[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016013061A1 - 車両の変速油圧制御装置 - Google Patents

車両の変速油圧制御装置 Download PDF

Info

Publication number
WO2016013061A1
WO2016013061A1 PCT/JP2014/069350 JP2014069350W WO2016013061A1 WO 2016013061 A1 WO2016013061 A1 WO 2016013061A1 JP 2014069350 W JP2014069350 W JP 2014069350W WO 2016013061 A1 WO2016013061 A1 WO 2016013061A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
control
vehicle
hydraulic pressure
time
Prior art date
Application number
PCT/JP2014/069350
Other languages
English (en)
French (fr)
Inventor
忍 釜田
晴輝 森田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/069350 priority Critical patent/WO2016013061A1/ja
Publication of WO2016013061A1 publication Critical patent/WO2016013061A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings

Definitions

  • the present invention relates to a transmission hydraulic pressure control device for a vehicle that secures a transmission hydraulic pressure required for a continuously variable transmission by a discharge hydraulic oil from a mechanical oil pump and an electric oil pump.
  • the electric oil pump is operated when the rotation speed of the mechanical oil pump is below the threshold value.
  • a hydraulic oil supply device is known in which the threshold value for operating the electric oil pump is set such that the higher the vehicle deceleration G, the higher the rotational speed of the mechanical oil pump (see, for example, Patent Document 1).
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a transmission hydraulic pressure control device for a vehicle that can reduce power consumption by reducing the frequency of operation of an electric oil pump.
  • the present invention provides a continuously variable transmission interposed between a drive source and a drive wheel, a mechanical oil pump that is driven to rotate by the drive source, and an electric oil that is driven to rotate by a pump motor. And a pump.
  • an oil pump control means for controlling the mechanical oil pump and the electric oil pump is provided so as to discharge the pump hydraulic oil that is sufficient to produce the required shift hydraulic pressure in the continuously variable transmission.
  • the oil pump control means compares the first required time until the vehicle stops from the current vehicle speed when the vehicle is decelerated with the second required time required to return the continuously variable transmission to the low gear ratio with the current hydraulic pressure. When the second required time exceeds the first required time, control is performed to increase the rotational speed of at least one of the mechanical oil pump and the electric oil pump.
  • the first required time until the vehicle stops from the current vehicle speed is compared with the second required time required to return the continuously variable transmission to the low gear ratio with the current hydraulic pressure.
  • control is performed to increase the rotational speed of at least one of the mechanical oil pump and the electric oil pump. That is, even when the vehicle is decelerating, control is performed to increase the pump rotational speed after waiting until the timing at which the continuously variable transmission can be returned to the low gear ratio before stopping.
  • the operation frequency of the electric oil pump is compared with the case where the electric oil pump is driven to rotate when the mechanical oil pump rotation speed becomes less than the threshold value determined by the deceleration G regardless of the current vehicle speed, the current oil pressure, and the speed change speed. Decrease. As a result, the power consumption can be reduced by reducing the frequency of operation of the electric oil pump.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle (an example of a vehicle) to which a transmission hydraulic pressure control device according to a first embodiment is applied. It is a flowchart which shows the flow of the deceleration low return control process performed with the hybrid control module of Example 1.
  • FIG. It is a flowchart which shows the flow of the time estimation process until it stops from the present vehicle speed used by the deceleration low return control process. It is a flowchart which shows the flow of the time estimation process required in order to return to the lowest gear ratio (Low) with the present hydraulic pressure used by the deceleration low return control process.
  • Low lowest gear ratio
  • VSP vehicle speed
  • CVRatio CVT transmission ratio
  • CVT hydraulic pressure a mechanical OP speed
  • CL2 state second clutch state
  • FIG. 6 is a time chart which shows the flow of the deceleration low return control process performed with the hybrid control module of Example 2.
  • FIG. It is a time chart which shows each characteristic of vehicle speed (VSP), CVT gear ratio (CVRatio), line pressure (PL), mechanical OP rotation speed, and electric OP rotation speed when deceleration low return control of Example 2 is performed.
  • FIG. 1 shows an overall system of an FF hybrid vehicle.
  • the overall system configuration of the FF hybrid vehicle will be described with reference to FIG.
  • the drive system of the FF hybrid vehicle includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), and a motor / generator 4 (abbreviated as “MG”).
  • the second clutch 5 (abbreviated as “CL2”) and the belt type continuously variable transmission 6 (abbreviated as “CVT”).
  • the output shaft of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10R and 10L via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9R and 9L.
  • the left and right rear wheels 11R and 11L are driven wheels.
  • the starter motor 1 has a pinion gear 18 that meshes with a ring gear 17 provided on a crankshaft of the horizontally mounted engine 2 on the motor shaft, and the pinion gear with respect to the ring gear 17 is started when the horizontally mounted engine 2 is started. 18 engages and rotationally drives the crankshaft.
  • the horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and has a crankshaft rotation sensor 13 for detecting engine reverse rotation.
  • the horizontal engine 2 has a “MG start mode” cranked by the motor / generator 4 via the first clutch CL1 and a “starter start mode” cranked by the starter motor 1 as a starting method.
  • the motor / generator 4 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 2 via the first clutch 3.
  • the motor / generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current into three-phase alternating current during power running and converts three-phase alternating current into direct current during regeneration is connected to the stator coil. Connected through.
  • the second clutch 5 is a wet-type multi-plate friction clutch by hydraulic operation that is interposed between the motor / generator 4 and the left and right front wheels 10R and 10L that are driving wheels. Slip fastening / release is controlled.
  • the second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, during forward travel, the forward clutch 5a is the second clutch CL2, and during reverse travel, the reverse brake 5b is the second clutch CL2.
  • the belt type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt-type continuously variable transmission 6 includes a line pressure generated by adjusting the pressure of pump hydraulic fluid from at least one of the mechanical oil pump 14, the electric oil pump 15, the mechanical oil pump 14, and the electric oil pump 15. And a control valve unit (not shown) that generates first and second clutch hydraulic pressures and transmission hydraulic pressures using PL as an original pressure.
  • the electric oil pump 15 is rotationally driven by the pump motor 12.
  • As the pump motor 12 a three-phase AC permanent magnet synchronous motor capable of controlling the motor rotation speed is used.
  • the first clutch 3, the motor / generator 4, and the second clutch 5 constitute a one-motor / two-clutch hybrid drive system.
  • the main drive modes of this system are “EV mode”, “HEV mode”, “HEV WSC”. Mode ".
  • the “EV mode” is an electric vehicle mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor / generator 4 is used as a drive source. Driving in the “EV mode” is referred to as “EV driving”.
  • the “HEV mode” is a hybrid vehicle mode in which both the clutches 3 and 5 are engaged and the horizontal engine 2 and the motor / generator 4 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
  • the “HEV WSC mode” is a CL2 slip engagement mode in which, in the “HEV mode”, the motor / generator 4 is controlled to rotate the motor and the second clutch 5 is slip-engaged with a capacity corresponding to the required driving force.
  • This “HEV WSC mode” does not have a rotation differential absorption joint like a torque converter in the drive system, so that the horizontal engine 2 (over idling speed) in the starting area after stopping in the “HEV mode” And the left and right front wheels 10L, 10R are selected to absorb the rotational difference by CL2 slip engagement.
  • the regenerative cooperative brake unit 16 shown in FIG. 1 is a device that controls the total braking torque in accordance with the regenerative operation in principle when the brake is operated.
  • the regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster that uses the intake negative pressure of the horizontally placed engine 2, and a master cylinder. Then, during the brake operation, cooperative control for the regenerative / hydraulic pressure is performed such that the amount of subtraction of the regenerative braking force from the required braking force based on the pedal operation amount is shared by the hydraulic braking force.
  • the power supply system for the FF hybrid vehicle includes a high-power battery 21 and a 14V battery 22.
  • the high-power battery 21 is a secondary battery that is mainly mounted as a power source for the motor / generator 4.
  • a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor / generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts a direct current from the DC harness 25 into a three-phase alternating current to the AC harness 27 during power running for driving the motor / generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into a direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor / generator 4.
  • the high-power battery 21 and the pump motor 12 are connected via a DC harness 25, an oil pump inverter 28, and an AC harness 29.
  • An oil pump motor controller 85 that controls the motor speed of the pump motor 12 is attached to the oil pump inverter 28.
  • the 14V battery 22 is a secondary battery that is mounted as a power source for an electrical device (not shown) that is mainly a 14V system load.
  • an electrical device not shown
  • the DC / DC converter 35 converts a voltage of several hundred volts from the high-power battery 21 into 15V, and the charge amount of the 14V battery 22 is controlled by controlling the DC / DC converter 35 with the hybrid control module 81.
  • the configuration is to be managed.
  • the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle.
  • Control means connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • ECM engine control module
  • MC motor controller
  • CVT control unit 84 abbreviation: “CVTCU”.
  • an oil pump motor controller 85 and a lithium battery controller 86 abbreviation: “LBC”.
  • CAN communication line 90 CAN is an abbreviation of “Controller Area Network”
  • the hybrid control module 81 performs various controls based on input information from each control means, an ignition switch 91, an accelerator opening sensor 92, a vehicle speed sensor 93, and the like.
  • the engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2.
  • the motor controller 83 performs power running control, regeneration control, and the like of the motor generator 4 by the inverter 26.
  • the CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control of the belt type continuously variable transmission 6, and the like.
  • the oil pump motor controller 85 controls the motor speed of the oil pump motor 12.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21.
  • [Deceleration low return control configuration] 2 shows the flow of the deceleration low return control process executed by the hybrid control module 81 of the first embodiment
  • FIG. 3 shows the flow of the time estimation process from the current vehicle speed to the stop
  • FIG. The flow of the time estimation process required to return to the low gear ratio is shown.
  • each step representing the deceleration low return control configuration (corresponding to the shift hydraulic pressure control means) will be described with reference to FIGS.
  • step S1 it is determined whether or not deceleration control (coordinated regeneration control, deceleration low return control) is performed. If YES (deceleration), the process proceeds to step S2, and if NO (other than deceleration), the process proceeds to deceleration control return.
  • deceleration control coordinated regeneration control, deceleration low return control
  • step S2 following the determination that the vehicle is decelerating in step S1, it is determined whether or not the ABS operation is to prevent braking lock. If YES (ABS operation), the process proceeds to a deceleration control return, and if NO (ABS is not operated), the process proceeds to step S3.
  • step S3 following the determination that ABS is not activated in step S2, is any one of the brake hydraulic pressure condition, the brake pedal stroke condition, and the emergency brake condition established as the rapid deceleration condition? Judge whether or not. If YES (sudden deceleration condition is satisfied), the process proceeds to step S4. If NO (sudden deceleration condition is not satisfied), the process proceeds to deceleration control return.
  • the brake fluid pressure condition is determined when the current brake fluid pressure Pb is equal to or greater than the rapid deceleration threshold P0 (Pb ⁇ P0).
  • the brake pedal stroke condition is determined when the current brake pedal stroke ⁇ b is equal to or greater than the rapid deceleration threshold ⁇ 0 ( ⁇ b ⁇ ⁇ 0).
  • step S4 following the determination that the rapid deceleration condition is satisfied in step S3, the time V0time (first required time) until the vehicle stops from the current vehicle speed is estimated by the time calculation process shown in FIG. Proceed to That is, as shown in FIG. 3, the current vehicle speed VSP_NOW is read (step S41), the current brake force BRK_F is read (step S42), the time calculation up to the vehicle speed of 0 km / h (step S43) proceeds, and the vehicle stops from the current vehicle speed. Time V0time is calculated.
  • V0time ⁇ VSP_NOW (t) ⁇ / ⁇ BRK_F (t) ⁇
  • the current braking force BRK_F is given by the vehicle deceleration obtained by adding the hydraulic brake component and the regenerative component.
  • step S5 following the time estimation from the current vehicle speed in step S4 until the vehicle stops, the time CVTtime (second required time) required to return to the lowest gear ratio with the current hydraulic pressure by the time calculation process shown in FIG. And proceed to step S6. That is, as shown in FIG. 4, the current gear ratio Ratio_NOW is read (step S51), the current primary pulley oil pressure PriOIL_P is read (step S52), and the current secondary pulley oil pressure SecOIL_P is read (step S53). Then, the CVT speed CVT_TRS is obtained by referring to the table (step S54), the time calculation up to the lowest gear ratio (step S55) proceeds, and the time CVTtime required to return to the lowest gear ratio with the current hydraulic pressure is obtained.
  • CVTtime ⁇ Ratio_NOW (t) -Ratio_Low ⁇ / ⁇ CVT_TRS (t) ⁇ It is.
  • the CVT shift speed CVT_TRS is given using a shift speed characteristic table that increases as the differential pressure (Pri-Sec) between the primary pulley hydraulic pressure and the secondary pulley hydraulic pressure increases as described in the frame of step S54.
  • step S6 following the time estimation required to return to the lowest gear ratio at the current hydraulic pressure in step S5, the time V0time until the vehicle stops from the current vehicle speed is necessary to restore the lowest gear ratio at the current hydraulic pressure. It is determined whether or not the time is CVTtime or more. If YES (V0time ⁇ CVTtime), the process proceeds to step S7. If NO (V0time ⁇ CVTtime), the process proceeds to step S8.
  • step S7 following the determination in step S6 that V0time ⁇ CVTtime, the gear ratio of the belt-type continuously variable transmission 6 is changed according to the shift request in the normal shift control mode in which the rotation of the mechanical oil pump 14 is not increased. Shift control to return to the lowest gear ratio and proceed to deceleration control return.
  • step S8 following the determination that V0time ⁇ CVTtime in step S6, slip control of the second clutch CL2 is performed, and the process proceeds to step S9.
  • step S9 following the slip control of the second clutch CL2 in step S8, control is performed to increase the rotational speed of the motor / generator 4, and the process proceeds to step S10.
  • step S10 following the motor rotation control in step S9, a shift control for returning the gear ratio of the belt-type continuously variable transmission 6 to the lowest gear ratio is performed in the low return control mode (CL2 slip control, motor rotation control). Proceed to deceleration control return.
  • step S1 when the vehicle is decelerating but the ABS is operating, the process proceeds from step S1 to step S2 to deceleration control return in the flowchart of FIG. Further, when the vehicle is decelerating and the ABS is not operating but is not suddenly decelerating, the process proceeds to step S1 ⁇ step S2 ⁇ step S3 ⁇ deceleration control return in the flowchart of FIG. That is, the deceleration low return control after step S4 is not performed when the ABS is operating or when the ABS is not operating but is not suddenly decelerating.
  • step S4 the time V0time (first required time) until the vehicle stops from the current vehicle speed is estimated by the time calculation process shown in FIG.
  • step S5 the time CVTtime (second required time) required to return to the lowest gear ratio with the current hydraulic pressure is estimated by the time calculation process shown in FIG.
  • step S6 it is determined whether or not the time V0time until the vehicle stops from the current vehicle speed is equal to or longer than the time CVTtime required to return the current hydraulic pressure to the lowest gear ratio.
  • step S6 If it is determined in step S6 that the time V0time until the vehicle stops from the current vehicle speed is equal to or longer than the time CVTtime required to return to the lowest gear ratio with the current hydraulic pressure, the process proceeds to step S7 ⁇ deceleration control return. .
  • step S7 shift control is performed to return the gear ratio of the belt-type continuously variable transmission 6 to the lowest gear ratio in accordance with the gear shift request in the normal gear shift control mode in which the rotation of the mechanical oil pump 14 is not increased.
  • step S8 if it is determined in step S6 that the time V0time until the vehicle stops from the current vehicle speed exceeds the time CVTtime required to return to the lowest gear ratio with the current hydraulic pressure, step S8 ⁇ step S9 ⁇ step S10 ⁇ Proceed to deceleration control return.
  • step S8 slip control of the second clutch CL2 is performed.
  • step S9 control is performed to increase the rotational speed of the motor / generator 4 so that a transmission hydraulic pressure that returns to the lowest gear ratio within the time V0time is obtained.
  • step S10 a shift control for returning the speed ratio of the belt-type continuously variable transmission 6 to the lowest speed ratio is executed in the low return control mode (CL2 slip control, motor rotation control).
  • FIG. 5 shows characteristics of the vehicle speed (VSP), the CVT speed ratio (CVRatio), the CVT oil pressure, the mechanical OP speed, and the second clutch state (CL2 state) when the deceleration low return control of the first embodiment is performed.
  • VSP vehicle speed
  • CVT speed ratio CVT speed ratio
  • CL2 state second clutch state
  • the shift control for returning the belt-type continuously variable transmission 6 toward the lowest gear ratio is performed in the low return control mode from time t1 (solid line characteristic in FIG. 5).
  • the downshift is started to increase the transmission input rotational speed from the time t1 toward the lowest gear ratio.
  • the second clutch CL2 is slip-engaged by simultaneous progress.
  • the CVT hydraulic pressure does not become insufficient, and can be returned to the lowest gear ratio at the stop time t4.
  • region shown to A of FIG. 5 is an increase margin of the CVT hydraulic pressure with respect to a comparative example.
  • time V0time until the vehicle stops from the current vehicle speed at the time of sudden deceleration is compared with the time CVTtime required to return the belt type continuously variable transmission 6 to the lowest gear ratio with the current hydraulic pressure.
  • time CVTtime exceeds time V0time, it was set as the structure which performs the control which raises at least one pump rotation speed among the mechanical oil pump 14 and the electric oil pump 15.
  • FIG. That is, when starting the control to increase the pump speed, the time V0time until the vehicle stops from the current vehicle speed, the time CVTtime required to return the belt-type continuously variable transmission 6 to the lowest gear ratio with the current hydraulic pressure, Is monitored, and when CVTtime> V0time, it starts.
  • control is performed to increase the pump rotation speed after waiting until the timing at which the belt-type continuously variable transmission 6 can be returned to the lowest gear ratio before stopping. Therefore, regardless of the current vehicle speed, the current hydraulic pressure, and the speed change speed, the operation of the electric oil pump 15 is performed as compared with the case where the electric oil pump is driven to rotate when the mechanical oil pump rotation speed becomes less than the threshold value determined by the deceleration G. The frequency decreases.
  • the control to increase the rotational speed of the mechanical oil pump is started, and at the same time, the deceleration low that changes the speed ratio of the belt-type continuously variable transmission 6 to the lowest speed ratio.
  • the configuration is such that return control is started. That is, CL2 slip ⁇ motor / generator rotation increase ⁇ mechanical oil pump rotation increase ⁇ CVT hydraulic pressure increase ⁇ Low return shift sequence. Therefore, when the vehicle stops due to sudden deceleration, the gear ratio can be returned to the lowest gear ratio, thereby improving both power consumption performance and power performance when starting next.
  • a continuously variable transmission (belt type continuously variable transmission 6) interposed between a drive source (engine 2, motor / generator 4) and drive wheels (left and right front wheels 10R, 10L), and rotated by the drive source
  • a vehicle FF hybrid vehicle
  • Oil pump control means for controlling the mechanical oil pump 14 and the electric oil pump 15 so as to discharge the pump hydraulic oil that is sufficient to produce the required shift hydraulic pressure in the continuously variable transmission (belt type continuously variable transmission 6).
  • the oil pump control means (FIG.
  • the drive system of the vehicle includes a travel drive motor (motor / generator 4), a mechanical oil pump 14, a friction clutch (second clutch CL2) in order from the drive source to the drive wheels.
  • a continuously variable transmission (belt type continuously variable transmission 6)
  • the oil pump control means S6 ⁇ S8 ⁇ S9 in FIG. 2 sets the friction clutch (second clutch CL2) to the slip engagement state.
  • control is performed to increase the pump rotational speed of the mechanical oil pump 14 by increasing the rotational speed of the travel drive motor (motor / generator 4) (FIG. 5).
  • a shift control means for hydraulically controlling the transmission ratio of the continuously variable transmission (belt type continuously variable transmission 6) is provided.
  • the transmission control means (CVT control unit 84) starts the control to increase the pump rotation speed by the oil pump control means (FIG. 2), and at the same time, the transmission ratio of the continuously variable transmission (belt type continuously variable transmission 6). Deceleration low return control for shifting to the lowest gear ratio (lowest gear ratio) is started (FIG. 5). For this reason, in addition to the effect of (1) or (2), the gear ratio return to the lowest gear ratio is achieved when the vehicle stops due to sudden deceleration, improving power consumption performance and improving power performance when starting next It is possible to achieve both.
  • Example 2 is an example in which control is performed to increase the number of revolutions of the electric oil pump in a stoppage scene due to sudden deceleration.
  • the overall system configuration is the same as the overall system configuration of the first embodiment shown in FIG.
  • the deceleration low return control configuration of the second embodiment will be described.
  • FIG. 6 shows the flow of the deceleration low return control process executed by the hybrid control module 81 of the second embodiment.
  • each step representing the deceleration low return control configuration (corresponding to the transmission hydraulic pressure control means) will be described.
  • Steps S21 to S27 are the same steps as steps S1 to S7 in FIG. 2, and will not be described.
  • step S28 following the determination that V0time ⁇ CVTtime in step S26, control is performed to increase the rotational speed of the electric oil pump 15, and the process proceeds to step S29.
  • the control for increasing the rotation speed of the electric oil pump 15 is performed by motor rotation speed control for increasing the pump motor 12 to a target rotation speed for obtaining a necessary CVT oil pressure.
  • step S29 following the control for increasing the rotational speed of the electric oil pump 15 in step S28, a shift control for returning the belt-type continuously variable transmission 6 to the lowest gear ratio is performed in the low return control mode, and the process proceeds to the deceleration control return. .
  • step S21 if it is determined that the time V0time from the current vehicle speed until the vehicle stops exceeds the time CVTtime required to return to the lowest gear ratio with the current hydraulic pressure, step S28 ⁇ step S29 ⁇ deceleration control. Proceed to return.
  • step S28 control is performed to increase the rotational speed of the electric oil pump 15 so that a transmission hydraulic pressure that returns to the lowest gear ratio within the time V0time is obtained.
  • step S29 a shift control for returning the gear ratio of the belt-type continuously variable transmission 6 to the lowest gear ratio is executed in the low return control mode (electric oil pump rotation increase control).
  • FIG. 7 shows the characteristics of vehicle speed (VSP), CVT speed ratio (CVRatio), line pressure (PL), mechanical OP speed, and electric OP speed when the deceleration low return control of the second embodiment is performed.
  • VSP vehicle speed
  • CVT speed ratio CVRatio
  • PL line pressure
  • mechanical OP speed mechanical OP speed
  • electric OP speed when the deceleration low return control of the second embodiment is performed.
  • the deceleration low return control operation will be described based on the time chart shown in FIG. Note that the time t1 is a time when the time condition of V0time ⁇ CVTtime is satisfied, as well as sudden deceleration due to ABS non-operation.
  • a comparative example is a case where the shift control for returning the belt-type continuously variable transmission toward the lowest gear ratio is performed in the normal shift control mode from time t1, and this is shown by the broken line characteristics in FIG. In the case of this comparative example, it is the same as the broken line characteristic of FIG.
  • the shift control for returning the belt-type continuously variable transmission 6 toward the lowest gear ratio is performed in the low return control mode from time t1 (solid line characteristic in FIG. 7).
  • region shown to B of FIG. 7 is an increase margin of the line pressure (PL) with respect to a comparative example.
  • the oil pump control means (FIG. 6) performs control to increase the pump rotational speed of the electric oil pump 15 when the second required time (CVTtime) exceeds the first required time (V0time) (FIG. 7). .
  • CVT hydraulic pressure that is the transmission hydraulic pressure is generated by the pump discharge hydraulic oil added from the mechanical oil pump 14 and the electric oil pump 15. Can be achieved.
  • the oil pump control means may be an example in which, for example, the controls of the first embodiment and the second embodiment are combined to increase the rotational speeds of the mechanical oil pump 14 and the electric oil pump 15.
  • Example 1 shows an example in which the transmission hydraulic pressure control device of the present invention is applied to an FF hybrid vehicle.
  • the transmission hydraulic pressure control device of the present invention can be applied to an engine vehicle that includes an engine in a drive source and performs idle stop control and coast stop control.
  • a vehicle having a continuously variable transmission interposed between a drive source and drive wheels, a mechanical oil pump that is driven to rotate by the drive source, and an electric oil pump that is driven to rotate by a pump motor. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 電動オイルポンプの作動頻度を減少させて消費電力を削減すること。 モータ/ジェネレータ(4)と左右前輪(10R,10L)の間に介装されたベルト式無段変速機(6)と、モータ/ジェネレータ(4)により回転駆動されるメカオイルポンプ(14)と、ポンプモータ(12)により回転駆動される電動オイルポンプ(15)と、を備える。このFFハイブリッド車両において、ベルト式無段変速機(6)で必要な変速油圧を作り出すのに不足のないポンプ作動油を吐出するようにオイルポンプ(14,15)を制御する手段を設ける。オイルポンプ制御手段(図2)は、車両減速時、現在車速から停車するまでの時間V0timeと、現在油圧でベルト式無段変速機(6)を最Low変速比まで戻すのに必要な時間CVTtimeと、を比較し、時間CVTtimeが時間V0timeを超えたら、メカオイルポンプ(14)と電動オイルポンプ(15)のうち、少なくとも一方のポンプ回転数を上昇する制御を行う。

Description

車両の変速油圧制御装置
 本発明は、無段変速機で必要とされる変速油圧を、メカオイルポンプと電動オイルポンプからの吐出作動油により確保する車両の変速油圧制御装置に関する。
 従来、メカオイルポンプの回転数が閾値以下の場合に電動オイルポンプを作動させる。このとき、電動オイルポンプを作動させる閾値を、車両減速Gが高いほど、メカオイルポンプの回転数が高い値に設定される作動油供給装置が知られている(例えば、特許文献1参照)。
特開2014-34983号公報
 しかしながら、従来の作動油供給装置にあっては、車両減速Gのみをパラメータとし、電動オイルポンプを作動させるメカオイルポンプ回転数閾値を決めている。つまり、急減速シーンであれば、メカオイルポンプからの吐出作動油による現在油圧で停車までに必要な変速油圧が確保されるシーンであっても電動オイルポンプが作動する。このため、電動オイルポンプの作動頻度が増え、消費電力が増加してしまう、という問題があった。
 本発明は、上記問題に着目してなされたもので、電動オイルポンプの作動頻度を減少させて消費電力を削減することができる車両の変速油圧制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、駆動源と駆動輪の間に介装された無段変速機と、駆動源により回転駆動されるメカオイルポンプと、ポンプモータにより回転駆動される電動オイルポンプと、を備える。
この車両において、無段変速機で必要な変速油圧を作り出すのに不足のないポンプ作動油を吐出するように、メカオイルポンプと電動オイルポンプを制御するオイルポンプ制御手段を設ける。
オイルポンプ制御手段は、車両減速時、現在車速から停車するまでの第1所要時間と、現在油圧で無段変速機をロー側変速比まで戻すのに必要な第2所要時間と、を比較し、第2所要時間が第1所要時間を超えたら、メカオイルポンプと電動オイルポンプのうち、少なくとも一方のポンプ回転数を上昇する制御を行う。
 よって、車両減速時、現在車速から停車するまでの第1所要時間と、現在油圧で無段変速機をロー側変速比まで戻すのに必要な第2所要時間と、が比較される。そして、第2所要時間が第1所要時間を超えたら、メカオイルポンプと電動オイルポンプのうち、少なくとも一方のポンプ回転数を上昇する制御が行われる。
すなわち、減速中であっても、停車するまでに無段変速機をロー側変速比まで戻すことができるぎりぎりのタイミングになるまで待ってポンプ回転数を上昇する制御が行われる。このため、現在車速や現在油圧や変速速度とは無関係に、メカオイルポンプ回転数が減速Gで決められた閾値以下になったら電動オイルポンプを回転駆動する場合に比べ、電動オイルポンプの作動頻度が減少する。この結果、電動オイルポンプの作動頻度を減少させて消費電力を削減することができる。
実施例1の変速油圧制御装置が適用されたFFハイブリッド車両(車両の一例)を示す全体システム図である。 実施例1のハイブリッドコントロールモジュールで実行される減速ロー戻り制御処理の流れを示すフローチャートである。 減速ロー戻り制御処理で用いられる現在車速から停車するまでの時間推定処理の流れを示すフローチャートである。 減速ロー戻り制御処理で用いられる現在油圧で最ロー変速比(Low)まで戻すのに必要な時間推定処理の流れを示すフローチャートである。 実施例1の減速ロー戻り制御が行われるときの車速(VSP)・CVT変速比(CVTRatio)・CVT油圧・メカOP回転数・第2クラッチ状態(CL2状態)の各特性を示すタイムチャートである。 実施例2のハイブリッドコントロールモジュールで実行される減速ロー戻り制御処理の流れを示すフローチャートである。 実施例2の減速ロー戻り制御が行われるときの車速(VSP)・CVT変速比(CVTRatio)・ライン圧(PL)・メカOP回転数・電動OP回転数の各特性を示すタイムチャートである。
 以下、本発明の車両の変速油圧制御装置を実現する最良の形態を、図面に示す実施例1及び実施例2に基づいて説明する。
 まず、構成を説明する。
実施例1の変速油圧制御装置が適用されたFFハイブリッド車両(車両の一例)の構成を、「全体システム構成」、「減速ロー戻り制御構成」に分けて説明する。
 [全体システム構成]
 図1はFFハイブリッド車両の全体システムを示す。以下、図1に基づいて、FFハイブリッド車両の全体システム構成を説明する。
 FFハイブリッド車両の駆動系には、図1に示すように、スタータモータ1と、横置きエンジン2と、第1クラッチ3(略称「CL1」)と、モータ/ジェネレータ4(略称「MG」)と、第2クラッチ5(略称「CL2」)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7と差動ギヤ8と左右のドライブシャフト9R,9Lを介し、左右の前輪10R,10Lに駆動連結される。なお、左右の後輪11R,11Lは、従動輪としている。
 前記スタータモータ1は、そのモータ軸に、横置きエンジン2のクランク軸に設けられたリングギア17と噛み合うピニオンギア18を有し、横置きエンジン2のスタータ始動時、リングギア17に対しピニオンギア18が噛み合い、クランク軸を回転駆動する。
 前記横置きエンジン2は、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、エンジン逆転を検知するクランク軸回転センサ13と、を有する。この横置きエンジン2は、始動方式として、第1クラッチCL1を介してモータ/ジェネレータ4によりクランキングする「MG始動モード」と、スタータモータ1によりクランキングする「スタータ始動モード」と、を有する。
 前記モータ/ジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータである。このモータ/ジェネレータ4は、後述する強電バッテリ21を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ26が、ACハーネス27を介して接続される。
 前記第2クラッチ5は、モータ/ジェネレータ4と駆動輪である左右の前輪10R,10Lとの間に介装された油圧作動による湿式の多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/開放が制御される。実施例1の第2クラッチ5は、遊星ギヤによるベルト式無段変速機6の前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチCL2とされ、後退走行時には、後退ブレーキ5bが第2クラッチCL2とされる。
 前記ベルト式無段変速機6は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比を得る変速機である。このベルト式無段変速機6には、メカオイルポンプ14と、電動オイルポンプ15と、メカオイルポンプ14と電動オイルポンプ15の少なくとも一方からのポンプ吐出作動油を調圧することで生成したライン圧PLを元圧として第1,第2クラッチ油圧及び変速油圧を作り出す図外のコントロールバルブユニットと、を有する。なお、メカオイルポンプ14は、モータ/ジェネレータ4のモータ軸(=変速機入力軸)により回転駆動される。電動オイルポンプ15は、ポンプモータ12により回転駆動される。なお、ポンプモータ12としては、モータ回転数制御ができる三相交流の永久磁石型同期モータが用いられる。
 前記第1クラッチ3とモータ/ジェネレータ4と第2クラッチ5により1モータ・2クラッチのハイブリッド駆動システムが構成され、このシステムによる主な駆動態様として「EVモード」と「HEVモード」と「HEV WSCモード」を有する。「EVモード」は、第1クラッチ3を開放し、第2クラッチ5を締結してモータ/ジェネレータ4のみを駆動源に有する電気自動車モードであり、「EVモード」による走行を「EV走行」という。「HEVモード」は、両クラッチ3,5を締結して横置きエンジン2とモータ/ジェネレータ4を駆動源に有するハイブリッド車モードであり、「HEVモード」による走行を「HEV走行」という。「HEV WSCモード」は、「HEVモード」において、モータ/ジェネレータ4をモータ回転数制御とし、第2クラッチ5を要求駆動力相当の容量にてスリップ締結するCL2スリップ締結モードである。この「HEV WSCモード」は、駆動系にトルクコンバータのような回転差吸収継手を持たないことで、「HEVモード」での停車からの発進域等において、横置きエンジン2(アイドル回転数以上)と左右前輪10L,10Rの回転差をCL2スリップ締結により吸収するために選択される。
 なお、図1の回生協調ブレーキユニット16は、ブレーキ操作時、原則として回生動作を行うことに伴い、トータル制動トルクをコントロールするデバイスである。この回生協調ブレーキユニット16には、ブレーキペダルと、横置きエンジン2の吸気負圧を用いる負圧ブースタと、マスタシリンダと、を備える。そして、ブレーキ操作時、ペダル操作量に基づく要求制動力から回生制動力を差し引いた分を液圧制動力で分担するというように、回生分/液圧分の協調制御を行う。
 FFハイブリッド車両の電源システムとしては、図1に示すように、強電バッテリ21と、14Vバッテリ22と、を備えている。
 前記強電バッテリ21は、主にモータ/ジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。
 前記強電バッテリ21とモータ/ジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータ/ジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータ/ジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。
 前記強電バッテリ21とポンプモータ12は、DCハーネス25とオイルポンプインバータ28とACハーネス29を介して接続される。オイルポンプインバータ28には、ポンプモータ12のモータ回転数を制御するオイルポンプモータコントローラ85が付設される。
 前記14Vバッテリ22は、主に14V系負荷である図示しない電装機器の電源として搭載された二次電池であり、例えば、エンジン車等で搭載されている鉛バッテリが用いられる。DC/DCコンバータ35は、強電バッテリ21からの数百ボルト電圧を15Vに変換するものであり、このDC/DCコンバータ35を、ハイブリッドコントロールモジュール81により制御することで、14Vバッテリ22の充電量を管理する構成としている。
 FFハイブリッド車両の制御システムとしては、図1に示すように、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段として、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。このハイブリッドコントロールモジュール81に接続される制御手段として、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、オイルポンプモータコントローラ85と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。ハイブリッドコントロールモジュール81を含むこれらの制御手段は、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続される。
 前記ハイブリッドコントロールモジュール81は、各制御手段、イグニッションスイッチ91、アクセル開度センサ92、車速センサ93等からの入力情報に基づき、様々な制御を行う。エンジンコントロールモジュール82は、横置きエンジン2の燃料噴射制御や点火制御や燃料カット制御等を行う。モータコントローラ83は、インバータ26によるモータジェネレータ4の力行制御や回生制御等を行う。CVTコントロールユニット84は、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6の変速油圧制御等を行う。オイルポンプモータコントローラ85は、オイルポンプモータ12のモータ回転数を制御する。リチウムバッテリコントローラ86は、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。
 [減速ロー戻り制御構成]
 図2は実施例1のハイブリッドコントロールモジュール81で実行される減速ロー戻り制御処理の流れを示し、図3は現在車速から停車するまでの時間推定処理の流れを示し、図4は現在油圧で最Low変速比まで戻すのに必要な時間推定処理の流れを示す。以下、図2~図4に基づき、減速ロー戻り制御構成(変速油圧制御手段に相当)をあらわす各ステップについて説明する。
 ステップS1では、減速制御(協調回生制御、減速Low戻り制御)が行われる減速であるか否かが判断される。YES(減速)の場合はステップS2へ進み、NO(減速以外)の場合は減速制御リターンへ進む。
 ステップS2では、ステップS1での減速であるとの判断に続き、制動ロックを防止するABS作動であるか否かが判断される。YES(ABS作動)の場合は減速制御リターンへ進み、NO(ABS非作動)の場合はステップS3へ進む。
 ステップS3では、ステップS2でのABS非作動であるとの判断に続き、急減速条件として、ブレーキ液圧条件とブレーキペダルストローク条件と緊急ブレーキ条件のうち、何れか一つの条件が成立しているか否かを判断する。YES(急減速条件成立)の場合はステップS4へ進み、NO(急減速条件非成立)の場合は減速制御リターンへ進む。
ここで、ブレーキ液圧条件は、現在のブレーキ液圧Pbが急減速閾値P0以上(Pb≧P0)であることにより判断する。ブレーキペダルストローク条件は、現在のブレーキペダルストロークθbが急減速閾値θ0以上(θb≧θ0)であることにより判断する。緊急ブレーキ条件は、緊急ブレーキフラグfが立っている(f=1)であることにより判断する。
 ステップS4では、ステップS3での急減速条件成立であるとの判断に続き、図3に示す時間演算処理により、現在車速から停車するまでの時間V0time(第1所要時間)を推定し、ステップS5へ進む。
すなわち、図3に示すように、現在車速VSP_NOWを読み込み(ステップS41)、現在ブレーキ力BRK_Fを読み込み(ステップS42)、車速0km/hまでの時間演算(ステップS43)と進み、現在車速から停車するまでの時間V0timeが演算される。
ここで、時間V0timeの演算式は、
V0time={VSP_NOW(t)}/{BRK_F(t)}
であり、現在ブレーキ力BRK_Fは、液圧ブレーキ分と回生分を合算した車両減速度により与えられる。
 ステップS5では、ステップS4での現在車速から停車するまでの時間推定に続き、図4に示す時間演算処理により、現在油圧で最Low変速比まで戻すのに必要な時間CVTtime(第2所要時間)を推定し、ステップS6へ進む。
すなわち、図4に示すように、現在変速比Ratio_NOWを読み込み(ステップS51)、現在のプライマリプーリ油圧PriOIL_Pを読み込み(ステップS52)、現在のセカンダリプーリ油圧SecOIL_Pを読み込む(ステップS53)。そして、CVT変速速度CVT_TRSをテーブルを参照することで求め(ステップS54)、最Low変速比までの時間演算(ステップS55)と進み、現在油圧で最Low変速比まで戻すのに必要な時間CVTtimeが演算される。
ここで、時間CVTtimeの演算式は、
CVTtime={Ratio_NOW(t)-Ratio_Low}/{CVT_TRS(t)}
である。なお、CVT変速速度CVT_TRSは、ステップS54の枠内に記載したように、プライマリプーリ油圧とセカンダリプーリ油圧の差圧(Pri-Sec)が大きいほど高くなる変速速度特性テーブルを用いて与えられる。
 ステップS6では、ステップS5での現在油圧で最Low変速比まで戻すのに必要な時間推定に続き、現在車速から停車するまでの時間V0timeが、現在油圧で最Low変速比まで戻すのに必要な時間CVTtime以上であるか否かを判断する。YES(V0time≧CVTtime)の場合はステップS7へ進み、NO(V0time<CVTtime)の場合はステップS8へ進む。
 ステップS7では、ステップS6でのV0time≧CVTtimeであるとの判断に続き、メカオイルポンプ14の回転上昇等を行わない通常変速制御モードにより、変速要求にしたがってベルト式無段変速機6の変速比を最Low変速比まで戻す変速制御を行い、減速制御リターンへ進む。
 ステップS8では、ステップS6でのV0time<CVTtimeであるとの判断に続き、第2クラッチCL2のスリップ制御を行い、ステップS9へ進む。
 ステップS9では、ステップS8での第2クラッチCL2のスリップ制御に続き、モータ/ジェネレータ4の回転数を上昇させる制御を行い、ステップS10へ進む。
 ステップS10では、ステップS9でのMotor回転制御に続き、Low戻り制御モード(CL2スリップ制御、Motor回転制御)により、ベルト式無段変速機6の変速比を最Low変速比まで戻す変速制御を行い、減速制御リターンへ進む。
 次に、作用を説明する。
実施例1のFFハイブリッド車両の変速油圧制御装置における作用を、「減速ロー戻り制御処理作用」、「減速ロー戻り制御作用」、「ロー戻り制御モードによる特徴作用」に分けて説明する。
 [減速ロー戻り制御処理作用]
 図2のフローチャートに基づき、減速ロー戻り制御処理作用を説明する。まず、減速時であるが、ABSが作動しているときは、図2のフローチャートにおいて、ステップS1→ステップS2→減速制御リターンへと進む。また、減速時であり、かつ、ABS非作動であるが、急減速ではないときは、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→減速制御リターンへと進む。つまり、ABS作動中、或いは、ABS非作動であるが急減速ではないときは、ステップS4以降の減速ロー戻り制御が行われない。
 減速時、ABS非作動時、急減速であるという条件が成立すると、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6へと進む。ステップS4では、図3に示す時間演算処理により、現在車速から停車するまでの時間V0time(第1所要時間)が推定される。ステップS5では、図4に示す時間演算処理により、現在油圧で最Low変速比まで戻すのに必要な時間CVTtime(第2所要時間)が推定される。そして、ステップS6では、現在車速から停車するまでの時間V0timeが、現在油圧で最Low変速比まで戻すのに必要な時間CVTtime以上であるか否かが判断される。
 そして、ステップS6において、現在車速から停車するまでの時間V0timeが、現在油圧で最Low変速比まで戻すのに必要な時間CVTtime以上であると判断されると、ステップS7→減速制御リターンへと進む。ステップS7では、メカオイルポンプ14の回転上昇等を行わない通常変速制御モードにより、変速要求にしたがってベルト式無段変速機6の変速比を最Low変速比まで戻す変速制御が行われる。
 一方、ステップS6において、現在車速から停車するまでの時間V0timeが、現在油圧で最Low変速比まで戻すのに必要な時間CVTtimeを超えていると判断されると、ステップS8→ステップS9→ステップS10→減速制御リターンへと進む。ステップS8では、第2クラッチCL2のスリップ制御が行われる。ステップS9では、時間V0time内に最Low変速比まで戻す変速油圧が得られるように、モータ/ジェネレータ4の回転数を上昇させる制御が行われる。そして、ステップS10では、Low戻り制御モード(CL2スリップ制御、Motor回転制御)により、ベルト式無段変速機6の変速比を最Low変速比まで戻す変速制御が実行される。
 [減速ロー戻り制御作用]
 図5は実施例1の減速ロー戻り制御が行われるときの車速(VSP)・CVT変速比(CVTRatio)・CVT油圧・メカOP回転数・第2クラッチ状態(CL2状態)の各特性を示す。以下、図5に示すタイムチャートに基づき、減速ロー戻り制御作用を説明する。なお、時刻t1は、ABS非作動による急減速であると共に、V0time<CVTtimeという時間条件が成立する時刻である。
 まず、時刻t1から通常変速制御モードによりベルト式無段変速機を最Low変速比に向かって戻す変速制御を行うときを比較例とし、図5の破線特性により示す。
この比較例の場合、時刻t1から最Low変速比に向かって変速機入力回転数を上昇させるダウン変速が開始される。しかし、メカOP回転数は、ベルト式無段変速機の入力回転数に依存するため、時刻t3まではダウン変速による回転数の緩やかな上昇があるものの、時刻t3以降は停車時刻t4でのゼロ回転数に向かって低下する。したがって、CVT油圧が停車時刻t4に近づくほど不足することになり、停車時刻t4で最Low変速比まで戻すことができない。
 これに対し、実施例1では、時刻t1からLow戻り制御モードによりベルト式無段変速機6を最Low変速比に向かって戻す変速制御が行われる(図5の実線特性)。
実施例1の場合、時刻t1から最Low変速比に向かって変速機入力回転数を上昇させるダウン変速が開始されるが、時刻t1からは、同時進行により、第2クラッチCL2をスリップ締結させる制御とメカOP回転数(=モータ/ジェネレータ回転数)を上昇させる制御が行われる。つまり、第2クラッチCL2をスリップ締結状態とし、スリップ締結による回転差吸収機能を活用しながらメカOP回転数を時刻t2まで上昇し、時刻t2以降は上昇した回転数を維持する制御が行われる。このCL2スリップとメカOP回転数上昇により、CVT油圧が不足することがなく、停車時刻t4で最Low変速比まで戻すことができる。なお、図5のAに示すハッチング領域が、比較例に対するCVT油圧の増加代である。
 上記のように、急減速時、現在車速から停車するまでの時間V0timeと、現在油圧でベルト式無段変速機6を最Low変速比まで戻すのに必要な時間CVTtimeと、を比較する。そして、時間CVTtimeが時間V0timeを超えたら、メカオイルポンプ14と電動オイルポンプ15のうち、少なくとも一方のポンプ回転数を上昇する制御を行う構成とした。
すなわち、ポンプ回転数を上昇させる制御を開始する際、現在車速から停車するまでの時間V0timeと、現在油圧でベルト式無段変速機6を最Low変速比まで戻すのに必要な時間CVTtimeと、を監視し、CVTtime>V0timeとなったら開始するようにしている。
したがって、急減速中であっても、停車するまでにベルト式無段変速機6を最Low変速比まで戻すことができるぎりぎりのタイミングになるまで待ってポンプ回転数を上昇する制御が行われる。このため、現在車速や現在油圧や変速速度とは無関係に、メカオイルポンプ回転数が減速Gで決められた閾値以下になったら電動オイルポンプを回転駆動する場合に比べ、電動オイルポンプ15の作動頻度が減少する。
 [ロー戻り制御モードによる特徴作用]
 実施例1では、時間V0time<時間CVTtimeとなったら、第2クラッチCL2をスリップ締結状態とし、モータ/ジェネレータ4の回転数を上昇することで、メカオイルポンプ14のポンプ回転数を上昇する制御を行う構成とした。
すなわち、CL2スリップ⇒モータ/ジェネレータ回転上昇⇒メカオイルポンプ回転上昇⇒CVT油圧上昇というシーケンスとなる。
したがって、急減速時にポンプ制御要求があると、電動オイルポンプ15を作動させることなく、変速油圧であるCVT油圧の上昇が達成される。
 実施例1では、時間V0time<時間CVTtimeとなったら、メカオイルポンプ回転数を上昇する制御を開始するのと同時に、ベルト式無段変速機6の変速比を最ロー変速比まで変速する減速ロー戻り制御を開始する構成とした。
すなわち、CL2スリップ⇒モータ/ジェネレータ回転上昇⇒メカオイルポンプ回転上昇⇒CVT油圧上昇⇒Low戻り変速のシーケンスになる。
したがって、急減速による停車時に最Low変速比までの変速比戻りが達成されることで、電費性能向上と、次に発進するときの動力性能向上と、が両立される。
 次に、効果を説明する。
実施例1のFFハイブリッド車両の変速油圧制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) 駆動源(エンジン2、モータ/ジェネレータ4)と駆動輪(左右前輪10R,10L)の間に介装された無段変速機(ベルト式無段変速機6)と、駆動源により回転駆動されるメカオイルポンプ14と、ポンプモータ12により回転駆動される電動オイルポンプ15と、を備えた車両(FFハイブリッド車両)において、
 無段変速機(ベルト式無段変速機6)で必要な変速油圧を作り出すのに不足のないポンプ作動油を吐出するように、メカオイルポンプ14と電動オイルポンプ15を制御するオイルポンプ制御手段(図2)を設け、
 オイルポンプ制御手段(図2)は、車両減速時、現在車速から停車するまでの第1所要時間(時間V0time)と、現在油圧で無段変速機(ベルト式無段変速機6)をロー側変速比(最Low変速比)まで戻すのに必要な第2所要時間(時間CVTtime)と、を比較し、第2所要時間(時間CVTtime)が第1所要時間(時間V0time)を超えたら、メカオイルポンプ14と電動オイルポンプ15のうち、少なくとも一方のポンプ回転数を上昇する制御を行う(図2)。
  このため、電動オイルポンプ15の作動頻度を減少させて消費電力を削減することができる。
 (2) 車両(FFハイブリッド車両)の駆動系には、駆動源から駆動輪へ向かう順に、走行駆動モータ(モータ/ジェネレータ4)と、メカオイルポンプ14と、摩擦クラッチ(第2クラッチCL2)と、無段変速機(ベルト式無段変速機6)と、を備え、
 オイルポンプ制御手段(図2のS6→S8→S9)は、第2所要時間(時間CVTtime)が第1所要時間(時間V0time)を超えたら、摩擦クラッチ(第2クラッチCL2)をスリップ締結状態とし、走行駆動モータ(モータ/ジェネレータ4)の回転数を上昇することで、メカオイルポンプ14のポンプ回転数を上昇する制御を行う(図5)。
  このため、(1)の効果に加え、急減速時にポンプ制御要求があると、電動オイルポンプ15を作動させることなく、変速油圧であるCVT油圧の上昇を達成することができる。
 (3) 無段変速機(ベルト式無段変速機6)の変速比を油圧制御する変速制御手段(CVTコントロールユニット84)を設け、
 変速制御手段(CVTコントロールユニット84)は、オイルポンプ制御手段(図2)によりポンプ回転数を上昇する制御を開始するのと同時に、無段変速機(ベルト式無段変速機6)の変速比を最ロー変速比(最Low変速比)まで変速する減速ロー戻り制御を開始する(図5)。
  このため、(1)又は(2)の効果に加え、急減速による停車時に最Low変速比までの変速比戻りが達成されることで、電費性能向上と、次に発進するときの動力性能向上と、を両立することができる。
 実施例2は、急減速による停車シーンで、電動オイルポンプのポンプ回転数を上昇する制御を行う例である。
 まず、全体システム構成については、図1に示す実施例1の全体システム構成と同じであるので、図示並びに説明を省略する。以下、実施例2の減速ロー戻り制御構成を説明する。
 [減速ロー戻り制御構成]
 図6は実施例2のハイブリッドコントロールモジュール81で実行される減速ロー戻り制御処理の流れを示す。以下、図6に基づき、減速ロー戻り制御構成(変速油圧制御手段に相当)をあらわす各ステップについて説明する。なお、ステップS21~ステップS27の各ステップは、図2のステップS1からステップS7の各ステップと同じ処理を行うステップであるので説明を省略する。
 ステップS28では、ステップS26でのV0time<CVTtimeであるとの判断に続き、電動オイルポンプ15の回転数を上昇させる制御を行い、ステップS29へ進む。
この電動オイルポンプ15の回転数を上昇させる制御は、ポンプモータ12を、必要なCVT油圧を得る目標回転数まで高めるモータ回転数制御により行う。
 ステップS29では、ステップS28での電動オイルポンプ15の回転数上昇制御に続き、Low戻り制御モードにより、ベルト式無段変速機6を最Low変速比まで戻す変速制御を行い、減速制御リターンへ進む。
 次に、作用を説明する。
実施例2のFFハイブリッド車両の変速油圧制御装置における作用を、「減速ロー戻り制御処理作用」、「減速ロー戻り制御作用」に分けて説明する。
 [減速ロー戻り制御処理作用]
 図6のフローチャートに基づき、減速ロー戻り制御処理作用を説明する。減速時、ABS非作動時、急減速であるという条件が成立すると、図6のフローチャートにおいて、ステップS21→ステップS22→ステップS23→ステップS24→ステップS25→ステップS26へと進む。そして、ステップS26において、現在車速から停車するまでの時間V0timeが、現在油圧で最Low変速比まで戻すのに必要な時間CVTtimeを超えていると判断されると、ステップS28→ステップS29→減速制御リターンへと進む。ステップS28では、時間V0time内に最Low変速比まで戻す変速油圧が得られるように、電動オイルポンプ15の回転数を上昇させる制御が行われる。そして、ステップS29では、Low戻り制御モード(電動オイルポンプ回転上昇制御)により、ベルト式無段変速機6の変速比を最Low変速比まで戻す変速制御が実行される。
 [減速ロー戻り制御作用]
 図7は実施例2の減速ロー戻り制御が行われるときの車速(VSP)・CVT変速比(CVTRatio)・ライン圧(PL)・メカOP回転数・電動OP回転数の各特性を示す。以下、図7に示すタイムチャートに基づき、減速ロー戻り制御作用を説明する。なお、時刻t1は、ABS非作動による急減速であると共に、V0time<CVTtimeという時間条件が成立する時刻である。
 まず、時刻t1から通常変速制御モードによりベルト式無段変速機を最Low変速比に向かって戻す変速制御を行うときを比較例とし、図7の破線特性により示す。この比較例の場合、図5の破線特性と同様である。
 これに対し、実施例2では、時刻t1からLow戻り制御モードによりベルト式無段変速機6を最Low変速比に向かって戻す変速制御が行われる(図7の実線特性)。
実施例2の場合、時刻t1から最Low変速比に向かって変速機入力回転数を上昇させるダウン変速が開始されるが、時刻t1からは、同時進行により、電動オイルポンプ15の回転数(=ポンプモータ回転数)を上昇させる制御が行われる。つまり、モータ/ジェネレータ4の回転に拘束されない独立の電動オイルポンプ15を活用し、電動OP回転数を時刻t2まで上昇し、時刻t2以降は上昇した回転数を維持する制御が行われる。この電動OP回転数上昇により、メカオイルポンプ14からの吐出作動油と電動オイルポンプ15からの吐出作動油が合算され、ライン圧(=CVT油圧)が不足することがなく、停車時刻t4で最Low変速比まで戻すことができる。なお、図7のBに示すハッチング領域が、比較例に対するライン圧(PL)の増加代である。
 上記のように、実施例2では、時間V0time<時間CVTtimeとなったら、電動オイルポンプ15のポンプ回転数を上昇する制御を行う構成とした。
すなわち、ポンプモータ回転上昇⇒電動オイルポンプ回転上昇⇒CVT油圧(ライン圧)上昇というシーケンスとなる。
したがって、急減速時にポンプ制御要求があると、メカオイルポンプ14と電動オイルポンプ15から合算したポンプ吐出作動油により、変速油圧であるCVT油圧の上昇が達成される。このとき、第2クラッチCL2はクラッチ締結状態を維持したままで良い。なお、他の作用は、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例2のFFハイブリッド車両の変速油圧制御装置にあっては、下記の効果を得ることができる。
 (4) オイルポンプ制御手段(図6)は、第2所要時間(CVTtime)が第1所要時間(V0time)を超えたら、電動オイルポンプ15のポンプ回転数を上昇する制御を行う(図7)。
  このため、上記(1)又は(3)の効果に加え、急減速時にポンプ制御要求があると、メカオイルポンプ14と電動オイルポンプ15から合算したポンプ吐出作動油により、変速油圧であるCVT油圧の上昇を達成することができる。
 以上、本発明の車両の変速油圧制御装置を実施例1及び実施例2に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、オイルポンプ制御手段として、メカオイルポンプ14の回転数を上昇させる例を示し、実施例2では、オイルポンプ制御手段として、電動オイルポンプ15の回転数を上昇させる例を示した。しかし、オイルポンプ制御手段としては、例えば、実施例1と実施例2の制御を組み合わせ、メカオイルポンプ14と電動オイルポンプ15の回転数を上昇させるような例であっても良い。
 実施例1では、本発明の変速油圧制御装置を、FFハイブリッド車両に適用する例を示した。しかし、本発明の変速油圧制御装置は、駆動源にエンジンを備え、アイドルストップ制御やコーストストップ制御を行うエンジン車に対しても適用することができる。要するに、駆動源と駆動輪の間に介装された無段変速機と、駆動源により回転駆動されるメカオイルポンプと、ポンプモータにより回転駆動される電動オイルポンプと、を備えた車両であれば適用することができる。

Claims (4)

  1.  駆動源と駆動輪の間に介装された無段変速機と、前記駆動源により回転駆動されるメカオイルポンプと、ポンプモータにより回転駆動される電動オイルポンプと、を備えた車両において、
     前記無段変速機で必要な変速油圧を作り出すのに不足のないポンプ作動油を吐出するように、前記メカオイルポンプと前記電動オイルポンプを制御するオイルポンプ制御手段を設け、
     前記オイルポンプ制御手段は、車両減速時、現在車速から停車するまでの第1所要時間と、現在油圧で前記無段変速機をロー側変速比まで戻すのに必要な第2所要時間と、を比較し、前記第2所要時間が前記第1所要時間を超えたら、前記メカオイルポンプと前記電動オイルポンプのうち、少なくとも一方のポンプ回転数を上昇する制御を行う
     ことを特徴とする車両の変速油圧制御装置。
  2.  請求項1に記載された車両の変速油圧制御装置において、
     前記車両の駆動系には、駆動源から駆動輪へ向かう順に、走行駆動モータと、メカオイルポンプと、摩擦クラッチと、無段変速機と、を備え、
     前記オイルポンプ制御手段は、前記第2所要時間が前記第1所要時間を超えたら、前記摩擦クラッチをスリップ締結状態とし、前記走行駆動モータの回転数を上昇することで、前記メカオイルポンプのポンプ回転数を上昇する制御を行う
     ことを特徴とする車両の変速油圧制御装置。
  3.  請求項1又は請求項2に記載された車両の変速油圧制御装置において、
     前記オイルポンプ制御手段は、前記第2所要時間が前記第1所要時間を超えたら、前記電動オイルポンプのポンプ回転数を上昇する制御を行う
     ことを特徴とする車両の変速油圧制御装置。
  4.  請求項1から3までの何れか一項に記載された車両の変速油圧制御装置において、
     前記無段変速機の変速比を油圧制御する変速制御手段を設け、
     前記変速制御手段は、前記オイルポンプ制御手段によりポンプ回転数を上昇する制御を開始するのと同時に、前記無段変速機の変速比を最ロー変速比まで変速する減速ロー戻り制御を開始する
     ことを特徴とする車両の変速油圧制御装置。
PCT/JP2014/069350 2014-07-22 2014-07-22 車両の変速油圧制御装置 WO2016013061A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069350 WO2016013061A1 (ja) 2014-07-22 2014-07-22 車両の変速油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069350 WO2016013061A1 (ja) 2014-07-22 2014-07-22 車両の変速油圧制御装置

Publications (1)

Publication Number Publication Date
WO2016013061A1 true WO2016013061A1 (ja) 2016-01-28

Family

ID=55162617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069350 WO2016013061A1 (ja) 2014-07-22 2014-07-22 車両の変速油圧制御装置

Country Status (1)

Country Link
WO (1) WO2016013061A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331079A (ja) * 2004-05-21 2005-12-02 Toyota Motor Corp ベルト式無段変速機およびその制御装置
JP2011080516A (ja) * 2009-10-06 2011-04-21 Jatco Ltd 車両のオイルポンプ制御装置
JP2014034984A (ja) * 2012-08-07 2014-02-24 Fuji Heavy Ind Ltd 作動油供給装置
JP2014066362A (ja) * 2013-10-25 2014-04-17 Nissan Motor Co Ltd 車両の変速制御装置および変速制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331079A (ja) * 2004-05-21 2005-12-02 Toyota Motor Corp ベルト式無段変速機およびその制御装置
JP2011080516A (ja) * 2009-10-06 2011-04-21 Jatco Ltd 車両のオイルポンプ制御装置
JP2014034984A (ja) * 2012-08-07 2014-02-24 Fuji Heavy Ind Ltd 作動油供給装置
JP2014066362A (ja) * 2013-10-25 2014-04-17 Nissan Motor Co Ltd 車両の変速制御装置および変速制御方法

Similar Documents

Publication Publication Date Title
JP6292239B2 (ja) 4輪駆動電動車両の制御装置
JP6070855B2 (ja) ハイブリッド車両の制御装置
JP6070854B2 (ja) ハイブリッド車両の制御装置
JP6065987B2 (ja) ハイブリッド車両の制御装置
JP6369210B2 (ja) ハイブリッド車両の制御装置
JP6187059B2 (ja) ハイブリッド車両の制御装置
JP6320541B2 (ja) ハイブリッド車両用油圧制御装置
JP2015058868A (ja) ハイブリッド車両の制御装置
JP6229399B2 (ja) ハイブリッド車両の制御装置
JP6194735B2 (ja) ハイブリッド車両の制御装置
JP6287513B2 (ja) ハイブリッド車両の制御装置
JP6433695B2 (ja) 車両の発進制御装置
JP2015107696A (ja) ハイブリッド車両の制御装置
JP2015051727A (ja) ハイブリッド車両の制御装置
JP6369209B2 (ja) ハイブリッド車両の制御装置
WO2015198809A1 (ja) ハイブリッド車両の制御装置
JP6286972B2 (ja) ハイブリッド車両の制御装置
JP6318800B2 (ja) 車載オイルポンプの駆動切り替え装置
WO2015052760A1 (ja) ハイブリッド車両の制御装置
WO2016021018A1 (ja) 電動車両の発進制御装置
WO2016013061A1 (ja) 車両の変速油圧制御装置
JP6488788B2 (ja) ハイブリッド車両の制御装置
JP2015203323A (ja) 車両用電源装置
JP6229398B2 (ja) ハイブリッド車両の制御装置
JP6318799B2 (ja) 車載オイルポンプの駆動切り替え装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP