシービー社製のEbecryl-270、Ebecryl-284、Ebecryl-264、Ebecryl-9260等、或いは、エポキシ化合物として具体的には、ダイセル化学工業社製のEHPE3150、GT300、GT400、セロキサイド2021等、ナガセケムテック社製のEX-321、EX-411、EX-622等を挙げることができる。しかし、これに限定されない。 The resin layer C is preferably urethane acrylate, polymer acrylate, or organic-inorganic hybrid resin from the viewpoint of optical use. As the resin layer C, a more preferable one is one that is difficult to curl and has good adhesion to the substrate, and includes low-shrinkage urethane acrylate. Specific examples of urethane acrylates include AT-600, UA-101l, UF-8001, UF-8003, etc. manufactured by Kyoeisha Chemical Co., Ltd., UV7550B, UV-7600B manufactured by Nippon Synthetic Chemical Co., Ltd., and U manufactured by Shin-Nakamura Chemical Co., Ltd. -2PPA, UA-NDP, etc., such as Ebecryl-270, Ebecryl-284, Ebecryl-264, Ebecryl-9260, etc. manufactured by Daicel UCB, or an epoxy compound, specifically, EHPE3150, GT300 manufactured by Daicel Chemical Industries, Ltd. GT400, Celoxide 2021, etc., and EX-321, EX-411, EX-622, etc. manufactured by Nagase Chemtech. However, it is not limited to this.
 また、より高硬度を達成できるウレタンアクリレートの内、ウレタンアクリレート系オリゴマー、モノマーは、多価アルコール、多価イソシアネート及び水酸基含有アクリレートを反応させることによって得られる。具体的には、共栄社化学社製のUA-306H、UA-306T、UA-306l等、日本合成化学社製のUV-1700B、UV-6300B、UV-7600B、UV-7605B、UV-7640B、UV-7650B等、新中村化学社製のU-4HA、U-6HA、UA-100H、U-6LPA、U-15HA、UA-32P、U-324A等、ダイセルユーシービー社製のEbecryl-1290、Ebecryl-1290K、Ebecryl-5129等、根上工業社製のUN-3220HA、UN-3220HB、UN-3220HC、UN-3220HS、DIC社製ユニディックシリーズのEQS-650、EPS-832、EPS-1259、17-806、RS28-444等を挙げることができる。しかし、これに限定されない。 Further, among urethane acrylates that can achieve higher hardness, urethane acrylate oligomers and monomers can be obtained by reacting polyhydric alcohols, polyvalent isocyanates, and hydroxyl group-containing acrylates. Specifically, UA-306H, UA-306T, UA-306l manufactured by Kyoeisha Chemical Co., Ltd., UV-1700B, UV-6300B, UV-7600B, UV-7605B, UV-7640B, UV manufactured by Nippon Synthetic Chemical Co., Ltd. -7650B etc., Shin-Nakamura Chemical U-4HA, U-6HA, UA-100H, U-6LPA, U-15HA, UA-32P, U-324A etc., Daicel UCB ebecryl-1290, Ebecryl -1290K, Ebecryl-5129, etc., such as UN-3220HA, UN-3220HB, UN-3220HC, UN-3220HS, manufactured by Negami Kogyo Co., Ltd., UNIDS series EQS-650, EPS-832, EPS-1259, 17- 806, RS28-444, and the like. However, it is not limited to this.
 本発明である積層フィルムは、UV吸収剤が共重合された熱可塑性樹脂を含むことが好ましい。UV吸収剤は、低分子であるため揮発し易く、ブリードアウトし易い。そのため、熱可塑性樹脂にUV吸収剤が共重合されていると高分子量となり、ブリードアウトし難くなる。本発明において、相溶性の観点から、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等のポリエステル樹脂にUV吸収剤が共重合されることが好ましい。分子量としては、1万以上、より好ましくは2万以上である。UV吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系が好ましいが、特に限定しない。共重合体となるための反応性の観点から、官能基として、ヒドロキシル基、カルボキシル基の末端、あるいはエステル結合をもつUV吸収剤であることが好ましい。 The laminated film of the present invention preferably contains a thermoplastic resin copolymerized with a UV absorber. Since the UV absorber is a low molecule, it easily volatilizes and bleeds out easily. Therefore, when a UV absorber is copolymerized with a thermoplastic resin, it has a high molecular weight and is difficult to bleed out. In the present invention, from the viewpoint of compatibility, it is preferable that a UV absorber is copolymerized with a polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate. The molecular weight is 10,000 or more, more preferably 20,000 or more. The UV absorber is preferably benzophenone, benzotriazole, or triazine, but is not particularly limited. From the viewpoint of reactivity to become a copolymer, a UV absorber having a hydroxyl group, an end of a carboxyl group, or an ester bond as a functional group is preferable.
 特にこれらの官能基を2つ以上もつことが高いUV吸収性能を発現する観点から好ましい。例えば、前記した中で複数の官能基をもつUV吸収剤やTHBP(2,2‘,4,4’-テトラヒドロキシベンゾフェノン)、2-ヒドロキシ-4メトキシ-ベンゾフェノン、2,2’-ヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール]、特に共重合の観点から、特にビスベンゾトリアゾール化合物などが好ましい。 In particular, it is preferable to have two or more of these functional groups from the viewpoint of developing high UV absorption performance. For example, among the above-mentioned UV absorbers having a plurality of functional groups, THBP (2,2 ′, 4,4′-tetrahydroxybenzophenone), 2-hydroxy-4methoxy-benzophenone, 2,2′-hydroxy-4 , 4'-dimethoxybenzophenone, 2- [2-hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole], particularly bisbenzotriazole compounds are particularly preferred from the viewpoint of copolymerization.
 ビスベンゾトリアゾール化合物の具体例としては、例えば2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-2,4-ジヒドロキシベンゼン]、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(ヒドロキシメチル)フェノール]、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシエチル)フェノール]、2,2'-メチレンビス[6-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシエチル)フェノール]、2,2'-メチレンビス[6-(5-ブロモ-2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシエチル)フェノール]、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(3-ヒドロキシプロピル)フェノール]、2,2'-メチレンビス[6-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-(3-ヒドロキシプロピル)フェノール]、2,2'-メチレンビス[6-(5-ブロモ-2H-ベンゾトリアゾール-2-イル)-4-(3-ヒドロキシプロピル)フェノール]、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシプロピル)フェノール]、2,2'-メチレンビス[6-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシプロピル)フェノール]、2,2'-メチレンビス[6-(5-ブロモ-2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシプロピル)フェノール]、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(4-ヒドロキシブチル)フェノール]、2,2'-メチレンビス[6-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-(4-ヒドロキシブチル)フェノール]、2,2'-メチレンビス[6-(5-ブロモ-2H-ベンゾトリアゾール-2-イル)-4-(4-ヒドロキシブチル)フェノール]、3,3-{2,2'-ビス[6-(2H-ベンゾトリアゾール-2-イル)-1-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル]}プロパン、2,2-{2,2'-ビス[6-(2H-ベンゾトリアゾール-2-イル)-1-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル]}ブタン等を挙げることができる。 Specific examples of the bisbenzotriazole compound include, for example, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -2,4-dihydroxybenzene], 2,2′-methylenebis [6- (2H -Benzotriazol-2-yl) -4- (hydroxymethyl) phenol], 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol], 2 , 2'-methylenebis [6- (5-chloro-2H-benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol], 2,2'-methylenebis [6- (5-bromo-2H- Benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol], 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4 -(3-Hydroxypropyl) phenol], 2,2'-methylenebis [6- (5-chloro-2H-benzotriazol-2-yl) -4- (3-hydroxypropyl) phenol], 2,2'- Methylenebis [6- (5-bromo-2H-benzotriazol-2-yl) -4- (3-hydroxypropyl) phenol], 2,2′-methylenebis [6- (2H-benzotriazol-2-yl)- 4- (2-hydroxypropyl) phenol], 2,2′-methylenebis [6- (5-chloro-2H-benzotriazol-2-yl) -4- (2-hydroxypropyl) phenol], 2,2 ′ -Methylenebis [6- (5-bromo-2H-benzotriazol-2-yl) -4- (2-hydroxypropyl) phenol], 2,2'-methylenebis [6- (2 -Benzotriazol-2-yl) -4- (4-hydroxybutyl) phenol], 2,2'-methylenebis [6- (5-chloro-2H-benzotriazol-2-yl) -4- (4-hydroxy Butyl) phenol], 2,2′-methylenebis [6- (5-bromo-2H-benzotriazol-2-yl) -4- (4-hydroxybutyl) phenol], 3,3- {2,2′- Bis [6- (2H-benzotriazol-2-yl) -1-hydroxy-4- (2-hydroxyethyl) phenyl]} propane, 2,2- {2,2′-bis [6- (2H-benzo And triazol-2-yl) -1-hydroxy-4- (2-hydroxyethyl) phenyl]} butane.
 ビスベンゾトリアゾール化合物は1種または2種以上を併用できる。ビスベンゾトリアゾール化合物の共重合量は、0.01~50重量%、好ましくは0.1~30重量%、より好ましくは0.5~20重量%である。使用量が0.01重量%を下回ると、得られる共重合ポリエステルに充分なUV吸収性能がなく、また50重量%を著しく越えると、共重合ポリエステルの機械的物性等が低下する。効果的に高いUV遮蔽性能を発現する観点から、1重量%以上の前記UV吸収剤を共重合成分として含有しているUV吸収共重合ポリエステル樹脂であることが好ましい。より好ましくは、3重量%以上である。さらに好ましくは、5重量%である。これらのUV吸収共重合ポリエステルは、ブリードアウトしないため、A層、B層のいずれか、もしくは両方に用いることができる。UV吸収剤との併用の場合は、結晶性の高いA層に用いることが好ましい。 The bisbenzotriazole compound can be used alone or in combination of two or more. The copolymerization amount of the bisbenzotriazole compound is 0.01 to 50% by weight, preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight. If the amount used is less than 0.01% by weight, the resulting copolymer polyester does not have sufficient UV absorption performance, and if it exceeds 50% by weight, the mechanical properties of the copolymer polyester deteriorate. From the viewpoint of effectively exhibiting high UV shielding performance, a UV-absorbing copolymer polyester resin containing 1% by weight or more of the UV absorber as a copolymer component is preferable. More preferably, it is 3% by weight or more. More preferably, it is 5% by weight. Since these UV-absorbing copolyesters do not bleed out, they can be used in either the A layer, the B layer, or both. When used in combination with a UV absorber, it is preferably used for the A layer having high crystallinity.
 本発明である積層フィルムは、画面保護フィルムとして用いられることが好ましい。図5に画面保護フィルムである積層フィルムの構成を示す。テレビ、パソコンのモニター、スマートフォン、タブレット等の筐体27の最表面のカバーガラス26の上に、粘着剤25を介して、樹脂層Cからなるハードコート24を設けた本発明の積層フィルム5を貼り付けることにより、飛散防止性とUVまたは青色の光のカット性をもった電子機器筐体を提供することができる。特に、太陽からの外光に対しては、UV遮蔽性をもつことで液晶パネル内部の樹脂劣化を抑制できるため好ましい。 The laminated film according to the present invention is preferably used as a screen protective film. FIG. 5 shows the configuration of a laminated film that is a screen protection film. The laminated film 5 of the present invention in which the hard coat 24 made of the resin layer C is provided on the cover glass 26 on the outermost surface of the casing 27 of a television, personal computer monitor, smartphone, tablet or the like via the adhesive 25. By sticking, it is possible to provide an electronic device casing having scattering prevention properties and UV or blue light cutting properties. In particular, it is preferable for external light from the sun because it can suppress resin deterioration inside the liquid crystal panel by having UV shielding properties.
 本発明の積層フィルムは、偏光子保護フィルムであることが好ましい。図6(a)に本発明の積層フィルム5と偏光子保護フィルム29がPVA偏光子28を挟んだ偏光板30を示す。本発明の積層フィルムを用いた液晶パネルの構成図の例を図6(b)に示す。本発明の積層フィルムは、虹ムラを発生させず、且つUV遮蔽性をもつ観点から液晶パネルの上偏光板32のフロント位置、または下偏光板のリア位置に用いることが好ましい。 The laminated film of the present invention is preferably a polarizer protective film. FIG. 6A shows a polarizing plate 30 in which the laminated film 5 and the polarizer protective film 29 of the present invention sandwich the PVA polarizer 28. An example of a configuration diagram of a liquid crystal panel using the laminated film of the present invention is shown in FIG. The laminated film of the present invention is preferably used at the front position of the upper polarizing plate 32 of the liquid crystal panel or the rear position of the lower polarizing plate from the viewpoint of preventing rainbow unevenness and having UV shielding properties.
 さらに、図6(c)に示すように、本発明の積層フィルム5が、上偏光板32のフロント位置に用いられた場合、積層フィルムの主配向軸35とPVA偏光子の直線偏光方位(透過方位)34とでなす角度36は、20度以上70度以下であることが、ブラックアウトしない観点から好ましい。ブラックアウトとは、観測者が偏光サングラスを通してディスプレイを見たときに、液晶ディスプレイが暗くなり表示されなくなる現象のことである。本発明の積層フィルムの主配向軸とPVA偏光子の偏光方向となす角度を20度以上70度以下とすることで、PVA偏光子から出射された直線偏光の光は、積層フィルムの複屈折により楕円偏光し、光漏れする。観測者は、偏光サングラスをかけた状態でも画像を視認できるため、好ましい構成である。一方、従来技術の光漏れを少なくする観点からは、主配向軸と液晶ディスプレイの上偏光板のPVA偏光子による直線偏光の面内方位となす角度のうち狭角の角度が10度以下の関係であることが好ましい。 Furthermore, as shown in FIG. 6C, when the laminated film 5 of the present invention is used at the front position of the upper polarizing plate 32, the main alignment axis 35 of the laminated film and the linear polarization direction (transmission) of the PVA polarizer. The angle 36 formed with the (azimuth) 34 is preferably 20 degrees or more and 70 degrees or less from the viewpoint of preventing blackout. Blackout is a phenomenon in which the liquid crystal display becomes dark and disappears when an observer views the display through polarized sunglasses. By making the angle between the main alignment axis of the laminated film of the present invention and the polarization direction of the PVA polarizer to be 20 degrees or more and 70 degrees or less, linearly polarized light emitted from the PVA polarizer is caused by the birefringence of the laminated film. Elliptically polarized light leaks. This is a preferable configuration because an observer can visually recognize an image even when wearing polarized sunglasses. On the other hand, from the viewpoint of reducing light leakage in the prior art, the narrow angle of the angle between the main alignment axis and the in-plane orientation of linearly polarized light by the PVA polarizer of the upper polarizing plate of the liquid crystal display is 10 degrees or less. It is preferable that
 積層フィルムの好ましい位相差は、光透過量が大きい観点から60~280nmが好ましい。無彩色の観点から、より好ましくは、位相差は60~200nmである。さらに好ましくは、80~150nmである。一方、厚み方向位相差の好ましい範囲は、50nm以上800nm以下、干渉色がなく光透過性の観点から、より好ましくは80nm以上400nm以下である。最も好ましくは100nm以上300nm以下である。なお、本発明における厚み方向位相差とは、王子計測機器製自動複屈折計KOBRAで測定される視野角50度における位相差のことである。本発明の積層フィルムは、厚み位相差とブリードアウトの観点から、その積層比は、1以下であることが好ましい。より好ましくは、0.7以下である。さらに好ましくは0.5以下である。 The preferable retardation of the laminated film is preferably 60 to 280 nm from the viewpoint of a large amount of light transmission. From the viewpoint of achromatic color, the phase difference is more preferably 60 to 200 nm. More preferably, it is 80 to 150 nm. On the other hand, the preferred range of the thickness direction retardation is 50 nm or more and 800 nm or less, and more preferably 80 nm or more and 400 nm or less from the viewpoint of light transmittance without interference color. Most preferably, it is 100 nm or more and 300 nm or less. In addition, the thickness direction phase difference in this invention is a phase difference in the viewing angle of 50 degree | times measured with the automatic birefringence meter KOBRA by Oji Scientific Instruments. In the laminated film of the present invention, the lamination ratio is preferably 1 or less from the viewpoint of thickness retardation and bleed out. More preferably, it is 0.7 or less. More preferably, it is 0.5 or less.
 本発明の積層フィルムは、液晶ディスプレイに用いられることが好ましい。図6(b)に本発明の積層フィルムを用いた液晶パネルを示す。液晶ディスプレイは、反射防止膜、タッチパネル等からなる前面パネルと図6(b)に示した液晶パネル、さらにバックライトの3つの構成からなる。バックライトとしては、少なくともLED光源、反射フィルム、導光板、光拡散シート、プリズムシートから構成されたLCDバックライトシステムが輝度および汎用性の面から用いられることが好ましい。 The laminated film of the present invention is preferably used for a liquid crystal display. FIG. 6B shows a liquid crystal panel using the laminated film of the present invention. The liquid crystal display has three configurations: a front panel made of an antireflection film, a touch panel, etc., the liquid crystal panel shown in FIG. 6B, and a backlight. As the backlight, an LCD backlight system composed of at least an LED light source, a reflective film, a light guide plate, a light diffusing sheet, and a prism sheet is preferably used in terms of luminance and versatility.
 また、本発明の積層フィルムは、ディスプレイに用いられる透明性の観点から、全光線透過率は91%以上、ヘイズは2%以下が好ましい。より好ましくは、それぞれ、92%以上、1%以下である。さらに好ましくは93%以上である。従来の1~3層のポリエステルフィルムでは、ミクロンオーダーの光学距離起因の干渉により全光線透過率の向上が困難であるが、本発明である積層フィルムは、好ましくは全ての層の厚みを60nm以下、特に表層から数えて、少なくとも4層分、好ましくは8層以上の各層の厚みを30nm以下とすることにより、可視光領域の透過率に影響を及ぼさない光学距離構成とし、高い全光線透過率を実現できる。特に、屈折率1.51以下のアクリル系の易接着層を70nm以上の塗布厚みで形成することにより、特に透過率を向上させることができる。 In addition, the laminated film of the present invention preferably has a total light transmittance of 91% or more and a haze of 2% or less from the viewpoint of transparency used in a display. More preferably, they are 92% or more and 1% or less, respectively. More preferably, it is 93% or more. In the conventional 1 to 3 layers of polyester film, it is difficult to improve the total light transmittance due to interference caused by optical distance on the order of microns. However, in the laminated film of the present invention, the thickness of all layers is preferably 60 nm or less. In particular, when the thickness of each layer of at least 4 layers, preferably 8 layers or more, counted from the surface layer, is 30 nm or less, the optical distance configuration does not affect the transmittance in the visible light region, and the high total light transmittance Can be realized. In particular, the transmittance can be particularly improved by forming an acrylic easy-adhesion layer having a refractive index of 1.51 or less with a coating thickness of 70 nm or more.
 本発明において、上偏光板、液晶層、下偏光板の順で構成された液晶ディスプレイであって、上偏光板または下偏光板において、本発明の積層フィルムは液晶層側と反対面に偏光子保護フィルムとして積層フィルムを配置する液晶ディスプレイであることが好ましい。 In this invention, it is a liquid crystal display comprised in order of the upper polarizing plate, the liquid crystal layer, and the lower polarizing plate, Comprising: In an upper polarizing plate or a lower polarizing plate, the laminated film of this invention is a polarizer on the opposite surface to the liquid crystal layer side. It is preferable that it is a liquid crystal display which arrange | positions a laminated film as a protective film.
 本発明の積層フィルムは、タッチパネルに用いられることが好ましい。本発明の積層フィルムを含むタッチパネルのアウトセルタイプの模式図の例を図7(a)に示す。タッチセンサー部は、少なくともカバーガラス37と導電層38から構成されている。本発明のタッチパネルは、抵抗膜式、光学式、静電容量式のいずれでもよい。静電容量式には、投影型と表面型に大別できる。マルチタッチが可能な観点から投影型静電容量式が最も好ましい。導電層は、金、銀、白金、パラジウム、ロジウム、インジウム、銅、アルミニウム、ニッケル、クロム、チタン、鉄、コバルト、スズ、などの金属およびこれらの合金や、酸化錫、酸化インジウム、酸化チタン、酸化アンチモン、酸化亜鉛、酸化カドミウム、インジウムティンオキサイド(ITO)などの金属酸化物膜、ヨウ化銅などの複合膜によって形成することができる。これらの透明導電膜は真空蒸着、スパッタリング、反応性RFイオンプレーティング、スプレー熱分解法、化学メッキ法、電気メッキ法、CVD法、コーティング法あるいはこれらの組み合わせ法で薄膜を得ることができる。 The laminated film of the present invention is preferably used for a touch panel. An example of a schematic diagram of an out-cell type touch panel including the laminated film of the present invention is shown in FIG. The touch sensor unit is composed of at least a cover glass 37 and a conductive layer 38. The touch panel of the present invention may be any of a resistance film type, an optical type, and a capacitance type. Capacitance type can be roughly divided into projection type and surface type. From the viewpoint of enabling multi-touch, the projection capacitance type is most preferable. The conductive layer is made of metal such as gold, silver, platinum, palladium, rhodium, indium, copper, aluminum, nickel, chromium, titanium, iron, cobalt, tin, and alloys thereof, tin oxide, indium oxide, titanium oxide, It can be formed by a composite film such as a metal oxide film such as antimony oxide, zinc oxide, cadmium oxide, indium tin oxide (ITO), or copper iodide. A thin film can be obtained from these transparent conductive films by vacuum deposition, sputtering, reactive RF ion plating, spray pyrolysis, chemical plating, electroplating, CVD, coating, or a combination thereof.
 その他、導電性高分子としては、ポリピロール、ポリアニリン、ポリアセチレン、ポリチオフェン、ポリフェニレン・ビニレン、ポリフェニレンスルフィド、ポリ-p-フェニレン、ポリへテロサイクル・ビニレン、特に好ましくは、(3,4-エチレンジオキシチオフェン)(PEDOT)である。その他、カーボンナノチューブやナノ銀なども高い導電性を示すため好ましい。これらは、有機溶媒に溶かすことにより、コーティング法で基材に塗布することができる。コーティング法は、ハードコート層の方法と同様に種々の方法を採用することができる。汎用性の観点から、ITOが好ましい。 In addition, as the conductive polymer, polypyrrole, polyaniline, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly-p-phenylene, polyheterocycle vinylene, particularly preferably (3,4-ethylenedioxythiophene) ) (PEDOT). In addition, carbon nanotubes and nano silver are preferable because they exhibit high conductivity. These can be applied to a substrate by a coating method by dissolving in an organic solvent. As the coating method, various methods can be adopted in the same manner as the hard coat layer method. From the viewpoint of versatility, ITO is preferable.
 アウトセルタイプのタッチセンサーとしては、大別してガラスセンサーとフィルムセンサーに分けられる。ガラスセンサータイプとしては、GG、GG2、G2、G1Mがある。GGとはカバーガラス/ITO/ガラス/ITO、GG2とはカバーガラス/ガラス/ITO/絶縁層/ITO、G2(OGS)とはカバーガラス/ITO/絶縁層/ITO、G1Mとはカバーガラス/ITOを基本構成としたものである。 ¡Out-cell type touch sensors can be broadly divided into glass sensors and film sensors. Glass sensor types include GG, GG2, G2, and G1M. GG is cover glass / ITO / glass / ITO, GG2 is cover glass / glass / ITO / insulating layer / ITO, G2 (OGS) is cover glass / ITO / insulating layer / ITO, G1M is cover glass / ITO Is a basic configuration.
 飛散防止性とブラックアウトを抑制する観点から、本発明の積層フィルムをタッチパネルと液晶パネルの間に用いることが好ましい。この場合は、特に、ガラスセンサータイプで用いられることが好ましく、図7(b)に本発明の積層フィルム5を用いた構成例を示す。 From the viewpoint of preventing scattering and suppressing blackout, it is preferable to use the laminated film of the present invention between the touch panel and the liquid crystal panel. In this case, it is particularly preferable to use a glass sensor type, and FIG. 7B shows a configuration example using the laminated film 5 of the present invention.
