WO2016013394A1 - 細胞数濃度調整装置およびそれを用いた自動継代培養システム - Google Patents
細胞数濃度調整装置およびそれを用いた自動継代培養システム Download PDFInfo
- Publication number
- WO2016013394A1 WO2016013394A1 PCT/JP2015/069616 JP2015069616W WO2016013394A1 WO 2016013394 A1 WO2016013394 A1 WO 2016013394A1 JP 2015069616 W JP2015069616 W JP 2015069616W WO 2016013394 A1 WO2016013394 A1 WO 2016013394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- flow path
- cell suspension
- cell number
- concentration
- Prior art date
Links
- 239000006285 cell suspension Substances 0.000 claims abstract description 139
- 239000007788 liquid Substances 0.000 claims abstract description 87
- 239000012895 dilution Substances 0.000 claims abstract description 12
- 238000010790 dilution Methods 0.000 claims abstract description 12
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 238000004113 cell culture Methods 0.000 claims description 64
- 239000003085 diluting agent Substances 0.000 claims description 52
- 238000002156 mixing Methods 0.000 claims description 17
- 238000007865 diluting Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 4
- 210000004027 cell Anatomy 0.000 abstract description 216
- 238000005259 measurement Methods 0.000 abstract description 33
- 210000004748 cultured cell Anatomy 0.000 abstract description 3
- 230000002572 peristaltic effect Effects 0.000 description 58
- 230000004048 modification Effects 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 17
- 239000012530 fluid Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000011550 stock solution Substances 0.000 description 8
- 238000011088 calibration curve Methods 0.000 description 7
- 238000011109 contamination Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 238000012258 culturing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000004816 latex Substances 0.000 description 6
- 229920000126 latex Polymers 0.000 description 6
- 238000003113 dilution method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101710151387 Serine protease 1 Proteins 0.000 description 1
- 102100032491 Serine protease 1 Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 101710119665 Trypsin-1 Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229920002529 medical grade silicone Polymers 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/40—Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/14—Pressurized fluid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/18—External loop; Means for reintroduction of fermented biomass or liquid percolate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/10—Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/06—Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
Definitions
- the present invention relates to an apparatus for automatically performing cell culture, and more particularly to an apparatus capable of automatically performing subculture work.
- Patent Literature 1 proposes a cell culture device that automates the collection of cultured cells and enables efficient subculture.
- Patent Document 2 discloses contamination of culture work using a cell culture apparatus provided with a plurality of culture dishes for culturing cells and a control means for selectively transferring a cell solution to a predetermined culture dish. It has been proposed to reduce the risk.
- Patent Document 1 described above describes that the cell culture apparatus is provided with a dilution mechanism for diluting and dispersing cultured cells in the medium.
- the dilution mechanism is based on the measurement of the number of cells. It does not dilute. It is good if the amount of collected cells is stable for each culture. For example, when used for cell culture in regenerative medicine, the degree of cell growth may vary depending on the patient from whom the cells were collected. Cell number concentration may be inappropriate.
- an object of this invention is to provide the apparatus which performs automatically the process which dilutes the cultivated cell to the desired cell density
- the present invention provides an apparatus capable of automatically performing an operation of measuring the number of cells per unit amount of the taken-in cell suspension, taking in a diluent based on the measurement result, and diluting to a desired cell number concentration.
- the gist of the present invention is as follows. (1) An inlet for taking in a cell suspension containing cells at a high concentration and an outlet for discharging a cell suspension containing cells at a desired concentration lower than the concentration at the inlet, Having a flow path capable of holding the cell suspension between the inlet and outlet; The flow path includes a liquid feed pump for flowing the internal cell suspension, a cell number measuring device for collecting data on the cell number concentration per unit amount of the cell suspension, and a cell provided to the flow path.
- a diluent container is provided for holding a diluent for diluting the suspension;
- a control unit for controlling at least the liquid delivery pump based on the data obtained by the cell number counter;
- the control unit determines the amount of diluent necessary to obtain the desired cell number concentration based on the data obtained by the cell counter, takes the required amount of diluent into the flow path, and suspends the cell.
- a cell number adjusting device wherein a liquid feeding pump is driven to mix a liquid and a diluent.
- the cell suspension and the diluting liquid are mixed by driving the liquid feeding pump until the fluctuation of the data obtained from the cell number counter falls within a predetermined value range and repeatedly flowing through the circulation flow path.
- the cell number measuring device measures the intensity of scattered light or transmitted light irradiated to the cell suspension, collects data on the cell number concentration as the light intensity value, and the control unit obtains the data in advance.
- the cell number adjusting apparatus according to any one of (1) to (4), wherein the cell number concentration is calculated in light of the relationship between the cell number concentration and the light intensity value.
- the control unit can control the valve that controls the uptake of the cell suspension from the inlet and the valve that controls the uptake of the diluent into the flow path.
- the control unit can control the cell suspension and the diluent.
- the cell number adjusting apparatus according to any one of (1) to (4), wherein the liquid feeding pump and the two types of valves are controlled so that the uptake is alternately repeated.
- An automatic subculture system comprising a first cell culture device for expansion culture, a cell number adjustment device, and a second cell culture device for subculture,
- the first cell culture device discharges the high concentration cell suspension
- the cell number adjustment device dilutes the high concentration cell suspension into a uniform cell suspension having a desired cell number concentration.
- the second cell culture device seeds the diluted cell suspension and performs subculture.
- the cell number adjusting device comprises: An inlet for taking in a high concentration cell suspension and an outlet for discharging a cell suspension containing the cells at a desired concentration lower than the inlet concentration; Having a flow path capable of holding the cell suspension between the inlet and outlet; In the flow path, there are a cell number measuring device that collects data on the cell number concentration per unit amount of the cell suspension, and a diluent container that holds the dilution liquid that is provided to the flow path and dilutes the cell suspension.
- control unit for controlling the flow of the cell suspension inside the channel based on the data obtained by the cell number counter
- the control unit determines the amount of diluent necessary to obtain the desired cell number concentration based on the data obtained by the cell counter, takes the required amount of diluent into the flow path, and suspends the cell.
- the automatic subculture system (9)
- the control unit controls the flow of the cell suspension inside the flow path of the cell number adjusting device using a liquid feeding pump provided in the first cell culture device or the second cell culture device.
- the automatic subculture system as described in 8).
- a method for diluting a cell suspension containing cells at a high concentration to a desired concentration With the cell suspension flowing, measure the intensity of scattered light or transmitted light irradiated to the cell suspension intermittently or continuously, and collect data on the cell number concentration as the light intensity value.
- Process The process of converting the obtained data into the cell number concentration in light of the relationship between the cell number concentration and the light intensity value obtained in advance, and the amount of diluent necessary for diluting to the desired concentration is calculated.
- the method comprising the step of adding a diluent to the cell suspension and mixing.
- the expanded cells can be replated at a constant concentration, and a stable subculture operation can be performed.
- the present invention contributes to realizing stable cell culture in the field of regenerative medicine.
- FIG. 1 is a schematic view showing a first embodiment of the cell number adjusting apparatus of the present invention.
- the cell number adjusting apparatus 100 receives a cell suspension containing cells at a high concentration and having an unknown cell number concentration (the number of cells contained per unit amount of the cell suspension). 1, the concentration is adjusted inside, and a cell suspension containing cells at a desired concentration lower than the concentration at the inlet 1 is discharged from the outlet 2.
- the inlet 1 and the outlet 2 are communicated with each other through a flow path 3, and a peristaltic pump 4 is provided as a liquid feeding pump for flowing the liquid in the flow path.
- the control unit 11 controls at least the peristaltic pump 4. .
- the channel does not necessarily have a uniform tube diameter.
- a narrowed portion with a small tube diameter is provided in at least a part, and when the agglomerated cells pass there, shearing force acts to disperse the cells. You may do it.
- the flow path 3 has at least a part made of an elastic material, and the peristaltic pump 4 squeezes the elastic part of the flow path 3 to flow the fluid inside the flow path.
- a peristaltic pump is preferable because driving parts such as blades do not directly touch the fluid, so that the fluid can flow without being contaminated and damage to the dispersed cells is small.
- the pump for causing the fluid to flow is not limited to the peristaltic pump, but it is preferable that the driving component does not touch the fluid directly like the peristaltic pump. Examples of such a pump include a diaphragm pump and a syringe pump.
- a flow cell 5 is provided in a part of the flow path 3, and the light intensity is measured as data on the cell number concentration per unit amount when the cell suspension passes therethrough.
