[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016027713A1 - 分離装置及び再生方法 - Google Patents

分離装置及び再生方法 Download PDF

Info

Publication number
WO2016027713A1
WO2016027713A1 PCT/JP2015/072617 JP2015072617W WO2016027713A1 WO 2016027713 A1 WO2016027713 A1 WO 2016027713A1 JP 2015072617 W JP2015072617 W JP 2015072617W WO 2016027713 A1 WO2016027713 A1 WO 2016027713A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
membrane
separation
path
regeneration
Prior art date
Application number
PCT/JP2015/072617
Other languages
English (en)
French (fr)
Inventor
勝浩 徳倉
真紀子 市川
谷島 健二
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2016027713A1 publication Critical patent/WO2016027713A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/05Cermet materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/069Tubular membrane modules comprising a bundle of tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration

Definitions

  • the present invention relates to a separation apparatus and a regeneration method.
  • Non-Patent Document 1 and Patent Documents 1 to 4 it is known to use a separation membrane in order to selectively separate a predetermined component from a composition containing a plurality of components.
  • a separation membrane for example, as described in Non-Patent Document 1, as a method for purifying natural gas, a method using a separation membrane whose main component is an organic substance that selectively permeates carbon dioxide over methane is known. It has been. Further, for example, Patent Document 1 proposes a DDR type zeolite membrane capable of separating one or more specific gas components from a mixed gas containing two or more specific gas components such as natural gas. Yes. Patent Document 2 proposes concentrating methane gas by separating and removing carbon dioxide gas from a digested gas containing methane generated from sewage sludge using a DDR type zeolite membrane.
  • Patent Document 3 proposes heating the zeolite membrane at a predetermined temperature in an atmospheric furnace as a simple method for regenerating the zeolite membrane after being exposed to water.
  • JP 2004-105942 A Japanese Patent No. 4803990 International Publication No. 2012/147534 International Publication No. 2014/069630
  • Non-Patent Document 1 and Patent Documents 1 and 2 the regeneration of the separation membrane has not been studied. Further, in Patent Document 3, a method for recovering the separation performance of the separation membrane used for separation of the mixture of water and isopropyl alcohol by the pervaporation method has been studied, but regarding the regeneration of the separation membrane used for gas separation, No specific study was made. In Patent Document 4, the regeneration of the zeolite membrane used for gas separation is studied, but an air furnace for heating the zeolite membrane is separately required, and the zeolite membrane needs to be moved to the air furnace. In particular, when the number of membranes increases to several thousand, etc., there is a problem that an appropriate size of an atmospheric furnace is required, and the man-hour for transferring the zeolite membrane to the atmospheric furnace increases, which is inefficient.
  • the present invention has been made to solve such a problem, and a main object of the present invention is to provide a separation apparatus and a regeneration method capable of better regenerating a separation membrane used for gas separation.
  • a gas to be treated containing hydrocarbon combustible gas and carbon dioxide is separated using a zeolite membrane that selectively permeates carbon dioxide, and a regeneration gas containing heated air is used to regenerate the zeolite membrane used for the separation. It has been found that regeneration of the zeolite membrane as the separation membrane can be performed more satisfactorily by using. Thus, the present invention has been completed.
  • the separation device of the present invention is A membrane separation unit comprising a zeolite membrane that selectively permeates carbon dioxide; A gas to be treated containing hydrocarbon-based combustible gas and carbon dioxide is supplied to the membrane separation unit, and a permeate gas that has permeated the zeolite membrane and a non-permeate gas that has not permeated the zeolite membrane are separated and recovered.
  • the reproduction method of the present invention includes: A membrane separation part equipped with a zeolite membrane that selectively permeates carbon dioxide, and a permeate gas that supplies a gas to be treated containing hydrocarbon combustible gas and carbon dioxide to the membrane separation part and permeates the zeolite membrane. And a separation path for separating and recovering the non-permeate gas that has not permeated the zeolite membrane, and a regeneration method for regenerating the zeolite membrane in a separation device comprising: A regeneration step of regenerating the zeolite membrane by supplying a regeneration gas containing heated air to the membrane separation unit; Is included.
  • the regeneration of the separation membrane used for gas separation can be performed better.
  • the reason why such an effect can be obtained is assumed as follows. That is, since the separation membrane used for gas separation is a zeolite membrane, it has higher heat resistance than an organic membrane and is suitable for regeneration using a regeneration gas containing heated air.
  • a separation membrane used for gas separation does not like cleaning (regeneration) using a liquid, in the present invention, regeneration is performed using a regeneration gas, which is suitable for regeneration of a separation membrane used for gas separation. .
  • the fouling substance is oxidized with a regeneration gas containing heated air and discharged to the outside mainly as carbon dioxide or water vapor.
  • the ring substance and the substances resulting from the ring substance hardly remain on the separation membrane.
  • the separation device since the separation device includes a separation path and a regeneration path, the separation device can perform separation processing and regeneration processing.
  • FIG. 3 is an explanatory diagram showing an outline of the configuration of the separation device 10.
  • FIG. 3 is an explanatory diagram showing an outline of the configuration of a membrane filter 41.
  • FIG. 3 is an explanatory diagram showing a gas flow at the time of membrane separation in the separation apparatus 10.
  • FIG. 3 is an explanatory diagram showing a gas flow during purging in the separation device 10.
  • FIG. 3 is an explanatory diagram showing a gas flow during regeneration in the separation apparatus 10. Explanatory drawing which shows the flow of the gas at the time of the reproduction
  • FIG. FIG. 3 is an explanatory diagram showing an outline of the configuration of a separation device 410.
  • FIG. 3 is an explanatory diagram showing an outline of the configuration of a membrane filter 46.
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of a separation apparatus 10 according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of the configuration of the membrane filter 41.
  • FIG. 3 is an explanatory diagram showing the gas flow during membrane separation in the separation apparatus 10.
  • FIG. 4 is an explanatory diagram showing the gas flow during purging in the separation apparatus 10.
  • FIG. 5 is an explanatory diagram showing the gas flow during regeneration in the separation apparatus 10.
  • the separation apparatus 10 includes a supply path 20 for supplying a gas to be processed, a membrane separation unit 40 including a zeolite membrane 45, a permeate gas recovery path 60 for recovering a permeate gas that has permeated the zeolite membrane 45, and a zeolite membrane 45. And a non-permeate gas recovery path 80 for recovering the non-permeate gas that has not permeated. Further, the separation apparatus 10 has a regeneration function for regenerating the zeolite membrane used for separation on the spot, and includes a regeneration path 100 for performing a regeneration process, and a purge path 120 for purging the membrane separation unit 40 before and after the regeneration. And.
  • the supply path 20 includes a pre-processing unit 22 that pre-processes the raw gas supplied from the outside to obtain a processing target gas, and a heat exchanger that heats the processing target gas to a temperature suitable for membrane separation in the membrane separation unit 40. 24.
  • the supply path 20 includes valves 21 and 23 that adjust the flow of gas flowing through the supply path 20.
  • the gas to be treated includes hydrocarbon combustible gas (hereinafter also simply referred to as combustible gas) and carbon dioxide (hereinafter also referred to as carbon dioxide gas).
  • the flammable gas examples include saturated hydrocarbons such as methane, ethane, propane, and butane, unsaturated hydrocarbons such as ethylene, propylene, and butylene, and aromatic hydrocarbons such as benzene, toluene, and xylene.
  • saturated hydrocarbons such as methane, ethane, propane, ethylene, propylene and the like
  • aromatic hydrocarbons such as benzene, toluene, and xylene.
  • methane, ethane, propane, ethylene, propylene and the like are preferable. This is because when the number of carbon atoms in the hydrocarbon is 6 or more, it is difficult to be a gas body at normal temperature, and hydrocarbons having 5 or less carbon atoms are preferable.
  • the concentration of the combustible gas in the gas to be treated can be, for example, in the range of 20% by volume to 99% by volume.
  • the concentration of carbon dioxide in the gas to be treated can be set in a range of 1% by volume to 80% by volume, for example.
  • the pretreatment unit 22 is configured to perform a process of mainly reducing liquid hydrocarbons having 6 or more carbon atoms in the hydrocarbons contained in the raw gas.
  • the heat exchanger 24 is provided with a combustion gas passage 38 through which a high-temperature combustion gas combusted by mixing air and fuel in the combustion furnace 30 flows. In the heat exchanger 24, the processing target gas is heated to a temperature suitable for membrane separation by heat exchange between the high-temperature combustion gas flowing through the combustion gas path 38 and the processing target gas flowing through the supply path 20.
  • a non-permeate gas containing a hydrocarbon-based combustible gas is used as the fuel.
  • the non-permeating gas used as the fuel preferably contains 50% by volume or more of hydrocarbon-based combustible gas, more preferably 85% by volume or more (the same applies hereinafter).
  • the temperature (separation temperature) suitable for membrane separation is preferably 0 ° C. or higher and 150 ° C. or lower, and more preferably 20 ° C. or higher and 60 ° C. or lower.
  • Membrane separation is performed by adsorption of gas to the membrane and diffusion in the pores of the membrane. Adsorption is preferably at a low temperature, and diffusion is preferably at a high temperature. Therefore, there is an optimum temperature for membrane separation, and at such temperature, the efficiency of membrane separation is good.
  • the separation temperature may be the temperature of the gas to be treated immediately after being heated by the heat exchanger 24, or may be a temperature measured by a temperature sensor (not shown) provided in the membrane separation unit 40.
  • the supply flow rate of the gas to be processed to the membrane separation unit 40 is preferably adjusted so that the gas flow rate on the membrane surface is 0.5 m / s or more and 5 m / s or less. This is because when the flow rate is slow, gas mixing becomes poor and concentration polarization where non-permeate gas stays on the membrane surface may occur, resulting in poor separation performance. This is because it may become large.
  • the membrane separation unit 40 includes a membrane filter 41 on which a zeolite membrane 45 (see FIG. 2) that selectively transmits carbon dioxide is formed, and membrane filters 41B to 41D configured in the same manner as the membrane filter 41.
  • the membrane filter 41 is provided with a porous substrate 44 as a substrate for forming a plurality of cells 42 that serve as flow paths for the gas to be processed, and an inner surface of the porous substrate 44.
  • a zeolite membrane 45 having a function of separating the target gas.
  • a permeated gas for example, carbon dioxide
  • a permeated gas having a molecular size that can permeate the zeolite membrane 45 passes through the zeolite membrane 45 and the porous substrate 44. The light passes through and is sent out from the side surface of the membrane filter 41.
  • a non-permeating gas for example, a hydrocarbon-based combustible gas
  • a non-permeating gas that cannot permeate the zeolite membrane 45 flows along the flow path of the cell 42 and is sent out from the outlet side of the cell 42.
  • the membrane filters 41, 41B to 41D are arranged vertically so that the longitudinal direction of the cell 42 coincides with the vertical direction, that is, the gas flows in the vertical direction. Note that the vertical direction does not need to exactly coincide with the vertical line, and may be inclined within a range of 10 ° (preferably within 5 °, more preferably within 3 °) with respect to the vertical line, for example.
  • the membrane filters 41, 41B to 41D are connected in series via the connection paths 50B, 50C, 50D.
  • connection path 50C includes a valve 51 that adjusts the flow of gas flowing through the connection path 50C.
  • the porous substrate 44 may have a monolithic structure including a plurality of cells 42 or may have a tubular structure including a single cell.
  • the external shape is not particularly limited, it can be a cylindrical shape, an elliptical column shape, a quadrangular column shape, a hexagonal column shape, or the like.
  • the porous substrate 44 may be a tube having a polygonal cross section.
  • the porous substrate 44 may have a multilayer structure of two or more layers in which fine grain portions 44b having small pore diameters are formed on the surface of coarse grain portions 44a having large pore diameters.
  • the pore diameter of the coarse particle portion 44a can be set to, for example, about 0.1 ⁇ m to several hundred ⁇ m.
  • the pore diameter of the fine-grained portion 44b only needs to be smaller than the pore diameter of the coarse-grained portion 44a.
  • the pore diameter can be about 0.001 to 1 ⁇ m.
  • the permeation resistance of the porous substrate 44 can be reduced.
  • the material constituting the porous substrate 44 include alumina ( ⁇ -alumina, ⁇ -alumina, anodized alumina, etc.), ceramics such as zirconia, metals such as stainless steel, and the like. From the viewpoint of easiness, alumina is preferable.