 一方、フィルムセンサータイプとしては、GFF、GF2、G1F、GF1、PFF、PF1があり、いずれを用いてもよい。また、GFFとはカバーガラス/ITO/フィルム/ITO/フィルム、GF2とはカバーガラス/ITO/フィルム/ITO、またはカバーガラス/ITO/絶縁層/ITO/フィルム、G1Fとはカバーガラス/ITO/ITO/フィルム、GF1とはカバーガラス/ITO/フィルム、PFFとはカバープラスチック/ITO/フィルム/ITO/フィルム、P1Mカバープラスチック/ITOを基本構成としたものである。図7(c)に本発明の積層フィルム5を基材フィルムとしてITOの電極層38を形成したGF1タイプのTP構成の例を示す。基材としての積層フィルム5の厚みは、薄膜化の観点から50μm以下が好ましく、より好ましくは、40μm以下である。薄すぎるとフィルムのハンドリング性の観点から、好ましくは、10μm以上40μm以下である。近年のディスプレイの薄膜化の流れからGF1タイプがタッチセンサーとして好ましい。 On the other hand, as a film sensor type, there are GFF, GF2, G1F, GF1, PFF, and PF1, and any of them may be used. GFF is cover glass / ITO / film / ITO / film, GF2 is cover glass / ITO / film / ITO, or cover glass / ITO / insulating layer / ITO / film, and G1F is cover glass / ITO / ITO. / Film, GF1 is a cover glass / ITO / film, and PFF is a cover plastic / ITO / film / ITO / film, P1M cover plastic / ITO. FIG. 7C shows an example of a GF1 type TP structure in which an ITO electrode layer 38 is formed using the laminated film 5 of the present invention as a base film. The thickness of the laminated film 5 as a base material is preferably 50 μm or less, more preferably 40 μm or less from the viewpoint of thinning. If it is too thin, it is preferably 10 μm or more and 40 μm or less from the viewpoint of the handleability of the film. The GF1 type is preferred as a touch sensor due to the recent trend of thinning displays.
 本発明である積層フィルムは、有機ELディスプレイにおける外光の反射防止に用いられる円偏光板のフロント位置の偏光子保護に用いられることが好ましい。有機ELの発光方式は、RGBの色の3原色タイプ、または白色タイプでも良い。 The laminated film of the present invention is preferably used for protecting a polarizer at the front position of a circularly polarizing plate used for preventing reflection of external light in an organic EL display. The organic EL light emission method may be a RGB primary color type or a white type.
 物性値の評価法を記載する。 Describe the property value evaluation method.
 (物性値の評価法)
 (1)層厚み、積層数、積層構造
 積層フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面を1万~4万倍に拡大観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、場合によっては、コントラストを高く得るために、公知のRuOやOsOなどを使用した染色技術を用いた。
(Method for evaluating physical properties)
(1) Layer thickness, number of layers, layered structure The layer structure of the layered film was determined by observation with a transmission electron microscope (TEM) for a sample obtained by cutting a cross section using a microtome. That is, using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), the cross section of the film was magnified 10,000 to 40,000 times under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, Each layer thickness was measured. In some cases, in order to obtain high contrast, a staining technique using a known RuO 4 or OsO 4 was used.
 上記装置から得た約4万倍のTEM写真画像を、プリント倍率6.2万倍の処理で、画像を圧縮画像ファイル(JPEG)でパーソナルコンピューターに保存し、次に、画像処理ソフト Image-Pro Plus ver.4(販売元 プラネトロン(株))を用いて、このファイルを開き、画像解析を行った。画像解析処理は、垂直シックプロファイルモードで、厚み方向位置と幅方向の2本のライン間で挟まれた領域の平均明るさとの関係を数値データとして読み取った。表計算ソフト(Excel 2007)を用いて、位置(nm)と明るさのデータに対してサンプリングステップ1(間引きなし)でデータ採用した後に、ローパスフィルタ10×10を採用した。さらに、この得られた周期的に明るさが変化するデータを微分し、VBA(ビジュアル・ベーシック・フォア・アプリケーションズ)プログラムにより、その微分曲線の極大値と極小値を読み込み、隣り合うこれらの間隔を1層の層厚みとして算出した。この操作を写真毎に行い、全ての層の層厚みを算出した。その後、全ての層に対してデータ処理により、隣接するA層とB層の層対毎の平均層厚みを算出し、横軸を層対番号、縦軸を平均層厚みとした平均層厚み分布を作成した。 About 40,000 times TEM photographic image obtained from the above device is saved to a personal computer as a compressed image file (JPEG) by processing at a print magnification of 620,000, and then image processing software Image-Pro This file was opened using Plus ver.4 (distributor Planetron Co., Ltd.) and image analysis was performed. In the image analysis processing, the relationship between the thickness in the thickness direction and the average brightness of the region sandwiched between the two lines in the width direction was read as numerical data in the vertical thick profile mode. Using spreadsheet software (Excel 2007), the low-pass filter 10 × 10 was adopted after adopting the data in the sampling step 1 (no thinning) for the position (nm) and brightness data. Furthermore, the data obtained by periodically changing the brightness is differentiated, and the maximum value and the minimum value of the differential curve are read by a VBA (Visual Basic For Applications) program. It was calculated as the layer thickness of one layer. This operation was performed for each photograph, and the layer thicknesses of all layers were calculated. Then, the average layer thickness distribution for each layer pair of the adjacent A layer and B layer is calculated by data processing for all layers, and the horizontal axis indicates the layer pair number and the vertical axis indicates the average layer thickness distribution. It was created.
 (2)波長250~800nmの分光透過率および相対分光反射率の測定
 積層フィルムのフィルム幅方向中央部から5cm四方のサンプルを切り出した。次いで、日立ハイテクノロジーズ製 分光光度計(U-4100 Spectrophotomater)を用いて、分光透過率及び入射角度φ=10度における相対反射率を測定した。付属の積分球の内壁は、硫酸バリウムであり、標準板は、酸化アルミニウムである。測定波長は、250nm~800nm、スリットは2nm(可視)とし、ゲインは2と設定し、走査速度を600nm/分で測定した。波長範囲300~500nmの分光透過率の最小値とその波長を求めた。また、UV吸収剤を添加している積層フィルムについては、波長370nmでの透過率も測定値として採用した。一方、反射率についても波長範囲300~500nmの相対分光反射率の最大値とその波長を求めた。
(2) Measurement of spectral transmittance and relative spectral reflectance at a wavelength of 250 to 800 nm A 5 cm square sample was cut out from the central portion of the laminated film in the film width direction. Next, using a spectrophotometer (U-4100 Spectrophotometer) manufactured by Hitachi High-Technologies, the spectral transmittance and the relative reflectance at an incident angle φ = 10 degrees were measured. The inner wall of the attached integrating sphere is barium sulfate, and the standard plate is aluminum oxide. The measurement wavelength was 250 nm to 800 nm, the slit was 2 nm (visible), the gain was set to 2, and the scanning speed was measured at 600 nm / min. The minimum value of the spectral transmittance in the wavelength range of 300 to 500 nm and its wavelength were determined. Moreover, about the laminated | multilayer film which added the UV absorber, the transmittance | permeability in wavelength 370nm was also employ | adopted as a measured value. On the other hand, regarding the reflectance, the maximum value of the relative spectral reflectance in the wavelength range of 300 to 500 nm and its wavelength were obtained.
 (3)光の入射角度60度での波長370nmの透過率測定
 前記(2)と同じ装置を用いて、付属の角度可変絶対反射率装置(20-60°)P/N134-0115(改)を設置することにより、角度可変透過率の測定を行った。測定条件は、(2)項と同様とし、入射角度60°におけるP波およびS波の波長区間250~800nmの透過率測定を行った。なお、光源マスクサイズやサンプルサイズは装置マニュアルに従い変更した。P波とS波における波長区間250nm~800nmにおける平均透過率曲線を求め、特に波長370nmにおける透過率を求めた。
(3) Transmittance measurement at a wavelength of 370 nm at a light incident angle of 60 degrees Using the same device as (2) above, the attached variable angle absolute reflectance device (20-60 °) P / N134-0115 (revised) The angle variable transmittance was measured by installing. The measurement conditions were the same as in item (2), and transmittance measurements were performed in the P wave and S wave wavelength sections of 250 to 800 nm at an incident angle of 60 °. The light source mask size and sample size were changed according to the device manual. An average transmittance curve in the wavelength range of 250 nm to 800 nm for the P wave and the S wave was obtained, and in particular, the transmittance at a wavelength of 370 nm was obtained.
 (4)全光線透過率とヘイズ
 フィルム幅方向中央部のサンプルを5cm×5cmで切り出し、JIS K7105に準拠し、ヘイズメータ(スガ試験機製HGM-2DP(C光用))により全光線透過率とヘイズを測定した。
(4) Total light transmittance and haze A sample at the center in the width direction of the film was cut out at 5 cm × 5 cm, and in accordance with JIS K7105, the total light transmittance and haze were measured using a haze meter (Suga Test Instruments HGM-2DP (for C light)). Was measured.
 (5)測色値(b*)
 積層フィルムの幅方向中央部から5cm×5cmで切り出し、コニカミノルタ(株)製CM-3600dを用いて、透過光におけるa*,b*値を測定し、n数5の平均値を求めた。白色校正板には、装置付属のCM A-103、ゼロ校正ボックスには、装置付属のCM-A104を用いた。クロマティクネス指数a*,b*は、光源にD65、10°視野の条件でJIS Z8722(2000)に基づいて、装置が計算した値を採用した。
(5) Colorimetric value (b *)
The laminated film was cut out at 5 cm × 5 cm from the center in the width direction, and the a * and b * values in the transmitted light were measured using CM-3600d manufactured by Konica Minolta, and the average value of n number 5 was obtained. CM A-103 attached to the device was used for the white calibration plate, and CM-A104 attached to the device was used for the zero calibration box. As the chromaticness index a *, b *, a value calculated by the apparatus based on JIS Z8722 (2000) under the conditions of D65 as a light source and a 10 ° field of view was adopted.
 (6)位相差(リタデーション)値
 王子計測機器(株)製 位相差測定装置(KOBRA-WPR)を用いた。3.5cm×3.5cmで切り出したフィルムサンプルを装置に設置し、入射角0°における波長590nmのリタデーションを測定した。厚み方向のリタデーション測定の際は、入射角50°におけるRthの値を用いた。サンプリングはフィルム幅方向中央部から行い、フィルム長手方向50mm間隔の各位置3点よりサンプリングし、その平均値を用いた。また、フィルム幅方向と遅相軸とでなす狭角を配向角として求めて、積層フィルムの主配向軸とした。
(6) Retardation (Retardation) Value A phase difference measuring device (KOBRA-WPR) manufactured by Oji Scientific Instruments was used. A film sample cut out at 3.5 cm × 3.5 cm was placed in the apparatus, and retardation at a wavelength of 590 nm at an incident angle of 0 ° was measured. When measuring the retardation in the thickness direction, the value of Rth at an incident angle of 50 ° was used. Sampling was performed from the center in the film width direction, and sampling was performed from three points at 50 mm intervals in the film longitudinal direction, and the average value was used. Moreover, the narrow angle formed by the film width direction and the slow axis was determined as the orientation angle, and was used as the main orientation axis of the laminated film.
 (7)ブリードアウト
 ブリードアウトは、約2時間の製膜において静電印可装置の素線やキャストドラム周辺のUV吸収剤の堆積度合い、及び得られたフィルムを150℃・1時間熱処理後のヘイズの上昇分を尺度として、以下の基準で評価した。
S:堆積物なし、かつヘイズ上昇0.5%以下
A:堆積物なし、かつヘイズ上昇0.5%より大きく、1.0%以下
B:堆積物なし、かつヘイズ上昇1.0%より大きく、2.0%以下
C:堆積物僅かにあり、かつヘイズ上昇2.0%より大きい
D:堆積物あり、かつヘイズ上昇2.0%より大きい。
(7) Bleed-out Bleed-out is a haze after heat treatment of the obtained film at 150 ° C. for 1 hour in about 2 hours of film formation and the degree of deposition of the strands of the electrostatic application device and the UV absorber around the cast drum The following criteria were used for evaluation of the increase in
S: No deposit and haze increase of 0.5% or less A: No deposit and haze increase of greater than 0.5%, 1.0% or less B: No deposit and haze increase of greater than 1.0% 2.0% or less C: Sediment is slightly present and haze rise is larger than 2.0% D: Deposit is present and haze rise is larger than 2.0%.
 (8)面内色むら
 得られた積層フィルムをフィルム幅方向中央部からA4サイズに切り出し、その裏面に黒スプレーにより黒色層を塗布し、フィルム表面から3波長蛍光灯を用いて投光し、その反射光によるフィルムの面内色むら状態を以下の基準で評価した。
B:反射光は、無色で蛍光灯の白色として視認できる。
C:紫色の反射色が部分的に面内に視認できる。
D:紫色や青色等々の反射色が面内の全域に視認できる。
(8) In-plane color unevenness The obtained laminated film was cut into A4 size from the central part in the film width direction, a black layer was applied to the back surface by a black spray, and light was projected from the film surface using a three-wavelength fluorescent lamp. The in-plane color unevenness state of the film due to the reflected light was evaluated according to the following criteria.
B: The reflected light is colorless and visible as white fluorescent light.
C: A purple reflected color can be visually recognized partially in the plane.
D: Reflection colors such as purple and blue can be visually recognized in the entire area.
 (9)青色の光、またはUV光に対する遮蔽性
 得られたフィルムの青色の光、またはUV光に対する遮蔽性については、以下の基準で評価した。
・ 実施例26~28、比較例7~9において、青色の光の波長460nmにおける入射角0°と60°の透過率うち、透過率が高い値に基づいて評価した。
A:透過率40%以上65%未満
B:透過率65%以上75%未満
C:透過率75%以上80%未満
D:透過率80%以上、または40%未満
・ UV光については、実施例1~25、33~36、比較例1~6において、UV光の波長370nmにおける入射角0°と60°の透過率に基づいて評価した。
A:入射角0°と60°の透過率のいずれも2%以下
B:入射角0°の透過率が2%より大きく、3%以下であり、60°の透過率が5%以下
C:入射角0°の透過率が3%より大きく、4%以下であり、60°の透過率が5%より大きく、20%以下
D:いずれにも属さない。
(9) Shielding property against blue light or UV light The shielding property against blue light or UV light of the obtained film was evaluated according to the following criteria.
In Examples 26 to 28 and Comparative Examples 7 to 9, evaluation was performed based on a high transmittance value among the transmittances of blue light at an incident angle of 0 ° and 60 ° at a wavelength of 460 nm.
A: Transmittance of 40% or more and less than 65% B: Transmittance of 65% or more and less than 75% C: Transmittance of 75% or more and less than 80% D: Transmittance of 80% or more or less than 40% In 1 to 25, 33 to 36, and Comparative Examples 1 to 6, the UV light was evaluated based on the transmittance at an incident angle of 0 ° and 60 ° at a wavelength of 370 nm.
A: Both transmittances at an incident angle of 0 ° and 60 ° are 2% or less. B: The transmittance at an incident angle of 0 ° is larger than 2% and 3% or less, and the transmittance at 60 ° is 5% or less. C: The transmittance at an incident angle of 0 ° is greater than 3% and 4% or less, and the transmittance at 60 ° is greater than 5% and 20% or less.
 (10)フィルム厚みとUV吸収剤濃度の積
 フィルム厚みは、本体の型式1240、ゲージヘッド 、測定スタンド等一式が付属のミリトロン社製の電子マイクロメータを用いて測定した。サンプルはフィルム幅方向位置の中央部から5cm×5cm四方で切り出し、その厚み測定結果をサブミクロン単位まで読み取った。
(10) Product of Film Thickness and UV Absorber Concentration The film thickness was measured using an electronic micrometer manufactured by Millitron with a set of main body model 1240, gauge head, measuring stand and the like. The sample was cut out from the center of the film width direction position at 5 cm × 5 cm square, and the thickness measurement result was read to the submicron unit.
 積層フィルムのUV吸収剤の濃度(%)は、積層フィルムの製造過程におけるUV吸収剤の原末の添加重量から求めた。具体的には、AまたはB層に用いる熱可塑性樹脂AまたはBに予めUV吸収剤を10重量%含んだUVマスターチップを製作し、これらを希釈することで、積層フィルムの内部に含まれるUV吸収剤の濃度を調整した。 The concentration (%) of the UV absorber in the laminated film was determined from the added weight of the raw material of the UV absorber in the production process of the laminated film. Specifically, a UV master chip containing 10% by weight of a UV absorber in advance in the thermoplastic resin A or B used for the A or B layer is prepared, and diluted to obtain UV contained in the laminated film. The concentration of the absorbent was adjusted.
 一方、積層フィルムからUV吸収剤の濃度を決定する方法は、式(1)を用いて厚みと透過率の関係から吸収係数kを求める。また、吸収係数kは、濃度cと吸光係数の積であるため、積層フィルムを溶媒で溶解し、濃度cを変更した試験体を作製し、それぞれの透過率を測定することで濃度cを決定できる。その他、公知の分析技術を用いることで積層フィルム中のUV吸収剤の濃度は容易に決定できる。以下にフィルムからの分析方法を示す。 On the other hand, the method of determining the concentration of the UV absorber from the laminated film is to obtain the absorption coefficient k from the relationship between the thickness and the transmittance using the formula (1). Moreover, since the absorption coefficient k is a product of the concentration c and the absorption coefficient, the laminated film is dissolved with a solvent, a test body with the concentration c changed is produced, and the concentration c is determined by measuring the respective transmittances. it can. In addition, the concentration of the UV absorber in the laminated film can be easily determined by using a known analysis technique. The analysis method from a film is shown below.
 1cm四方に切り出した積層フィルムの重量を測定し、塩化メチレンまたはHFIP/塩化メチレン溶媒に十分に溶解させる。溶媒1mL~5mLの範囲内で、順次フィルムを溶解して、紫外波長領域でのスペクトルの濃度依存性のデータを採取。特定の吸収ピーク波長λnmに着目し、0.02[mg/mL]にて測定した既知のUV吸収剤由来の吸光度をAλ1、x倍に希釈したフィルム溶液から得られた吸光度をAλ2とした場合、フィルム内のUVA濃度は、0.02×Aλ2/Aλ1×x[mg]と計算できる。予め測定したフィルムの重量をy[mg]とした場合、フィルム内に添加されているUVAの重量パーセント濃度は、0.02×Aλ2/Aλ1×x/y×100[wt%]の式で求まる。 The weight of the laminated film cut out in 1 cm square is measured and dissolved sufficiently in methylene chloride or HFIP / methylene chloride solvent. In the range of 1 mL to 5 mL of solvent, dissolve the film sequentially and collect the concentration dependence data of the spectrum in the ultraviolet wavelength region. Paying attention to a specific absorption peak wavelength λnm, A λ1 represents the absorbance derived from a known UV absorber measured at 0.02 [mg / mL], and A λ2 represents the absorbance obtained from the film solution diluted x-fold. In this case, the UVA concentration in the film can be calculated as 0.02 × A λ2 / A λ1 × x [mg]. When the weight of the film measured in advance is y [mg], the weight percent concentration of UVA added in the film is expressed by the formula of 0.02 × A λ 2 / A λ 1 × x / y × 100 [wt%]. It is obtained by.
 フィルム厚みとUV吸収剤濃度の積を算出する際は、表2に記載された結果の通り積層フィルムの厚み[μm]とUV吸収剤の重量%を100で除した値との積で計算した。 When calculating the product of the film thickness and the UV absorber concentration, the product was calculated as the product of the thickness [μm] of the laminated film and the value obtained by dividing the weight percent of the UV absorber by 100 as shown in Table 2. .
 (11)虹ムラ評価
 23℃の暗室にて、LED光源の42インチ液晶モニターに白色画面を表示させ、その上にA4サイズの積層フィルムを設置した。フィルムの面直方向の極点を基準として、0~360°の面内方位角、及び仰角を40°~80°で変化させながら積層フィルムを目視することで、虹ムラの着色状態を観察し、以下の基準で評価した。
A:着色は全く視認されず問題ない。
B:極僅かに青色が視認されるが問題ない。  
C:極僅かに薄い赤色、黄色が視認される。
D:複数の色が虹ムラとして確認され、問題である。
(12)屈折率
 熱可塑性樹脂の屈折率は、JIS K7142(1996)A法に従って測定した。すなわち、溶融状態からプレスし、その後、急冷却することで、シートを作製し、サンプルとした。また、A層およびB層の屈折率については、延伸・熱処理により配向や熱結晶化が伴うため、各実施例または比較例の製膜条件と同様の条件でフィルムストレッチャー(ブルックナー社製KARO-IV)を用いて逐次二軸延伸後、熱処理することにより得られたフィルム面内の二軸の延伸方向の屈折率をJIS K7142(1996)A法に従って測定した。
(11) Rainbow unevenness evaluation In a dark room at 23 ° C., a white screen was displayed on a 42-inch liquid crystal monitor of an LED light source, and an A4 size laminated film was placed thereon. By observing the laminated film while changing the in-plane azimuth angle of 0 to 360 ° and the elevation angle from 40 ° to 80 ° with reference to the pole in the direction perpendicular to the surface of the film, the colored state of rainbow unevenness is observed, Evaluation was made according to the following criteria.
A: The coloring is not visually recognized at all and there is no problem.
B: Although a slight blue color is visually recognized, there is no problem.
C: Slightly light red and yellow are visually recognized.
D: A plurality of colors are confirmed as rainbow unevenness, which is a problem.
(12) Refractive index The refractive index of the thermoplastic resin was measured according to JIS K7142 (1996) A method. That is, a sheet was produced by pressing from a molten state and then rapidly cooling to prepare a sample. Regarding the refractive indexes of the A layer and the B layer, orientation and thermal crystallization are accompanied by stretching and heat treatment. The refractive index in the biaxial stretching direction in the film surface obtained by sequential biaxial stretching using IV) and heat treatment was measured according to JIS K7142 (1996) A method.
 (熱可塑性樹脂)
 樹脂Aとして、以下のものを準備した。
(樹脂A-1)テレフタル酸ジメチル100重量部、エチレングリコール60重量部の混合物に、テレフタル酸ジメチル量に対して酢酸マグネシウム0.09重量部、三酸化アンチモン0.03重量部を添加して、常法により加熱昇温してエステル交換反応を行う。次いで、該エステル交換反応生成物に、テレフタル酸ジメチル量に対して、リン酸85%水溶液0.020重量部を添加した後、重縮合反応層に移行する。さらに、加熱昇温しながら反応系を徐々に減圧して1mmHgの減圧下、290℃で常法により重縮合反応を行い、IV=0.61のポリエチレンテレフタレートを得た。屈折率1.58。二軸延伸後、熱処理後は、屈折率1.66。
(Thermoplastic resin)
The following were prepared as the resin A.
(Resin A-1) To a mixture of 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol was added 0.09 parts by weight of magnesium acetate and 0.03 parts by weight of antimony trioxide with respect to the amount of dimethyl terephthalate. Transesterification is performed by heating and raising the temperature by a conventional method. Subsequently, 0.020 part by weight of 85% aqueous phosphoric acid solution is added to the transesterification product with respect to the amount of dimethyl terephthalate, and then the polycondensation reaction layer is transferred. Further, the reaction system was gradually depressurized while being heated and heated, and a polycondensation reaction was performed at 290 ° C. under a reduced pressure of 1 mmHg by a conventional method to obtain polyethylene terephthalate having IV = 0.61. Refractive index 1.58. The refractive index is 1.66 after biaxial stretching and after heat treatment.
 (樹脂A-2)
ナフタレン2,6-ジカルボン酸ジメチルエステル(NDC)とエチレングリコール(EG)を常法により重縮合して得られたIV=0.43のポリエチレンナフタレート。屈折率1.64。二軸延伸、熱処理後は、屈折率1.76
 (樹脂A-3)
 UV吸収剤が共重合された熱可塑性樹脂である。IV=0.65、UV吸収剤B2(2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシエチル)フェノール])を3重量%共重合した共重合ポリエチレンテレフタレート。屈折率1.585。二軸延伸、熱処理後は、屈折率1.64。
(Resin A-2)