- the light from the light source 6 is irradiated toward the flow cell 5, and the transmitted light, scattered light, or both are detected by the detector 7.
- the light source 6 and the detector 7 constitute a cell number measuring device. The relationship between the intensity of transmitted light or scattered light detected by the detector 7 and the number of cells is obtained separately in advance, and the cell number concentration is calculated based on this and the light intensity detected by the detector 7.
- the relationship between the intensity of transmitted light or scattered light and the number of cells for example, several types of cell suspensions with known concentrations of cells to be cultured are prepared, the light intensity is measured for each, and a calibration curve is obtained from the obtained results. Can be obtained by creating The flow rate of the cell suspension passing through the flow cell 5 can be obtained based on the amount taken from the inlet 1 or based on the volume or cross-sectional area of the flow cell 5 and the liquid feeding speed of the peristaltic pump 4. The amount of dilution required is determined based on the cell number concentration and the amount of cell suspension.
- the cell number concentration can be calculated with the cell suspension flowing.
- the detector 7 may continuously measure the light intensity continuously, or intermittently, that is, at intervals, preferably You may measure at regular intervals.
- other means for calculating the cell number concentration may be used.
- a part of the flow path 3 is branched and connected to the branch flow path 8, and a switching valve 9 is provided at the branched portion.
- the switching valve 9 can switch between the branch flow path 8 and the flow path on the inlet 1 side.
- a pinch valve is preferably used as the switching valve.
- the pinch valve controls the flow by crushing (pinching) the flow path made of an elastic material from the outside, and does not directly contact the fluid, so it controls the fluid without contaminating the fluid or the valve itself. be able to.
- the switching valve 9 has a function of switching between two flow paths, and can be realized by combining two pinch valves. However, a universal type valve that can simultaneously open and close two flow paths with one actuator is used. Also good.
- the control unit 11 controls switching of the valve by controlling an actuator provided in the switching valve. The same applies to other switching valves described later.
- a diluting solution container 10 containing diluting solution is connected to the end of the branch flow path 8.
- the control unit 11 controls at least the peristaltic pump 4 and preferably also the switching valve 9, adds a diluent to the cell suspension taken in according to the detection result of the detector 7, and further adds the cell suspension and the cell suspension.
- the diluted solution is sufficiently stirred so that the cell number concentration is uniform. Control of the peristaltic pump 4 and the switching valve 9 by the control unit 11 will be described in detail below.
- the control unit 11 drives the peristaltic pump 4 in a state where the switching valve 9 closes the branch channel 8 and selects the inlet 1 side channel, and takes in the cell suspension stock solution from the inlet 1.
- the taken-in cell suspension is transferred to the flow cell 5 as it is.
- the light intensity is measured by the detector 7.
- the control unit 11 calculates the cell number concentration from the measurement result, compares it with a predetermined target value, calculates it together with the amount of the stock solution taken in, and determines the amount of the diluted solution that is required.
- the control unit 11 switches the switching valve 9 to the state in which the branch flow path 8 side is selected, drives the peristaltic pump 4 for a predetermined time, and takes the diluent from the diluent container 10 into the flow path 3.
- the flow path 3 is in a state where two liquids of a cell suspension and a diluted liquid having a high cell number concentration before adjustment exist unevenly.
- the control unit 11 mixes the two liquids by switching the rotation direction of the peristaltic pump 4 between forward rotation and reverse rotation several times and repeatedly moving the liquid back and forth in the flow path 3.
- the flow path 3 has a sufficient space for holding the cell suspension and the diluted solution, including a space for the movement.
- the mixing of the two liquids can be performed not only by switching the direction of rotation of the peristaltic pump 4 but also by changing the flow rate by changing the rotational speed of the peristaltic pump, for example.
- FIG. 2 is a schematic diagram of a graph showing how the measured value of the light intensity measurement by the detector 7 during mixing of the cell suspension and the diluent is changed.
- the measured value of the light intensity is initially large because the cell number concentration in the flow path 3 is not uniform, but the fluctuation width is large, but as the rotation of the peristaltic pump 4 is repeatedly switched, the cell number concentration gradually increases. It becomes uniform and the fluctuation width decreases, and finally converges to a target value, that is, a light intensity value corresponding to a predetermined cell number concentration.
- the controller 11 causes the liquid in the flow path 3 to flow. Judge that it became uniform. If the converged value is different from the target value, the control unit 11 may repeat the dilution process described above.
- the cell suspension having a desired cell number concentration by the dilution process is discharged from the outlet 2 by driving the peristaltic pump 4.
- the cell suspension is taken in from the inlet 1 and the diluent is taken in from the diluent container 10 once, but the control unit 11 switches the switching valve 9 in a shorter span. Then, the cell suspension and the diluted solution may be divided into a plurality of times and may be repeatedly taken up alternately. This is preferable because the two liquids can be mixed more easily and the burden on the cells can be reduced.
- the cross-sectional area of the flow path 3 or the like is small relative to the amount of cell suspension to be handled, it takes time to move in the flow path when repeatedly moving back and forth for mixing, and the cell is burdened. Therefore, at least the cross-sectional area of the flow path 3 through which the cell suspension passes, more preferably the flow cell 5, has a sufficient size in consideration of the size of the cell to be handled and the amount of the cell suspension to be taken up. Is preferred. For example, if the amount of cell suspension to be taken is in the range of 1 mL to 1000 mL, it is preferable to use a tube having a diameter of about 1 to 10 mm as the tube constituting the flow path 3, and the flow cell 5 has a 1 to 10 mm square. It is preferable to use one.
- the material of the tube constituting the flow path 3 is preferably one that has no or very little influence on the cells.
- An example of such a material is a medical silicone tube.
- the flow cell 5 may be made of glass, but if an inexpensive resin is used, it is more preferable that the cell once passed is easily disposable including the flow path 3.
- the cell suspension As a method for measuring the cell number concentration, as described above, when the light source 6 is irradiated toward the flow cell 5 and the transmitted light, scattered light, or both are detected by the detector 7, the cell suspension is used. This is particularly preferable because the cell number concentration can be measured while the liquid is flowing.
- the method for measuring the cell number concentration is not limited to this, and other methods may be adopted.
- an observation window may be provided in the flow path 3, and an image (still image or moving image) may be taken with a microscope with a CCD camera, and the number of cells may be calculated from the image.
- Real-time processing is required to measure the cell suspension in a fluidized state, but if such high-speed image processing is possible, it will be used as a cell number concentration measurement means instead of light intensity measurement. be able to.
- the switching valve 9, the peristaltic pump 4 and the flow cell 5 connected to the branch flow path 8 are provided in the flow path 3 in this order.
- the order is not limited to this. Can be provided at any position.
- the cell number adjusting apparatus of the present invention since the cells settle when the cell suspension is allowed to stand, the cell number adjusting apparatus of the present invention not only dilutes the cell suspension by adding a diluent, but also simply agitates the cell suspension. You may use as an apparatus for doing.
- FIG. 3 is a schematic view showing a second embodiment of the cell number adjusting apparatus of the present invention.
- the cell number adjusting apparatus 101 according to the second embodiment has the same basic configuration as that of the first embodiment, but the flow path after passing through the peristaltic pump 4 is branched, and the tip is returned to the flow path before passing through, The difference is that the flow path has an annular structure.
- the flow path before passing through the pump is 3a
- the flow path after passing is 3b
- the branched return flow path is 12.
- a switching valve 13 is provided at a branching portion to the return flow path 12 to enable selection of the outlet 2 side flow path and the return flow path 12.
- the branch flow path 8 to which the diluent container 10 is connected is installed on the flow path 3a side.
- the dilution process by the cell number adjusting apparatus 101 according to the second embodiment is performed as follows. First, the control unit 11 closes the return flow path 12 and selects the outlet 2 side flow path, and the switching valve 9 closes the branch flow path 8 and selects the inlet 1 side flow path. In this state, the peristaltic pump 4 is driven to take in the cell suspension stock solution from the inlet 1. The light intensity measurement and the diluting solution are taken in the same manner as in the first embodiment.
- the control unit 11 switches the switching valve 13 to select the return flow path 12 and drives the peristaltic pump 4 in that state.
- the cell suspension and the diluting liquid are stirred while circulating in the circulation flow path constituted by the return flow path 12 and the flow paths 3a and 3b, and the cell number concentration gradually becomes uniform.
- the detector 7 obtains a measurement result similar to that shown in FIG.