  • Alumina is preferably molded and sintered using alumina particles having an average particle size of 0.001 to 30 ⁇ m as a raw material.
  • the zeolite membrane 45 selectively permeates (separates) carbon dioxide from the gas to be treated including hydrocarbon combustible gas and carbon dioxide.
  • “selectively separating carbon dioxide” not only separates and removes carbon dioxide having a purity of 100% from the gas to be treated, but also has a carbon dioxide content compared to the composition of the gas to be treated. It also includes separating out the raised gas. For example, carbon dioxide having a purity of 90% or more and carbon dioxide having a purity of 95% or more may be separated and extracted.
  • the type of the zeolite membrane 45 is not particularly limited as long as it selectively transmits carbon dioxide.
  • LTA A type
  • MFI ZSM-5, silicalite
  • MOR mordenite
  • AFI SSZ-24
  • FER ferrierite
  • FAU FAU
  • DDR deca-dodecacil-3R
  • the zeolite is an oxygen 8-membered ring, and the composition (molar ratio) preferably satisfies SiO 2 / Al 2 O 3 ⁇ 5, and DDR is more preferable.
  • DDR is a crystal whose main component is silica, and its pores are formed by a polyhedron including an oxygen 8-membered ring, and the pore diameter of the oxygen 8-membered ring is 4.4 ⁇ 3.6 mm.
  • the DDR type zeolite membrane is mainly composed of silica, and has a high SiO 2 / Al 2 O 3 molar ratio (hereinafter also referred to as silica-alumina ratio) (eg, 200 or more, preferably infinite), and therefore has excellent acid resistance. Yes.
  • A-type zeolite has a silica-alumina ratio of about 2, and the content of alumina is high, so that the acid resistance is lower than that of DDR-type zeolite.
  • the T-type zeolite has a slightly higher silica content than the A-type, but has a lower acid resistance than the DDR-type zeolite because the silica-alumina ratio is as low as 6-8.
  • MOR type zeolite has a higher silica content, but its acid resistance is lower than DDR type zeolite because the silica / alumina ratio is about 40 or less.
  • the DDR type zeolite membrane since the DDR type zeolite membrane has high acid resistance, it is also suitable for treatment of acidic gas.
  • the DDR type zeolite membrane has high water resistance, unlike the A type zeolite membrane that selectively permeates water due to its strong hydrophilicity. For this reason, it is also resistant to water vapor and the like. Further, since the DDR type zeolite membrane has a high silica-alumina ratio, the organic solvent resistance, alkali resistance, and heat resistance are high.
  • the manufacturing method of the DDR type zeolite membrane is not particularly limited as long as a dense DDR type zeolite membrane can be formed.
  • the content ratio of 1-adamantanamine and silica (1-adamantanamine / SiO 2 ) in a molar ratio of 0.03 to 0.02 is used as in the method for producing a DDR type zeolite membrane described in JP-A No. 2003-159518.
  • the thickness of the zeolite membrane 45 is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness can be measured, for example, with a scanning electron microscope.
  • the zeolite membrane 45 and the porous base material 44 provide a supply side space in which the gas to be treated flows and a permeation side space in which the permeated gas separated from the membrane filter 41 to the permeate gas recovery path 60 flows. It is separated.
  • the membrane separation part 40 it is necessary to provide a differential pressure between the supply path 20 and the permeate gas recovery path 60 (permeation side space), and at least 0.1 MPa or more is required. If the supply path 20 is a gas having pressure, the permeate gas recovery path may be equal to or lower than the pressure of the supply path 20.
  • the permeate gas recovery path 60 is depressurized to transmit permeate gas (carbon dioxide) from the cell 42 to the permeate gas recovery path 60 side through the zeolite membrane 45 and send it out.
  • the degree of vacuum (secondary pressure) in the transmission side space is preferably 1.3 kPa (10 Torr) or more and 13 kPa (100 Torr) or less.
  • the concentration of the hydrocarbon-based combustible gas contained in the separation gas is preferably 10% or less, more preferably 5% or less, and further preferably 1% or less.
  • the non-permeate gas that has not permeated the zeolite membrane 45 in the membrane separation unit 40 is sent to the non-permeate gas recovery path 80.
  • the permeated gas recovery path 60 includes an individual recovery path 62, 62B-62D connected to the permeate side of the membrane filters 41, 41B-41D, and a concentrated recovery path through which permeated gas flowing through the individual recovery paths 62, 62B-62D flows. 64.
  • the concentrated recovery path 64 includes a valve 61 that adjusts the flow of gas that flows through the permeate gas recovery path 60 and a permeate gas recovery tank 70 that recovers the permeate gas that flows through the permeate gas recovery path 60.
  • An extraction path 72 for extracting the permeated gas is connected to the permeated gas recovery tank 70, and the extraction path 72 includes a valve 71. The valve 71 is opened when the permeate gas is recovered from the permeate gas recovery tank 70, and is closed otherwise.
  • the non-permeate gas recovery path 80 is connected to the membrane filter 41D, and includes a valve 81 that adjusts the flow of gas flowing through the non-permeate gas recovery path 80, a purification unit 82 that performs a purification process of the non-permeate gas, A non-permeate gas recovery tank 90 that recovers the non-permeate gas flowing through the permeate gas recovery path 80.
  • the purification unit 82 purifies the non-permeating gas by removing residual CO 2 or removing residual moisture, mercury, or the like by, for example, a wet absorption method or an adsorption method.
  • a non-permeate gas recovery tank 90 is connected to a take-out path 92 for taking out the non-permeate gas, and the take-out path 92 includes a valve 91.
  • the valve 91 is opened when the non-permeate gas is recovered from the non-permeate gas recovery tank 90, and is closed otherwise.
  • the regeneration path 100 includes a concentrated supply path 102 for supplying regeneration gas, and individual supply paths 104, 104B to 104D branched from the concentrated supply path 102 and connected to the lower portions of the membrane filters 41, 41B to 41D. Yes. Further, the individual discharge paths 106, 106B to 106D connected to the upper parts of the membrane filters 41, 41B to 41D, the concentrated discharge path 108B into which the regeneration gas flowing through the individual discharge paths 106 and 106B flows, and the individual discharge paths 106C, And a concentrated discharge path 108D through which the regeneration gas flowing through 106D flows.
  • a part of the concentrated supply path 102 is in common with a part of the supply path 20, and a regenerative air fan (corresponding to the air introduction path of the present invention) 110 that introduces air and a gas flow that flows through the regeneration path 100.
  • a heat exchanger 24 that heats the air to generate a regeneration gas having a temperature suitable for regeneration of the zeolite membrane 45.
  • the temperature suitable for regeneration of the zeolite membrane 45 (regeneration temperature) is preferably 150 ° C. or higher and 500 ° C. or lower, more preferably 200 ° C. or higher and 450 ° C. or lower, and further preferably 380 ° C. or higher and 400 ° C. or lower.
  • the regeneration temperature may be the temperature of the regeneration gas immediately after being heated by the heat exchanger 24, or may be a temperature measured by a temperature sensor (not shown) provided in the membrane separation unit 40.
  • the supply flow rate of the regeneration gas to the membrane separation unit 40 is preferably adjusted so that the flow rate on the membrane surface is 0.1 m / s or more and 1 m / s or less.
  • the individual supply path 104 is common with a part of the supply path 20, the individual supply paths 104B and 104C are common with a part of the connection path 50C, and the individual supply path 104D is a part of the non-permeate gas recovery path 80. And in common.
  • the individual supply paths 104, 104B to 104D include valves 105B to 105D, respectively.
  • the individual discharge paths 106 and 106B are common to a part of the connection path 50B, and the individual discharge paths 106C and 106D are common to a part of the connection path 50D.
  • the concentrated discharge paths 108B and 108D are provided with valves 107B and 107D, respectively.
  • the purge path 120 includes a concentrated supply path 122 for supplying purge gas, individual supply paths 104, 104B to 104D branched from the concentrated supply path 122, individual discharge paths 106, 106B to 106D, concentrated discharge paths 108B and 108C, It has. Of these, the parts other than the concentrated supply path 122 are the same as those in the regeneration path 100, and thus the description thereof is omitted.
  • the central supply path 122 is connected to the permeate gas recovery tank 70, a purge fan 124 that sends permeate gas as purge gas from the permeate gas recovery tank 70 to the membrane separation unit 40, and a valve 121 that adjusts the gas flow in the purge path 120. , 103.
  • the concentrated supply path 122 uses a part of the concentrated supply path 102 in the regeneration path 100.
  • the permeated gas as the purge gas preferably contains 90% by volume or more of carbon dioxide, more preferably 95% by volume or more.
  • This regeneration method is performed after the separation step, and includes a first purge step, a regeneration step, and a second purge step. Below, the case where the separation apparatus 10 is used is demonstrated.
  • the separation step the gas to be processed is separated using a path (separation path 12) indicated by a thick arrow in FIG.
  • the high-temperature combustion gas used in the heat exchanger 24 is supplied using the path indicated by the thin line arrow in FIG.
  • the valves 21, 23, 31, 51, 81, 61 are opened, and the opening and closing of the valves is controlled by a control unit (not shown) connected to each valve so as to close the other valves.
  • the operation of the fan is controlled by a control unit (not shown) connected to each fan so that the air supply fan 32 and the fuel gas fan 34 are operated and the other fans are not operated.
  • the raw gas supplied from the outside flows through the supply path 20, becomes a gas to be processed by membrane treatment in the pretreatment unit 22 in the middle of the supply path 20, and further performs heat exchange in the heat exchanger 24.
  • the temperature is suitable for membrane separation by (heating), and is supplied to the membrane separation unit 40.
  • the gas to be processed flows into the membrane filter 41 from below and flows upward, passes through the connection path 50B, flows into the membrane filter 41B from above, flows downward, passes through the connection path 50C, and passes through the membrane filter 41C.
  • connection path 50D From the lower part and flows upward, passes through the connection path 50D, flows into the membrane filter 41D from the upper part and flows downward, and is sent to the non-permeate gas recovery path 80 as a non-permeate gas containing a large amount of hydrocarbon-based combustible gas. Is done.
  • the sent non-permeate gas is purified by the purification processing unit 82 in the non-permeate gas recovery path 80 and stored in the non-permeate gas recovery tank 90.
  • part of the gas to be treated passes through the zeolite membrane 45 and is sent to the permeate gas recovery path 60 as a permeate gas containing a large amount of carbon dioxide.
  • the transmitted permeate gas flows through the central recovery path 64 through the individual recovery paths 62 and 62B to 62D in the permeate gas recovery path 60, and is stored in the permeate gas recovery tank.
  • a part of the non-permeate gas stored in the non-permeate gas recovery tank 90 is sent as fuel to the combustion furnace 30 via the combustible gas supply path 36.
  • this fuel is mixed with the outside air supplied from the air supply fan 32 and burned to become high-temperature combustion gas.
  • This high-temperature combustion gas flows through the combustion gas path 38 and is used as a heat source for the heat exchanger 24.
  • First purge step In the first purge step, a purge gas containing carbon dioxide is supplied to the membrane separation unit 40 to discharge the gas to be processed from the membrane separation unit 40, thereby purging the membrane separation unit 40.
  • purging of the membrane separation unit 40 is performed using a path (purge path 120) indicated by a thick arrow in FIG.
  • the valve 103, 121, 105B to 105D, 107B, 107D is opened and the opening and closing of the valve is controlled by the above-described control unit connected to each valve so as to close the other valves.
  • the operation of the fan is controlled by the above-described control unit connected to each fan so that the purge fan 124 is operated and the other fans are not operated.
  • a purge fan 124 introduces a part of the permeated gas stored in the permeated gas recovery tank at the time of regeneration as a purge gas, and passes through the concentrated supply path 122 to the individual supply paths 104, 104 B to 104 D. Distribute and flow from the lower part of the membrane filters 41, 41B to 41D and flow upward. The used purge gas that has flowed out from the upper part of the membrane filters 41, 41B to 41D passes through the individual discharge paths 106, 106B to 106D and is discharged from the concentrated discharge paths 108B and 108D.
  • Regeneration process In the regeneration step, a regeneration gas containing heated air is supplied to the membrane separation unit 40 to regenerate the zeolite membrane 45.
  • the zeolite membrane 45 is regenerated using a route (regeneration route 100) indicated by a thick arrow in FIG.
  • the high-temperature combustion gas used in the heat exchanger 24 is supplied using the path indicated by the thin line arrow in FIG.
  • the valves 23, 101, 103, 105B to 105D, 107B, 107D are opened, and the opening and closing of the valves is controlled by the above-described control unit connected to each valve so as to close the other valves.
  • the operation of the fan is controlled by the above-described control unit connected to each fan so that the air supply fan 32, the fuel gas fan 34, and the regeneration air fan 110 are operated and the other fans are not operated.