Polyethylene naphthalate having IV = 0.43 obtained by polycondensation of naphthalene 2,6-dicarboxylic acid dimethyl ester (NDC) and ethylene glycol (EG) by a conventional method. Refractive index 1.64. After biaxial stretching and heat treatment, the refractive index is 1.76.
(Resin A-3)
It is a thermoplastic resin in which a UV absorber is copolymerized. IV = 0.65, a copolymer obtained by copolymerizing 3% by weight of UV absorber B2 (2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (2-hydroxyethyl) phenol]) Polymerized polyethylene terephthalate. Refractive index 1.585. The refractive index is 1.64 after biaxial stretching and heat treatment.
 (樹脂A-4)
 UV吸収剤が共重合された熱可塑性樹脂である。IV=0.75、UV吸収剤B3(ベンゾトリアゾール系UV吸収剤)を18重量%共重合したポリブチレンテレフタレート(ベルポリエステルプロダクツ社製TK1058C01)。融点180℃、ガラス転移点61℃。
(Resin A-4)
It is a thermoplastic resin in which a UV absorber is copolymerized. IV = 0.75, polybutylene terephthalate (TK1058C01 manufactured by Bell Polyester Products) obtained by copolymerizing 18% by weight of UV absorber B3 (benzotriazole-based UV absorber). Melting point 180 ° C, glass transition point 61 ° C.
 (樹脂A-5)
 IV=0.64 イソフタル酸12モル%共重合したポリエチレンナフタレート。屈折率1.64。二軸延伸、熱処理後は、屈折率1.74。
(Resin A-5)
IV = 0.64 Polyethylene naphthalate copolymerized with 12 mol% of isophthalic acid. Refractive index 1.64. After biaxial stretching and heat treatment, the refractive index is 1.74.
 (樹脂B-1)IV=0.73 スピログリコール(SPG 30モル%)、シクロヘキサンジカルボン酸(CHDA 20モル%)を共重合したポリエチレンテレフタレート。屈折率1.55。 (Resin B-1) IV = 0.73 Polyethylene terephthalate copolymerized with spiroglycol (SPG 30 mol%) and cyclohexanedicarboxylic acid (CHDA 20 mol%). Refractive index 1.55.
 (樹脂B-2)IV=0.72シクロヘキサンジメタノール(CHDM 30モル%)を共重合したポリエチレンテレフタレート。屈折率1.57。 (Resin B-2) Polyethylene terephthalate copolymerized with IV = 0.72 cyclohexanedimethanol (CHDM 30 mol%). Refractive index 1.57.
 (樹脂B-3)IV=0.64 イソフタル酸成分17モル%共重合したポリエチレンテレフタレート。屈折率1.58。 (Resin B-3) IV = 0.64 Polyethylene terephthalate copolymerized with 17 mol% of isophthalic acid component. Refractive index 1.58.
 (樹脂B-4)樹脂A-1と樹脂B-2を1:3で混合した共重合ポリエチレンテレフタレート。屈折率1.6
 (樹脂B-5) 樹脂A-1と樹脂B-2を1:1で混合した共重合ポリエチレンテレフタレート。屈折率1.62
 (樹脂B-6) ナフタレンジカルボン酸成分30モル%共重合したポリエチレンテレフタレート。屈折率1.6。
(Resin B-4) Copolymerized polyethylene terephthalate obtained by mixing Resin A-1 and Resin B-2 at 1: 3. Refractive index 1.6
(Resin B-5) Copolymerized polyethylene terephthalate in which resin A-1 and resin B-2 are mixed at a ratio of 1: 1. Refractive index 1.62
(Resin B-6) Polyethylene terephthalate copolymerized with 30 mol% of naphthalenedicarboxylic acid component. Refractive index 1.6.
 (UV吸収剤、及び色素)
 表1に示したとおり、各種トリアジン骨格のA1(2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン)、A2(2-(4,6-(4-ビフェニル)-1,3,5-トリアジン-2-イル)-5-(2-エチルヘキシルオキシ)-フェノール)、A3(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]フェノール)、ベンゾトリアゾール骨格のB1(2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])、B2(2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシエチル)フェノール])、ベンゾオキサジン骨格のC(2,2’-(1,4-フェニレン)ビス (4H-3,1-ベンズオキサジン-4-オン))、ベンゾフェノン骨格のD(ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン)、黄色の色素であるキノフタロン系のE、モノアゾベンゼンスルホン酸塩F、B3ベンゾトリアゾール骨格のUV吸収剤を準備した。
(UV absorber and dye)
As shown in Table 1, A1 (2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine), A2 (2- (2- ( 4,6- (4-biphenyl) -1,3,5-triazin-2-yl) -5- (2-ethylhexyloxy) -phenol), A3 (2- (4,6-diphenyl-1,3, 5-triazin-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy] phenol), B1 of benzotriazole skeleton (2,2′-methylenebis [6- (2H-benzotriazole-2- Yl) -4- (1,1,3,3-tetramethylbutyl) phenol]), B2 (2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (2-hydroxy) Ethyl) phenol]), C (2,2 '-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one)) of benzoxazine skeleton, benzophenone bone Of D (bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane), was prepared E of quinophthalone a yellow dye, a UV absorber mono azobenzene sulfonate F, B3 benzotriazole skeleton.
 (プライマーコート)
 樹脂溶液(a):メタクリル酸メチル、アクリル酸エチル、アクリル酸、N-メチロールアクリルアミド、エチレンオキシドの繰り返し単位が16のポリエチレングリコールモノメタクリレート、2-スルホエチルアクリレートからなるアクリル樹脂溶液
架橋剤(b):メチロール基型メラミン架橋剤
粒子(c):粒子径80nmのコロダイルシリカ粒子の水分散体。
フッ素系界面活性剤(d)
これらを固形分重量比で(a)/(b)/(c)/(d)=30重量部/8重量部/2重量部/0.6重量部で混合した。
(Primer coat)
Resin solution (a): Acrylic resin solution cross-linking agent (b) comprising methyl methacrylate, ethyl acrylate, acrylic acid, N-methylol acrylamide, polyethylene glycol monomethacrylate having 16 repeating units of ethylene oxide, 2-sulfoethyl acrylate: Methylol-based melamine crosslinking agent particles (c): aqueous dispersion of colloidal silica particles having a particle diameter of 80 nm.
Fluorosurfactant (d)
These were mixed at a solid content weight ratio of (a) / (b) / (c) / (d) = 30 parts by weight / 8 parts by weight / 2 parts by weight / 0.6 parts by weight.
 [実施例1]
 (積層フィルムの製膜)
 熱可塑性樹脂Aである樹脂A-1を180℃、3時間の真空乾燥後、一方、熱可塑性樹脂Bである樹脂B-1を80℃の窒素下の乾燥後、それぞれ閉鎖系の搬送ラインにて、単軸押出機と二軸押出機にそれぞれ投入し、それぞれ280℃と265℃の押出温度で溶融させて、混練した。なお、ホッパー下部には、窒素パージを行った。次いで、二軸押出機の2つのベント孔で、その真空圧を0.1kPa以下で真空ベントにより、オリゴマーや不純物などの異物を除去した。また、二軸押出機への供給原料とスクリュー回転数の比であるQ/Nsを、1.5に設定した。それぞれ、濾過精度6μmのFSSタイプのリーフディスクフィルタを10枚介した後、ギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=1/2になるように計量しながら、特許第4552936号記載の積層装置と同じ原理を用いた291層積層装置にて厚み方向に交互に291層積層された積層体とした。なお、熱可塑性樹脂B-1には、UV吸収剤A1を0.9重量%添加した。また、上に凸の層厚み分布となるように、スリット長さ、間隙を調整し、図2の積層装置7のうちスリット板72のみを用いた1枚構成の積層装置とした。A層、B層それぞれについて、図3(b)に記した2つの傾斜構造を有する積層体とした。2つの傾斜構造には、A層とB層が交互に、291層積層されており、積層フィルムの両表面近傍が、最も層厚みが薄くなるように、2つの傾斜構造を配置する設計とした。また、最大層厚み/最小厚みの比である傾斜度を1.25とするスリット設計を採用した。
[Example 1]
(Laminated film production)
After the resin A-1 as the thermoplastic resin A is vacuum-dried at 180 ° C. for 3 hours, the resin B-1 as the thermoplastic resin B is dried under nitrogen at 80 ° C. Then, they were respectively put into a single screw extruder and a twin screw extruder, melted at extrusion temperatures of 280 ° C. and 265 ° C., respectively, and kneaded. A nitrogen purge was performed on the lower part of the hopper. Subsequently, foreign matters such as oligomers and impurities were removed by vacuum venting at a vacuum pressure of 0.1 kPa or less at two vent holes of the twin screw extruder. Moreover, Q / Ns which is the ratio of the feedstock to the twin screw extruder and the screw rotation speed was set to 1.5. After passing through 10 FSS type leaf disk filters each with a filtration accuracy of 6 μm, and measuring with a gear pump so that the discharge ratio (lamination ratio) is thermoplastic resin A / thermoplastic resin B = 1/2, A 291-layer laminating apparatus using the same principle as the laminating apparatus described in Japanese Patent No. 4552936 was used to form a laminated body in which 291 layers were alternately laminated in the thickness direction. Note that 0.9 wt% of the UV absorber A1 was added to the thermoplastic resin B-1. Further, the slit length and the gap were adjusted so as to obtain an upwardly convex layer thickness distribution, and a single-layer laminating apparatus using only the slit plate 72 of the laminating apparatus 7 in FIG. 2 was obtained. Each of the A layer and the B layer was a laminate having two inclined structures shown in FIG. In the two inclined structures, A layer and B layer are alternately laminated with 291 layers, and the two inclined structures are arranged so that the layer thickness is the thinnest in the vicinity of both surfaces of the laminated film. . Moreover, the slit design which makes the inclination which is ratio of maximum layer thickness / minimum thickness 1.25 was employ | adopted.
 次いで、該積層体をTダイに供給し、シート状に成形した後、ワイヤーで8kVの静電印可電圧をかけながら、表面温度が25℃に保たれたキャスティングドラム上で急冷固化し、未延伸フィルムを得た。この未延伸フィルムを、縦延伸機で105℃、フイルム長手方向に3.2倍の延伸を行い、コロナ処理を施し、#4のメタバーでプライマーコートを両面に付与した。次いで、両端部をクリップで把持するテンターに導き110℃、フイルム幅方向に3.4倍横延伸した後、次いで200℃の熱処理を施し、150℃で約3%のフイルム幅方向に弛緩処理を実施し、厚み14μmの積層フィルムを得た。得られた積層フィルムの層厚み分布は、A層、およびB層それぞれについて、2つの傾斜構造を含んでおり、表層側から厚み方向中央部の145層番目まで、A層およびB層とも層厚みが漸近的に増加していく傾斜構造を有していた。隣接するA層とB層の平均層厚み分布では、平均層厚み60nmが漸近線となるような凸型の層厚み分布となっていた。得られた積層フィルムのUV吸収剤濃度は、0.6重量%、分光光度計による相対反射率の最大値は81%、その半値幅は15nmであり、波長380nm以下の範囲において透過率が1%以下である良好なUV遮蔽性を示していた。UV吸収剤の低濃度添加、低分子量、及び添加層が表層に出ていないため、ブリードアウトすることがなく、面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。なお、フィルム厚み14(μm)とUV吸収剤濃度との積は0.08であった。表2に得られた積層フィルムの評価結果を示す。 Next, the laminate is supplied to a T-die and formed into a sheet, and then rapidly cooled and solidified on a casting drum whose surface temperature is maintained at 25 ° C. while applying an electrostatic applied voltage of 8 kV with a wire, and unstretched A film was obtained. This unstretched film was stretched 3.2 times in the longitudinal direction of the film at 105 ° C. with a longitudinal stretching machine, subjected to corona treatment, and a primer coat was applied to both sides with a # 4 metabar. Next, both ends are guided to a tenter gripped by clips, and stretched by a factor of 3.4 in the film width direction at 110 ° C., followed by a heat treatment at 200 ° C., and a relaxation treatment in the film width direction of about 3% at 150 ° C. The laminated film having a thickness of 14 μm was obtained. The layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer. From the surface layer side to the 145th layer in the center in the thickness direction, both the A layer and the B layer have a layer thickness. Had an inclined structure that increased asymptotically. The average layer thickness distribution of the adjacent A layer and B layer had a convex layer thickness distribution in which the average layer thickness of 60 nm was an asymptotic line. The obtained laminated film has a UV absorber concentration of 0.6% by weight, a maximum value of relative reflectance by a spectrophotometer of 81%, a half width of 15 nm, and a transmittance of 1 in a wavelength range of 380 nm or less. %, Which is a good UV shielding property of not more than%. Low concentration addition of UV absorber, low molecular weight, and added layers are not exposed on the surface layer, so it was a laminated film suitable for a colorless and transparent polarizer protective film that does not bleed out and has no in-plane color unevenness . The product of the film thickness 14 (μm) and the UV absorber concentration was 0.08. Table 2 shows the evaluation results of the laminated film obtained.
 [実施例2]
 実施例1のスリット板のスリット数を変更し、271層積層装置とし、2つの傾斜構造を配置する設計とした。また、熱可塑性樹脂A-1、B-1には、それぞれ、UV吸収剤A-1を0.5重量%、1.5重量%添加する以外は、実施例1と同様にして271層、厚み13.5μmの積層フィルムを得た。得られた積層フィルムのUV吸収剤濃度は、1.17重量%、分光光度計による相対反射率の最大値は70%であり、波長380nm以下の範囲において透過率が1%以下の良好なUV遮蔽性を示していた。また、ブリードアウトすることなく、面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。なお、フィルム厚みとUV吸収剤濃度の積は、0.16であった。表2に得られた積層フィルムの評価結果を示す。
[Example 2]
The number of slits of the slit plate of Example 1 was changed to be a 271 layer laminating apparatus with two inclined structures. Further, 271 layers were added to the thermoplastic resins A-1 and B-1 in the same manner as in Example 1 except that 0.5 wt% and 1.5 wt% of the UV absorber A-1 were added, respectively. A laminated film having a thickness of 13.5 μm was obtained. The obtained laminated film has a UV absorber concentration of 1.17% by weight, a maximum relative reflectance by a spectrophotometer of 70%, and a good UV having a transmittance of 1% or less in a wavelength range of 380 nm or less. It showed shielding properties. Further, it was a laminated film suitable for a colorless and transparent polarizer protective film without bleeding out and without in-plane color unevenness. The product of the film thickness and the UV absorber concentration was 0.16. Table 2 shows the evaluation results of the laminated film obtained.
 [実施例3]
 ギアポンプによる吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=1/1になるように変更する以外は、実施例2と同様にして、271層、厚み13.5μmの積層フィルムを得た。得られた積層フィルムのUV吸収剤濃度は、1.0重量%、分光光度計による相対反射率の最大値は90%であり、波長380nm以下の範囲において透過率が1%以下の良好なUV遮蔽性を示していた。また、ブリードアウトすることなく、面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。なお、フィルム厚みとUV吸収剤濃度の積は、0.14であった。表2に得られた積層フィルムの評価結果を示す。
[Example 3]
A laminated film of 271 layers and a thickness of 13.5 μm was formed in the same manner as in Example 2 except that the discharge ratio (lamination ratio) by the gear pump was changed so that thermoplastic resin A / thermoplastic resin B = 1/1. Obtained. The obtained laminated film has a UV absorber concentration of 1.0% by weight, a maximum relative reflectance of 90% by a spectrophotometer, and a good UV having a transmittance of 1% or less in a wavelength range of 380 nm or less. It showed shielding properties. Further, it was a laminated film suitable for a colorless and transparent polarizer protective film without bleeding out and without in-plane color unevenness. The product of the film thickness and the UV absorber concentration was 0.14. Table 2 shows the evaluation results of the laminated film obtained.
 [実施例4]
 熱可塑性樹脂B-1には、UV吸収剤A1からCへ変更し、濃度を1.8重量%添加とする以外は、実施例3と同様にして271層、厚み13μmの積層フィルムを得た。得られた積層フィルムのUV吸収剤濃度は、0.9重量%、分光光度計による相対反射率の最大値は42%であり、波長370nm以下の範囲において透過率が1%以下の良好なUV遮蔽性を示していた。また、ブリードアウトすることなく、面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。なお、フィルム厚みとUV吸収剤濃度の積は、0.12であった。表2に得られた積層フィルムの評価結果を示す。
[Example 4]
In the thermoplastic resin B-1, a laminated film having 271 layers and a thickness of 13 μm was obtained in the same manner as in Example 3 except that the UV absorber A1 was changed to C and the concentration was added by 1.8% by weight. . The obtained laminated film has a UV absorber concentration of 0.9% by weight, a maximum value of relative reflectance by a spectrophotometer of 42%, and a good UV having a transmittance of 1% or less in a wavelength range of 370 nm or less. It showed shielding properties. Further, it was a laminated film suitable for a colorless and transparent polarizer protective film without bleeding out and without in-plane color unevenness. The product of the film thickness and the UV absorber concentration was 0.12. Table 2 shows the evaluation results of the laminated film obtained.
 [実施例5]
 表2に記載の通り、低屈折率層側であるB層のみにUV吸収剤A1とA2を、それぞれ1.3%と0.5%となるように添加し、また、積層比を0.7とする以外は実施例3と同様にして、厚み13μの積層フィルムを得た。得られた積層フィルムのUV吸収剤濃度は、0.14重量%、分光光度計による相対反射率の最大値は40%であり、波長375nm以下の範囲において透過率が1%以下の良好なUV遮蔽性を示していた。さらに、視野角60°においても波長370nmでの透過率は1%以下であった。全くブリードアウトすることなく、面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。なお、フィルム厚みとUV吸収剤濃度との積は、0.14であった。表2に得られた積層フィルムの評価結果を示す。
[Example 5]
As shown in Table 2, UV absorbers A1 and A2 were added to only the B layer on the low refractive index layer side so as to be 1.3% and 0.5%, respectively. A laminated film having a thickness of 13 μm was obtained in the same manner as in Example 3 except that 7. The obtained laminated film has a UV absorber concentration of 0.14% by weight, a maximum value of relative reflectance by a spectrophotometer of 40%, and a good UV having a transmittance of 1% or less in a wavelength range of 375 nm or less. It showed shielding properties. Furthermore, the transmittance at a wavelength of 370 nm was 1% or less even at a viewing angle of 60 °. It was a laminated film suitable for a colorless and transparent polarizer protective film having no in-plane color unevenness without bleeding out at all. The product of the film thickness and the UV absorber concentration was 0.14. Table 2 shows the evaluation results of the laminated film obtained.
 [実施例6~9]
 表2に記載の通り、実施例6~9は、A層とB層の樹脂の種類A-1とB-1、積層比1、積層数251、UV吸収剤の濃度1重量%と同じにして、UV吸収剤の添加層とUV吸収剤の数のみ変化させて積層フィルムを得た。評価結果を表2に示す。ブリードアウトの観点では、表層となるA層側にのみUV吸収剤を添加した実施例9が、他と比べて劣っていた。また、波長402nmでの反射率が72%ある実施例7は、面内色むら評価において、紫色の反射色が部分的に面内に視認できた。実施例6と実施例8は、UV遮蔽性とブリードアウト抑制の面で最もバランスがとれていた。
[Examples 6 to 9]
As shown in Table 2, Examples 6 to 9 are the same as the resin types A-1 and B-1 of the A layer and the B layer, the lamination ratio 1, the number of laminations 251 and the concentration of the UV absorber 1% by weight. Thus, a laminated film was obtained by changing only the number of UV absorber addition layers and the number of UV absorbers. The evaluation results are shown in Table 2. From the viewpoint of bleed out, Example 9 in which the UV absorber was added only to the surface layer A side was inferior to the others. In Example 7 where the reflectance at a wavelength of 402 nm was 72%, a purple reflected color was partially visible in the plane in the in-plane color unevenness evaluation. Example 6 and Example 8 were most balanced in terms of UV shielding and bleed out suppression.
 [実施例10]
 積層比0.5を変更する以外は、実施例7と同様にして、積層フィルムを得た。低位相差のため虹ムラ評価も良好であり、UV遮蔽性とブリードアウト抑制を両立した。評価結果を表2に示す。
[Example 10]
A laminated film was obtained in the same manner as in Example 7 except that the lamination ratio was changed to 0.5. The rainbow unevenness evaluation is also good because of the low phase difference, and both UV shielding and bleed-out suppression are compatible. The evaluation results are shown in Table 2.
 [実施例11~14]
 実施例11~14は、実施例10と同一の積層装置を用いて、表3の記載の通り、熱可塑性樹脂A、熱可塑性樹脂B、積層比、添加層を変更して積層フィルムを得た。実施例11の熱可塑性樹脂A-2は、押出温度300℃であり、熱可塑性樹脂B-2は、押出温度290℃で押出した。なお、熱可塑性樹脂A-2は、波長400nm以下から樹脂由来の吸収特性を有する。押し出された未延伸フィルムを、縦延伸温度145℃で3.2倍、横延伸温度155℃で3.5倍の逐次二軸延伸を行い、230℃の熱処理後のA層とB層の面内屈折率差は、0.18となっており、干渉反射の効果が大きく、UV遮蔽性に優れる積層フィルムであった。一方で、A1のUV吸収剤の添加量を削減できたにも拘わらず、熱可塑性樹脂A-2の押出温度が300℃以上であることから、ブリードアウトについては、実施例1に比べて劣っていた。また、波長405nmに最大反射率85%があるため、紫色の反射色である面内色むらが僅かに確認された。透過光評価である虹ムラ評価においても、僅かに色付きが見られた。また、PEN特有の面内配向のため、厚み位相差も高い結果となった。反射ピークの半値幅は29nmであった。
[Examples 11 to 14]
In Examples 11 to 14, using the same laminating apparatus as in Example 10, as shown in Table 3, the thermoplastic resin A, the thermoplastic resin B, the lamination ratio, and the addition layer were changed to obtain laminated films. . The thermoplastic resin A-2 of Example 11 was extruded at an extrusion temperature of 300 ° C., and the thermoplastic resin B-2 was extruded at an extrusion temperature of 290 ° C. The thermoplastic resin A-2 has a resin-derived absorption characteristic from a wavelength of 400 nm or less. The extruded unstretched film is subjected to sequential biaxial stretching 3.2 times at a longitudinal stretching temperature of 145 ° C. and 3.5 times at a transverse stretching temperature of 155 ° C., and the surfaces of the A layer and the B layer after heat treatment at 230 ° C. The difference in internal refractive index was 0.18, which was a laminated film having a great effect of interference reflection and excellent in UV shielding properties. On the other hand, the extrusion temperature of the thermoplastic resin A-2 is 300 ° C. or higher in spite of the reduced amount of the A1 UV absorber added, so that the bleed out is inferior to that of Example 1. It was. Further, since the maximum reflectance is 85% at a wavelength of 405 nm, in-plane color unevenness, which is a purple reflection color, was slightly confirmed. In the rainbow unevenness evaluation, which is a transmitted light evaluation, a slight coloring was observed. Moreover, because of the in-plane orientation peculiar to PEN, the thickness retardation was high. The half width of the reflection peak was 29 nm.
 実施例12は、熱可塑性樹脂A-1と熱可塑性樹脂B-2、さらに積層比1と変更する以外は、実施例10と同様にして積層フィルムを得た。ブリードアウトすることなく、また、UV遮蔽性に優れていた。光の入射角度60°のUV遮蔽性と虹ムラ評価において実施例3に比べて劣る程度であり、問題ないレベルであった。 In Example 12, a laminated film was obtained in the same manner as in Example 10 except that the thermoplastic resin A-1 and the thermoplastic resin B-2 were further changed to a lamination ratio of 1. It was excellent in UV shielding without bleeding out. The UV shielding property at an incident angle of light of 60 ° and the rainbow unevenness evaluation were inferior to those of Example 3 and were at a satisfactory level.
 実施例13と14は、熱可塑性樹脂B-3を用い、UV吸収剤の添加層をB層のみとし、UV吸収剤、さらに積層比を変更する以外は実施例10と同様にして積層フィルムを得た。実施例13は、UV吸収剤Cの分子量起因により、ヘイズ上昇は確認されるが、ブリードアウトとしては問題ないレベルであった。実施例14は、熱可塑性樹脂B-3を用いる以外は、実施例6と同様にして、積層フィルムを得た。B層のみにUV吸収剤を添加しているため、ブリードアウトは問題なかった。また、波長395nmに反射が見られるために、紫色の反射色である面内むらが僅かに確認された。 In Examples 13 and 14, a thermoplastic film B-3 was used, the addition layer of the UV absorber was only B layer, and the laminated film was formed in the same manner as in Example 10 except that the UV absorber and the lamination ratio were changed. Obtained. In Example 13, although an increase in haze was confirmed due to the molecular weight of the UV absorber C, it was a level with no problem as a bleed-out. In Example 14, a laminated film was obtained in the same manner as in Example 6 except that the thermoplastic resin B-3 was used. Since the UV absorber was added only to the B layer, there was no problem with bleeding out. In addition, since reflection was observed at a wavelength of 395 nm, in-plane unevenness that was a purple reflection color was slightly confirmed.
