[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016147800A1 - Anomaly diagnostic device - Google Patents

Anomaly diagnostic device Download PDF

Info

Publication number
WO2016147800A1
WO2016147800A1 PCT/JP2016/055004 JP2016055004W WO2016147800A1 WO 2016147800 A1 WO2016147800 A1 WO 2016147800A1 JP 2016055004 W JP2016055004 W JP 2016055004W WO 2016147800 A1 WO2016147800 A1 WO 2016147800A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection unit
measured
sensor
abnormality diagnosis
attached
Prior art date
Application number
PCT/JP2016/055004
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 小屋町
隆 長谷場
彰利 竹内
鈴木 洋介
啓介 橋爪
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016147800A1 publication Critical patent/WO2016147800A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an abnormality diagnosis apparatus, and more particularly to an abnormality diagnosis apparatus including a sensor that is attached to a measurement object and collects data for diagnosing the abnormality.
  • a wind power generator is known as an example of such a device.
  • SCADA Supervision Control And Data Acquisition
  • CMS Content Monitoring System
  • Patent Document 1 JP 2013-185507 A discloses a monitoring system for a wind power generator that monitors the operating state of the wind power generator from a remote location.
  • SCADA collects data such as temperature along with operation information, and is also used to monitor equipment abnormalities.
  • CMS is a system for monitoring an abnormality of equipment, and a wind power generator may be equipped with only SCADA or SCADA and CMS.
  • SCADA and CMS monitor the abnormality of each device of the wind power generator, both are referred to as an abnormality diagnosis device of the wind power generator.
  • Data such as vibration and temperature can be considered as data for performing an abnormality diagnosis device for a wind turbine generator.
  • the abnormality diagnosis apparatus includes a sensor for collecting these data.
  • the sensor is attached to the object to be measured and collects data such as vibration and temperature.
  • An example of this sensor is an acceleration sensor for collecting vibration data.
  • the tip of the acceleration sensor is threaded, and the screw is screwed into a screw hole in a base made of metal or the like.
  • the base is attached to the object to be measured with an adhesive or the like.
  • a maintenance worker may hit a hand, a foot, a tool or the like on the base part, and the base part may fall from the object to be measured due to an impact.
  • the sensor falls together with the base.
  • the collected data does not indicate information on the object to be measured. In such a case, it is desirable to notify the remote operator that the sensor has dropped or that the data is not correct.
  • An object of the present invention is to provide an abnormality diagnosing device capable of detecting that a sensor for collecting data for diagnosis is detached from the object to be measured.
  • the present invention provides a first detection unit for collecting data for diagnosing abnormality and attached to a measurement object, and a first detection unit for detecting that the first detection unit is detached from the measurement object. 2 detection units.
  • the second detection unit is installed such that the position of the second detection unit is changed in response to the first detection unit being detached from the object to be measured. It is a sensor that detects the presence or absence of an accessory or an object to be measured.
  • the second detection unit detects a signal indicating that the measurement object or the accessory of the measurement object is no longer present as a signal indicating that the first detection unit has been detached from the measurement object. Output.
  • the abnormality diagnosis device further includes a base portion to which the first detection unit is attached by the first fixing method.
  • the base portion is attached to the object to be measured by the second fixing method having a lower fixing force than the first fixing method, and the second detection portion is attached to the base portion.
  • the second detection unit is installed so that the position does not change even if the first detection unit is detached from the object to be measured, and the second detection unit is the first detection unit or the first detection unit. It is a sensor which detects the presence or absence of the accessory of a part.
  • the second detection unit detects that the first detection unit or the accessory of the first detection unit is no longer present as a signal indicating that the first detection unit is detached from the object to be measured.
  • a signal indicating is output.
  • the abnormality diagnosis apparatus further includes a base portion to which the first detection unit is attached.
  • the base part is attached to the object to be measured, and the second detection part is attached to the object to be measured independently of the base part, and detects the presence or absence of the base part as an accessory of the first detection part.
  • the second detection unit includes a contact sensor. More preferably, the second detection unit includes a magnetic sensor, and the accessory includes a magnet.
  • the second detection unit includes an image sensor.
  • FIG. It is a figure for demonstrating the wind power generator which is an example in which the abnormality diagnosis apparatus of this Embodiment is used. It is a figure which shows the structure of the abnormality diagnosis apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of 81 A of abnormality diagnosis apparatuses which concern on Embodiment 2.
  • FIG. It is a figure which shows the structure of the abnormality diagnosis apparatus 81B which concerns on Embodiment 3.
  • FIG. It is a figure which shows the structure of 81 C of abnormality diagnosis apparatuses which concern on Embodiment 4.
  • FIG. It is the figure which looked at the acceleration sensor 180 and the metal base 181 of FIG. 5 from different directions. 6 is a flowchart for explaining control of CMS measurement used in common with the first to fourth embodiments.
  • FIG. 1 is a diagram for explaining a wind power generation apparatus which is an example in which the abnormality diagnosis apparatus of the present embodiment is used.
  • the wind turbine generator 10 includes a main shaft 22, a blade 30, a speed increaser 40, a generator 45, a main bearing 60, and a data collection device 80.
  • the speed increaser 40, the generator 45, the main bearing 60, and the data collection device 80 are stored in the nacelle 90.
  • a nacelle 90 is provided at the upper end of the tower 100.
  • the wind power generator 10 is configured to be able to perform a yaw motion that rotates the nacelle 90 according to the wind direction with respect to the tower 100 fixed on the ground.
  • the nacelle 90 is rotated so that the blade 30 side is located on the windward side.
  • the rotor head 20 is connected to the tip portion of the main shaft 22.
  • a plurality of blades 30 are attached to the rotor head 20.
  • the main shaft is supported inside the nacelle 90 and connected to the generator 45.
  • the main shaft 22 enters the nacelle 90 from the rotor head 20, is connected to the input shaft of the speed increaser 40, and is rotatably supported by the main bearing 60.
  • the main shaft 22 transmits the rotational torque generated by the blade 30 receiving wind force to the input shaft of the speed increaser 40.
  • the blade 30 is provided at the tip of the main shaft 22, converts wind force into rotational torque, and transmits it to the main shaft 22.
  • the main bearing 60 is fixed in the nacelle 90 and rotatably supports the main shaft 22.
  • the main bearing 60 is composed of a rolling bearing, and is composed of, for example, a self-aligning roller bearing, a tapered roller bearing, a cylindrical roller bearing, or a ball bearing. These bearings may be single row or double row.
  • the speed increaser 40 is provided between the main shaft 22 and the generator 45, and increases the rotational speed of the main shaft 22 to output to the generator 45.
  • the speed increaser 40 is configured by a gear speed increasing mechanism including a planetary gear, an intermediate shaft, a high speed shaft, and the like.
  • a plurality of bearings that rotatably support a plurality of shafts are also provided in the speed increaser 40.
  • the generator 45 is connected to the output shaft of the speed increaser 40, and generates power by the rotational torque received from the speed increaser 40.
  • the generator 45 is constituted by, for example, an induction generator.
  • a bearing that rotatably supports the rotor is also provided in the generator 45.
  • the data collection device 80 collects data from vibration sensors attached to the main bearing, speed increaser, and generator devices.
  • the data collected by the vibration sensor changes so as to show a large vibration when an abnormality occurs in any of the devices.
  • the data collection device 80 acquires an analog signal proportional to the rotational speed of the generator shaft, an analog signal proportional to the amount of power generation, a signal indicating the presence or absence of yaw motion, etc. from the nacelle control panel simultaneously with the collection of vibration data.
  • the data collection device 80 transmits the collected data to the server 200 wirelessly or by wire. Based on the data transmitted to the server 200, the alarm transmission device 210 notifies the operator of a warning when an abnormality has occurred.
  • FIG. 2 is a diagram illustrating a configuration of the abnormality diagnosis apparatus according to the first embodiment.
  • abnormality diagnosis apparatus 81 according to the first embodiment is attached to device under test 50, and acceleration sensor 180 that collects data for diagnosing the abnormality and acceleration sensor 180 are disconnected from the device under test.
  • the contact sensor 183 is installed so that the position of the contact sensor 183 changes in response to the acceleration sensor 180 being detached from the object to be measured 50.
  • the contact sensor 183 detects the device under test 50 (or an accessory of the device under test 50) in a state in which the acceleration sensor 180 is normally attached to the device under test 50, and the acceleration sensor 180 detects from the device under test 50. When it comes off, it is attached to the measured object 50 together with the acceleration sensor 180 so that the measured object 50 (or accessory) is not detected.
  • the abnormality diagnosis device 81 further includes a metal base 181 to which the acceleration sensor 180 is attached by a screwing method.
  • the metal base 181 is attached to the object to be measured 50 by, for example, an adhesive, a double-sided tape, a magnet, or the like.
  • a fixing method using an adhesive, a double-sided tape, a magnet, or the like is generally a fixing method having a weaker fixing force than a screwing method.
  • the contact sensor 183 is attached to the metal base 181 with an L-shaped bracket 182 and a screw 184.
  • the abnormality diagnosis device 81 can detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50.
  • the data collection device 80 of the abnormality diagnosis device 81 determines that the acceleration sensor 180 is detached from the device under test 50 when the contact sensor 183 is in an off state (a state away from the measurement target surface of the device under test 50), and the acceleration The sensor 180 determines that the output of the sensor 180 is invalid and stops recording the collected data, or records the output of the acceleration sensor 180 together with information indicating that the data is invalid.
  • the alarm transmission device 210 warns the operator. Therefore, the worker can avoid collecting wrong data or making a wrong diagnosis based on the wrong data.
  • FIG. 3 is a diagram illustrating a configuration of an abnormality diagnosis device 81A according to the second embodiment.
  • contact sensor 183 is installed such that the position does not change even if acceleration sensor 180 is detached from object to be measured 50.
  • the abnormality diagnosis device 81A is attached to the object to be measured 50, and includes an acceleration sensor 180 that collects data for diagnosing the abnormality, a contact sensor 183 that detects that the acceleration sensor 180 is detached from the object to be measured, 2 and the data collection device 80 shown in FIG.
  • the contact sensor 183 is attached to the DUT 50 separately from the acceleration sensor 180 and the metal base 181. Thereby, in the state where the acceleration sensor 180 is normally attached to the object to be measured 50, the presence of the metal base 181 that is an accessory of the acceleration sensor 180 is detected, and when the acceleration sensor 180 is detached from the object to be measured 50, the metal base is detected. The presence of 181 is not detected.
  • the contact sensor 183 may be arranged to detect the presence or absence of the acceleration sensor 180 itself.
  • the abnormality diagnosis device 81A according to the second embodiment can also detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50. Therefore, the abnormality diagnosis device 81A according to the first embodiment Similar effects can be obtained.
  • the first and second embodiments use the contact sensor 183 as a sensor for detecting the fall of the acceleration sensor 180.
  • the contact sensor 183 a switch for confirming the presence or absence of contact or a sensor that measures the distance from the contact surface by a contact method can be used.
  • a proximity sensor or a distance measuring sensor that measures a distance from an object without contact may be used.
  • FIG. 4 is a diagram illustrating a configuration of an abnormality diagnosis device 81B according to the third embodiment.
  • abnormality diagnosis device 81B according to the third embodiment is attached to device under test 50 with metal base 181 interposed therebetween, and includes acceleration sensor 180 that collects data for diagnosing abnormality, and acceleration sensor. It includes a magnetic sensor 185 that detects that 180 is detached from the object to be measured, and a data collection device 80.
  • the magnetic sensor 185 is installed such that its position changes in response to the acceleration sensor 180 being removed from the object to be measured 50.
  • the magnetic sensor 185 detects an accessory (the magnet 187 attached to the member 186) of the measurement object 50 in a state where the acceleration sensor 180 is normally attached to the measurement object 50, and the acceleration sensor 180 detects the measurement object.
  • the magnet 187 is attached so as not to be detected when it deviates from 50.
  • the member 186 is a member whose position does not change even if the acceleration sensor 180 is detached from the object to be measured 50.
  • the abnormality diagnosis device 81B according to the third embodiment can also detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50. Therefore, the abnormality diagnosis device according to the first and second embodiments. The same effects as 81 and 81A can be obtained.
  • the positions of the magnet 187 and the magnetic sensor 185 may be exchanged, and a signal line for transmitting the signal of the magnetic sensor 185 to the data collection device 80 may be provided separately.
  • FIG. 5 is a diagram illustrating a configuration of an abnormality diagnosis device 81C according to the fourth embodiment.
  • FIG. 6 is a view of the vicinity of the acceleration sensor 180 and the metal base 181 in FIG.
  • abnormality diagnosis device 81 ⁇ / b> C according to the fourth embodiment is attached to device under test 50 with metal base 181 interposed therebetween, and includes acceleration sensor 180 that collects data for diagnosing abnormality.
  • the image sensor 189 is installed so that the position does not change even if the acceleration sensor 180 is detached from the object to be measured 50.
  • the image sensor 189 detects a mark 188 attached to the metal base 181 that is an accessory of the acceleration sensor 180 in a state where the acceleration sensor 180 is normally attached to the measurement object 50, and the acceleration sensor 180 detects the measurement object. If the mark 188 is not detected, the mark 188 is not detected.
  • the image sensor 189 a video camera or the like can be used.
  • the acceleration sensor 180 may be recognized, but if the mark 188 is recognized, the recognition process can be simplified.
  • the abnormality diagnosis apparatus 81C according to the fourth embodiment can also detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50. Therefore, the abnormality diagnosis apparatus according to the first to third embodiments. The same effect as 81, 81A, 81B can be obtained.
  • the image sensor 189 can withstand a shock such as dropping to some extent, the image sensor 189 is attached to the device under test 50 together with the acceleration sensor 180 in FIG. The mark attached to the surface to be measured may be recognized.
  • FIG. 7 is a flowchart for explaining control of CMS measurement used in common with the first to fourth embodiments.
  • the processing of this flowchart is executed by a computer inside the data collection device 80.
  • step S1 processing for acquiring measurement data and separation information indicating whether or not the sensor collecting the measurement data is disconnected is performed. This process may be performed intermittently at regular intervals or continuously.
  • step S2 If the separation information acquired in step S2 does not indicate sensor detachment (NO in S2), it is determined in step S3 that the measurement has been successful, and processing for transmitting the measured data to the server in step S4 is executed.
  • step S2 when the separation information acquired in step S2 indicates sensor detachment (YES in S2), it is determined in step S5 that the measurement has failed, and the data measured in step S6 and the sensor abnormality information are transmitted to the server. Is executed.
  • step S4 or step S6 When the process of step S4 or step S6 is completed, the CMS measurement is completed in step S7.
  • the acceleration sensor 180 is described as an example of a sensor that collects data for performing abnormality diagnosis, but the sensor is not limited to an acceleration sensor.
  • the data collection sensor may be, for example, a temperature sensor, a sound sensor, an AE sensor, or the like.
  • the wind power generator was shown as a to-be-measured object of the abnormality diagnosis apparatus of this Embodiment in FIG. 1, even if it uses the abnormality diagnosis apparatus of this Embodiment when diagnosing the abnormality of another apparatus, FIG. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Wind Motors (AREA)