  • air is introduced from the outside by the regeneration air fan 110, and the air is heated by a heat exchanger provided in the concentrated supply path 102 to be used as regeneration gas.
  • This regeneration gas is distributed to the individual supply paths 104, 104B to 104D, flows in from the lower portions of the membrane filters 41, 41B to 41D, and flows upward.
  • the used regeneration gas that has flowed out from the upper part of the membrane filters 41, 41B to 41D passes through the individual discharge paths 106, 106B to 106D and is discharged from the concentrated discharge paths 108B and 108D.
  • a part of the non-permeate gas stored in the non-permeate gas recovery tank 90 at the time of membrane separation is sent as fuel to the combustion furnace 30 via the combustible gas supply path 36.
  • This fuel is mixed with the outside air supplied from the air supply fan 32 in the combustion furnace 30 and burned to become high-temperature combustion gas.
  • This high-temperature combustion gas flows through the combustion gas path 38 and is used as a heat source for the heat exchanger 24.
  • a purge gas containing carbon dioxide is supplied to the membrane separation unit 40, the regeneration gas is discharged from the membrane separation unit 40, and the membrane separation unit 40 is purged.
  • purging of the membrane separation unit 40 is performed using a path (purge path 120) indicated by a thick arrow in FIG. Since the specific process is the same as the first purge process, the description thereof is omitted.
  • the separation membrane used for gas separation can be more regenerated.
  • the reason why such an effect can be obtained is assumed as follows. That is, since the zeolite membrane 45 is used as a separation membrane, it has higher heat resistance than an organic membrane and is suitable for regeneration using a regeneration gas containing heated air.
  • a separation membrane used for gas separation does not like cleaning (regeneration) using a liquid, in the present invention, regeneration is performed using a regeneration gas, which is suitable for regeneration of a separation membrane used for gas separation. .
  • the fouling substance is oxidized with a regeneration gas containing heated air and discharged to the outside mainly as carbon dioxide or water vapor.
  • the ring substance and the substances resulting from the ring substance hardly remain on the separation membrane.
  • the separation apparatus 10 since the separation apparatus 10 includes the separation path 12 and the regeneration path 100, the separation apparatus 10 can perform the separation process and the regeneration process. Further, since the regeneration gas containing heated air is supplied to the membrane separation unit 40 (zeolite membrane 45), it is not necessary to provide a heating device or the like in the membrane separation unit.
  • the separation device 10 since the separation device 10 includes the regeneration path 100, the zeolite membrane 45 can be regenerated on-site while being incorporated in the separation device 10, so that the trouble of replacing the membrane filter can be saved, and the cost can be reduced. Can be reduced.
  • the purge path 120 is provided and the first purge process is performed between the separation process and the regeneration process, the amount of hydrocarbon combustible gas in the regeneration path or the like is zero or small during regeneration, and heating during regeneration is performed. And ignition can be further suppressed.
  • the amount of oxygen in the separation path 12 or the like is zero or small at the time of separation, and overheating and ignition during separation are prevented. It can be suppressed more.
  • the heat exchanger 24 since the high-temperature combustion gas obtained by using the non-permeated fluid obtained by membrane separation as a fuel is used as a heat source, it is not necessary to prepare fuel separately.
  • the permeated fluid obtained by membrane separation is used as the purge gas, it is not necessary to prepare a purge gas separately.
  • the membrane filters 41, 41B to 41D are connected in series, the concentration of carbon dioxide contained in the non-permeable gas can be further reduced.
  • the membrane filters 41 and 41B to 41D are connected in parallel in the regeneration path and the purge path, regeneration and purge of the membrane filters 41 and 41B to 41D can be performed simultaneously under the same conditions, which is efficient.
  • the regeneration path and the purge path are common except for the concentrated supply paths 102 and 122, the regeneration path can be efficiently purged.
  • the membrane filters 41, 41B to 41D are arranged vertically so that the gas flows in the vertical direction, and a purge gas containing carbon dioxide is allowed to flow from below the membrane filters 41, 41B to D in the purge path.
  • the carbon dioxide contained in the purge gas easily pushes air or hydrocarbon-based combustible gas, which is lighter than carbon dioxide, to the upper part of the membrane filters 41, 41B to D. Further, by periodically regenerating, the period until the replacement of the membrane filter can be made longer than that of, for example, the organic membrane, and the cost can be reduced.
  • the separation apparatus 10 includes the purge path 120, but the purge path 120 may not be included.
  • the regeneration method includes the first purge process, the regeneration process, and the second purge process. However, the regeneration method may not include the first purge process, or may not include the second purge process. However, both the first purge process and the second purge process may not be included.
  • a part of the permeate gas stored in the permeate gas recovery tank 70 is used as the purge gas. However, a separately prepared purge gas may be used.
  • the heat introduced from the regenerative air fan 110 is regenerated by heat exchange with the high-temperature combustion gas obtained by burning the combustible gas in the combustion furnace 30 in the heat exchanger 24.
  • the present invention is not limited to this.
  • high-temperature combustion gas obtained in the combustion furnace 30 may be supplied as a regeneration gas.
  • a part of the non-permeate gas stored in the non-permeate gas recovery tank 90 is used as fuel in the combustion furnace 30, but a separately prepared hydrocarbon-based combustible gas is used as fuel. Also good.
  • the separation apparatus 10 is configured such that the membrane filters 41 and 41B to 41D are connected in series in the separation path 12, and are connected in parallel in the regeneration path and the purge path.
  • the separation path may be connected in parallel, the regeneration path may be connected in series, or the purge path may be connected in series.
  • FIG. 6 shows the gas flow during regeneration in the separation device 210 in which the membrane filters 41, 41B to 41D are connected in series in the separation path and regeneration path and connected in parallel in the purge path.
  • the same components as those of the separation device 10 are denoted by the same reference numerals and description thereof is omitted.
  • the separation device 210 includes a regeneration gas supply path 302 that supplies the regeneration gas to the membrane filter 41, and a regeneration gas discharge path 250 that branches from between the valve 81 and the purification unit 82 of the non-permeate gas recovery path 80. I have. Further, the recovery path 80 includes a valve 283 between the regeneration gas discharge path 250 and the purification processing unit 82.
  • the regeneration path 300 is connected to the lower part of the membrane filter 41 and supplies a regeneration gas to the membrane filter 41.
  • the regeneration gas supply path 302 connects the membrane filters 41, 41B to 41D in series.
  • a regeneration gas discharge path 250 branched from the non-permeate gas discharge path 80 is connected to the lower part of the membrane filter 41D.
  • a part of the regeneration gas supply path 302 is common with a part of the supply path 20, and includes a regeneration air fan 110 for introducing air, valves 101 and 23 for adjusting the flow of gas flowing through the regeneration path 300, and
  • the heat exchanger 24 is provided that heats the air to generate a regeneration gas having a temperature suitable for regeneration of the zeolite membrane 45.
  • the separation apparatus 210 configured in this way, during regeneration, the zeolite membrane 45 is regenerated using the path indicated by the thick arrow in FIG. At this time, the high-temperature combustion gas used in the heat exchanger 24 is supplied using the path indicated by the thin line arrows in FIG.
  • the separation device 10 includes four membrane filters 41, 41B to 41D.
  • the number of membrane filters may be one, two or three, and five or more. But you can.
  • FIG. 7 shows a separation device 410 having one membrane filter.
  • the separation device 410 is configured in the same manner as the separation device 10 except that the membrane separation unit 440 includes only one membrane filter 41 as a membrane filter and a path connecting to the membrane filters 41B to 41D is omitted. .
  • the separation apparatus 10 includes the membrane filter 41 and the membrane filters 41B to 41D configured similarly to the membrane filter 41, but instead of these, the membrane filter 46 and the membrane filter 46 are the same. It is good also as a thing provided with the membrane filter comprised in this.
  • the membrane filter 46 the same components as those of the membrane filter 41 are denoted by the same reference numerals and description thereof is omitted.
  • the membrane filter 46 includes a slit 47 that passes through the membrane filter 46 in a direction perpendicular to the longitudinal direction and communicates a plurality of cells 42 arranged in a row.
  • the cell 42 connected to the slit 47 has plugging materials 48 formed at both ends thereof.
  • permeating gas for example, carbon dioxide
  • a non-permeating gas for example, a hydrocarbon-based combustible gas
  • the supply path 20 includes the preprocessing unit. However, the supply path 20 may not include the preprocessing unit. In addition, the supply path 20 includes the heat exchanger 24, but the heat exchange base 24 may not be included, and a heater or the like may be used instead of the heat exchanger 24. In the above-described embodiment, the non-permeate gas recovery path 80 includes the purification processing unit 82. However, the purification processing unit 82 may not be provided.
  • Example 1 (Production of membrane filter) As a porous substrate, a porous substrate made of alumina in a monolith shape having a diameter of 30 mm and a length of 160 mm was prepared. A DDR type zeolite membrane (permeate vaporization membrane that selectively permeates water) was formed on the surface of the porous substrate as described below to produce a membrane filter.
  • a DDR type zeolite membrane permeate vaporization membrane that selectively permeates water
  • ethylenediamine manufactured by Wako Pure Chemical Industries, Ltd.
  • 1-adamantanamine manufactured by Aldrich
  • put 53.87 g of water in a separate beaker add 22.00 g of 30% by mass silica sol (Snowtex S, manufactured by Nissan Chemical Co., Ltd.) and stir lightly, then mix ethylenediamine and 1-adamantanamine. In addition to the wide-mouthed jar, it was shaken vigorously.
  • the film-forming sol had a 1-adamantanamine / silica ratio of 0.0589, a water / silica ratio of 35, and an ethylenediamine / 1-adamantanamine ratio of 16 (all in molar ratio). Three film-forming sols were prepared.
  • DDR type zeolite fine powder was applied to the porous base material and placed in a stainless steel pressure vessel with a fluororesin inner cylinder. Thereafter, the film-forming sol was poured into a pressure-resistant container and subjected to heat treatment (hydrothermal synthesis) at 150 ° C. for 16 hours. After the heat treatment, a DDR type zeolite membrane was formed on the surface of the base material. After washing with water and drying, the temperature was raised to 750 ° C. in an electric furnace at a rate of 0.1 ° C./min in the atmosphere, maintained for 4 hours, and then cooled to room temperature at a rate of 1 ° C./min. A new membrane filter was thus obtained.
  • Regeneration process In the separator after the performance degradation, regeneration treatment was performed by supplying heated air at 200 ° C. at 5 L / min for 1 hour. Then, the transmission speed after reproduction was determined in the same manner as described above. This transmission rate was 98 when the new transmission rate was normalized by 100.
  • Example 2 In the regeneration step, the permeation speed after regeneration was determined in the same manner as in Example 1 except that the regeneration treatment was performed by supplying heated air at 380 ° C. at 5 L / min for 1 hour. This transmission rate was 100 when the new transmission rate was normalized by 100.
  • Example 3 For the separation apparatus that was subjected to the regeneration process in Example 2, the second purge step similar to the first purge step was performed. Subsequently, a second separation step, a first purge step, a regeneration step, and a second purge step were performed under the same conditions as in the steps of Example 2. Furthermore, the third separation step, the first purge step, and the regeneration step were performed under the same conditions as in the steps of Example 2. And after finishing each separation process and the regeneration process, the permeation speed was determined. When the new transmission rate is normalized by 100, the transmission rate after the second separation step is 32, the transmission rate after the second regeneration step is 100, and the transmission rate after the third separation step is 14 And the transmission rate after the third regeneration step was 100.
  • Example 2 In each of Examples 1 to 3, it was found that the permeation speed can be returned to the same level as that of a new article by the regeneration process. Among these, the transmission rate of Example 2 regenerated at 380 ° C. was closer to that of the new product than Example 1 regenerated at 200 ° C. From this, it was found that the regeneration temperature is preferably 200 ° C. or higher, and more preferably 380 ° C. or higher.
  • the present invention can be used in the field of separating mixed gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 分離装置10は、処理対象ガスを供給する供給経路20と、ゼオライト膜45を備えた膜分離部40と、ゼオライト膜45を透過した透過ガスを回収する透過ガス回収経路60と、ゼオライト膜45を透過しなかった非透過ガスを回収する非透過ガス回収経路80と、を備えている。この分離装置10は、分離に用いたゼオライト膜をその場で再生する再生機能を有しており、再生処理を行う再生経路100を備えている。ゼオライト膜45は二酸化炭素を選択的に透過するものである。また、処理対象ガスは炭化水素系可燃性ガスと二酸化炭素とを含むものである。再生経路100では、加熱空気を含む再生用ガスを供給してゼオライト膜45を再生する。

