[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016005152A1 - Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems - Google Patents

Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems Download PDF

Info

Publication number
WO2016005152A1
WO2016005152A1 PCT/EP2015/063491 EP2015063491W WO2016005152A1 WO 2016005152 A1 WO2016005152 A1 WO 2016005152A1 EP 2015063491 W EP2015063491 W EP 2015063491W WO 2016005152 A1 WO2016005152 A1 WO 2016005152A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
bypass
gas recirculation
line
air supply
Prior art date
Application number
PCT/EP2015/063491
Other languages
English (en)
French (fr)
Inventor
Matthias Thewes
Original Assignee
Fev Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fev Gmbh filed Critical Fev Gmbh
Priority to DE112015003223.1T priority Critical patent/DE112015003223A5/de
Priority to JP2017502720A priority patent/JP6611788B2/ja
Priority to CN201580043237.0A priority patent/CN106574580A/zh
Priority to US15/325,578 priority patent/US10215086B2/en
Publication of WO2016005152A1 publication Critical patent/WO2016005152A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • F02M35/10163Supercharged engines having air intakes specially adapted to selectively deliver naturally aspirated fluid or supercharged fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10275Means to avoid a change in direction of incoming fluid, e.g. all intake ducts diverging from plenum chamber at acute angles; Check valves; Flame arrestors for backfire prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Exhaust gas recirculation system for an internal combustion engine and method for operating such an exhaust gas recirculation system
  • the invention relates to an exhaust gas recirculation system for an internal combustion engine and to a method for operating such an exhaust gas recirculation system.
  • the exhaust gas recirculation system has an air supply pipe, an exhaust pipe, an exhaust gas recirculation pipe leading from an EGR branch point in the exhaust pipe to an EGR introduction point in the air supply pipe, and a throttle valve inside the air supply pipe downstream of the EGR introduction point.
  • One requirement placed on internal combustion engines, and diesel engines in particular, is compliance with nitrogen oxide emission limits, with decreasing legal limits requiring reduction of these emissions of nitrogen oxides.
  • EGR exhaust gas recirculation
  • exhaust gas recirculation must be determined as accurately as possible, especially in transient operation, in order to be able to represent a good correlation of the nitrogen oxide emission.
  • Internal exhaust gas recirculation refers to the backflow of exhaust gas from the exhaust passage into the combustion chamber during a valve overlap phase. The level of the internal exhaust gas recirculation depends on a pressure difference between the fresh air supply and the exhaust system, on the duration of a valve overlap and on the opening cross-sections released by the valves.
  • a further known exhaust gas recirculation is the external exhaust gas recirculation.
  • Exhaust gas recirculation systems of the aforementioned type, with a low-pressure exhaust gas recirculation, are shown in DE 10 2010 025 699 A1, DE 10 2010 027 646 A1 and WO 2010/072227 A1.
  • DE 10 2010 025 699 A1 discloses a diesel engine with means for exhaust aftertreatment and means for exhaust gas recirculation.
  • a Dieselansaugstrang and an exhaust line wherein arranged in the exhaust line at least one particulate filter and this is followed by a NOx storage catalyst downstream.
  • An exhaust gas recirculation line branches off from the exhaust line and opens into the air intake line.
  • a branch for separating an exhaust gas partial flow is arranged for the exhaust gas recirculation in a housing of the NOx storage catalytic converter.
  • DE 10 2010 027 646 A1 discloses an exhaust system of an internal combustion engine, with an exhaust system and an exhaust gas recirculation, wherein the exhaust gas recirculation of the exhaust line branches off and wherein the exhaust line comprises a pipe and exhaust gas treatment agent.
  • the pipe and / or the exhaust gas treatment means are formed at least in sections such that a plurality of lines for exhaust gas is formed, wherein a first line leads a main exhaust gas flow and a second line leads to an exhaust gas recirculation branched exhaust partial stream.
  • WO 2010/072227 A1 shows an exhaust gas recirculation system for an internal combustion engine with an exhaust gas turbocharger wherein an exhaust gas recirculation line is connected on the one hand for the removal of exhaust gas to an exhaust line of the internal combustion engine and on the other hand connected to a fresh air supply of the internal combustion engine.
  • the exhaust gas recirculation line is guided via an exhaust gas compressor to increase the pressure of the recirculated exhaust gas. Due to the increased pressure of the recirculated exhaust gas flow this is advantageously better regulated. This may already be sufficient for a moderate increase in pressure.
  • the pressure level to which the recirculated exhaust gas is compressed depends essentially on how and where it is to be supplied to the fresh air supply.
  • the object of the present invention is to be able to adapt the EGR rate more quickly to changed engine load points.
  • an exhaust gas recirculation system for an internal combustion engine which has an air supply line, an exhaust line, an exhaust gas recirculation line and a throttle valve.
  • the exhaust gas recirculation line leads from a EGR branch point in the exhaust pipe to an EGR discharge point in the air supply line.
  • the throttle is located within the air supply line downstream of the EGR discharge point.
  • a lockable bypass line for fresh air is provided, which leads to a bypass discharge point in the air supply line downstream of the throttle valve.
  • the air supply line includes all components that lead intake air from an inlet opening to the internal combustion engine.
  • the exhaust pipe includes all components that direct the exhaust gas from the internal combustion engine into the surrounding atmosphere.
  • the bypass line In a stationary operation in high partial load or at full load, the bypass line remain shut off, with an adjusted EGR rate is supplied via the throttle valve of the internal combustion engine.
  • the throttle valve In a sudden load reduction, the throttle valve can be completely closed immediately and at the same time the bypass line are opened, so that the entire enriched with recirculated exhaust gas dead volume between the EGR inlet point and the throttle is no longer supplied to the internal combustion engine and thus no longer participates in the combustion process , Therefore, the EGR rate decreases very rapidly, being fed via the bypass line fresh air without recirculated exhaust gas fraction of the internal combustion engine.
  • the bypass line can be closed and at the same time the throttle are opened, the dead volume, which is already enriched with recirculated exhaust gas, can be supplied immediately to the internal combustion engine, so that the required EGR rate is reached very quickly ,
  • the bypass line may have its own air inlet, or it may branch off from the fresh air supply air line from a bypass branch point in the air supply line upstream of the EGR introduction point and lead to the bypass introduction point.
