WO2016143734A1 - 水性液体吸収性樹脂の製造方法 - Google Patents
水性液体吸収性樹脂の製造方法 Download PDFInfo
- Publication number
- WO2016143734A1 WO2016143734A1 PCT/JP2016/056959 JP2016056959W WO2016143734A1 WO 2016143734 A1 WO2016143734 A1 WO 2016143734A1 JP 2016056959 W JP2016056959 W JP 2016056959W WO 2016143734 A1 WO2016143734 A1 WO 2016143734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous liquid
- polymerization
- absorbent resin
- liquid absorbent
- weight
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/04—Acids, Metal salts or ammonium salts thereof
- C08F20/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/44—Preparation of metal salts or ammonium salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
Definitions
- the present invention relates to a method for producing a resin excellent in absorption performance of an aqueous liquid. Specifically, the present invention relates to a method for producing an aqueous liquid absorbent resin having a high water retention amount and less odor and coloring.
- water-absorbing resins hydrophilic cross-linked polymers called water-absorbing resins have been used as powdered and granular absorbents that have the ability to absorb aqueous liquids.
- Hygiene products such as paper diapers and sanitary products, anti-condensation agents, and water retention for agriculture and horticulture.
- the range of application for various industrial fields such as chemicals is expanding.
- the aqueous liquid absorbent resin used for these applications is required to have a high water retention amount.
- the water absorption capacity (water retention amount) of an aqueous liquid absorbent resin under normal pressure is conceptually proportional to “(ion osmotic pressure + affinity of polymer chain to water) / crosslinking density of polymer”. That is, the crosslink density is involved in the performance of the aqueous liquid absorbent resin.
- reducing the amount of the crosslinking agent used is a commonly practiced means.
- a chain transfer agent is used in the aqueous solution polymerization of an aqueous monomer solution containing a radical polymerizable monomer and a crosslinking agent.
- a chain transfer agent is used in the aqueous solution polymerization of an aqueous monomer solution containing a radical polymerizable monomer and a crosslinking agent.
- a chain transfer agent is used in the aqueous solution polymerization of an aqueous monomer solution containing a radical polymerizable monomer and a crosslinking agent.
- the conventional method using a chain transfer agent has a certain effect on the improvement of the water retention amount, but further improvement in performance is desired.
- the conventional method using a chain transfer agent has a problem that the resulting aqueous liquid absorbent resin particles are likely to generate odor and coloring.
- the cause of this odor and coloring is not clear, it is thought that it originates from the residue of the chain transfer agent incorporated in the polymer chain and the low molecular component that increases with the use of the chain transfer agent.
- the appearance of an aqueous liquid absorbent resin that is less likely to cause odor and coloring from the viewpoint of safety and cleanliness has been desired.
- the present inventors have carried out polymerization under specific conditions in the presence of a specific chain transfer agent, so that the amount of water retention is high, and further, an aqueous liquid with less odor and coloring. It has been found that an absorbent resin can be obtained. That is, the present invention is a method for producing an aqueous liquid absorbent resin comprising a step of radical polymerization of a radically polymerizable monomer (a) containing acrylic acid as a main component in the presence of an internal crosslinking agent (b) and water.
- Radical polymerization is carried out in the presence of hypophosphorous acid (salt) (c), the upper limit of the concentration of the monomer (a) is less than 30% by weight based on the weight of the polymerization solution, and polymerization during polymerization
- the aqueous liquid absorbent resin obtained by the production method of the present invention has a high water retention amount, and further has less odor and coloring.
- the production method of the present invention is a method for producing an aqueous liquid absorbent resin comprising a step of radical polymerization of a radically polymerizable monomer (a) mainly composed of acrylic acid in the presence of an internal crosslinking agent (b) and water. Radical polymerization is carried out in the presence of hypophosphorous acid (salt) (c), the upper limit of the concentration of the monomer (a) is less than 30% by weight based on the weight of the polymerization solution, and The maximum temperature of the polymerization liquid is less than its boiling point.
- a radically polymerizable monomer mainly composed of acrylic acid in the presence of an internal crosslinking agent (b) and water.
- Radical polymerization is carried out in the presence of hypophosphorous acid (salt) (c)
- the upper limit of the concentration of the monomer (a) is less than 30% by weight based on the weight of the polymerization solution
- the maximum temperature of the polymerization liquid is less than its boiling point.
- the radical polymerizable monomer (a) (hereinafter also simply referred to as the monomer (a)) used in the production method of the present invention contains acrylic acid as a main component.
- the content of acrylic acid in the monomer (a) is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, particularly preferably in order to improve the absorption characteristics of the aqueous liquid absorbent resin. Is 90 to 100 mol%.
- the monomer (a) may contain a monomer other than acrylic acid as necessary. Although it does not specifically limit as monomers other than acrylic acid, Specifically, for example, acrylic acid salts, such as sodium acrylate, potassium acrylate, and ammonium acrylate salt; Methacrylic acid, (anhydrous) maleic acid , Itaconic acid, cinnamic acid, allyl toluene sulfonic acid, vinyl toluene sulfonic acid, 2- (meth) acryloyl ethane sulfonic acid, 2-hydroxyethyl (meth) acryloyl phosphate, vinyl sulfonic acid, styrene sulfonic acid, 2- ( Acid group-containing monomers such as (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid and 2- (meth) acryloylpropanesulfonic acid and salts thereof; mer
- the amount thereof is preferably 30 mol% or less, more preferably 20 mol% or less, particularly preferably 10 mol, based on the total number of moles of the monomer (a). % Or less.
- the internal cross-linking agent (b) used in the production method of the present invention at least one functional group capable of reacting with the functional group of the monomer (a), the compound (b1) having two or more radically polymerizable double bonds, is used. And a compound (b3) having at least one radical polymerizable double bond and a compound (b3) having two or more functional groups capable of reacting with the functional group of the monomer (a).
- Examples of the compound (b1) having two or more radically polymerizable double bonds include bis (meth) acrylamides such as N, N′-methylenebisacrylamide; (poly) alkylene glycol, trimethylolpropane, glycerin, Poly (meth) acrylates of polyhydric alcohols such as pentaerythritol and sorbitol; divinyl compounds such as divinylbenzene; poly (meth) allyl of polyhydric alcohols such as (poly) alkylene glycol, trimethylolpropane, glycerin, pentaerythritol and sorbitol Examples thereof include polyvalent (meth) allyl compounds such as ether, tetraallyloxyethane and triallyl isocyanurate.
- bis (meth) acrylamides such as N, N′-methylenebisacrylamide
- (poly) alkylene glycol, trimethylolpropane, glycerin Poly (
- the compound (b2) having at least one functional group capable of reacting with the functional group of the monomer (a) and having at least one radical polymerizable double bond includes a carboxylic acid (salt) group, a hydroxyl group.
- a radical polymerizable compound having a functional group capable of reacting with an amino group or the like for example, a radical polymerizable monomer having a hydroxyl group such as hydroxyethyl (meth) acrylate and N-methylol (meth) acrylamide, and glycidyl (meta ) Radical polymerizable monomers having an epoxy group such as acrylate.
- the compound (b3) having two or more functional groups capable of reacting with the functional group of the monomer (a) has two or more functional groups capable of reacting with a carboxylic acid (salt) group, a hydroxyl group or an amino group.
- Polyfunctional compounds such as glyoxal; polycarboxylic acids such as phthalic acid and adipic acid; polyhydric alcohols such as (poly) alkylene glycol, glycerin and sorbitol; (poly) alkylene polyamines such as ethylenediamine; ethylene glycol diglycidyl ether And polyglycidyl ethers of polyhydric alcohols such as glycerin triglycidyl ether and sorbitol polyglycidyl ether.
- the compound (b1) having two or more radically polymerizable double bonds is preferable, and more preferable is a polyvalent (from the viewpoint of increasing the water retention amount of the obtained aqueous liquid absorbent resin.
- a meta) allyl compound particularly preferred is a polyvalent allyl compound, and most preferred is a polyvalent allyl compound having 8 to 20 carbon atoms.
- These internal crosslinking agents (b) may be used alone or in combination of two or more.
- the amount of the internal crosslinking agent (b) used is preferably 0.001 to 5% by weight, more preferably 0.01 to 2% by weight, based on the weight of the monomer (a).
- the amount of (b) is less than 0.001% by weight, the obtained resin has a small gel strength upon water absorption and becomes a sol, which may deteriorate the productivity and increase the amount of water-soluble components.
- it exceeds 5% by weight the gel strength is excessively increased, and the water retention amount may decrease.
- Hypophosphorous acid (salt) (c) used in the production method of the present invention includes hypophosphorous acid, alkali metal salts of hypophosphorous acid (such as sodium hypophosphite and potassium hypophosphite), hypochlorous acid, and the like.
- alkaline earth metal salts of phosphoric acid such as calcium hypophosphite and barium hypophosphite
- ammonium hypophosphite and hydrates thereof may be used independently and may use 2 or more types together.
- the amount of hypophosphorous acid (salt) (c) used is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.3% by weight, based on the weight of the monomer (a). .
- the amount of (c) used is less than 0.001% by weight, the effect of using (c), that is, the effect of improving the water retention amount of the aqueous liquid absorbent resin may be insufficient.
- the polymerization rate of the monomer (a) may not be sufficiently increased, or the polymerization rate may be slow, and it may be necessary to increase the polymerization time or the aging time. , Productivity may be worse. Moreover, an odor and coloring may become easy to generate
- the monomer (a) is radically polymerized in the presence of water.