 実施例11~14について、熱可塑性樹脂Bの変更によるUV遮蔽性への影響はあるが、ブリードアウトなく良好な結果であった。 In Examples 11 to 14, although the UV shielding property was affected by the change of the thermoplastic resin B, the results were satisfactory without bleeding out.
 [実施例15~18]
 実施例15~18では、積層構造以外は全て同様の条件で積層フィルムを作製し、UV反射壁とUV光の遮蔽性の関係を調べた。
[Examples 15 to 18]
In Examples 15 to 18, laminated films were produced under the same conditions except for the laminated structure, and the relationship between the UV reflecting wall and the UV light shielding property was examined.
 実施例15は、表3に記載した実施例6とB層へのUV吸収剤の濃度を1.5重量%に削減する以外は、全て同様の条件で積層フィルムを得た。得られた積層フィルムの積層構造は、図3(b)に記載された2段傾斜構造であり、UV光の反射壁がフィルム厚み中の異なる位置に2つ存在するものであった。フィルム厚みとUV吸収剤濃度の積は、0.09と非常に低く、ブリードアウトは全くなかった。UV吸収剤の長波長吸収端が、層の積層構造に基づいた干渉反射による反射帯域の長波長端380nmであり、干渉反射に基づく反射性と吸収剤による吸収性によるUV光の遮蔽性の相乗効果が発現しており、UV遮蔽性に優れていた。図4(b)に記したように、2つの傾斜構造は、UV光を反射する反射壁となり、UV光の吸収効率が向上するからである。以上から面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。 Example 15 obtained laminated films under the same conditions as in Example 6 described in Table 3 except that the concentration of the UV absorber in the B layer was reduced to 1.5% by weight. The laminated structure of the obtained laminated film was a two-stage inclined structure described in FIG. 3B, and two UV light reflecting walls were present at different positions in the film thickness. The product of film thickness and UV absorber concentration was very low at 0.09 and there was no bleed out. The long-wavelength absorption edge of the UV absorber is the long-wavelength end 380 nm of the reflection band due to interference reflection based on the layered structure of the layer. The effect was exhibited and the UV shielding property was excellent. This is because, as described in FIG. 4B, the two inclined structures serve as reflecting walls that reflect the UV light, and the absorption efficiency of the UV light is improved. From the above, it was a laminated film suitable for a colorless and transparent polarizer protective film without in-plane color unevenness.
 実施例16では、積層装置を変更する以外は、実施例15と同様にして201層の積層フィルムを得た。フィルムの一方の面から反対面に向けて層厚みが、単調に変化する層厚み分布となるように、スリット長さを調整した積層装置を用いた。最大層厚み/最小厚みの比である傾斜度を1.25とするスリット設計を採用し、図2の積層装置7のうちスリット板72のみを用いた1枚構成の201積層装置により、A層、B層それぞれについて、1つの傾斜構造を有する積層フィルムとした。得られた層厚み分布は、表層から層厚み40nmから60nmに単調に変化する積層構造であった。波長370nmの透過率は4%程度であり、実施例15と比べてUV光の遮蔽性の面で劣っていた。反射ピークの半値幅は29nmであった。 In Example 16, a 201-layer laminated film was obtained in the same manner as in Example 15 except that the laminating apparatus was changed. A laminating apparatus in which the slit length was adjusted so that the layer thickness monotonously changed from one surface of the film to the opposite surface was used. By adopting a slit design in which the gradient, which is the ratio of maximum layer thickness / minimum thickness, is 1.25, a 201-layer laminating apparatus using only the slit plate 72 of the laminating apparatus 7 in FIG. Each of the B layers was a laminated film having one inclined structure. The obtained layer thickness distribution was a laminated structure that monotonously changed from the surface layer to a layer thickness of 40 nm to 60 nm. The transmittance at a wavelength of 370 nm was about 4%, which was inferior in terms of UV light shielding properties compared to Example 15. The half width of the reflection peak was 29 nm.
 実施例17は、さらに、積層装置を変更する以外は、実施例15と同様にして251層の積層フィルムを得た。図3(a)のような層厚み分布となるように、スリット長さ、間隙を調整し、図2の積層装置7のうちスリット板72のみを用いた1枚構成の積層装置とした。A層、B層それぞれについて、図3(a)に記したような3つの傾斜構造を有する積層フィルムとした。ブリードアウトはなく、UV光の遮蔽性に優れていた。理由としては、図4(a)に記したように、3つの傾斜構造は、UV光を反射する反射壁となり、UV光の吸収効率が向上するからである。以上から面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。 In Example 17, a 251 layer laminated film was obtained in the same manner as in Example 15 except that the laminating apparatus was changed. The slit length and the gap were adjusted so that the layer thickness distribution as shown in FIG. 3A was obtained, and a single-layer laminating apparatus using only the slit plate 72 in the laminating apparatus 7 of FIG. 2 was obtained. For each of the A layer and the B layer, a laminated film having three inclined structures as shown in FIG. There was no bleed out and the UV light shielding property was excellent. The reason is that as shown in FIG. 4A, the three inclined structures serve as reflecting walls that reflect the UV light, and the absorption efficiency of the UV light is improved. From the above, it was a laminated film suitable for a colorless and transparent polarizer protective film without in-plane color unevenness.
 実施例18は、層厚み分布がW型となるように、スリット長さ、間隙を調整し、図2の積層装置7のうちスリット板72のみを用いた1枚構成の積層装置とした。A層、B層それぞれについて、4つの傾斜構造を有する積層フィルムとした。ブリードアウトはなく、UV光の遮蔽性に優れていた。以上から面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。 In Example 18, the slit length and the gap were adjusted so that the layer thickness distribution was W-shaped, and a single-layer laminating apparatus using only the slit plate 72 of the laminating apparatus 7 in FIG. A laminated film having four inclined structures was formed for each of the A layer and the B layer. There was no bleed out and the UV light shielding property was excellent. From the above, it was a laminated film suitable for a colorless and transparent polarizer protective film without in-plane color unevenness.
 [実施例19~24]
 実施例19~24は、最大層厚み/最小厚みの比である傾斜度を1.4とするスリット設計を採用し、図3(b)のような層厚み分布となるように、スリット長、間隙を調整し、図2の積層装置7のうち、スリット板71とスリット板73を用いた2枚構成の積層装置を用いて、未延伸フィルムを得た。用いたUV吸収剤の種類や添加層は、表4に記載した通りである。この未延伸フィルムを、縦延伸機で100℃、フイルム長手方向に3.4倍の延伸を行い、コロナ処理を施し、#4のメタバーでプライマーコートを両面に付与した。次いで、両端部をクリップで把持するテンターに導き110℃、フイルム幅方向に3.5倍横延伸した後、次いで210℃の熱処理を施し、150℃で約1%のフイルム幅方向に弛緩処理を実施し、積層フィルムを得た。
[Examples 19 to 24]
Examples 19 to 24 employ a slit design in which the gradient that is the ratio of the maximum layer thickness / minimum thickness is 1.4, and the slit length, the layer thickness distribution as shown in FIG. The gap was adjusted, and an unstretched film was obtained using a two-layer laminating apparatus using the slit plate 71 and the slit plate 73 in the laminating apparatus 7 of FIG. The types and added layers of the UV absorber used are as described in Table 4. The unstretched film was stretched 3.4 times in the longitudinal direction of the film at 100 ° C. with a longitudinal stretching machine, subjected to corona treatment, and a primer coat was applied to both sides with a # 4 metabar. Next, after guiding both ends to a tenter gripped with clips, the film was transversely stretched 3.5 times in the film width direction at 110 ° C., and then heat-treated at 210 ° C., and relaxed in the film width direction of about 1% at 150 ° C. This was carried out to obtain a laminated film.
 得られた積層フィルムの層厚み分布は、A層、およびB層それぞれについて、2つの傾斜構造を含んでおり、表層側から厚み方向中央部まで、A層およびB層とも層厚みが漸近的に増加していく傾斜構造を有していた。隣接するA層とB層の平均層厚み分布は、両表層部が43nmに対して、中央部60nmが漸近線となるような凸型の層厚み分布となっていた。得られた積層フィルムは、2つの傾斜構造を有する全体厚み30~35μmであった。また、ポリエチレンテレフタレートの樹脂由来である吸収端波長310nmを超えて反射する層厚み分布であった。理論計算上は、波長280~390nmを反射する積層フィルムである。ここでは、UVの光を反射する層数が多いことによる効果を確認した。一方、実施例1~18に比べて、UV吸収剤の添加濃度は低いが、厚みが厚いためにその絶対量は多く、フィルム厚みとUV吸収剤濃度の積は、0.2を上回るものである。なお、フィルムの両表層の厚みは、2.3μmであり、フィルム厚み方向の中央部の中間層の厚みは、2μmとした。 The layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of the A layer and the B layer are asymptotically from the surface layer side to the center in the thickness direction. It had an increasing slope structure. The average layer thickness distribution of the adjacent A layer and B layer was a convex layer thickness distribution in which both surface layer portions were 43 nm and the central portion 60 nm was an asymptote. The obtained laminated film had an overall thickness of 30 to 35 μm having two inclined structures. Moreover, it was layer thickness distribution reflecting more than the absorption edge wavelength 310nm derived from the resin of polyethylene terephthalate. Theoretically, it is a laminated film that reflects a wavelength of 280 to 390 nm. Here, the effect by having many layers which reflect UV light was confirmed. On the other hand, the UV absorber addition concentration is lower than in Examples 1 to 18, but the absolute amount is large because the thickness is thick, and the product of the film thickness and the UV absorber concentration exceeds 0.2. is there. In addition, the thickness of both surface layers of a film was 2.3 micrometers, and the thickness of the intermediate | middle layer of the center part of the film thickness direction was 2 micrometers.
 実施例19の押出条件は実施例1と同様にして、次いでギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=1.15/1になるように計量しながら、特許第4552936号記載の積層装置と同じ原理で551層積層装置にて厚み方向に交互に551層積層された厚み35μmの積層フィルムを得た。その他、条件は表4に記載した通りである。得られた積層フィルムのUV吸収剤濃度は、0.74重量%、分光光度計による相対反射率の最大値は波長320nmで70%であり、次いで波長385nmで63%の反射率であった。どちらも半値幅は15nm以下であった。また、波長380nm以下の範囲において透過率が1%以下の良好なUV遮蔽性を示していた。UV吸収剤B1の分子量は高く、添加層が表層でなく、且つ添加層の押出温度は265℃と低いため、ブリードアウトもなく、面内色むらもない無色透明な偏光子保護フィルムに好適な積層フィルムであった。なお、フィルム厚みとUV吸収剤濃度の積は0.26であった。表4に得られた積層フィルムの評価結果を示す。 Extrusion conditions in Example 19 were the same as in Example 1, and then measured with a gear pump so that the discharge ratio (lamination ratio) was thermoplastic resin A / thermoplastic resin B = 1.15 / 1. A laminated film having a thickness of 35 μm was obtained by alternately stacking 551 layers in the thickness direction by a 551 layer laminating apparatus based on the same principle as the laminating apparatus described in No. 4552936. Other conditions are as described in Table 4. The obtained laminated film had a UV absorber concentration of 0.74% by weight, and the maximum relative reflectance by a spectrophotometer was 70% at a wavelength of 320 nm, and then a reflectance of 63% at a wavelength of 385 nm. In both cases, the full width at half maximum was 15 nm or less. In addition, a good UV shielding property with a transmittance of 1% or less was exhibited in a wavelength range of 380 nm or less. UV absorber B1 has a high molecular weight, the additive layer is not a surface layer, and the extrusion temperature of the additive layer is as low as 265 ° C. It was a laminated film. The product of the film thickness and the UV absorber concentration was 0.26. Table 4 shows the evaluation results of the laminated film obtained.
 一方、実施例24の押出条件は、熱可塑性樹脂A-1と熱可塑性樹脂B-2の押出温度を280℃とし、ギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=0.9/1になるように計量しながら、実施例19と同様にして同様の551層積層フィルムを得た。その他、条件は表4に記載した通りである。得られた積層フィルムのUV吸収剤濃度は、0.85重量%、分光光度計による相対反射率の最大値は波長397nmで74%であり、反射ピークの半値幅は25nm程度であった。フィルム厚みとUV吸収剤濃度の積は0.35であり、最表層となるA層にUV吸収剤が添加されているため、製膜工程中にブリードアウトが僅かであるが見られた。また、波長380nm以下の範囲において透過率が1%以下の良好なUV遮蔽性を示していた。可視に僅かに反射帯域があるため、面内色むらも少し見られるが、偏光子保護フィルムに好適な積層フィルムであった。表4に得られた積層フィルムの評価結果を示す。 On the other hand, the extrusion conditions of Example 24 were as follows. The extrusion temperature of the thermoplastic resin A-1 and the thermoplastic resin B-2 was 280 ° C., and the discharge ratio (lamination ratio) with the gear pump was thermoplastic resin A / thermoplastic resin B. The same 551-layer laminated film was obtained in the same manner as in Example 19 while weighing so that = 0.9 / 1. Other conditions are as described in Table 4. The resulting laminated film had a UV absorber concentration of 0.85% by weight, a maximum relative reflectance by a spectrophotometer of 74% at a wavelength of 397 nm, and a half-value width of the reflection peak of about 25 nm. The product of the film thickness and the UV absorber concentration was 0.35. Since the UV absorber was added to the outermost layer A, a slight bleed out was observed during the film forming process. In addition, a good UV shielding property with a transmittance of 1% or less was exhibited in a wavelength range of 380 nm or less. Since the reflection band is slightly visible, in-plane color unevenness is slightly seen, but it was a laminated film suitable for a polarizer protective film. Table 4 shows the evaluation results of the laminated film obtained.
 実施例20~23は、押出条件は実施例1と同様にして、次いでギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=1.27/1になるように計量しながら、特許第4552936号記載の積層装置と同じ原理で491層積層装置にて厚み方向に交互に491層積層された厚み30μmの積層フィルムを得た。その他、条件は表4に記載した通りである。 In Examples 20 to 23, the extrusion conditions were the same as in Example 1, and then measured with a gear pump so that the discharge ratio (lamination ratio) was thermoplastic resin A / thermoplastic resin B = 1.27 / 1. However, a laminated film having a thickness of 30 μm was obtained by alternately laminating 491 layers in the thickness direction by a 491 layer laminating apparatus on the same principle as the laminating apparatus described in Japanese Patent No. 4552936. Other conditions are as described in Table 4.
 実施例20は、UV吸収剤の分子量が高いため、最表層側に入っていてもブリードアウトはなく、またUV遮蔽性も良好であった。一方、可視光領域に反射が見られるため、面内色むらが見られた。実施例21は、実施例20と比べて、UV吸収剤の添加量が多く、また、分子量も小さいため、僅かながらブリードアウトが見られた。その他の性能は、良好であった。実施例22は、実施例20と同じく、UV吸収剤の分子量が大きいため、ブリードアウトは見られなかった。一方で、入射角60°でのUV遮蔽性の点でやや劣っていた。実施例23は、実施例20に比べてUV吸収剤の分子量が低いが、添加層がB層であったことと、最表層の厚みが2.5μmと厚かったことがブリードアウトを抑制した。その他の性能も良好であった。これらは、偏光子保護フィルムに好適な積層フィルムであった。表4に得られた積層フィルムの評価結果を示す。 In Example 20, since the molecular weight of the UV absorber was high, there was no bleed out even in the outermost layer side, and the UV shielding property was good. On the other hand, since reflection was seen in the visible light region, in-plane color unevenness was observed. In Example 21, compared with Example 20, the amount of UV absorber added was large and the molecular weight was also small, so a slight bleed out was observed. Other performance was good. In Example 22, as in Example 20, since the molecular weight of the UV absorber was large, no bleed out was observed. On the other hand, the UV shielding property at an incident angle of 60 ° was slightly inferior. In Example 23, although the molecular weight of the UV absorber was lower than that in Example 20, the bleed-out was suppressed because the additive layer was a B layer and the thickness of the outermost layer was 2.5 μm. Other performance was also good. These were laminated films suitable for the polarizer protective film. Table 4 shows the evaluation results of the laminated film obtained.
 [実施例25]
 実施例25は、特許第4552936号記載の積層装置と同じ原理で271層積層装置にて厚み方向に交互に271層積層された積層体とした。なお、熱可塑性樹脂B-1には、UV吸収剤B1を4重量%添加した。最大層厚み/最小厚みの比である傾斜度を1.23とするスリット設計を採用し、図3(b)のような層厚み分布となるように、スリット長、間隙を調整し、図2の積層装置7のうち、スリット板72のみを用いた1枚構成の積層装置を用いて、未延伸フィルムを得た。用いたUV吸収剤の種類や添加層は、表4に記載した通りである。この未延伸フィルムを、縦延伸機で100℃、フイルム長手方向に3.3倍の延伸を行い、コロナ処理を施し、#4のメタバーでプライマーコートを両面に付与した。次いで、両端部をクリップで把持するテンターに導き110℃、フイルム幅方向に3.5倍横延伸した後、次いで200℃の熱処理を施し、150℃で約2%のフイルム幅方向に弛緩処理を実施し、積層フィルムを得た。UVA添加濃度が高いにも拘わらず、高い分子量とB層添加が功を奏して、フィルム製膜上、破れなく、積層フィルムを得た。
[Example 25]
Example 25 was a laminated body in which 271 layers were alternately laminated in the thickness direction by a 271 layer laminating apparatus on the same principle as the laminating apparatus described in Japanese Patent No. 4552936. Note that 4 wt% of the UV absorber B1 was added to the thermoplastic resin B-1. A slit design in which the gradient that is the ratio of maximum layer thickness / minimum thickness is 1.23 is adopted, and the slit length and gap are adjusted so that the layer thickness distribution as shown in FIG. Of the laminating apparatus 7, an unstretched film was obtained using a laminating apparatus having a single sheet configuration using only the slit plate 72. The types and added layers of the UV absorber used are as described in Table 4. This unstretched film was stretched 3.3 times in the longitudinal direction of the film at 100 ° C. with a longitudinal stretching machine, subjected to corona treatment, and a primer coat was applied to both sides with a # 4 metabar. Next, after guiding the both ends to a tenter gripped with clips at a temperature of 110 ° C. and 3.5 times in the film width direction, heat treatment at 200 ° C. is performed, followed by relaxation treatment at 150 ° C. in the film width direction of about 2%. This was carried out to obtain a laminated film. Despite the high UVA addition concentration, the addition of the high molecular weight and the B layer was effective, and a laminated film was obtained without breaking on the film formation.
 得られた積層フィルムの層厚み分布は、A層、およびB層それぞれについて、2つの傾斜構造を含んでおり、表層側から厚み方向中央部まで、A層およびB層とも層厚みが漸近的に増加していく傾斜構造を有していた。隣接するA層とB層の平均層厚み分布は、両表層部が43nmに対して、中央部58nmが漸近線となるような凸型の層厚み分布となっていた。得られた積層フィルムは、2つの傾斜構造を有する全体厚み14.5μmであった。若干、ブリードアウトがみられたが、その他の性能は良好であった。これらは、偏光子保護フィルムに好適な積層フィルムであった。表4に得られた積層フィルムの評価結果を示す。 The layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of the A layer and the B layer are asymptotically from the surface layer side to the center in the thickness direction. It had an increasing slope structure. The average layer thickness distribution of the adjacent A layer and B layer was a convex layer thickness distribution in which both surface layer portions were 43 nm and the central portion 58 nm was an asymptotic line. The obtained laminated film had an overall thickness of 14.5 μm having two inclined structures. Although some bleed out was observed, other performance was good. These were laminated films suitable for the polarizer protective film. Table 4 shows the evaluation results of the laminated film obtained.
 [比較例1~3]
 UV吸収剤の種類と添加濃度を変更する以外は、実施例21と同様にして、厚み30μmの積層フィルムを得た。フィルム厚みとUV吸収剤濃度の積は、全て0.35を超えているため、いずれもブリードアウトの問題が生じた。また、比較例3を除き、比較例1と比較例2は、入射角60°でのUV遮蔽性や色づきの面において、実施例21に比べてやや劣っていた。これらは、偏光子保護フィルムとして好適な積層フィルムではなかった。表5に得られた積層フィルムの評価結果を示す。
[Comparative Examples 1 to 3]
A laminated film having a thickness of 30 μm was obtained in the same manner as in Example 21 except that the type and addition concentration of the UV absorber were changed. Since the product of the film thickness and the UV absorber concentration all exceeded 0.35, the problem of bleed out occurred. Further, except for Comparative Example 3, Comparative Example 1 and Comparative Example 2 were slightly inferior to Example 21 in terms of UV shielding properties and coloring at an incident angle of 60 °. These were not laminated films suitable as a polarizer protective film. The evaluation result of the laminated film obtained in Table 5 is shown.
 [比較例4~5]
比較例4は、実施例20の熱可塑性樹脂Bとその押出温度を280℃と変更し、UV吸収剤の添加濃度、及び全体厚みを15μmとする以外は、同様にして同種積層フィルムを得た。得られたフィルムは、干渉反射の相乗効果がないため、UV遮蔽性が不十分であり、偏光子保護フィルムとして好適な積層フィルムではなかった。積層フィルムは、実質的に、単膜フィルムであったため、UV吸収剤が析出しやく、多層フィルムに比べて、見劣りするものであった。
[Comparative Examples 4 to 5]
In Comparative Example 4, the same kind of laminated film was obtained except that the thermoplastic resin B of Example 20 and the extrusion temperature thereof were changed to 280 ° C., and the addition concentration of the UV absorber and the total thickness were 15 μm. . Since the obtained film had no synergistic effect of interference reflection, the UV shielding property was insufficient, and it was not a laminated film suitable as a polarizer protective film. Since the laminated film was substantially a single film, the UV absorber was liable to precipitate and was inferior to the multilayer film.
 一方、比較例5は、実施例20のUV吸収剤の添加濃度と全体厚みを変更する以外は同様にして積層フィルムを得た。得られた積層フィルムは、UV光の波長帯域である波長310~380nmで干渉反射が生じない層厚み構成であった。断面TEM観察結果から、最大の層厚みが30nm未満と非常に薄いものであった。干渉反射とUV吸収剤の相乗効果がないため、UV遮蔽性が不十分であった。偏光子保護フィルムとして好適な積層フィルムではなかった。表5に得られた積層フィルムの評価結果を示す。 On the other hand, in Comparative Example 5, a laminated film was obtained in the same manner except that the addition concentration and the overall thickness of the UV absorber of Example 20 were changed. The obtained laminated film had a layer thickness structure in which interference reflection did not occur at a wavelength of 310 to 380 nm which is a wavelength band of UV light. From the results of cross-sectional TEM observation, the maximum layer thickness was very thin, less than 30 nm. Since there was no synergistic effect of interference reflection and UV absorber, UV shielding was insufficient. It was not a laminated film suitable as a polarizer protective film. The evaluation result of the laminated film obtained in Table 5 is shown.