Abstract

An anomaly diagnostic device (81) includes the following: an acceleration sensor (180) that is attached to an object to be measured (50), and that is for collecting data used to diagnose anomalies; a contact-type sensor (183) for detecting that the acceleration sensor (180) has been separated from the object to be measured; and a data collection device (80). The contact-type sensor (183) is disposed so as to undergo a change in position in accordance with the separation of the acceleration sensor (180) from the object to be measured (50). The contact-type sensor (183) is attached so as to detect the object to be measured (50) in a state where the acceleration sensor (180) is properly attached to the object to be measured (50), and to cease detecting the object to be measured (50) when the acceleration sensor (180) is separated from the object to be measured (50). Due to this configuration, it is possible to detect the separation of a sensor from an object to be measured, the sensor being used for collecting diagnostic data.

Description

異常診断装置Abnormality diagnosis device
 この発明は、異常診断装置に関し、特に被測定物に取り付けられ、異常を診断するためのデータを収集するセンサを備えた異常診断装置に関する。 The present invention relates to an abnormality diagnosis apparatus, and more particularly to an abnormality diagnosis apparatus including a sensor that is attached to a measurement object and collects data for diagnosing the abnormality.
 人間が監視しにくい場所(たとえば遠隔地)または時間帯(たとえば深夜)で運転する装置は、自動で異常を診断するか、または異常を診断するためのデータ収集を自動で行なえるようになっていることが望ましい。このような装置の一例として、風力発電装置が知られている。 Devices that operate in places that are difficult for humans to monitor (for example, remote locations) or time zones (for example, midnight) can automatically diagnose abnormalities or automatically collect data for diagnosing abnormalities It is desirable. A wind power generator is known as an example of such a device.
 風力発電装置においては、運転監視装置(Supervisory Control And Data Acquisition:SCADA)や状態監視装置(Condition Monitoring System:CMS)などにより風車の運転状態が遠隔的に監視される。SCADAでは、風車の発電量や風速などの運転情報が収集され、CMSでは、機器の損傷や劣化状態などが監視される。 In the wind turbine generator, the operation state of the wind turbine is remotely monitored by an operation monitoring device (Supervision Control And Data Acquisition: SCADA) or a state monitoring device (Condition Monitoring System: CMS). In SCADA, operation information such as the power generation amount and wind speed of a windmill is collected, and in CMS, damage or deterioration state of equipment is monitored.
 特開2013-185507号公報(特許文献1)は、遠隔地から風力発電装置の運転状態を監視する風力発電装置の監視システムを開示する。 JP 2013-185507 A (Patent Document 1) discloses a monitoring system for a wind power generator that monitors the operating state of the wind power generator from a remote location.
 SCADAでは運転情報とともに温度などのデータも採取され、機器の異常監視にも使用されている。一方、CMSは機器の異常監視を目的としたシステムであり、風力発電装置にはSCADAのみが設備される場合とSCADAとCMSが設備される場合がある。 SCADA collects data such as temperature along with operation information, and is also used to monitor equipment abnormalities. On the other hand, CMS is a system for monitoring an abnormality of equipment, and a wind power generator may be equipped with only SCADA or SCADA and CMS.
 SCADAとCMSは風力発電装置の各機器の異常を監視することから、両者を風力発電装置の異常診断装置と呼ぶことにする。 Since SCADA and CMS monitor the abnormality of each device of the wind power generator, both are referred to as an abnormality diagnosis device of the wind power generator.
特開2013-185507号公報JP 2013-185507 A
 風力発電装置の異常診断装置を行なうためのデータとして、振動、温度などのデータが考えられる。異常診断装置は、これらのデータを収集するためのセンサを含んでいる。センサは、被測定物に取り付けられ、振動、温度などのデータを収集する。このセンサの一例として、振動データを収集するための加速度センサがある。 Data such as vibration and temperature can be considered as data for performing an abnormality diagnosis device for a wind turbine generator. The abnormality diagnosis apparatus includes a sensor for collecting these data. The sensor is attached to the object to be measured and collects data such as vibration and temperature. An example of this sensor is an acceleration sensor for collecting vibration data.
 加速度センサの先端部にはねじ形成されていて、そのねじは、金属製などのベースのねじ穴にねじ込まれている。そして、ベースは、接着剤などで被測定物に取り付けられている。 ∙ The tip of the acceleration sensor is threaded, and the screw is screwed into a screw hole in a base made of metal or the like. The base is attached to the object to be measured with an adhesive or the like.
 このような構成の異常診断装置の場合において、メンテナンス作業員がベース部に手、足、工具などをぶつけてしまい、ベース部が衝撃によって、被測定物から落下することがある。このような場合、ベースと一緒にセンサが落下する。 In the case of the abnormality diagnosis apparatus having such a configuration, a maintenance worker may hit a hand, a foot, a tool or the like on the base part, and the base part may fall from the object to be measured due to an impact. In such a case, the sensor falls together with the base.
 しかし、センサが落下したことがわからない状態で長時間放置されると、収集されたデータが被測定物の情報を示していない。このような場合は、センサが落下したこと、またはデータが正しいものでないことを、遠隔地のオペレータに報知することが望ましい。 However, if the sensor is left unattended for a long time without knowing that it has fallen, the collected data does not indicate information on the object to be measured. In such a case, it is desirable to notify the remote operator that the sensor has dropped or that the data is not correct.
 この発明の目的は、診断用のデータ収集をおこなうためのセンサが被測定物から外れたことを検出することができる異常診断装置を提供することである。 An object of the present invention is to provide an abnormality diagnosing device capable of detecting that a sensor for collecting data for diagnosis is detached from the object to be measured.
 この発明は、要約すると、被測定物に取り付けられ、異常を診断するデータを収集するための第1の検知部と、第1の検知部が被測定物から外れたことを検知するための第2の検知部とを備える。 In summary, the present invention provides a first detection unit for collecting data for diagnosing abnormality and attached to a measurement object, and a first detection unit for detecting that the first detection unit is detached from the measurement object. 2 detection units.
 好ましくは、第2の検知部は、第1の検知部が被測定物から外れたことに応じて第2の検知部の位置が変化するように設置され、第2の検知部は、被測定物または被測定物の付属物の有無を検出するセンサである。 Preferably, the second detection unit is installed such that the position of the second detection unit is changed in response to the first detection unit being detached from the object to be measured. It is a sensor that detects the presence or absence of an accessory or an object to be measured.
 より好ましくは、第2の検知部は、第1の検知部が被測定物から外れたことを検知した信号として、被測定物または被測定物の付属物が存在しなくなったことを示す信号を出力する。 More preferably, the second detection unit detects a signal indicating that the measurement object or the accessory of the measurement object is no longer present as a signal indicating that the first detection unit has been detached from the measurement object. Output.
 さらに好ましくは、異常診断装置は、第1の検知部が第1の固着方法によって取り付けられるベース部をさらに備える。ベース部は、第1の固着方法よりも固着力が弱い第2の固着方法によって被測定物に取り付けられ、第2の検知部は、ベース部に取り付けられる。 More preferably, the abnormality diagnosis device further includes a base portion to which the first detection unit is attached by the first fixing method. The base portion is attached to the object to be measured by the second fixing method having a lower fixing force than the first fixing method, and the second detection portion is attached to the base portion.
 好ましくは、第2の検知部は、第1の検知部が被測定物から外れても、位置が変化しないように設置され、第2の検知部は、第1の検知部または第1の検知部の付属物の有無を検出するセンサである。 Preferably, the second detection unit is installed so that the position does not change even if the first detection unit is detached from the object to be measured, and the second detection unit is the first detection unit or the first detection unit. It is a sensor which detects the presence or absence of the accessory of a part.