- the upper limit of the polymerization concentration, that is, the charged concentration of the monomer (a) in the polymerization solution is the weight of the polymerization solution, that is, usually the monomer (a), water, the internal crosslinking agent (b) and hypophosphorous acid ( Based on the total weight of the salt).
- the charged concentration range of the monomer (a) is preferably 10 to 29.5% by weight, more preferably 20 to 29% by weight, from the viewpoint of dry removal of water after polymerization.
- the polymerization concentration exceeds 30% by weight, the molecular weight of the resulting polymer will be low, and side reactions such as self-crosslinking will occur, resulting in a decrease in the water retention amount of the resulting aqueous liquid absorbent resin.
- the maximum temperature reached by the polymerization solution during polymerization is less than its boiling point (that is, the polymerization solution), and is preferably 100 ° C. or less.
- the maximum temperature reaches the boiling point of the polymerization solution, the molecular weight of the resulting polymer becomes low and side reactions such as self-crosslinking occur, resulting in a decrease in the water retention amount of the resulting aqueous liquid absorbent resin, Moreover, odor and coloring generate
- the boiling point of the polymerization liquid can be measured as a 10% distillation temperature of a non-reactive mixture obtained by removing the polymerization initiator from the polymerization liquid.
- the boiling point of the polymerization liquid is a known heating distillation determined by JISK0066 “Method for Distillation Test of Chemical Products”. It can be measured by a method using a tester.
- JISK0066 Metal for Distillation Test of Chemical Products
- the polymerization start temperature is appropriately selected according to various conditions such as the polymerization concentration, the polymerization catalyst to be used, the maximum temperature reached during the polymerization, etc., but is preferably 15 ° C. or less, more preferably 10 ° C. or less. is there.
- the polymerization method in the present invention may be any conventionally known method carried out in the presence of water, for example, an aqueous solution polymerization method, a suspension polymerization method and a reverse phase suspension weight, which usually use a radical polymerization catalyst. Legal etc. are mentioned.
- polymerization by irradiating a radiation, an electron beam, an ultraviolet-ray, etc. can also be taken.
- the aqueous solution polymerization method is preferable because it is not necessary to use an organic solvent or the like and is advantageous in terms of production cost.
- an aqueous solution absorptive polymerization method is preferable because an aqueous liquid absorbent resin having a large amount of water retention and a small amount of water-soluble components can be obtained, and temperature control during polymerization is unnecessary.
- a polymerization catalyst used for polymerization using a radical polymerization catalyst conventionally known catalysts can be used.
- azo compounds azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis ( 2-amidinopropane) hydrochloride
- inorganic peroxides hydroogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.
- organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene Hydroperoxide, succinic acid peroxide and di (2-ethoxyethyl) peroxydicarbonate etc.]
- redox catalyst alkali metal sulfite or bisulfite, ammonium sulfite, ammonium bisulfite and ascorbic acid and the like, and Alkali metal persulfate, ammonium persulfate, persulfate Hydrogen and those consisting of
- the amount of the radical polymerization catalyst used is preferably 0.0005 to 5% by weight, more preferably 0.001 to 2% by weight, based on the weight of the monomer (a).
- the hydrogel polymer obtained after polymerization is usually neutralized.
- the degree of neutralization of acid groups in the polymer is preferably 50 to 80 mol%.
- the degree of neutralization is less than 50 mol%, the resulting water-containing gel polymer has high tackiness, and the workability during production and use may deteriorate. Further, the water retention amount of the obtained aqueous liquid absorbent resin may be reduced.
- the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a concern that the safety of human skin may be concerned.
- Neutralization may be performed at any stage after polymerization in the production of an aqueous liquid absorbent resin. For example, a method such as neutralization in the state of a hydrogel polymer that is a polymerization product is exemplified as a preferred example.
- a compound for example, polyglycidyl such as ethylene glycol diglycidyl ether
- a compound having at least two groups capable of reacting with the carboxylic acid (salt) group in the water-containing gel state of the obtained polymer neutralized product.
- the obtained hydrogel polymer is dried and pulverized into particles as necessary.
- the drying method is a method of drying with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C., a (heating) vacuum drying method, a freeze drying method, and an infrared ray. Ordinary methods such as a drying method may be used.
- the particle shape of the aqueous liquid absorbent resin to be pulverized is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a granulated shape.
- the amorphous crushed form obtained by aqueous solution polymerization is preferable in that it is easily entangled with the fibrous material for use as a paper diaper and there is no fear of dropping off from the fibrous material.
- There is no particular limitation on the pulverization method and ordinary devices such as a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer can be used.
- the obtained pulverized product is sieved if necessary.
- the average particle diameter of the pulverized aqueous liquid absorbent resin particles is usually 100 to 600 ⁇ m, preferably 200 to 500 ⁇ m.
- the content of fine particles is preferably small.
- the content of particles of 100 ⁇ m or less is 3% or less, and preferably the content of particles of 150 ⁇ m or less is 3% or less.
- the water retention amount of the aqueous liquid absorbent resin obtained by the production method of the present invention with respect to physiological saline is preferably 50 g / g or more, more preferably 55 g / g or more.
- the water retention amount is measured by the method described later.
- gel strength can be improved by surface cross-linking the resulting aqueous liquid absorbent resin, and the water retention amount and absorption amount under load that are desirable in actual use can be satisfied.
- a method for surface cross-linking the aqueous liquid absorbent resin As a method for surface cross-linking the aqueous liquid absorbent resin, a conventionally known method, for example, after making the aqueous liquid absorbent resin particles, a mixed solution of a surface cross-linking agent (d), water and a solvent is mixed, The method of heating reaction is mentioned.
- Examples of the surface cross-linking agent (d) include polyglycidyl compounds such as ethylene glycol diglycidyl ether, glycerol diglycidyl ether and polyglycerol polyglycidyl ether, polyhydric alcohols such as glycerin and ethylene glycol, alkylene carbonates such as ethylene carbonate, Examples include polyamines and polyvalent metal compounds such as aluminum sulfate, sodium alum, potassium alum, aluminum chloride, polyaluminum chloride, aluminum lactate, zirconium acetate, ammonium zirconium carbonate, zirconium oxychloride, zirconium nitrate and zirconium sulfate. Among these, a polyglycidyl compound is preferable in that a crosslinking reaction can be performed at a relatively low temperature. These surface crosslinking agents may be used alone or in combination of two or more.
- the amount of the surface cross-linking agent (d) used is preferably 0.001 to 5% by weight, more preferably 0.005 to 2% by weight, based on the weight of the aqueous liquid absorbent resin before cross-linking.
- amount of the surface cross-linking agent (d) used is less than 0.001% by weight, the degree of surface cross-linking is insufficient, and the effect of improving the amount of absorption under load may be insufficient.
- the amount of use of (d) exceeds 5% by weight, the degree of cross-linking on the surface becomes excessive, and the water retention amount may decrease.
- the amount of water used at the time of surface crosslinking is preferably 1 to 10% by weight, more preferably 2 to 7% by weight, based on the weight of the aqueous liquid absorbent resin before crosslinking.
- the amount of water used is less than 1% by weight, the penetration of the surface cross-linking agent (d) into the aqueous liquid absorbent resin particles may be insufficient, and the effect of improving the amount of absorption under load may be poor.
- the amount of water used exceeds 10% by weight, penetration of the surface cross-linking agent (d) into the inside becomes excessive, and although an improvement in the amount of absorption under load is observed, the amount of water retained may decrease.
- a conventionally known solvent can be used as the solvent used in combination with water at the time of surface crosslinking.
- the degree of penetration of the surface crosslinking agent (d) into the aqueous liquid absorbent resin particles, the surface crosslinking agent (d) In consideration of reactivity and the like, it can be appropriately selected and used.
- lower alcohols methanol, propylene glycol, 1,3-propanediol, ethylene glycol, diethylene glycol, etc.
- ether alcohols diethylene glycol, etc.
- a hydrophilic organic solvent which can be dissolved in water, more preferably a lower alcohol.
- a solvent may be used independently and may use 2 or more types together.
- the amount of the solvent used can be appropriately adjusted depending on the type of the solvent, but is preferably 1 to 10% by weight based on the weight of the aqueous liquid absorbent resin before surface crosslinking. Further, the ratio of the solvent to water can be arbitrarily adjusted, but it is preferably 20 to 80% by weight, more preferably 30 to 70% by weight based on the weight.
- a mixed solution of a surface crosslinking agent (d), water and a solvent is mixed with aqueous liquid absorbent resin particles by a conventionally known method, and a heating reaction is performed.
- the reaction temperature is preferably 100 to 230 ° C, more preferably 120 to 160 ° C.
- the reaction time can be appropriately adjusted depending on the reaction temperature, but it is preferably 3 to 60 minutes, more preferably 10 to 40 minutes.
- the particulate aqueous liquid absorbent resin obtained by surface cross-linking can be further subjected to surface cross-linking using the same or different type of surface cross-linking agent as the first used surface cross-linking agent.
- the particulate aqueous liquid absorbent resin obtained by surface cross-linking is sieved as necessary to adjust the particle size.
- the average particle size of the obtained particles is preferably 100 to 600 ⁇ m, more preferably 200 to 500 ⁇ m.
- the content of fine particles is preferably small, the content of particles of 100 ⁇ m or less is preferably 3% by weight or less, and the content of particles of 150 ⁇ m or less is more preferably 3% by weight or less.
- an antiseptic, a fungicide, an antibacterial agent, an antioxidant, an ultraviolet absorber, an antioxidant, a colorant, an aromatic, a deodorant, Inorganic powder, organic fibrous material, and the like can be added, and the amount thereof is usually 5% by weight or less based on the weight of the obtained aqueous liquid absorbent resin.
- a treatment for forming a foamed structure may be performed at any stage in the method of the present invention, and granulation and molding may be performed.
- the weight increased by the aqueous liquid absorbent resin after absorbing physiological saline was measured after 60 minutes, and the value was converted to a value per gram of the aqueous liquid absorbent resin and the amount absorbed under a load of 40 g / cm 2. did.
- the amount of absorption under a load of 60 g / cm 2 is determined by performing the same measurement using a 300 g weight having the same outer diameter.
- the odor of the aqueous liquid absorbent resin was evaluated by the following test method. 1 g of the aqueous liquid absorbent resin was put in a 100 ml beaker, 20 g of 0.9 wt% sodium chloride aqueous solution was added, the beaker was sealed with a film, and left at 37 ° C. for 1 hour. Thereafter, an odor sensory test was conducted by 10 adult subjects, and an average score was calculated based on the following scores. 0: no unpleasant odor 1: slightly unpleasant odor 2: unpleasant odor 3: particularly unpleasant odor
- a monomer aqueous solution is prepared by mixing 270 parts of acrylic acid, 0.88 part of pentaerythritol triallyl ether (manufactured by Daiso) as a crosslinking agent and 712 parts of ion-exchanged water, and the mixture is put into a polymerization tank capable of adiabatic polymerization. did. By introducing nitrogen gas into the solution, the amount of dissolved oxygen in the solution was 0.2 ppm or less, and the solution temperature was 5 ° C.
- Example 2 In Example 1, except that the amount of sodium hypophosphite monohydrate was changed from 0.14 part to 0.20 part, the same operation as in Example 1 was performed, and the aqueous liquid absorbent resin (A1- 2) was obtained. The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 80 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 102 degreeC.
- Example 3 An aqueous liquid absorbent resin (A1-3) was obtained in the same manner as in Example 1 except that the amount of pentaerythritol triallyl ether was changed from 0.88 parts to 1.2 parts in Example 1. It was. The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 80 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 102 degreeC.
- Example 4 In Example 1, except that the solution temperature at the start of polymerization was changed from 5 ° C. to 15 ° C., the same operation as in Example 1 was performed to obtain an aqueous liquid absorbent resin (A1-4). The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 89 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 102 degreeC.
- Example 5 an aqueous liquid absorbent resin (A1-5) was obtained in the same manner as in Example 1 except that the amount of ion-exchanged water was changed from 712 parts to 643 parts. The monomer concentration during polymerization was 29%, and the temperature reached at equilibrium was 90 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 103 degreeC.
- Example 6 In Example 1, the amount of ion-exchanged water was changed from 712 parts to 643 parts, the amount of sodium hypophosphite monohydrate was changed from 0.14 parts to 0.20 parts, and the solution temperature at the start of polymerization was 5
- An aqueous liquid absorbent resin (A1-6) was obtained in the same manner as in Example 1 except that the temperature was changed from 15 ° C to 15 ° C. The monomer concentration during polymerization was 29%, and the temperature reached at equilibrium was 99 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 103 degreeC.
- the water-containing gel-like polymer was crushed into small pieces using a meat chopper, and using a ventilated hot air dryer (manufactured by Inoue Metal), water content under conditions of a supply air temperature of 150 ° C. and a wind speed of 1.5 m / sec. Was dried by aeration until it reached 4%.
- the dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster Co., Ltd.), sieved, and adjusted to a particle size range of 710 to 150 ⁇ m, and a comparative aqueous liquid absorbent resin (R1-1) was prepared. Obtained.
- Comparative Example 2 In Comparative Example 1, the same operation as in Comparative Example 1 was performed except that 0.88 part of ethylene glycol diglycidyl ether was used instead of 0.88 part of pentaerythritol triallyl ether, and an aqueous liquid absorbent resin for comparison was used. (R1-2) was obtained. The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 78 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 103 degreeC.
- Comparative Example 3 A comparative aqueous liquid was prepared in the same manner as in Comparative Example 1, except that 0.88 part of N, N′-methylenebisacrylamide was used instead of 0.88 part of pentaerythritol triallyl ether in Comparative Example 1. Absorbent resin (R1-3) was obtained. The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 80 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 103 degreeC.
- Example 4 In Example 1, except that sodium hypophosphite monohydrate was not added, the same operation as in Example 1 was performed to obtain a comparative aqueous liquid absorbent resin (R1-4). The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 80 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 102 degreeC.
- Example 5 In Example 1, the same operation as in Example 1 was carried out except that 0.14 part of triethylene glycol dimercaptan was used instead of 0.14 part of sodium hypophosphite monohydrate. A liquid absorbent resin (R1-5) was obtained. The monomer concentration during polymerization was 27%, and the temperature reached at equilibrium was 80 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 102 degreeC.
- Example 6 In Example 1, except that the solution temperature at the start of polymerization was changed from 5 ° C. to 30 ° C., the same operation as in Example 1 was performed to obtain a comparative aqueous liquid absorbent resin (R1-6). The monomer concentration during the polymerization was 27%. During the polymerization, the temperature of the mixture reached the boiling point and foaming occurred.
- R1-6 a comparative aqueous liquid absorbent resin
- Example 7 In Example 1, the amount of ion-exchanged water was changed from 712 parts to 643 parts, the amount of sodium hypophosphite monohydrate was changed from 0.14 parts to 0.20 parts, and the solution temperature at the start of polymerization was 5 A comparative aqueous liquid absorbent resin (R1-7) was obtained in the same manner as in Example 1 except that the temperature was changed from 25 ° C to 25 ° C. The monomer concentration during the polymerization was 29%. During the polymerization, the temperature of the mixture reached the boiling point and foaming occurred.
- Example 8 In Example 1, except that the amount of ion-exchanged water was changed from 712 parts to 583 parts, the same operation as in Example 1 was performed to obtain a comparative aqueous liquid absorbent resin (R1-8). The monomer concentration at the time of polymerization was 31%, and the temperature reached at the time of equilibrium was 97 ° C. In addition, when the boiling point of this polymerization liquid was measured using the heating type distillation tester, it was 104 degreeC.
- Example 7 While stirring 100 g of aqueous liquid absorbent resin (A1-1) (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a solution consisting of 0.14 g of ethylene glycol diglycidyl ether, 4 g of water and 6 g of methanol was added. After mixing and heating at 140 ° C. for 40 minutes, surface cross-linking was performed to obtain an aqueous liquid absorbent resin (A2-1).
- A1-1 high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
- Example 8 to 12 In the same manner as in Example 7, except that the aqueous liquid absorbent resins (A1-2) to (A1-6) are used in place of the aqueous liquid absorbent resin (A1-1), the aqueous liquid absorbent resin (A2) is used. -2) to (A2-6) were obtained.
- Example 13 While stirring 100 g of the aqueous liquid absorbent resin (A1-1) (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), it consists of 0.14 g of ethylene glycol diglycidyl ether, 3.6 g of water and 2.8 g of propylene glycol. The solution was added and mixed, and surface crosslinking was performed by heating at 140 ° C. for 40 minutes to obtain an aqueous liquid absorbent resin (A2-1P).
- A1-1 high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
- Example 14 An aqueous liquid absorbent resin (A2-2P) was obtained in the same manner as in Example 13 except that the aqueous liquid absorbent resin (A1-2) was used instead of the aqueous liquid absorbent resin (A1-1). .
- Example 17 A comparative aqueous liquid absorbent resin (R2-) was used in the same manner as in Example 13 except that the comparative aqueous liquid absorbent resin (R1-4) was used instead of the aqueous liquid absorbent resin (A1-1). 4P) was obtained.
- Evaluation results of water retention, whiteness and odor of the obtained aqueous liquid absorbent resins (A1-1) to (A1-6) and comparative aqueous liquid absorbent resins (R1-1) to (R1-8) are shown in Table 1.
- the obtained aqueous liquid absorbent resins (A2-1) to (A2-6), (A2-1P), (A2-2P) and comparative aqueous liquid absorbent resins (R2-1) to (R2) The evaluation results of water retention amount, absorption amount under load, whiteness and odor of -8) and (R2-4P) are shown in Table 2.
- the aqueous liquid absorbent resin obtained by the production method of the present invention has a higher water retention amount and less coloring and odor than the aqueous liquid absorbent resin of the comparative example. I understand that. In particular, from the results in Table 2, the water retention amount is improved while having an absorption amount under a load equal to or greater than that of the aqueous liquid absorbent resin of the comparative example, and the absorption performance is dramatically improved. I understand.
- the production method of the present invention it is possible to obtain an aqueous liquid absorbent resin that has a large amount of water retention and little coloration or odor.
- the particulate aqueous liquid absorbent resin obtained by surface cross-linking exhibits a high water retention amount and also exhibits a high absorption amount under load, so that it has an excellent balance between the water retention amount and the absorption amount under load.