- the second embodiment by providing the return flow path 12, it is possible to mix the liquid without switching the rotation direction of the peristaltic pump 4, and the stability of the cell number concentration measurement by light intensity measurement or the like. Effects such as improvement of the peristaltic pump 4, reduction of the load on the peristaltic pump 4, simplification of the control by the control unit 11, and reduction of the burden on the cells.
- a backflow prevention pinch valve or check valve may be provided on the inlet 1 side from the junction of the return flow path 12 of the flow path 3a.
- FIG. 4 is a schematic view showing a third embodiment of the cell number adjusting apparatus of the present invention.
- the cell number adjusting apparatus 102 according to the third embodiment has the same basic configuration as that of the second embodiment, but is different in that a buffer tank 14 is provided in the return flow path 12.
- the circulation channel structure as in the second embodiment is advantageous in the mixing of the cell suspension and the diluent as described above.
- the mixing must be performed within the volume of the circulation channel.
- the buffer tank 14 is provided in the middle of the return flow path 12, and the flow paths before and after the buffer tank are denoted by 12a and 12b, respectively.
- 12a is connected to the buffer tank 14 so that it enters from the top of the buffer tank and 12b exits from the bottom of the tank.
- the buffer tank 14 may be open to the atmosphere. In that case, it is preferable to provide a HEPA filter 15 in the middle to prevent contamination of bacteria from the outside.
- a switching valve 16 is provided at the junction of the return flow path 12b so that a flow path on the inlet 1 side and a flow path on the peristaltic pump side can be selected. As the switching valve, it is preferable to use a universal valve that can alternately control the two flow paths simultaneously with one actuator.
- the purpose of the buffer tank is to make the amount of liquid handled variable, and it does not necessarily have to be a tank having the structure shown in the figure.
- it can be folded with a liquid bag made of stretchable material or an origami structure to freely adjust the volume.
- a changeable bag may be used as a buffer tank.
- Such a bag may incorporate a structure for escaping air, or may be configured to be trapped in the bag without escaping air. By installing the outlet of the bag below, it is possible to discharge only the liquid without mixing air.
- the dilution process by the cell number adjusting apparatus 102 according to the third embodiment is performed as follows. First, the control unit 11 closes the switching valve 13 at the outlet 2 side flow path and selects the return flow path 12a side, and the switching valve 16 closes the feedback flow path 12b and selects the inlet 1 side flow path. In this state, the peristaltic pump 4 is driven to take in the cell suspension stock solution from the inlet 1. The taken-in liquid is sent to the buffer tank 14. At this time, the stock solution of the cell suspension passes through the flow cell, and the light intensity is measured.
- the control unit 11 calculates the cell number concentration from the measurement result, compares it with a predetermined target value, and also calculates the amount of the stock solution taken in, determines the amount of the necessary dilution, and switches The valve 9 is switched to take in the diluent from the diluent container 10.
- the switching valve 16 After the switching valve 16 is switched so as to select the return channel 12b, the stock solution and the diluted solution of the cell suspension taken in are returned from the return channels 12a and 12b including the buffer tank 14 and the channels 3a and 3b. It mixes by circulating in the circulation path comprised.
- the cell suspension having the desired cell number concentration can be discharged from the outlet 2 by driving the peristaltic pump 4 after switching the switching valve 13 to select the outlet 2 side flow path.
- the circulation flow path mixing is performed by dropping the liquid that has entered from the upper part of the buffer tank 14 and passing through the narrow pipe in the other flow path.
- the capacity of the buffer tank 14 and the capacity of each flow path can be appropriately determined from the viewpoint of the stirring efficiency in the buffer tank 14 and other flow paths, the amount of handling liquid that can be assumed, and the like. As an example, if the amount of liquid to be handled is in the range of approximately 120 mL to 180 mL, the capacity of the circulation channel is set to 100 mL and the capacity of the buffer tank 14 is set to 100 mL.
- the buffer tank 14 is provided, air can be removed from the circulation flow path, so that the advantage of stable cell number measurement is also obtained.
- FIG. 5 is a schematic diagram showing a cell number adjusting apparatus 103 according to a modification of the third embodiment.
- the diluent is taken in by the same peristaltic pump 4 used for taking the cell suspension and mixing the cell suspension and the diluent.
- a higher pump flow rate is more efficient for taking up and mixing the suspension, but a pump with a higher flow rate is not well suited for fine adjustment when taking up the diluent.
- the peristaltic pump 4 itself has a large variation in flow rate and is not very suitable for injecting a minute amount of liquid. Therefore, the cell number adjusting apparatus 103 according to the modification shown in FIG. 5 is configured to perform addition of the diluent using the micropump 18 newly provided.
- the micro pump 18 for example, a diaphragm pump or a syringe pump can be used.
- the switching valve 9 provided in the third embodiment is not necessary.
- FIG. 6 is a schematic diagram showing an overview of the subculture system of the present invention.
- the culture container 19 is connected to the supply bag 20 and the recovery bag 21 to form one closed system.
- the individual flow paths 22 connected to the respective bags are configured in parallel, and all of them are connected to the common flow path 23, and the switching installed on the individual flow paths 22.
- One of the supply bags 20 can be selected by the valve 24.
- the cell suspension 20a, the culture medium 20b, the stripping solution 20c, and the sterilized air 20d are included in each supply bag, but the contents of the supply bag are not limited to these.
- the sterilized air is used for extruding the liquid contained in the front from the back and discharging the liquid.
- a HEPA filter may be connected to open the atmosphere. The HEPA filter can prevent contamination of bacteria.
- each individual flow path 25 is configured in parallel, and both are connected to a common flow path 26, and a switching valve 27 installed on the individual flow path 25 is used. Any one of the collection bags 21 can be selected.
- the waste liquid 21a and the cell suspension 21b are put into the respective collection bags, but the contents of the collection bag 21 are not limited to these.
- liquid feeding necessary for culture is performed. After seeding the cell suspension 20a in the culture vessel 19, the medium is periodically exchanged to perform culture. After culturing, the cells are detached from the culture vessel 19 with the peeling solution 20c and collected in the collection bag 21b.
- a closed-system cell culture apparatus 200 that performs initial expansion culture
- a closed-system cell culture apparatus 210 that performs culture after passage.
- the basic configuration of the two culture apparatuses is the same. Since the latter has a large amount of culture, a larger-area container may be used for the latter, and a plurality of culture containers are prepared, connected in parallel, and transferred while switching the culture container with a switching valve (not shown). May be performed.
- the supply bag 30b containing the cell suspension of the culturing device 200 and the inlet 1 of the cell number adjusting device 102 are connected to the connection channel 30 and the outlet 2 of the cell number adjusting device 102 and the cell suspension of the culturing device 210 are supplied
- the bags 20a are connected to each other through the connection flow path 31.
- the cell number adjusting apparatus 102 is related to the above-described second embodiment, but may be the apparatus related to another embodiment.
- the cell number adjusting device 102 takes in a cell suspension serving as a stock solution from the collection bag 21b. Since the amount of collected cells is not uniform depending on the result of expansion culture, it is preferable to drive the peristaltic pump 4 longer and once send the entire amount to the buffer tank 14. Further, the light intensity may be measured by the detector 7 during the taking, and the time from the arrival of the liquid until the breakage of the liquid may be measured, and the amount of the taken-in liquid may be calculated from that time.
- the cell suspension diluted uniformly so as to achieve the target cell number concentration according to the above-described process is sent to the cell suspension supply bag 20a of the culture device 210.
- the whole amount of the cell suspension held in the cell number adjusting apparatus 102 may be fed, or the light intensity measurement may be performed with the detector 7 and the liquid feeding amount may be calculated based on the measurement result.
- the culture apparatus 210 to which the cell suspension diluted to the target cell number concentration is fed performs culture in the same manner as the culture apparatus 200.
- a liquid bag made of an elastic material, a bag body that can be folded by an origami structure and the volume can be freely changed, and a buffer tank 14 are used.
- a structure released to the atmosphere can be used as a buffer area.
- the collection bag 21b of the culture device 200 and the supply bag 20a of the culture device 210 serve as a buffer region.
- FIG. 7 is a schematic diagram showing a part of the configuration of the first modification of the subculture system.
- the cell culture device 201 has the same basic configuration as the cell culture device 200, but does not have a cell suspension collection bag, and is connected to the cell number adjustment device 104 through the connection channel 32.
- the cell number adjusting device 104 has a configuration in which the buffer tank 14 is placed between the peristaltic pump 4 and the inlet 1.