Description

分離装置及び再生方法
 本発明は、分離装置及び再生方法に関する。
 従来、複数の成分を含有する組成物から所定の成分を選択的に分離するために、分離膜を使用することが知られている(非特許文献1、特許文献1~4参照)。例えば、非特許文献1に記載されているように、天然ガスの精製方法の一つとして、メタンよりも二酸化炭素を選択的に透過する有機物質を主成分とする分離膜を使用する方法が知られている。また、例えば、特許文献1では、天然ガス等の特定の2種以上のガス成分を含有する混合ガスから1種以上の特定のガス成分を分離することが可能なDDR型ゼオライト膜が提案されている。また、特許文献2では、下水汚泥から発生するメタンを含む消化ガスから、DDR型ゼオライト膜を用い、炭酸ガスを分離除去してメタンガスを濃縮することが提案されている。
 ところで、セラミックフィルターなどの分離膜は、使用により次第にファウリング物質が堆積し、分離性能が低下してしまう。そこで、分離性能を回復させるために所定の時期に洗浄処理が行われる。洗浄の方法としては、洗浄用の液体にセラミックフィルターをつける方法や、洗浄用の気体や液体をセラミックフィルター内に流す方法、いわゆる逆洗による方法などが知られている。また、特許文献3では、セラミックフィルターの洗浄に必要な作業時間を短縮し得る洗浄方法として、セラミックフィルターの一次側の空間に洗浄用媒体を供給しながら、二次側の空間を減圧することによって、セラミックフィルターに洗浄用媒体を通すことが提案されている。また、特許文献4では、水に曝露された後のゼオライト膜を再生する簡易な方法として、ゼオライト膜を大気炉にて所定の温度で加熱することが提案されている。
特開2004-105942号公報 特許第4803990号 国際公開第2012/147534号 国際公開第2014/069630号
W.M. Meier, D.H. Olson, Ch. Baerlocher, Atlas of zeolite structure types, Elsevier(1996)
 しかしながら、非特許文献1や特許文献1,2では、分離膜の再生については検討されていなかった。また、特許文献3では、浸透気化法による水とイソプロピルアルコールとの混合物の分離に用いた分離膜の分離性能を回復させる方法について検討されているが、ガス分離に用いた分離膜の再生に関して、具体的な検討などはなされていなかった。特許文献4では、ガス分離に用いるゼオライト膜の再生について検討されているが、ゼオライト膜を加熱する大気炉が別途必要であるし、ゼオライト膜を大気炉に移動する必要があった。特に、膜本数が数千本などと多くなると相応の大きさの大気炉が必要であったり、ゼオライト膜を大気炉へ移動する工数が多くなり、非効率的であるなどの問題があった。
 本発明はこのような課題を解決するためになされたものであり、ガス分離に用いた分離膜の再生をより良好に行うことのできる分離装置及び再生方法を提供することを主目的とする。
 上述の主目的を達成するために本発明者らは鋭意研究した。そして、炭化水素系可燃性ガスと二酸化炭素とを含む処理対象ガスを二酸化炭素を選択的に透過するゼオライト膜を用いて分離し、分離に用いたゼオライト膜の再生に加熱空気を含む再生用ガスを用いると、分離膜であるゼオライト膜の再生をより良好に行うことができることを見いだした。こうして、本発明を完成するに至った。
 すなわち、本発明の分離装置は、
 二酸化炭素を選択的に透過するゼオライト膜を備えた膜分離部と、
 前記膜分離部に炭化水素系可燃性ガスと二酸化炭素とを含む処理対象ガスを供給し、前記ゼオライト膜を透過した透過ガスと前記ゼオライト膜を透過しなかった非透過ガスとを分離して回収する分離経路と、
 前記膜分離部に加熱空気を含む再生用ガスを供給して前記ゼオライト膜を再生する再生経路と、
 を備えたものである。
 本発明の再生方法は、
 二酸化炭素を選択的に透過するゼオライト膜を備えた膜分離部と、前記膜分離部に炭化水素系可燃性ガスと二酸化炭素とを含む処理対象ガスを供給し、前記ゼオライト膜を透過した透過ガスと前記ゼオライト膜を透過しなかった非透過ガスとを分離して回収する分離経路と、を備えた分離装置において前記ゼオライト膜を再生する再生方法であって、
 前記膜分離部に加熱空気を含む再生用ガスを供給して前記ゼオライト膜を再生する再生工程、
 を含むものである。
 本発明の分離装置及び再生方法では、ガス分離に用いた分離膜の再生をより良好に行うことができる。こうした効果が得られる理由は、以下のように推察される。すなわち、ガス分離に用いる分離膜は、ゼオライト膜であるため、有機膜よりも耐熱性が高く、加熱空気を含む再生用ガスを用いた再生に適している。また、ガス分離用途に用いる分離膜は、液体を用いた洗浄(再生)を好まないが、本発明では再生用ガスを用いて再生するため、ガス分離に用いた分離膜の再生に適している。また、処理対象ガスが炭化水素系可燃性ガスと二酸化炭素とを含むものであるため、ファウリング物質は、加熱空気を含む再生用ガスで酸化されて主に炭酸ガスや水蒸気として外部へ排出され、ファウリング物質やそれに起因する物質が分離膜に残りにくい。また、分離装置は分離経路と再生経路とを備えているため、分離装置で分離処理と再生処理とを行うことができる。
分離装置10の構成の概略を示す説明図。 膜フィルタ41の構成の概略を示す説明図。 分離装置10での膜分離時のガスの流れを示す説明図。 分離装置10でのパージ時のガスの流れを示す説明図。 分離装置10での再生時のガスの流れを示す説明図。 分離装置210での再生時のガスの流れを示す説明図。 分離装置410の構成の概略を示す説明図。 膜フィルタ46の構成の概略を示す説明図。
 次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の一実施形態である分離装置10の構成の概略を示す説明図である。図2は、膜フィルタ41の構成の概略を示す説明図である。図3は、分離装置10での膜分離時のガスの流れを示す説明図である。図4は、分離装置10でのパージ時のガスの流れを示す説明図である。図5は、分離装置10での再生時のガスの流れを示す説明図である。
(分離装置)
 分離装置10は、処理対象ガスを供給する供給経路20と、ゼオライト膜45を備えた膜分離部40と、ゼオライト膜45を透過した透過ガスを回収する透過ガス回収経路60と、ゼオライト膜45を透過しなかった非透過ガスを回収する非透過ガス回収経路80と、を備えている。また、分離装置10は、分離に用いたゼオライト膜をその場で再生する再生機能を有しており、再生処理を行う再生経路100と、再生前後に膜分離部40のパージを行うパージ経路120とを備えている。
 供給経路20は、外部から供給された原ガスの前処理を行い処理対象ガスを得る前処理部22と、処理対象ガスを膜分離部40での膜分離に適した温度に加熱する熱交換器24とを備えている。また、供給経路20は、供給経路20を流通するガスの流れを調整するバルブ21,23を備えている。処理対象ガスは、炭化水素系可燃性ガス(以下単に可燃性ガスとも称する)と二酸化炭素(以下炭酸ガスとも称する)とを含むものである。可燃性ガスとしては、例えば、メタン、エタン、プロパン、ブタンなどの飽和炭化水素や、エチレン、プロピレン、ブチレンなどの不飽和炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素などが挙げられ、このうち、メタン、エタン、プロパン、エチレン、プロピレンなどが好ましい。炭化水素中の炭素数が6以上になると常温においてガス体であることが難しく炭素数が5以下の炭化水素が好ましいからである。処理対象ガスにおける可燃性ガスの濃度は、例えば、20体積%以上99体積%以下の範囲などとすることができる。また、処理対象ガスにおける二酸化炭素の濃度は、例えば、1体積%以上80体積%以下の範囲などとすることができる。前処理部22は、原ガスに含まれる主として炭化水素中の炭素数が6以上の液体の炭化水素を減じる処理などが行われるように構成されている。熱交換器24には、燃焼炉30において空気と燃料とを混合して燃焼した高温の燃焼ガスが流通する燃焼ガス経路38が配設されている。熱交換器24では、燃焼ガス経路38を流通する高温の燃焼ガスと供給経路20を流通する処理対象ガスとの熱交換によって、処理対象ガスを膜分離に適した温度に加熱する。燃焼炉30には、外気を導入する送気ファン32と、後述する非透過ガス回収タンク90に接続されバルブ31及び燃料ガスファン34を備えた可燃性ガス供給経路36と、が接続されており、炭化水素系可燃性ガスを含む非透過ガスが燃料として用いられる。燃料として用いられる非透過ガスは、炭化水素系可燃性ガスを50体積%以上含むことが好ましく、85体積%以上含むことがより好ましい(以下同様)。膜分離に適した温度(分離温度)としては、0℃以上150℃以下が好ましく、20℃以上60℃以下がより好ましい。膜分離はガスの膜への吸着と膜細孔内拡散によって行われる。吸着は温度が低いことが好ましく、拡散は温度が高い方が好ましい。従って膜分離に至適な温度が有り、こうした温度では、膜分離の効率が良いからである。なお、分離温度は、熱交換器24で加熱した直後の処理対象ガスの温度としてもよいし、膜分離部40に設けられた図示しない温度センサで測定した温度としてもよい。膜分離部40への処理対象ガスの供給流量速度は、膜表面のガス流速が0.5m/s以上5m/s以下となるように調整することが好ましい。これは流速が遅い場合はガスの混合が悪くなり膜表面に非透過ガスが滞留する濃度分極が生じ分離性能が低下することがあり、一方流速が早いと膜を流れる非透過ガスの圧力損失が大きくなることがあるからである。