 より好ましくは、第2の検知部は、第1の検知部が被測定物から外れたことを検知した信号として、第1の検知部または第1の検知部の付属物が存在しなくなったことを示す信号を出力する。 More preferably, the second detection unit detects that the first detection unit or the accessory of the first detection unit is no longer present as a signal indicating that the first detection unit is detached from the object to be measured. A signal indicating is output.
 さらに好ましくは、異常診断装置は、第1の検知部が取り付けられるベース部をさらに備える。ベース部は、被測定物に取り付けられ、第2の検知部は、ベース部とは独立して被測定物に取り付けられ、第1の検知部の付属物としてベース部の有無を検出する。 More preferably, the abnormality diagnosis apparatus further includes a base portion to which the first detection unit is attached. The base part is attached to the object to be measured, and the second detection part is attached to the object to be measured independently of the base part, and detects the presence or absence of the base part as an accessory of the first detection part.
 さらに好ましくは、第2の検知部は、接触式センサを含む。
 さらに好ましくは、第2の検知部は、磁気センサを含み、付属物は磁石を含む。
More preferably, the second detection unit includes a contact sensor.
More preferably, the second detection unit includes a magnetic sensor, and the accessory includes a magnet.
 さらに好ましくは、第2の検知部は、画像センサを含む。 More preferably, the second detection unit includes an image sensor.
 本発明によれば、診断用のデータ収集をおこなうためのセンサが被測定物から外れたことを検出することができるので、誤ったデータ収集が継続されたり、誤った診断が継続されたりすることを避けることができる。 According to the present invention, since it is possible to detect that a sensor for collecting diagnostic data is removed from the object to be measured, erroneous data collection is continued or erroneous diagnosis is continued. Can be avoided.
本実施の形態の異常診断装置が使用される一例である風力発電装置を説明するための図である。It is a figure for demonstrating the wind power generator which is an example in which the abnormality diagnosis apparatus of this Embodiment is used. 実施の形態1に係る異常診断装置の構成を示す図である。It is a figure which shows the structure of the abnormality diagnosis apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る異常診断装置81Aの構成を示す図である。It is a figure which shows the structure of 81 A of abnormality diagnosis apparatuses which concern on Embodiment 2. FIG. 実施の形態3に係る異常診断装置81Bの構成を示す図である。It is a figure which shows the structure of the abnormality diagnosis apparatus 81B which concerns on Embodiment 3. FIG. 実施の形態4に係る異常診断装置81Cの構成を示す図である。It is a figure which shows the structure of 81 C of abnormality diagnosis apparatuses which concern on Embodiment 4. FIG. 図5の加速度センサ180と金属ベース181を異なる方向から見た図である。It is the figure which looked at the acceleration sensor 180 and the metal base 181 of FIG. 5 from different directions. 実施の形態1~4に共通して用いられるCMS測定の制御を説明するためのフローチャートである。6 is a flowchart for explaining control of CMS measurement used in common with the first to fourth embodiments.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、本実施の形態の異常診断装置が使用される一例である風力発電装置を説明するための図である。 FIG. 1 is a diagram for explaining a wind power generation apparatus which is an example in which the abnormality diagnosis apparatus of the present embodiment is used.
 図1を参照して、風力発電装置10は、主軸22と、ブレード30と、増速機40と、発電機45と、主軸受60と、データ収集装置80とを備える。増速機40、発電機45、主軸受60およびデータ収集装置80は、ナセル90に格納される。 1, the wind turbine generator 10 includes a main shaft 22, a blade 30, a speed increaser 40, a generator 45, a main bearing 60, and a data collection device 80. The speed increaser 40, the generator 45, the main bearing 60, and the data collection device 80 are stored in the nacelle 90.
 タワー100の上端部には、ナセル90が設けられている。風力発電装置10は、地上に固定されたタワー100に対して、風向に応じてナセル90を回転させるヨー(yaw)運動を行なうことが可能に構成されている。好ましくは、風上にブレード30側が位置するようにナセル90が回転される。 A nacelle 90 is provided at the upper end of the tower 100. The wind power generator 10 is configured to be able to perform a yaw motion that rotates the nacelle 90 according to the wind direction with respect to the tower 100 fixed on the ground. Preferably, the nacelle 90 is rotated so that the blade 30 side is located on the windward side.
 ロータヘッド20は主軸22の先端部分に接続されている。ロータヘッド20には複数のブレード30が取り付けられている。主軸はナセル90内部で支持され、発電機45へと接続されている。 The rotor head 20 is connected to the tip portion of the main shaft 22. A plurality of blades 30 are attached to the rotor head 20. The main shaft is supported inside the nacelle 90 and connected to the generator 45.
 主軸22は、ロータヘッド20からナセル90内に進入して増速機40の入力軸に接続され、主軸受60によって回転自在に支持される。そして、主軸22は、風力を受けたブレード30により発生する回転トルクを増速機40の入力軸へ伝達する。ブレード30は、主軸22の先端に設けられ、風力を回転トルクに変換して主軸22に伝達する。 The main shaft 22 enters the nacelle 90 from the rotor head 20, is connected to the input shaft of the speed increaser 40, and is rotatably supported by the main bearing 60. The main shaft 22 transmits the rotational torque generated by the blade 30 receiving wind force to the input shaft of the speed increaser 40. The blade 30 is provided at the tip of the main shaft 22, converts wind force into rotational torque, and transmits it to the main shaft 22.
 主軸受60は、ナセル90内において固設され、主軸22を回転自在に支持する。主軸受60は、転がり軸受によって構成され、たとえば、自動調芯ころ軸受や円すいころ軸受、円筒ころ軸受、玉軸受等によって構成される。なお、これらの軸受は、単列のものでも複列のものでもよい。 The main bearing 60 is fixed in the nacelle 90 and rotatably supports the main shaft 22. The main bearing 60 is composed of a rolling bearing, and is composed of, for example, a self-aligning roller bearing, a tapered roller bearing, a cylindrical roller bearing, or a ball bearing. These bearings may be single row or double row.
 増速機40は、主軸22と発電機45との間に設けられ、主軸22の回転速度を増速して発電機45へ出力する。一例として、増速機40は、遊星ギヤや中間軸、高速軸等を含む歯車増速機構によって構成される。なお、特に図示しないが、この増速機40内にも、複数の軸を回転自在に支持する複数の軸受が設けられている。発電機45は、増速機40の出力軸に接続され、増速機40から受ける回転トルクによって発電する。発電機45は、たとえば、誘導発電機によって構成される。なお、この発電機45内にも、ロータを回転自在に支持する軸受が設けられている。 The speed increaser 40 is provided between the main shaft 22 and the generator 45, and increases the rotational speed of the main shaft 22 to output to the generator 45. As an example, the speed increaser 40 is configured by a gear speed increasing mechanism including a planetary gear, an intermediate shaft, a high speed shaft, and the like. Although not specifically illustrated, a plurality of bearings that rotatably support a plurality of shafts are also provided in the speed increaser 40. The generator 45 is connected to the output shaft of the speed increaser 40, and generates power by the rotational torque received from the speed increaser 40. The generator 45 is constituted by, for example, an induction generator. A bearing that rotatably supports the rotor is also provided in the generator 45.
 データ収集装置80は、主軸受、増速機、発電機の各装置に付けられた振動センサからデータを収集する。振動センサが収集したデータは、各装置のいずれかに異常が発生すると、大きな振動を示すように変化する。 The data collection device 80 collects data from vibration sensors attached to the main bearing, speed increaser, and generator devices. The data collected by the vibration sensor changes so as to show a large vibration when an abnormality occurs in any of the devices.
 データ収集装置80は、振動データの収集と同時にナセル制御盤より発電機軸の回転速度に比例するアナログ信号、発電量に比例するアナログ信号およびヨー運動の有無を示す信号などを取得する。 The data collection device 80 acquires an analog signal proportional to the rotational speed of the generator shaft, an analog signal proportional to the amount of power generation, a signal indicating the presence or absence of yaw motion, etc. from the nacelle control panel simultaneously with the collection of vibration data.
 そして、データ収集装置80は、収集したデータをサーバ200に無線または有線で送信する。サーバ200に送信されたデータに基づいて、アラーム発信装置210は、異常が発生している場合に警告をオペレータに報知する。 The data collection device 80 transmits the collected data to the server 200 wirelessly or by wire. Based on the data transmitted to the server 200, the alarm transmission device 210 notifies the operator of a warning when an abnormality has occurred.
 [実施の形態1]
 図2は、実施の形態1に係る異常診断装置の構成を示す図である。図2を参照して、実施の形態1の異常診断装置81は、被測定物50に取り付けられ、異常を診断するためのデータを収集する加速度センサ180と、加速度センサ180が被測定物から外れたことを検出する接触式センサ183と、データ収集装置80とを含む。
[Embodiment 1]
FIG. 2 is a diagram illustrating a configuration of the abnormality diagnosis apparatus according to the first embodiment. Referring to FIG. 2, abnormality diagnosis apparatus 81 according to the first embodiment is attached to device under test 50, and acceleration sensor 180 that collects data for diagnosing the abnormality and acceleration sensor 180 are disconnected from the device under test. A contact-type sensor 183 that detects this and a data collection device 80.
 実施の形態1では、接触式センサ183は、加速度センサ180が被測定物50から外れたことに応じて、接触式センサ183の位置が変化するように設置される。接触式センサ183は、加速度センサ180が正常に被測定物50に取り付けられた状態で、被測定物50(または被測定物50の付属物)を検出し、加速度センサ180が被測定物50から外れると被測定物50(または付属物)を検出しなくなるように、加速度センサ180と一緒に被測定物50に取り付けられる。 In Embodiment 1, the contact sensor 183 is installed so that the position of the contact sensor 183 changes in response to the acceleration sensor 180 being detached from the object to be measured 50. The contact sensor 183 detects the device under test 50 (or an accessory of the device under test 50) in a state in which the acceleration sensor 180 is normally attached to the device under test 50, and the acceleration sensor 180 detects from the device under test 50. When it comes off, it is attached to the measured object 50 together with the acceleration sensor 180 so that the measured object 50 (or accessory) is not detected.
 このように作動するための構成の一例として、異常診断装置81は、加速度センサ180をねじ止め方法によって取り付ける金属ベース181をさらに含む。金属ベース181は、たとえば、接着剤、両面テープ、磁石などによって被測定物50に取り付けられる。接着剤、両面テープ、磁石などによる固着方法は、一般に、ねじ止め方法よりも固着力が弱い固着方法である。そして、接触式センサ183は、L型金具182およびねじ184によって金属ベース181に取り付けられる。 As an example of a configuration for operating in this manner, the abnormality diagnosis device 81 further includes a metal base 181 to which the acceleration sensor 180 is attached by a screwing method. The metal base 181 is attached to the object to be measured 50 by, for example, an adhesive, a double-sided tape, a magnet, or the like. A fixing method using an adhesive, a double-sided tape, a magnet, or the like is generally a fixing method having a weaker fixing force than a screwing method. The contact sensor 183 is attached to the metal base 181 with an L-shaped bracket 182 and a screw 184.
 以上の構成によって、異常診断装置81は、診断用のデータ収集をおこなうための加速度センサ180が被測定物50から外れたことを検出することができる。 With the above configuration, the abnormality diagnosis device 81 can detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50.
 異常診断装置81のデータ収集装置80は、接触式センサ183がオフ状態(被測定物50の測定対象面から離れた状態)となると、加速度センサ180が被測定物50から外れたと判定し、加速度センサ180の出力を無効であると判定し収集データとして記録するのをやめるか、または、データが無効である旨を示す情報とともに加速度センサ180の出力を記録する。 The data collection device 80 of the abnormality diagnosis device 81 determines that the acceleration sensor 180 is detached from the device under test 50 when the contact sensor 183 is in an off state (a state away from the measurement target surface of the device under test 50), and the acceleration The sensor 180 determines that the output of the sensor 180 is invalid and stops recording the collected data, or records the output of the acceleration sensor 180 together with information indicating that the data is invalid.
 データ収集装置80から図1のサーバ200に情報が送信された後、データが無効である旨を示す情報が存在すれば、アラーム発信装置210によって作業者に警告が行なわれる。したがって、作業者は、誤ったデータを収集したり、誤ったデータに基づいて誤った診断をしたりすることを避けることができる。 After the information is transmitted from the data collection device 80 to the server 200 of FIG. 1, if there is information indicating that the data is invalid, the alarm transmission device 210 warns the operator. Therefore, the worker can avoid collecting wrong data or making a wrong diagnosis based on the wrong data.
 [実施の形態2]
 図3は、実施の形態2に係る異常診断装置81Aの構成を示す図である。図3を参照して、実施の形態2に係る異常診断装置81Aでは、接触式センサ183は、加速度センサ180が被測定物50から外れても、位置が変化しないように設置される。
[Embodiment 2]
FIG. 3 is a diagram illustrating a configuration of an abnormality diagnosis device 81A according to the second embodiment. Referring to FIG. 3, in abnormality diagnosis device 81 </ b> A according to Embodiment 2, contact sensor 183 is installed such that the position does not change even if acceleration sensor 180 is detached from object to be measured 50.
 異常診断装置81Aは、被測定物50に取り付けられ、異常を診断するためのデータを収集する加速度センサ180と、加速度センサ180が被測定物から外れたことを検出する接触式センサ183と、図2に示したデータ収集装置80とを含む。 The abnormality diagnosis device 81A is attached to the object to be measured 50, and includes an acceleration sensor 180 that collects data for diagnosing the abnormality, a contact sensor 183 that detects that the acceleration sensor 180 is detached from the object to be measured, 2 and the data collection device 80 shown in FIG.
 接触式センサ183は、加速度センサ180および金属ベース181とは別に、被測定物50に取り付けられる。これにより、加速度センサ180が正常に被測定物50に取り付けられた状態では、加速度センサ180の付属物である金属ベース181の存在を検出し、加速度センサ180が被測定物50から外れると金属ベース181の存在を検出しなくなる。 The contact sensor 183 is attached to the DUT 50 separately from the acceleration sensor 180 and the metal base 181. Thereby, in the state where the acceleration sensor 180 is normally attached to the object to be measured 50, the presence of the metal base 181 that is an accessory of the acceleration sensor 180 is detected, and when the acceleration sensor 180 is detached from the object to be measured 50, the metal base is detected. The presence of 181 is not detected.
 なお、接触式センサ183が加速度センサ180そのものの有無を検出するように配置しても良い。 Note that the contact sensor 183 may be arranged to detect the presence or absence of the acceleration sensor 180 itself.
 実施の形態2の異常診断装置81Aも、診断用のデータ収集をおこなうための加速度センサ180が被測定物50から外れたことを検出することができるので、実施の形態1の異常診断装置81と同様な効果を得ることができる。 The abnormality diagnosis device 81A according to the second embodiment can also detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50. Therefore, the abnormality diagnosis device 81A according to the first embodiment Similar effects can be obtained.
 以上、実施の形態1および2は、加速度センサ180の落下を検出するセンサとして接触式センサ183を使用した。 As described above, the first and second embodiments use the contact sensor 183 as a sensor for detecting the fall of the acceleration sensor 180.
 接触式センサ183としては、接触の有無を確認するスイッチまたは接触式で接触面からの距離を測定するセンサを利用することができる。 As the contact sensor 183, a switch for confirming the presence or absence of contact or a sensor that measures the distance from the contact surface by a contact method can be used.
 また、接触式センサ183に代えて、近接センサや、非接触で対象物からの距離を測定する測距センサを利用してもよい。 Further, in place of the contact sensor 183, a proximity sensor or a distance measuring sensor that measures a distance from an object without contact may be used.
 [実施の形態3]
 図4は、実施の形態3に係る異常診断装置81Bの構成を示す図である。図4を参照して、実施の形態3の異常診断装置81Bは、被測定物50に金属ベース181を介在して取り付けられ、異常を診断するためのデータを収集する加速度センサ180と、加速度センサ180が被測定物から外れたことを検出する磁気センサ185と、データ収集装置80とを含む。
[Embodiment 3]
FIG. 4 is a diagram illustrating a configuration of an abnormality diagnosis device 81B according to the third embodiment. Referring to FIG. 4, abnormality diagnosis device 81B according to the third embodiment is attached to device under test 50 with metal base 181 interposed therebetween, and includes acceleration sensor 180 that collects data for diagnosing abnormality, and acceleration sensor. It includes a magnetic sensor 185 that detects that 180 is detached from the object to be measured, and a data collection device 80.