- the flow path on the inlet 1 side is 3a1
- the flow path on the pump side is 3a2
- 3a1 enters from the upper part of the buffer tank 14, and 3a2 exits from the lower part of the tank.
- the flow path 3b after passing through the peristaltic pump 4 is branched, and one of them is used as a return flow path 12 and returned to the upper part of the buffer tank 14. In this configuration, a switching valve at the junction of the return flow path 12 is not necessary.
- a switching valve 13 is provided at the branch between the flow path 3 b and the return flow path 12.
- the branch flow path 8 connected to the diluent container 10 is provided between the buffer tank 14 and the peristaltic pump 4.
- the cell dispersion discharged from the culture device 201 is sent to the buffer tank 14 of the cell number adjusting device 104 by the peristaltic pump 28 of the cell culture device 201.
- the cell suspension whose cell number concentration has been adjusted by the cell number adjusting device 104 is not passaged through the channel 31 because no buffer region is provided in the channel after passing through the peristaltic pump 4 of the cell number adjusting device 104. It is sent to the cell suspension supply bag 20a of the cell culture device 210 for culture.
- FIG. 8 is a schematic view showing a part of the configuration of the second modification of the subculture system.
- the cell suspension supply bag is not provided in the cell culture device 211 for subculture.
- the cell number adjusting device 105 has a configuration in which the buffer tank 14 is provided between the peristaltic pump 4 and the outlet 2.
- the flow path on the pump side is 3b1
- the flow path on the outlet 2 side is 3b2.
- 3b1 enters from the upper part of the buffer tank 14, and 3b2 exits from the lower part of the buffer tank 14.
- the flow path 3b2 is branched, and one of them is used as a return flow path 12 and returned to the flow path 3a before passing through the peristaltic pump.
- a switching valve 16 is provided at the junction.
- the branch flow path 8 connected to the diluent container 10 is provided in the flow path 3 a between the buffer tank 14 and the peristaltic pump 4.
- the switching valve at the branch portion of the flow path 3b2 and the return flow path 12 is not necessary. Since there is no buffer region between the flow path 3b2 and the peristaltic pump 28 of the culture device 211 for subculture, there is no escape route for the liquid. No reverse flow occurs when the is driven. However, when the amount of air in this space is large, the air expands, and there is a possibility of a back flow from the outlet 2 to the return flow path side. Therefore, a pinch valve is provided between the branch of the return flow path and the outlet 2 to prevent back flow.
- the cell culture device 200 for expansion culture is provided with a collection bag 21 b and functions as a buffer region with the cell number adjusting device 105.
- the cell suspension whose cell number concentration is adjusted by the cell number adjusting device 105 is transferred by driving the peristaltic pump 28 of the culture device 211 for subculture, and is directly seeded in the culture device 211.
- FIG. 9 is a schematic view showing a part of the configuration of the third modification of the subculture system.
- no buffer region is provided in any of the cell culture device for expansion culture, the cell number adjustment device, and the cell culture device for subculture.
- a buffer tank 14 is provided between the flow paths 3A and 3B connecting the inlet 1 and the outlet 2, and the peristaltic pump 4 is provided in the middle of the return flow path 12.
- the return flow path 12 is placed in the upper part of the buffer tank 14 so that a switching valve is unnecessary.
- the branch channel 8 connected to the diluent container 10 is provided in the middle of the return channel 12 and before the peristaltic pump 4.
- the cell suspension sent to the buffer tank 14 from the cell culture device 201 for expansion culture circulates in the circulation channel by driving the peristaltic pump 4.
- a valve may be provided in the flow path 3A connecting the inlet 1 and the buffer tank 14, or the flow path after the branch of the flow path 3B to the return flow path 12 and before the outlet 2.
- the cell suspension is fed into the cell culture device 211 for expansion culture by driving the peristaltic pump 28 of the cell culture device 211.
- FIG. 10 is a schematic view showing a part of the configuration of a fourth modification of the subculture system.
- the cell number adjusting device 107 used here does not have a return flow path, and performs mixing by flowing the liquid back and forth.
- the cell number adjusting device 107 does not have a peristaltic pump per se, and allows the liquid to flow using the peristaltic pump of the culture device.
- the switching valve 27 of the culture device 201 for expansion culture selected the flow path 32, the peristaltic pump 28 of the culture device 201 is driven to send the cell suspension to the cell number adjusting device 107.
- the dilution liquid is taken in by switching the switching valve 9 to open the branch flow path and reversing the rotation direction of the peristaltic pump 28.
- the switching valve 9 is returned to its original position, and mixing is performed by switching the rotation direction of the peristaltic pump several times.
- the cell suspension with the adjusted cell number concentration is fed to the supply bag 20a of the cell culture device 210 for subculture by the peristaltic pump of the cell culture device 201. Thereafter, the switching valve 27 on the cell culture device 201 side is switched, and the connection channel 32 is closed.
- FIG. 11 is a schematic diagram showing a part of the configuration of the fifth modification of the subculture system.
- the fourth modification is further modified, and all cell suspensions are directly transferred between the cell culture device and the cell number adjusting device.
- the cell number adjusting device 108 has a structure in which a branch channel 34 is provided on each of the inlet 1 side and the outlet 2 side of the channel 3 and the two branch channels are connected to a common channel 36 opened to the atmosphere.
- the common flow path 36 can be switched by a switching valve 35, and a HEPA filter 37 is connected to the common flow path to prevent contamination of bacteria from the outside.
- the cell suspension is obtained. It is sent to the cell number adjusting device 108. The light intensity is measured by the detector 7, and the switching valve 9 is switched to open the branch flow path as necessary, and the rotation direction of the peristaltic pump 28 is reversed to take in the diluent. Thereafter, the switching valve 27 on the cell culture device 201 side is switched, and the connection channel 32 is closed. The cell suspension whose cell number concentration has been adjusted is driven by driving the peristaltic pump 28 of the cell culture device 211 while switching the switching valve 35 and closing the branch flow path 34 on the outlet 2 side. The liquid is sent to
- An open-type cell culture device is a device that performs culture and BR> ⁇ in a non-sealed culture vessel, such as removing the lid of the culture vessel and replacing the culture medium, as in the case of cell culture of a general technique.
- FIG. 12 is a schematic diagram showing an overview of a subculture system using an open cell culture apparatus.
- the open cell culture apparatus 300 has a culture container 38 that is not sealed, a supply liquid container 39 and a recovery liquid container 40 that are also not sealed.
- As the supply liquid there are a cell suspension 39a, a culture medium 39b, and a stripping liquid 39c, and as the recovery liquid, there are a drainage liquid 40a and a cell suspension 40b. These liquids are sucked and discharged by the dispensing mechanism 41.
- the culture vessel is installed in the incubator 42 and cultured in an environment suitable for culture.
- An inlet channel 43 and an outlet channel 44 are connected to the inlet 1 and the outlet 2 of the cell number adjusting device 102, respectively, and the recovery liquid container 40b of the cell culture device 310 for expansion culture and the culture device 310 for subculture, respectively. Extends into the supply liquid bottle 39a.
- the cell suspension collected and recovered by the cell culture device 300 for expansion culture is recovered in the recovery liquid container 40b by the dispensing mechanism 41.
- the cell number adjusting device takes in the cell suspension from the take-in channel 43, adjusts the cell number concentration, and then discharges it from the take-out channel 44 to the supply liquid container 39a of the cell culture device 310 for subculture.
- the cell number adjusting device 106, 107 or 108 In a subculture system using an open cell culture device, when the cell number adjusting device 106, 107 or 108 is used instead of the cell number adjusting device 102, the cell number adjusting device has a self-priming and self-discharging capability. Since it does not have, it cannot be used with an open culture apparatus as it is. Separately, a means for enabling liquid supply / drainage with the buffer tank 14 is required.
- the cell number adjusting device 100 or 103 When connecting to an open culture device, the cell number adjusting device 100 or 103 is preferably used. Alternatively, if one of the cell culture devices is a closed system, the cell number adjusting device 104 or 105 can also be used.
- the flow path of the cell number adjusting device was made of a silicon tube having an inner diameter of 3.15 mm, and the total length was 520 mm.
- a small tube having an inner diameter of 0.7 mm and a length of 1 mm was provided in a part of the channel so that cells were easily dispersed.
- a flow cell for measuring the light intensity was a 5 mm square.
- a latex particle suspension having a concentration of 5.0 ⁇ 10 5 particles / mL was prepared, the scattered light intensity measurement was performed 6 times, and the concentration was calculated by comparing each measured value with a calibration curve.