 膜分離部40は、二酸化炭素を選択的に透過させるゼオライト膜45(図2参照)が形成された膜フィルタ41及び、膜フィルタ41と同様に構成された膜フィルタ41B~Dを備えている。膜フィルタ41は、図2に示すように、処理対象ガスの流路となる複数のセル42を形成する基材としての多孔質基材44と、多孔質基材44の内表面に設けられ処理対象ガスの分離機能を有するゼオライト膜45とを備えている。このように、ゼオライト膜45が多孔質基材44の表面に形成されることにより、ゼオライト膜45を薄膜としても、多孔質基材44に支えられてその形状を維持し破損等を防止することができる。この膜フィルタ41では、入口側からセル42へ入った処理対象ガスのうち、ゼオライト膜45を透過可能な分子サイズを有する透過ガス(例えば二酸化炭素)が、ゼオライト膜45及び多孔質基材44を透過し、膜フィルタ41の側面から送出される。一方、ゼオライト膜45を透過できない非透過ガス(例えば炭化水素系可燃性ガス)は、セル42の流路に沿って流通し、セル42の出口側から送出される。膜フィルタ41,41B~41Dは、セル42の長手方向が鉛直方向と一致するように、すなわち、ガスが鉛直方向に流れるように縦型に配設されている。なお、鉛直方向は、鉛直線と厳密に一致する必要はなく、例えば、鉛直線に対して10°以内(好ましくは5°以内、更に好ましくは3°以内)の範囲等で傾いていてもよい。また、膜フィルタ41,41B~41Dは、接続経路50B,50C,50Dを介して、直列に接続されている。具体的には、膜フィルタ41,41B,41Cの出口側と、膜フィルタ41B,41C,41Dの入り口側とが、それぞれ接続経路50B,50C,50Dを介して接続されている。接続経路50Cは、接続経路50Cを流通するガスの流れを調整するバルブ51を備えている。
 多孔質基材44は、複数のセル42を備えたモノリス構造を有しているものとしてもよいし、1つのセルを備えたチューブラー構造を有しているものとしてもよい。その外形は、特に限定されないが、円柱状、楕円柱状、四角柱状、六角柱状などの形状とすることができる。あるいは、多孔質基材44は、断面多角形の管状としてもよい。この多孔質基材44は、気孔径の大きな粗粒部44aの表面に気孔径の小さな細粒部44bが形成された二層以上の多層構造を有しているものとしてもよい。粗粒部44aの気孔径は、例えば、0.1μm~数100μm程度とすることができる。細粒部44bの気孔径は、粗粒部44aの気孔径に比して小さければよく、例えば、気孔径が0.001~1μm程度のものとすることができる。こうすれば、多孔質基材44の透過抵抗を低減することができる。多孔質基材44を構成する材料としては、アルミナ(α-アルミナ、γ-アルミナ、陽極酸化アルミナ等)、ジルコニア等のセラミックスやステンレスなどの金属等を挙げることができ、基材の作製、入手の容易さの点から、アルミナが好ましい。アルミナとしては、平均粒径0.001~30μmのアルミナ粒子を原料として成形、焼結させたものが好ましい。
 ゼオライト膜45は、炭化水素系可燃性ガス及び二酸化炭素を含む処理対象ガスから二酸化炭素を選択的に透過(分離)するものである。ここで、「二酸化炭素を選択的に分離する」とは、処理対象ガスから純度100%の二酸化炭素を分離して取り出すだけでなく、処理対象ガスの組成と比較して二酸化炭素の含有率が高くなったガスを分離して取り出すことも含む。例えば、純度90%以上の二酸化炭素や純度95%以上の二酸化炭素を分離して取り出すものとしてもよい。
 ゼオライト膜45の種類は、二酸化炭素を選択的に透過するものであれば特に限定されない。ゼオライトは、その結晶構造により、LTA(A型)、MFI(ZSM-5、シリカライト)、MOR(モルデナイト)、AFI(SSZ-24)、FER(フェリエライト)、FAU(X型、T型)、DDR(デカ-ドデカシル-3R)といった数多くの種類が存在する。ゼオライトは、酸素8員環であり、かつ、組成(モル比)がSiO2/Al23≧5を満たすことが好ましく、DDRがより好ましい。DDRは、主成分がシリカからなる結晶であり、その細孔は酸素8員環を含む多面体によって形成されているとともに、酸素8員環の細孔径は4.4×3.6Åであることが知られている。DDR型ゼオライト膜は、主成分がシリカであり、SiO2/Al23のモル比率(以下シリカアルミナ比とも称する)が大きい(例えば200以上、好ましくは無限大)ため、耐酸性に優れている。耐酸性に関しては、例えばA型ゼオライトは、シリカアルミナ比が約2であり、アルミナの含有率が高いため、DDR型ゼオライトより耐酸性が低い。T型ゼオライトは、A型と比較するとシリカの含有率が若干高いものの、シリカアルミナ比が6~8と低いためDDR型ゼオライトより耐酸性が低い。また、MOR型ゼオライトは、シリカ含有率が更に高いが、シリカ/アルミナ比が40以下程度であるためDDR型ゼオライトより耐酸性が低い。このように、DDR型ゼオライト膜は、耐酸性が高いため、酸性のガスの処理にも適している。また、DDR型ゼオライト膜は、強い親水性により水を選択的に透過させるA型ゼオライト膜などと異なり、耐水性が高い。このため、水蒸気などにも耐性がある。さらに、DDR型ゼオライト膜は、シリカアルミナ比が高いため、耐有機溶剤性、耐アルカリ性、耐熱性が高い。DDR型ゼオライト膜の製造方法は、特に限定されるものではなく、緻密なDDR型ゼオライト膜を形成できればよい。例えば、特開2003-159518号公報に記載のDDR型ゼオライト膜の製造方法のように、1-アダマンタンアミンとシリカとの含有割合(1-アダマンタンアミン/SiO2)がモル比で0.03~0.4、水とシリカとの含有割合(水/SiO2)がモル比で20~500、さらにエチレンジアミンと1-アダマンタンアミンとの含有割合(エチレンジアミン/1-アダマンタンアミン)がモル比で5~32である原料溶液と、種結晶となるDDR型ゼオライト粉末とを用いて、水熱合成することにより形成したものとしてもよい。
 ゼオライト膜45の厚さは、0.01μm以上10μm以下であることが好ましく、1μm以上3μm以下であることがより好ましい。厚さが0.01μm以上では、選択性の低下が抑制され、機械的強度が向上する。一方、厚さが10μm以下では、CO2の透過性の低下を抑制することができる。厚さは、例えば、走査型電子顕微鏡により測定することができる。
 膜分離部40では、処理対象ガスが流通する供給側空間と、膜フィルタ41から透過ガス回収経路60へ分離された透過ガスが流通する透過側空間とにゼオライト膜45及び多孔質基材44により隔てられている。膜分離部40では、供給経路20と透過ガス回収経路60(透過側空間)に差圧を設ける必要があり少なくとも0.1MPa以上が必要である。供給経路20が圧力を有するガスであれば透過ガス回収経路は供給経路20の圧力以下であれば良い。供給経路20が大気圧である場合は透過ガス回収経路60を減圧することにより、セル42からゼオライト膜45を経て透過ガス回収経路60側へ透過ガス(二酸化炭素)を透過し、送出する。このとき、透過側空間の真空度(2次圧)は、1.3kPa(10Torr)以上13kPa(100Torr)以下が好ましい。この分離ガスに含まれる炭化水素系可燃性ガスの濃度は10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。一方、膜分離部40でゼオライト膜45を透過しなかった非透過ガスは、非透過ガス回収経路80に送出される。
 透過ガス回収経路60は、膜フィルタ41,41B~41Dの透過側にそれぞれ接続された個別回収経路62,62B~62Dと、個別回収経路62,62B~62Dを流通した透過ガスが流れ込む集中回収経路64とを備えている。集中回収経路64は、透過ガス回収経路60を流通するガスの流れを調整するバルブ61と、透過ガス回収経路60を流通した透過ガスを回収する透過ガス回収タンク70と、を備えている。透過ガス回収タンク70には、透過ガスを取り出す取出経路72が接続されており、取出経路72はバルブ71を備えている。バルブ71は、透過ガス回収タンク70から透過ガスを回収するときに開かれ、それ以外のときは閉じられている。
 非透過ガス回収経路80は、膜フィルタ41Dに接続されており、非透過ガス回収経路80を流通するガスの流れを調整するバルブ81と、非透過ガスの精製処理を行う精製部82と、非透過ガス回収経路80を流通した非透過ガスを回収する非透過ガス回収タンク90と、を備えている。精製部82では、例えば、湿式吸収法や吸着法により残存CO2を除去したり、残存水分や水銀等を除去するなどにより、非透過ガスを精製する。非透過ガス回収タンク90には、非透過ガスを取り出す取出経路92が接続されており、取出経路92はバルブ91を備えている。バルブ91は、非透過ガス回収タンク90から非透過ガスを回収するときに開かれ、それ以外のときは閉じられている。
 再生経路100は、再生用ガスを供給する集中供給経路102と、集中供給経路102から分岐し膜フィルタ41,41B~41Dの下部に接続された個別供給経路104,104B~104Dと、を備えている。また、膜フィルタ41,41B~41Dの上部に接続された個別排出経路106,106B~106Dと、個別排出経路106,106Bを流通した再生用ガスが流れ込む集中排出経路108Bと、個別排出経路106C,106Dを流通した再生用ガスが流れ込む集中排出経路108Dと、を備えている。集中供給経路102は、その一部が供給経路20の一部と共通しており、空気を導入する再生空気ファン(本発明の空気導入経路に相当)110、再生経路100を流通するガスの流れを調整するバルブ121,23,103及び、空気を加熱してゼオライト膜45の再生に適した温度の再生用ガスとする熱交換器24を備えている。ゼオライト膜45の再生に適した温度(再生温度)としては、150℃以上500℃以下が好ましく、200℃以上450℃以下がより好ましく、380℃以上400℃以下がさらに好ましい。なお、再生温度は、熱交換器24で加熱した直後の再生用ガスの温度としてもよいし、膜分離部40に設けられた図示しない温度センサで測定した温度としてもよい。膜分離部40への再生用ガスの供給流量速度は、膜表面の流速が0.1m/s以上1m/s以下となるように調整することが好ましい。個別供給経路104は供給経路20の一部と共通しており、個別供給経路104B,104Cは接続経路50Cの一部と共通しており、個別供給経路104Dは非透過ガス回収経路80の一部と共通している。個別供給経路104,104B~104Dは、それぞれ、バルブ105B~105Dを備えている。個別排出経路106,106Bは接続経路50Bの一部と共通しており、個別排出経路106C,106Dは、接続経路50Dの一部と共通している。集中排出経路108B,108Dは、それぞれバルブ107B,107Dを備えている。