 [比較例6]
 熱可塑性樹脂A-1と熱可塑性樹脂B-1を2台の二軸ベント押出機に投入し、それぞれ280℃と270℃の温度で押出し、3層(A/B/A)ピノ-ルを用いて各樹脂層を合流させ、その3層積層体をTダイからシート状に吐出し、キャストドラムで冷却固化することにより未延伸フィルムを得た。用いたUV吸収剤の種類や添加層は、表5に記載した通りである。実施例25と同様にして、製膜を行い、厚み15μmの積層フィルムを得た。
UV吸収剤の添加濃度が高いため、ブリードアウトし、フィルム破れを頻繁に起こし、安定製膜できなかった。また、均一延伸も困難であり、位相差ムラの酷いものであった。UV遮蔽性においても、実施例25に比べて劣っており、偏光子保護フィルムとしては不適切なフィルムであった。
[Comparative Example 6]
Thermoplastic resin A-1 and thermoplastic resin B-1 were put into two twin-screw vent extruders, extruded at temperatures of 280 ° C and 270 ° C, respectively, and three-layer (A / B / A) pinole was The three-layer laminate was discharged from the T-die into a sheet and cooled and solidified with a cast drum to obtain an unstretched film. The types and added layers of the UV absorber used are as described in Table 5. Film formation was performed in the same manner as Example 25 to obtain a laminated film having a thickness of 15 μm.
Since the concentration of the UV absorber added was high, bleeding occurred, the film was frequently broken, and stable film formation could not be achieved. Moreover, uniform stretching was difficult and the retardation unevenness was severe. The UV shielding property was also inferior to that of Example 25, and was an inappropriate film as a polarizer protective film.
 [実施例26]
 (積層フィルムの製膜)
 熱可塑性樹脂Aである樹脂A-1を180℃、3時間の真空乾燥後、一方、熱可塑性樹脂Bである樹脂B-5を150℃の真空下の乾燥後、それぞれ閉鎖系の搬送ラインにて、単軸押出機と二軸押出機にそれぞれ投入し、280℃の押出温度で溶融させて、混練した。なお、ホッパー下部には、窒素パージを行った。次いで、二軸押出機の2つのベント孔で、その真空圧を0.1kPa以下で真空ベントにより、オリゴマーや不純物などの異物を除去した。また、二軸押出機への供給原料とスクリュー回転数の比であるQ/Nsを、1.5に設定した。それぞれ、濾過精度6μmのFSSタイプのリーフディスクフィルタを10枚介した後、ギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=1/1になるように計量しながら、特許第4552936号記載の積層装置と同じ原理で251層積層装置にて厚み方向に交互に251層積層された積層体とした。なお、熱可塑性樹脂B-5には、色素Eを0.4重量%添加した。また、上に凸の層厚み分布となるように、実施例1と同様にして、厚み16μmの積層フィルムを得た。コーティング処理は行わず、A層に平均粒径2.5μmの凝集シリカ粒子を0.04%添加した積層フィルムである。
[Example 26]
(Laminated film production)
After the resin A-1 as the thermoplastic resin A is vacuum-dried at 180 ° C. for 3 hours, the resin B-5 as the thermoplastic resin B is dried under a vacuum at 150 ° C. Then, each was put into a single screw extruder and a twin screw extruder, melted at an extrusion temperature of 280 ° C., and kneaded. A nitrogen purge was performed on the lower part of the hopper. Subsequently, foreign matters such as oligomers and impurities were removed by vacuum venting at a vacuum pressure of 0.1 kPa or less at two vent holes of the twin screw extruder. Moreover, Q / Ns which is the ratio of the feedstock to the twin screw extruder and the screw rotation speed was set to 1.5. After passing through 10 FSS type leaf disk filters each with a filtration accuracy of 6 μm, and measuring with a gear pump so that the discharge ratio (lamination ratio) is thermoplastic resin A / thermoplastic resin B = 1/1, Based on the same principle as the laminating apparatus described in Japanese Patent No. 4552936, a 251 layer laminating apparatus was used to laminate 251 layers alternately in the thickness direction. In addition, 0.4% by weight of Dye E was added to the thermoplastic resin B-5. Further, a laminated film having a thickness of 16 μm was obtained in the same manner as in Example 1 so as to obtain an upwardly convex layer thickness distribution. It is a laminated film in which 0.04% of aggregated silica particles having an average particle diameter of 2.5 μm are added to the A layer without performing coating treatment.
 得られた積層フィルムの層厚み分布は、A層、およびB層それぞれについて、2つの傾斜構造を含んでおり、表層側から厚み方向中央部の125層番目まで、A層およびB層とも層厚みが漸近的に増加していく傾斜構造を有していた。隣接するA層とB層の平均層厚み分布では、平均層厚み70nmが漸近線となるような凸型の層厚み分布となっていた。得られた積層フィルムの色素濃度は、0.2重量%、分光光度計による相対反射率の最大値は32%であり、波長460nmの透過率が62%であり、良好なブルーライトカット性を示していた。色素Eの分子量は高く、添加層が表層に出ておらず、ブリードアウトすることがなく、面内色むらもないブルーライトカットフィルムに好適な積層フィルムであった。なお、フィルム厚み15(μm)と色素濃度0.2の積は0.03であった。また、虹ムラについては、反射色として青を呈しているため問題ないものであった。表6に得られた積層フィルムの評価結果を示す。 The layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of both the A layer and the B layer from the surface layer side to the 125th layer in the center in the thickness direction. Had an inclined structure that increased asymptotically. The average layer thickness distribution of the adjacent A layer and B layer had a convex layer thickness distribution in which the average layer thickness of 70 nm was an asymptotic line. The resulting laminated film has a pigment concentration of 0.2% by weight, a maximum value of relative reflectance by a spectrophotometer of 32%, a transmittance at a wavelength of 460 nm of 62%, and good blue light cut performance. Was showing. The molecular weight of the dye E was high, the additive layer did not appear on the surface layer, bleed out, and was a laminated film suitable for a blue light cut film having no in-plane color unevenness. The product of the film thickness 15 (μm) and the pigment concentration 0.2 was 0.03. In addition, the rainbow unevenness has no problem because it shows blue as the reflection color. Table 6 shows the evaluation results of the laminated film obtained.
 [実施例27~28]
 (積層フィルムの製膜)
 熱可塑性樹脂Aである樹脂A-1を180℃、3時間の真空乾燥後、一方、熱可塑性樹脂Bである樹脂B-5を150℃の窒素下の乾燥後、それぞれ閉鎖系の搬送ラインにて、単軸押出機と二軸押出機にそれぞれ投入し、280℃の押出温度で溶融させて、混練した。なお、ホッパー下部には、窒素パージを行った。次いで、二軸押出機の2つのベント孔で、その真空圧を0.1kPa以下で真空ベントにより、オリゴマーや不純物などの異物を除去した。また、二軸押出機への供給原料とスクリュー回転数の比であるQ/Nsを、1.5に設定した。それぞれ、濾過精度6μmのFSSタイプのリーフディスクフィルタを10枚介した後、ギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=1/1になるように計量しながら、特許第4552936号記載の積層装置と同じ原理で551層積層装置にて厚み方向に交互に551層積層された積層体とした。なお、熱可塑性樹脂B-5には、色素Eを0.2重量%添加した。また、上に凸の層厚み分布となるように、実施例1と同様にして、厚み40μmの積層フィルムを得た。コーティング処理は行わず、A層に平均粒径2.5μmの凝集シリカ粒子を0.04%添加した積層フィルムである。
[Examples 27 to 28]
(Laminated film production)
After the resin A-1 as the thermoplastic resin A is vacuum-dried at 180 ° C. for 3 hours, the resin B-5 as the thermoplastic resin B is dried under nitrogen at 150 ° C. Then, each was put into a single screw extruder and a twin screw extruder, melted at an extrusion temperature of 280 ° C., and kneaded. A nitrogen purge was performed on the lower part of the hopper. Subsequently, foreign matters such as oligomers and impurities were removed by vacuum venting at a vacuum pressure of 0.1 kPa or less at two vent holes of the twin screw extruder. Moreover, Q / Ns which is the ratio of the feedstock to the twin screw extruder and the screw rotation speed was set to 1.5. After passing through 10 FSS type leaf disk filters each with a filtration accuracy of 6 μm, and measuring with a gear pump so that the discharge ratio (lamination ratio) is thermoplastic resin A / thermoplastic resin B = 1/1, Based on the same principle as the laminating apparatus described in Japanese Patent No. 4552936, a 551 layer laminating apparatus was used to laminate 551 layers alternately in the thickness direction. Note that 0.2% by weight of Dye E was added to the thermoplastic resin B-5. Further, a laminated film having a thickness of 40 μm was obtained in the same manner as in Example 1 so as to obtain an upwardly convex layer thickness distribution. It is a laminated film in which 0.04% of aggregated silica particles having an average particle diameter of 2.5 μm are added to the A layer without performing coating treatment.
 得られた積層フィルムの層厚み分布は、A層、およびB層それぞれについて、2つの傾斜構造を含んでおり、表層側から厚み方向中央部の125層番目まで、A層およびB層とも層厚みが漸近的に増加していく傾斜構造を有していた。隣接するA層とB層の平均層厚み分布では、平均層厚み70nmが漸近線となるような凸型の層厚み分布となっていた。得られた積層フィルムの色素濃度は、0.1重量%、分光光度計による相対反射率の最大値は42%であり、波長460nmの透過率が55%であり、良好なブルーライトカット性を示していた。色素Eの分子量は高く、添加層が表層に出ておらず、ブリードアウトすることがなく、面内色むらもないブルーライトカットフィルムに好適な積層フィルムであった。なお、フィルム厚み40(μm)と色素濃度0.1の積は0.04であった。また、虹ムラについては、反射色として青を呈しているため問題ないものであった。表6に得られた積層フィルムの評価結果を示す。 The layer thickness distribution of the obtained laminated film includes two inclined structures for each of the A layer and the B layer, and the layer thicknesses of both the A layer and the B layer from the surface layer side to the 125th layer in the center in the thickness direction. Had an inclined structure that increased asymptotically. The average layer thickness distribution of the adjacent A layer and B layer had a convex layer thickness distribution in which the average layer thickness of 70 nm was an asymptotic line. The resulting laminated film has a pigment concentration of 0.1% by weight, a maximum relative reflectance by a spectrophotometer of 42%, a transmittance at a wavelength of 460 nm of 55%, and good blue light cutting properties. Was showing. The molecular weight of the dye E was high, the additive layer did not appear on the surface layer, bleed out, and was a laminated film suitable for a blue light cut film having no in-plane color unevenness. The product of the film thickness 40 (μm) and the pigment concentration 0.1 was 0.04. In addition, the rainbow unevenness has no problem because it shows blue as the reflection color. Table 6 shows the evaluation results of the laminated film obtained.
 実施例28は、熱可塑性樹脂Bを変更する以外は、実施例26と同様にして積層フィルムを得た。また、虹ムラについては、反射色として青を呈しているため問題ないものであった。表6に得られた積層フィルムの評価結果を示す。 Example 28 obtained a laminated film in the same manner as in Example 26 except that the thermoplastic resin B was changed. In addition, the rainbow unevenness has no problem because it shows blue as the reflection color. Table 6 shows the evaluation results of the laminated film obtained.
 [比較例7~9]
 比較例7は、色素を添加しないこと以外は実施例27と同様にして、積層フィルムを得た。表6に得られた積層フィルムの評価結果を示す。一方、比較例6~7は、積層装置を491層積層装置に変更し、かつ、色素をモノアゾ系ベンゼンスルホン酸塩に変更する以外は同様の方法で、厚み15μmの積層フィルムを得た。
[Comparative Examples 7 to 9]
In Comparative Example 7, a laminated film was obtained in the same manner as in Example 27 except that no pigment was added. Table 6 shows the evaluation results of the laminated film obtained. On the other hand, in Comparative Examples 6 to 7, a laminated film having a thickness of 15 μm was obtained by the same method except that the laminating apparatus was changed to a 491-layer laminating apparatus and the dye was changed to a monoazo benzenesulfonate.
 比較例8~9は、表6に記載内容の変更以外、実施例5と同様にして同種の積層フィルムを得た。同種PETの積層フィルムであるため、層界面によるUV吸収剤の遮蔽効果がなく、いずれもブリードアウトが発生し、好適なブルーライトカットフィルムではなかった。 Comparative Examples 8 to 9 obtained the same type of laminated film in the same manner as in Example 5 except that the contents described in Table 6 were changed. Since it was a laminated film of the same kind of PET, there was no shielding effect of the UV absorber due to the layer interface, and any of these did not bleed out and were not suitable blue light cut films.
 [実施例29]
 実施例6で得られた積層フィルムの主配向軸は、フィルム幅方向として、VAモードのTCL社製の42インチのLEDバックライトの液晶パネルを用いて、液晶ディスプレイ上に貼り付けた。このとき、積層フィルムの主配向軸と液晶ディスプレイの上偏光板の偏光子による直線偏光の面内方位となす角度のうち狭角は0度の関係とした。また、狭角が10°以下であれば、偏光サングラスで白色表示を確認した場合、黒表示となり、貼り合わせ前後で変化のなく、従来のトリアセチルセルロースと置き換えても良好に利用できることを確認した。
[Example 29]
The main orientation axis of the laminated film obtained in Example 6 was pasted on a liquid crystal display using a 42-inch LED backlight liquid crystal panel manufactured by TCL in VA mode as the film width direction. At this time, the narrow angle of the angle between the main orientation axis of the laminated film and the in-plane orientation of linearly polarized light by the polarizer of the upper polarizing plate of the liquid crystal display was 0 °. In addition, if the narrow angle is 10 ° or less, when the white display is confirmed with the polarized sunglasses, the display is black, and there is no change before and after the bonding, and it is confirmed that it can be used well even if it is replaced with the conventional triacetylcellulose. .
 [実施例30]
 続いて、IPSモードのアップル社製のiPad6のLEDバックライトの液晶パネルを用いて、実施例10で得られた積層フィルムを上偏光板のフロント偏光子として貼りつけ、白表示、消光時とも輝度や色むらなど問題なく、液晶ディスプレイの偏光子保護フィルムとして好適であることを確認した。特に、パネルからの直線偏光の方位と積層フィルムのなす角度を20~70°とすることで、偏光サングラスをかけたときには黒表示となることはなかった。
[Example 30]
Subsequently, using a liquid crystal panel of ipad6 LED backlight manufactured by Apple in IPS mode, the laminated film obtained in Example 10 was pasted as a front polarizer of the upper polarizing plate, and brightness was obtained during both white display and extinction. It was confirmed that the film was suitable as a polarizer protective film for liquid crystal displays without problems such as color unevenness. In particular, when the direction of the linearly polarized light from the panel and the angle formed by the laminated film was set to 20 to 70 °, black display did not occur when wearing polarized sunglasses.
 [実施例31]
 実施例6の積層フィルムを用いて、実施例29と同様にして、液晶ディスプレイの上偏光板の偏光子による直線偏光の面内方位となす角度のうち狭角の角度が45度の関係となるように配置した。偏光サングラスで白色表示を確認した場合、全ての方位角で黒表示とならず好適な液晶ディスプレイであることを確認した。
[Example 31]
Using the laminated film of Example 6, as in Example 29, the angle of the narrow angle among the angles formed with the in-plane orientation of linearly polarized light by the polarizer of the upper polarizing plate of the liquid crystal display is 45 degrees. Arranged. When white display was confirmed with polarized sunglasses, it was confirmed that the liquid crystal display was suitable because it did not display black at all azimuth angles.
 [実施例32]
 実施例26で得られた積層フィルムをアップル社製のiPhone5sに貼合し、視野角に依存しないブルーライトカット性をもつ画面保護フィルムであることを確認した。
[Example 32]
The laminated film obtained in Example 26 was pasted on iPhone 5s manufactured by Apple, and it was confirmed that the film was a screen protective film having a blue light cut property independent of the viewing angle.
 [実施例33]
 実施例6のUV吸収剤をA1とB1の混合比を6:4の割合でブレンドした2成分系に変更し、その他は、実施例6と同様にして、積層フィルムを得た。評価結果を表4に示す。A1の効果により、ブリードアウトは殆どなく、波長339nmでの反射率が49%であり、面内色むら評価において、無色で問題がないことを確認できた。UV遮蔽性とブリードアウト抑制の面でバランスがとれていた。
[Example 33]
A laminated film was obtained in the same manner as in Example 6 except that the UV absorber of Example 6 was changed to a two-component system in which the mixing ratio of A1 and B1 was blended at a ratio of 6: 4. The evaluation results are shown in Table 4. Due to the effect of A1, there was almost no bleed-out, the reflectance at a wavelength of 339 nm was 49%, and in the evaluation of in-plane color unevenness, it was confirmed that it was colorless and had no problem. There was a balance between UV shielding and bleed-out suppression.
 [実施例34]
 実施例6の樹脂A-1から樹脂A-3のUV吸収剤の濃度が3重量%の樹脂に変更し、二軸ベント押出機に投入した。その他は、実施例6と同様にして、積層フィルムを得た。評価結果を表4に示す。A層側にUVA吸収成分があるにもかかわらず、共重合体のため、ブリードアウトは全くなく、波長405nmでの反射率が65%であった。透過色においては、黄色傾向が見られたが、特に問題がないことを確認できた。UV遮蔽性とブリードアウト抑制の面でバランスがとれていた。
[Example 34]
The resin A-1 in Example 6 was changed to a resin having a UV absorber concentration of 3 wt% in the resin A-3, and the resin was put into a twin screw vent extruder. Otherwise, a laminated film was obtained in the same manner as in Example 6. The evaluation results are shown in Table 4. Despite the presence of the UVA absorbing component on the A layer side, it was a copolymer, so there was no bleeding out and the reflectance at a wavelength of 405 nm was 65%. In the transmitted color, a yellow tendency was observed, but it was confirmed that there was no particular problem. There was a balance between UV shielding and bleed-out suppression.
 [実施例35]
 実施例6の樹脂A-1から樹脂A-4のUV吸収剤成分の濃度が3重量%の樹脂になるように樹脂A-1で希釈し、二軸ベント押出機に投入した。その他は、実施例6と同様にして、積層フィルムを得た。評価結果を表4に示す。A層側にUVA吸収成分があるにもかかわらず、共重合体のため、ブリードアウトは全くなく、波長320nmでの反射率が49%であり、面内色むら評価において、無色で問題がないことを確認できた。UV遮蔽性とブリードアウト抑制の面でバランスがとれていた。
[Example 35]
The resin A-1 was diluted with the resin A-1 so that the concentration of the UV absorber component of the resin A-1 to the resin A-4 in Example 6 was 3% by weight, and charged into a twin screw vent extruder. Otherwise, a laminated film was obtained in the same manner as in Example 6. The evaluation results are shown in Table 4. Despite the presence of UVA absorbing component on the A layer side, it is a copolymer, so there is no bleed out, the reflectance at a wavelength of 320 nm is 49%, and in-plane color unevenness evaluation is colorless and has no problem. I was able to confirm that. There was a balance between UV shielding and bleed-out suppression.
 [実施例36]
 実施例36は、A層に熱可塑性樹脂A-5と、B層に熱可塑性樹脂B-3にUV吸収剤A1を添加し、それぞれ二軸ベント押出機で押し出した。次いで、特許第4552936号記載の積層装置と同じ原理で、スリット板が1枚構成の積層装置にて厚み方向に交互に151層積層された積層体を得た。平均層厚みは、40~58nmであり、傾斜構造2つの層厚み分布であった。その後の製膜条件は、実施例11と同様にして、積層フィルムを得た。厚み7.5μmと非常に薄いのにもかかわらず、ブリードアウトが全くみられず、その他の性能は良好であった。これらは、偏光子保護フィルムに好適な積層フィルムであった。表4に得られた積層フィルムの評価結果を示す。B層側には、少量UVA添加を実施したが、無色で問題がないことを確認できた。虹ムラも抑制されており、UV遮蔽性とブリードアウト抑制の面で優れていた。なお、フィルム厚みとUV吸収剤濃度との積は0.04であった。半値幅は、20nmであった。
[Example 36]
In Example 36, the thermoplastic resin A-5 was added to the A layer, and the UV absorber A1 was added to the thermoplastic resin B-3 to the B layer, and each was extruded with a biaxial vent extruder. Next, on the same principle as the laminating apparatus described in Japanese Patent No. 4552936, a laminated body was obtained in which 151 slit layers were alternately laminated in the thickness direction by a laminating apparatus having one sheet. The average layer thickness was 40 to 58 nm, which was a layer thickness distribution of two inclined structures. Subsequent film forming conditions were the same as in Example 11 to obtain a laminated film. Despite being as thin as 7.5 μm, no bleed-out was observed and other performances were good. These were laminated films suitable for the polarizer protective film. Table 4 shows the evaluation results of the laminated film obtained. Although a small amount of UVA was added to the B layer side, it was confirmed that it was colorless and had no problem. Rainbow unevenness was also suppressed, and it was excellent in terms of UV shielding and bleed out suppression. The product of the film thickness and the UV absorber concentration was 0.04. The half width was 20 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明は、非常に薄膜にも拘わらず、色素やUV吸収剤のブリードアウトやフィルム破れすることなく、青色の光やUV遮蔽性に優れた積層フィルムを提供するできるため、テレビ、携帯電話、パソコン、スマートフォン、タブレットなどの情報通信機器の工程フィルム、LCDやOLED用途の偏光板の偏光子保護、位相差フィルム、円偏光フィルム、及び画面保護フィルムに好適に用いることができる。電子ペーパーや半導体レジストの製造工程にも用いることができる。また、自動車、建築材料のウィンドウフィルム、さらに、農業ハウス、化粧、食品、医薬、医療等の包装材料に用いられる積層フィルムとして好適である。 Although the present invention can provide a laminated film excellent in blue light and UV shielding properties without bleed-out of dyes and UV absorbers and film breakage despite being a very thin film, It can be suitably used for process films for information communication equipment such as personal computers, smartphones, tablets, polarizer protection for polarizing plates for LCD and OLED, retardation films, circularly polarizing films, and screen protective films. It can also be used in the manufacturing process of electronic paper and semiconductor resist. Moreover, it is suitable as a laminated film used for packaging materials for automobiles, building material window films, agricultural houses, makeup, foods, medicines, medical treatments and the like.
1  :熱可塑性樹脂Aからなる層(A層)
2  :熱可塑性樹脂Bからなる層(B層)
3  :入射光
4  :反射光
5  :積層フィルム
6  :UV吸収剤
7  :積層装置
71 :スリット板
72 :スリット板
73 :スリット板
8  :合流器
9  :接続管
10 :口金
11 :スリット板71によって形成された層厚みの傾斜構造
12 :スリット板72によって形成された層厚みの傾斜構造
13 :スリット板73によって形成された層厚みの傾斜構造
11L:スリット板71の流出口からの樹脂流路
12L:スリット板72の流出口からの樹脂流路
13L:スリット板73の流出口からの樹脂流路
11M:スリット板71の流出口に連通し、再合流器によって配置された樹脂流路
12M:スリット板72の流出口に連通し、合流器によって配置された樹脂流路
13M:スリット板73の流出口に連通し、合流器によって配置された樹脂流路
14 :樹脂流路の幅方向長さ
15 :口金の流入口部でのフィルム幅方向の長さ
16 :口金流入口部での流路の断面
17 :口金リップのフィルム幅方向長さ
18 :層または層対の並び順(層番号または層対番号)
19 :層厚み
20 :平均層厚みの上限値(最大平均層厚み)
21 :平均層厚み分布
22 :UV光を反射する平均層厚み
23 :反射
24 :ハードコート
25 :粘着剤
26 :カバーガラス
27 :電子機器筐体
28 :PVA偏光子
29 :偏光子保護フィルム
30 :偏光板
31 :液晶層
32 :上偏光板
33 :下偏光板
34 :PVA偏光子の直線偏光方位(透過方位)
35 :積層フィルムの主配向軸
36 :配向角
37 :カバーガラス
38 :導電層
39 :TAC/PVA/TAC構成の通常偏光板
80 :UV~青色の光を干渉反射する積層フィルムの分光反射スペクトルのシミュレーション結果
81 :シクロヘキサンジメタノール共重合ポリエチレンテレフタレートに青の光を吸収するアンソラキノン系顔料の色素を含有した単層フィルムの分光透過スペクトル
82 :干渉反射による反射帯域の長波長端
83 :長波長吸収端
84 :色素等の吸収特性によって消失する反射領域
85 :元の干渉反射スペクトルによって消失する透過領域
86 :長波長側の反射ピーク
87 :短波長側の反射ピーク
 