- the replated cells were cultured for 2 days, and the proliferation rate and survival rate were examined.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Clinical Laboratory Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
(1)細胞を高濃度で含有する細胞懸濁液を取り込む入口と、細胞を入口の濃度よりも低い所望の濃度で含有する細胞懸濁液を排出する出口とを備え、
入口と出口の間に細胞懸濁液を保持可能な流路を有し、
流路には、内部の細胞懸濁液を流動させるための送液ポンプ、細胞懸濁液の単位量あたりの細胞数濃度に関するデータを採取する細胞数計測器、および流路に提供して細胞懸濁液を希釈する希釈液を保持する希釈液容器が備えられており、
細胞数計測器により得たデータに基づいて少なくとも送液ポンプを制御する制御部をさらに備え、
制御部は、細胞数計測器により得たデータに基づいて細胞数濃度を所望の濃度とするのに必要な希釈液の量を判断し、必要量の希釈液を流路に取り込みかつ細胞懸濁液と希釈液を混合するよう送液ポンプを駆動することを特徴とする、細胞数調整装置。
(2)入口と出口の間に設けられた流路の少なくとも一部が循環流路を形成しており、循環流路には送液ポンプと細胞数計測器とが設けられており、制御部は細胞数計測器から得たデータの変動が予め定めた値の範囲内となるまで送液ポンプを駆動して循環流路を繰り返し流動させることにより細胞懸濁液と希釈液を混合する、(1)に記載の細胞数調整装置。
(3)循環流路にバッファタンクをさらに有する、(2)に記載の細胞数調整装置。
(4)制御部が、送液ポンプを順方向と逆方向の交互に駆動することにより細胞懸濁液と希釈液を混合する、(1)に記載の細胞数調整装置。
(5)細胞数計測器は、細胞懸濁液に照射した光の散乱光または透過光の強度を測定し、光強度値として細胞数濃度に関するデータを採取し、制御部はそのデータを予め求めた細胞数濃度と光強度値の関係に照らして細胞数濃度を算出する、(1)~(4)のいずれかに記載の細胞数調整装置。
(6)細胞数計測器による細胞数濃度に関するデータの採取を、細胞懸濁液を流動させた状態で断続的または連続的に行う、(1)~(4)のいずれかに記載の細胞数調整装置。
(7)制御部が、入口からの細胞懸濁液の取り込みを制御する弁と、希釈液の流路への取り込みを制御する弁を制御可能であり、制御部は細胞懸濁液と希釈液の取り込みを交互に繰り返し行うよう、送液ポンプと前記2種の弁とを制御する、(1)~(4)のいずれかに記載の細胞数調整装置。
(8)拡大培養用の第一の細胞培養装置、細胞数調整装置、および継代培養用の第二の細胞培養装置を含む自動継代培養システムであって、
第一の細胞培養装置は高濃度の細胞懸濁液を排出し、細胞数調整装置は高濃度の細胞懸濁液を所望の細胞数濃度を有する均一の細胞懸濁液へと希釈し、第二の細胞培養装置は希釈された細胞懸濁液を播種して継代培養を行い、
前記細胞数調整装置は、
高濃度の細胞懸濁液を取り込む入口と、細胞を入口の濃度よりも低い所望の濃度で含有する細胞懸濁液を排出する出口とを備え、
入口と出口の間に細胞懸濁液を保持可能な流路を有し、
流路には、細胞懸濁液の単位量あたりの細胞数濃度に関するデータを採取する細胞数計測器、および流路に提供して細胞懸濁液を希釈する希釈液を保持する希釈液容器が備えられており、
細胞数計測器により得たデータに基づいて流路内部の細胞懸濁液の流動を制御する制御部をさらに備え、
制御部は、細胞数計測器により得たデータに基づいて細胞数濃度を所望の濃度とするのに必要な希釈液の量を判断し、必要量の希釈液を流路に取り込みかつ細胞懸濁液と希釈液を混合するよう流路内部の細胞懸濁液の流動を制御する、
前記自動継代培養システム。
(9)制御部が、第一の細胞培養装置または第二の細胞培養装置に備えられた送液ポンプを用いて細胞数調整装置の流路内部の細胞懸濁液の流動を制御する、(8)に記載の自動継代培養システム。
(10)細胞を高濃度で含有する細胞懸濁液を所望の濃度に希釈するための方法であって、
細胞懸濁液を流動させた状態で、細胞懸濁液に照射した光の散乱光または透過光の強度を断続的または連続的に測定して、光強度値として細胞数濃度に関するデータを採取する工程、
得られたデータを予め求めた細胞数濃度と光強度値の関係に照らして細胞数濃度に変換する工程、および
所望の濃度に希釈するために必要な希釈液の量を算出し、その量の希釈液を細胞懸濁液に添加し混合する工程を含む、前記方法。
図1は、本発明の細胞数調整装置の第1の実施形態を示す概略図である。第1の実施形態に係る細胞数調整装置100は、細胞を高濃度で含有する、細胞数濃度(細胞懸濁液の単位量あたりに含まれる細胞の数)が未知の細胞懸濁液を入口1から取り込み、内部で濃度を調整し、入口1の濃度よりも低い所望の濃度で細胞を含有する細胞懸濁液を出口2から排出する機能を有する。入口1と出口2の間は流路3で連通しており、流路内の液体を流動させるための送液ポンプであるペリスタポンプ4が設けられており、制御部11は少なくともペリスタポンプ4を制御する。流路は必ずしも管径が一様でなくてもよく、例えば少なくとも一部に管径を小さくした狭窄部を設け、集塊状の細胞がそこを通る際にせん断力が働いて細胞が分散されるようにしてもよい。
図3は、本発明の細胞数調整装置の第2の実施形態を示す概略図である。第2の実施形態に係る細胞数調整装置101は、基本構成は第1の実施形態と同様であるが、ペリスタポンプ4通過後の流路を分岐し、その先を通過前の流路に戻し、流路を環状構造とした構成とした点において異なる。ポンプ通過前の流路を3a、通過後の流路を3b、分岐した帰還流路を12とする。帰還流路12への分岐部には切替え弁13を設置し、出口2側流路と帰還流路12の選択を可能にする。希釈液容器10が接続されている分岐流路8は流路3a側に設置する。
図4は、本発明の細胞数調整装置の第3の実施形態を示す概略図である。第3の実施形態に係る細胞数調整装置102は、基本構成は第2の実施形態と同様であるが、帰還流路12にバッファタンク14が設けられている点において相違する。
以下、本発明の細胞数調整装置を使用した継代培養システムについて説明する。本発明の細胞数調整装置は、入口と出口を閉じると、外部から菌の混入がない閉鎖系を形成しているので、閉鎖系の細胞培養装置と接続すると、システム全体を閉鎖系とすることができる。以下、閉鎖系細胞培養装置との接続例を説明する。
図6を用いて説明したような継代培養システムのように、前段の装置から後段の装置への細胞懸濁液の授受を、前段の装置で操作が完了してから後段の装置に送るようにしているが、時間短縮のため、装置間で細胞懸濁液の授受を直接やり取りするようにしてもよい。この際、1本の流路にペリスタポンプを直列して使用する形とする場合、双方のポンプの送りの速度が同じでなければペリスタポンプ間の流路の内圧に問題が生じるため、双方のポンプの間に緩衝領域を設けるのが好ましい。緩衝領域は、内圧を変えることなく容積を自在に変えることができるものであり、例えば伸縮素材からなる液体バッグや、折紙構造で折り畳まれ容積を自在に変えられる袋体、バッファタンク14のような大気解放された構造物などが緩衝領域として利用できる。図6に示した構成であれば、培養装置200の回収バッグ21bと培養装置210の供給バッグ20aが緩衝領域の役割を果たす。
図7は継代培養システムの第1の変形例の構成の一部を示す概略図である。この構成では、拡大培養用の細胞培養装置から排出された細胞懸濁液を細胞数調整装置に直接送り込む。細胞培養装置201は細胞培養装置200と基本的な構成は同じであるが細胞懸濁液の回収バッグがなく、接続流路32で細胞数調整装置104と接続されている。細胞数調整装置104は、バッファタンク14がペリスタポンプ4と入口1の間に置かれている構成を有する。入口1側の流路を3a1、ポンプ側の流路を3a2とし、3a1はバッファタンク14の上部から入り、3a2はタンク下部から抜けていく。ペリスタポンプ4通過後の流路3bを分岐し、その一方を帰還流路12とし、バッファタンク14の上部に戻す。この構成では、帰還流路12の合流点における切替え弁が不要になる。流路3bと帰還流路12との分岐には切替え弁13が設けられている。希釈液容器10に繋がる分岐流路8は、バッファタンク14とペリスタポンプ4の間に設ける。培養装置201から排出された細胞分散液は、細胞培養装置201のペリスタポンプ28により細胞数調整装置104のバッファタンク14まで送られる。細胞数調整装置104で細胞数濃度を調整された細胞懸濁液は、細胞数調整装置104のペリスタポンプ4通過後の流路に緩衝領域が設けられていないため、流路31を介して継代培養用の細胞培養装置210の細胞懸濁液供給バッグ20aに送られる。
図8は継代培養システムの第2の変形例の構成の一部を示す概略図である。この構成では、継代培養用の細胞培養装置211に細胞懸濁液供給バッグが設けられていない。細胞数調整装置105は、バッファタンク14がペリスタポンプ4と出口2の間に設けられた構成を有する。ポンプ側の流路を3b1、出口2側の流路を3b2とする。3b1はバッファタンク14の上部から入り、3b2はバッファタンク14の下部から抜けていく。流路3b2を分岐し、その一方を帰還流路12とし、ペリスタポンプ通過前の流路3aに戻す。合流点には切替え弁16を設ける。希釈液容器10に繋がる分岐流路8は、バッファタンク14とペリスタポンプ4の間の流路3aに設ける。この構成においては、流路3b2と帰還流路12の分岐部の切替え弁は不要である。流路3b2から継代培養用の培養装置211のペリスタポンプ28までの間には緩衝領域が存在せず液体の逃げ道はないため、帰還流路12の分岐部に切替え弁がなくても、ペリスタポンプ4を駆動させた際に逆流が生じない。ただし、この空間の空気量が多い場合、空気が膨張し、その分出口2から帰還流路側への逆流がありうるため、逆流防止用に帰還流路との分岐から出口2の間にピンチ弁や逆流防止用の逆止弁を設置してもよい。なお、拡大培養用の細胞培養装置200には回収バッグ21bが設けられており、細胞数調整装置105との間の緩衝領域として機能する。細胞数調整装置105で細胞数濃度を調整された細胞懸濁液は、継代培養用の培養装置211のペリスタポンプ28を駆動させることにより移送され、培養装置211にて直接播種される。
図9は継代培養システムの第3の変形例の構成の一部を示す概略図である。この構成では、拡大培養用の細胞培養装置、細胞数調整装置および継代培養用の細胞培養装置のいずれにも緩衝領域が設けられていない。細胞数調整装置106は、入口1と出口2を結ぶ流路3Aと3Bの間にバッファタンク14が設けられ、ペリスタポンプ4は帰還流路12の途中に設けられている。帰還流路12はバッファタンク14の上部に入るようにし、切替え弁を不要とした。希釈液容器10に繋がる分岐流路8は、帰還流路12の途中、ペリスタポンプ4の手前に設ける。この構成では、拡大培養用の細胞培養装置201からバッファタンク14に送り込まれた細胞懸濁液は、ペリスタポンプ4を駆動させることにより循環流路内を循環する。必要に応じて、入口1とバッファタンク14を繋ぐ流路3A、または流路3Bの帰還流路12への分岐の後かつ出口2の手前の流路に弁を設けてもよい。拡大培養用の細胞培養装置211への細胞懸濁液の送り込みは、細胞培養装置211のペリスタポンプ28を駆動させることにより行う。
図10は継代培養システムの第4の変形例の構成の一部を示す概略図である。ここで用いている細胞数調整装置107は、帰還流路を有さず、液を前後に流動させることにより混合を行う。細胞数調整装置107は、それ自体はペリスタポンプを持たず、培養装置のペリスタポンプを利用して液を流動させる。拡大培養用の培養装置201の切替え弁27が流路32を選択している状態で、培養装置201のペリスタポンプ28を駆動し、細胞懸濁液を細胞数調整装置107へ送り込む。希釈液の取り込みは、切替え弁9を切替えて分岐流路側を開放する状態とし、ペリスタポンプ28の回転向きを逆転させて行う。切替え弁9を元に戻し、ペリスタポンプの回転向きを何度か切替えて混合を行う。細胞数濃度を調整した細胞懸濁液は、細胞培養装置201のペリスタポンプにより、継代培養用の細胞培養装置210の供給バッグ20aまで送液される。その後、細胞培養装置201側の切替え弁27を切替え、接続流路32を閉鎖しておく。
図11は継代培養システムの第5の変形例の構成の一部を示す概略図である。この構成では、第4の変形例をさらに変更したものであり、細胞培養装置と細胞数調整装置の間の細胞懸濁液の受け渡しをすべて直接的に行うようにした。細胞数調整装置108は、流路3の入口1側と出口2側にそれぞれ分岐流路34を設け、2つの分岐流路を大気開放された共通流路36に接続した構造となっている。共通流路36は切替え弁35で切替え可能となっており、共通流路にはHEPAフィルタ37が接続され、外部からの菌の混入を防いでいる。まず、切替え弁35を出口2側を解放した状態とし、かつ拡大培養用の細胞培養装置201の切替え弁27を接続流路32を選択した状態してペリスタポンプ28を駆動すると、細胞懸濁液が細胞数調整装置108へと送られる。検出器7で光強度測定を行い、必要に応じて、切替え弁9を切替えて分岐流路側を開放する状態とし、ペリスタポンプ28の回転向きを逆転させて希釈液を取り込む。その後、細胞培養装置201側の切替え弁27を切替え、接続流路32を閉鎖しておく。細胞数濃度を調整した細胞懸濁液は、切替え弁35を切替えて出口2側の分岐流路34を閉塞させた状態で、細胞培養装置211のペリスタポンプ28を駆動させることにより、細胞培養装置211に送液される。
ここまで細胞培養装置を閉鎖系のものを用いた継代培養システムを前提として説明したが、本発明の継代培養システムは、閉鎖系のみならず、開放系の細胞培養装置も利用することができる。開放系の細胞培養装置は、一般的な手法の細胞培養と同じく、培養容器のふたを外して培地交換するなど、密閉されてない培養容器で培・BR>{を行う装置である。菌の混入のリスクは高まるが、液体ハンドリングの自由度が高いのが利点である。菌の混入のリスクは、装置をクリーンルーム内に装置を設置することで減じることができる。
-80℃にて冷凍保存されているCaco-2(ヒト大腸がん細胞株)4.6×106cellsを10%FBS(Fetal Bovine Serum)を添加したCaco-2細胞様培養液9mLに浮遊させたものを、細胞培養装置の底面積78.5cm2の拡大培養容器に全量播種し培養したところ、2日後に80%コンフルエントとなった。その後、3mLのPBSによる細胞洗浄、2mLの0.25%トリプシン-1mM EDTAを導入し37℃で4分間静置することによる細胞剥離、3mLの培養液の導入によるトリプシン活性の停止、剥離された細胞を含む培養液の回収を行った。
(1)ラテックスビーズによるシミュレーション
粒径10μmのラテックス粒子(ポリサイエンス社製)を用いて、散乱光強度測定に基づいた濃度測定が、セルカウンターで得られた値と比較して、実際の濃度をどの程度再現するかを検証した。まず、濃度既知のラテックス粒子懸濁液を数種用意し、それぞれ図3に示したものと同等の構成を有する細胞数調整装置に入れ、フローセルに設けられた検出器で散乱光強度測定を行って検量線を作製した(図14)。次に、5.0×105個/mLの濃度のラテックス粒子懸濁液を用意し、散乱光強度測定を6回計測し、各測定値を検量線に照らして濃度を算出した。平均濃度は5.24×105個/mL、標準偏差は0.0097×105個/mL、再現性はRSD=0.19%であった。一方、セルカウンターでの測定は、同じラテックス粒子懸濁液とトリパンブルー色素とをピペッティングで十分混合したものを測定した。6回測定を行ったところ、平均濃度は4.59×105個/mL、標準偏差は0.336×105個/mL、再現性はRSD=7.32%であった。
濃度既知のCaco-2細胞懸濁液を数種用意し、上記(1)と同様に散乱光強度測定を行って検量線を作製した(図15)。
濃度未知のCaco-2細胞懸濁液を用意し、図3に示したものと同等の構成を有する細胞数調整装置に入れ、フローセルに設けられた検出器で散乱光強度測定を行った。得られた値を上記2(2)で得た検量線に照らしたところ、細胞懸濁液の濃度は1.2×106cells/mLであると判断された。この値と既知のCaco-2細胞の増殖曲線に基づき、2日後に底面積78.5cm2の継代培養容器2個に50%コンフルエントの状態にするために必要の再播種細胞濃度が制御部により計算され、15mLの希釈液が供給された。希釈液は細胞懸濁液と十分混合され、細胞数調整装置に接続された継代培養用の細胞培養装置に供給された。細胞培養装置では、培養容器2個に各10mLの濃度調整済みの細胞懸濁液が播種された。
Claims (10)
- 細胞を高濃度で含有する細胞懸濁液を取り込む入口と、細胞を入口の濃度よりも低い所望の濃度で含有する細胞懸濁液を排出する出口とを備え、
入口と出口の間に細胞懸濁液を保持可能な流路を有し、
流路には、内部の細胞懸濁液を流動させるための送液ポンプ、細胞懸濁液の単位量あたりの細胞数濃度に関するデータを採取する細胞数計測器、および流路に提供して細胞懸濁液を希釈する希釈液を保持する希釈液容器が備えられており、
細胞数計測器により得たデータに基づいて少なくとも送液ポンプを制御する制御部をさらに備え、
制御部は、細胞数計測器により得たデータに基づいて細胞数濃度を所望の濃度とするのに必要な希釈液の量を判断し、必要量の希釈液を流路に取り込みかつ細胞懸濁液と希釈液を混合するよう送液ポンプを駆動することを特徴とする、細胞数調整装置。 - 入口と出口の間に設けられた流路の少なくとも一部が循環流路を形成しており、循環流路には送液ポンプと細胞数計測器とが設けられており、制御部は細胞数計測器から得たデータの変動が予め定めた値の範囲内となるまで送液ポンプを駆動して循環流路を繰り返し流動させることにより細胞懸濁液と希釈液を混合する、請求項1に記載の細胞数調整装置。
- 循環流路にバッファタンクをさらに有する、請求項2に記載の細胞数調整装置。
- 制御部が、送液ポンプを順方向と逆方向の交互に駆動することにより細胞懸濁液と希釈液を混合する、請求項1に記載の細胞数調整装置。
- 細胞数計測器は、細胞懸濁液に照射した光の散乱光または透過光の強度を測定し、光強度値として細胞数濃度に関するデータを採取し、制御部はそのデータを予め求めた細胞数濃度と光強度値の関係に照らして細胞数濃度を算出する、請求項1~4のいずれか1項に記載の細胞数調整装置。
- 細胞数計測器による細胞数濃度に関するデータの採取を、細胞懸濁液を流動させた状態で断続的または連続的に行う、請求項1~4のいずれか1項に記載の細胞数調整装置。
- 制御部が、入口からの細胞懸濁液の取り込みを制御する弁と、希釈液の流路への取り込みを制御する弁を制御可能であり、制御部は細胞懸濁液と希釈液の取り込みを交互に繰り返し行うよう、送液ポンプと前記2種の弁とを制御する、請求項1~4のいずれか1項に記載の細胞数調整装置。
- 拡大培養用の第一の細胞培養装置、細胞数調整装置、および継代培養用の第二の細胞培養装置を含む自動継代培養システムであって、
第一の細胞培養装置は高濃度の細胞懸濁液を排出し、細胞数調整装置は高濃度の細胞懸濁液を所望の細胞数濃度を有する均一の細胞懸濁液へと希釈し、第二の細胞培養装置は希釈された細胞懸濁液を播種して継代培養を行い、