- the aqueous liquid absorbent resin obtained by the method of the present invention can be suitably used for aqueous liquid absorbent articles, particularly sanitary goods such as paper diapers.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
保水量が大きく、かつ着色や臭気が少ない水性液体吸収性樹脂の製造方法を提供する。本発明は、アクリル酸を主成分とするラジカル重合性モノマー(a)を、内部架橋剤(b)及び水の存在下でラジカル重合する工程を含む水性液体吸収性樹脂の製造方法であって、ラジカル重合を次亜リン酸(塩)(c)の存在下で行い、前記モノマー(a)の仕込み濃度の上限が重合液の重量を基準として30重量%未満であり、かつ重合時の重合液の最高到達温度がその沸点未満であることを特徴とする水性液体吸収性樹脂の製造方法である。
Description
本発明は水性液体の吸収性能に優れた樹脂の製造方法に関する。詳しくは、保水量が高く、更に臭気や着色の少ない水性液体吸収性樹脂の製造方法に関する。
従来、水性液体に対して吸収能を有する粉粒状吸収剤として、吸水性樹脂と呼ばれる親水性架橋ポリマーが使用され、紙オムツ、生理用品等の衛生用品や、結露防止剤、農業・園芸用保水剤等の各種産業分野用にその応用範囲は拡大している。これらの用途に使用される水性液体吸収性樹脂は保水量が高いことが要望されている。
一般に、水性液体吸収性樹脂の常圧下での吸水能力(保水量)は、概念的に、「(イオン浸透圧+高分子鎖の水への親和力)/高分子の架橋密度」に比例する。即ち、水性液体吸収性樹脂の性能には架橋密度が関与する。保水量を高める方法として、架橋剤の使用量を少なくすることは通常実施されている手段であるが、更に、ラジカル重合性モノマーと架橋剤を含有するモノマー水溶液を水溶液重合するに当たり、連鎖移動剤を共存させる方法が提案されている(例えば特許文献1参照)。
しかしながら、従来の連鎖移動剤を使用する方法は、保水量の向上に関してはある程度の効果が認められるものの、性能上更なる改善が要望されている。又、従来の連鎖移動剤を使用する方法では、得られる水性液体吸収性樹脂粒子に臭気や着色が発生しやすくなるといった問題があった。この臭気や着色の原因は定かではないが、ポリマー鎖に組み込まれた連鎖移動剤の残基及び連鎖移動剤使用に伴い増加する低分子成分に由来すると考えられている。特に紙オムツ等の衛生用品用途では、更に改善された吸収性能に加え、安全性や清潔感の観点で臭気や着色が発生しにくい水性液体吸収性樹脂の出現が望まれていた。
本発明者らは、上記課題を解決するため鋭意検討した結果、特定の連鎖移動剤の存在下に特定の条件で重合を実施することで、保水量が高く、更に臭気や着色の少ない水性液体吸収性樹脂を得られることを見出した。即ち本発明は、アクリル酸を主成分とするラジカル重合性モノマー(a)を、内部架橋剤(b)及び水の存在下でラジカル重合する工程を含む水性液体吸収性樹脂の製造方法であって、ラジカル重合を次亜リン酸(塩)(c)の存在下で行い、前記モノマー(a)の仕込み濃度の上限が重合液の重量を基準として30重量%未満であり、かつ重合時の重合液の最高到達温度がその沸点未満であることを特徴とする水性液体吸収性樹脂の製造方法である。
本発明の製造方法で得られる水性液体吸収性樹脂は、保水量が高く、更に臭気や着色が少ない。
本発明の製造方法は、アクリル酸を主成分とするラジカル重合性モノマー(a)を、内部架橋剤(b)及び水の存在下でラジカル重合する工程を含む水性液体吸収性樹脂の製造方法であって、ラジカル重合を次亜リン酸(塩)(c)の存在下で行い、前記モノマー(a)の仕込み濃度の上限が重合液の重量を基準として30重量%未満であり、かつ重合時の重合液の最高到達温度がその沸点未満である。
本発明の製造方法で用いるラジカル重合性モノマー(a)(以下単に上記モノマー(a)ともいう)は、アクリル酸を主成分とする。上記モノマー(a)中におけるアクリル酸の含有率は、水性液体吸収性樹脂の吸収特性を向上させるために、70~100モル%であることが好ましく、更に好ましくは80~100モル%、特に好ましくは90~100モル%である。
上記モノマー(a)は、必要に応じてアクリル酸以外のモノマーを含有していてもよい。アクリル酸以外のモノマーとしては、特に限定されるものではないが、具体的には、例えば、アクリル酸ナトリウム、アクリル酸カリウム及びアクリル酸アンモニウム塩等のアクリル酸塩;メタクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート、ビニルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸及び2-(メタ)アクリロイルプロパンスルホン酸等の酸基含有モノマー及びその塩;メルカプタン基含有不飽和モノマー;フェノール性水酸基含有不飽和モノマー;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N-ビニルピロリドン、N-アクリロイルピペリジン、N-アクリロイルピロリジン及びN-ビニルアセトアミド等のノニオン性の親水基含有不飽和モノマー;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート及びN,N-ジメチルアミノプロピル(メタ)アクリルアミド等のカチオン性基形成性不飽和モノマー並びにこれらの塩等のカチオン性不飽和モノマー等が挙げられる。これらのモノマーは、単独で用いてもよく、2種以上を併用してもよい。
本発明において、アクリル酸以外のモノマーを用いる場合、その量は、上記モノマー(a)の総モル数を基準として、好ましくは30モル%以下、更に好ましくは20モル%以下、特に好ましくは10モル%以下である。上記アクリル酸以外のモノマーを上記の割合で用いることにより、最終的に得られる水性液体吸収性樹脂の吸収特性がより一層向上すると共に、水性液体吸収性樹脂をより一層安価に得ることができる。
本発明の製造方法で用いる内部架橋剤(b)としては、2個以上のラジカル重合性二重結合を有する化合物(b1)、上記モノマー(a)の官能基と反応し得る官能基を少なくとも1個有し、かつ少なくとも1個のラジカル重合性二重結合を有する化合物(b2)及び上記モノマー(a)の官能基と反応し得る官能基を2個以上有する化合物(b3)等が挙げられる。
2個以上のラジカル重合性二重結合を有する化合物(b1)としては、例えば、N,N’-メチレンビスアクリルアミド等のビス(メタ)アクリルアミド類;(ポリ)アルキレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びソルビトール等の多価アルコールのポリ(メタ)アクリレート;ジビニルベンゼン等のジビニル化合物;(ポリ)アルキレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びソルビトール等の多価アルコールのポリ(メタ)アリルエーテル、テトラアリロキシエタン並びにトリアリルイソシアヌレート等の多価(メタ)アリル化合物等が挙げられる。
上記モノマー(a)の官能基と反応し得る官能基を少なくとも1個有し、かつ少なくとも1個のラジカル重合性二重結合を有する化合物(b2)としては、カルボン酸(塩)基、ヒドロキシル基又はアミノ基等と反応し得る官能基を有するラジカル重合性化合物等が挙げられ、例えば、ヒドロキシエチル(メタ)アクリレート及びN-メチロール(メタ)アクリルアミド等の水酸基を有するラジカル重合性モノマー並びにグリシジル(メタ)アクリレート等のエポキシ基を有するラジカル重合性モノマー等が例示される。
上記モノマー(a)の官能基と反応し得る官能基を2個以上有する化合物(b3)としては、カルボン酸(塩)基、ヒドロキシル基又はアミノ基等と反応し得る官能基を2個以上有する多官能性化合物が挙げられ、グリオキザール;フタル酸及びアジピン酸等のポリカルボン酸;(ポリ)アルキレングリコール、グリセリン及びソルビトール等の多価アルコール;エチレンジアミン等の(ポリ)アルキレンポリアミン;エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル及びソルビトールポリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル等が例示される。
これらのうち好ましいのは、2個以上のラジカル重合性二重結合を有する化合物(b1)であり、更に好ましいのは、得られる水性液体吸収性樹脂の保水量を高くできる観点から、多価(メタ)アリル化合物、特に好ましいのは多価アリル化合物、最も好ましいのは炭素数8~20の多価アリル化合物である。これら内部架橋剤(b)は単独で使用してもよく、2種以上を併用してもよい。
内部架橋剤(b)の使用量は、上記モノマー(a)の重量に基づいて、好ましくは0.001~5重量%、更に好ましくは、0.01~2重量%である。(b)の量が0.001重量%未満では、得られた樹脂は吸水時のゲル強度が小さくゾル状になり、生産性が悪くなる場合があり、かつ水可溶性成分量が多くなる。一方、5重量%を越えると逆にゲル強度が過大となりすぎ、保水量が低下する場合がある。
本発明の製造方法で用いる次亜リン酸(塩)(c)としては、次亜リン酸、次亜リン酸のアルカリ金属塩(次亜リン酸ナトリウム及び次亜リン酸カリウム等)、次亜リン酸のアルカリ土類金属塩(次亜リン酸カルシウム及び次亜リン酸バリウム等)、次亜リン酸アンモニウム及びこれらの水和物が例示される。これら次亜リン酸(塩)(c)は単独で使用してもよく、2種以上を併用してもよい。
次亜リン酸(塩)(c)の使用量は、上記モノマー(a)の重量に基づいて、好ましくは0.001~1重量%、更に好ましくは0.005~0.3重量%である。(c)の使用量が0.001重量%未満では、(c)を使用した効果、すなわち水性液体吸収性樹脂の保水量を向上させる効果が不十分となる場合がある。一方、1重量%を超えると、上記モノマー(a)の重合率が十分上がらない、あるいは重合速度が遅くなることがあり、重合時間を長くする、あるいは熟成時間を長くする必要が生じる場合があり、生産性が悪くなることがある。また、得られる水性液体吸収性樹脂に臭気や着色が発生しやすくなる場合がある。
本発明において、上記モノマー(a)は水の存在下でラジカル重合される。重合濃度、すなわち、重合液中の上記モノマー(a)の仕込み濃度の上限は、重合液の重量、すなわち、通常、上記モノマー(a)、水、内部架橋剤(b)及び次亜リン酸(塩)の合計重量、に基づいて、30重量%未満である。上記モノマー(a)の仕込み濃度範囲は、重合後の水の乾燥除去の観点から、好ましくは10~29.5重量%、更に好ましくは、20~29重量%である。
重合濃度が30重量%を越えると、得られる重合体の分子量が低いものとなること及び自己架橋等の副反応が起こることにより、得られる水性液体吸収性樹脂の保水量が低下する。
重合濃度が30重量%を越えると、得られる重合体の分子量が低いものとなること及び自己架橋等の副反応が起こることにより、得られる水性液体吸収性樹脂の保水量が低下する。
本発明において、重合時の重合液の最高到達温度はその(すなわち重合液の)沸点未満であり、好ましくは100℃以下である。最高到達温度が重合液の沸点を超えると、得られる重合体の分子量が低いものとなること及び自己架橋等の副反応が起こることにより、得られる水性液体吸収性樹脂の保水量が低下し、また、得られる水性液体吸収性樹脂に臭気や着色が発生する。
重合液の沸点は、重合液から重合開始剤を除いた非反応性混合物の10%留出温度として測定でき、具体的にはJISK0066「化学製品の蒸留試験方法」で定められる公知の加熱式蒸留試験器を用いた方法により測定できる。
なお、上記方法以外に、重合時の最高到達温度が重合液の沸点を超えると重合液の界面から水蒸気が激しく噴出したり、重合ゲルの発泡が起こるので、目視で判別することもできる。
重合液の沸点は、重合液から重合開始剤を除いた非反応性混合物の10%留出温度として測定でき、具体的にはJISK0066「化学製品の蒸留試験方法」で定められる公知の加熱式蒸留試験器を用いた方法により測定できる。
なお、上記方法以外に、重合時の最高到達温度が重合液の沸点を超えると重合液の界面から水蒸気が激しく噴出したり、重合ゲルの発泡が起こるので、目視で判別することもできる。
本発明において、重合開始温度は、重合濃度や使用する重合触媒、重合時の最高到達温度等の諸条件に対応して適宜選択されるが、好ましくは15℃以下、更に好ましくは10℃以下である。
本発明における重合方法は、従来知られている水の存在下で行われるいずれの方法でもよく、例えば、通常、ラジカル重合触媒を用いた、水溶液重合法、懸濁重合法及び逆相懸濁重合法等が挙げられる。また、放射線、電子線及び紫外線等を照射して重合を開始させる方法を取ることもできる。これらのうち、有機溶媒等を使用する必要がなく、生産コスト面で有利なことから水溶液重合法が好ましい。特に、保水量が大きく、かつ水可溶性成分量の少ない水性液体吸収性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が好ましい。
ラジカル重合触媒を用いて重合する際に用いられる重合触媒としては、従来公知の触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物[過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等]、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒[アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤と、アルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの]等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用してもよい。
ラジカル重合触媒の使用量は、上記モノマー(a)の重量に基づいて、好ましくは0.0005~5重量%、更に好ましくは0.001~2重量%である。
本発明において、重合後に得られる含水ゲル重合体は、通常、中和される。重合体中の酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる水性液体吸収性樹脂の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。
中和は、水性液体吸収性樹脂の製造において重合以降のいずれの段階で行ってもよく、例えば、重合生成物である含水ゲル重合体の状態で中和する等の方法が好ましい例として例示される。
中和は、水性液体吸収性樹脂の製造において重合以降のいずれの段階で行ってもよく、例えば、重合生成物である含水ゲル重合体の状態で中和する等の方法が好ましい例として例示される。
本発明において、必要により、得られた重合体中和物を含水ゲルの状態でカルボン酸(塩)基と反応しうる基を少なくとも2個有する化合物(例えば、エチレングリコールジグリシジルエーテル等のポリグリシジル化合物、エチレングリコール、ジエチレングリコール及びグリセリン等の多価アルコール、エチレンジアミン等の(ポリ)アルキレンポリアミン並びにイオン架橋を形成しうる多価金属化合物類等)で更に均一架橋せしめることもできる。この架橋により、高いゲル強度を有し、水可溶性成分量の少ない水性液体吸収性樹脂が製造できる。
本発明において、得られる含水ゲル重合体は、必要により、乾燥、粒子状に粉砕される。
乾燥する方法は、80~230℃での温度の熱風で乾燥する方法、100~230℃に加熱されたドラムドライヤー等の使用による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法及び赤外線による乾燥法等、通常の方法でよい。
乾燥する方法は、80~230℃での温度の熱風で乾燥する方法、100~230℃に加熱されたドラムドライヤー等の使用による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法及び赤外線による乾燥法等、通常の方法でよい。
水性液体吸収性樹脂の粉砕される粒子形状については特に限定はなく、不定形破砕状、リン片状、パール状及び造粒状等が挙げられる。紙オムツ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がない点で、水溶液重合で得られる不定形破砕状が好ましい。
粉砕方法についても特に限定はなく、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機、シェット気流式粉砕機等通常の装置が使用できる。得られた粉砕物は、必要により篩別される。
粉砕された水性液体吸収性樹脂粒子の平均粒径は、通常100~600μm、好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、通常、100μm以下の粒子の含有量は3%以下であり、好ましくは、150μm以下の粒子の含有量が3%以下である。
粉砕方法についても特に限定はなく、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機、シェット気流式粉砕機等通常の装置が使用できる。得られた粉砕物は、必要により篩別される。
粉砕された水性液体吸収性樹脂粒子の平均粒径は、通常100~600μm、好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、通常、100μm以下の粒子の含有量は3%以下であり、好ましくは、150μm以下の粒子の含有量が3%以下である。
本発明の製造方法により得られる水性液体吸収性樹脂の生理食塩水に対する保水量は、好ましくは50g/g以上であり、更に好ましくは55g/g以上である。尚、保水量は後述する方法で測定される。
本発明において、得られる水性液体吸収性樹脂を表面架橋することによりゲル強度を向上させることができ、実使用において望ましい保水量と荷重下における吸収量とを満足させることができる。
水性液体吸収性樹脂を表面架橋する方法としては、従来公知の方法、例えば、水性液体吸収性樹脂を粒子状とした後、表面架橋剤(d)、水及び溶媒の混合溶液をと混合し、加熱反応する方法が挙げられる。
表面架橋剤(d)としては、例えば、エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル及びポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物、グリセリン及びエチレングリコール等の多価アルコール、エチレンカーボネート等のアルキレンカーボネート、ボリアミン並びに硫酸アルミニウム、ナトリウムミョウバン、カリウムミョウバン、塩化アルミニウム、ポリ塩化アルミニウム、乳酸アルミニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム及び硫酸ジルコニウム等の多価金属化合物等が挙げられる。これらの内、比較的低い温度で架橋反応を行うことができる点で好ましいのは、ポリグリシジル化合物である。これらの表面架橋剤は単独で使用してもよく、2種以上を併用してもよい。
表面架橋剤(d)の使用量は、架橋前の水性液体吸収性樹脂の重量に基づいて、好ましくは0.001~5重量%、更に好ましくは0.005~2重量%である。表面架橋剤(d)の使用量が0.001重量%未満の場合は、表面架橋度が不足し、荷重下における吸収量の向上効果が不充分となる場合がある。一方、(d)の使用量が5重量%を超える場合は、表面の架橋度が過度となりすぎて保水量が低下する場合がある。
表面架橋時の水の使用量は、架橋前の水性液体吸収性樹脂の重量に基づいて、好ましくは1~10重量%、更に好ましくは2~7重量%である。水の使用量が1重量%未満の場合、表面架橋剤(d)の水性液体吸収性樹脂粒子内部への浸透度が不充分となり、荷重下における吸収量の向上効果が乏しくなる場合がある。一方、水の使用量が10重量%を越えると、表面架橋剤(d)の内部への浸透が過度となり、荷重下における吸収量の向上は認められるものの、保水量が低下する場合がある。
表面架橋時に水と併用して使用される溶媒としては従来公知のものが使用可能であり、表面架橋剤(d)の水性液体吸収性樹脂粒子内部への浸透度合い、表面架橋剤(d)の反応性等を考慮し、適宜選択して使用することができるが、好ましくは、低級アルコール(メタノール、プロピレングリコール、1,3-プロパンジオール、エチレングリコール及びジエチレングリコール等)及びエーテルアルコール(ジエチレングリコール等)等の水に溶解しうる親水性有機溶媒であり、更に好ましくは低級アルコールである。溶媒は単独で使用してもよいし、2種以上を併用してもよい。
溶媒の使用量は、溶媒の種類により適宜調整できるが、表面架橋前の水性液体吸収性樹脂の重量に基づいて、好ましくは1~10重量%である。また、水に対する溶媒の比率についても任意に調整することができるが、好ましくは重量基準で20~80重量%、更に好ましくは30~70重量%である。
溶媒の使用量は、溶媒の種類により適宜調整できるが、表面架橋前の水性液体吸収性樹脂の重量に基づいて、好ましくは1~10重量%である。また、水に対する溶媒の比率についても任意に調整することができるが、好ましくは重量基準で20~80重量%、更に好ましくは30~70重量%である。
表面架橋を行うには、表面架橋剤(d)と水と溶媒との混合溶液を従来公知の方法で水性液体吸収性樹脂粒子と混合し、加熱反応を行う。反応温度は、好ましくは100~230℃、更に好ましくは120~160℃である。反応時間は、反応温度により適宜調整することができるが、好ましくは3~60分、更に好ましくは10~40分である。表面架橋して得られる粒子状の水性液体吸収性樹脂を、最初に用いた表面架橋剤と同種又は異種の表面架橋剤を用いて、更に表面架橋することも可能である。
表面架橋して得られる粒子状の水性液体吸収性樹脂は、必要により篩別して粒度調整される。得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。
本発明においては、必要により本発明の製造方法の任意の段階で、防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、酸化防止剤、着色剤、芳香剤、消臭剤、無機質粉末及び有機質繊維状物等を添加することができ、その量は得られた水性液体吸収性樹脂の重量に基づいて、通常、5重量%以下である。また、必要により本発明の方法における任意の段階で発泡構造を形成するような処理を行ってもよいし、造粒や成型を行うこともできる。
以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下特に定めない限り、部は重量部、%は重量%を示す。なお、水性液体吸収性樹脂の保水量、40g/cm2又は60g/cm2の荷重下における吸収量、白色度及び臭気は以下の方法で測定される。
[保水量の測定方法]
250メッシュのナイロン網で作製したティーバッグ(縦20cm、横10cm)に水性液体吸収性樹脂1.000gを入れ、生理食塩水(NaCl濃度0.90%のイオン交換水溶液)中に60分間浸漬した後、引き上げて、15分間吊るして水切りしてから、ティーバッグごと遠心脱水機に入れて、150Gで90秒間遠心脱水を行い、余剰水を取り除いて、ティーバッグを含めた重量(h1)を測定した。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバッグの重量(h2)を測定し、次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とした。
保水量(g/g)=(h1)-(h2)
250メッシュのナイロン網で作製したティーバッグ(縦20cm、横10cm)に水性液体吸収性樹脂1.000gを入れ、生理食塩水(NaCl濃度0.90%のイオン交換水溶液)中に60分間浸漬した後、引き上げて、15分間吊るして水切りしてから、ティーバッグごと遠心脱水機に入れて、150Gで90秒間遠心脱水を行い、余剰水を取り除いて、ティーバッグを含めた重量(h1)を測定した。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバッグの重量(h2)を測定し、次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とした。
保水量(g/g)=(h1)-(h2)
[荷重下吸収量の測定方法]
