[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016004749A1 - Method for recognizing tool abrasion degree of large numerical control milling machine - Google Patents

Method for recognizing tool abrasion degree of large numerical control milling machine Download PDF

Info

Publication number
WO2016004749A1
WO2016004749A1 PCT/CN2015/070646 CN2015070646W WO2016004749A1 WO 2016004749 A1 WO2016004749 A1 WO 2016004749A1 CN 2015070646 W CN2015070646 W CN 2015070646W WO 2016004749 A1 WO2016004749 A1 WO 2016004749A1
Authority
WO
WIPO (PCT)
Prior art keywords
milling machine
wear
sample
numerical control
frequency domain
Prior art date
Application number
PCT/CN2015/070646
Other languages
French (fr)
Chinese (zh)
Inventor
周余庆
李峰平
薛伟
Original Assignee
温州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州大学 filed Critical 温州大学
Publication of WO2016004749A1 publication Critical patent/WO2016004749A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the invention belongs to the field of large-scale numerical control milling machines, and particularly relates to a method for identifying the wear degree of a large-scale numerical control milling machine tool.
  • CNC milling machines can also process more complex profiles with high production efficiency and are widely used in the mechanical manufacturing industry.
  • large-scale CNC milling machines such as portal milling machines
  • tool wear is the primary cause of milling machine failure, resulting in downtime of 20%-30% of the total downtime of the milling machine.
  • it will directly affect the product processing quality, machining accuracy and production efficiency, and will seriously lead to the failure of the milling machine function and shutdown, scrapping the workpiece, and even endangering personnel safety. Therefore, how to effectively identify the wear degree of large CNC milling machine tools and monitor the running state of the tool has become an urgent problem to be solved in the intelligent development of large CNC milling machines.
  • the invention aims at the above-mentioned deficiencies of the prior art, and provides a method for identifying the wear degree of a large-scale numerical control milling machine tool with higher accuracy.
  • a method for identifying the wear degree of a large-scale numerical control milling machine tool comprises the following steps:
  • the eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 );
  • x i ⁇ x i1, x i2, ..., x in ⁇
  • x ik is the k-th signal sample points x i
  • n is an amount of data of the sample points x i
  • x im max ⁇ x ik
  • k 1,...,n ⁇
  • P ik is the power spectrum of the frequency f ik
  • P im max ⁇ P ik
  • k 1,...,n ⁇
  • W' ⁇ k ⁇ k ⁇ k
  • ⁇ k is a unit eigenvector corresponding to the eigenvalue ⁇ k
  • ⁇ k (C i ) is the kth component of C i under the mapping ⁇ , and ⁇ jk is the jth component of ⁇ k ;
  • step (3) the tabu search algorithm is used to optimize the scale parameter ⁇ , which specifically includes the following steps:
  • the invention can effectively overcome the shortcomings of the missing samples of the large-scale numerical control milling machine tool, improve the recognition accuracy of the tool wear degree of the large-scale numerical control milling machine, and reduce the maintenance cost and time caused by the tool wear recognition not timely.
  • the invention provides a method for identifying the wear degree of a large-scale numerical control milling machine tool, comprising the following steps:
  • M is determined according to the maximum wear amount of the flank of the tool.
  • the eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 ).
  • x i ⁇ x i1, x i2, ..., x in ⁇
  • x ik is the k-th signal sample points x i
  • n is an amount of data of the sample points x i
  • x im max ⁇ x ik
  • k 1,...,n ⁇
  • P ik is the power spectrum of the frequency f ik
  • P im max ⁇ P ik
  • k 1,...,n ⁇
  • the so-called leave-one cross-validation method divides the sample set with N data into two parts: the training set and the verification set, each time selecting one sample data in the sample set as the verification set, and the remaining N-1 data as the training set pair verification. Set to make predictions. Repeatedly performed N times, each time selecting different sample data as a verification set, and summing each prediction error as an indicator of performance.
  • the tabu search algorithm is used to optimize the scale parameter ⁇ , which includes the following steps:
  • W' ⁇ k ⁇ k ⁇ k
  • ⁇ k is the kth largest eigenvalue of W'
  • 1 ⁇ 0 > ⁇ 1 > ⁇ 2 >...
  • ⁇ k is a unit eigenvector corresponding to the eigenvalue ⁇ k .
  • ⁇ k (C i ) is the kth component of C i under the map ⁇
  • ⁇ jk is the jth component of ⁇ k .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A method for recognizing the tool abrasion degree of a large numerical control milling machine. The method comprises: acquiring vibration time domain signals in the running state of the large numerical control milling machine; obtaining frequency domain distribution of the vibration signals by means of a fast Fourier transform; selecting multiple statistical characteristic parameters in the time domain and the frequency domain to perform diffusion mapping method-based dimensionality reduction of tool abrasion characteristic parameters; determining selection of scale parameters of diffusion mapping by using a leave-one-out cross validation method and an optimization search algorithm; and recognizing the abrasion degree of an unknown tool to be measured by combining with an Nystrom expansion and kernel regression algorithm. The disadvantage that a tool abrasion sample of a large numerical control milling machine is absent can be effectively overcome, the recognition accuracy of the tool abrasion degree of the large numerical control milling machine can be improved, and the maintenance cost and time caused by not-timely tool abrasion recognition can be reduced.