 実施の形態3では、磁気センサ185は、加速度センサ180が被測定物50から外れたことに応じて位置が変化するように設置される。磁気センサ185は、加速度センサ180が正常に被測定物50に取り付けられた状態で、被測定物50の付属物(部材186に取り付けられた磁石187)を検出し、加速度センサ180が被測定物50から外れると磁石187を検出しなくなるように取り付けられる。なお、部材186は、加速度センサ180が被測定物50から外れても、位置が変化しないような部材である。 In the third embodiment, the magnetic sensor 185 is installed such that its position changes in response to the acceleration sensor 180 being removed from the object to be measured 50. The magnetic sensor 185 detects an accessory (the magnet 187 attached to the member 186) of the measurement object 50 in a state where the acceleration sensor 180 is normally attached to the measurement object 50, and the acceleration sensor 180 detects the measurement object. The magnet 187 is attached so as not to be detected when it deviates from 50. The member 186 is a member whose position does not change even if the acceleration sensor 180 is detached from the object to be measured 50.
 実施の形態3の異常診断装置81Bも、診断用のデータ収集をおこなうための加速度センサ180が被測定物50から外れたことを検出することができるので、実施の形態1,2の異常診断装置81,81Aと同様な効果を得ることができる。 The abnormality diagnosis device 81B according to the third embodiment can also detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50. Therefore, the abnormality diagnosis device according to the first and second embodiments. The same effects as 81 and 81A can be obtained.
 なお、図4において、磁石187と磁気センサ185の位置を入れ替えて磁気センサ185の信号をデータ収集装置80に送信する信号線を別途設けても良い。 In FIG. 4, the positions of the magnet 187 and the magnetic sensor 185 may be exchanged, and a signal line for transmitting the signal of the magnetic sensor 185 to the data collection device 80 may be provided separately.
 [実施の形態4]
 図5は、実施の形態4に係る異常診断装置81Cの構成を示す図である。図6は、図5の加速度センサ180と金属ベース181付近を画像センサ189(カメラなど)の方向から見た図である。図5、図6を参照して、実施の形態4の異常診断装置81Cは、被測定物50に金属ベース181を介在して取り付けられ、異常を診断するためのデータを収集する加速度センサ180と、加速度センサ180が被測定物から外れたことを検出する画像センサ189と、データ収集装置80とを含む。
[Embodiment 4]
FIG. 5 is a diagram illustrating a configuration of an abnormality diagnosis device 81C according to the fourth embodiment. FIG. 6 is a view of the vicinity of the acceleration sensor 180 and the metal base 181 in FIG. Referring to FIGS. 5 and 6, abnormality diagnosis device 81 </ b> C according to the fourth embodiment is attached to device under test 50 with metal base 181 interposed therebetween, and includes acceleration sensor 180 that collects data for diagnosing abnormality. , An image sensor 189 for detecting that the acceleration sensor 180 is detached from the object to be measured, and a data collection device 80.
 実施の形態4では、画像センサ189は、加速度センサ180が被測定物50から外れても、位置が変化しないように設置される。画像センサ189は、加速度センサ180が正常に被測定物50に取り付けられた状態で、加速度センサ180の付属物である金属ベース181に付されたマーク188を検出し、加速度センサ180が被測定物50から外れるとマーク188を検出しなくなるように取り付けられる。 In the fourth embodiment, the image sensor 189 is installed so that the position does not change even if the acceleration sensor 180 is detached from the object to be measured 50. The image sensor 189 detects a mark 188 attached to the metal base 181 that is an accessory of the acceleration sensor 180 in a state where the acceleration sensor 180 is normally attached to the measurement object 50, and the acceleration sensor 180 detects the measurement object. If the mark 188 is not detected, the mark 188 is not detected.
 画像センサ189としては、ビデオカメラなどを使用することができる。ビデオカメラでは、加速度センサ180を認識しても良いが、マーク188を認識するようにすれば、認識処理を簡単にすることができる。 As the image sensor 189, a video camera or the like can be used. In the video camera, the acceleration sensor 180 may be recognized, but if the mark 188 is recognized, the recognition process can be simplified.
 実施の形態4の異常診断装置81Cも、診断用のデータ収集をおこなうための加速度センサ180が被測定物50から外れたことを検出することができるので、実施の形態1~3の異常診断装置81,81A,81Bと同様な効果を得ることができる。 The abnormality diagnosis apparatus 81C according to the fourth embodiment can also detect that the acceleration sensor 180 for collecting diagnostic data is disconnected from the object to be measured 50. Therefore, the abnormality diagnosis apparatus according to the first to third embodiments. The same effect as 81, 81A, 81B can be obtained.
 なお、画像センサ189が落下などの衝撃にある程度耐えるものであれば、図5において、画像センサ189を加速度センサ180と一緒に被測定物50に取り付けるようにして、画像センサ189が被測定物50の測定対象面に付したマークを認識するようにしても良い。 If the image sensor 189 can withstand a shock such as dropping to some extent, the image sensor 189 is attached to the device under test 50 together with the acceleration sensor 180 in FIG. The mark attached to the surface to be measured may be recognized.
 [CMS測定の制御の説明]
 図7は、実施の形態1~4に共通して用いられるCMS測定の制御を説明するためのフローチャートである。このフローチャートの処理は、データ収集装置80の内部のコンピュータで実行される。図7を参照して、CMS測定が開始されると、まずステップS1において、計測データと、計測データを収集しているセンサが外れているか否かを示す離脱情報を取得する処理が行なわれる。この処理は、一定時間ごとに間欠的に行なっても良いし、連続的に行なっていても良い。
[Description of CMS measurement control]
FIG. 7 is a flowchart for explaining control of CMS measurement used in common with the first to fourth embodiments. The processing of this flowchart is executed by a computer inside the data collection device 80. Referring to FIG. 7, when CMS measurement is started, first, in step S1, processing for acquiring measurement data and separation information indicating whether or not the sensor collecting the measurement data is disconnected is performed. This process may be performed intermittently at regular intervals or continuously.
 ステップS2において取得した離脱情報がセンサ外れを示していない場合(S2でNO)ステップS3において、測定が成功したと判定され、ステップS4において計測したデータをサーバへ送信する処理が実行される。 If the separation information acquired in step S2 does not indicate sensor detachment (NO in S2), it is determined in step S3 that the measurement has been successful, and processing for transmitting the measured data to the server in step S4 is executed.
 一方、ステップS2において取得した離脱情報がセンサ外れを示している場合(S2でYES)ステップS5において、測定が失敗したと判定され、ステップS6において計測したデータとセンサ異常情報をサーバへ送信する処理が実行される。 On the other hand, when the separation information acquired in step S2 indicates sensor detachment (YES in S2), it is determined in step S5 that the measurement has failed, and the data measured in step S6 and the sensor abnormality information are transmitted to the server. Is executed.
 ステップS4またはステップS6の処理が完了すると、ステップS7において、CMS測定が完了する。 When the process of step S4 or step S6 is completed, the CMS measurement is completed in step S7.
 以上、本実施の形態では、異常診断を行なうためのデータを収集するセンサの一例として加速度センサ180を挙げたが、センサは加速度センサには限定されない。データ収集用のセンサは、たとえば、温度センサ、音センサ、AEセンサなどであってもよい。 As described above, in this embodiment, the acceleration sensor 180 is described as an example of a sensor that collects data for performing abnormality diagnosis, but the sensor is not limited to an acceleration sensor. The data collection sensor may be, for example, a temperature sensor, a sound sensor, an AE sensor, or the like.
 また、図1に本実施の形態の異常診断装置の被測定物として、風力発電装置を示したが、他の装置の異常を診断する場合に本実施の形態の異常診断装置を使用しても良い。 Moreover, although the wind power generator was shown as a to-be-measured object of the abnormality diagnosis apparatus of this Embodiment in FIG. 1, even if it uses the abnormality diagnosis apparatus of this Embodiment when diagnosing the abnormality of another apparatus, FIG. good.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 風力発電装置、20 ロータヘッド、22 主軸、30 ブレード、40 増速機、45 発電機、50 被測定物、60 主軸受、80 データ収集装置、81,81A,81B,81C 異常診断装置、90 ナセル、100 タワー、180 加速度センサ、181 金属ベース、182 L型金具、183 接触式センサ、184 ねじ、187 磁石、185 磁気センサ、186 部材、188 マーク、189 画像センサ、200 サーバ、210 アラーム発信装置。 10 wind power generators, 20 rotor heads, 22 spindles, 30 blades, 40 speed increasers, 45 generators, 50 measured objects, 60 main bearings, 80 data collection devices, 81, 81A, 81B, 81C abnormality diagnosis devices, 90 Nacelle, 100 tower, 180 acceleration sensor, 181 metal base, 182 L-shaped bracket, 183 contact sensor, 184 screw, 187 magnet, 185 magnetic sensor, 186 member, 188 mark, 189 image sensor, 200 server, 210 alarm transmitter .

Claims (13)

  1.  被測定物に取り付けられ、異常を診断するデータを収集するための第1の検知部と、
     前記第1の検知部が前記被測定物から外れたことを検知するための第2の検知部とを備える、異常診断装置。
    A first detector attached to the object to be measured and for collecting data for diagnosing an abnormality;
    An abnormality diagnosis device comprising: a second detection unit for detecting that the first detection unit is detached from the object to be measured.
  2.  前記第2の検知部は、前記第1の検知部が前記被測定物から外れたことに応じて前記第2の検知部の位置が変化するように設置され、
     前記第2の検知部は、前記被測定物または前記被測定物の付属物の有無を検出するセンサである、請求項1に記載の異常診断装置。
    The second detection unit is installed such that the position of the second detection unit changes in response to the first detection unit being detached from the object to be measured.
    The abnormality diagnosis apparatus according to claim 1, wherein the second detection unit is a sensor that detects presence or absence of the object to be measured or an accessory of the object to be measured.
  3.  前記第2の検知部は、前記第1の検知部が前記被測定物から外れたことを検知した信号として、前記被測定物または前記被測定物の付属物が存在しなくなったことを示す信号を出力する、請求項2に記載の異常診断装置。 The second detection unit is a signal indicating that the measurement object or the accessory of the measurement object no longer exists as a signal that the first detection unit detects that the measurement object has been detached from the measurement object. The abnormality diagnosis device according to claim 2, wherein
  4.  前記第1の検知部が第1の固着方法によって取り付けられるベース部をさらに備え、
     前記ベース部は、前記第1の固着方法よりも固着力が弱い第2の固着方法によって前記被測定物に取り付けられ、
     前記第2の検知部は、前記ベース部に取り付けられる、請求項3に記載の異常診断装置。
    The first detection part further comprises a base part attached by a first fixing method,
    The base portion is attached to the object to be measured by a second fixing method having a lower fixing force than the first fixing method,
    The abnormality diagnosis apparatus according to claim 3, wherein the second detection unit is attached to the base unit.
  5.  前記第2の検知部は、接触式センサを含む、請求項2に記載の異常診断装置。 The abnormality diagnosis device according to claim 2, wherein the second detection unit includes a contact sensor.
  6.  前記第2の検知部は、磁気センサを含み、前記付属物は磁石を含む、請求項2に記載の異常診断装置。 The abnormality diagnosis device according to claim 2, wherein the second detection unit includes a magnetic sensor, and the accessory includes a magnet.
  7.  前記第2の検知部は、画像センサを含む、請求項2に記載の異常診断装置。 The abnormality diagnosis device according to claim 2, wherein the second detection unit includes an image sensor.
  8.  前記第2の検知部は、前記第1の検知部が前記被測定物から外れても、位置が変化しないように設置され、
     前記第2の検知部は、前記第1の検知部または前記第1の検知部の付属物の有無を検出するセンサである、請求項1に記載の異常診断装置。
    The second detection unit is installed so that the position does not change even if the first detection unit is detached from the object to be measured.
    The abnormality diagnosis apparatus according to claim 1, wherein the second detection unit is a sensor that detects presence or absence of the first detection unit or an accessory of the first detection unit.
  9.  前記第2の検知部は、前記第1の検知部が前記被測定物から外れたことを検知した信号として、前記第1の検知部または前記第1の検知部の付属物が存在しなくなったことを示す信号を出力する、請求項8に記載の異常診断装置。 In the second detection unit, the first detection unit or the accessory of the first detection unit no longer exists as a signal that the first detection unit has detected that the first detection unit is detached from the object to be measured. The abnormality diagnosis device according to claim 8, which outputs a signal indicating that.
  10.  前記第1の検知部が取り付けられるベース部をさらに備え、
     前記ベース部は、前記被測定物に取り付けられ、
     前記第2の検知部は、前記ベース部とは独立して前記被測定物に取り付けられ、前記第1の検知部の付属物として前記ベース部の有無を検出する、請求項9に記載の異常診断装置。
    A base part to which the first detection unit is attached;
    The base portion is attached to the object to be measured.
    The abnormality according to claim 9, wherein the second detection unit is attached to the object to be measured independently of the base unit, and detects the presence or absence of the base unit as an accessory of the first detection unit. Diagnostic device.
  11.  前記第2の検知部は、接触式センサを含む、請求項8に記載の異常診断装置。 The abnormality diagnosis device according to claim 8, wherein the second detection unit includes a contact sensor.
  12.  前記第2の検知部は、磁気センサを含み、前記付属物は磁石を含む、請求項8に記載の異常診断装置。 The abnormality diagnosis device according to claim 8, wherein the second detection unit includes a magnetic sensor, and the accessory includes a magnet.
  13.  前記第2の検知部は、画像センサを含む、請求項8に記載の異常診断装置。 The abnormality diagnosis device according to claim 8, wherein the second detection unit includes an image sensor.
PCT/JP2016/055004 2015-03-19 2016-02-22 Anomaly diagnostic device WO2016147800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055634 2015-03-19
JP2015055634A JP2016176738A (en) 2015-03-19 2015-03-19 Abnormality diagnosis device

Publications (1)

Publication Number Publication Date
WO2016147800A1 true WO2016147800A1 (en) 2016-09-22

Family

ID=56918932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055004 WO2016147800A1 (en) 2015-03-19 2016-02-22 Anomaly diagnostic device

Country Status (2)

Country Link
JP (1) JP2016176738A (en)
WO (1) WO2016147800A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus
US11621797B2 (en) 2018-10-29 2023-04-04 Sony Corporation Information terminal and information processing device
CN117874663A (en) * 2024-01-17 2024-04-12 内蒙古工业大学 Wind driven generator abnormality diagnosis device and diagnosis method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280925A (en) * 1988-09-16 1990-03-22 Fuji Facom Corp System for inspecting vibration testing apparatus
JPH0793670A (en) * 1993-09-27 1995-04-07 Matsushita Electric Works Ltd Glass destruction detector and door-open detector using the same
JP2006127326A (en) * 2004-10-29 2006-05-18 Secom Co Ltd Holding device and monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280925A (en) * 1988-09-16 1990-03-22 Fuji Facom Corp System for inspecting vibration testing apparatus
JPH0793670A (en) * 1993-09-27 1995-04-07 Matsushita Electric Works Ltd Glass destruction detector and door-open detector using the same
JP2006127326A (en) * 2004-10-29 2006-05-18 Secom Co Ltd Holding device and monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus
US11621797B2 (en) 2018-10-29 2023-04-04 Sony Corporation Information terminal and information processing device
CN117874663A (en) * 2024-01-17 2024-04-12 内蒙古工业大学 Wind driven generator abnormality diagnosis device and diagnosis method thereof

Also Published As

Publication number Publication date
JP2016176738A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
US10519935B2 (en) Condition monitoring system and wind power generation system using the same
JP6250345B2 (en) Monitoring system and monitoring method
US10047726B2 (en) Condition monitoring system and wind power generation system comprising the same
EP2585716B1 (en) A method for performing condition monitoring in a wind farm
US9458835B2 (en) Condition monitoring system
JP6553970B2 (en) Abnormality diagnosis device and sensor disconnection detection method
US8757003B1 (en) Multi-frequency-band blade condition monitoring system
JP6695105B2 (en) Wind power generator condition monitoring device
JP2015042867A (en) Abnormality diagnostic device and abnormality diagnostic method for wind power generation device
US8292568B2 (en) Wind turbine generator having a detection unit for detecting foreign object inside rotor and operating method thereof
JP6958068B2 (en) Abnormality diagnosis system and abnormality diagnosis method for rotating machinery and equipment
KR20110110735A (en) Monitoring apparatus of wind power generator
WO2016147800A1 (en) Anomaly diagnostic device
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
JP2017096836A (en) Abnormality diagnosis system
JP6971049B2 (en) Condition monitoring system and wind power generator equipped with it
JP2017122635A (en) Abnormality diagnosis device of wind power generation facility
CN108825447B (en) Wind turbine monitoring method and system
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
JP2019128179A (en) Method for detecting falling of vibration sensor and apparatus for diagnosing abnormalities
JP7149207B2 (en) Data collection device, data management device and condition monitoring system
JP2016031046A (en) State monitoring system and wind power generation system including the same
JP2016031047A (en) State monitoring system and wind power generation system including the same
JP5152023B2 (en) Drive axis monitoring system
JP6736987B2 (en) Condition monitoring device for rotating parts of wind power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764630

Country of ref document: EP

Kind code of ref document: A1