WO2016017963A1 - 전기 자동차의 급속 충전 제어 장치 - Google Patents
전기 자동차의 급속 충전 제어 장치 Download PDFInfo
- Publication number
- WO2016017963A1 WO2016017963A1 PCT/KR2015/007247 KR2015007247W WO2016017963A1 WO 2016017963 A1 WO2016017963 A1 WO 2016017963A1 KR 2015007247 W KR2015007247 W KR 2015007247W WO 2016017963 A1 WO2016017963 A1 WO 2016017963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- voltage
- charge
- charging
- state
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 11
- 238000013500 data storage Methods 0.000 claims description 7
- 230000009977 dual effect Effects 0.000 claims description 6
- 230000005611 electricity Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/44—Testing lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
- H02J7/0049—Detection of fully charged condition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a fast charging control device for an electric vehicle. Specifically, the charging state is determined by SOC (status of charge) information transmitted from the quick charging unit, and the detection voltage detected by the voltage detection unit is referred to.
- SOC status of charge
- the present invention relates to a quick charge control apparatus for an electric vehicle capable of providing dual stability for controlling fast charging of a battery by determining an input voltage to determine a state of charge.
- An electric vehicle means a vehicle driven by using electricity and can be roughly classified into a battery powered electric vehicle and a hybrid electric vehicle.
- a pure electric vehicle runs using only electricity and is generally called an electric vehicle.
- hybrid electric vehicles mean driving with electricity and fossil fuels.
- Such an electric vehicle is provided with a battery for supplying electricity for driving.
- the battery is charged by a current supplied from an external power source to drive the electric motor.
- the charging method of an electric vehicle may be classified into quick charging and slow charging according to the charging time.
- rapid charging the battery is charged by the direct current supplied from the charger
- slow charging the battery is charged by the alternating current supplied to the charger. Therefore, a charger used for quick charging is called a quick charger or a direct current charger, and a charger used for slow charging is called a slow charger or an AC charger.
- Slow charging is a method of charging AC battery by supplying AC 220V to an electric vehicle through a cable connected to the charger.
- the battery is charged by converting AC 220V, which is applied with a charger of about 3kW, into DC. . It takes about 8 ⁇ 10 hours depending on the battery capacity, and a charger with a power capacity of about 6 ⁇ 7kW is mainly installed.
- Rapid charging is a method in which a charger exchanges a control signal with a car, receives an AC three-phase 380V, converts it to DC, and then supplies 100 ⁇ 550V of DC variably to charge the battery of an electric vehicle. It takes less. It may take 15-30 minutes depending on the battery capacity. Since the charger must supply high capacity DC power, 50kW class is mainly installed.
- the problem to be solved by the present invention is to determine the state of charge based on the status of charge (SOC) information delivered from the quick charging unit in the integrated power control unit, and to determine the input voltage with reference to the detected voltage detected from the voltage detector
- SOC status of charge
- the present invention provides a quick charge control apparatus for an electric vehicle that can provide dual stability for controlling fast charge of a battery by determining a state of charge by judging.
- the voltage detection unit for detecting the magnitude of the DC voltage input from the charging station;
- a quick charging unit configured to receive power applied from the charging station and perform rapid charging of the battery of the electric vehicle, and monitor status of charge (SOC) information of the battery;
- the first determination information determined by determining the state of charge of the battery from the status of charge (SOC) information of the battery delivered from the quick charging unit, and the state of charge of the battery determined from the detected voltage delivered from the voltage detector.
- a quick charging control apparatus for an electric vehicle including an integrated power control unit that performs dual control of rapid charging of the battery based on the second discrimination information determined.
- the apparatus may further include a data storage configured to store charge state determination information for determining a state of charge of the battery corresponding to the magnitude of the detected voltage detected by the voltage detector.
- the charging state determination information is set to determine the charging state of the battery by correlating the information of the input voltage applied from the charging station for the rapid charging of the battery with the information of the detection voltage detected from the voltage detector.
- the integrated power control unit estimates the magnitude of the input voltage corresponding to the magnitude of the detected voltage detected by the voltage detector by referring to the charging state determination information stored in the data storage, and according to the estimated magnitude of the input voltage.
- the state of charge of the battery is determined.
- the voltage detector receives a DC voltage input from the charging station through two input terminals, compares the input voltage difference between the two input terminals, and then uses a 5V reference voltage to determine a voltage of 0V to 5V according to the input voltage difference. And a comparison circuit for outputting a voltage.
- the integrated power control unit compares the first discrimination information and the second discrimination information and coincides with each other, the integrated power control unit continuously proceeds or stops charging the battery according to the state of charge information according to the first discrimination information. The charging of the battery is stopped.
- the state of charge is determined by the SOC information transmitted from the quick charging unit during the rapid charging of the battery of the electric vehicle, and the input voltage is determined by referring to the detected voltage detected by the voltage detector.
- FIG. 1 is a view for explaining a rapid charging control device for an electric vehicle according to an embodiment of the present invention.
- FIG. 2 is a view showing a voltage simulation result for determining the state of charge of the rapid charging control apparatus for an electric vehicle according to an embodiment of the present invention.
- FIG. 3 is a flowchart illustrating a rapid charging control method of an electric vehicle according to an embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a rapid charging control method of an electric vehicle according to an embodiment of the present invention.
- FIG. 5 is a flowchart illustrating a rapid charging control method for an electric vehicle according to an embodiment of the present invention.
- FIG. 1 is a view for explaining a rapid charging control device for an electric vehicle according to an embodiment of the present invention.
- the rapid charging control apparatus 100 of an electric vehicle receives a high voltage direct current from a charging station 200 and performs rapid charging of a battery 300.
- the quick charge control device 100 includes a data storage unit 110, a voltage detector 120, a current detector 130, an integrated power control unit 140, a switching unit 150, and a quick charge unit 160. Can be.
- the data storage unit 110 stores charging state determination information for determining a state of charge corresponding to the magnitude of the detected voltage detected by the voltage detector 120.
- the charging state determination information is set to determine the charging state by correlating the information of the input voltage applied from the charging station for the rapid charging of the battery of the electric vehicle and the information of the detection voltage detected from the voltage detector 120.
- the charging state determination information may be set based on a voltage simulation result for determining the charging state.
- the detection voltage corresponds to the magnitude of the input voltage. Therefore, the magnitude of the input voltage at the corresponding point in time may be estimated based on the magnitude of the detection voltage detected by the voltage detector 120.
- the uncharged state, the normal charge state, and the overcharge state can be set according to the magnitude of the input voltage.
- the charging state determination information may be based on the simulation result of FIG. 2, in which the detected voltage monitored by the voltage detector 120 is less than 0.5V, the uncharged state, and if it is 0.5V or more and less than 4.5V, the normal state of charge, 4.5V. If abnormal, the overcharge state can be set.
- the voltage detector 120 may detect the magnitude of the DC voltage input from the charging station 200.
- the voltage detector 120 may be configured to output a detection voltage in a range of 0V to 5V.
- the voltage detector 120 receives a 100 to 550 V DC voltage from the charging station 200 through two input terminals, compares input voltage differences between the two input terminals, and then uses a 5 V reference voltage to input an input voltage difference.
- the comparison circuit outputs a voltage of 0V to 5V.
- the current detector 130 may include a current sensor for detecting a current input from the charging station 200.
- the integrated power control unit 140 performs communication for charging the battery with the charging station 200 while monitoring the voltage detector 120, the current detector 130, and the quick charging unit 160 to charge the battery from the charging station 200. A control for supplying power to the quick charging unit 160 is performed.
- the integrated power control unit 140 may refer to the voltage information table stored in the data storage unit 110 to determine the magnitude of the detected voltage detected by the voltage detector 120, and determine the magnitude of the input voltage currently input from the charging station 200. It is possible to estimate, and to determine the current charging step of the entire charging step according to the magnitude of the input voltage.
- the integrated power control unit 140 may determine the state of charge by monitoring the detection voltage output from the voltage detector 120.
- the integrated power control unit 140 may recognize an uncharged state when the monitored detection voltage is less than 0.5V, a normal charge state when 0.5V or more and less than 4.5V, and an overcharge state when 4.5V or more.
- the integrated power control unit 140 may display the charging state information according to the determined charging state.
- the display of the charging state information may be made through a display device or a voice device.
- the integrated power control unit 140 may generate a switching control signal according to the determined charging state and output the switching control signal to the switching unit 150. For example, the integrated power control unit 140 outputs a switching control signal to stop charging when in an overcharge state. The integrated power control unit 140 may generate a switching control signal for continuing charging when it is in an uncharged state or a normal charge state.
- Integrated power control unit 140 may determine the state of charge of the battery from the status of charge (SOC) information of the battery received from the fast charging unit 160.
- SOC status of charge
- the integrated power control unit 140 may determine the uncharged state, the normal charge state, and the overcharge state by comparing the SOC information of the battery and the preset reference SOC information.
- the integrated power control unit 140 compares the state of charge of the battery determined from the SOC information received from the quick charging unit 160 with the state of charge of the battery determined from the detected voltage detected by the voltage detector 120, and coincides with each other.
- the switching unit 150 may be controlled according to the charging state information determined from the SOC information to continue charging or stop charging. On the other hand, if the charging state information does not match each other, the switching unit controls to stop charging.
- 160 may be an effective safety device for the occurrence of errors. That is, there is a possibility that SOC information transmitted from the quick charging unit 160 to the integrated power control unit 140 may be distorted due to any failure situation, including a failure of the quick charging unit 160. Therefore, even though a failure occurs in the quick charging unit 160, if the failure of the quick charging unit 160 is not checked, the failure may be extended to the integrated power control unit 140 and the battery may be damaged. Can be.
- the integrated power control unit 140 determines the state of charge based on the SOC information transmitted from the quick charging unit 160, and also determines the input voltage based on the detected voltage detected by the voltage detector 120 to charge the battery. By determining the state, it is possible to provide dual stability for the control of the fast charging of the battery.
- the integrated power control unit 140 may generate the charging state notification information informing the charging state corresponding to the determined charging step. Therefore, charging state notification information such as an uncharged state, a normal charge state, an overcharge state, a charge stop state, and the like may be generated.
- the integrated power control unit 140 generates and outputs a switching control signal for proceeding or stopping charging of the battery according to the determined charging stage.
- the switching unit 150 may perform a switching operation according to a switching control signal to transfer or cut off the power applied from the charging station 200 to the rapid charging unit 160.
- the quick charging unit 160 receives the power applied from the charging station 200 to perform rapid charging of the battery.
- the fast charging unit 160 monitors the SOC information of the battery and performs the charging of the battery to the integrated power control unit 140.
- FIG. 3 is a flowchart illustrating a rapid charging control method of an electric vehicle according to an embodiment of the present invention.
- the voltage detector 120 compares the magnitude of an input voltage input through two terminals and outputs a detection voltage (S1). At this time, the magnitude of the detection voltage output from the voltage detector 120 is in the range of 5V at OV.
- Integrated power control unit 140 monitors the detection voltage output from the voltage detector 120 (S2).
- the integrated power control unit 140 determines the state of charge to which the detection voltage output from the voltage detector 120 belongs (S3). For example, the integrated power control unit 140 recognizes an uncharged state when the monitored detection voltage is less than 0.5V, recognizes it as a normal charge state if it is more than 0.5V to less than 4.5V, and overcharges it if it is 4.5V or more. Recognize.
- the integrated power control unit 140 displays the charging state information according to the determined charging state (S4).
- the display of the charging state information may be made through a display device or a voice device.
- the integrated power control unit 140 generates a switching control signal according to the determined state of charge and outputs the switching control signal to the switching unit 150 (S5).