250メッシュのナイロン網を底面に貼ったプラスチック製円筒(内縁25mm、高さ30mm)内に水性液体吸収性樹脂0.160gを入れて均一に均し、この水性液体吸収性樹脂の上に外縁25mmでスムーズに円筒内を上下する200gの分銅を乗せた。この時の荷重は約40g/cm2に相当する。
生理食塩水60mlの入ったシャーレー(直径:12cm)の中に水性液体吸収性樹脂と分銅の入ったプラスチック円筒を、ナイロン網側を下面にして浸し、放置した。水性液体吸収性樹脂が生理食塩水を吸収して増加した重量を60分後に測定し、その値を水性液体吸収性樹脂1g当たりの値に換算して40g/cm2の荷重下における吸収量とした。60g/cm2の荷重下における吸収量は、同じ外径の300gの分銅を使用して同様の測定を行うことによって求められる。
250メッシュのナイロン網を底面に貼ったプラスチック製円筒(内縁25mm、高さ30mm)内に水性液体吸収性樹脂0.160gを入れて均一に均し、この水性液体吸収性樹脂の上に外縁25mmでスムーズに円筒内を上下する200gの分銅を乗せた。この時の荷重は約40g/cm2に相当する。
生理食塩水60mlの入ったシャーレー(直径:12cm)の中に水性液体吸収性樹脂と分銅の入ったプラスチック円筒を、ナイロン網側を下面にして浸し、放置した。水性液体吸収性樹脂が生理食塩水を吸収して増加した重量を60分後に測定し、その値を水性液体吸収性樹脂1g当たりの値に換算して40g/cm2の荷重下における吸収量とした。60g/cm2の荷重下における吸収量は、同じ外径の300gの分銅を使用して同様の測定を行うことによって求められる。
[白色度(WB値)の測定方法]
水性液体吸収性樹脂の初期着色(製造直後の着色)及び長期保存又は応用製品中での着色の進行しやすさは、デジタル測色色差計(日本電色工業株式会社製ND-1001DP型)を用いて促進試験前後の白色度(WB値)を測定することにより評価した。白色度(WB)は、その値が大きいほど、着色が抑制されていることを示す。なお、着色促進試験の手順は以下の通りである。
内径90mmのガラスシャーレに10gの水性液体吸収性樹脂を入れ、表面が平坦になるように均一に均した。これを60±2℃、80±2%R.H.の恒温恒湿機内に14日間保存した。その後、恒温恒湿機内からシャーレを取り出して室温に戻した後、促進試験後の白色度(WB値)を測定した。
水性液体吸収性樹脂の初期着色(製造直後の着色)及び長期保存又は応用製品中での着色の進行しやすさは、デジタル測色色差計(日本電色工業株式会社製ND-1001DP型)を用いて促進試験前後の白色度(WB値)を測定することにより評価した。白色度(WB)は、その値が大きいほど、着色が抑制されていることを示す。なお、着色促進試験の手順は以下の通りである。
内径90mmのガラスシャーレに10gの水性液体吸収性樹脂を入れ、表面が平坦になるように均一に均した。これを60±2℃、80±2%R.H.の恒温恒湿機内に14日間保存した。その後、恒温恒湿機内からシャーレを取り出して室温に戻した後、促進試験後の白色度(WB値)を測定した。
[臭気試験方法]
水性液体吸収性樹脂の臭気は以下の試験法により評価した。
水性液体吸収性樹脂1gを100mlのビーカーに入れ、0.9重量%塩化ナトリウム水溶液20gを加えた後、フィルムでビーカーを密閉し37℃で1時間放置した。その後、成人の被験者10名による臭気官能試験を行い、以下の評点に基づき平均点を算出した。
0:不快な臭気なし
1:わずかに不快な臭気有り
2:不快な臭気有り
3:特に不快な臭気が強い
水性液体吸収性樹脂の臭気は以下の試験法により評価した。
水性液体吸収性樹脂1gを100mlのビーカーに入れ、0.9重量%塩化ナトリウム水溶液20gを加えた後、フィルムでビーカーを密閉し37℃で1時間放置した。その後、成人の被験者10名による臭気官能試験を行い、以下の評点に基づき平均点を算出した。
0:不快な臭気なし
1:わずかに不快な臭気有り
2:不快な臭気有り
3:特に不快な臭気が強い
<実施例1>
アクリル酸270部、架橋剤としてのペンタエリスリトールトリアリルエーテル(ダイソー製)0.88部及びイオン交換水712部を混合してモノマー水溶液を調製し、この混合液を断熱重合可能な重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下とし、溶液温度を5℃とした。この重合溶液に、次亜リン酸ナトリウム一水和物0.14部、1%過酸化水素水溶液1.1部、2%アスコルビン酸水溶液2.0部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液13.5部を添加・混合した(モノマー濃度27%)。重合開始を示す温度上昇が確認されてから約2時間後に80℃でほぼ平衡に達し、更に5時間熟成して含水ゲル状重合体を得た。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
この含水ゲル状重合体を、ミートチョッパーを用いて小片に砕断しながら、49%のNaOH水溶液220部を添加し、重合体中のカルボキシル基の約72モル%をナトリウム塩とした。この中和された含水ゲルを、通気熱風乾燥機(井上金属製)を用い、供給風温150℃、風速1.5m/秒の条件下で含水率が4%となるまで通気乾燥した。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、水性液体吸収性樹脂(A1-1)を得た。
アクリル酸270部、架橋剤としてのペンタエリスリトールトリアリルエーテル(ダイソー製)0.88部及びイオン交換水712部を混合してモノマー水溶液を調製し、この混合液を断熱重合可能な重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下とし、溶液温度を5℃とした。この重合溶液に、次亜リン酸ナトリウム一水和物0.14部、1%過酸化水素水溶液1.1部、2%アスコルビン酸水溶液2.0部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液13.5部を添加・混合した(モノマー濃度27%)。重合開始を示す温度上昇が確認されてから約2時間後に80℃でほぼ平衡に達し、更に5時間熟成して含水ゲル状重合体を得た。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
この含水ゲル状重合体を、ミートチョッパーを用いて小片に砕断しながら、49%のNaOH水溶液220部を添加し、重合体中のカルボキシル基の約72モル%をナトリウム塩とした。この中和された含水ゲルを、通気熱風乾燥機(井上金属製)を用い、供給風温150℃、風速1.5m/秒の条件下で含水率が4%となるまで通気乾燥した。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、水性液体吸収性樹脂(A1-1)を得た。
<実施例2>
実施例1において、次亜リン酸ナトリウム一水和物の量を0.14部から0.20部に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-2)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
実施例1において、次亜リン酸ナトリウム一水和物の量を0.14部から0.20部に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-2)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
<実施例3>
実施例1において、ペンタエリスリトールトリアリルエーテルの量を0.88部から1.2部に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-3)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
実施例1において、ペンタエリスリトールトリアリルエーテルの量を0.88部から1.2部に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-3)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
<実施例4>
実施例1において、重合開始時の溶液温度を5℃から15℃に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-4)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は89℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
実施例1において、重合開始時の溶液温度を5℃から15℃に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-4)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は89℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
<実施例5>
実施例1において、イオン交換水の量を712部から643部に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-5)を得た。重合時のモノマー濃度は29%であり、平衡時の到達温度は90℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
実施例1において、イオン交換水の量を712部から643部に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-5)を得た。重合時のモノマー濃度は29%であり、平衡時の到達温度は90℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
<実施例6>
実施例1において、イオン交換水の量を712部から643部に、次亜リン酸ナトリウム一水和物の量を0.14部から0.20部に、更に重合開始時の溶液温度を5℃から15℃に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-6)を得た。重合時のモノマー濃度は29%であり、平衡時の到達温度は99℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
実施例1において、イオン交換水の量を712部から643部に、次亜リン酸ナトリウム一水和物の量を0.14部から0.20部に、更に重合開始時の溶液温度を5℃から15℃に変更する以外は、実施例1と同様の操作を行い、水性液体吸収性樹脂(A1-6)を得た。重合時のモノマー濃度は29%であり、平衡時の到達温度は99℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
<比較例1>
アクリル酸222gと水582gを混合し、外部冷却を行いながら、溶液温度が35℃を越えないようにして、49%NaOH水溶液181gを徐々に添加してアクリル酸の約72モル%を中和した。次いで、架橋剤としてペンタエリスリトールトリアリルエーテル(ダイソー製)0.88部を混合してモノマー水溶液を調製し、この混合液を断熱重合可能な重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下、溶液温度を5℃とした。この重合溶液に、次亜リン酸ナトリウム一水和物0.14部、1%過酸化水素水溶液1.1部、2%アスコルビン酸水溶液2.0部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液13.5部を添加・混合した(モノマー濃度27%)。重合開始を示す温度上昇が確認されてから約2時間後に80℃でほぼ平衡に達し、更に5時間熟成して含水ゲル状重合体を得た。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
この含水ゲル状重合体を、ミートチョッパーを用いて小片に砕断した後、通気熱風乾燥機(井上金属製)を用い、供給風温150℃、風速1.5m/秒の条件下で含水率が4%となるまで通気乾燥した。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、比較用の水性液体吸収性樹脂(R1-1)を得た。
アクリル酸222gと水582gを混合し、外部冷却を行いながら、溶液温度が35℃を越えないようにして、49%NaOH水溶液181gを徐々に添加してアクリル酸の約72モル%を中和した。次いで、架橋剤としてペンタエリスリトールトリアリルエーテル(ダイソー製)0.88部を混合してモノマー水溶液を調製し、この混合液を断熱重合可能な重合槽に投入した。溶液中に窒素ガスを導入することにより、溶液中の溶存酸素量を0.2ppm以下、溶液温度を5℃とした。この重合溶液に、次亜リン酸ナトリウム一水和物0.14部、1%過酸化水素水溶液1.1部、2%アスコルビン酸水溶液2.0部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液13.5部を添加・混合した(モノマー濃度27%)。重合開始を示す温度上昇が確認されてから約2時間後に80℃でほぼ平衡に達し、更に5時間熟成して含水ゲル状重合体を得た。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
この含水ゲル状重合体を、ミートチョッパーを用いて小片に砕断した後、通気熱風乾燥機(井上金属製)を用い、供給風温150℃、風速1.5m/秒の条件下で含水率が4%となるまで通気乾燥した。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、比較用の水性液体吸収性樹脂(R1-1)を得た。
<比較例2>
比較例1において、ペンタエリスリトールトリアリルエーテル0.88部の代りにエチレングリコールジグリシジルエーテル0.88部を用いた以外は、比較例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-2)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は78℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
比較例1において、ペンタエリスリトールトリアリルエーテル0.88部の代りにエチレングリコールジグリシジルエーテル0.88部を用いた以外は、比較例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-2)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は78℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
<比較例3>
比較例1において、ペンタエリスリトールトリアリルエーテル0.88部の代りにN,N’-メチレンビスアクリルアミド0.88部を用いた以外は、比較例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-3)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
比較例1において、ペンタエリスリトールトリアリルエーテル0.88部の代りにN,N’-メチレンビスアクリルアミド0.88部を用いた以外は、比較例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-3)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、103℃であった。
<比較例4>
実施例1において、次亜リン酸ナトリウム一水和物を添加しない以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-4)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
実施例1において、次亜リン酸ナトリウム一水和物を添加しない以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-4)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
<比較例5>
実施例1において、次亜リン酸ナトリウム一水和物0.14部の代りにトリエチレングリコールジメルカプタン0.14部を用いた以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-5)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
実施例1において、次亜リン酸ナトリウム一水和物0.14部の代りにトリエチレングリコールジメルカプタン0.14部を用いた以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-5)を得た。重合時のモノマー濃度は27%であり、平衡時の到達温度は80℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、102℃であった。
<比較例6>
実施例1において、重合開始時の溶液温度を5℃から30℃に変更する以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-6)を得た。重合時のモノマー濃度は27%であり、重合途中で混合物の温度が沸点に到達し発泡が起こった。
実施例1において、重合開始時の溶液温度を5℃から30℃に変更する以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-6)を得た。重合時のモノマー濃度は27%であり、重合途中で混合物の温度が沸点に到達し発泡が起こった。
<比較例7>
実施例1において、イオン交換水の量を712部から643部に、次亜リン酸ナトリウム一水和物の量を0.14部から0.20部に、更に重合開始時の溶液温度を5℃から25℃に変更する以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-7)を得た。重合時のモノマー濃度は29%であり、重合途中で混合物の温度が沸点に到達し発泡が起こった。
実施例1において、イオン交換水の量を712部から643部に、次亜リン酸ナトリウム一水和物の量を0.14部から0.20部に、更に重合開始時の溶液温度を5℃から25℃に変更する以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-7)を得た。重合時のモノマー濃度は29%であり、重合途中で混合物の温度が沸点に到達し発泡が起こった。
<比較例8>
実施例1において、イオン交換水の量を712部から583部に変更する以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-8)を得た。重合時のモノマー濃度は31%であり、平衡時の到達温度は97℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、104℃であった。
実施例1において、イオン交換水の量を712部から583部に変更する以外は、実施例1と同様の操作を行い、比較用の水性液体吸収性樹脂(R1-8)を得た。重合時のモノマー濃度は31%であり、平衡時の到達温度は97℃であった。なお本重合液の沸点を、加熱式蒸留試験器を用いて実測したところ、104℃であった。
<実施例7>
水性液体吸収性樹脂(A1-1)100gを攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、エチレングリコールジグリシジルエーテル0.14g、水4g及びメタノール6gからなる溶液を添加して混合し、140℃で40分加熱して表面架橋を行い、水性液体吸収性樹脂(A2-1)を得た。
水性液体吸収性樹脂(A1-1)100gを攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、エチレングリコールジグリシジルエーテル0.14g、水4g及びメタノール6gからなる溶液を添加して混合し、140℃で40分加熱して表面架橋を行い、水性液体吸収性樹脂(A2-1)を得た。
<実施例8~12>
水性液体吸収性樹脂(A1-1)に代えて、水性液体吸収性樹脂(A1-2)~(A1-6)を使用する以外は実施例7と同様にして、水性液体吸収性樹脂(A2-2)~(A2-6)を得た。
水性液体吸収性樹脂(A1-1)に代えて、水性液体吸収性樹脂(A1-2)~(A1-6)を使用する以外は実施例7と同様にして、水性液体吸収性樹脂(A2-2)~(A2-6)を得た。
<実施例13>
水性液体吸収性樹脂(A1-1)100gを攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、エチレングリコールジグリシジルエーテル0.14g、水3.6g及びプロピレングリコール2.8gからなる溶液を添加して混合し、140℃で40分加熱して表面架橋を行い、水性液体吸収性樹脂(A2-1P)を得た。
水性液体吸収性樹脂(A1-1)100gを攪拌(ホソカワミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、エチレングリコールジグリシジルエーテル0.14g、水3.6g及びプロピレングリコール2.8gからなる溶液を添加して混合し、140℃で40分加熱して表面架橋を行い、水性液体吸収性樹脂(A2-1P)を得た。
<実施例14>
水性液体吸収性樹脂(A1-1)に代えて、水性液体吸収性樹脂(A1-2)を使用する以外は実施例13と同様にして、水性液体吸収性樹脂(A2-2P)を得た。
水性液体吸収性樹脂(A1-1)に代えて、水性液体吸収性樹脂(A1-2)を使用する以外は実施例13と同様にして、水性液体吸収性樹脂(A2-2P)を得た。
<比較例9~16>
水性液体吸収性樹脂(A1-1)に代えて比較用の水性液体吸収性樹脂(R1-1)~(R1-8)を使用する以外は実施例7と同様にして、比較用の水性液体吸収性樹脂(R2-1)~(R2-8)を得た。
水性液体吸収性樹脂(A1-1)に代えて比較用の水性液体吸収性樹脂(R1-1)~(R1-8)を使用する以外は実施例7と同様にして、比較用の水性液体吸収性樹脂(R2-1)~(R2-8)を得た。
<比較例17>
水性液体吸収性樹脂(A1-1)に代えて比較用の水性液体吸収性樹脂(R1-4)を使用する以外は実施例13と同様にして、比較用の水性液体吸収性樹脂(R2-4P)を得た。
水性液体吸収性樹脂(A1-1)に代えて比較用の水性液体吸収性樹脂(R1-4)を使用する以外は実施例13と同様にして、比較用の水性液体吸収性樹脂(R2-4P)を得た。
得られた水性液体吸収性樹脂(A1-1)~(A1-6)及び比較用の水性液体吸収性樹脂(R1-1)~(R1-8)の保水量、白色度及び臭気の評価結果を表1に示した。
また、得られた水性液体吸収性樹脂(A2-1)~(A2-6)、(A2-1P)、(A2-2P)及び比較用の水性液体吸収性樹脂(R2-1)~(R2-8)、(R2-4P)の保水量、荷重下吸収量、白色度及び臭気の評価結果を表2に示した。
また、得られた水性液体吸収性樹脂(A2-1)~(A2-6)、(A2-1P)、(A2-2P)及び比較用の水性液体吸収性樹脂(R2-1)~(R2-8)、(R2-4P)の保水量、荷重下吸収量、白色度及び臭気の評価結果を表2に示した。
表1及び表2の結果から、本発明の製造方法で得られた水性液体吸収性樹脂は、比較例の水性液体吸収性樹脂に比べて、保水量が高く、かつ着色と臭気が低減されていることが分かる。特に、表2の結果から、比較例の水性液体吸収性樹脂に比べて同等以上の荷重下吸収量を有しながら保水量が向上しており、吸収性能が飛躍的に向上していることが分かる。
本発明の製造方法により、保水量が大きく、かつ着色や臭気が少ない水性液体吸収性樹脂を得ることができる。また、表面架橋して得られる粒子状の水性液体吸収性樹脂は、高い保水量を示し、かつ荷重下においても高い吸収量を示すことから、保水量と荷重下吸収量のバランスに優れるという特長がある。
以上の効果を奏することから、本発明の方法で得られる水性液体吸収性樹脂は、水性液体吸収性物品、特に紙おむつ等の衛生用品に好適に使用できる。
以上の効果を奏することから、本発明の方法で得られる水性液体吸収性樹脂は、水性液体吸収性物品、特に紙おむつ等の衛生用品に好適に使用できる。
Claims (8)
- アクリル酸を主成分とするラジカル重合性モノマー(a)を、内部架橋剤(b)及び水の存在下でラジカル重合する工程を含む水性液体吸収性樹脂の製造方法であって、ラジカル重合を次亜リン酸(塩)(c)の存在下で行い、前記モノマー(a)の仕込み濃度の上限が重合液の重量を基準として30重量%未満であり、かつ重合時の重合液の最高到達温度がその沸点未満であることを特徴とする水性液体吸収性樹脂の製造方法。
- 前記次亜リン酸(塩)(c)の量が、前記モノマー(a)の重量を基準として0.001~1重量%である請求項1記載の製造方法。
- 前記重合液の最高到達温度が100℃以下である請求項1又は2記載の製造方法。
- 重合開始温度は、15℃以下である請求項1~3のいずれか記載の製造方法。
- 前記内部架橋剤(b)が多価アリル化合物である請求項1~4のいずれか記載の製造方法。
- ラジカル重合して得られる含水ゲル重合体を中和する工程をさらに含む請求項1~5のいずれか記載の製造方法。
- 水性液体吸収性樹脂を粒子状にする工程と、水性液体吸収性樹脂粒子を表面架橋剤(d)で表面架橋する工程をさらに含む請求項1~6のいずれか記載の製造方法。
- 得られる水性液体吸収性樹脂の生理食塩水に対する保水量が50g/g以上である請求項1~7のいずれか記載の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680014571.8A CN107406542B (zh) | 2015-03-10 | 2016-03-07 | 水性液体吸收性树脂的制造方法 |
JP2017505322A JP6555832B2 (ja) | 2015-03-10 | 2016-03-07 | 水性液体吸収性樹脂の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-046968 | 2015-03-10 | ||
JP2015046968 | 2015-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016143734A1 true WO2016143734A1 (ja) | 2016-09-15 |
Family
ID=56880206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056959 WO2016143734A1 (ja) | 2015-03-10 | 2016-03-07 | 水性液体吸収性樹脂の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6555832B2 (ja) |
CN (1) | CN107406542B (ja) |
WO (1) | WO2016143734A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3995515A4 (en) * | 2019-07-05 | 2023-07-05 | Sumitomo Seika Chemicals Co., Ltd. | CROSSLINKED POLYMER GEL, METHOD OF PRODUCTION, MONOMER COMPOSITION AND METHOD OF PRODUCTION OF CROSSLINKED POLYMER PARTICLES |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02255804A (ja) * | 1988-12-08 | 1990-10-16 | Nippon Shokubai Kagaku Kogyo Co Ltd | 耐久性の優れた吸水性樹脂の製造方法 |
JPH02300210A (ja) * | 1989-05-16 | 1990-12-12 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
JPH03179008A (ja) * | 1989-12-08 | 1991-08-05 | Nippon Shokubai Kagaku Kogyo Co Ltd | 耐久性の優れた吸水性樹脂の製造方法 |
JP2000026510A (ja) * | 1998-07-06 | 2000-01-25 | Sanyo Chem Ind Ltd | 樹脂の製造法および吸水性樹脂 |
JP2002284805A (ja) * | 2001-03-27 | 2002-10-03 | Mitsubishi Chemicals Corp | 高吸水性ポリマーの製造方法 |
WO2012144564A1 (ja) * | 2011-04-21 | 2012-10-26 | 住友精化株式会社 | 吸水性樹脂、吸収体及び吸収性物品 |
WO2012144566A1 (ja) * | 2011-04-21 | 2012-10-26 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
JP2013522406A (ja) * | 2010-03-15 | 2013-06-13 | ビーエーエスエフ ソシエタス・ヨーロピア | 改善された色安定性を有する吸水性ポリマー粒子の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2015141C1 (ru) * | 1988-12-08 | 1994-06-30 | Ниппон Сокубаи Кагаку Когио Ко., Лтд. | Способ получения абсорбирующей смолы |
CN102603946B (zh) * | 2012-03-16 | 2016-01-13 | 广州埃文森生物科技有限公司 | 一种高吸水性树脂的制备方法 |
-
2016
- 2016-03-07 JP JP2017505322A patent/JP6555832B2/ja active Active
- 2016-03-07 CN CN201680014571.8A patent/CN107406542B/zh active Active
- 2016-03-07 WO PCT/JP2016/056959 patent/WO2016143734A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02255804A (ja) * | 1988-12-08 | 1990-10-16 | Nippon Shokubai Kagaku Kogyo Co Ltd | 耐久性の優れた吸水性樹脂の製造方法 |
JPH02300210A (ja) * | 1989-05-16 | 1990-12-12 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
JPH03179008A (ja) * | 1989-12-08 | 1991-08-05 | Nippon Shokubai Kagaku Kogyo Co Ltd | 耐久性の優れた吸水性樹脂の製造方法 |
JP2000026510A (ja) * | 1998-07-06 | 2000-01-25 | Sanyo Chem Ind Ltd | 樹脂の製造法および吸水性樹脂 |
JP2002284805A (ja) * | 2001-03-27 | 2002-10-03 | Mitsubishi Chemicals Corp | 高吸水性ポリマーの製造方法 |
JP2013522406A (ja) * | 2010-03-15 | 2013-06-13 | ビーエーエスエフ ソシエタス・ヨーロピア | 改善された色安定性を有する吸水性ポリマー粒子の製造方法 |
WO2012144564A1 (ja) * | 2011-04-21 | 2012-10-26 | 住友精化株式会社 | 吸水性樹脂、吸収体及び吸収性物品 |
WO2012144566A1 (ja) * | 2011-04-21 | 2012-10-26 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3995515A4 (en) * | 2019-07-05 | 2023-07-05 | Sumitomo Seika Chemicals Co., Ltd. | CROSSLINKED POLYMER GEL, METHOD OF PRODUCTION, MONOMER COMPOSITION AND METHOD OF PRODUCTION OF CROSSLINKED POLYMER PARTICLES |
Also Published As
Publication number | Publication date |
---|---|
CN107406542B (zh) | 2020-03-17 |
JP6555832B2 (ja) | 2019-08-07 |
JPWO2016143734A1 (ja) | 2017-12-21 |
CN107406542A (zh) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5269314B2 (ja) | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法、並びに吸水性樹脂重合用アクリル酸 | |
US7049366B2 (en) | Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin | |
US10046304B2 (en) | Water absorbing agent and method for producing the same | |
JP5587348B2 (ja) | 吸水性樹脂の製造方法 | |
WO2012043821A1 (ja) | 粒子状吸水剤及びその製造方法 | |
WO2011040530A1 (ja) | 粒子状吸水剤及びその製造方法 | |
KR102195097B1 (ko) | 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법 | |
JP5952431B2 (ja) | 吸水性樹脂材料及びその製造方法 | |
JP6980398B2 (ja) | 吸水剤及びその製造方法 | |
JP2877255B2 (ja) | 耐久性の優れた吸水性樹脂の製造方法 | |
JP2018145210A (ja) | 新規アクリル酸架橋重合体およびその使用 | |
SG193939A1 (en) | Method for producing water-absorbing resin | |
JP4256484B2 (ja) | 吸水剤、吸水性物品および吸水剤の製造方法 | |
JP7064614B2 (ja) | キレート剤を含む吸水性樹脂の製造方法 | |
JP2016113465A (ja) | ポリアクリル酸(塩)系吸水性樹脂及びその製造方法 | |
JP6210817B2 (ja) | 徐放剤用吸水性剤及びその製造方法 | |
JP6555832B2 (ja) | 水性液体吸収性樹脂の製造方法 | |
JP6482793B2 (ja) | 徐放剤用吸水性剤及びその製造方法 | |
JP2001220415A (ja) | 吸水性樹脂の製造法 | |
TWI449732B (zh) | 一種高吸水性樹脂之製造方法 | |
WO2022014550A1 (ja) | 吸水剤組成物およびその製造方法 | |
WO2019190120A1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
TWI495674B (zh) | 高吸水性樹脂的製造方法 | |
JP2022087609A (ja) | 吸水性樹脂組成物およびその製造方法 | |
JPS63165402A (ja) | 耐光性吸水性樹脂の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16761702 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017505322 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16761702 Country of ref document: EP Kind code of ref document: A1 |