Description

一种大型数控铣床刀具磨损程度识别方法Method for identifying wear degree of large CNC milling machine tool 技术领域Technical field
本发明属于大型数控铣床领域,具体涉及一种大型数控铣床刀具磨损程度的识别方法。The invention belongs to the field of large-scale numerical control milling machines, and particularly relates to a method for identifying the wear degree of a large-scale numerical control milling machine tool.
背景技术Background technique
数控铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,生产效率较高,在机械制造行业中被广泛应用。特别是大型数控铣床(如龙门铣床),因其加工精度和生产效率均较高,常应用于大型工件的成批生产。In addition to milling planes, grooves, teeth, threads and spline shafts, CNC milling machines can also process more complex profiles with high production efficiency and are widely used in the mechanical manufacturing industry. In particular, large-scale CNC milling machines (such as portal milling machines) are often used for mass production of large workpieces due to their high machining accuracy and productivity.
刀具作为大型数控铣床最易损伤的部件,对其进行及时有效的状态识别与监测尤为重要。据统计,刀具磨损是引起铣床故障的首要因素,由此引起的停机时间占铣床总停机时间的20%-30%。而且,在铣削加工中,一旦刀具发生损伤故障而没有及时发现,会直接影响产品加工质量、加工精度和生产效率,严重的还将导致铣床功能失效及停机、工件报废、甚至危害人员安全。因此,如何有效地识别大型数控铣床刀具的磨损程度,监测刀具运行状态,已成为大型数控铣床智能化发展急需解决的问题。As the most vulnerable part of large CNC milling machines, tools are especially important for timely and effective status recognition and monitoring. According to statistics, tool wear is the primary cause of milling machine failure, resulting in downtime of 20%-30% of the total downtime of the milling machine. Moreover, in the milling process, once the tool is damaged and not found in time, it will directly affect the product processing quality, machining accuracy and production efficiency, and will seriously lead to the failure of the milling machine function and shutdown, scrapping the workpiece, and even endangering personnel safety. Therefore, how to effectively identify the wear degree of large CNC milling machine tools and monitor the running state of the tool has become an urgent problem to be solved in the intelligent development of large CNC milling machines.
近年来,国内外学者在铣床刀具磨损程度的识别上做了大量的研究工作,提出了诸多有效的高精度、高可靠性诊断方法,如时间序列分析、频谱分析、小波分析、神经网络、支持向量机、混合智能等,这为大型数控铣床刀具磨损程度的识别提供了一定的技术基础。然而,对于大型数控铣床而言,其刀具磨损程度的识别还面临着如下几个问题:(1)大型数控铣床的加工对象一般较大,使得不同刀具磨损程度下的数据采集比较困难,成本较高,训练样本数据少;(2)大多数研究方法需要人为确定关键参数的取值(如支持向量机的惩罚函数和尺度因子),主观性较强,在没有较多经验可供参考的大型数控铣床刀具磨损程度的识别上误诊率较高。In recent years, domestic and foreign scholars have done a lot of research work on the recognition of milling tool wear degree, and put forward many effective high-precision, high-reliability diagnostic methods, such as time series analysis, spectrum analysis, wavelet analysis, neural network, support. Vector machine, hybrid intelligence, etc., which provides a certain technical basis for the recognition of the degree of wear of large CNC milling machines. However, for large CNC milling machines, the identification of tool wear degree faces the following problems: (1) The processing objects of large CNC milling machines are generally large, making data collection under different tool wear levels more difficult and cost-effective. High, training sample data is small; (2) Most research methods need to manually determine the value of key parameters (such as the support vector machine's penalty function and scale factor), subjective, and large in the absence of more experience for reference. The misdiagnosis rate of the tool wear degree of CNC milling machine is higher.
发明内容Summary of the invention
本发明针对上述现有技术的不足,提供了一种准确性更高的大型数控铣床刀具磨损程度识别方法。The invention aims at the above-mentioned deficiencies of the prior art, and provides a method for identifying the wear degree of a large-scale numerical control milling machine tool with higher accuracy.
本发明是通过如下技术方案实现的: The invention is achieved by the following technical solutions:
一种大型数控铣床刀具磨损程度识别方法,包括以下步骤:A method for identifying the wear degree of a large-scale numerical control milling machine tool comprises the following steps:
(1)采集大型数控铣床在M种刀具磨损状态下的振动时域信号;从每种磨损状态的振动时域信号中截取连续的采样数为t的不重叠的S组信号;并利用快速傅里叶变换将每组时域信号的波形转换成频域分布;其中M、t和S均为大于1的正整数;(1) Acquiring the vibration time domain signal of the large CNC milling machine in the wear state of M kinds of tools; intercepting the continuous non-overlapping S group signals with the number of samples t from the vibration time domain signal of each wear state; The Fourier transform converts the waveform of each set of time domain signals into a frequency domain distribution; wherein M, t, and S are positive integers greater than one;
(2)分别计算每种磨损状态下S组信号数据的8个时频域无量纲统计特征参数,组合成样本数据集{(Ci,mi)}(i=1,2,…,N,N=M×S),其中Ci={ci1,ci2,…,ci8}为第i个样本的特征参数集,mi为Ci对应的刀具后刀面最大磨损量;(2) Calculate the 8 time-frequency domain dimensionless statistical feature parameters of the S group signal data in each wear state, and combine them into the sample data set {(C i , m i )} (i=1, 2,...,N , N=M×S), where C i ={c i1 ,c i2 ,...,c i8 } is the characteristic parameter set of the i-th sample, and m i is the maximum wear amount of the tool flank face corresponding to C i ;
其中,所述8个时频域无量纲统计特征参数,包括4个时域无量纲统计参数(Ci1、Ci2、Ci3、Ci4)和4个频域无量纲统计参数(Ci5、Ci6、Ci7、Ci8);设第i个样本信号数据为:xi={xi1,xi2,...,xin},经过FFT变换后的频域信号数据为fi={fi1,fi2,...,fin},
Figure PCTCN2015070646-appb-000001
Figure PCTCN2015070646-appb-000002
Figure PCTCN2015070646-appb-000003
The eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 ); Let the i-th sample signal data be: x i ={x i1, x i2, ..., x in }, and the frequency domain signal data after FFT transformation is f i = {f i1, f i2, ..., f in },
Figure PCTCN2015070646-appb-000001
Figure PCTCN2015070646-appb-000002
Figure PCTCN2015070646-appb-000003
xik为样本点xi的第k个信号,n为样本点xi的数据量,
Figure PCTCN2015070646-appb-000004
Figure PCTCN2015070646-appb-000005
xi-m=max{xik|k=1,…,n},
Figure PCTCN2015070646-appb-000006
Pik为频率fik的功率谱,Pi-m=max{Pik|k=1,…,n},
Figure PCTCN2015070646-appb-000007
Figure PCTCN2015070646-appb-000008
x ik is the k-th signal sample points x i, n is an amount of data of the sample points x i,
Figure PCTCN2015070646-appb-000004
Figure PCTCN2015070646-appb-000005
x im =max{x ik |k=1,...,n},
Figure PCTCN2015070646-appb-000006
P ik is the power spectrum of the frequency f ik , P im =max{P ik |k=1,...,n},
Figure PCTCN2015070646-appb-000007
Figure PCTCN2015070646-appb-000008
(3)结合留一交叉验证建立尺度参数ε的数学优化模型,根据样本数据集Ω,采用优化搜索算法对尺度参数ε进行寻优,找出使得目标函数取值最小的ε取值;(3) Combining the leave-one-cross-validation to establish the mathematical optimization model of the scale parameter ε, according to the sample data set Ω, the optimization search algorithm is used to optimize the scale parameter ε, and find the value of ε which makes the objective function the smallest value;
(4)根据扩散映射(DM)方法的降维原理,构造样本数据集的邻接矩阵W={wij}N×N:wij=exp(-||Ci-Cj||2/ε);(4) According to the dimension reduction principle of the diffusion mapping (DM) method, construct the adjacency matrix of the sample data set W={w ij } N×N :w ij =exp(-||C i -C j || 2 /ε );
其中
Figure PCTCN2015070646-appb-000009
为Ci和Cj的欧氏距离;然后,对W按行进行标准化处理,令W′={wij′},
Figure PCTCN2015070646-appb-000010
among them
Figure PCTCN2015070646-appb-000009
Is the Euclidean distance of C i and C j ; then, normalize W by line, let W' = {w ij '},
Figure PCTCN2015070646-appb-000010
(5)求解W′的特征值和特征向量:W′φk=λkφk,λk为W′的第k个最大特征值,且有1=λ012>…,φk为特征值λk对应的单位特征向量;根据预先设定的降维维数K选取特征值:Λ={λ12,…,λK},对应的特征向量构成映射矩阵Ω={φ12,…,φK}N×K(5) Solving the eigenvalues and eigenvectors of W': W'φ k = λ k φ k , λ k is the kth largest eigenvalue of W', and there is 1 = λ 0 > λ 1 > λ 2 >... , φ k is a unit eigenvector corresponding to the eigenvalue λ k ; the eigenvalue is selected according to a preset dimension reduction dimension K: Λ={λ 1 , λ 2 , . . . , λ K }, and the corresponding eigenvectors constitute a mapping matrix Ω={φ 1 , φ 2 , . . . , φ K } N×K ;
(6)计算各样本点在映射矩阵Ω下的映射坐标:(6) Calculate the mapping coordinates of each sample point under the mapping matrix Ω:
φ(Ci)={φk(Ci),k=1,2,…,K},
Figure PCTCN2015070646-appb-000011
φ(C i )={φ k (C i ),k=1,2,...,K},
Figure PCTCN2015070646-appb-000011
φk(Ci)为Ci在映射Ω下的第k个分量,φjk为φk的第j个分量;φ k (C i ) is the kth component of C i under the mapping Ω, and φ jk is the jth component of φ k ;
(7)每隔固定时间间隔采集一次大型数控铣床在运行状态下的振动时域信号,构成待诊断信号X;并将时域波形转换成频域分布;然后,计算待诊断信号数据的8个时频域统计特征参数C(X)={CX1,CX2,…,CX8};(7) Collecting the vibration time domain signal of the large-scale CNC milling machine in the running state at regular intervals, forming the signal X to be diagnosed; and converting the time domain waveform into the frequency domain distribution; then, calculating 8 data of the signal to be diagnosed Time-frequency domain statistical feature parameter C(X)={C X1 , C X2 ,...,C X8 };
(8)对X进行Nystrom扩展,计算X在映射矩阵Ω下的映射坐标:(8) Perform Nystrom expansion on X and calculate the mapping coordinates of X under the mapping matrix Ω:
φ(X)={φk(X),k=1,2,…,K},
Figure PCTCN2015070646-appb-000012
φ(X)={φ k (X),k=1,2,...,K},
Figure PCTCN2015070646-appb-000012
(9)对X进行核回归分析,得到对应的磨损程度值,即后刀面最大磨损量 估计值
Figure PCTCN2015070646-appb-000013
为:
(9) Perform nuclear regression analysis on X to obtain the corresponding wear degree value, that is, the maximum wear amount of the flank face.
Figure PCTCN2015070646-appb-000013
for:
Figure PCTCN2015070646-appb-000014
Figure PCTCN2015070646-appb-000014
优选的,步骤(3)中采用禁忌搜索算法对尺度参数ε进行寻优,具体包括如下步骤:Preferably, in step (3), the tabu search algorithm is used to optimize the scale parameter ε, which specifically includes the following steps:
(3.1)确定包含尺度参数ε的核函数为:(3.1) Determine the kernel function containing the scale parameter ε as:
Figure PCTCN2015070646-appb-000015
其中Ci和Cj为样本点;
Figure PCTCN2015070646-appb-000015
Where C i and C j are sample points;
(3.2)采用留一交叉验证法,计算各样本点的磨损程度估计值:(3.2) Calculate the estimated wear level of each sample point by using the leave-one cross-validation method:
Figure PCTCN2015070646-appb-000016
Figure PCTCN2015070646-appb-000016
(3.3)建立关于尺度参数ε的数学优化模型:(3.3) Establish a mathematical optimization model for the scale parameter ε:
Figure PCTCN2015070646-appb-000017
Figure PCTCN2015070646-appb-000017
(3.4)采用禁忌搜索对上述数学模型进行优化求解,得出使得预测误差最小的尺度参数ε取值。(3.4) Using the tabu search to optimize the above mathematical model, the value of the scale parameter ε which minimizes the prediction error is obtained.
本发明具有如下有益效果:The invention has the following beneficial effects:
(1)目前对数控铣床刀具的磨损研究,集中于对中小型铣床的刀具磨损研究,因为中小型铣床刀具磨损样本数据比较容易收集,而对于大型数控铣床刀具的磨损识别研究很少。同时,现有的大多数故障诊断方法是在样本数据量大的前提下开展的,在小样本情形下,这些方法的训练效果很差,对刀具的磨损识别无能为力。本发明的提出可以克服上述弊端,本发明能够小样本情形下有效识别大型数控铣床刀具的磨损程度。(1) At present, the research on the wear of CNC milling cutters focuses on the tool wear of small and medium-sized milling machines. Because the wear and tear sample data of small and medium-sized milling machines are easier to collect, there is little research on the wear identification of large CNC milling tools. At the same time, most of the existing fault diagnosis methods are carried out under the premise of large sample data. In the case of small samples, the training effect of these methods is very poor, and the wear identification of the tools is powerless. The present invention can overcome the above drawbacks, and the invention can effectively identify the wear degree of a large numerical control milling machine tool in a small sample situation.
(2)目前,对刀具磨损程度的识别研究大多只考虑对三种磨损状态(初期磨损、中度磨损和严重磨损)的分类上,没有研究刀具磨损程度的渐进式非线性演变规律,本发明通过建立刀具磨损程度的回归模型,可有效地揭示大型数控铣床刀具磨损程度的演变规律。(2) At present, most of the research on the recognition of tool wear degree only considers the classification of three wear states (initial wear, moderate wear and severe wear), and there is no progressive nonlinear evolution law to study the degree of tool wear. The present invention By establishing a regression model of the degree of tool wear, the evolution of the degree of wear of large CNC milling tools can be effectively revealed.
(3)本发明可以有效克服大型数控铣床刀具磨损样本缺失之缺点,提高大型数控铣床刀具磨损程度的识别精度,减少因刀具磨损识别不及时造成的维修成本与时间。 (3) The invention can effectively overcome the shortcomings of the missing samples of the large-scale numerical control milling machine tool, improve the recognition accuracy of the tool wear degree of the large-scale numerical control milling machine, and reduce the maintenance cost and time caused by the tool wear recognition not timely.
具体实施方式detailed description
本发明提供了一种大型数控铣床刀具磨损程度识别方法,包括以下步骤:The invention provides a method for identifying the wear degree of a large-scale numerical control milling machine tool, comprising the following steps:
(1)采集大型数控铣床(一般情况下多为龙门铣床)在M种刀具磨损状态下的振动时域信号;(1) Acquiring the vibration time domain signal of a large CNC milling machine (generally a gantry milling machine in general) in the wear state of M kinds of tools;
其中,M根据刀具后刀面最大磨损量来确定。本实施例中取M=5,其对应的5种刀具磨损状态,根据后刀面最大磨损量划分的不同分为正常状态、轻微磨损、中度磨损、较大磨损、急剧磨损,如表1所示。Among them, M is determined according to the maximum wear amount of the flank of the tool. In this embodiment, M=5 is taken, and the corresponding five tool wear states are divided into normal state, slight wear, moderate wear, large wear and sharp wear according to the maximum wear amount of the flank face, as shown in Table 1. Shown.
表1后刀面最大磨损量与道具磨损状态对应表Table 1 Table of the maximum wear amount of the flank face and the wear state of the props
Figure PCTCN2015070646-appb-000018
Figure PCTCN2015070646-appb-000018
从每种磨损状态的振动时域信号中截取连续的采样数为t(t取值为采样频率的倍数,本实施例中取t=4096)的不重叠的S(视数据量而定,可取5~10)组信号;并利用快速傅里叶变换将每组时域信号的波形转换成频域分布;其中M、t和S均为大于1的正整数;From the vibration time domain signal of each wear state, the number of consecutive samples is t (t is a multiple of the sampling frequency, t=4096 in this embodiment), and the non-overlapping S (depending on the amount of data, may be taken 5 to 10) group signals; and transforming the waveform of each group of time domain signals into a frequency domain distribution by using a fast Fourier transform; wherein M, t, and S are positive integers greater than one;
(2)分别计算每种磨损状态下S组信号数据的8个时频域无量纲统计特征参数,组合成样本数据集{(Ci,mi)}(i=1,2,…,N,N=M×S),其中Ci={ci1,ci2,…,ci8}为第i个样本的特征参数集,mi为Ci对应的刀具后刀面最大磨损量;(2) Calculate the 8 time-frequency domain dimensionless statistical feature parameters of the S group signal data in each wear state, and combine them into the sample data set {(C i , m i )} (i=1, 2,...,N , N=M×S), where C i ={c i1 ,c i2 ,...,c i8 } is the characteristic parameter set of the i-th sample, and m i is the maximum wear amount of the tool flank face corresponding to C i ;
其中,所述8个时频域无量纲统计特征参数,包括4个时域无量纲统计参数(Ci1、Ci2、Ci3、Ci4)和4个频域无量纲统计参数(Ci5、Ci6、Ci7、Ci8)。设第i个样本信号数据为:xi={xi1,xi2,...,xin},经过FFT变换后的频域信号数据为fi={fi1,fi2,...,fin},则:The eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 ). Let the ith sample signal data be: x i ={x i1, x i2, ..., x in }, and the frequency domain signal data after FFT transformation is f i ={f i1, f i2, ... , f in }, then:
波形指标:
Figure PCTCN2015070646-appb-000019
峰值:
Figure PCTCN2015070646-appb-000020
Waveform indicators:
Figure PCTCN2015070646-appb-000019
Peak:
Figure PCTCN2015070646-appb-000020
偏斜度:
Figure PCTCN2015070646-appb-000021
峭度:
Figure PCTCN2015070646-appb-000022
Skewness:
Figure PCTCN2015070646-appb-000021
Kurtosis:
Figure PCTCN2015070646-appb-000022
稳定率:
Figure PCTCN2015070646-appb-000023
波高率:
Figure PCTCN2015070646-appb-000024
Stability rate:
Figure PCTCN2015070646-appb-000023
Wave height rate:
Figure PCTCN2015070646-appb-000024
功率谱标准差:
Figure PCTCN2015070646-appb-000025
频率高低比:
Figure PCTCN2015070646-appb-000026
Power spectrum standard deviation:
Figure PCTCN2015070646-appb-000025
Frequency ratio:
Figure PCTCN2015070646-appb-000026
其中,xik为样本点xi的第k个信号,n为样本点xi的数据量,
Figure PCTCN2015070646-appb-000027
Figure PCTCN2015070646-appb-000028
xi-m=max{xik|k=1,…,n},
Figure PCTCN2015070646-appb-000029
Pik为频率fik的功率谱,Pi-m=max{Pik|k=1,…,n},
Figure PCTCN2015070646-appb-000030
Figure PCTCN2015070646-appb-000031
Wherein, x ik is the k-th signal sample points x i, n is an amount of data of the sample points x i,
Figure PCTCN2015070646-appb-000027
Figure PCTCN2015070646-appb-000028
x im =max{x ik |k=1,...,n},
Figure PCTCN2015070646-appb-000029
P ik is the power spectrum of the frequency f ik , P im =max{P ik |k=1,...,n},
Figure PCTCN2015070646-appb-000030
Figure PCTCN2015070646-appb-000031