- the integrated power control unit 140 outputs a switching control signal to stop charging when in an overcharge state.
- the integrated power control unit 140 generates a switching control signal for continuing charging when it is in an uncharged state or a normal charge state.
- the switching unit 150 supplies or cuts off the power applied from the charging station 200 to the quick charging unit 160 according to the switching control signal of the integrated power control unit 140 (S6).
- FIG. 4 is a flowchart illustrating a rapid charging control method of an electric vehicle according to an embodiment of the present invention.
- the integrated power control unit 140 receives SOC (status of charge) information of the battery from the quick charging unit 160 (S11). Integrated power control unit 140 determines the state of charge of the battery from the SOC information received from the fast charging unit 160 (S12). In this case, the determined charging state information of the battery is called first determination information.
- SOC status of charge
- the integrated power control unit 140 compares the SOC information received from the quick charging unit 160 with preset reference SOC information to determine an uncharged state, a normal charge state, and an overcharge state.
- the integrated power control unit 140 determines the state of charge of the battery from the detected voltage detected by the voltage detector 120 (S13).
- the integrated power control unit 140 may determine the state of charge of the battery (first determination information) determined from the SOC information received from the quick charging unit 160, and the state of charge of the battery determined from the detected voltage detected by the voltage detector 120. It is determined whether (the second discrimination information) matches (S14).
- step S14 when the first determination information and the second determination information coincide with each other, the integrated power control unit 140 switches the switching unit 150 according to the first determination information determined from the SOC information received from the quick charging unit 160. ) To continue charging or stop charging (S15).
- step S14 when the first determination information and the second determination information do not coincide with each other, the switching unit 150 is controlled to stop charging (S16).
- FIG. 5 is a flowchart illustrating a rapid charging control method for an electric vehicle according to an embodiment of the present invention.
- the integrated power control unit 140 determines the state of charge of the battery from the detected voltage detected by the voltage detector 120 (S21).
- the integrated power control unit 140 determines whether the state of charge of the battery determined from the detected voltage detected by the voltage detector 120 is an overcharge state (S22).
- step S24 when the overcharge state, the integrated power control unit 140 controls the switching unit 150 to stop charging (S23).
- Integrated power control unit 140 receives the status of charging (SOC) information of the battery from the fast charging unit 160 (S24). Integrated power control unit 140 determines the state of charge of the battery from the SOC information received from the fast charging unit 160 (S25).
- SOC status of charging
- the integrated power control unit 140 compares the SOC information received from the quick charging unit 160 with preset reference SOC information to determine an uncharged state, a normal charge state, and an overcharge state.
- the integrated power control unit 140 determines whether the state of charge of the battery determined from the SOC information received from the quick charging unit 160 and the state of charge of the battery determined from the detected voltage detected by the voltage detector 120 are consistent with each other ( S26).
- step S26 if the match, the integrated power control unit 140 controls the switching unit 150 in accordance with the state of charge determined from the SOC information received from the fast charging unit 160 to continue charging or to charge It stops (S27).
- step S26 when the determined state of charge of the battery does not match with each other, the switching unit 150 is controlled to stop charging (S28).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
충전소로부터 입력되는 직류 전압의 크기를 검출하는 전압 검출부; 상기 충전소로부터 인가되는 전원을 공급받아 전기 자동차의 배터리에 대한 급속 충전을 수행하면서 상기 배터리의 SOC(status of charge) 정보를 모니터링하는 급속 충전부; 및 상기 급속 충전부로부터 전달되는 상기 배터리의 SOC(status of charge) 정보로부터 상기 배터리의 충전 상태를 판단하여 판별된 제1 판별 정보와, 상기 전압 검출부로부터 전달되는 검출 전압으로부터 상기 배터리의 충전 상태를 판단하여 판별된 제2 판별 정보에 기반하여 상기 배터리의 급속 충전의 제어를 이중적으로 수행하는 통합 전력 제어 유닛을 포함하는 전기 자동차의 급속 충전 제어 장치가 제공된다.
Description
본 발명은 전기 자동차의 급속 충전 제어 장치에 관한 것으로, 상세하게는 급속 충전부로부터 전달되는 SOC(status of charge) 정보에 의해 충전 상태를 판단함과 아울러, 전압 검출부로부터 검출되는 검출 전압을 참조로 하여 입력 전압을 판단하여 충전 상태를 판별함으로써 배터리의 급속 충전의 제어를 위한 이중적인 안정성을 제공할 수 있는 전기 자동차의 급속 충전 제어 장치에 관한 것이다.
전기 자동차는, 전기를 사용하여 운행되는 자동차를 의미하는 것으로, 크게 순수 전기 자동차(Batttery Powered Electric Vehicle)와 하이브리드 전기 자동차(Hybrid Electric Vehicle)로 구분될 수 있다. 순수 전기 자동차는, 전기만을 사용하여 주행하는 것으로, 일반적으로 전기 자동차라 명칭된다. 그리고 하이브리드 전기 자동차는 전기 및 화석 연료를 사용하여 주행하는 것을 의미한다. 이와 같은 전기 자동차에는, 주행을 위한 전기를 공급하는 배터리가 구비된다. 특히, 순수 전기 자동차 및 하이브리드 전기 자동차 중 콘센트인(Plug-in) 타입의 하이브리드 전기 자동차의 경우에는, 배터리가 외부의 전원으로부터 공급되는 전류에 의하여 충전되어 전기 모터를 구동한다.
전기 자동차의 충전 방법은 충전 시간에 따라 급속 충전과 완속 충전으로 구분될 수 있다. 급속 충전의 경우에는, 충전기에서 공급되는 직류 전류에 의하여 배터리가 충전되고, 완속 충전의 경우에는 충전기에 공급되는 교류 전류에 의하여 배터리가 충전된다. 따라서 급속 충전에 사용되는 충전기를 급속 충전기 또는 직류 충전기라 칭하고, 완속 충전에 사용되는 충전기를 완속 충전기 또는 교류 충전기라 칭한다.
완속 충전은 충전기에 연결된 케이블을 통해 전기자동차에 교류 220V를 공급하여 전기자동차의 배터리를 충전하는 방식으로, 차량에 장착된 약 3kW의 충전기가 인가된 교류 220V를 직류로 변환하여 배터리를 충전하게 된다. 배터리 용량에 따라 8~10시간 정도 소요되며 약 6~7kW 전력용량을 가진 충전기가 주로 설치된다.
급속충전은 충전기가 자동차와 제어신호를 주고받으며 교류 삼상 380V를 입력받아 직류로 변환한 다음 직류 100~550V를 가변적으로 공급하여 전기자동차의 배터리를 충전하는 방식으로, 고압ㆍ고용량 충전으로 충전시간이 적게 소요된다. 배터리 용량에 따라 15~30분 정도 소요된다. 충전기는 고용량의 직류전력을 공급하여야 하므로 50kW급이 주로 설치된다.
급속 충전의 경우, 배터리의 충전을 위해 고용량의 직류전력이 공급됨에 따라 과충전 방지, 미충전 방지를 위해 충전 전압과 충전 전류를 실시간으로 모니터링하여 배터리 충전을 적절하게 제어할 필요가 있다.
본 발명이 해결하고자 하는 과제는, 통합 전력 제어 유닛에서 급속 충전부로부터 전달되는 SOC(status of charge) 정보에 의해 충전 상태를 판단함과 아울러, 전압 검출부로부터 검출되는 검출 전압을 참조로 하여 입력 전압을 판단하여 충전 상태를 판별함으로써 배터리의 급속 충전의 제어를 위한 이중적인 안정성을 제공할 수 있는 전기 자동차의 급속 충전 제어 장치를 제공하는데 있다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일측면에 의하면, 충전소로부터 입력되는 직류 전압의 크기를 검출하는 전압 검출부; 상기 충전소로부터 인가되는 전원을 공급받아 전기 자동차의 배터리에 대한 급속 충전을 수행하면서 상기 배터리의 SOC(status of charge) 정보를 모니터링하는 급속 충전부; 및 상기 급속 충전부로부터 전달되는 상기 배터리의 SOC(status of charge) 정보로부터 상기 배터리의 충전 상태를 판단하여 판별된 제1 판별 정보와, 상기 전압 검출부로부터 전달되는 검출 전압으로부터 상기 배터리의 충전 상태를 판단하여 판별된 제2 판별 정보에 기반하여 상기 배터리의 급속 충전의 제어를 이중적으로 수행하는 통합 전력 제어 유닛을 포함하는 전기 자동차의 급속 충전 제어 장치가 제공된다.
상기 전압 검출부에 의해 검출된 검출 전압의 크기에 대응하는 상기 배터리의 충전 상태를 판별하기 위한 충전 상태 판별 정보를 저장하는 데이터 저장부를 더 포함한다.
상기 충전 상태 판별 정보는 상기 배터리의 급속 충전을 위해 상기 충전소로부터 인가되는 입력 전압의 정보와, 상기 전압 검출부로부터 검출되는 검출 전압의 정보를 서로 대응시켜 상기 배터리의 충전 상태를 판별하도록 설정된다.
상기 통합 전력 제어 유닛은 상기 전압 검출부로부터 검출된 검출 전압의 크기에 대응하는 상기 입력 전압의 크기를 상기 데이터 저장부에 저장된 충전 상태 판별 정보를 참조하여 추정하고, 상기 추정된 입력 전압의 크기에 따라 상기 배터리의 충전 상태를 판별한다.
상기 전압 검출부는 상기 충전소로부터 입력되는 직류 전압을 두개의 입력 단자를 통해 입력받고, 상기 두개의 입력 단자의 입력 전압 차이를 비교한 다음 5V 기준전압을 사용하여 상기 입력 전압 차이에 따라 0V에서 5V의 전압을 출력하는 비교회로를 포함한다.
상기 통합 전력 제어 유닛은 상기 제1 판별 정보와 상기 제2 판별 정보를 비교하여 서로 일치하면 상기 제1 판별 정보에 의한 충전 상태 정보에 따라 상기 배터리의 충전을 계속적으로 진행하거나 중단하고, 일치하지 않으면 상기 배터리의 충전을 중단한다.
본 발명에 의하면, 전기 자동차의 배터리에 대한 급속 충전시에 급속 충전부로부터 전달되는 SOC 정보에 의해 충전 상태를 판단함과 아울러, 전압 검출부로부터 검출되는 검출 전압을 참조로 하여 입력 전압을 판단하여 충전 상태를 판별함으로써 배터리의 급속 충전의 제어를 위한 이중적인 안정성을 제공할 수 있다.
도 1은 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 장치를 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 장치의 충전 상태 판별을 위한 전압 시뮬레이션 결과를 보여주는 도면이다.
도 3은 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 방법을 설명하기 위한 흐름도이다.
도 4는 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 방법을 설명하기 위한 흐름도이다.
도 5는 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 방법을 설명하기 위한 흐름도이다.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다. 그러나, 본 발명의 사상이 제시되는 실시 예에 제한된다고 할 수 없으며, 또 다른 구성요소의 추가, 변경, 삭제 등에 의해서 퇴보적인 다른 발명이나, 본 발명 사상의 범위 내에 포함되는 다른 실시 예를 용이하게 제안할 수 있다.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 함을 밝혀 두고자 한다.
즉, 이하의 설명에 있어서, 단어 '포함하는'은 열거된 것과 다른 구성요소들 또는 단계들의 존재를 배제하지 않는다.
도 1은 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 장치를 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 장치(100)는 충전소(200)부터 고전압 직류를 공급받아 배터리(300)에 대한 급속 충전을 수행한다.