 パージ経路120は、パージガスを供給する集中供給経路122と、集中供給経路122から分岐した個別供給経路104,104B~104Dと、個別排出経路106,106B~106Dと、集中排出経路108B及び108Cと、を備えている。このうち、集中供給経路122以外は、再生経路100と共通であるため、説明を省略する。集中供給経路122は、透過ガス回収タンク70に接続され、透過ガス回収タンク70から膜分離部40へパージガスとしての透過ガスを送るパージファン124と、パージ経路120におけるガスの流れを調整するバルブ121,103とを備えている。なお、この集中供給経路122は、再生経路100における集中供給経路102の一部を利用するものである。パージガスとしての透過ガスは、二酸化炭素を90体積%以上含むことが好ましく、95体積%以上含むことがより好ましい。
 次に、本発明の再生方法の一実施形態について説明する。この再生方法は、分離工程の後に行われ、第1パージ工程と、再生工程と、第2パージ工程とを含むものである。以下では、分離装置10を用いた場合について説明する。
(分離工程)
 分離工程では、図3の太線矢印で示す経路(分離経路12)を用いて、処理対象ガスの分離を行う。また、このとき、図3の細線矢印で示す経路を用いて、熱交換器24で用いる高温の燃焼ガスの供給を行う。具体的には、膜分離時には、バルブ21,23,31,51,81,61を開き、その他のバルブを閉じるよう、各バルブに接続された図示しない制御部によってバルブの開閉を制御する。また、送気ファン32,燃料ガスファン34を稼働し、その他のファンを稼働しないように、各ファンに接続された図示しない制御部によってファンの稼働を制御する。分離装置10では、外部から供給された原ガスは、供給経路20を流通し、供給経路20の途中、前処理部22で膜処理によって処理対象ガスとなり、さらに、熱交換器24での熱交換(加熱)によって膜分離に適した温度となり、膜分離部40に供給される。膜分離部40では、処理対象ガスは、膜フィルタ41に下部から流入して上向きに流れ、接続経路50Bを通り膜フィルタ41Bに上部から流入して下向きに流れ、接続経路50Cを通り膜フィルタ41Cに下部から流入して上向きに流れ、接続経路50Dを通り膜フィルタ41Dに上部から流入して下向きに流れ、炭化水素系可燃性ガスを多く含む非透過ガスとして、非透過ガス回収経路80に送出される。送出された非透過ガスは、非透過ガス回収経路80において、精製処理部82で精製され、非透過ガス回収タンク90に貯留される。一方、処理対象ガスの一部は、ゼオライト膜45を透過し、二酸化炭素を多く含む透過ガスとして透過ガス回収経路60に送出される。送出された透過ガスは、透過ガス回収経路60において、個別回収経路62,62B~62Dを経て集中回収経路64を流れ、透過ガス回収タンク70に貯留される。膜分離時には、非透過ガス回収タンク90に貯留された非透過ガスの一部が、可燃性ガス供給経路36を介して燃焼炉30に燃料として送られる。この燃料は、燃焼炉30において、送気ファン32から供給される外気と混合して燃焼し高温の燃焼ガスとなる。この高温の燃焼ガスは、燃焼ガス経路38を流通し、熱交換器24の熱源として用いられる。
(第1パージ工程)
 第1パージ工程では、二酸化炭素を含むパージガスを膜分離部40に供給して膜分離部40から処理対象ガスを排出させ、膜分離部40をパージする。ここでは、図4の太線矢印で示す経路(パージ経路120)を用いて、膜分離部40のパージを行う。具体的には、パージ時には、バルブ103,121,105B~105D,107B,107Dを開き、その他のバルブを閉じるよう、各バルブと接続された上述の制御部によってバルブの開閉を制御する。また、パージファン124を稼働し、その他のファンを稼働しないように、各ファンに接続された上述の制御部によってファンの稼働を制御する。分離装置10では、パージ時には、パージファン124によって、再生時に透過ガス回収タンクに貯留された透過ガスの一部をパージガスとして導入し、集中供給経路122を経て、個別供給経路104,104B~104Dに分配し、膜フィルタ41,41B~41Dの下部から流入させて上向きに流す。膜フィルタ41,41B~41Dの上部から流出した使用済みのパージガスは、個別排出経路106,106B~106Dを通り、集中排出経路108B,108Dから排出される。
(再生工程)
 再生工程では、膜分離部40に加熱空気を含む再生用ガスを供給してゼオライト膜45を再生する。ここでは、図5の太線矢印で示す経路(再生経路100)を用いて、ゼオライト膜45の再生を行う。また、このとき、図5の細線矢印で示す経路を用いて、熱交換器24で用いる高温の燃焼ガスの供給を行う。具体的には、再生時には、バルブ23,101,103,105B~105D,107B,107Dを開き、その他のバルブを閉じるよう、各バルブと接続された上述の制御部によってバルブの開閉を制御する。また、送気ファン32、燃料ガスファン34,再生空気ファン110を稼働し、その他のファンを稼働しないように、各ファンに接続された上述の制御部によってファンの稼働を制御する。分離装置10では、再生時には、再生空気ファン110によって外部から空気を導入し、集中供給経路102に設けられた熱交換器で空気を加熱してこれを再生用ガスとする。この再生用ガスを、個別供給経路104,104B~104Dに分配し、膜フィルタ41,41B~41Dの下部から流入させて上向きに流す。膜フィルタ41,41B~41Dの上部から流出した使用済みの再生用ガスは、個別排出経路106,106B~106Dを通り、集中排出経路108B,108Dから排出される。再生時には、膜分離時に非透過ガス回収タンク90に貯留された非透過ガスの一部が、可燃性ガス供給経路36を介して燃焼炉30に燃料として送られる。この燃料は、燃焼炉30において送気ファン32から供給される外気と混合して燃焼し高温の燃焼ガスとなる。この高温の燃焼ガスは、燃焼ガス経路38を流通し、熱交換器24の熱源として用いられる。
(第2パージ工程)
 第2パージ工程では、二酸化炭素を含むパージガスを膜分離部40に供給して膜分離部40から再生用ガスを排出させ、膜分離部40をパージする。ここでは、図4の太線矢印で示す経路(パージ経路120)を用いて、膜分離部40のパージを行う。具体的な処理は、第1パージ工程と同様であるため、その説明を省略する。
 上述した実施形態の分離装置及び再生方法では、ガス分離に用いた分離膜の再生をより良好に行うことができる。こうした効果が得られる理由は、以下のように推察される。すなわち、ゼオライト膜45を分離膜として用いるため、有機膜よりも耐熱性が高く、加熱空気を含む再生用ガスを用いた再生に適している。また、ガス分離用途に用いる分離膜は、液体を用いた洗浄(再生)を好まないが、本発明では再生用ガスを用いて再生するため、ガス分離に用いた分離膜の再生に適している。また、処理対象ガスが炭化水素系可燃性ガスと二酸化炭素とを含むものであるため、ファウリング物質は、加熱空気を含む再生用ガスで酸化されて主に炭酸ガスや水蒸気として外部へ排出され、ファウリング物質やそれに起因する物質が分離膜に残りにくい。また、分離装置10は分離経路12と再生経路100とを備えているため、分離装置10で分離処理と再生処理とを行うことができる。また、加熱空気を含む再生用ガスを膜分離部40(ゼオライト膜45)に供給するため、膜分離部に加熱装置などを設ける必要もない。
 また、分離装置10では、再生経路100を備えているため、ゼオライト膜45を分離装置10に組み込んだままオンサイトで再生することができ、膜フィルタの交換の手間を省くことができ、コストを削減できる。また、パージ経路120を備え、分離工程と再生工程との間に第1パージ工程を行うため、再生時には再生経路などにおける炭化水素系可燃性ガスの量がゼロか少量であり、再生時の加熱や発火をより抑制できる。また、パージ経路を備え、再生工程と次の分離工程との間に第2パージ工程を行うため、分離時には分離経路12などにおける酸素の量がゼロか少量であり、分離時の過熱や発火をより抑制できる。また、熱交換器24において、膜分離で得られた非透過流体を燃料として得られた高温の燃焼ガスを熱源として用いるため、燃料を別途用意する必要がない。また、膜分離で得られた透過流体をパージガスとして用いるため、パージガスを別途用意する必要がない。また、分離経路12では、膜フィルタ41,41B~41Dが直列に接続されているため、非透過ガスに含まれる二酸化炭素の濃度をより低減させることができる。また、再生経路やパージ経路では、膜フィルタ41,41B~41Dが並列に接続されているため、膜フィルタ41,41B~41Dの再生やパージを同時に同条件で行うことができ、効率がよい。また、再生経路とパージ経路とは、集中供給経路102,122以外が共通しているため、再生経路を効率よくパージできる。また、膜フィルタ41,41B~41Dは、ガスが鉛直方向に流れるように縦型に配設されており、パージ経路では二酸化炭素を含むパージガスを膜フィルタ41,41B~Dの下部から流入させて上向きに流すため、パージガスに含まれる二酸化炭素によって、二酸化炭素より軽い空気や炭化水素系可燃性ガスを膜フィルタ41,41B~Dの上部へ押し出しやすい。また、定期的に再生を行うことにより、膜フィルタの交換までの期間を例えば有機膜より長くすることができ、コストを削減できる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、分離装置10は、パージ経路120を備えるものとしたが、パージ経路120を備えなくてもよい。また、再生方法は、第1パージ工程と再生工程と第2パージ工程とを含むものとしたが、第1パージ工程を含まないものとしてもよいし、第2パージ工程を含まないものとしてもよいし、第1パージ工程と第2パージ工程の両方を含まないものとしてもよい。また、分離装置10では、透過ガス回収タンク70に貯留された透過ガスの一部をパージガスとして用いるものとしたが、別途用意したパージガスを用いてもよい。