1: Layer made of thermoplastic resin A (A layer)
2: Layer made of thermoplastic resin B (B layer)
3: Incident light 4: Reflected light 5: Laminated film 6: UV absorber 7: Laminating device 71: Slit plate 72: Slit plate 73: Slit plate 8: Merger 9: Connecting pipe 10: Base 11: By slit plate 71 Inclined structure 12 with layer thickness formed: Inclined structure 13 with layer thickness formed by slit plate 72: Inclined structure 11 L with layer thickness formed by slit plate 73: Resin flow path 12L from the outlet of slit plate 71 : Resin flow path 13L from the outlet of the slit plate 72: resin flow path 11M from the outlet of the slit plate 73: resin flow path 12M communicating with the outlet of the slit plate 71 and disposed by the recombiner: slit Resin flow path 13M communicated with the flow outlet of the plate 72 and disposed by the merger: Resin flow path communicated with the flow outlet of the slit plate 73 and disposed by the merger 4: Length in the width direction of the resin channel 15: Length in the film width direction at the inlet of the die 16: Cross section of the channel at the inlet of the die 17: Length in the film width direction of the die lip 18: Layer Or the order of layer pairs (layer number or layer pair number)
19: Layer thickness 20: Upper limit of average layer thickness (maximum average layer thickness)
21: Average layer thickness distribution 22: Average layer thickness that reflects UV light 23: Reflection 24: Hard coat 25: Adhesive 26: Cover glass 27: Electronic equipment casing 28: PVA polarizer 29: Polarizer protective film 30: Polarizing plate 31: Liquid crystal layer 32: Upper polarizing plate 33: Lower polarizing plate 34: Linear polarization direction (transmission direction) of PVA polarizer
35: Main orientation axis of laminated film 36: Orientation angle 37: Cover glass 38: Conductive layer 39: Ordinary polarizing plate 80 of TAC / PVA / TAC configuration: Spectral reflection spectrum of laminated film that interferes and reflects UV to blue light Simulation result 81: Spectral transmission spectrum of a monolayer film containing a dye of an anthraquinone pigment that absorbs blue light in cyclohexanedimethanol copolymerized polyethylene terephthalate 82: Long wavelength end 83 of reflection band due to interference reflection: Long wavelength absorption end 84: Reflection region 85 disappearing due to absorption characteristics of pigments, etc .: Transmission region 86 disappearing due to original interference reflection spectrum: Reflection peak on long wavelength side 87: Reflection peak on short wavelength side