급속 충전 제어 장치(100)는 데이터 저장부(110), 전압 검출부(120), 전류 검출부(130), 통합 전력 제어 유닛(140), 스위칭부(150), 급속 충전부(160)를 포함하여 구성될 수 있다.
데이터 저장부(110)는 전압 검출부(120)에 의해 검출된 검출 전압의 크기에 대응하는 충전 상태를 판별하기 위한 충전 상태 판별 정보를 저장한다.
충전 상태 판별 정보는 전기 자동차의 배터리 급속 충전을 위해 충전소로부터 인가되는 입력 전압의 정보와, 전압 검출부(120)로부터 검출되는 검출 전압의 정보를 서로 대응시켜 충전 상태를 판별하도록 설정된다.
충전 상태 판별 정보는 도 2에 도시된 바와 같이 충전 상태 판별을 위한 전압 시뮬레이션 결과를 토대로 설정될 수 있다. 도 2에는 입력 전압의 크기별로 검출 전압이 대응되어 있다. 따라서, 전압 검출부(120)에서 검출되는 검출 전압의 크기를 통해 해당 시점에서의 입력 전압의 크기를 추정할 수 있다. 입력 전압의 크기에 따라 미충전 상태, 정상 충전 상태, 과충전 상태를 설정할 수 있다.
예를 들어, 충전 상태 판별 정보는 도 2의 시뮬레이션 결과를 토대로 전압 검출부(120)에 의해 모니터링된 검출 전압이 0.5V미만이면 미충전 상태, 0.5V 이상부터 4.5V 미만이면 정상 충전 상태, 4.5V 이상이면 과충전 상태로 설정할 수 있다.
전압 검출부(120)는 충전소(200)로부터 입력되는 직류 전압의 크기를 검출할 수 있다. 예를 들어, 전압 검출부(120)는 0V에서 5V의 범위에 있는 검출 전압을 출력하도록 구성될 수 있다. 이를 위해, 전압 검출부(120)는 두개의 입력단자를 통해 충전소(200)로부터 100~550V 직류 전압을 입력받고, 두개의 입력 단자의 입력 전압 차이를 비교한 다음 5V 기준전압을 사용하여 입력 전압 차이에 따라 0V에서 5V의 전압을 출력하는 비교회로로 구현될 수 있다.
전류 검출부(130)는 충전소(200)로부터 입력되는 전류를 검출하기 위한 전류 센서를 포함할 수 있다.
통합 전력 제어 유닛(140)은 전압 검출부(120)와 전류 검출부(130)와 급속 충전부(160)를 모니터링하면서 충전소(200)와 배터리 충전을 위한 통신을 수행하여, 충전소(200)로부터 배터리의 충전을 위한 전력을 제공받아 급속 충전부(160)에 공급하기 위한 제어를 수행한다.
통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 검출된 검출 전압의 크기를 데이터 저장부(110)에 저장된 전압 정보 테이블을 참조하여, 충전소(200)로부터 현재 입력되고 있는 입력 전압을 크기를 추정할 수 있고, 입력 전압의 크기에 따라 전체 충전 단계중에서 현재의 충전 단계를 판별할 수 있다.
통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 출력된 검출 전압을 모니터링하여 충전 상태를 판별할 수 있다.
예를 들어, 통합 전력 제어 유닛(140)은 모니터링된 검출 전압이 0.5V미만이면 미충전 상태, 0.5V 이상부터 4.5V 미만이면 정상 충전 상태, 4.5V 이상이면 과충전 상태로 인식할 수 있다.
통합 전력 제어 유닛(140)은 판별된 충전 상태에 따라 충전 상태 정보를 표시할 수 있다. 충전 상태 정보의 표시는 표시 장치 또는 음성 장치를 통해 이루어질 수 있다.
통합 전력 제어 유닛(140)은 판별된 충전 상태에 따라 스위칭 제어 신호를 생성하여 스위칭부(150)에 출력할 수 있다. 예를 들어, 통합 전력 제어 유닛(140)은 과충전 상태이면 충전을 중단하도록 스위칭 제어 신호를 출력한다. 통합 전력 제어 유닛(140)은 미충전 상태이거나 정상 충전 상태이면 충전을 계속 진행하기 위한 스위칭 제어 신호를 생성할 수 있다.
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 배터리의 SOC(status of charge) 정보로부터 배터리의 충전 상태를 판별할 수 있다.
예를 들어, 통합 전력 제어 유닛(140)은 배터리의 SOC 정보와 미리 설정된 기준 SOC 정보와 비교하여 미충전 상태, 정상 충전 상태, 과충전 상태를 판별할 수 있다.
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 판별된 배터리의 충전 상태와, 전압 검출부(120)로부터 검출된 검출 전압으로부터 판별된 배터리의 충전 상태를 비교하여 서로 일치하면 SOC 정보로부터 판별된 충전 상태 정보에 따라 스위칭부(150)를 제어하여 충전을 계속적으로 진행하거나 충전을 중단할 수 있다. 한편, 충전 상태 정보가 서로 일치하지 않으면, 충전을 중단하도록 스위칭부를 제어한다.
급속 충전부(160)로부터 전달받은 SOC 정보로부터 판별된 배터리의 충전 상태와, 전압 검출부(120)로부터 검출된 검출 전압으로부터 판별된 배터리의 충전 상태가 서로 일치하지 않으면 충전을 중단하도록 하는 것은 급속 충전부(160)의 오류 발생에 효과적인 안전장치가 될 수 있다. 즉, 급속 충전부(160)의 고장 발생을 포함하여 임의의 고장 상황에 의해서 급속 충전부(160)로부터 통합 전력 제어 유닛(140)으로 전달되는 SOC 정보가 왜곡될 수 있는 개연성이 있다. 따라서, 급속 충전부(160)에 고장이 발생했음에도 불구하고, 급속 충전부(160)의 고장여부가 체크되지 않는다면, 통합 전력 제어 유닛(140)에까지 고장이 확대될 수 있고 배터리가 손상되는 경우도 발생될 수 있다.