(3)结合留一交叉验证建立尺度参数ε的数学优化模型,根据样本数据集Ω,采用优化搜索算法(如禁忌搜索、最速下降法、黄金分割法、二次插值法等)对尺度参数ε进行寻优,找出使得目标函数取值最小的ε取值。(3) Combining the leave-one-crossing verification to establish the mathematical optimization model of the scale parameter ε, according to the sample data set Ω, using the optimized search algorithm (such as tabu search, steepest descent method, golden section method, quadratic interpolation method, etc.) on the scale parameter ε Perform optimization to find the value of ε that minimizes the value of the objective function.
所谓留一交叉验证,就是将具有N个数据的样本集分为两部分:训练集和验证集,每次选取样本集中的一个样本数据作为验证集,剩余N-1个数据作为训练集对验证集进行预测。重复执行N次,每次选取不同的样本数据作为验证集,将每次的预测误差求和作为性能优劣的指标。The so-called leave-one cross-validation method divides the sample set with N data into two parts: the training set and the verification set, each time selecting one sample data in the sample set as the verification set, and the remaining N-1 data as the training set pair verification. Set to make predictions. Repeatedly performed N times, each time selecting different sample data as a verification set, and summing each prediction error as an indicator of performance.
采用禁忌搜索算法对尺度参数ε进行寻优,具体包括如下步骤:The tabu search algorithm is used to optimize the scale parameter ε, which includes the following steps:
(3.1)确定包含尺度参数ε的核函数为: (3.1) Determine the kernel function containing the scale parameter ε as:
Figure PCTCN2015070646-appb-000032
其中Ci和Cj为样本点;
Figure PCTCN2015070646-appb-000032
Where C i and C j are sample points;
(3.2)采用留一交叉验证法,计算各样本点的磨损程度估计值:(3.2) Calculate the estimated wear level of each sample point by using the leave-one cross-validation method:
Figure PCTCN2015070646-appb-000033
Figure PCTCN2015070646-appb-000033
(3.3)建立关于尺度参数ε的数学优化模型:(3.3) Establish a mathematical optimization model for the scale parameter ε:
Figure PCTCN2015070646-appb-000034
Figure PCTCN2015070646-appb-000034
s.t.ε∈(0,1)S.t.ε∈(0,1)
(3.4)采用禁忌搜索对上述数学模型进行优化求解,得出使得预测误差最小的尺度参数ε取值。(3.4) Using the tabu search to optimize the above mathematical model, the value of the scale parameter ε which minimizes the prediction error is obtained.
(4)根据扩散映射(DM)方法的降维原理,构造样本数据集的邻接矩阵W={wij}N×N:wij=exp(-||Ci-Cj||2/ε);(4) According to the dimension reduction principle of the diffusion mapping (DM) method, construct the adjacency matrix of the sample data set W={w ij } N×N :w ij =exp(-||C i -C j || 2 /ε );
其中
Figure PCTCN2015070646-appb-000035
为Ci和Cj的欧氏距离。然后,对W按行进行标准化处理,令W′={wij′},
Figure PCTCN2015070646-appb-000036
among them
Figure PCTCN2015070646-appb-000035
The Euclidean distance between C i and C j . Then, normalize W by line, let W'={w ij '},
Figure PCTCN2015070646-appb-000036
(5)求解W′的特征值和特征向量:W′φk=λkφk,λk为W′的第k个最大特征值,且有1=λ012>…,φk为特征值λk对应的单位特征向量。(5) Solving the eigenvalues and eigenvectors of W': W'φ k = λ k φ k , λ k is the kth largest eigenvalue of W', and there is 1 = λ 0 > λ 1 > λ 2 >... , φ k is a unit eigenvector corresponding to the eigenvalue λ k .
事先确定降维维数为K(一般取K=2或3),则选取前K个最大特征值,考虑到W′的最大特征值λ0为平凡特征值(=1)应舍弃,故选取特征值:Λ={λ12,…,λK},对应的特征向量构成映射矩阵Ω={φ12,…,φK}N×KIf it is determined in advance that the dimensionality reduction dimension is K (generally K=2 or 3), the first K maximum eigenvalues are selected. Considering that the maximum eigenvalue λ 0 of W' is a trivial eigenvalue (=1), it should be discarded. The eigenvalues: Λ = {λ 1 , λ 2 , ..., λ K }, the corresponding eigenvectors constitute the mapping matrix Ω = {φ 1 , φ 2 , ..., φ K } N × K .
(6)计算各样本点在映射矩阵Ω下的映射坐标:(6) Calculate the mapping coordinates of each sample point under the mapping matrix Ω:
φ(Ci)={φk(Ci),k=1,2,…,K},
Figure PCTCN2015070646-appb-000037
φ(C i )={φ k (C i ),k=1,2,...,K},
Figure PCTCN2015070646-appb-000037
φk(Ci)为Ci在映射Ω下的第k个分量,φjk为φk的第j个分量。φ k (C i ) is the kth component of C i under the map Ω, and φ jk is the jth component of φ k .
(7)开始识别待测铣床刀具的磨损状态,每隔固定时间间隔采集一次大型数控铣床在运行状态下(或称为待测状态下)的振动时域信号(采样数为t),构 成待诊断信号X;并将时域波形转换成频域分布。然后,计算待诊断信号数据的8个时频域统计特征参数C(X)={CX1,CX2,…,CX8};(7) Start to identify the wear state of the milling tool to be tested, and collect the vibration time domain signal (the number of samples is t) of the large CNC milling machine in the running state (or called the state to be tested) at regular intervals. Diagnose signal X; and convert the time domain waveform into a frequency domain distribution. Then, calculating eight time-frequency domain statistical feature parameters C(X)={C X1 , C X2 , . . . , C X8 } of the signal data to be diagnosed;
(8)对X进行Nystrom扩展,计算X在映射矩阵Ω下的映射坐标:(8) Perform Nystrom expansion on X and calculate the mapping coordinates of X under the mapping matrix Ω:
φ(X)={φk(X),k=1,2,…,K},
Figure PCTCN2015070646-appb-000038
φ(X)={φ k (X),k=1,2,...,K},
Figure PCTCN2015070646-appb-000038
(9)对X进行核回归分析,得到对应的磨损程度值,即后刀面最大磨损量估计值
Figure PCTCN2015070646-appb-000039
为:
(9) Perform nuclear regression analysis on X to obtain the corresponding wear degree value, that is, the estimated maximum wear amount of the flank face
Figure PCTCN2015070646-appb-000039
for:
Figure PCTCN2015070646-appb-000040
Figure PCTCN2015070646-appb-000040
本发明可改变为多种方式对本领域的技术人员是显而易见的,这样的改变不认为脱离本发明的范围。所有这样的对所述领域的技术人员显而易见的修改,将包括在本权利要求的范围之内。 The invention may be varied in many ways and will be apparent to those skilled in the art, and such changes are not considered to be within the scope of the invention. All such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the appended claims.

Claims (2)

  1. 一种大型数控铣床刀具磨损程度识别方法,其特征在于,包括以下步骤:A method for identifying the wear degree of a large-scale numerical control milling machine tool, comprising the following steps:
    (1)采集大型数控铣床在M种刀具磨损状态下的振动时域信号;从每种磨损状态的振动时域信号中截取连续的采样数为t的不重叠的S组信号;并利用快速傅里叶变换将每组时域信号的波形转换成频域分布;其中M、t和S均为大于1的正整数;(1) Acquiring the vibration time domain signal of the large CNC milling machine in the wear state of M kinds of tools; intercepting the continuous non-overlapping S group signals with the number of samples t from the vibration time domain signal of each wear state; The Fourier transform converts the waveform of each set of time domain signals into a frequency domain distribution; wherein M, t, and S are positive integers greater than one;
    (2)分别计算每种磨损状态下S组信号数据的8个时频域无量纲统计特征参数,组合成样本数据集{(Ci,mi)}(i=1,2,…,N,N=M×S),其中Ci={ci1,ci2,…,ci8}为第i个样本的特征参数集,mi为Ci对应的刀具后刀面最大磨损量;(2) Calculate the 8 time-frequency domain dimensionless statistical feature parameters of the S group signal data in each wear state, and combine them into the sample data set {(C i , m i )} (i=1, 2,...,N , N=M×S), where C i ={c i1 ,c i2 ,...,c i8 } is the characteristic parameter set of the i-th sample, and m i is the maximum wear amount of the tool flank face corresponding to C i ;
    其中,所述8个时频域无量纲统计特征参数,包括4个时域无量纲统计参数(Ci1、Ci2、Ci3、Ci4)和4个频域无量纲统计参数(Ci5、Ci6、Ci7、Ci8);设第i个样本信号数据为:xi={xi1,xi2,...,xin},经过FFT变换后的频域信号数据为fi={fi1,fi2,...,fin},
    Figure PCTCN2015070646-appb-100001
    Figure PCTCN2015070646-appb-100002
    Figure PCTCN2015070646-appb-100003
    Figure PCTCN2015070646-appb-100004
    Figure PCTCN2015070646-appb-100005
    Figure PCTCN2015070646-appb-100006
    Figure PCTCN2015070646-appb-100007
    Figure PCTCN2015070646-appb-100008
    The eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 ); Let the i-th sample signal data be: x i ={x i1, x i2, ..., x in }, and the frequency domain signal data after FFT transformation is f i = {f i1, f i2, ..., f in },
    Figure PCTCN2015070646-appb-100001
    Figure PCTCN2015070646-appb-100002
    Figure PCTCN2015070646-appb-100003
    Figure PCTCN2015070646-appb-100004
    Figure PCTCN2015070646-appb-100005
    Figure PCTCN2015070646-appb-100006
    Figure PCTCN2015070646-appb-100007
    Figure PCTCN2015070646-appb-100008
    xik为样本点xi的第k个信号,n为样本点xi的数据量,
    Figure PCTCN2015070646-appb-100009
    Figure PCTCN2015070646-appb-100010
    xi-m=max{xik|k=1,…,n},
    Figure PCTCN2015070646-appb-100011
    Pik为频率fik的功率谱,Pi-m=max{Pik|k=1,…,n},
    Figure PCTCN2015070646-appb-100012
    Figure PCTCN2015070646-appb-100013
    Figure PCTCN2015070646-appb-100014
    x ik is the k-th signal sample points x i, n is an amount of data of the sample points x i,
    Figure PCTCN2015070646-appb-100009
    Figure PCTCN2015070646-appb-100010
    x im =max{x ik |k=1,...,n},
    Figure PCTCN2015070646-appb-100011
    P ik is the power spectrum of the frequency f ik , P im =max{P ik |k=1,...,n},
    Figure PCTCN2015070646-appb-100012
    Figure PCTCN2015070646-appb-100013
    Figure PCTCN2015070646-appb-100014
    (3)结合留一交叉验证建立尺度参数ε的数学优化模型,根据样本数据集Ω,采用优化搜索算法对尺度参数ε进行寻优,找出使得目标函数取值最小的ε取值;(3) Combining the leave-one-cross-validation to establish the mathematical optimization model of the scale parameter ε, according to the sample data set Ω, the optimization search algorithm is used to optimize the scale parameter ε, and find the value of ε which makes the objective function the smallest value;
    (4)根据扩散映射(DM)方法的降维原理,构造样本数据集的邻接矩阵W={wij}N×N:wij=exp(-||Ci-Cj||2/ε);(4) According to the dimension reduction principle of the diffusion mapping (DM) method, construct the adjacency matrix of the sample data set W={w ij } N×N :w ij =exp(-||C i -C j || 2 /ε );
    其中
    Figure PCTCN2015070646-appb-100015
    为Ci和Cj的欧氏距离;然后,对W按行进行标准化处理,令W′={w′ij},
    Figure PCTCN2015070646-appb-100016
    among them
    Figure PCTCN2015070646-appb-100015
    Is the Euclidean distance of C i and C j ; then, normalize W by line, let W' = {w' ij },
    Figure PCTCN2015070646-appb-100016
    (5)求解W′的特征值和特征向量:W′φk=λkφk,λk为W′的第k个最大特征值,且有1=λ012>…,φk为特征值λk对应的单位特征向量;根据预先设定的降维维数K选取特征值:Λ={λ12,…,λK},对应的特征向量构成映射矩阵Ω={φ12,…,φK}N×K(5) Solving the eigenvalues and eigenvectors of W': W'φ k = λ k φ k , λ k is the kth largest eigenvalue of W', and there is 1 = λ 0 > λ 1 > λ 2 >... , φ k is a unit eigenvector corresponding to the eigenvalue λ k ; the eigenvalue is selected according to a preset dimension reduction dimension K: Λ={λ 1 , λ 2 , . . . , λ K }, and the corresponding eigenvectors constitute a mapping matrix Ω={φ 1 , φ 2 , . . . , φ K } N×K ;
    (6)计算各样本点在映射矩阵Ω下的映射坐标:(6) Calculate the mapping coordinates of each sample point under the mapping matrix Ω:
    φ(Ci)={φk(Ci),k=1,2,…,K},
    Figure PCTCN2015070646-appb-100017
    φ(C i )={φ k (C i ),k=1,2,...,K},
    Figure PCTCN2015070646-appb-100017
    φk(Ci)为Ci在映射Ω下的第k个分量,φjk为φk的第j个分量;φ k (C i ) is the kth component of C i under the mapping Ω, and φ jk is the jth component of φ k ;
    (7)每隔固定时间间隔采集一次大型数控铣床在运行状态下的振动时域信号,构成待诊断信号X;并将时域波形转换成频域分布;然后,计算待诊断信号数据的8个时频域统计特征参数C(X)={CX1,CX2,…,CX8};(7) Collecting the vibration time domain signal of the large-scale CNC milling machine in the running state at regular intervals, forming the signal X to be diagnosed; and converting the time domain waveform into the frequency domain distribution; then, calculating 8 data of the signal to be diagnosed Time-frequency domain statistical feature parameter C(X)={C X1 , C X2 ,...,C X8 };
    (8)对X进行Nystrom扩展,计算X在映射矩阵Ω下的映射坐标:(8) Perform Nystrom expansion on X and calculate the mapping coordinates of X under the mapping matrix Ω:
    φ(X)={φk(X),k=1,2,…,K},
    Figure PCTCN2015070646-appb-100018
    φ(X)={φ k (X),k=1,2,...,K},
    Figure PCTCN2015070646-appb-100018
    (9)对X进行核回归分析,得到对应的磨损程度值,即后刀面最大磨损量 估计值
    Figure PCTCN2015070646-appb-100019
    为:
    (9) Perform nuclear regression analysis on X to obtain the corresponding wear degree value, that is, the maximum wear amount of the flank face.
    Figure PCTCN2015070646-appb-100019
    for:
    Figure PCTCN2015070646-appb-100020
    Figure PCTCN2015070646-appb-100020
  2. 根据权利要求1所述的大型数控铣床刀具磨损程度识别方法,其特征在于,步骤(3)中采用禁忌搜索算法对尺度参数ε进行寻优,具体包括如下步骤:The method for identifying the wear degree of a large-scale numerical control milling machine according to claim 1, wherein the step (3) uses a tabu search algorithm to optimize the scale parameter ε, and specifically includes the following steps:
    (3.1)确定包含尺度参数ε的核函数为:(3.1) Determine the kernel function containing the scale parameter ε as:
    Figure PCTCN2015070646-appb-100021
    其中Ci和Cj为样本点;
    Figure PCTCN2015070646-appb-100021
    Where C i and C j are sample points;
    (3.2)采用留一交叉验证法,计算各样本点的磨损程度估计值:(3.2) Calculate the estimated wear level of each sample point by using the leave-one cross-validation method:
    Figure PCTCN2015070646-appb-100022
    Figure PCTCN2015070646-appb-100022
    (3.3)建立关于尺度参数ε的数学优化模型:(3.3) Establish a mathematical optimization model for the scale parameter ε:
    Figure PCTCN2015070646-appb-100023
    Figure PCTCN2015070646-appb-100023
    (3.4)采用禁忌搜索对上述数学模型进行优化求解,得出使得预测误差最小的尺度参数ε取值。 (3.4) Using the tabu search to optimize the above mathematical model, the value of the scale parameter ε which minimizes the prediction error is obtained.
PCT/CN2015/070646 2014-07-07 2015-01-14 Method for recognizing tool abrasion degree of large numerical control milling machine WO2016004749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410321361.6 2014-07-07
CN201410321361.6A CN104050340B (en) 2014-07-07 2014-07-07 Method for recognizing tool abrasion degree of large numerical control milling machine

Publications (1)

Publication Number Publication Date
WO2016004749A1 true WO2016004749A1 (en) 2016-01-14

Family

ID=51503168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070646 WO2016004749A1 (en) 2014-07-07 2015-01-14 Method for recognizing tool abrasion degree of large numerical control milling machine

Country Status (2)

Country Link
CN (1) CN104050340B (en)
WO (1) WO2016004749A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109571141A (en) * 2018-11-01 2019-04-05 北京理工大学 A kind of Monitoring Tool Wear States in Turning based on machine learning
CN110059374A (en) * 2019-03-29 2019-07-26 西安交通大学 A kind of milling force modeling method beated and worn based on cutter
CN111451563A (en) * 2020-04-02 2020-07-28 江苏贵钰航空工业有限公司 Method for prolonging service life of numerical control milling machine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104050340B (en) * 2014-07-07 2017-02-08 温州大学 Method for recognizing tool abrasion degree of large numerical control milling machine
CN106842922B (en) * 2017-01-14 2020-07-17 合肥工业大学 Numerical control machining error optimization method
CN107253094B (en) * 2017-05-26 2018-12-28 温州大学 A kind of tool condition monitoring method based on stable state subspace analysis multidimensional signal
CN107363645B (en) * 2017-08-21 2019-03-01 温州大学激光与光电智能制造研究院 Milling machine process tool abrasion prediction technique based on power detection
CN108747590A (en) * 2018-06-28 2018-11-06 哈尔滨理工大学 A kind of tool wear measurement method based on rumble spectrum and neural network
CN109389039A (en) * 2018-09-04 2019-02-26 温州大学激光与光电智能制造研究院 A kind of optimization core extreme learning machine on-line monitoring cutting-tool wear state method and system
CN109382702A (en) * 2018-11-06 2019-02-26 重庆大学 A kind of chain digital control gear hobbing machine rolling blade losing efficacy form automatic identifying method
CN110411724B (en) * 2019-07-30 2021-07-06 广东工业大学 Rotary machine fault diagnosis method, device and system and readable storage medium
CN110716494B (en) * 2019-11-13 2020-11-17 中国航发动力股份有限公司 Tool parameter identification method and cycloid machining parameter optimization method based on tool parameters
CN110837130B (en) * 2019-11-22 2021-08-17 中国电子科技集团公司第四十一研究所 Target automatic detection algorithm based on millimeter wave/terahertz wave radiation
CN111975453B (en) * 2020-07-08 2022-03-08 温州大学 Numerical simulation driven machining process cutter state monitoring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177847A (en) * 1984-02-23 1985-09-11 Mitsubishi Heavy Ind Ltd Tool breakage detecting apparatus
US20090129882A1 (en) * 2007-11-15 2009-05-21 D4D Technologies, Llc Methods, Systems, and Devices for Monitoring Tools in a Dental Milling Machine
CN102073300A (en) * 2010-12-28 2011-05-25 华中科技大学 Tool wear monitoring system capable of realizing self-learning in numerical control machining state
CN102145469A (en) * 2011-04-29 2011-08-10 深圳市平进股份有限公司 Method and device for detecting abrasion of cutting tool during work of numerical control machine
CN103324139A (en) * 2013-06-07 2013-09-25 华中科技大学 Numerical control machine tool milling tool breakage monitoring method
CN103674511A (en) * 2013-03-18 2014-03-26 北京航空航天大学 Mechanical wearing part performance assessment and prediction method based on EMD (empirical mode decomposition)-SVD (singular value decomposition) and MTS (Mahalanobis-Taguchi system)
CN104050340A (en) * 2014-07-07 2014-09-17 温州大学 Method for recognizing tool abrasion degree of large numerical control milling machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175687B (en) * 2013-03-07 2015-07-08 温州大学 Fault location method for sliding-tooth reducer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177847A (en) * 1984-02-23 1985-09-11 Mitsubishi Heavy Ind Ltd Tool breakage detecting apparatus
US20090129882A1 (en) * 2007-11-15 2009-05-21 D4D Technologies, Llc Methods, Systems, and Devices for Monitoring Tools in a Dental Milling Machine
CN102073300A (en) * 2010-12-28 2011-05-25 华中科技大学 Tool wear monitoring system capable of realizing self-learning in numerical control machining state
CN102145469A (en) * 2011-04-29 2011-08-10 深圳市平进股份有限公司 Method and device for detecting abrasion of cutting tool during work of numerical control machine
CN103674511A (en) * 2013-03-18 2014-03-26 北京航空航天大学 Mechanical wearing part performance assessment and prediction method based on EMD (empirical mode decomposition)-SVD (singular value decomposition) and MTS (Mahalanobis-Taguchi system)
CN103324139A (en) * 2013-06-07 2013-09-25 华中科技大学 Numerical control machine tool milling tool breakage monitoring method
CN104050340A (en) * 2014-07-07 2014-09-17 温州大学 Method for recognizing tool abrasion degree of large numerical control milling machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109571141A (en) * 2018-11-01 2019-04-05 北京理工大学 A kind of Monitoring Tool Wear States in Turning based on machine learning
CN110059374A (en) * 2019-03-29 2019-07-26 西安交通大学 A kind of milling force modeling method beated and worn based on cutter
CN110059374B (en) * 2019-03-29 2020-12-25 西安交通大学 Milling force modeling method based on cutter bounce and abrasion
CN111451563A (en) * 2020-04-02 2020-07-28 江苏贵钰航空工业有限公司 Method for prolonging service life of numerical control milling machine

Also Published As

Publication number Publication date
CN104050340B (en) 2017-02-08
CN104050340A (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2016004749A1 (en) Method for recognizing tool abrasion degree of large numerical control milling machine
Tran et al. Effective feature selection with fuzzy entropy and similarity classifier for chatter vibration diagnosis
CN102689230B (en) Tool wear condition monitoring method based on conditional random field model
CN104808587B (en) A kind of mobility statistical method based on machining apparatus running status
CN113378725B (en) Multi-scale-channel attention network-based tool fault diagnosis method, equipment and storage medium
Jiang et al. Fault diagnosis for rolling bearing using a hybrid hierarchical method based on scale-variable dispersion entropy and parametric t-SNE algorithm
CN114619292B (en) Milling cutter wear monitoring method based on fusion of wavelet denoising and attention mechanism with GRU network
CN109514349A (en) Monitoring Tool Wear States in Turning based on vibration signal and Stacking integrated model
CN107553219A (en) A kind of Tool Wear Monitoring method based on multiple types sensor composite signal
CN110866502B (en) Fault diagnosis method based on linear discriminant analysis and particle swarm optimization support vector machine
CN109858104A (en) A kind of rolling bearing health evaluating and method for diagnosing faults and monitoring system
CN114429152A (en) Rolling bearing fault diagnosis method based on dynamic index antagonism self-adaption
CN103345200A (en) Cutting flutter identification method based on generalized interval
CN112904810B (en) Process industry nonlinear process monitoring method based on effective feature selection
CN107491783B (en) Transformer fault type classification method based on improved density peak value clustering algorithm
CN115741235A (en) Wear prediction and health management method based on five-axis machining center cutter
Du et al. Intelligent turning tool monitoring with neural network adaptive learning
CN112207631B (en) Method for generating tool detection model, method, system, device and medium for detecting tool detection model
CN114354184A (en) Deep learning-based method and device for establishing health early warning model of main shaft of large-scale rotating equipment
CN114462480A (en) Multi-source sensor rolling mill fault diagnosis method based on non-equilibrium data set
Zhuo et al. An online chatter detection and recognition method for camshaft non-circular contour high-speed grinding based on improved LMD and GAPSO-ABC-SVM
CN110108474A (en) A kind of rotating machinery operation stability on-line monitoring and appraisal procedure and system
Oprime et al. X-bar control chart design with asymmetric control limits and triple sampling
CN106204324A (en) A kind of method determining that power plant's complex device key monitoring parameter and each parameters weighting distribute
CN102692450A (en) Method for identifying state of shaped crack of metal drawing part based on fuzzy comprehensive evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818929

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15818929

Country of ref document: EP

Kind code of ref document: A1