Claims (20)

  1. 熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)を、交互に少なくとも50層以上積層した積層フィルムであって、A層またはB層の少なくともいずれかの層に青色の光を吸収する色素またはUV吸収剤、あるいは両方を含み、フィルム厚みと前記青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度との積が0.35[μm・重量%/100]以下であり、前記青色の光を吸収する色素またはUV吸収剤、あるいは両方の含有濃度が、0.1~3重量%であり、波長300nm~500nmにおいて、最大反射率が15%以上であり、また、最小透過率が70%以下である積層フィルム。 A laminated film in which at least 50 layers of a layer made of thermoplastic resin A (A layer) and a layer made of thermoplastic resin B (B layer) are alternately laminated, and at least one of layer A or layer B Contains a dye or UV absorber that absorbs blue light, or both, and the product of the film thickness and the concentration of the dye or UV absorber that absorbs blue light or both is 0.35 [μm · weight % / 100] or less, and the concentration of the blue light absorbing dye and / or UV absorber, or both, is 0.1 to 3% by weight, and the maximum reflectance is 15% at a wavelength of 300 nm to 500 nm. A laminated film having a minimum transmittance of 70% or less.
  2. 前記青色の光を吸収する色素またはUV吸収剤の吸収ピーク波長が300nm~500nmであり、前記波長範囲の少なくとも一部の光を反射する熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Bからなる層(B層)で構成された一組の層対の層厚みの平均値が40nmから80nmであり、前記層対は青色の光やUV光の反射壁となり、前記反射壁はフィルム厚み方向の異なる位置に少なくとも2つ以上存在する請求項1に記載の積層フィルム。 A layer (A layer) composed of a thermoplastic resin A that has an absorption peak wavelength of 300 nm to 500 nm of the dye or UV absorber that absorbs blue light, and reflects at least part of the wavelength range, and a thermoplastic resin The average value of the layer thickness of a set of layer pairs composed of layers consisting of B (B layer) is 40 nm to 80 nm, the layer pairs are blue and UV light reflecting walls, and the reflecting walls are films The laminated film according to claim 1, wherein there are at least two or more at different positions in the thickness direction.
  3. 青色の光を吸収する色素またはUV吸収剤の長波長吸収端が、層の積層構造に基づいた干渉反射による反射帯域の長波長端より大きい請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein a long wavelength absorption edge of a dye or UV absorber that absorbs blue light is larger than a long wavelength edge of a reflection band due to interference reflection based on a laminated structure of the layers.
  4. A層に対してB層が低屈折率でありB層にのみ色素またはUV吸収剤、あるいは両方を含んでなる請求項1~3のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the B layer has a low refractive index relative to the A layer, and the dye or the UV absorber or both are contained only in the B layer.
  5. 前記色素またはUV吸収剤の分子量が500以上である請求項4に記載の積層フィルム。 The laminated film according to claim 4, wherein the dye or the UV absorber has a molecular weight of 500 or more.
  6. 全光線透過率が70%以上であり、透過モードでの色度b*値が5以下である請求項1~5のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the total light transmittance is 70% or more and the chromaticity b * value in the transmission mode is 5 or less.
  7. 波長300nm~500nmの範囲における前記色素またはUV吸収剤の吸収ピークの吸光係数が0.06[重量%・μm]-1以上である請求項1~6のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein an absorption coefficient of an absorption peak of the dye or UV absorber in the wavelength range of 300 nm to 500 nm is 0.06 [wt% · µm] -1 or more.
  8. 波長370nmの透過率が5%以下である請求項1~7のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the transmittance at a wavelength of 370 nm is 5% or less.
  9. 位相差が4000nm以上20000nm以下、または1nm以上400nm以下である請求項1~8のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 8, which has a retardation of 4000 nm to 20000 nm, or 1 nm to 400 nm.
  10. 隣接するA層とB層の層対の層厚みの平均値を平均層厚みとし、積層フィルムの全ての層対の番号と平均層厚みの関係から得られる平均層厚み分布が、2つ以上の傾斜構造を有し、平均層厚みが40nm以上60nm以下となる層対の数が全層対の数の8割以上である請求項1~9のいずれかに記載の積層フィルム。 The average value of the layer thicknesses of the layer pairs of the adjacent A layer and B layer is the average layer thickness, and the average layer thickness distribution obtained from the relationship between the number of all layer pairs of the laminated film and the average layer thickness is two or more. The laminated film according to any one of claims 1 to 9, wherein the number of layer pairs having an inclined structure and an average layer thickness of 40 nm or more and 60 nm or less is 80% or more of the total number of layer pairs.
  11. 波長300nm~500nmの範囲における最大反射率を示す反射スペクトルの半値幅が30nm未満である請求項1~10のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, wherein the half width of the reflection spectrum showing the maximum reflectance in the wavelength range of 300 nm to 500 nm is less than 30 nm.
  12. 青色の光を吸収する色素またはUV吸収剤が、少なくとも2成分以上を含む請求項1~11のいずれかに記載の積層フィルム The laminated film according to any one of claims 1 to 11, wherein the dye or UV absorber that absorbs blue light contains at least two components.
  13. 少なくとも片面に、光硬化型もしくは熱硬化型の樹脂層Cが形成されている請求項1~12のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 12, wherein a photocurable or thermosetting resin layer C is formed on at least one surface.
  14. UV吸収剤が共重合された熱可塑性樹脂を含む請求項1~13のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 13, comprising a thermoplastic resin copolymerized with a UV absorber.
  15. 偏光子保護フィルムである請求項1~14のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 14, which is a polarizer protective film.
  16. 請求項1~14のいずれかに記載の積層フィルムを用いた液晶ディスプレイ。 A liquid crystal display using the laminated film according to any one of claims 1 to 14.
  17. 請求項1~14のいずれかに記載の積層フィルムの主配向軸と液晶ディスプレイの上偏光板の偏光子による直線偏光の面内方位となす角度のうち狭角の角度が20度以上70度以下の関係で配置されている請求項16に記載の液晶ディスプレイ。 The narrow angle of the angle between the main alignment axis of the laminated film according to any one of claims 1 to 14 and the in-plane orientation of linearly polarized light by the polarizer of the upper polarizing plate of the liquid crystal display is 20 degrees or more and 70 degrees or less. The liquid crystal display according to claim 16, which is arranged in the relationship of
  18. 請求項1~14のいずれかに記載の積層フィルムの主配向軸と液晶ディスプレイの上偏光板の偏光子による直線偏光の面内方位となす角度のうち狭角の角度が10度以下の関係で配置されている請求項16に記載の液晶ディスプレイ。 The angle between the main alignment axis of the laminated film according to any one of claims 1 to 14 and the in-plane orientation of linearly polarized light by the polarizer of the upper polarizing plate of the liquid crystal display is 10 ° or less. The liquid crystal display according to claim 16, which is arranged.
  19. 請求項1~14のいずれかに記載の積層フィルムを用いたタッチパネル。 A touch panel using the laminated film according to any one of claims 1 to 14.
  20. 請求項1~14のいずれかに記載の積層フィルムを用いた有機ELディスプレイ。
     
    An organic EL display using the laminated film according to any one of claims 1 to 14.
PCT/JP2016/058157 2015-03-17 2016-03-15 Layered film, liquid crystal display using same, touch panel, and organic el display WO2016148141A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177024475A KR102534378B1 (en) 2015-03-17 2016-03-15 Laminate film, liquid crystal display using the same, touch panel and organic EL display
CN201680015977.8A CN107407755B (en) 2015-03-17 2016-03-15 Laminated film, liquid crystal display, touch panel, and organic EL display using the same
JP2016515553A JP6809222B2 (en) 2015-03-17 2016-03-15 Laminated film, liquid crystal display using it, touch panel and organic EL display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053125 2015-03-17
JP2015-053125 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016148141A1 true WO2016148141A1 (en) 2016-09-22

Family

ID=56919250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058157 WO2016148141A1 (en) 2015-03-17 2016-03-15 Layered film, liquid crystal display using same, touch panel, and organic el display

Country Status (5)

Country Link
JP (1) JP6809222B2 (en)
KR (1) KR102534378B1 (en)
CN (1) CN107407755B (en)
TW (1) TWI696555B (en)
WO (1) WO2016148141A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042698A (en) * 2013-08-26 2015-03-05 三菱樹脂株式会社 Biaxially oriented polyester film
WO2018083953A1 (en) * 2016-11-07 2018-05-11 東レ株式会社 Light source unit
JP2018084733A (en) * 2016-11-25 2018-05-31 宇部興産株式会社 Stretched film
WO2018110984A1 (en) * 2016-12-16 2018-06-21 엘지이노텍 주식회사 Display cover substrate and display device including same
JP2018116205A (en) * 2017-01-20 2018-07-26 株式会社ポラテクノ Optical element and image display device and organic electroluminescence display device using the same
JP2018173636A (en) * 2017-03-30 2018-11-08 東レ株式会社 Film
JP2019044023A (en) * 2017-08-30 2019-03-22 リンテック株式会社 Adhesive sheet, display body and method for manufacturing display body
KR20190056003A (en) * 2017-11-16 2019-05-24 (주)엔피케미칼 Window film unit for a mobile type electric device and method for fabricating the same
WO2019111809A1 (en) * 2017-12-05 2019-06-13 コニカミノルタ株式会社 Polarizing plate and display device
JP2019174496A (en) * 2018-03-26 2019-10-10 株式会社日本触媒 (meth)acrylic film and use thereof
WO2020054529A1 (en) 2018-09-12 2020-03-19 東レ株式会社 Laminate film
CN111201560A (en) * 2017-11-10 2020-05-26 深圳市柔宇科技有限公司 Flexible display screen and cutting and trimming method thereof
KR20200091938A (en) * 2017-12-28 2020-07-31 히타치가세이가부시끼가이샤 Laminate, wavelength conversion member, backlight unit, and image display device
WO2021156728A1 (en) * 2020-02-07 2021-08-12 3M Innovative Properties Company Reflective polarizer and display system
TWI772501B (en) * 2017-08-29 2022-08-01 美商康寧公司 Multilayer reflector for direct lit backlights
WO2023189317A1 (en) * 2022-03-28 2023-10-05 東レ株式会社 Laminated film
CN118002340A (en) * 2024-04-10 2024-05-10 成都飞机工业(集团)有限责任公司 Method for predicting thickness of complex curved surface spray coating and uniformly controlling thickness of coating

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662230B (en) * 2017-06-07 2019-06-11 大陸商光寶電子〈廣州〉有限公司 Lampshade and manufacturing method thereof and lamp
KR102560099B1 (en) 2018-03-30 2023-07-26 삼성디스플레이 주식회사 Display device
WO2020031932A1 (en) * 2018-08-07 2020-02-13 三菱ケミカル株式会社 Optical film, film laminate, and display unit
WO2020066666A1 (en) * 2018-09-27 2020-04-02 東洋紡フイルムソリューション株式会社 Multilayer laminate film
CN113272126B (en) * 2018-10-05 2023-08-25 3M创新有限公司 Multilayer optical film and article comprising the same
CN111601706B (en) * 2018-12-20 2021-05-18 韦巴斯托股份公司 Glazing panel having a composite structure comprising a liquid crystal device
KR102021303B1 (en) * 2019-04-03 2019-09-16 주식회사 에스폴리텍 Blue light blocking film
CN110370625B (en) * 2019-07-12 2020-06-19 浙江大学 Method for improving DLP photocuring additive manufacturing efficiency
CN110361806B (en) * 2019-07-25 2021-04-02 Tcl华星光电技术有限公司 Iodine-based polarizing plate and display device
CN110707233B (en) * 2019-09-16 2021-02-23 深圳市华星光电半导体显示技术有限公司 Display panel and display device
CN114424116A (en) * 2019-09-19 2022-04-29 Lg伊诺特有限公司 Electrophoretic particle and optical path control member including the same
US20220332927A1 (en) * 2019-09-20 2022-10-20 Mitsui Chemicals, Inc. Display devices
KR102388945B1 (en) 2020-07-02 2022-04-20 천금열 Two-pronged faucet without distinction
KR102472872B1 (en) * 2020-10-20 2022-12-01 도레이첨단소재 주식회사 Polyester film for display protection
KR20240146352A (en) * 2023-03-29 2024-10-08 도레이첨단소재 주식회사 Color conversion sheet and backlight unit including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509280A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical film with steep band edge
JP2007216528A (en) * 2006-02-17 2007-08-30 Mitsubishi Polyester Film Copp Laminated polyester film for optics
JP2008089821A (en) * 2006-09-29 2008-04-17 Univ Of Tokyo Optical multilayer reflective film
JP2012212080A (en) * 2011-03-31 2012-11-01 Sumitomo Chemical Co Ltd Polarizing plate
JP2014157232A (en) * 2013-02-15 2014-08-28 Toyobo Co Ltd Image display device
WO2014188831A1 (en) * 2013-05-22 2014-11-27 コニカミノルタ株式会社 Ultraviolet shielding film
JP2014223794A (en) * 2013-04-18 2014-12-04 東レ株式会社 Window film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3224293A (en) 1992-02-25 1993-09-13 Dow Chemical Company, The All-polymeric ultraviolet reflecting film
EP1274784B1 (en) 2000-04-13 2005-10-19 3M Innovative Properties Company Light stable articles
US7955662B2 (en) * 2006-09-29 2011-06-07 The University Of Tokyo Optical multilayer reflective film, and aligned metal particle film and manufacturing process therefor
KR20120106953A (en) 2009-11-18 2012-09-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multi-layer optical films
US20130070183A1 (en) * 2011-09-16 2013-03-21 Kazuaki Watanabe Optical film, polarizing plate, and image display device
KR101613785B1 (en) * 2013-06-18 2016-04-19 주식회사 엘지화학 Multilayer optical films, method of producing the same and polarizer comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509280A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical film with steep band edge
JP2007216528A (en) * 2006-02-17 2007-08-30 Mitsubishi Polyester Film Copp Laminated polyester film for optics
JP2008089821A (en) * 2006-09-29 2008-04-17 Univ Of Tokyo Optical multilayer reflective film
JP2012212080A (en) * 2011-03-31 2012-11-01 Sumitomo Chemical Co Ltd Polarizing plate
JP2014157232A (en) * 2013-02-15 2014-08-28 Toyobo Co Ltd Image display device
JP2014223794A (en) * 2013-04-18 2014-12-04 東レ株式会社 Window film
WO2014188831A1 (en) * 2013-05-22 2014-11-27 コニカミノルタ株式会社 Ultraviolet shielding film

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042698A (en) * 2013-08-26 2015-03-05 三菱樹脂株式会社 Biaxially oriented polyester film
WO2018083953A1 (en) * 2016-11-07 2018-05-11 東レ株式会社 Light source unit
US10732332B2 (en) 2016-11-07 2020-08-04 Toray Industries, Inc. Light source unit
JPWO2018083953A1 (en) * 2016-11-07 2019-09-19 東レ株式会社 Light source unit
JP2018084733A (en) * 2016-11-25 2018-05-31 宇部興産株式会社 Stretched film
WO2018110984A1 (en) * 2016-12-16 2018-06-21 엘지이노텍 주식회사 Display cover substrate and display device including same
US11217766B2 (en) 2016-12-16 2022-01-04 Lg Innotek Co., Ltd. Display cover substrate and display device including same
JP2018116205A (en) * 2017-01-20 2018-07-26 株式会社ポラテクノ Optical element and image display device and organic electroluminescence display device using the same
JP7259207B2 (en) 2017-03-30 2023-04-18 東レ株式会社 the film
JP2018173636A (en) * 2017-03-30 2018-11-08 東レ株式会社 Film
TWI772501B (en) * 2017-08-29 2022-08-01 美商康寧公司 Multilayer reflector for direct lit backlights
JP7132702B2 (en) 2017-08-30 2022-09-07 リンテック株式会社 DISPLAY BODY AND METHOD OF MANUFACTURING DISPLAY BODY
JP2019044023A (en) * 2017-08-30 2019-03-22 リンテック株式会社 Adhesive sheet, display body and method for manufacturing display body
CN111201560A (en) * 2017-11-10 2020-05-26 深圳市柔宇科技有限公司 Flexible display screen and cutting and trimming method thereof
CN111201560B (en) * 2017-11-10 2022-02-18 深圳市柔宇科技股份有限公司 Flexible display screen and cutting and trimming method thereof
KR102012836B1 (en) 2017-11-16 2019-08-22 (주)엔피케미칼 Window film unit for a mobile type electric device and method for fabricating the same
KR20190056003A (en) * 2017-11-16 2019-05-24 (주)엔피케미칼 Window film unit for a mobile type electric device and method for fabricating the same
WO2019111809A1 (en) * 2017-12-05 2019-06-13 コニカミノルタ株式会社 Polarizing plate and display device
KR20200091938A (en) * 2017-12-28 2020-07-31 히타치가세이가부시끼가이샤 Laminate, wavelength conversion member, backlight unit, and image display device
KR102175231B1 (en) 2017-12-28 2020-11-06 쇼와덴코머티리얼즈가부시끼가이샤 Laminate, wavelength conversion member, backlight unit, and image display device
JP7101006B2 (en) 2018-03-26 2022-07-14 株式会社日本触媒 (Meta) Acrylic film and its use
JP2019174496A (en) * 2018-03-26 2019-10-10 株式会社日本触媒 (meth)acrylic film and use thereof
KR20210055684A (en) 2018-09-12 2021-05-17 도레이 카부시키가이샤 Laminated film
WO2020054529A1 (en) 2018-09-12 2020-03-19 東レ株式会社 Laminate film
US12117632B2 (en) 2018-09-12 2024-10-15 Toray Industries, Inc. Laminate film
WO2021156728A1 (en) * 2020-02-07 2021-08-12 3M Innovative Properties Company Reflective polarizer and display system
CN115053158A (en) * 2020-02-07 2022-09-13 3M创新有限公司 Reflective polarizer and display system
WO2023189317A1 (en) * 2022-03-28 2023-10-05 東レ株式会社 Laminated film
CN118002340A (en) * 2024-04-10 2024-05-10 成都飞机工业(集团)有限责任公司 Method for predicting thickness of complex curved surface spray coating and uniformly controlling thickness of coating

Also Published As

Publication number Publication date
KR102534378B1 (en) 2023-05-19
TW201641274A (en) 2016-12-01
JP6809222B2 (en) 2021-01-06
KR20170126460A (en) 2017-11-17
CN107407755B (en) 2020-06-05
JPWO2016148141A1 (en) 2017-12-28
TWI696555B (en) 2020-06-21
CN107407755A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2016148141A1 (en) Layered film, liquid crystal display using same, touch panel, and organic el display
TWI706862B (en) Laminated film
KR101633237B1 (en) Uniaxially stretched multi-layer laminate film, polarizing plate comprising same, optical member for liquid crystal display device, and liquid crystal display device
JP7290111B2 (en) laminated film
JP6167479B2 (en) Polarizing plate, organic electroluminescence display device, and liquid crystal display device
TW201137001A (en) Polarizing plate
EP3077859B1 (en) Multilayer reflective polarizer with embedded absorbing elements
JP2017187619A (en) Optical film
JP2019061241A (en) Image display device
JP6870223B2 (en) Organic EL display device
WO2015137446A1 (en) Liquid crystal display device
JP6776612B2 (en) Laminated biaxially stretched polyester film
KR20160034285A (en) Phase difference film, method for manufacturing phase difference film, polarizing plate and image display device which use phase difference film, and 3d image display system using image display device
JP2008164984A (en) Laminated retardation film
US20240219605A1 (en) Laminate, display device, automobile, and portable electronic device
JP7326726B2 (en) laminated film
WO2020022300A1 (en) Gate cover
JP2017068227A (en) Optical laminate, manufacturing method therefor, and polarizer protection film
JP2022054572A (en) Laminated film
TW202031504A (en) Multilayer reflective polarizer with crystalline low index layers
JPWO2020045191A1 (en) Optical film and its manufacturing method, and polarizing plate
KR102220271B1 (en) Laminate, laminate manufacturing method, image display device, image display device manufacturing method, and method for improving light transmittance of polarising plate
JP2019059069A (en) Laminated film
JP2021086038A (en) Laminate and circularly polarizing plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016515553

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177024475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764971

Country of ref document: EP

Kind code of ref document: A1