따라서, 통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달되는 SOC 정보에 의해 충전 상태를 판단함과 아울러, 전압 검출부(120)로부터 검출되는 검출 전압을 참조로 하여 입력 전압을 판단하여 충전 상태를 판별함으로써 배터리의 급속 충전의 제어를 위한 이중적인 안정성을 제공할 수 있다.
통합 전력 제어 유닛(140)은 판별된 충전 단계에 상응하여 충전 상태를 알리는 충전 상태 알림 정보를 생성할 수 있다. 따라서, 미충전 상태, 정상 충전 상태, 과충전 상태, 충전 중단 상태 등의 충전 상태 알림 정보가 생성될 수 있다.
통합 전력 제어 유닛(140)은 판별된 충전 단계에 따라 배터리의 충전을 진행하거나 중단하기 위한 스위칭 제어 신호를 생성하여 출력한다.
스위칭부(150)는 스위칭 제어신호에 따라 스위칭 동작을 수행하여 충전소(200)로부터 인가되는 전원을 급속 충전부(160)에 전달하거나 차단할 수 있다.
급속 충전부(160)는 충전소(200)로부터 인가되는 전원을 공급받아 배터리에 대한 급속 충전을 수행한다.
급속 충전부(160)는 배터리에 대한 충전을 수행하면서 배터리의 SOC 정보를 모니터링하여 통합 전력 제어 유닛(140)에 전달한다.
도 3은 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 방법을 설명하기 위한 흐름도이다.
도 3을 참조하면, 전압 검출부(120)는 두개의 단자를 통해 입력되는 입력 전압의 크기를 비교하여 검출 전압을 출력한다(S1). 이때, 전압 검출부(120)로부터 출력되는 검출전압의 크기는 OV에서 5V의 범위내에 있게 된다.
통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 출력된 검출 전압을 모니터링한다(S2).
통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 출력된 검출 전압이 속하는 충전 상태를 판별한다(S3). 예를 들어, 통합 전력 제어 유닛(140)은 모니터링된 검출 전압이 0.5V미만이면 미충전 상태로 인식하고, 0.5V 이상부터 4.5V 미만이면 정상 충전 상태로 인식하며, 4.5V 이상이면 과충전 상태로 인식한다.
통합 전력 제어 유닛(140)은 판별된 충전 상태에 따라 충전 상태 정보를 표시한다(S4). 충전 상태 정보의 표시는 표시 장치 또는 음성 장치를 통해 이루어질 수 있다.
통합 전력 제어 유닛(140)은 판별된 충전 상태에 따라 스위칭 제어 신호를 생성하여 스위칭부(150)에 출력한다(S5).
통합 전력 제어 유닛(140)은 과충전 상태이면 충전을 중단하도록 스위칭 제어 신호를 출력한다. 통합 전력 제어 유닛(140)은 미충전 상태이거나 정상 충전 상태이면 충전을 계속 진행하기 위한 스위칭 제어 신호를 생성한다.
스위칭부(150)는 통합 전력 제어 유닛(140)의 스위칭 제어 신호에 따라 충전소(200)로부터 인가되는 전력을 급속 충전부(160)에 공급하거나 차단한다(S6).
도 4는 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 방법을 설명하기 위한 흐름도이다.
도 4를 참조하면, 통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 배터리의 SOC(status of charge) 정보를 전달받는다(S11). 통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 배터리의 충전 상태를 판별한다(S12). 이때, 판별된 배터리의 충전 상태 정보를 제1 판별 정보라고 한다.
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보와 미리 설정된 기준 SOC 정보와 비교하여 미충전 상태, 정상 충전 상태, 과충전 상태를 판별한다.
통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 검출된 검출 전압으로부터 배터리의 충전 상태를 판별한다(S13).
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 판별된 배터리의 충전 상태(제1 판별 정보)와, 전압 검출부(120)로부터 검출된 검출 전압으로부터 판별된 배터리의 충전 상태(제2 판별 정보)가 일치하는지 판단한다(S14).
S14 단계의 판단 결과, 제1 판별 정보와 제2 판별 정보가 서로 일치하면 통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 판별된 제1 판별 정보에 따라 스위칭부(150)를 제어하여 충전을 계속적으로 진행하거나 충전을 중단한다(S15).
S14 단계의 판단 결과, 제1 판별 정보와 제2 판별 정보가 서로 일치하지 않으면, 충전을 중단하도록 스위칭부(150)를 제어한다(S16).
도 5는 본 발명의 일실시예에 따른 전기 자동차의 급속 충전 제어 방법을 설명하기 위한 흐름도이다.
도 5를 참조하면, 통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 검출된 검출 전압으로부터 배터리의 충전 상태를 판별한다(S21).
통합 전력 제어 유닛(140)은 전압 검출부(120)로부터 검출된 검출 전압으로부터 판별된 배터리의 충전 상태가 과충전 상태인지를 판단한다(S22).
S24 단계의 판단 결과, 과충전 상태이면 통합 전력 제어 유닛(140)은 스위칭부(150)를 제어하여 충전을 중단한다(S23).
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 배터리의 SOC(status of charging) 정보를 전달받는다(S24). 통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 배터리의 충전 상태를 판별한다(S25).
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보와 미리 설정된 기준 SOC 정보와 비교하여 미충전 상태, 정상 충전 상태, 과충전 상태를 판별한다.
통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 판별된 배터리의 충전 상태와, 전압 검출부(120)로부터 검출된 검출 전압으로부터 판별된 배터리의 충전 상태가 일치하는지 판단한다(S26).
S26 단계의 판단 결과, 서로 일치하면 통합 전력 제어 유닛(140)은 급속 충전부(160)로부터 전달받은 SOC 정보로부터 판별된 충전 상태에 따라 스위칭부(150)를 제어하여 충전을 계속적으로 진행하거나 충전을 중단한다(S27).
S26 단계의 판단 결과, 판별된 배터리의 충전 상태가 서로 일치하지 않으면, 충전을 중단하도록 스위칭부(150)를 제어한다(S28).
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
Claims (7)
- 충전소로부터 입력되는 직류 전압의 크기를 검출하는 전압 검출부;상기 충전소로부터 인가되는 전원을 공급받아 전기 자동차의 배터리에 대한 급속 충전을 수행하면서 상기 배터리의 SOC(status of charge) 정보를 모니터링하는 급속 충전부; 및상기 급속 충전부로부터 전달되는 상기 배터리의 SOC(status of charge) 정보로부터 상기 배터리의 충전 상태를 판단하여 판별된 제1 판별 정보와, 상기 전압 검출부로부터 전달되는 검출 전압으로부터 상기 배터리의 충전 상태를 판단하여 판별된 제2 판별 정보에 기반하여 상기 배터리의 급속 충전의 제어를 이중적으로 수행하는 통합 전력 제어 유닛을 포함하는 전기 자동차의 급속 충전 제어 장치.
- 제1 항에 있어서, 상기 전압 검출부에 의해 검출된 검출 전압의 크기에 대응하는 상기 배터리의 충전 상태를 판별하기 위한 충전 상태 판별 정보를 저장하는 데이터 저장부를 더 포함하는 전기 자동차의 급속 충전 제어 장치.
- 제2 항에 있어서, 상기 충전 상태 판별 정보는 상기 배터리의 급속 충전을 위해 상기 충전소로부터 인가되는 입력 전압의 정보와, 상기 전압 검출부로부터 검출되는 검출 전압의 정보를 서로 대응시켜 상기 배터리의 충전 상태를 판별하도록 설정된 것을 특징으로 하는 전기 자동차의 급속 충전 제어 장치.
- 제3 항에 있어서, 상기 통합 전력 제어 유닛은 상기 전압 검출부로부터 검출된 검출 전압의 크기에 대응하는 상기 입력 전압의 크기를 상기 데이터 저장부에 저장된 충전 상태 판별 정보를 참조하여 추정하고, 상기 추정된 입력 전압의 크기에 따라 상기 배터리의 충전 상태를 판별하는 전기 자동차의 급속 충전 제어 장치.
- 제1 항에 있어서, 상기 전압 검출부는 상기 충전소로부터 입력되는 직류 전압을 두개의 입력 단자를 통해 입력받고, 상기 두개의 입력 단자의 입력 전압 차이를 비교한 다음 5V 기준전압을 사용하여 상기 입력 전압 차이에 따라 0V에서 5V의 전압을 출력하는 비교회로를 포함하는 전기 자동차의 급속 충전 제어 장치.
- 제1 항에 있어서, 상기 통합 전력 제어 유닛은 상기 제1 판별 정보와 상기 제2 판별 정보를 비교하여 서로 일치하면 상기 제1 판별 정보에 의한 충전 상태 정보에 따라 상기 배터리의 충전을 계속적으로 진행하거나 중단하고, 일치하지 않으면 상기 배터리의 충전을 중단하는 전기 자동차의 급속 충전 제어 장치.
- 제1 항에 있어서, 상기 통합 전력 제어 유닛은 상기 전압 검출부로부터 검출된 검출 전압으로부터 상기 배터리의 충전 상태를 판별하고, 상기 전압 검출부로부터 검출된 검출 전압으로부터 판별된 상기 배터리의 충전 상태가 과충전 상태이면 상기 배터리의 충전을 중단하는 전기 자동차의 급속 충전 제어 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/327,431 US10189367B2 (en) | 2014-08-01 | 2015-07-13 | Electric vehicle quick charge control apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140098925A KR102253188B1 (ko) | 2014-08-01 | 2014-08-01 | 전기 자동차의 급속 충전 제어 장치 |
KR10-2014-0098925 | 2014-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016017963A1 true WO2016017963A1 (ko) | 2016-02-04 |
Family
ID=55217796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/007247 WO2016017963A1 (ko) | 2014-08-01 | 2015-07-13 | 전기 자동차의 급속 충전 제어 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10189367B2 (ko) |
KR (1) | KR102253188B1 (ko) |
WO (1) | WO2016017963A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106494251A (zh) * | 2016-11-11 | 2017-03-15 | 江苏理工学院 | 一种电动汽车用电池的充电控制装置及方法 |
CN110386029A (zh) * | 2019-07-23 | 2019-10-29 | 安徽力高新能源技术有限公司 | 一种根据动态电压修正锂电池soc方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102253188B1 (ko) * | 2014-08-01 | 2021-05-18 | 엘지이노텍 주식회사 | 전기 자동차의 급속 충전 제어 장치 |
CN105576727B (zh) * | 2014-10-16 | 2020-02-28 | 中兴通讯股份有限公司 | 一种快速充电的方法、装置和系统 |
US10703474B2 (en) * | 2016-08-20 | 2020-07-07 | The Hi-Tech Robotic Systemz Ltd | Tethered unmanned aerial vehicle |
KR20180046538A (ko) * | 2016-10-28 | 2018-05-09 | 르노삼성자동차 주식회사 | 배터리 충전상태에 따라 충전종료 시기를 조절하는 전기자동차의 배터리충전제어장치 및 방법 |
TWM564197U (zh) * | 2018-03-27 | 2018-07-21 | 哈帝斯科技股份有限公司 | 具有辨識裝置功能之無線供電滑鼠墊 |
EP4353515A1 (de) * | 2018-06-22 | 2024-04-17 | eLoaded GmbH | System mit zentraleinheit und mehreren gleichspannungsladesäulen zum laden von elektrofahrzuegen |
CN110843604B (zh) * | 2019-10-24 | 2022-10-14 | 金龙联合汽车工业(苏州)有限公司 | 一种防止动力电池多次充电导致过压的方法 |
US11691531B2 (en) * | 2020-10-29 | 2023-07-04 | GM Global Technology Operations LLC | Adaptation of charge current limits for a rechargeable energy storage system |
US11554678B2 (en) | 2020-12-11 | 2023-01-17 | Ford Global Technologies, Llc | Vehicle direct current fast charging |
CN115723596A (zh) * | 2021-08-31 | 2023-03-03 | 比亚迪股份有限公司 | 车辆的充电口盖控制方法以及车辆的充电口盖控制装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100156356A1 (en) * | 2007-03-07 | 2010-06-24 | Jun Asakura | Method of quick charging lithium-based secondary battery and electronic device using same |
JP2012065378A (ja) * | 2010-09-14 | 2012-03-29 | Nichicon Corp | 充電制御ユニット |
KR20130120522A (ko) * | 2011-02-14 | 2013-11-04 | 가부시끼가이샤 도시바 | 축전 장치와 그 설치 및 운용 방법 |
KR20140014715A (ko) * | 2012-07-25 | 2014-02-06 | 현대모비스 주식회사 | 차량용 배터리의 제어 방법 |
KR20140038528A (ko) * | 2011-06-16 | 2014-03-28 | 르노 에스.아.에스. | 자동차의 전기 부속품이 연결되어 있는 전기 배터리를 포함하는 자동차의 전기 부속품에 전력을 공급하는 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010028626B4 (de) * | 2010-05-05 | 2021-09-16 | Bender Gmbh & Co. Kg | Stromaufladevorrichtung für ein Elektrofahrzeug |
JP5647057B2 (ja) * | 2010-05-19 | 2014-12-24 | 株式会社日立製作所 | 充電装置、充電制御ユニット及び充電制御方法 |
US20160114692A1 (en) * | 2013-06-06 | 2016-04-28 | Nanyang Technological University | Battery charging devices, battery charging methods, battery systems, and methods for controlling batteries |
KR102253188B1 (ko) * | 2014-08-01 | 2021-05-18 | 엘지이노텍 주식회사 | 전기 자동차의 급속 충전 제어 장치 |
-
2014
- 2014-08-01 KR KR1020140098925A patent/KR102253188B1/ko active IP Right Grant
-
2015
- 2015-07-13 WO PCT/KR2015/007247 patent/WO2016017963A1/ko active Application Filing
- 2015-07-13 US US15/327,431 patent/US10189367B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100156356A1 (en) * | 2007-03-07 | 2010-06-24 | Jun Asakura | Method of quick charging lithium-based secondary battery and electronic device using same |
JP2012065378A (ja) * | 2010-09-14 | 2012-03-29 | Nichicon Corp | 充電制御ユニット |
KR20130120522A (ko) * | 2011-02-14 | 2013-11-04 | 가부시끼가이샤 도시바 | 축전 장치와 그 설치 및 운용 방법 |
KR20140038528A (ko) * | 2011-06-16 | 2014-03-28 | 르노 에스.아.에스. | 자동차의 전기 부속품이 연결되어 있는 전기 배터리를 포함하는 자동차의 전기 부속품에 전력을 공급하는 방법 |
KR20140014715A (ko) * | 2012-07-25 | 2014-02-06 | 현대모비스 주식회사 | 차량용 배터리의 제어 방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106494251A (zh) * | 2016-11-11 | 2017-03-15 | 江苏理工学院 | 一种电动汽车用电池的充电控制装置及方法 |
CN110386029A (zh) * | 2019-07-23 | 2019-10-29 | 安徽力高新能源技术有限公司 | 一种根据动态电压修正锂电池soc方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20160015929A (ko) | 2016-02-15 |
US10189367B2 (en) | 2019-01-29 |
KR102253188B1 (ko) | 2021-05-18 |
US20170158079A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016017963A1 (ko) | 전기 자동차의 급속 충전 제어 장치 | |
WO2015126035A1 (ko) | 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 | |
WO2012018206A2 (ko) | 전기자동차의 배터리 제어장치 및 그 제어방법 | |
WO2014077522A1 (ko) | 배터리 시스템의 릴레이 융착 검출 장치 및 방법 | |
WO2017010750A1 (ko) | 전기 자동차의 충전 장치 및 방법 | |
WO2011102576A1 (ko) | 셀 밸런싱 회로의 이상 진단 장치 및 방법 | |
WO2011083993A2 (ko) | 배터리 제어 장치 및 방법 | |
EP2940827B1 (en) | Electric power supply device using electric vehicle | |
WO2012018204A2 (ko) | 전기자동차 및 그 배터리의 충전제어방법 | |
WO2018139740A1 (ko) | 배터리 팩, 배터리 팩의 관리 방법, 및 배터리 팩을 포함하는 차량 | |
CN103782476A (zh) | 电池单元、电动车辆、移动体、电源装置及电池控制装置 | |
WO2018034486A1 (ko) | 전기 자동차의 충전 장치 | |
WO2015002379A1 (ko) | 배터리 팩 보호 장치 및 방법 | |
WO2015030439A1 (ko) | 전류 측정 릴레이 장치 | |
WO2016133370A1 (en) | Contactor control system | |
WO2018101702A1 (ko) | 차량간 충전이 가능한 전기 자동차용 충전 시스템 | |
CN106394300A (zh) | 一种电源管理系统 | |
WO2020153702A1 (ko) | 고장 검출 장치 및 그 방법 | |
CN108859764B (zh) | 电池应急故障处置方法、装置、系统及汽车 | |
WO2016064224A1 (ko) | 전류 제어 장치 및 방법 | |
WO2017047963A1 (ko) | 차량 상시전원과 연결된 모바일단말의 배터리 완전 충전 감지 장치 | |
CN210416480U (zh) | 开路检测电路及车辆 | |
WO2018124374A1 (ko) | 전기자동차 충전기의 누전차단장치 | |
CN108439117B (zh) | 电梯松闸装置 | |
WO2018088685A1 (ko) | 배터리 팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15827297 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327431 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15827297 Country of ref document: EP Kind code of ref document: A1 |