  • a check valve is disposed between the bypass branch point and the EGR introduction point and that allows a flow through the air supply line exclusively from the bypass branch point in the direction of the EGR discharge point.
  • a bypass valve is preferably provided within the bypass line.
  • a check valve is provided within the bypass line, which permits flow through the bypass line exclusively in the direction of the bypass introduction point.
  • At least one exhaust gas turbocharger is provided with a compressor and a turbine, wherein the compressor is disposed within the air supply line and the turbine within the exhaust pipe and wherein the compressor is arranged between the EGR introduction point and the throttle valve.
  • the turbine of the exhaust gas turbocharger is preferably located upstream of the EGR branch point to provide a low pressure exhaust gas recirculation system.
  • the object is further achieved by a method for operating an exhaust gas recirculation system as described above, wherein in the event of an abrupt load reduction, the throttle valve is completely closed and the bypass line is opened.
  • the bypass line is closed and the throttle opens, so that the entire enriched with recirculated exhaust gas dead volume between the EGR inlet point and the throttle is no longer supplied to the internal combustion engine and thus no longer participates in the combustion process. Therefore, the EGR rate decreases very rapidly, being fed via the bypass line fresh air without recirculated exhaust gas fraction of the internal combustion engine.
  • the idle control in idle the idle control combined over the Opening and closing of the bypass line and on the opening and closing of the throttle valve takes place.
  • the idling control takes place exclusively via the opening and closing of the bypass line with a constant throttle position, preferably a closed throttle position.
  • bypass line is not opened as long as the pressure in the bypass inlet point is higher than at the bypass branch point.
  • the throttle valve is held in a constant throttle position, preferably completely closed, and the air is supplied via the opening and closing of the bypass line.
  • Figure 1 shows a first embodiment of an exhaust gas recirculation system with a
  • Bypass line which branches off from the air supply line
  • Figure 2 shows a second embodiment of an exhaust gas recirculation system with a bypass line, which has its own air inlet.
  • FIG. 1 shows a first embodiment of an exhaust gas recirculation system with an internal combustion engine 1 with an intake manifold 2 for the supply of air, and an exhaust manifold 3 for discharging exhaust gas.
  • the suction pipe 2 is connected to an air supply line 4, which sucks fresh air via a suction port 6, which is supplied to an air filter 7.
  • the air supply line 4 continues to a compressor 8 of an exhaust gas turbocharger 9, in which the air is compressed. Downstream of the compressor 8 is a charge air cooler 10 for cooling the air heated by the compression.
  • the air supply line 4 continues to a throttle valve 1 1 for controlling the mass flow of the supplied air.
  • the air supply line 4 continues to the intake manifold 2, which can also be regarded as part of the air supply line 4.
  • the exhaust pipe 5 is connected to the exhaust manifold 3 and leads to a turbine 12 of the exhaust gas turbocharger 9, which is drive-connected via a shaft 13 for driving the compressor 8.
  • the exhaust gases are passed downstream of the turbine 12 to an exhaust aftertreatment device 14, such as a catalyst and / or a particulate filter or the like, and then exit the exhaust line 5.
  • EGR branch point 15 Downstream of the exhaust gas aftertreatment device 14 there is an EGR branch point 15, at which exhaust gas can be diverted from the exhaust gas line 5 into an EGR line 16.
  • the EGR passage 16 leads to an EGR introduction point 17 in the air supply line 4, the EGR introduction point 17 being arranged between the air filter 7 and the compressor 8.
  • an EGR cooler 18 Within the EGR passage 16, there is provided an EGR cooler 18 for cooling the exhaust gas.
  • an EGR valve 19 is provided, via which the mass flow of the recirculated exhaust gas is controllable.
  • bypass branching point 20 Between the air filter 7 and the EGR introduction point 17 there is a bypass branching point 20, at which fresh air can be diverted from the air supply line 4 into a bypass line 21.
  • a bypass valve 22 Within the bypass line 21 is a bypass valve 22 for controlling the mass flow of the fresh air through the bypass line 21.
  • the bypass line 21 continues to a bypass-introduction point 23 on the intake manifold 2, wherein the bypass-introduction point 23 is downstream of the throttle valve 1 1.
  • a first check valve 24 is provided within the bypass line 21, which opens in the direction of the bypass Abzweigstelle 20 to the bypass inlet point 23 and closes in the opposite direction.
  • a second check valve 25 is provided which is located between the bypass branch point 20 and the EGR introduction point 17 and which is located in Direction from the EGR inlet 17 to the bypass branch 20 closes.
  • the bypass line 21 may remain shut off, with a matched EGR rate over the throttle valve 1 1 of the internal combustion engine 1 is supplied.
  • the throttle valve 1 1 can be closed immediately and simultaneously the bypass line 21 are opened via the bypass valve 22, so that the entire enriched with recirculated exhaust gas dead volume between the EGR inlet 17 and the throttle valve 1 1 no longer supplied to the internal combustion engine 1 and thus no longer participates in the combustion process. Therefore, the EGR rate decreases very rapidly, being fed via the bypass line 21 fresh air without recirculated exhaust gas portion of the internal combustion engine 1.
  • bypass line 21 can be closed via the bypass valve 22 and the throttle valve 1 1 are opened at the same time, the dead volume, which is already enriched with recirculated exhaust gas, immediately the internal combustion engine 1 can be supplied, so that the required EGR Rate is reached very quickly.
  • Figure 2 shows a second embodiment of an exhaust gas recirculation system, wherein components which are identical to components of the first embodiment are provided with the same reference numerals and are described in connection with the first embodiment.
  • bypass line 21 does not branch off from the air supply line 4 but has its own intake 27 as an air inlet. Furthermore, a further air filter 26 is provided in the bypass line 21. In addition, no check valve is required in the air supply line 4.
  • the bypass line as shown, open at a bypass inlet point 23 in the air supply line 4, here in the intake manifold 2.
  • the bypass discharge point 23 may open at any point or more arbitrary locations in the air supply line 4. It is only important that the bypass line 21 opens downstream of the throttle valve 1 1 in the air supply line 4. For example, it is conceivable that the bypass line 21 between the throttle valve and the intake manifold 2 opens into the air supply line 4. It is also possible to introduce the fresh air from the bypass line 21 in each case in the intake pipes of the individual cylinders between the intake manifold 2 and the internal combustion engine 1 or respectively in the intake ports of each cylinder within the internal combustion engine. 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

Abgasrückführungssystem für eine Verbrennungskraftmaschine (1), wobei das Abgasrückführungssystem folgendes aufweist: eine Luftzuführleitung (4), eine Abgasleitung (5), eine Abgasrückführleitung (16), die von einer AGR-Abzweigstelle (15) in der Abgasleitung (5) zu einer AGR-Einleitstelle (17) in der Luftzuführleitung (4) führt, und einer Drosselklappe (11) innerhalb der Luftzuführleitung (4) stromab der AGR-Einleitstelle (17), wobei eine absperrbare Bypassleitung (21) für Frischluft vorgesehen ist, die zu einer Bypass-Einleitstelle (23) in der Luftzuführleitung (4) stromab der Drosselklappe (11) führt.

Description

Abgasrückführungssystem für eine Verbrennungskraftmaschine und Verfahren zum Betreiben eines solchen Abgasrückführungssystems
Beschreibung
Die Erfindung betrifft ein Abgasrückführungssystem für eine Verbrennungskraftmaschine sowie ein Verfahren zum Betreiben eines solchen Abgasrückführungssystems. Hierbei weist das Abgasrückführungssystem eine Luftzuführleitung, eine Abgaslei- tung, eine Abgasrückführleitung, die von einer AGR-Abzweigstelle in der Abgasleitung zu einer AGR-Einleitstelle in der Luftzuführleitung führt, sowie einer Drosselklappe innerhalb der Luftzuführleitung stromab der AGR-Einleitstelle auf. Eine Anforderung, die an Verbrennungskraftmaschinen und insbesondere an Dieselmotoren gestellt wird, ist die Einhaltung von Grenzwerten einer Stickoxidemission, wobei sinkende gesetzliche Grenzwerte eine Reduzierung dieser Stickoxidemissionen erfordern. Eine Möglichkeit zur Reduzierung von Stickoxidemissionen ist das Zuführen von Teilen des Abgases in den Verbrennungsraum, wodurch eine Sauerstoffkonzent- ration im Verbrennungsraum des Zylinders einstellbar wird und die Verbrennungsspitzentemperatur, insbesondere bei gekühlter Abgasrückführung, abgesenkt werden kann. Diese sogenannte Abgasrückführung, abgekürzt AGR, ist bekannt und stellt eine Möglichkeit dar, die Sauerstoffkonzentration im Verbrennungsraum des Zylinders zu reduzieren. Hierbei ist die genaue Einstellung der Sauerstoffkonzentration im Zylinder während eines transienten sowie auch eines stationären Betriebs von zentraler Bedeutung. Stellt der stationäre Betrieb einer Verbrennungskraftmaschine keine großen Anforderungen an eine Regelung, so muss insbesondere im transienten Betrieb eine Abgasrückführung möglichst genau bestimmt werden, um eine gute Korrelation der Stickoxidemission darstellen zu können. Unterschieden wird bei der Abgasrückführung in eine innere und eine äußere Abgasrückführung. Als innere Abgasrückführung wird das Rückströmen von Abgas aus dem Auslasskanal in den Verbrennungsraum während einer Ventilüberschneidungsphase bezeichnet. Dabei hängt die Höhe der inneren Abgasrückführung von einer Druckdif- ferenz zwischen Frischluftzufuhr und Abgassystem, von der Dauer einer Ventilüberschneidung und von den durch die Ventile freigegebenen Öffnungsquerschnitten ab. Eine weiterhin bekannte Abgasrückführung ist die äußere Abgasrückführung. Unterschieden wird hierbei in eine Hochdruckabgasrückführung, die eine unmittelbare Rückführung der Abgase im Bereich des Abgaskrümmers in die Frischluftzuführung des Einlasskanals ermöglicht, und eine Niederdruckabgasrückführung, bei der das Abgas hinter einer im Abgassystem integrierten Turbine eines Turboladers abgezweigt und der Frischluftzuführung noch vor dem Verdichter des Turboladers zuführt wird.
Abgasrückführungssysteme der eingangs genannten Art, mit einer Niederdruckabgas- rückführung zeigen DE 10 2010 025 699 A1 , DE 10 2010 027 646 A1 und WO 2010/072227 A1 .
DE 10 2010 025 699 A1 offenbart einen Dieselmotor mit Mitteln zur Abgasnachbehandlung und Mitteln zur Abgasrückführung. Vorgesehen ist ein Luftansaugstrang und einen Abgasstrang, wobei im Abgasstrang zumindest ein Rußpartikelfilter angeordnet und diesem ein NOx-Speicherkatalysator nachgeordnet ist. Ein Abgasrückführstrang ist vom Abgasstrang abzweigt und mündet in den Luftansaugstrang. Eine Abzweigung zum Abtrennen eines Abgasteilstroms ist für die Abgasrückführung in einem Gehäuse des NOx-Speicherkatalysators angeordnet. Hierdurch wird der NOx-Speicherkatalysa- tor nicht mit einem übermäßig großen Abgasstrom beaufschlagt, indem nämlich der Abgasteilstrom zur Abgasrückführung von der Abgasnachbehandlung insoweit ausgeschlossen wird. Durch eine Wärmeübertragung zwischen der Abzweigung für die Abgasrückführung und Gehäuseteilen des NOx-Speicherkatalysators kommt es weiterhin im Betrieb vorteilhaft zu einer schnelleren Aufheizung des NOx-Speicherkatalysators, so dass insbesondere in der Startphase der Brennkraftmaschine der Schadstoffausstoß reduziert werden kann.
Die DE 10 2010 027 646 A1 offenbart eine Abgasanlage einer Brennkraftmaschine, mit einem Abgasstrang und einer Abgasrückführung, wobei die Abgasrückführung von dem Abgasstrang abzweigt und wobei der Abgasstrang ein Rohr und Abgasbehandlungsmittel aufweist. Das Rohr und/oder die Abgasbehandlungsmittel sind zumindest abschnittsweise derart ausgebildet, dass eine Mehrzahl von Leitungen für Abgas gebildet ist, wobei eine erste Leitung einen Hauptabgasstrom führt und eine zweite Lei- tung einen zur Abgasrückführung abgezweigten Abgasteilstrom führt.
WO 2010/072227 A1 zeigt ein Abgasrückführungssystem für eine Brennkraftmaschine mit einem Abgasturbolader wobei eine Abgasrückführungsleitung einerseits zur Entnahme von Abgas mit einem Abgasstrang der Brennkraftmaschine verbunden ist und andererseits mit einer Frischluftzuführung der Brennkraftmaschine verbunden ist. Die Abgasrückführungsleitung ist über einen Abgasverdichter zur Erhöhung des Drucks des rückgeführten Abgases geführt. Durch den erhöhten Druck des rückgeführten Abgasstroms ist dieser vorteilhaft besser regelbar. Dazu kann bereits eine moderate Druckerhöhung ausreichen. Das Druckniveau, auf welches das rückgeführte Abgas verdichtet wird, hängt im Wesentlichen davon ab, wie und wo es der Frischluftzuführung zugeführt werden soll.
Bei den bekannten Niederdruckabgasrückführungssystemen, insbesondere bei ab- gasturboaufgeladenen Verbrennungskraftmaschinen, insbesondere Ottomotoren, also bei einer Einleitung der Abgasrückführung vor dem Verdichter des Turboladers, ergibt sich ein hohes Totvolumen zwischen der AGR-Einleitstelle und der Drosselklappe, welches mit rückgeführtem Abgas gefüllt ist. Bei einer schnellen Lastreduzierung, zum Beispiel durch ein spontanes Auskuppeln, kann es zu Problemen mit der Verbrennungsstabilität kommen, da die AGR-Rate durch das hohe Totvolumen nicht schnell genug verringert werden kann und nicht schnell genug an den neuen Motorlastpunkt angepasst werden kann.
Aufgabe der vorliegenden Erfindung ist es, die AGR-Rate schneller an veränderte Motorlastpunkte anpassen zu können.
Die Aufgabe wird durch ein Abgasrückführungssystem für eine Verbrennungskraftmaschine gelöst, welches eine Luftzuführleitung, eine Abgasleitung, eine Abgasrückführleitung sowie eine Drosselklappe aufweist. Die Abgasrückführleitung führt von einer AGR-Abzweigstelle in der Abgasleitung zu einer AGR-Einleitstelle in der Luftzuführleitung. Die Drosselklappe ist innerhalb der Luftzuführleitung stromab der AGR-Einleitstelle angeordnet. Ferner ist eine absperrbare Bypassleitung für Frischluft vorgesehen, die zu einer Bypass-Einleitstelle in der Luftzuführleitung stromab der Drosselklappe führt.
Zur Luftzuführleitung zählen alle Bauteile, die angesaugte Luft von einer Einlassöffnung bis zur Verbrennungskraftmaschine leiten. Zur Abgasleitung zählen alle Bauteile, die das Abgas von der Verbrennungskraftmaschine bis in die umgebende Atmosphäre leiten.
Bei einem stationären Betrieb in hoher Teillast oder in Volllast kann die Bypassleitung abgesperrt bleiben, wobei eine angepasste AGR-Rate über die Drosselklappe der Verbrennungskraftmaschine zugeführt wird. Bei einer plötzlichen Lastreduzierung kann die Drosselklappe umgehend vollständig geschlossen werden und gleichzeitig die Bypassleitung geöffnet werden, so dass das gesamte mit rückgeführtem Abgas angereicherte Totvolumen zwischen der AGR-Einleitstelle und der Drosselklappe nicht mehr der Verbrennungskraftmaschine zugeführt wird und somit nicht mehr am Verbren- nungsprozess teilnimmt. Die AGR-Rate nimmt daher sehr schnell ab, wobei über die Bypassleitung Frischluft ohne rückgeführten Abgasanteil der Verbrennungskraftmaschine zugeführt wird.
Bei dann wieder plötzlich auftretender Lasterhöhung kann die Bypassleitung geschlossen werden und gleichzeitig die Drosselklappe geöffnet werden, wobei das Totvolu- men, welches bereits mit rückgeführtem Abgas angereichert ist, umgehend der Verbrennungskraftmaschine zugeführt werden kann, so dass die erforderliche AGR-Rate sehr schnell erreicht wird.
Die Bypassleitung kann einen eigenen Lufteinlass aufweisen, oder sie kann von einer Bypass-Abzweigstelle in der Luftzuführleitung stromauf der AGR-Einleitstelle von der Luftzuführleitung Frischluft abzweigen und zur Bypass-Einleitstelle führen.
Um zu vermeiden, dass rückgeführtes Abgas in die Bypassleitung eindringt, kann vorgesehen sein, dass innerhalb der Luftzuführleitung ein Rückschlagventil vorgesehen ist, das zwischen der Bypass-Abzweigstelle und der AGR-Einleitstelle angeordnet ist und das ein Durchströmen der Luftzuführleitung ausschließlich von der Bypass-Abzweigstelle in Richtung zur AGR-Einleitstelle zulässt. Um die Bypassleitung absperrbar zu gestalten, ist innerhalb der Bypassleitung vorzugsweise ein Bypassventil vorgesehen.
Um sicherzustellen, dass die Bypassleitung nur in eine Richtung durchströmt wird, kann vorgesehen sein, dass innerhalb der Bypassleitung ein Rückschlagventil vorge- sehen ist, das ein Durchströmen der Bypassleitung ausschließlich in Richtung zur By- pass-Einleitstelle zulässt.
Vorzugsweise ist mindestens ein Abgasturbolader mit einem Verdichter und einer Turbine vorgesehen, wobei der Verdichter innerhalb der Luftzuführleitung und die Turbine innerhalb der Abgasleitung angeordnet ist und wobei der Verdichter zwischen der AGR-Einleitstelle und der Drosselklappe angeordnet ist.
Die Turbine des Abgasturboladers ist vorzugsweise stromauf der AGR-Abzweigstelle angeordnet, um ein Niederdruckabgasrückführsystem bereitzustellen.
Die Aufgabe wird ferner durch ein Verfahren zum Betreiben eines Abgasrückführsys- tems wie voranstehend beschrieben gelöst, wobei bei abrupter Lastreduktion die Drosselklappe vollständig geschlossen wird und die Bypassleitung geöffnet wird. Bei einer Lasterhöhung wird die Bypassleitung geschlossen und die Drosselklappe geöffnet, so dass das gesamte mit rückgeführtem Abgas angereicherte Totvolumen zwischen der AGR-Einleitstelle und der Drosselklappe nicht mehr der Verbrennungskraftmaschine zugeführt wird und somit nicht mehr am Verbrennungsprozess teilnimmt. Die AGR-Rate nimmt daher sehr schnell ab, wobei über die Bypassleitung Frischluft ohne rückgeführten Abgasanteil der Verbrennungskraftmaschine zugeführt wird.
Es kann vorgesehen sein, dass im Leerlauf die Leerlaufregelung kombiniert über das Öffnen und Schließen der Bypassleitung und über das Öffnen und Schließen der Drosselklappe erfolgt. Alternativ kann vorgesehen sein, dass im Leerlauf die Leerlaufregelung ausschließlich über das Öffnen und Schließen der Bypassleitung bei konstanter Drosselklappenstellung, vorzugsweise geschlossener Drosselklappenstellung, erfolgt.
Um zu vermeiden, dass rückgeführtes Abgas in die Bypassleitung eintritt, kann vorgesehen sein, dass die Bypassleitung nicht geöffnet wird, solange der Druck in der By- pass-Einleitstelle höher ist als an der Bypass-Abzweigstelle. In einem Notbetriebmodus kann vorgesehen sein, dass die Drosselklappe in einer konstanten Drosselklappenstellung, vorzugsweise vollständig geschlossen, gehalten wird und die Luftzufuhr über das Öffnen und Schließen der Bypassleitung erfolgt.
Zwei bevorzugte Ausführungsbeispiele eines Abgasrückführungssystems sind in den Figuren dargestellt und werden im Folgenden näher erläutert. Hierin zeigt
Figur 1 ein erstes Ausführungsbeispiel eines Abgasrückführungssystems mit einer
Bypassleitung, die von der Luftzuführleitung abzweigt, und Figur 2 ein zweites Ausführungsbeispiel eines Abgasrückführungssystems mit einer Bypassleitung, die einen eigenen Lufteinlass aufweist.
Die Figur 1 zeigt ein erstes Ausführungsbeispiel eines Abgasrückführungssystems mit einer Verbrennungskraftmaschine 1 mit einem Saugrohr 2 für die Zuführung von Luft, und einem Abgaskrümmer 3 zum Ableiten von Abgas. Das Saugrohr 2 ist mit einer Luftzuführleitung 4 verbunden, welche über eine Ansaugöffnung 6 Frischluft ansaugt, die einem Luftfilter 7 zugeführt wird. Von dem Luftfilter 7 führt die Luftzuführleitung 4 weiter zu einem Verdichter 8 eines Abgasturboladers 9, in dem die Luft verdichtet wird. Stromab des Verdichters 8 befindet sich ein Ladeluftkühler 10 zum Kühlen der durch das Verdichten erwärmten Luft. Die Luftzuführleitung 4 führt weiter zu einer Drosselklappe 1 1 zur Steuerung des Massenstroms der zugeführten Luft. Stromab der Drosselklappe 1 1 führt die Luftzuführleitung 4 weiter zum Saugrohr 2, welches ebenfalls als Bestandteil der Luftzuführleitung 4 angesehen werden kann. Die Abgasleitung 5 ist mit dem Abgaskrümmer 3 verbunden und führt zu einer Turbine 12 des Abgasturboladers 9, welche über eine Welle 13 zum Antreiben des Verdichters 8 antriebsverbunden ist. Die Abgase werden stromab der Turbine 12 weiter zu einer Abgasnachbehandlungseinrichtung 14, wie zum Beispiel einem Katalysator und/oder einem Partikelfilter oder dgl., geleitet und treten dann aus der Abgasleitung 5 aus.
Stromab der Abgasnachbehandlungseinrichtung 14 befindet sich eine AGR-Abzweig- stelle 15, an der Abgas aus der Abgasleitung 5 in eine AGR-Leitung 16 abgezweigt werden kann. Die AGR-Leitung 16 führt zu einer AGR-Einleitstelle 17 in der Luftzu- führleitung 4, wobei die AGR-Einleitstelle 17 zwischen dem Luftfilter 7 und dem Verdichter 8 angeordnet ist. Innerhalb der AGR-Leitung 16 ist ein AGR-Kühler 18 zum Kühlen des Abgases vorgesehen. Ferner ist innerhalb der AGR-Leitung 16, zwischen dem AGR-Kühler 18 und der AGR-Einleitstelle 17, ein AGR- Ventil 19 vorgesehen, über welches der Massenstrom des rückgeführten Abgases steuerbar ist.
Zwischen dem Luftfilter 7 und der AGR-Einleitstelle 17 befindet sich eine Bypass-Ab- zweigstelle 20, an der Frischluft aus der Luftzuführleitung 4 in eine Bypassleitung 21 abgezweigt werden kann. Innerhalb der Bypassleitung 21 befindet sich ein Bypass- ventil 22 zur Steuerung des Massenstroms der Frischluft durch die Bypassleitung 21 . Die Bypassleitung 21 führt weiter zu einer Bypass-Einleitstelle 23 am Saugrohr 2, wobei sich die Bypass-Einleitstelle 23 stromab der Drosselklappe 1 1 befindet.
Um zu verhindern, dass bei geöffnetem Bypassventil mit Abgas angereicherte Luft vom Saugrohr 2 in die Bypassleitung 21 gelangt, ist innerhalb der Bypassleitung 21 ein erstes Rückschlagventil 24 vorgesehen, welches in Richtung von der Bypass-Ab- zweigstelle 20 zur Bypass-Einleitstelle 23 öffnet und in umgekehrter Richtung schließt. Um ferner zu verhindern, dass mit Abgas angereicherte Luft aus der AGR-Leitung 16 in die Bypassleitung 21 gelangt, ist ferner ein zweites Rückschlagventil 25 vorgesehen, welches sich zwischen der Bypass-Abzweigstelle 20 und der AGR-Einleitstelle 17 be- findet und welches in Richtung von der AGR-Einleitstelle 17 zur Bypass-Abzweigstelle 20 schließt.
Bei normalem Betrieb der Verbrennungskraftmaschine 1 in Teillast oder in Volllast kann die Bypassleitung 21 abgesperrt bleiben, wobei eine angepasste AGR-Rate über die Drosselklappe 1 1 der Verbrennungskraftmaschine 1 zugeführt wird. Bei einer plötzlichen Lastreduzierung kann die Drosselklappe 1 1 umgehend geschlossen werden und gleichzeitig die Bypassleitung 21 über das Bypassventil 22 geöffnet werden, so dass das gesamte mit rückgeführtem Abgas angereicherte Totvolumen zwischen der AGR-Einleitstelle 17 und der Drosselklappe 1 1 nicht mehr der Verbrennungskraftmaschine 1 zugeführt wird und somit nicht mehr am Verbrennungsprozess teilnimmt. Die AGR-Rate nimmt daher sehr schnell ab, wobei über die Bypassleitung 21 Frischluft ohne rückgeführten Abgasanteil der Verbrennungskraftmaschine 1 zugeführt wird. Bei dann wieder plötzlich auftretender Lasterhöhung kann die Bypassleitung 21 über das Bypassventil 22 geschlossen werden und gleichzeitig die Drosselklappe 1 1 geöffnet werden, wobei das Totvolumen, welches bereits mit rückgeführtem Abgas angereichert ist, umgehend der Verbrennungskraftmaschine 1 zugeführt werden kann, so dass die erforderliche AGR-Rate sehr schnell erreicht wird.
Figur 2 zeigt ein zweites Ausführungsbeispiel eines Abgasrückführungssystems, wobei Bauteile, die mit Bauteilen des ersten Ausführungsbeispiels übereinstimmen, mit denselben Bezugszeichen versehen sind und im Zusammenhang mit dem ersten Ausführungsbeispiel beschrieben sind.
Im Unterschied zum einen Ausführungsbeispiel zweigt die Bypassleitung 21 nicht von der Luftzuführleitung 4 ab sondern weist eine eigene Ansaugöffnung 27 als Lufteinlass auf. Ferner ist in der Bypassleitung 21 ein weiterer Luftfilter 26 vorgesehen. In der Luftzuführleitung 4 ist zudem kein Rückschlagventil erforderlich.
Bei beiden beschriebenen Ausführungsbeispielen kann die Bypassleitung, wie dargestellt, an einer Bypass-Einleitstelle 23 in die Luftzuführleitung 4 münden, hier in das Saugrohr 2. Die Bypass-Einleitstelle 23 kann jedoch an einer beliebigen Stelle oder mehreren beliebigen Stellen in die Luftzuführleitung 4 münden. Wichtig ist nur, dass die Bypassleitung 21 stromab der Drosselklappe 1 1 in die Luftzuführleitung 4 mündet. Zum Beispiel ist denkbar, dass die Bypassleitung 21 zwischen Drosselklappe und Saugrohr 2 in die Luftzuführleitung 4 mündet. Möglich ist auch ein Einleiten der Frischluft aus der Bypassleitung 21 jeweils in die Saugrohre der einzelnen Zylinder zwischen dem Saugrohr 2 und der Verbrennungskraftmaschine 1 oder jeweils in die Einlasskanäle jedes Zylinders innerhalb der Verbrennungskraftmaschine 1 .
Bezugszeichenliste
1 Verbrennungskraftmaschine
2 Saugrohr
3 Abgaskrümmer
4 Luftzuführleitung
5 Abgasleitung
6 Ansaugöffnung
7 Luftfilter
8 Verdichter
9 Abgasturbolader
10 Ladeluftkühler
1 1 Drosselklappe
12 Turbine
13 Welle
14 Abgasnachbehandlungseinrichtung
15 AGR-Abzweigstelle
16 AGR-Leitung
17 AGR-Einleitstelle
18 AGR-Kühler
19 AGR-Ventil
20 Bypass-Abzweigstelle
21 Bypassleitung
22 Bypassventil
23 Bypass-Einleitstelle
24 erstes Rückschlagventil
25 zweites Rückschlagventil
26 Luftfilter
27 Ansaugöffnung

Claims

Ansprüche
1 . Abgasrückführungssystem für eine Verbrennungskraftmaschine (1 ), wobei das Abgasrückführungssystem folgendes aufweist:
eine Luftzuführleitung (4),
eine Abgasleitung (5),
eine Abgasrückführleitung (16), die von einer AGR-Abzweigstelle (15) in der Abgasleitung (5) zu einer AGR-Einleitstelle (17) in der Luftzuführleitung (4) führt, und
einer Drosselklappe (1 1 ) innerhalb der Luftzuführleitung (4) stromab der AGR- Einleitstelle (17), dadurch gekennzeichnet, dass eine absperrbare Bypassleitung (21 ) für Frischluft vorgesehen ist, die zu einer Bypass-Einleitstelle (23) in der Luftzuführleitung (4) stromab der Drosselklappe (1 1 ) führt.
2. Abgasrückführungssystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Bypassleitung (21 ) von einer Bypass-Abzweigstelle (20) in der Luftzuführleitung (4) stromauf der AGR-Einleitstelle (17) zur Bypass-Einleitstelle (23) führt.
3. Abgasrückführungssystem nach Anspruch 2, dadurch gekennzeichnet, dass innerhalb der Luftzuführleitung (4) ein Rückschlagventil (25) vorgesehen ist, das zwischen der Bypass-Abzweigstelle (20) und der AGR-Einleitstelle (17) angeordnet ist und das ein Durchströmen der Luftzuführleitung (4) ausschließlich von der Bypass-Abzweigstelle (20) in Richtung zur AGR-Einleitstelle (17) zulässt.
4. Abgasrückführungssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass innerhalb der Bypassleitung (21 ) ein Bypassventil (22) zum Absperren der Bypassleitung (21 ) vorgesehen ist.
5. Abgasrückführungssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass innerhalb der Bypassleitung (21 ) ein Rückschlagventil (25) vorgesehen ist, das ein Durchströmen der Bypassleitung (21 ) ausschließlich in Richtung zur Bypass-Einleitstelle (23) zulässt.
6. Abgasrückführungssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Turbolader (9) mit einem Verdichter (8) innerhalb der Luftzuführleitung (4) und einer Turbine (12) innerhalb der Abgasleitung (5) vorgesehen ist, wobei der Verdichter (8) zwischen der AGR-Einleitstelle (17) und der Drosselklappe (1 1 ) angeordnet ist.
7. Abgasrückführungssystem nach Anspruch 6, dadurch gekennzeichnet, dass die Turbine (12) des Turboladers (9) stromauf der AGR-Abzweigstelle (15) angeordnet ist.
8. Verfahren zum Betreiben eines Abgasrückführungssystems nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei abrupter Lastreduktion die Drosselklappe (1 1 ) geschlossen wird und die Bypassleitung (21 ) geöffnet wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass bei Lasterhöhung die Bypassleitung (21 ) geschlossen wird.
10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass im Leerlauf die Leerlaufregelung kombiniert über das Öffnen und Schließen der Bypassleitung (21 ) und die Drosselklappe (1 1 ) erfolgt.
1 1 . Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass im Leerlauf die Leerlaufregelung ausschließlich über das Öffnen und Schließen der Bypassleitung (21 ) bei konstanter Drosselklappenstellung, vorzugsweise bei vollständig geschlossener Drosselklappe (1 1 ), erfolgt.
12. Verfahren nach einem der Ansprüche 8 bis 1 1 , dadurch gekennzeichnet, dass die Bypassleitung (21 ) nicht geöffnet wird, solange der Druck an der By- pass-Einleitstelle (23) höher ist als an der Bypass-Abzweigstelle (20).
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Drosselklappe (1 1 ) in einem Notbetriebmodus in einer konstanten Drosselklappenstellung, vorzugsweise vollständig geschlossen, gehalten wird und die Luftzufuhr über das Öffnen und Schließen der Bypassleitung (21 ) erfolgt.
PCT/EP2015/063491 2014-07-11 2015-06-16 Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems WO2016005152A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015003223.1T DE112015003223A5 (de) 2014-07-11 2015-06-16 Abgasrückführungssystem für eine Verbrennungskraftmaschine und Verfahren zum Betreiben eines solchen Abgasrückführungssystems
JP2017502720A JP6611788B2 (ja) 2014-07-11 2015-06-16 内燃機関のための排ガス再循環システムおよびこのような排ガス再循環システムを作動させるための方法
CN201580043237.0A CN106574580A (zh) 2014-07-11 2015-06-16 燃烧发动机排气再循环系统及运行排气再循环系统的方法
US15/325,578 US10215086B2 (en) 2014-07-11 2015-06-16 Exhaust gas recirculation system for an internal combustion engine and method for operating such an exhaust gas recirculation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014109805.6 2014-07-11
DE102014109805.6A DE102014109805A1 (de) 2014-07-11 2014-07-11 Abgasrückführungssystem für eine Verbrennungskraftmaschine und Verfahren zum Betreiben eines solchen Abgasrückführungssystems

Publications (1)

Publication Number Publication Date
WO2016005152A1 true WO2016005152A1 (de) 2016-01-14

Family

ID=53404561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/063491 WO2016005152A1 (de) 2014-07-11 2015-06-16 Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems

Country Status (5)

Country Link
US (1) US10215086B2 (de)
JP (1) JP6611788B2 (de)
CN (1) CN106574580A (de)
DE (2) DE102014109805A1 (de)
WO (1) WO2016005152A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211528A1 (de) 2016-06-27 2017-12-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Einstellung eines Lastpunktes eines Verbrennungsmotors im dynamischen Motorbetrieb
DE102016219320A1 (de) * 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Verbrennungsmotor
CN110107394A (zh) * 2019-05-05 2019-08-09 天津大学 一种基于两级涡轮增压器的高压废气低压侧引入系统
GB2590942B (en) * 2020-01-08 2022-08-31 Perkins Engines Co Ltd Air intake system for use in an internal combustion engine
CN114294096B (zh) * 2021-11-19 2023-04-25 东风商用车有限公司 一种基于传感器的发动机用动态空气补偿及排温管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392230A1 (fr) * 1977-05-26 1978-12-22 Nissan Motor Commande de porte de gaz d'echappement pour des turbines de suralimentation de moteur a combustion interne
DE19641467A1 (de) * 1996-10-09 1998-04-16 Mann & Hummel Filter Sekundärluftsystem
JP2000186629A (ja) * 1998-12-22 2000-07-04 Toyota Motor Corp 過給機を有する内燃機関
FR2985544A3 (fr) * 2012-01-11 2013-07-12 Renault Sa Procede de pilotage d'une suralimentation a deux etages de turbocompresseurs a geometrie fixe

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219530A (ja) * 2004-02-03 2005-08-18 Toyota Motor Corp 変速機の変速制御装置
US7685819B2 (en) * 2006-03-27 2010-03-30 Aqwest Llc Turbocharged internal combustion engine system
WO2010072227A1 (de) 2008-12-22 2010-07-01 Fev Motorentechnik Gmbh Abgasrückführungssystem und verfahren zur abgasrückführung
US20110036335A1 (en) * 2009-08-12 2011-02-17 International Engine Intellectual Property Company Llc. Hybrid intake system for superatmospheric charging of an engine intake manifold using lowpressure egr/fresh air blending
US8230675B2 (en) * 2010-01-08 2012-07-31 Ford Global Technologies, Llc Discharging stored EGR in boosted engine system
US8091359B2 (en) * 2010-06-03 2012-01-10 Ford Global Technologies, Llc Exhaust heat recovery for engine heating and exhaust cooling
JP5610873B2 (ja) * 2010-06-25 2014-10-22 ダイハツ工業株式会社 内燃機関
DE102010025699A1 (de) 2010-06-30 2012-01-05 Fev Motorentechnik Gmbh Brennkraftmaschine mit Abgasnachbehandlung und Abgasrückführung
JP5649343B2 (ja) * 2010-07-09 2015-01-07 ダイハツ工業株式会社 内燃機関の吸気絞り弁制御方法
DE102010027646A1 (de) 2010-07-19 2012-01-19 Fev Motorentechnik Gmbh Abgasanlage einer Brennkraftmaschine mit Abgasrückführung
JP5679776B2 (ja) * 2010-11-19 2015-03-04 ダイハツ工業株式会社 内燃機関の排気ガス再循環制御方法
JP2014034959A (ja) * 2012-08-10 2014-02-24 Aisan Ind Co Ltd 過給機付きエンジンの排気還流装置
JP6076212B2 (ja) * 2013-07-02 2017-02-08 愛三工業株式会社 過給機付きエンジンの排気還流装置における新気導入装置
US9404409B2 (en) * 2013-11-05 2016-08-02 Ford Global Technologies, Llc Exhaust throttling for cabin heating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392230A1 (fr) * 1977-05-26 1978-12-22 Nissan Motor Commande de porte de gaz d'echappement pour des turbines de suralimentation de moteur a combustion interne
DE19641467A1 (de) * 1996-10-09 1998-04-16 Mann & Hummel Filter Sekundärluftsystem
JP2000186629A (ja) * 1998-12-22 2000-07-04 Toyota Motor Corp 過給機を有する内燃機関
FR2985544A3 (fr) * 2012-01-11 2013-07-12 Renault Sa Procede de pilotage d'une suralimentation a deux etages de turbocompresseurs a geometrie fixe

Also Published As

Publication number Publication date
JP2017524862A (ja) 2017-08-31
JP6611788B2 (ja) 2019-11-27
US10215086B2 (en) 2019-02-26
CN106574580A (zh) 2017-04-19
DE102014109805A1 (de) 2016-01-14
DE112015003223A5 (de) 2017-06-29
US20170138252A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
DE60117448T2 (de) Venturi-Bypass eines Abgasrückführungssystems
EP2108807B1 (de) Abgasrückführsystem für eine Verbrennungskraftmaschine
DE102005048911A1 (de) Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
DE102018218665B4 (de) Sekundärlufteinspritzsystem
DE102014215736A1 (de) Verfahren und system zur aufladungssteuerung
DE2911727A1 (de) Kolben-brennkraftmaschine mit mindestens zwei abgasturboladern
EP2059663A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102004027593A1 (de) Motorenanlage mit Abgasturboaufladung und Betrieb eines SCR-Katalysators
DE102011006056A1 (de) Interne und externe Niederdruck-Agr für aufgeladene Motoren
DE102011080686A1 (de) Egr-mischer für systeme von motoren mit hohem ladedruck
WO2016005152A1 (de) Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems
DE102010053057A1 (de) Aufladeeinrichtung für eine Verbrennungskraftmaschine
DE102011004102A1 (de) Lader mit zwei Einlässen und AGR-Durchflußregelung
DE102015208418A1 (de) R2S Aufladesystem mit Zwischenabgasnachbehandlung
EP2333289A2 (de) Brennkraftmaschinensystem und zugehöriges Betriebsverfahren
EP2151570A1 (de) Abgasrückführsystem für eine Verbrennungskraftmaschine
DE102014105181A1 (de) Bewahren von Verbrennungsstabilität unter Verdichterpumpbedingungen
DE102013201710B4 (de) Brennkraftmaschine mit Spenderzylinderkonzept
DE102007028493A1 (de) Brennkraftmaschine mit zweistufiger Turboaufladung und Oxidationskatalysator
DE102013008827A1 (de) Aufgeladene Brennkraftmaschine
DE102009051027B4 (de) Antriebsaggregat mit einer Dieselbrennkraftmaschine und Abgasrückführung sowie Verfahren zum Betreiben eines solchen Antriebsaggregats
DE202015103037U1 (de) R2S Aufladesystem mit Zwischenabgasnachbehandlung
WO2019144170A1 (de) Verfahren zur steuerung einer abgastemperatur einer brennkraftmaschine
DE102015206898A1 (de) Abgasrückführungsmodul mit regelbarem Bypass sowie Zylinderkopf mit einem solchen Abgasrückführungsmodul
DE102019120234B4 (de) Abgasrückführungsanordnung einer Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Abgasrückführungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15729466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502720

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15325578

Country of ref document: US

Ref document number: 112015003223

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015003223

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15729466

Country of ref document: EP

Kind code of ref document: A1