 上述した分離装置10では、熱交換器24において、燃焼炉30で可燃性ガスを燃焼させて得られた高温の燃焼ガスとの熱交換によって、再生空気ファン110から導入した空気の加熱を行い再生用ガスとして供給するものとしたが、これに限定されない。例えば、燃焼炉30で得られた高温の燃焼ガスを、再生用ガスとして供給してもよい。また、分離装置10では、非透過ガス回収タンク90に貯留された非透過ガスの一部を燃焼炉30で燃料として用いるものとしたが、別途用意した炭化水素系可燃性ガスを燃料として用いてもよい。
 上述した実施形態では、分離装置10は、膜フィルタ41,41B~41Dが、分離経路12では直列に接続され、再生経路及びパージ経路では並列に接続されているものとしたが、こうしたものに限定されない。例えば、分離経路で並列に接続されていてもよいし、再生経路で直列に接続されていてもよいし、パージ経路で直列に接続されていてもよい。図6に、一例として、膜フィルタ41,41B~41Dが、分離経路及び再生経路では直列に接続されパージ経路では並列に接続されている分離装置210での、再生時のガスの流れを示す。分離装置210において、分離装置10と同様の構成については、同じ符号を付してその説明を省略する。分離装置210は、再生用ガスを膜フィルタ41に供給する再生用ガス供給経路302と、非透過ガス回収経路80のバルブ81と精製処理部82との間から分岐した再生用ガス排出経路250を備えている。また、回収経路80は、再生用ガス排出経路250と精製処理部82との間にバルブ283を備えている。再生経路300は、膜フィルタ41の下部に接続され再生用ガスを膜フィルタ41に供給する再生用ガス供給経路302と、膜フィルタ41,41B~41Dを直列に接続する接続経路50B~50Dと、膜フィルタ41Dの下部に接続され、非透過ガス排出経路80から分岐した再生用ガス排出経路250と、を備えている。再生用ガス供給経路302は、その一部が供給経路20の一部と共通しており、空気を導入する再生空気ファン110,再生経路300を流通するガスの流れを調整するバルブ101,23及び、空気を加熱してゼオライト膜45の再生に適した温度の再生用ガスとする熱交換器24を備えている。こうして構成された分離装置210では、再生時には、図6の太線矢印で示す経路を用いて、ゼオライト膜45の再生を行う。また、このとき、図6の細線矢印で示す経路を用いて、熱交換器24で用いる高温の燃焼ガスの供給を行う。
 上述した実施形態では、分離装置10は、膜フィルタ41,41B~41Dの4つの膜フィルタを備えるものとしたが、膜フィルタは1つでもよいし、2つや3つでもよいし、5つ以上でもよい。図7に膜フィルタを1つ備えた分離装置410を示す。分離装置410は、膜分離部440が膜フィルタとして膜フィルタ41を1つだけ備え、膜フィルタ41B~Dに接続する経路が省略されている点以外は、分離装置10と同様に構成されている。
 上述した実施形態では、分離装置10は、膜フィルタ41及び膜フィルタ41と同様に構成された膜フィルタ41B~Dを備えるものとしたが、これらに代えて、膜フィルタ46及び膜フィルタ46と同様に構成された膜フィルタを備えるものとしてもよい。膜フィルタ46において、膜フィルタ41と同様の構成については、同じ符号を付してその説明を省略する。膜フィルタ46は、長手方向に垂直な方向に膜フィルタ46を貫通し、一列に並ぶ複数のセル42を連通させる、スリット47を備えている。スリット47に接続したセル42は、その両端に目封止材48が形成されている。この膜フィルタ46では、入口側からセル42へ入った処理対象ガスのうち、ゼオライト膜45を透過可能な分子サイズを有する透過ガス(例えば二酸化炭素)が、ゼオライト膜45及び多孔質基材44を透過し、膜フィルタ46の側面から又はスリット47から送出される。一方、ゼオライト膜45を透過できない非透過ガス(例えば炭化水素系可燃性ガス)は、セル42の流路に沿って流通し、セル42の出口側から送出される。
 上述した実施形態では、供給経路20は、前処理部を備えるものとしたが、前処理部を備えなくてもよい。また、供給経路20は、熱交換器24を備えるものとしたが、熱交換基24を備えなくてもよいし、熱交換器24の代わりに加熱器などを用いてもよい。また、上述した実施形態では、非透過ガス回収経路80は、精製処理部82を備えるものとしたが、精製処理部82を備えなくてもよい。
 以下には、分離装置410を用いて分離膜の再生を具体的に行った例について、実施例として説明する。なお、本発明は、実施例に限定されるものではない。
[実施例1]
(膜フィルタの作製)
 多孔質基材として、直径30mm長さ160mmのモノリス形状でアルミナ製の多孔質基材を用意した。この多孔質基材の表面に以下のようにDDR型ゼオライト膜(水を選択的に透過させる浸透気化膜)を形成し、膜フィルタを作製した。
 まず、フッ素樹脂製の100ml広口瓶に6.21gのエチレンジアミン(和光純薬工業製)を入れた後、0.98gの1-アダマンタンアミン(アルドリッチ社製)を加え、1-アダマンタンアミンの沈殿が残らないように溶解した。別のビーカーに53.87gの水を入れ、22.00gの30質量%シリカゾル(スノーテックスS、日産化学社製)を加えて軽く撹拌した後、これをエチレンジアミンと1-アダマンタンアミンを混ぜておいた広口瓶に加えて強く振り混ぜた。その後、その広口瓶をシェーカーにセットし、500rpmでさらに1時間振り混ぜ、成膜ゾルを作製した。成膜ゾルの、1-アダマンタンアミン/シリカ比は0.0589、水/シリカ比は35、エチレンジアミン/1-アダマンタンアミン比は16であった(いずれもモル比)。当該成膜ゾルを3つ用意した。
 次に、多孔質基材にDDR型ゼオライト微粉末を塗布し、フッ素樹脂製内筒付きステンレス製耐圧容器内に配置した。その後、成膜ゾルを耐圧容器に注ぎ、150℃で16時間、加熱処理(水熱合成)を行った。加熱処理後、この基材表面にDDR型ゼオライト膜が形成されていた。水洗、乾燥した後、大気中、電気炉で0.1℃/minの速度で750℃まで昇温して4時間保持後、1℃/minの速度で室温まで冷却した。こうして新品の膜フィルタを得た。
(分離装置の作製)
 上述のように得られた膜フィルタを用いて、図7に示す分離装置410を作製した。
(分離試験)
 炭化水素系可燃性ガスであるメタンを50体積%(分圧0.25MPa)、二酸化炭素を50体積%(分圧0.25MPa)含む処理対象ガスを、上記作製した膜フィルタのセル内に流通させた。分離温度は、膜フィルタの入り口で測定した値とし、25℃とした。膜フィルタの透過側は常圧とした。膜フィルタの側面からの透過ガスを捕集した。このときゼオライト膜を透過した炭酸ガスの透過流量をマスフローメーターにて測定し、二酸化炭素の単位時間あたりの透過流量である透過速度を求めた。
(性能低下処理(分離工程))
 新品の膜フィルタを備えた分離装置を用い、原ガスの前処理を十分に行わないことを模擬するため、ゼオライト膜の膜面に液体状炭化水素を付着させた。そして、上述と同様に、性能低下後の透過速度を求めた。この透過速度は、新品の透過速度を100で規格化すると、20であった。
(第1パージ工程)
 透過ガス回収タンク70に貯留された透過ガス(二酸化炭素濃度95体積%)を用いて、膜分離部440のパージを行った。
(再生工程)
 性能低下後の分離装置において、5L/分で200℃の加熱空気を1時間供給して再生処理を行った。そして、上述と同様に、再生後の透過速度を求めた。この透過速度は、新品の透過速度を100で規格化すると98であった。
[実施例2]
 再生工程において、380℃の加熱空気を5L/分で1時間供給して再生処理を行った以外は、実施例1と同様にして、再生後の透過速度を求めた。この透過速度は、新品の透過速度を100で規格化すると100であった。
[実施例3]
 実施例2で再生処理を行った分離装置について、第1パージ工程と同様の第2パージ工程を行った。続いて、実施例2の各工程と同条件で2回目の分離工程、第1パージ工程、再生工程、第2パージ工程を行った。さらに、実施例2の各工程と同条件で3回目の分離工程、第1パージ工程、再生工程を行った。そして、各分離工程と再生工程を終えた後に、透過速度を求めた。新品の透過速度を100で規格化すると、2回目の分離工程後の透過速度は32であり、2回目の再生工程後の透過速度は100であり、3回目の分離工程後の透過速度は14であり、3回目の再生工程後の透過速度は100であった。
[実験結果]
 実施例1~3では、いずれも、再生工程によって透過速度を新品と同等程度まで戻すことができることがわかった。このうち、200℃で再生を行った実施例1よりも、380℃で再生を行った実施例2のほうが透過速度を新品により近づけることができた。このことから、再生温度は、200℃以上が好ましく、380℃以上がより好ましいことがわかった。
 本出願は、2014年8月21日に出願された日本国特許出願第2014-168601号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、混合ガスを分離する分野に利用可能である。
 10 分離装置、12 分離経路、 供給経路、21 バルブ、22 前処理部、23 バルブ、24 熱交換器、30 燃焼炉、31 バルブ、32 送気ファン、34 燃料ガスファン、36 可燃性ガス供給経路、38 燃焼ガス経路、40 膜分離部、41,41B~41D 膜フィルタ、42 セル、44 多孔質基材、44a 粗粒部、44b 細粒部、45 ゼオライト膜、46 膜フィルタ、47 スリット、48 目封止材、50B~50D 接続経路、51 バルブ、60 透過ガス回収経路、61 バルブ、62,62B~62D 個別回収経路、64 集中回収経路、70 透過ガス回収タンク、71 バルブ、72 取出経路、80 非透過ガス回収経路、81 バルブ、82 精製部、90 非透過ガス回収タンク、91 バルブ、100 再生経路、101 バルブ、102 集中供給経路、103 バルブ、104,104B~104D 個別供給経路、105B~105D バルブ、106,106B~106D 個別排出経路、107B,107D バルブ、108B,108D 集中排出経路、110 再生空気ファン、120 パージ経路、121 バルブ、122 集中供給経路、124 パージファン、210 分離装置、250 再生用ガス排出経路、283 バルブ、300 再生経路、302 再生用ガス供給経路、410 分離装置、440 膜分離部。