前記細胞数調整装置は、
高濃度の細胞懸濁液を取り込む入口と、細胞を入口の濃度よりも低い所望の濃度で含有する細胞懸濁液を排出する出口とを備え、
入口と出口の間に細胞懸濁液を保持可能な流路を有し、
流路には、細胞懸濁液の単位量あたりの細胞数濃度に関するデータを採取する細胞数計測器、および流路に提供して細胞懸濁液を希釈する希釈液を保持する希釈液容器が備えられており、
細胞数計測器により得たデータに基づいて流路内部の細胞懸濁液の流動を制御する制御部をさらに備え、
制御部は、細胞数計測器により得たデータに基づいて細胞数濃度を所望の濃度とするのに必要な希釈液の量を判断し、必要量の希釈液を流路に取り込みかつ細胞懸濁液と希釈液を混合するよう流路内部の細胞懸濁液の流動を制御する、
前記自動継代培養システム。 - 制御部が、第一の細胞培養装置または第二の細胞培養装置に備えられた送液ポンプを用いて細胞数調整装置の流路内部の細胞懸濁液の流動を制御する、請求項8に記載の自動継代培養システム。
- 細胞を高濃度で含有する細胞懸濁液を所望の濃度に希釈するための方法であって、
細胞懸濁液を流動させた状態で、細胞懸濁液に照射した光の散乱光または透過光の強度を断続的または連続的に測定して、光強度値として細胞数濃度に関するデータを採取する工程、
得られたデータを予め求めた細胞数濃度と光強度値の関係に照らして細胞数濃度に変換する工程、および
所望の濃度に希釈するために必要な希釈液の量を算出し、その量の希釈液を細胞懸濁液に添加し混合する工程を含む、前記方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/327,208 US10138456B2 (en) | 2014-07-22 | 2015-07-08 | Cell concentration adjustment device, and automatic subculture system using same |
JP2016535866A JP6322711B2 (ja) | 2014-07-22 | 2015-07-08 | 細胞数濃度調整装置およびそれを用いた自動継代培養システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014148636 | 2014-07-22 | ||
JP2014-148636 | 2014-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013394A1 true WO2016013394A1 (ja) | 2016-01-28 |
Family
ID=55162923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/069616 WO2016013394A1 (ja) | 2014-07-22 | 2015-07-08 | 細胞数濃度調整装置およびそれを用いた自動継代培養システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10138456B2 (ja) |
JP (1) | JP6322711B2 (ja) |
WO (1) | WO2016013394A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018143102A1 (ja) * | 2017-01-31 | 2018-08-09 | 富士フイルム株式会社 | 細胞培養装置、撮像ユニット及び培養監視方法 |
WO2020009017A1 (ja) * | 2018-07-05 | 2020-01-09 | 富士フイルム株式会社 | 細胞培養装置及び撹拌方法 |
WO2020075635A1 (ja) | 2018-10-12 | 2020-04-16 | 株式会社ニコン | 画像処理装置、画像処理方法、プログラム、及び評価方法 |
WO2020075591A1 (ja) | 2018-10-12 | 2020-04-16 | 株式会社ニコン | 継代時期算出装置、継代時期算出方法、及びプログラム |
CN111019813A (zh) * | 2019-12-25 | 2020-04-17 | 深圳赛动生物自动化有限公司 | 细胞智能定容系统及其定容方法 |
JP2020156331A (ja) * | 2019-03-25 | 2020-10-01 | テルモ株式会社 | 細胞懸濁液を希釈するためのデバイスおよび方法 |
JP2022537441A (ja) * | 2018-06-19 | 2022-08-25 | ステムセル テクノロジーズ カナダ インコーポレイテッド | 細胞培養の適応的継代のためのシステム、方法及び装置 |
WO2022230673A1 (ja) | 2021-04-28 | 2022-11-03 | 富士フイルム株式会社 | 細胞培養装置及び生細胞濃度調整方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6306708B2 (ja) * | 2014-07-22 | 2018-04-04 | 株式会社日立ハイテクノロジーズ | 細胞分散装置およびそれを用いた自動継代培養システム |
WO2016063364A1 (ja) * | 2014-10-22 | 2016-04-28 | 株式会社日立ハイテクノロジーズ | 細胞計測機構及びそれを有する細胞培養装置並びに細胞計測方法 |
CN108300661A (zh) * | 2018-02-13 | 2018-07-20 | 京东方科技集团股份有限公司 | 培养装置和培养设备 |
WO2020017407A1 (ja) * | 2018-07-17 | 2020-01-23 | 国立大学法人神戸大学 | サンプリング装置 |
JP7363390B2 (ja) * | 2019-11-08 | 2023-10-18 | Jsr株式会社 | 細胞凝集塊分散装置および細胞凝集塊分散方法 |
EP4069336A4 (en) * | 2019-12-04 | 2024-04-17 | Ian Basil Shine | Improved methods and devices for measuring cell numbers and/or cell properties |
CN115489777A (zh) * | 2022-09-16 | 2022-12-20 | 深圳赛桥生物创新技术有限公司 | 一种细胞液分装方法、装置及系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03131743A (ja) * | 1989-10-18 | 1991-06-05 | Mitsubishi Heavy Ind Ltd | 微生物の生細胞,死細胞および微生物細胞以外の粒子の数の測定方法 |
JP2005198626A (ja) * | 2004-01-19 | 2005-07-28 | Sanyo Electric Co Ltd | 自動継代培養装置及びこれを用いた継代培養方法 |
WO2006107684A2 (en) * | 2005-04-01 | 2006-10-12 | Msp Corporation | Method and apparatus for automatic cell and biological sample preparation and detection |
JP2008079554A (ja) * | 2006-09-28 | 2008-04-10 | Chiyoda Corp | 閉鎖系の細胞回収装置及び細胞培養装置並びに細胞の回収方法及び培養方法 |
US20080312843A1 (en) * | 2007-06-15 | 2008-12-18 | Geoffrey Esteban | Process and system for on-line and in situ counting of cells in a biological culture medium |
JP2009525756A (ja) * | 2006-02-07 | 2009-07-16 | ウェファージェン, インコーポレイテッド | 温度制御された培養プレート |
JP2010515055A (ja) * | 2006-12-29 | 2010-05-06 | アボット・ラボラトリーズ | 浮遊粒子をスキャニングによって迅速にカウントし同定する方法および装置 |
WO2010087110A1 (ja) * | 2009-01-29 | 2010-08-05 | 株式会社 日立ハイテクノロジーズ | 微生物自動分析装置および微生物自動分析方法 |
WO2012000102A1 (en) * | 2010-06-30 | 2012-01-05 | The Governors Of The University Of Alberta | Apparatus and method for microscope-based label-free microflutdic cytometry |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361144A (ja) * | 1986-09-01 | 1988-03-17 | Hitachi Ltd | 微生物測定方法 |
US20040214314A1 (en) * | 2001-11-02 | 2004-10-28 | Friedrich Srienc | High throughput bioreactor |
WO2003085379A2 (en) * | 2002-04-01 | 2003-10-16 | Fluidigm Corporation | Microfluidic particle-analysis systems |
JP2007033354A (ja) * | 2005-07-29 | 2007-02-08 | Fuji Electric Systems Co Ltd | 微粒子の計測方法及び計測装置 |
JP5101819B2 (ja) | 2006-01-16 | 2012-12-19 | 株式会社カネカ | 細胞培養装置 |
WO2012127650A1 (ja) * | 2011-03-23 | 2012-09-27 | エイブル株式会社 | 濁度測定装置 |
-
2015
- 2015-07-08 WO PCT/JP2015/069616 patent/WO2016013394A1/ja active Application Filing
- 2015-07-08 JP JP2016535866A patent/JP6322711B2/ja active Active
- 2015-07-08 US US15/327,208 patent/US10138456B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03131743A (ja) * | 1989-10-18 | 1991-06-05 | Mitsubishi Heavy Ind Ltd | 微生物の生細胞,死細胞および微生物細胞以外の粒子の数の測定方法 |
JP2005198626A (ja) * | 2004-01-19 | 2005-07-28 | Sanyo Electric Co Ltd | 自動継代培養装置及びこれを用いた継代培養方法 |
WO2006107684A2 (en) * | 2005-04-01 | 2006-10-12 | Msp Corporation | Method and apparatus for automatic cell and biological sample preparation and detection |
JP2009525756A (ja) * | 2006-02-07 | 2009-07-16 | ウェファージェン, インコーポレイテッド | 温度制御された培養プレート |
JP2008079554A (ja) * | 2006-09-28 | 2008-04-10 | Chiyoda Corp | 閉鎖系の細胞回収装置及び細胞培養装置並びに細胞の回収方法及び培養方法 |
JP2010515055A (ja) * | 2006-12-29 | 2010-05-06 | アボット・ラボラトリーズ | 浮遊粒子をスキャニングによって迅速にカウントし同定する方法および装置 |
US20080312843A1 (en) * | 2007-06-15 | 2008-12-18 | Geoffrey Esteban | Process and system for on-line and in situ counting of cells in a biological culture medium |
WO2010087110A1 (ja) * | 2009-01-29 | 2010-08-05 | 株式会社 日立ハイテクノロジーズ | 微生物自動分析装置および微生物自動分析方法 |
WO2012000102A1 (en) * | 2010-06-30 | 2012-01-05 | The Governors Of The University Of Alberta | Apparatus and method for microscope-based label-free microflutdic cytometry |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11579063B2 (en) | 2017-01-31 | 2023-02-14 | Fujifilm Corporation | Cell culture apparatus, imaging unit, and culture monitoring method |
WO2018143102A1 (ja) * | 2017-01-31 | 2018-08-09 | 富士フイルム株式会社 | 細胞培養装置、撮像ユニット及び培養監視方法 |
JP2022537441A (ja) * | 2018-06-19 | 2022-08-25 | ステムセル テクノロジーズ カナダ インコーポレイテッド | 細胞培養の適応的継代のためのシステム、方法及び装置 |
JPWO2020009017A1 (ja) * | 2018-07-05 | 2021-06-03 | 富士フイルム株式会社 | 細胞培養装置及び撹拌方法 |
WO2020009017A1 (ja) * | 2018-07-05 | 2020-01-09 | 富士フイルム株式会社 | 細胞培養装置及び撹拌方法 |
JP7030980B2 (ja) | 2018-07-05 | 2022-03-07 | 富士フイルム株式会社 | 細胞培養装置及び撹拌方法 |
WO2020075591A1 (ja) | 2018-10-12 | 2020-04-16 | 株式会社ニコン | 継代時期算出装置、継代時期算出方法、及びプログラム |
WO2020075635A1 (ja) | 2018-10-12 | 2020-04-16 | 株式会社ニコン | 画像処理装置、画像処理方法、プログラム、及び評価方法 |
US11953498B2 (en) | 2018-10-12 | 2024-04-09 | Nikon Corporation | Image processing device, image processing method, program, and evaluation method |
US12054701B2 (en) | 2018-10-12 | 2024-08-06 | Nikon Corporation | Calculation device, method, and recording medium for calculating passage timing of pluripotent stem cells |
JP2020156331A (ja) * | 2019-03-25 | 2020-10-01 | テルモ株式会社 | 細胞懸濁液を希釈するためのデバイスおよび方法 |
JP7291509B2 (ja) | 2019-03-25 | 2023-06-15 | テルモ株式会社 | 細胞懸濁液を希釈するためのデバイスおよび方法 |
CN111019813A (zh) * | 2019-12-25 | 2020-04-17 | 深圳赛动生物自动化有限公司 | 细胞智能定容系统及其定容方法 |
CN111019813B (zh) * | 2019-12-25 | 2023-11-03 | 深圳赛动生物自动化有限公司 | 细胞智能定容系统及其定容方法 |
WO2022230673A1 (ja) | 2021-04-28 | 2022-11-03 | 富士フイルム株式会社 | 細胞培養装置及び生細胞濃度調整方法 |
Also Published As
Publication number | Publication date |
---|---|
US10138456B2 (en) | 2018-11-27 |
JPWO2016013394A1 (ja) | 2017-04-27 |
US20170159003A1 (en) | 2017-06-08 |
JP6322711B2 (ja) | 2018-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6322711B2 (ja) | 細胞数濃度調整装置およびそれを用いた自動継代培養システム | |
JP6306708B2 (ja) | 細胞分散装置およびそれを用いた自動継代培養システム | |
JP6408002B2 (ja) | 細胞分散計測機構及びそれを用いた細胞継代培養システム | |
US11826756B2 (en) | Fluid connector | |
WO2007052718A1 (ja) | 細胞培養用振盪装置及び細胞培養方法の振盪培養方法 | |
JP2023514354A (ja) | 自動細胞培養用のシステム及び方法 | |
JPWO2017047481A1 (ja) | 切替バルブ、及びこれを備える吸入吐出装置 | |
US20240255537A1 (en) | Systems, devices, and methods for cell processing | |
KR20230062808A (ko) | 샘플링 디바이스 및 시스템 | |
WO2021049117A1 (ja) | 細胞培養装置 | |
JPH0191771A (ja) | 細胞増殖装置 | |
CN117545838A (zh) | 细胞培养方法、细胞培养试剂盒以及细胞培养系统 | |
US7632673B2 (en) | Reactor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15824780 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016535866 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327208 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15824780 Country of ref document: EP Kind code of ref document: A1 |