一种大型数控铣床刀具磨损程度识别方法Method for identifying wear degree of large CNC milling machine tool
技术领域Technical field
本发明属于大型数控铣床领域,具体涉及一种大型数控铣床刀具磨损程度的识别方法。The invention belongs to the field of large-scale numerical control milling machines, and particularly relates to a method for identifying the wear degree of a large-scale numerical control milling machine tool.
背景技术Background technique
数控铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,生产效率较高,在机械制造行业中被广泛应用。特别是大型数控铣床(如龙门铣床),因其加工精度和生产效率均较高,常应用于大型工件的成批生产。In addition to milling planes, grooves, teeth, threads and spline shafts, CNC milling machines can also process more complex profiles with high production efficiency and are widely used in the mechanical manufacturing industry. In particular, large-scale CNC milling machines (such as portal milling machines) are often used for mass production of large workpieces due to their high machining accuracy and productivity.
刀具作为大型数控铣床最易损伤的部件,对其进行及时有效的状态识别与监测尤为重要。据统计,刀具磨损是引起铣床故障的首要因素,由此引起的停机时间占铣床总停机时间的20%-30%。而且,在铣削加工中,一旦刀具发生损伤故障而没有及时发现,会直接影响产品加工质量、加工精度和生产效率,严重的还将导致铣床功能失效及停机、工件报废、甚至危害人员安全。因此,如何有效地识别大型数控铣床刀具的磨损程度,监测刀具运行状态,已成为大型数控铣床智能化发展急需解决的问题。As the most vulnerable part of large CNC milling machines, tools are especially important for timely and effective status recognition and monitoring. According to statistics, tool wear is the primary cause of milling machine failure, resulting in downtime of 20%-30% of the total downtime of the milling machine. Moreover, in the milling process, once the tool is damaged and not found in time, it will directly affect the product processing quality, machining accuracy and production efficiency, and will seriously lead to the failure of the milling machine function and shutdown, scrapping the workpiece, and even endangering personnel safety. Therefore, how to effectively identify the wear degree of large CNC milling machine tools and monitor the running state of the tool has become an urgent problem to be solved in the intelligent development of large CNC milling machines.
近年来,国内外学者在铣床刀具磨损程度的识别上做了大量的研究工作,提出了诸多有效的高精度、高可靠性诊断方法,如时间序列分析、频谱分析、小波分析、神经网络、支持向量机、混合智能等,这为大型数控铣床刀具磨损程度的识别提供了一定的技术基础。然而,对于大型数控铣床而言,其刀具磨损程度的识别还面临着如下几个问题:(1)大型数控铣床的加工对象一般较大,使得不同刀具磨损程度下的数据采集比较困难,成本较高,训练样本数据少;(2)大多数研究方法需要人为确定关键参数的取值(如支持向量机的惩罚函数和尺度因子),主观性较强,在没有较多经验可供参考的大型数控铣床刀具磨损程度的识别上误诊率较高。In recent years, domestic and foreign scholars have done a lot of research work on the recognition of milling tool wear degree, and put forward many effective high-precision, high-reliability diagnostic methods, such as time series analysis, spectrum analysis, wavelet analysis, neural network, support. Vector machine, hybrid intelligence, etc., which provides a certain technical basis for the recognition of the degree of wear of large CNC milling machines. However, for large CNC milling machines, the identification of tool wear degree faces the following problems: (1) The processing objects of large CNC milling machines are generally large, making data collection under different tool wear levels more difficult and cost-effective. High, training sample data is small; (2) Most research methods need to manually determine the value of key parameters (such as the support vector machine's penalty function and scale factor), subjective, and large in the absence of more experience for reference. The misdiagnosis rate of the tool wear degree of CNC milling machine is higher.
发明内容Summary of the invention
本发明针对上述现有技术的不足,提供了一种准确性更高的大型数控铣床刀具磨损程度识别方法。The invention aims at the above-mentioned deficiencies of the prior art, and provides a method for identifying the wear degree of a large-scale numerical control milling machine tool with higher accuracy.
本发明是通过如下技术方案实现的:
The invention is achieved by the following technical solutions:
一种大型数控铣床刀具磨损程度识别方法,包括以下步骤:A method for identifying the wear degree of a large-scale numerical control milling machine tool comprises the following steps:
(1)采集大型数控铣床在M种刀具磨损状态下的振动时域信号;从每种磨损状态的振动时域信号中截取连续的采样数为t的不重叠的S组信号;并利用快速傅里叶变换将每组时域信号的波形转换成频域分布;其中M、t和S均为大于1的正整数;(1) Acquiring the vibration time domain signal of the large CNC milling machine in the wear state of M kinds of tools; intercepting the continuous non-overlapping S group signals with the number of samples t from the vibration time domain signal of each wear state; The Fourier transform converts the waveform of each set of time domain signals into a frequency domain distribution; wherein M, t, and S are positive integers greater than one;
(2)分别计算每种磨损状态下S组信号数据的8个时频域无量纲统计特征参数,组合成样本数据集{(Ci,mi)}(i=1,2,…,N,N=M×S),其中Ci={ci1,ci2,…,ci8}为第i个样本的特征参数集,mi为Ci对应的刀具后刀面最大磨损量;(2) Calculate the 8 time-frequency domain dimensionless statistical feature parameters of the S group signal data in each wear state, and combine them into the sample data set {(C i , m i )} (i=1, 2,...,N , N=M×S), where C i ={c i1 ,c i2 ,...,c i8 } is the characteristic parameter set of the i-th sample, and m i is the maximum wear amount of the tool flank face corresponding to C i ;
其中,所述8个时频域无量纲统计特征参数,包括4个时域无量纲统计参数(Ci1、Ci2、Ci3、Ci4)和4个频域无量纲统计参数(Ci5、Ci6、Ci7、Ci8);设第i个样本信号数据为:xi={xi1,xi2,...,xin},经过FFT变换后的频域信号数据为fi={fi1,fi2,...,fin},
The eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 ); Let the i-th sample signal data be: x i ={x i1, x i2, ..., x in }, and the frequency domain signal data after FFT transformation is f i = {f i1, f i2, ..., f in },
xik为样本点xi的第k个信号,n为样本点xi的数据量,
xi-m=max{xik|k=1,…,n}, Pik为频率fik的功率谱,Pi-m=max{Pik|k=1,…,n},
x ik is the k-th signal sample points x i, n is an amount of data of the sample points x i, x im =max{x ik |k=1,...,n}, P ik is the power spectrum of the frequency f ik , P im =max{P ik |k=1,...,n},
(3)结合留一交叉验证建立尺度参数ε的数学优化模型,根据样本数据集Ω,采用优化搜索算法对尺度参数ε进行寻优,找出使得目标函数取值最小的ε取值;(3) Combining the leave-one-cross-validation to establish the mathematical optimization model of the scale parameter ε, according to the sample data set Ω, the optimization search algorithm is used to optimize the scale parameter ε, and find the value of ε which makes the objective function the smallest value;
(4)根据扩散映射(DM)方法的降维原理,构造样本数据集的邻接矩阵W={wij}N×N:wij=exp(-||Ci-Cj||2/ε);(4) According to the dimension reduction principle of the diffusion mapping (DM) method, construct the adjacency matrix of the sample data set W={w ij } N×N :w ij =exp(-||C i -C j || 2 /ε );
其中为Ci和Cj的欧氏距离;然后,对W按行进行标准化处理,令W′={wij′},
among them Is the Euclidean distance of C i and C j ; then, normalize W by line, let W' = {w ij '},
(5)求解W′的特征值和特征向量:W′φk=λkφk,λk为W′的第k个最大特征值,且有1=λ0>λ1>λ2>…,φk为特征值λk对应的单位特征向量;根据预先设定的降维维数K选取特征值:Λ={λ1,λ2,…,λK},对应的特征向量构成映射矩阵Ω={φ1,φ2,…,φK}N×K;(5) Solving the eigenvalues and eigenvectors of W': W'φ k = λ k φ k , λ k is the kth largest eigenvalue of W', and there is 1 = λ 0 > λ 1 > λ 2 >... , φ k is a unit eigenvector corresponding to the eigenvalue λ k ; the eigenvalue is selected according to a preset dimension reduction dimension K: Λ={λ 1 , λ 2 , . . . , λ K }, and the corresponding eigenvectors constitute a mapping matrix Ω={φ 1 , φ 2 , . . . , φ K } N×K ;
(6)计算各样本点在映射矩阵Ω下的映射坐标:(6) Calculate the mapping coordinates of each sample point under the mapping matrix Ω:
φ(Ci)={φk(Ci),k=1,2,…,K},
φ(C i )={φ k (C i ),k=1,2,...,K},
φk(Ci)为Ci在映射Ω下的第k个分量,φjk为φk的第j个分量;φ k (C i ) is the kth component of C i under the mapping Ω, and φ jk is the jth component of φ k ;
(7)每隔固定时间间隔采集一次大型数控铣床在运行状态下的振动时域信号,构成待诊断信号X;并将时域波形转换成频域分布;然后,计算待诊断信号数据的8个时频域统计特征参数C(X)={CX1,CX2,…,CX8};(7) Collecting the vibration time domain signal of the large-scale CNC milling machine in the running state at regular intervals, forming the signal X to be diagnosed; and converting the time domain waveform into the frequency domain distribution; then, calculating 8 data of the signal to be diagnosed Time-frequency domain statistical feature parameter C(X)={C X1 , C X2 ,...,C X8 };
(8)对X进行Nystrom扩展,计算X在映射矩阵Ω下的映射坐标:(8) Perform Nystrom expansion on X and calculate the mapping coordinates of X under the mapping matrix Ω:
φ(X)={φk(X),k=1,2,…,K},
φ(X)={φ k (X),k=1,2,...,K},
(9)对X进行核回归分析,得到对应的磨损程度值,即后刀面最大磨损量
估计值为:(9) Perform nuclear regression analysis on X to obtain the corresponding wear degree value, that is, the maximum wear amount of the flank face. for:
优选的,步骤(3)中采用禁忌搜索算法对尺度参数ε进行寻优,具体包括如下步骤:Preferably, in step (3), the tabu search algorithm is used to optimize the scale parameter ε, which specifically includes the following steps:
(3.1)确定包含尺度参数ε的核函数为:(3.1) Determine the kernel function containing the scale parameter ε as:
其中Ci和Cj为样本点; Where C i and C j are sample points;
(3.2)采用留一交叉验证法,计算各样本点的磨损程度估计值:(3.2) Calculate the estimated wear level of each sample point by using the leave-one cross-validation method:
(3.3)建立关于尺度参数ε的数学优化模型:(3.3) Establish a mathematical optimization model for the scale parameter ε:
(3.4)采用禁忌搜索对上述数学模型进行优化求解,得出使得预测误差最小的尺度参数ε取值。(3.4) Using the tabu search to optimize the above mathematical model, the value of the scale parameter ε which minimizes the prediction error is obtained.
本发明具有如下有益效果:The invention has the following beneficial effects:
(1)目前对数控铣床刀具的磨损研究,集中于对中小型铣床的刀具磨损研究,因为中小型铣床刀具磨损样本数据比较容易收集,而对于大型数控铣床刀具的磨损识别研究很少。同时,现有的大多数故障诊断方法是在样本数据量大的前提下开展的,在小样本情形下,这些方法的训练效果很差,对刀具的磨损识别无能为力。本发明的提出可以克服上述弊端,本发明能够小样本情形下有效识别大型数控铣床刀具的磨损程度。(1) At present, the research on the wear of CNC milling cutters focuses on the tool wear of small and medium-sized milling machines. Because the wear and tear sample data of small and medium-sized milling machines are easier to collect, there is little research on the wear identification of large CNC milling tools. At the same time, most of the existing fault diagnosis methods are carried out under the premise of large sample data. In the case of small samples, the training effect of these methods is very poor, and the wear identification of the tools is powerless. The present invention can overcome the above drawbacks, and the invention can effectively identify the wear degree of a large numerical control milling machine tool in a small sample situation.
(2)目前,对刀具磨损程度的识别研究大多只考虑对三种磨损状态(初期磨损、中度磨损和严重磨损)的分类上,没有研究刀具磨损程度的渐进式非线性演变规律,本发明通过建立刀具磨损程度的回归模型,可有效地揭示大型数控铣床刀具磨损程度的演变规律。(2) At present, most of the research on the recognition of tool wear degree only considers the classification of three wear states (initial wear, moderate wear and severe wear), and there is no progressive nonlinear evolution law to study the degree of tool wear. The present invention By establishing a regression model of the degree of tool wear, the evolution of the degree of wear of large CNC milling tools can be effectively revealed.
(3)本发明可以有效克服大型数控铣床刀具磨损样本缺失之缺点,提高大型数控铣床刀具磨损程度的识别精度,减少因刀具磨损识别不及时造成的维修成本与时间。
(3) The invention can effectively overcome the shortcomings of the missing samples of the large-scale numerical control milling machine tool, improve the recognition accuracy of the tool wear degree of the large-scale numerical control milling machine, and reduce the maintenance cost and time caused by the tool wear recognition not timely.
具体实施方式detailed description
本发明提供了一种大型数控铣床刀具磨损程度识别方法,包括以下步骤:The invention provides a method for identifying the wear degree of a large-scale numerical control milling machine tool, comprising the following steps:
(1)采集大型数控铣床(一般情况下多为龙门铣床)在M种刀具磨损状态下的振动时域信号;(1) Acquiring the vibration time domain signal of a large CNC milling machine (generally a gantry milling machine in general) in the wear state of M kinds of tools;
其中,M根据刀具后刀面最大磨损量来确定。本实施例中取M=5,其对应的5种刀具磨损状态,根据后刀面最大磨损量划分的不同分为正常状态、轻微磨损、中度磨损、较大磨损、急剧磨损,如表1所示。Among them, M is determined according to the maximum wear amount of the flank of the tool. In this embodiment, M=5 is taken, and the corresponding five tool wear states are divided into normal state, slight wear, moderate wear, large wear and sharp wear according to the maximum wear amount of the flank face, as shown in Table 1. Shown.
表1后刀面最大磨损量与道具磨损状态对应表Table 1 Table of the maximum wear amount of the flank face and the wear state of the props
从每种磨损状态的振动时域信号中截取连续的采样数为t(t取值为采样频率的倍数,本实施例中取t=4096)的不重叠的S(视数据量而定,可取5~10)组信号;并利用快速傅里叶变换将每组时域信号的波形转换成频域分布;其中M、t和S均为大于1的正整数;From the vibration time domain signal of each wear state, the number of consecutive samples is t (t is a multiple of the sampling frequency, t=4096 in this embodiment), and the non-overlapping S (depending on the amount of data, may be taken 5 to 10) group signals; and transforming the waveform of each group of time domain signals into a frequency domain distribution by using a fast Fourier transform; wherein M, t, and S are positive integers greater than one;
(2)分别计算每种磨损状态下S组信号数据的8个时频域无量纲统计特征参数,组合成样本数据集{(Ci,mi)}(i=1,2,…,N,N=M×S),其中Ci={ci1,ci2,…,ci8}为第i个样本的特征参数集,mi为Ci对应的刀具后刀面最大磨损量;(2) Calculate the 8 time-frequency domain dimensionless statistical feature parameters of the S group signal data in each wear state, and combine them into the sample data set {(C i , m i )} (i=1, 2,...,N , N=M×S), where C i ={c i1 ,c i2 ,...,c i8 } is the characteristic parameter set of the i-th sample, and m i is the maximum wear amount of the tool flank face corresponding to C i ;
其中,所述8个时频域无量纲统计特征参数,包括4个时域无量纲统计参数(Ci1、Ci2、Ci3、Ci4)和4个频域无量纲统计参数(Ci5、Ci6、Ci7、Ci8)。设第i个样本信号数据为:xi={xi1,xi2,...,xin},经过FFT变换后的频域信号数据为fi={fi1,fi2,...,fin},则:The eight time-frequency domain dimensionless statistical feature parameters include four time-domain dimensionless statistical parameters (C i1 , C i2 , C i3 , C i4 ) and four frequency-domain dimensionless statistical parameters (C i5 , C i6 , C i7 , C i8 ). Let the ith sample signal data be: x i ={x i1, x i2, ..., x in }, and the frequency domain signal data after FFT transformation is f i ={f i1, f i2, ... , f in }, then:
波形指标: 峰值:
Waveform indicators: Peak:
偏斜度: 峭度:
Skewness: Kurtosis:
稳定率: 波高率:
Stability rate: Wave height rate:
功率谱标准差: 频率高低比:
Power spectrum standard deviation: Frequency ratio:
其中,xik为样本点xi的第k个信号,n为样本点xi的数据量,
xi-m=max{xik|k=1,…,n}, Pik为频率fik的功率谱,Pi-m=max{Pik|k=1,…,n},
Wherein, x ik is the k-th signal sample points x i, n is an amount of data of the sample points x i, x im =max{x ik |k=1,...,n}, P ik is the power spectrum of the frequency f ik , P im =max{P ik |k=1,...,n},
(3)结合留一交叉验证建立尺度参数ε的数学优化模型,根据样本数据集Ω,采用优化搜索算法(如禁忌搜索、最速下降法、黄金分割法、二次插值法等)对尺度参数ε进行寻优,找出使得目标函数取值最小的ε取值。(3) Combining the leave-one-crossing verification to establish the mathematical optimization model of the scale parameter ε, according to the sample data set Ω, using the optimized search algorithm (such as tabu search, steepest descent method, golden section method, quadratic interpolation method, etc.) on the scale parameter ε Perform optimization to find the value of ε that minimizes the value of the objective function.
所谓留一交叉验证,就是将具有N个数据的样本集分为两部分:训练集和验证集,每次选取样本集中的一个样本数据作为验证集,剩余N-1个数据作为训练集对验证集进行预测。重复执行N次,每次选取不同的样本数据作为验证集,将每次的预测误差求和作为性能优劣的指标。The so-called leave-one cross-validation method divides the sample set with N data into two parts: the training set and the verification set, each time selecting one sample data in the sample set as the verification set, and the remaining N-1 data as the training set pair verification. Set to make predictions. Repeatedly performed N times, each time selecting different sample data as a verification set, and summing each prediction error as an indicator of performance.
采用禁忌搜索算法对尺度参数ε进行寻优,具体包括如下步骤:The tabu search algorithm is used to optimize the scale parameter ε, which includes the following steps:
(3.1)确定包含尺度参数ε的核函数为:
(3.1) Determine the kernel function containing the scale parameter ε as:
其中Ci和Cj为样本点; Where C i and C j are sample points;
(3.2)采用留一交叉验证法,计算各样本点的磨损程度估计值:(3.2) Calculate the estimated wear level of each sample point by using the leave-one cross-validation method:
(3.3)建立关于尺度参数ε的数学优化模型:(3.3) Establish a mathematical optimization model for the scale parameter ε:
s.t.ε∈(0,1)S.t.ε∈(0,1)
(3.4)采用禁忌搜索对上述数学模型进行优化求解,得出使得预测误差最小的尺度参数ε取值。(3.4) Using the tabu search to optimize the above mathematical model, the value of the scale parameter ε which minimizes the prediction error is obtained.
(4)根据扩散映射(DM)方法的降维原理,构造样本数据集的邻接矩阵W={wij}N×N:wij=exp(-||Ci-Cj||2/ε);(4) According to the dimension reduction principle of the diffusion mapping (DM) method, construct the adjacency matrix of the sample data set W={w ij } N×N :w ij =exp(-||C i -C j || 2 /ε );
其中为Ci和Cj的欧氏距离。然后,对W按行进行标准化处理,令W′={wij′},
among them The Euclidean distance between C i and C j . Then, normalize W by line, let W'={w ij '},
(5)求解W′的特征值和特征向量:W′φk=λkφk,λk为W′的第k个最大特征值,且有1=λ0>λ1>λ2>…,φk为特征值λk对应的单位特征向量。(5) Solving the eigenvalues and eigenvectors of W': W'φ k = λ k φ k , λ k is the kth largest eigenvalue of W', and there is 1 = λ 0 > λ 1 > λ 2 >... , φ k is a unit eigenvector corresponding to the eigenvalue λ k .
事先确定降维维数为K(一般取K=2或3),则选取前K个最大特征值,考虑到W′的最大特征值λ0为平凡特征值(=1)应舍弃,故选取特征值:Λ={λ1,λ2,…,λK},对应的特征向量构成映射矩阵Ω={φ1,φ2,…,φK}N×K。If it is determined in advance that the dimensionality reduction dimension is K (generally K=2 or 3), the first K maximum eigenvalues are selected. Considering that the maximum eigenvalue λ 0 of W' is a trivial eigenvalue (=1), it should be discarded. The eigenvalues: Λ = {λ 1 , λ 2 , ..., λ K }, the corresponding eigenvectors constitute the mapping matrix Ω = {φ 1 , φ 2 , ..., φ K } N × K .
(6)计算各样本点在映射矩阵Ω下的映射坐标:(6) Calculate the mapping coordinates of each sample point under the mapping matrix Ω:
φ(Ci)={φk(Ci),k=1,2,…,K},
φ(C i )={φ k (C i ),k=1,2,...,K},
φk(Ci)为Ci在映射Ω下的第k个分量,φjk为φk的第j个分量。φ k (C i ) is the kth component of C i under the map Ω, and φ jk is the jth component of φ k .
(7)开始识别待测铣床刀具的磨损状态,每隔固定时间间隔采集一次大型数控铣床在运行状态下(或称为待测状态下)的振动时域信号(采样数为t),构
成待诊断信号X;并将时域波形转换成频域分布。然后,计算待诊断信号数据的8个时频域统计特征参数C(X)={CX1,CX2,…,CX8};(7) Start to identify the wear state of the milling tool to be tested, and collect the vibration time domain signal (the number of samples is t) of the large CNC milling machine in the running state (or called the state to be tested) at regular intervals. Diagnose signal X; and convert the time domain waveform into a frequency domain distribution. Then, calculating eight time-frequency domain statistical feature parameters C(X)={C X1 , C X2 , . . . , C X8 } of the signal data to be diagnosed;
(8)对X进行Nystrom扩展,计算X在映射矩阵Ω下的映射坐标:(8) Perform Nystrom expansion on X and calculate the mapping coordinates of X under the mapping matrix Ω:
φ(X)={φk(X),k=1,2,…,K},
φ(X)={φ k (X),k=1,2,...,K},
(9)对X进行核回归分析,得到对应的磨损程度值,即后刀面最大磨损量估计值为:(9) Perform nuclear regression analysis on X to obtain the corresponding wear degree value, that is, the estimated maximum wear amount of the flank face for:
本发明可改变为多种方式对本领域的技术人员是显而易见的,这样的改变不认为脱离本发明的范围。所有这样的对所述领域的技术人员显而易见的修改,将包括在本权利要求的范围之内。
The invention may be varied in many ways and will be apparent to those skilled in the art, and such changes are not considered to be within the scope of the invention. All such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the appended claims.