Claims (13)

  1.  二酸化炭素を選択的に透過するゼオライト膜を備えた膜分離部と、
     前記膜分離部に炭化水素系可燃性ガスと二酸化炭素とを含む処理対象ガスを供給し、前記ゼオライト膜を透過した透過ガスと前記ゼオライト膜を透過しなかった非透過ガスとを分離して回収する分離経路と、
     前記膜分離部に加熱空気を含む再生用ガスを供給して前記ゼオライト膜を再生する再生経路と、
     を備えた分離装置。
  2.  二酸化炭素を含むパージガスを前記膜分離部に供給し前記膜分離部をパージするパージ経路を備えた、請求項1に記載の分離装置。
  3.  前記膜分離部では、ガスの流路となる1以上のセルを有する膜フィルタが、前記セルの長手方向と鉛直方向とが一致するように配設されており、
     前記パージ経路は、前記膜フィルタの下部に接続され前記パージガスを供給するパージガス供給経路と、前記膜フィルタの上部に接続され前記パージガスを排出するパージガス排出経路と、を備えている、請求項2に記載の分離装置。
  4.  前記パージ経路は、前記分離経路に設けられた透過ガス回収部に接続され前記透過ガスをパージガスとして前記膜分離部に供給するものである、請求項2又は3に記載の分離装置。
  5.  前記再生経路は、空気を導入する空気導入経路と、前記導入した空気を可燃性ガスを用いて加熱して前記加熱空気を得る加熱部とを備えている、
     請求項1~4のいずれか1項に記載の分離装置。
  6.  前記加熱部は、前記可燃性ガスを燃焼させる燃焼炉と、前記燃焼炉で得られた高温の燃焼ガスとの熱交換によって前記導入した空気の加熱を行う熱交換器と、を備えている、請求項5に記載の分離装置。
  7.  前記加熱部は、前記可燃性ガスと前記導入した空気とを混合して燃焼させることによって前記導入した空気の加熱を行う燃焼炉を備えている、請求項5に記載の分離装置。
  8.  前記再生は150℃以上500℃以下で行う、請求項1~7のいずれか1項に記載の分離装置。
  9.  前記ゼオライト膜はDDR型ゼオライト膜である、請求項1~8のいずれか1項に記載の分離装置。
  10.  前記炭化水素系可燃性ガスは、メタン、エタン、ブタン、プロパンからなる群より選ばれる1種以上である、請求項1~9のいずれか1項に記載の分離装置。
  11.  二酸化炭素を含むパージガスを前記膜分離部に供給し前記膜分離部をパージするパージ経路を備え、
     前記膜分離部は、ガスの流路となる1以上のセルを有する膜フィルタを複数備え、前記分離経路では、前記複数の膜フィルタが直列に接続され、前記再生経路及び前記パージ経路では、前記複数の膜フィルタが並列に接続されている、請求項1~10のいずれか1項に記載の分離装置。
  12.  二酸化炭素を選択的に透過するゼオライト膜を備えた膜分離部と、前記膜分離部に炭化水素系可燃性ガスと二酸化炭素とを含む処理対象ガスを供給し、前記ゼオライト膜を透過した透過ガスと前記ゼオライト膜を透過しなかった非透過ガスとを分離して回収する分離経路と、を備えた分離装置において前記ゼオライト膜を再生する再生方法であって、
     前記膜分離部に加熱空気を含む再生用ガスを供給して前記ゼオライト膜を再生する再生工程、
     を含む再生方法。
  13.  前記再生工程の前及び前記再生工程の後のうち少なくとも一方に、二酸化炭素を含むパージガスを前記膜分離部に供給し前記膜分離部をパージするパージ工程、
     を含む、請求項12に記載の再生方法。
PCT/JP2015/072617 2014-08-21 2015-08-10 分離装置及び再生方法 WO2016027713A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-168601 2014-08-21
JP2014168601 2014-08-21

Publications (1)

Publication Number Publication Date
WO2016027713A1 true WO2016027713A1 (ja) 2016-02-25

Family

ID=55350658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072617 WO2016027713A1 (ja) 2014-08-21 2015-08-10 分離装置及び再生方法

Country Status (1)

Country Link
WO (1) WO2016027713A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890575A (zh) * 2017-01-09 2017-06-27 南京中材水务股份有限公司 一种陶瓷膜的离线再生装置
JP2017148741A (ja) * 2016-02-25 2017-08-31 日立造船株式会社 ゼオライト膜複合体の再生方法
WO2017150737A1 (ja) * 2016-03-04 2017-09-08 三菱ケミカル株式会社 二酸化炭素の分離方法、及び二酸化炭素の分離装置
WO2018180210A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 膜再生方法
WO2018207343A1 (ja) * 2017-05-12 2018-11-15 日揮株式会社 ガス分離装置
JP2019171234A (ja) * 2018-03-27 2019-10-10 東ソー株式会社 硫化水素分離用ゼオライト膜の再生方法
JPWO2020071107A1 (ja) * 2018-10-04 2021-09-02 日本碍子株式会社 ガス分離方法およびガス分離装置
US20210316254A1 (en) * 2018-12-25 2021-10-14 Jgc Corporation Non-hydrocarbon gas separation device and inorganic separation membrane regeneration method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176423A (ja) * 1987-12-28 1989-07-12 Ube Ind Ltd 気体分離膜の性能回復方法
JPH0768121A (ja) * 1993-09-02 1995-03-14 Nippon Steel Corp 混合ガスからの特定ガスの分離方法
JP2006112488A (ja) * 2004-10-13 2006-04-27 Ngk Insulators Ltd 下水汚泥由来のメタン濃縮方法及びメタン貯蔵装置
JP2012071290A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 二酸化炭素回収方法及び二酸化炭素回収装置
WO2012147534A1 (ja) * 2011-04-25 2012-11-01 日本碍子株式会社 セラミックフィルターの洗浄方法
JP2012236137A (ja) * 2011-05-11 2012-12-06 Hitachi Zosen Corp 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
WO2013061474A1 (ja) * 2011-10-28 2013-05-02 日揮株式会社 流体分離装置および混合流体の選択分離方法
WO2014069630A1 (ja) * 2012-11-01 2014-05-08 日本碍子株式会社 ゼオライト膜の再生方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176423A (ja) * 1987-12-28 1989-07-12 Ube Ind Ltd 気体分離膜の性能回復方法
JPH0768121A (ja) * 1993-09-02 1995-03-14 Nippon Steel Corp 混合ガスからの特定ガスの分離方法
JP2006112488A (ja) * 2004-10-13 2006-04-27 Ngk Insulators Ltd 下水汚泥由来のメタン濃縮方法及びメタン貯蔵装置
JP2012071290A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 二酸化炭素回収方法及び二酸化炭素回収装置
WO2012147534A1 (ja) * 2011-04-25 2012-11-01 日本碍子株式会社 セラミックフィルターの洗浄方法
JP2012236137A (ja) * 2011-05-11 2012-12-06 Hitachi Zosen Corp 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
WO2013061474A1 (ja) * 2011-10-28 2013-05-02 日揮株式会社 流体分離装置および混合流体の選択分離方法
WO2014069630A1 (ja) * 2012-11-01 2014-05-08 日本碍子株式会社 ゼオライト膜の再生方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148741A (ja) * 2016-02-25 2017-08-31 日立造船株式会社 ゼオライト膜複合体の再生方法
JPWO2017150737A1 (ja) * 2016-03-04 2019-01-10 三菱ケミカル株式会社 二酸化炭素の分離方法、及び二酸化炭素の分離装置
WO2017150737A1 (ja) * 2016-03-04 2017-09-08 三菱ケミカル株式会社 二酸化炭素の分離方法、及び二酸化炭素の分離装置
US10953364B2 (en) 2016-03-04 2021-03-23 Mitsubishi Chemical Corporation Method for separating carbon dioxide and apparatus for separating carbon dioxide
CN106890575A (zh) * 2017-01-09 2017-06-27 南京中材水务股份有限公司 一种陶瓷膜的离线再生装置
WO2018180210A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 膜再生方法
JPWO2018180210A1 (ja) * 2017-03-28 2020-02-06 日本ゼオン株式会社 膜再生方法
JPWO2018207343A1 (ja) * 2017-05-12 2020-03-19 日揮グローバル株式会社 ガス分離装置
WO2018207343A1 (ja) * 2017-05-12 2018-11-15 日揮株式会社 ガス分離装置
US11135545B2 (en) 2017-05-12 2021-10-05 Jgc Corporation Gas separation device
JP2019171234A (ja) * 2018-03-27 2019-10-10 東ソー株式会社 硫化水素分離用ゼオライト膜の再生方法
JPWO2020071107A1 (ja) * 2018-10-04 2021-09-02 日本碍子株式会社 ガス分離方法およびガス分離装置
JP7257411B2 (ja) 2018-10-04 2023-04-13 日本碍子株式会社 ガス分離方法およびガス分離装置
US20210316254A1 (en) * 2018-12-25 2021-10-14 Jgc Corporation Non-hydrocarbon gas separation device and inorganic separation membrane regeneration method
US11801478B2 (en) * 2018-12-25 2023-10-31 Jgc Corporation Non-hydrocarbon gas separation device and inorganic separation membrane regeneration method

Similar Documents

Publication Publication Date Title
WO2016027713A1 (ja) 分離装置及び再生方法
Cui et al. Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water
US7575624B2 (en) Molecular sieve and membrane system to purify natural gas
Caro et al. Zeolite membranes–status and prospective
Mirfendereski et al. CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure
Saw et al. Molecular sieve ceramic pervaporation membranes in solvent recovery: A comprehensive review
JP5124158B2 (ja) メタン濃縮装置およびメタン濃縮方法
CA2675397C (en) Dehydrating apparatus, dehydration system, and dehydration method
JP6500499B2 (ja) 分離膜モジュール及びその運転方法
JP7498034B2 (ja) 分離装置、および、分離装置の運転方法
JP2016041419A (ja) 分離方法及び分離装置
JP2008221176A (ja) 脱水システム及び脱水方法
JP5805586B2 (ja) 水素精製装置及び水素精製方法
Mirfendereski et al. Effect of synthesis parameters on single gas permeation through T-type zeolite membranes
WO2011018919A1 (ja) 混合物用分離膜、それを用いた混合物の組成変化方法、及び混合物分離装置
WO2018173929A1 (ja) 炭化水素化合物の分離方法
US8926735B1 (en) Separation of gases using zeolite SSZ-45
CN115715227A (zh) 分离膜复合体及分离方法
Algieri et al. Zeolite membranes for gas separations
EP1647531A1 (en) Method for concentrating methane from sewage sludge and methane storage equipment
JP2017104827A (ja) 分離装置の使用方法及び分離装置
JP2016175063A (ja) 膜の再生方法
JP2012246207A (ja) 水素分離方法及び水素分離装置
WO2018169037A1 (ja) アルコールの製造のための分離膜ユニット
Lanjekar et al. Hydrogen gas separation through membrane technology and sustainability analysis of membrane: a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP