WO2016002363A1 - Measuring device - Google Patents
Measuring device Download PDFInfo
- Publication number
- WO2016002363A1 WO2016002363A1 PCT/JP2015/064072 JP2015064072W WO2016002363A1 WO 2016002363 A1 WO2016002363 A1 WO 2016002363A1 JP 2015064072 W JP2015064072 W JP 2015064072W WO 2016002363 A1 WO2016002363 A1 WO 2016002363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- housing
- wavelength
- translucent member
- opening
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 34
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- 238000005192 partition Methods 0.000 claims description 23
- 238000000638 solvent extraction Methods 0.000 abstract 4
- 210000003491 skin Anatomy 0.000 description 24
- 238000005259 measurement Methods 0.000 description 22
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- 239000008103 glucose Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004207 dermis Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000003722 extracellular fluid Anatomy 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
Definitions
- the present invention relates to a measuring apparatus that detects specific components using light.
- Patent Document 1 discloses an apparatus for measuring a blood sugar level in blood.
- a light source, a light receiving element, and a waveguide are provided on the upper surface of the base portion. Then, a part of the waveguide is exposed on the lower surface of the base part, the light generated by the light source is irradiated from the part, and the reflected light is received and guided to the light receiving element.
- Patent Document 2 describes that light is irradiated in an oblique direction with respect to the surface of the skin, and a plurality of light receiving portions are arranged obliquely and spaced apart.
- the technique described in Patent Document 2 is intended to measure glucose contained in skin and blood.
- Patent Document 3 it is described that light is irradiated in an oblique direction with respect to the surface of the skin, and the light receiving portion is disposed obliquely.
- a patch is applied to the skin. Then, for example, the amount of glucose in the dermis layer is measured by pressing a measuring device against this patch.
- the light-shielding plate is arrange
- An object of the present invention is to control the depth of a measurement site with high accuracy and to prevent light from a light source from entering a light receiving element without passing through a measurement target such as skin.
- a housing An opening provided in a part of the housing; A translucent member that is located within the opening and constitutes part of the housing, and transmits light of a first wavelength; A light emitting means that is disposed inside the housing and emits light including a first wavelength obliquely to the light transmitting member with respect to an outer surface of the light transmitting member; A light detecting means disposed inside the housing, facing the light transmissive member, and detecting light of the first wavelength; A partition member disposed inside the housing, located between the light emitting means and the light detecting means, and a part of the partition member in contact with the housing; A measuring device is provided.
- the depth of the measurement site can be controlled with high accuracy, and the light from the light source can be prevented from entering the light receiving element without passing through the measurement target such as the skin.
- each component of the measuring apparatus 10 is not a hardware unit configuration but a functional unit block.
- the control unit 150 and the calculation unit 160 are arbitrary CPUs, memories, programs loaded in the memory, storage media such as a hard disk for storing the programs, and network and network interface interfaces. Realized by a combination of There are various modifications of the implementation method and apparatus.
- FIG. 1 is a diagram illustrating a configuration of a measurement apparatus 10 according to the first embodiment.
- the measuring apparatus 10 includes a housing 100, a translucent member 110, a light emitting unit 120, a partition member 130, and a light detecting unit 140.
- the housing 100 is provided with an opening 102.
- the translucent member 110 is located in the opening 102 and transmits light of the first wavelength.
- the light emitting unit 120 and the light detection unit 140 are disposed inside the housing 100.
- the light emitting unit 120 irradiates (emits) light including the first wavelength toward the translucent member 110 and radiates the light obliquely with respect to the outer surface of the translucent member 110.
- the light detection unit 140 is disposed toward the translucent member 110 and detects light having the first wavelength.
- the optical axis of the light detection unit 140 passes through the translucent member 110 and detects the intensity of the first wavelength light.
- the optical axis of the light detection unit 140 is defined as a line that passes through the center of the light receiving surface of the light detection unit 140 and is perpendicular to the light receiving surface of the light detection unit 140, for example.
- the partition member 130 is disposed inside the housing 100 and is located between the light emitting unit 120 and the light detection unit 140. A part of the partition member 130 is in contact with the housing 100. Details will be described below.
- the measuring device 10 is a device that measures a sugar content (for example, glucose) contained in an interstitial fluid of living skin, for example, dermal tissue.
- the first wavelength is in the near infrared region (for example, 1200 nm or more and 3000 nm or less).
- the measuring apparatus 10 is used in the state which pressed the translucent member 110 on skin.
- the housing 100 is formed using, for example, resin or metal.
- An opening 102 is provided on one surface of the housing 100.
- the housing 100 may be composed of a plurality of parts.
- the opening 102 is blocked by the translucent member 110.
- a part of the housing 100 is constituted by the translucent member 110.
- the translucent member 110 is a plate-like member made of, for example, glass or resin, and transmits light having the first wavelength.
- the translucent member 110 is not deformed when pressed against the measurement site.
- the translucent member 110 also has a function of extending the wrinkles at the measurement site.
- the translucent member 110 may be a flat plate or may be slightly curved.
- the housing 100 may be configured by a plurality of members.
- the light emitting unit 120 has a light emitting element such as an LED or a laser diode as a light source. This light source preferably emits light of the first wavelength stronger than light of other wavelengths.
- the optical axis of the light emitting unit 120 is disposed obliquely with respect to the outer surface of the translucent member 110. For this reason, when the translucent member 110 of the housing
- the light detection unit 140 has a photoelectric conversion element such as a photodiode. This photoelectric conversion element preferably has higher sensitivity to light of the first wavelength than sensitivity of light of other wavelengths.
- the light receiving surface of the light detection unit 140 is disposed obliquely with respect to the outer surface of the translucent member 110.
- the optical axis of the light detection unit 140 is disposed obliquely with respect to the outer surface of the translucent member 110, and intersects the optical axis of the light emitting unit 120 outside the translucent member 110.
- the distance d between the intersection ⁇ of the two optical axes and the outer surface of the translucent member 110 is 2 mm or less, preferably 1.5 mm or less.
- interval d is 0.5 mm or more.
- the angle ⁇ formed by the two optical axes is, for example, 60 ° or more and 120 ° or less.
- the angle formed by the optical axis of the light emitting unit 120 with respect to the outer surface of the light transmissive member 110 and the angle formed by the optical axis of the light detecting unit 140 with respect to the outer surface of the light transmissive member 110 are preferably equal to each other.
- the partition member 130 is disposed in the measuring apparatus 10 and is located between the light emitting unit 120 and the light detecting unit 140. A part of the partition member 130 is in contact with the housing 100, specifically, the translucent member 110. The portion of the translucent member 110 that is in contact with the partition member 130 is a portion of the translucent member 110 that intersects the optical axis of the light emitting unit 120 and a portion of the translucent member 110 that intersects the optical axis of the light detecting unit 140. Located between. Moreover, the partition member 130 is configured not to transmit light having the first wavelength. For this reason, it can suppress that the light which the light emission part 120 light-emitted enters into the light detection part 140, without passing through the exterior of the housing
- the shape of the partition member 130 is a triangular prism.
- One of the sides of the triangular prism is in contact with the translucent member 110.
- one of the two surfaces constituting the side is directed in the direction along the optical axis of the light emitting unit 120, and the other surface is directed in the direction along the optical axis of the light detection unit 140. ing.
- these surfaces may or may not be parallel to the optical axis.
- the remaining one of the side surfaces of the partition member 130 is supported by another member (not shown).
- Other members for example, a holding member that holds the light emitting unit 120 and the light detecting unit 140
- the partition member 130 may be integrally formed.
- the side of the partition member 130 that is in contact with the translucent member 110 may be chamfered.
- the translucent member 110 is pressed against the skin of the living body.
- the light emitting unit 120 emits light.
- the light emitted from the light emitting unit 120 enters at least the dermis tissue of the skin and is scattered by the cell wall or the like.
- the light detection unit 140 detects a part of the scattered light.
- a part of this light is absorbed by a specific component in the skin, for example, sugar such as glucose contained in the interstitial fluid. . Therefore, the concentration of a specific component in the skin can be calculated based on the light intensity detected by the light detection unit 140.
- the epidermis contains glucose, but this glucose concentration is difficult to follow the glucose concentration in the blood.
- the subcutaneous tissue is mainly composed of adipose tissue, the glucose concentration is low. For this reason, the light from the light emitting unit 120 needs to be scattered at an appropriate depth after entering the skin.
- the intersection ⁇ between the optical axis of the light emitting unit 120 and the optical axis of the light detecting unit 140 is always from the surface of the skin. Located at depth d. d is 2 mm or less, preferably 1.5 mm or less. For this reason, the light detected by the light detection unit 140 includes many components scattered at an appropriate depth in the skin. Therefore, when the concentration of a specific component in the skin is calculated based on the light intensity detected by the light detection unit 140, the reliability of the calculation result is improved.
- a partition member 130 is located between the light emitting unit 120 and the light detecting unit 140.
- a part of the partition member 130 is in contact with the housing 100 (for example, the translucent member 110). For this reason, it can suppress that the light which the light emission part 120 light-emitted enters into the light detection part 140, without passing through the exterior of the housing
- FIG. Therefore, when the concentration of a specific component in the skin is calculated based on the light intensity detected by the light detection unit 140, the reliability of the calculation result is further improved.
- FIG. 2 is a diagram illustrating a configuration of the measurement apparatus 10 according to the second embodiment.
- the measurement apparatus 10 according to the present embodiment has the same configuration as the measurement apparatus 10 according to the first embodiment except for the following points.
- the housing 100 has a first opening 102 a and a second opening 102 b as the opening 102.
- a first translucent member 112 is fitted in the first opening 102a
- a second translucent member 114 is fitted in the second opening 102b.
- the optical axis of the light emitting unit 120 extends to the outside of the housing 100 via the first light transmissive member 112, and the optical axis of the light detecting unit 140 is external to the housing 100 via the second light transmissive member 114. It extends to.
- the partition member 130 is in contact with a portion of the housing 100 located between the first opening 102a and the second opening 102b.
- the light emitting unit 120 has a light source 122 and a lens 124.
- the light source 122 has the light emitting element shown in the first embodiment.
- the lens 124 condenses the light from the light source 122.
- a condensing point of light from the light source 122 by the lens 124 is located outside the translucent member 110.
- the distance of this condensing point and the outer surface of the translucent member 110 is 2 mm or less, Preferably it is 1.5 mm or less, and Preferably it is 0.5 mm or more.
- this condensing point may overlap with the optical axis of the light detection unit 140. However, when the distance between the above-described condensing point and the outer surface of the translucent member 110 is greater than 2 mm, the optical axis of the light detection unit 140 does not overlap the above-described condensing point.
- the measuring apparatus 10 includes a control unit 150, a calculation unit 160, a display unit 170, and an input unit 180.
- the input unit 180 is operated by the user of the measuring apparatus 10.
- the input unit 180 is, for example, a push type or contact type switch, and is located on the outer surface of the housing 100.
- the control unit 150 causes the light emitting unit 120 to emit light when input is made to the input unit 180.
- the calculation unit 160 calculates the amount or concentration of the specific component in the detection target, for example, the amount or concentration of sugar (for example, glucose) contained in the interstitial fluid of the skin, according to the detection result of the light detection unit 140. Then, the calculation unit 160 causes the display unit 170 to display the calculated result. Since the display unit 170 is located on the outer surface of the housing 100, the user of the measurement apparatus 10 can recognize the measurement result obtained by the measurement apparatus 10 by viewing the display unit 170.
- sugar for example, glucose
- the translucent member 110 is divided into two parts, a first translucent member 112 and a second translucent member 114, and the partition member 130 is provided between the first translucent member 112 and the second translucent member 114 in the housing 100. It is made to contact the part located in. For this reason, it can also suppress that the light from the light emission part 120 injects into the light detection part 140 by making the translucent member 110 into a light guide path.
- the distance between the condensing point of the light from the light source 122 by the lens 124 and the outer surface of the translucent member 110 is 2 mm or less, preferably 1.5 mm or less. For this reason, the intensity
- partition member 130 may be formed integrally with the housing 100.
- FIG. 3 is a diagram illustrating a configuration of the measurement apparatus 10 according to the third embodiment.
- the measuring apparatus 10 according to the present embodiment has the same configuration as the measuring apparatus 10 according to the first embodiment or the second embodiment except that the wavelength filter 190 is provided.
- FIG. 3 shows a case similar to that of the second embodiment.
- the wavelength filter 190 is disposed in front of the light detection unit 140, transmits light of the first wavelength, and cuts light of other wavelengths. Thereby, light other than the first wavelength is cut from the light incident on the light detection unit 140.
- the wavelength filter 190 may be arranged in front of the light emitting unit 120 instead of in front of the light detecting unit 140.
- the wavelength filter 190 may be disposed in front of the light detection unit 140 and in front of the wavelength filter 190, respectively.
- the same effects as those in the first or second embodiment can be obtained.
- the measurement accuracy by the measurement apparatus 10 is further improved.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
A measuring device (10) is provided with a housing (100), a light transmitting member (110), a light emitting section (120), a partitioning member (130), and an optical detection section (140). The housing (100) is provided with an opening (102). The light transmitting member (110) is positioned in the opening (102), and transmits light having a first wavelength. The light emitting section (120) and the optical detection section (140) are disposed in the housing (100). The light emitting section (120) emits light, including the light having the first wavelength, to the light transmitting member (110), said light emitting section diagonally emitting the light with respect to an outer surface of the light transmitting member (110). The light detection section (140) is disposed in the direction in which the optical axis thereof passes through the light transmitting member (110), and measures the intensity of the light having the first wavelength. The partitioning member (130) is disposed in the housing (100), said partitioning member being positioned between the light emitting section (120) and the optical detection section (140). A part of the partitioning member (130) is in contact with the housing (100).
Description
本発明は、光を用いて特定の成分を検出する測定装置に関する。
The present invention relates to a measuring apparatus that detects specific components using light.
測定対象に含まれる特定の成分を検出する方法の一つに、その成分によって吸収される波長の光を測定対象に照射し、測定対象におけるその光の吸収量を測定する方法がある。例えば特許文献1には、血液中の血糖値を測定するための装置が開示されている。この装置において、ベース部の上面には光源、受光素子、及び導波路が設けられている。そしてベース部の下面に導波路の一部を露出させ、この一部から光源が生成した光を照射し、かつ反射光を受光して受光素子に導波する。
One method for detecting a specific component contained in a measurement target is to irradiate the measurement target with light having a wavelength absorbed by the component and measure the amount of light absorbed by the measurement target. For example, Patent Document 1 discloses an apparatus for measuring a blood sugar level in blood. In this apparatus, a light source, a light receiving element, and a waveguide are provided on the upper surface of the base portion. Then, a part of the waveguide is exposed on the lower surface of the base part, the light generated by the light source is irradiated from the part, and the reflected light is received and guided to the light receiving element.
また特許文献2には、皮膚の表面に対して光を斜め方向に照射し、かつ、複数の受光部を斜めかつ間隔をあけて配置することが記載されている。特許文献2に記載の技術は、皮膚や血液に含まれるグルコースを測定することを目的としたものである。
Further, Patent Document 2 describes that light is irradiated in an oblique direction with respect to the surface of the skin, and a plurality of light receiving portions are arranged obliquely and spaced apart. The technique described in Patent Document 2 is intended to measure glucose contained in skin and blood.
また、特許文献3には、皮膚の表面に対して光を斜め方向に照射し、かつ、受光部を斜めに配置することが記載されている。特許文献3において、皮膚にはパッチが貼り付けられる。そしてこのパッチに測定装置を押し当てることにより、例えば真皮層のグルコースの量が測定される。また、特許文献3において、発光部と受光部の間には遮光版が配置されている。
In Patent Document 3, it is described that light is irradiated in an oblique direction with respect to the surface of the skin, and the light receiving portion is disposed obliquely. In Patent Document 3, a patch is applied to the skin. Then, for example, the amount of glucose in the dermis layer is measured by pressing a measuring device against this patch. Moreover, in patent document 3, the light-shielding plate is arrange | positioned between the light emission part and the light-receiving part.
光源からの光が皮膚などの測定対象を経由せずに受光素子に入射した場合、この受光素子からの信号に基づいてグルコースなどの成分を算出しても、算出結果の信頼性は低下する。また、測定部位の深さを高い精度で制御する必要がある。例えば特許文献3においてパッチは皮膚とともに変形するため、測定部位の深さを高い精度で制御することは難しい。本発明の目的は、測定部位の深さを高い精度で制御することができ、かつ、光源からの光が皮膚などの測定対象を経由せずに受光素子に入射しないようにすることにある。
When the light from the light source is incident on the light receiving element without passing through the measurement object such as the skin, the reliability of the calculation result is lowered even if a component such as glucose is calculated based on the signal from the light receiving element. In addition, it is necessary to control the depth of the measurement site with high accuracy. For example, in Patent Document 3, since the patch is deformed together with the skin, it is difficult to control the depth of the measurement site with high accuracy. An object of the present invention is to control the depth of a measurement site with high accuracy and to prevent light from a light source from entering a light receiving element without passing through a measurement target such as skin.
本発明によれば、筐体と、
前記筐体の一部に設けられた開口と、
前記開口内に位置し、前記筐体の一部を構成しており、第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、第1波長を含む光を、前記透光部材に、当該透光部材の外面に対して斜めに放射する発光手段と、
前記筐体の内部に配置され、前記透光部材に向いており、前記第1波長の光を検出する光検出手段と、
前記筐体の内部に配置され、前記発光手段と前記光検出手段の間に位置し、一部が前記筐体に接している仕切部材と、
を備える測定装置が提供される。 According to the present invention, a housing;
An opening provided in a part of the housing;
A translucent member that is located within the opening and constitutes part of the housing, and transmits light of a first wavelength;
A light emitting means that is disposed inside the housing and emits light including a first wavelength obliquely to the light transmitting member with respect to an outer surface of the light transmitting member;
A light detecting means disposed inside the housing, facing the light transmissive member, and detecting light of the first wavelength;
A partition member disposed inside the housing, located between the light emitting means and the light detecting means, and a part of the partition member in contact with the housing;
A measuring device is provided.
前記筐体の一部に設けられた開口と、
前記開口内に位置し、前記筐体の一部を構成しており、第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、第1波長を含む光を、前記透光部材に、当該透光部材の外面に対して斜めに放射する発光手段と、
前記筐体の内部に配置され、前記透光部材に向いており、前記第1波長の光を検出する光検出手段と、
前記筐体の内部に配置され、前記発光手段と前記光検出手段の間に位置し、一部が前記筐体に接している仕切部材と、
を備える測定装置が提供される。 According to the present invention, a housing;
An opening provided in a part of the housing;
A translucent member that is located within the opening and constitutes part of the housing, and transmits light of a first wavelength;
A light emitting means that is disposed inside the housing and emits light including a first wavelength obliquely to the light transmitting member with respect to an outer surface of the light transmitting member;
A light detecting means disposed inside the housing, facing the light transmissive member, and detecting light of the first wavelength;
A partition member disposed inside the housing, located between the light emitting means and the light detecting means, and a part of the partition member in contact with the housing;
A measuring device is provided.
本発明によれば、測定部位の深さを高い精度で制御することができ、かつ、光源からの光が皮膚などの測定対象を経由せずに受光素子に入射しないようにすることができる。
According to the present invention, the depth of the measurement site can be controlled with high accuracy, and the light from the light source can be prevented from entering the light receiving element without passing through the measurement target such as the skin.
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
なお、以下に示す説明において、測定装置10の各構成要素は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。例えば制御部150及び算出部160は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。
In the following description, each component of the measuring apparatus 10 is not a hardware unit configuration but a functional unit block. For example, the control unit 150 and the calculation unit 160 are arbitrary CPUs, memories, programs loaded in the memory, storage media such as a hard disk for storing the programs, and network and network interface interfaces. Realized by a combination of There are various modifications of the implementation method and apparatus.
(第1の実施形態)
図1は、第1の実施形態に係る測定装置10の構成を示す図である。本実施形態に係る測定装置10は、筐体100、透光部材110、発光部120、仕切部材130、及び光検出部140を備えている。筐体100には開口102が設けられている。透光部材110は開口102に位置しており、第1波長の光を透過する。発光部120及び光検出部140は筐体100の内部に配置されている。発光部120は、第1波長を含む光を、透光部材110に向けて照射し(出射し)、透光部材110の外面に対して斜めに放射する。光検出部140は、透光部材110に向けて配置されており、第1波長の光を検出する。例えば、光検出部140の光軸は透光部材110を通っており、第1波長の光の強度を検出する。なお、光検出部140の光軸は、例えば光検出部140の受光面の中心を通り、かつ光検出部140の受光面に対して垂直な線として定義される。仕切部材130は、筐体100の内部に配置されており、発光部120と光検出部140の間に位置している。そして仕切部材130の一部は、筐体100に接している。以下、詳細に説明する。 (First embodiment)
FIG. 1 is a diagram illustrating a configuration of ameasurement apparatus 10 according to the first embodiment. The measuring apparatus 10 according to the present embodiment includes a housing 100, a translucent member 110, a light emitting unit 120, a partition member 130, and a light detecting unit 140. The housing 100 is provided with an opening 102. The translucent member 110 is located in the opening 102 and transmits light of the first wavelength. The light emitting unit 120 and the light detection unit 140 are disposed inside the housing 100. The light emitting unit 120 irradiates (emits) light including the first wavelength toward the translucent member 110 and radiates the light obliquely with respect to the outer surface of the translucent member 110. The light detection unit 140 is disposed toward the translucent member 110 and detects light having the first wavelength. For example, the optical axis of the light detection unit 140 passes through the translucent member 110 and detects the intensity of the first wavelength light. The optical axis of the light detection unit 140 is defined as a line that passes through the center of the light receiving surface of the light detection unit 140 and is perpendicular to the light receiving surface of the light detection unit 140, for example. The partition member 130 is disposed inside the housing 100 and is located between the light emitting unit 120 and the light detection unit 140. A part of the partition member 130 is in contact with the housing 100. Details will be described below.
図1は、第1の実施形態に係る測定装置10の構成を示す図である。本実施形態に係る測定装置10は、筐体100、透光部材110、発光部120、仕切部材130、及び光検出部140を備えている。筐体100には開口102が設けられている。透光部材110は開口102に位置しており、第1波長の光を透過する。発光部120及び光検出部140は筐体100の内部に配置されている。発光部120は、第1波長を含む光を、透光部材110に向けて照射し(出射し)、透光部材110の外面に対して斜めに放射する。光検出部140は、透光部材110に向けて配置されており、第1波長の光を検出する。例えば、光検出部140の光軸は透光部材110を通っており、第1波長の光の強度を検出する。なお、光検出部140の光軸は、例えば光検出部140の受光面の中心を通り、かつ光検出部140の受光面に対して垂直な線として定義される。仕切部材130は、筐体100の内部に配置されており、発光部120と光検出部140の間に位置している。そして仕切部材130の一部は、筐体100に接している。以下、詳細に説明する。 (First embodiment)
FIG. 1 is a diagram illustrating a configuration of a
測定装置10は、例えば生体の皮膚、例えば真皮組織の間質液に含まれる糖分(例えばグルコース)を測定する装置である。この場合、第1波長は近赤外域(例えば1200nm以上3000nm以下)である。そして測定装置10は、透光部材110を皮膚に押し当てた状態で使用される。
The measuring device 10 is a device that measures a sugar content (for example, glucose) contained in an interstitial fluid of living skin, for example, dermal tissue. In this case, the first wavelength is in the near infrared region (for example, 1200 nm or more and 3000 nm or less). And the measuring apparatus 10 is used in the state which pressed the translucent member 110 on skin.
筐体100は、例えば樹脂や金属を用いて形成されている。筐体100の一面には開口102が設けられている。筐体100は、複数の部品で構成されていてもよい。開口102は、透光部材110によって塞がれている。言い換えると、筐体100の一部は透光部材110によって構成されている。透光部材110は、例えばガラスや樹脂で形成された板状の部材であり、第1波長の光を透過する。透光部材110は、測定部位に押し当てられたときに変形しない。また、透光部材110は、測定部位の皺を伸ばす機能も有している。透光部材110は、平板であってもよいし、少し湾曲していてもよい。筐体100は、複数の部材によって構成されていてもよい。
The housing 100 is formed using, for example, resin or metal. An opening 102 is provided on one surface of the housing 100. The housing 100 may be composed of a plurality of parts. The opening 102 is blocked by the translucent member 110. In other words, a part of the housing 100 is constituted by the translucent member 110. The translucent member 110 is a plate-like member made of, for example, glass or resin, and transmits light having the first wavelength. The translucent member 110 is not deformed when pressed against the measurement site. The translucent member 110 also has a function of extending the wrinkles at the measurement site. The translucent member 110 may be a flat plate or may be slightly curved. The housing 100 may be configured by a plurality of members.
発光部120は、光源として、例えばLEDやレーザダイオードなどの発光素子を有している。この光源は、第1波長の光を他の波長の光よりも強く発光するのが好ましい。発光部120の光軸は、透光部材110の外面に対して斜めに配置されている。このため、筐体100の透光部材110を生体の皮膚に押し当てたとき、発光部120の光軸は皮膚の表面に対して斜めになる。
The light emitting unit 120 has a light emitting element such as an LED or a laser diode as a light source. This light source preferably emits light of the first wavelength stronger than light of other wavelengths. The optical axis of the light emitting unit 120 is disposed obliquely with respect to the outer surface of the translucent member 110. For this reason, when the translucent member 110 of the housing | casing 100 is pressed on the skin of a biological body, the optical axis of the light emission part 120 becomes diagonal with respect to the surface of skin.
光検出部140は、フォトダイオードなどの光電変換素子を有している。この光電変換素子は、第1波長の光に対する感度が他の波長の光の感度よりも高いのが好ましい。光検出部140の受光面は、透光部材110の外面に対して斜めに配置されている。好ましくは、光検出部140の光軸は、透光部材110の外面に対して斜めに配置されており、かつ、透光部材110の外部において、発光部120の光軸と交わっている。この場合、2つの光軸の交点αと、透光部材110の外面との間隔dは、2mm以下、好ましくは1.5mm以下である。また、間隔dは、0.5mm以上であるのが好ましい。また、2つの光軸が成す角度θは、例えば60°以上120°以下である。なお、透光部材110の外面に対して発光部120の光軸が成す角度と、透光部材110の外面に対して光検出部140の光軸が成す角度は、互いに等しいのが好ましい。
The light detection unit 140 has a photoelectric conversion element such as a photodiode. This photoelectric conversion element preferably has higher sensitivity to light of the first wavelength than sensitivity of light of other wavelengths. The light receiving surface of the light detection unit 140 is disposed obliquely with respect to the outer surface of the translucent member 110. Preferably, the optical axis of the light detection unit 140 is disposed obliquely with respect to the outer surface of the translucent member 110, and intersects the optical axis of the light emitting unit 120 outside the translucent member 110. In this case, the distance d between the intersection α of the two optical axes and the outer surface of the translucent member 110 is 2 mm or less, preferably 1.5 mm or less. Moreover, it is preferable that the space | interval d is 0.5 mm or more. Moreover, the angle θ formed by the two optical axes is, for example, 60 ° or more and 120 ° or less. The angle formed by the optical axis of the light emitting unit 120 with respect to the outer surface of the light transmissive member 110 and the angle formed by the optical axis of the light detecting unit 140 with respect to the outer surface of the light transmissive member 110 are preferably equal to each other.
仕切部材130は、測定装置10内に配置されており、発光部120と光検出部140の間に位置している。そして仕切部材130の一部は、筐体100、具体的には透光部材110に接している。透光部材110のうち仕切部材130が接している部分は、透光部材110のうち発光部120の光軸に交わる部分と、透光部材110のうち光検出部140の光軸に交わる部分の間に位置している。また、仕切部材130は、第1波長の光を透過しないようになっている。このため、発光部120が発光した光が筐体100の外部を経由せずに光検出部140に入射することを抑制できる。なお、仕切部材130は、例えば樹脂を用いて形成されている。
The partition member 130 is disposed in the measuring apparatus 10 and is located between the light emitting unit 120 and the light detecting unit 140. A part of the partition member 130 is in contact with the housing 100, specifically, the translucent member 110. The portion of the translucent member 110 that is in contact with the partition member 130 is a portion of the translucent member 110 that intersects the optical axis of the light emitting unit 120 and a portion of the translucent member 110 that intersects the optical axis of the light detecting unit 140. Located between. Moreover, the partition member 130 is configured not to transmit light having the first wavelength. For this reason, it can suppress that the light which the light emission part 120 light-emitted enters into the light detection part 140, without passing through the exterior of the housing | casing 100. FIG. In addition, the partition member 130 is formed using resin, for example.
本図に示す例において、仕切部材130の形状は、三角柱となっている。そして三角柱の側辺の一つは、透光部材110に接している。また、この側辺を構成する2つの面のうちの一方の面は、発光部120の光軸に沿う方向を向いており、他方の面は、光検出部140の光軸に沿う方向を向いている。ここで、これらの面は光軸に平行であってもよいし、平行ではなくてもよい。また、仕切部材130の側面の残りの一つは、他の部材(図示せず)によって支持されている。なお、この他の部材(例えば発光部120及び光検出部140を保持する保持部材)と仕切部材130は一体に形成されていてもよい。また、仕切部材130のうち透光部材110に接している側辺は面取りしてあってもよい。
In the example shown in this drawing, the shape of the partition member 130 is a triangular prism. One of the sides of the triangular prism is in contact with the translucent member 110. In addition, one of the two surfaces constituting the side is directed in the direction along the optical axis of the light emitting unit 120, and the other surface is directed in the direction along the optical axis of the light detection unit 140. ing. Here, these surfaces may or may not be parallel to the optical axis. The remaining one of the side surfaces of the partition member 130 is supported by another member (not shown). Other members (for example, a holding member that holds the light emitting unit 120 and the light detecting unit 140) and the partition member 130 may be integrally formed. Further, the side of the partition member 130 that is in contact with the translucent member 110 may be chamfered.
上記したように、測定装置10を使用するときには、透光部材110が生体の皮膚に対して押し付けられる。この状態で、発光部120は発光する。発光部120が発光した光は皮膚の少なくとも真皮組織に侵入し、細胞壁等によって散乱される。そして光検出部140は、この散乱光の一部を検出する。発光部120が発光した光が光検出部140によって検出されるまでの光路において、この光の一部は、皮膚内の特定の成分、例えば間質液に含まれるグルコースなどの糖分によって吸収される。従って、光検出部140が検出した光の強度に基づいて、皮膚内の特定の成分の濃度を算出することができる。
As described above, when the measuring apparatus 10 is used, the translucent member 110 is pressed against the skin of the living body. In this state, the light emitting unit 120 emits light. The light emitted from the light emitting unit 120 enters at least the dermis tissue of the skin and is scattered by the cell wall or the like. The light detection unit 140 detects a part of the scattered light. In the optical path until the light emitted from the light emitting unit 120 is detected by the light detecting unit 140, a part of this light is absorbed by a specific component in the skin, for example, sugar such as glucose contained in the interstitial fluid. . Therefore, the concentration of a specific component in the skin can be calculated based on the light intensity detected by the light detection unit 140.
一方、皮膚のうち真皮組織以外の組織(具体的には表皮や皮下組織)からの散乱光は、糖分を検出するための信号としては不適切である。例えば表皮にはグルコースが含まれているが、このグルコースの濃度は血液中のグルコース濃度に追従しにくい。また、皮下組織は主に脂肪組織で構成されているため、グルコースの濃度は低い。このため、発光部120からの光は、皮膚に入った後、適切な深さで散乱される必要がある。
On the other hand, scattered light from tissues other than the dermis tissue (specifically, epidermis and subcutaneous tissue) in the skin is inappropriate as a signal for detecting sugar. For example, the epidermis contains glucose, but this glucose concentration is difficult to follow the glucose concentration in the blood. Moreover, since the subcutaneous tissue is mainly composed of adipose tissue, the glucose concentration is low. For this reason, the light from the light emitting unit 120 needs to be scattered at an appropriate depth after entering the skin.
これに対して本実施形態では、透光部材110が生体の皮膚に対して押し付けられているため、発光部120の光軸と光検出部140の光軸の交点αは、必ず皮膚の表面から深さdに位置する。dは2mm以下、好ましくは1.5mm以下である。このため、光検出部140が検出する光は、皮膚のうち適切な深さで散乱された成分を多く含む。従って、光検出部140が検出した光の強度に基づいて、皮膚内の特定の成分の濃度を算出した場合、この算出結果の信頼性は向上する。
On the other hand, in this embodiment, since the translucent member 110 is pressed against the skin of the living body, the intersection α between the optical axis of the light emitting unit 120 and the optical axis of the light detecting unit 140 is always from the surface of the skin. Located at depth d. d is 2 mm or less, preferably 1.5 mm or less. For this reason, the light detected by the light detection unit 140 includes many components scattered at an appropriate depth in the skin. Therefore, when the concentration of a specific component in the skin is calculated based on the light intensity detected by the light detection unit 140, the reliability of the calculation result is improved.
また、筐体100内において、発光部120と光検出部140の間には仕切部材130が位置している。仕切部材130は、一部が筐体100(例えば透光部材110)に接している。このため、発光部120が発光した光が筐体100の外部を経由せずに光検出部140に入射することを抑制できる。従って、光検出部140が検出した光の強度に基づいて、皮膚内の特定の成分の濃度を算出した場合、この算出結果の信頼性はさらに向上する。
In the housing 100, a partition member 130 is located between the light emitting unit 120 and the light detecting unit 140. A part of the partition member 130 is in contact with the housing 100 (for example, the translucent member 110). For this reason, it can suppress that the light which the light emission part 120 light-emitted enters into the light detection part 140, without passing through the exterior of the housing | casing 100. FIG. Therefore, when the concentration of a specific component in the skin is calculated based on the light intensity detected by the light detection unit 140, the reliability of the calculation result is further improved.
(第2の実施形態)
図2は、第2の実施形態に係る測定装置10の構成を示す図である。本実施形態に係る測定装置10は、以下の点を除いて、第1の実施形態に係る測定装置10と同様の構成である。 (Second Embodiment)
FIG. 2 is a diagram illustrating a configuration of themeasurement apparatus 10 according to the second embodiment. The measurement apparatus 10 according to the present embodiment has the same configuration as the measurement apparatus 10 according to the first embodiment except for the following points.
図2は、第2の実施形態に係る測定装置10の構成を示す図である。本実施形態に係る測定装置10は、以下の点を除いて、第1の実施形態に係る測定装置10と同様の構成である。 (Second Embodiment)
FIG. 2 is a diagram illustrating a configuration of the
まず、筐体100には、開口102として第1開口102a及び第2開口102bを有している。第1開口102aには第1透光部材112が嵌めこまれており、第2開口102bには第2透光部材114が嵌めこまれている。発光部120の光軸は第1透光部材112を介して筐体100の外部に延在しており、光検出部140の光軸は第2透光部材114を介して筐体100の外部に延在している。そして、仕切部材130は筐体100のうち第1開口102aと第2開口102bの間に位置する部分に接している。
First, the housing 100 has a first opening 102 a and a second opening 102 b as the opening 102. A first translucent member 112 is fitted in the first opening 102a, and a second translucent member 114 is fitted in the second opening 102b. The optical axis of the light emitting unit 120 extends to the outside of the housing 100 via the first light transmissive member 112, and the optical axis of the light detecting unit 140 is external to the housing 100 via the second light transmissive member 114. It extends to. The partition member 130 is in contact with a portion of the housing 100 located between the first opening 102a and the second opening 102b.
また、発光部120は、光源122及びレンズ124を有している。光源122は、第1の実施形態に示した発光素子を有している。レンズ124は、光源122からの光を集光する。レンズ124による光源122からの光の集光点は、透光部材110よりも外側に位置している。そしてこの集光点と、透光部材110の外面の距離は、2mm以下、好ましくは1.5mm以下であり、かつ好ましくは0.5mm以上である。なお、この集光点は、光検出部140の光軸と重なっていてもよい。ただし、上記した集光点と透光部材110の外面の距離が2mmよりも大きい場合、光検出部140の光軸は上記した集光点とは重ならない。
The light emitting unit 120 has a light source 122 and a lens 124. The light source 122 has the light emitting element shown in the first embodiment. The lens 124 condenses the light from the light source 122. A condensing point of light from the light source 122 by the lens 124 is located outside the translucent member 110. And the distance of this condensing point and the outer surface of the translucent member 110 is 2 mm or less, Preferably it is 1.5 mm or less, and Preferably it is 0.5 mm or more. In addition, this condensing point may overlap with the optical axis of the light detection unit 140. However, when the distance between the above-described condensing point and the outer surface of the translucent member 110 is greater than 2 mm, the optical axis of the light detection unit 140 does not overlap the above-described condensing point.
また、測定装置10は、制御部150、算出部160、表示部170、及び入力部180を有している。
Further, the measuring apparatus 10 includes a control unit 150, a calculation unit 160, a display unit 170, and an input unit 180.
入力部180は、測定装置10のユーザによって操作される。入力部180は、例えば押下型又は接触型のスイッチであり、筐体100の外面に位置している。制御部150は、入力部180に入力が行われると、発光部120を発光させる。
The input unit 180 is operated by the user of the measuring apparatus 10. The input unit 180 is, for example, a push type or contact type switch, and is located on the outer surface of the housing 100. The control unit 150 causes the light emitting unit 120 to emit light when input is made to the input unit 180.
算出部160は、光検出部140の検出結果に従って、検出対象における特定成分の量又は濃度、例えば皮膚の間質液に含まれる糖分(例えばグルコース)の量又は濃度を算出する。そして算出部160は、算出した結果を表示部170に表示させる。表示部170は筐体100の外面に位置しているため、測定装置10のユーザは、表示部170を視認することにより、測定装置10による測定結果を認識することができる。
The calculation unit 160 calculates the amount or concentration of the specific component in the detection target, for example, the amount or concentration of sugar (for example, glucose) contained in the interstitial fluid of the skin, according to the detection result of the light detection unit 140. Then, the calculation unit 160 causes the display unit 170 to display the calculated result. Since the display unit 170 is located on the outer surface of the housing 100, the user of the measurement apparatus 10 can recognize the measurement result obtained by the measurement apparatus 10 by viewing the display unit 170.
本実施形態によっても、第1の実施形態と同様の効果が得られる。また、透光部材110を第1透光部材112及び第2透光部材114の2つに分け、仕切部材130を筐体100のうち第1透光部材112と第2透光部材114の間に位置する部分に接触させている。このため、発光部120からの光が、透光部材110を導光路として光検出部140に入射することも抑制できる。
Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the translucent member 110 is divided into two parts, a first translucent member 112 and a second translucent member 114, and the partition member 130 is provided between the first translucent member 112 and the second translucent member 114 in the housing 100. It is made to contact the part located in. For this reason, it can also suppress that the light from the light emission part 120 injects into the light detection part 140 by making the translucent member 110 into a light guide path.
また、レンズ124による光源122からの光の集光点と、透光部材110の外面の距離は、2mm以下、好ましくは1.5mm以下である。このため、光源122からの光のうち真皮組織で散乱される光の強度は強くなる。従って、光検出部140が出力する信号のS/N比は大きくなり、その結果、算出部160による算出結果の信頼性は向上する。
Further, the distance between the condensing point of the light from the light source 122 by the lens 124 and the outer surface of the translucent member 110 is 2 mm or less, preferably 1.5 mm or less. For this reason, the intensity | strength of the light scattered by dermal tissue among the lights from the light source 122 becomes strong. Therefore, the S / N ratio of the signal output from the light detection unit 140 is increased, and as a result, the reliability of the calculation result by the calculation unit 160 is improved.
なお、仕切部材130は筐体100と一体に形成されていてもよい。
Note that the partition member 130 may be formed integrally with the housing 100.
(第3の実施形態)
図3は、第3の実施形態に係る測定装置10の構成を示す図である。本実施形態に係る測定装置10は、波長フィルタ190を有している点を除いて、第1の実施形態又は第2の実施形態に係る測定装置10と同様の構成である。図3は、第2の実施形態と同様の場合を示している。 (Third embodiment)
FIG. 3 is a diagram illustrating a configuration of themeasurement apparatus 10 according to the third embodiment. The measuring apparatus 10 according to the present embodiment has the same configuration as the measuring apparatus 10 according to the first embodiment or the second embodiment except that the wavelength filter 190 is provided. FIG. 3 shows a case similar to that of the second embodiment.
図3は、第3の実施形態に係る測定装置10の構成を示す図である。本実施形態に係る測定装置10は、波長フィルタ190を有している点を除いて、第1の実施形態又は第2の実施形態に係る測定装置10と同様の構成である。図3は、第2の実施形態と同様の場合を示している。 (Third embodiment)
FIG. 3 is a diagram illustrating a configuration of the
波長フィルタ190は、光検出部140の前に配置されており、第1波長の光を透過し、それ以外の波長の光をカットする。これにより、光検出部140に入射する光から、第1波長以外の光はカットされる。
The wavelength filter 190 is disposed in front of the light detection unit 140, transmits light of the first wavelength, and cuts light of other wavelengths. Thereby, light other than the first wavelength is cut from the light incident on the light detection unit 140.
なお、図4に示すように、波長フィルタ190は光検出部140の前ではなく発光部120の前に配置されていてもよい。また、波長フィルタ190は、光検出部140の前及び波長フィルタ190の前のそれぞれに配置されていてもよい。
As shown in FIG. 4, the wavelength filter 190 may be arranged in front of the light emitting unit 120 instead of in front of the light detecting unit 140. The wavelength filter 190 may be disposed in front of the light detection unit 140 and in front of the wavelength filter 190, respectively.
本実施形態によっても、第1または第2の実施形態と同様の効果が得られる。また、光検出部140に入射する光から、第1波長以外の光はカットされるため、測定装置10による測定精度はさらに向上する。
Also in this embodiment, the same effects as those in the first or second embodiment can be obtained. In addition, since light other than the first wavelength is cut from the light incident on the light detection unit 140, the measurement accuracy by the measurement apparatus 10 is further improved.
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
この出願は、2014年7月3日に出願された日本出願特願2014-138027を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2014-138027 filed on July 3, 2014, the entire disclosure of which is incorporated herein.
Claims (4)
- 筐体と、
前記筐体の一部に設けられた開口と、
前記開口内に位置し、前記筐体の一部を構成しており、第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、第1波長を含む光を、前記透光部材に、当該透光部材の外面に対して斜めに放射する発光手段と、
前記筐体の内部に配置され、前記透光部材に向いており、前記第1波長の光を検出する光検出手段と、
前記筐体の内部に配置され、前記発光手段と前記光検出手段の間に位置し、一部が前記筐体に接している仕切部材と、
を備える測定装置。 A housing,
An opening provided in a part of the housing;
A translucent member that is located within the opening and constitutes part of the housing, and transmits light of a first wavelength;
A light emitting means that is disposed inside the housing and emits light including a first wavelength obliquely to the light transmitting member with respect to an outer surface of the light transmitting member;
A light detecting means disposed inside the housing, facing the light transmissive member, and detecting light of the first wavelength;
A partition member disposed inside the housing, located between the light emitting means and the light detecting means, and a part of the partition member in contact with the housing;
A measuring apparatus comprising: - 請求項1に記載の測定装置において、
前記仕切部材の先端部は前記透光部材に接している測定装置。 The measuring apparatus according to claim 1,
A measuring device in which a tip of the partition member is in contact with the translucent member. - 請求項1に記載の測定装置において、
前記開口は、第1開口及び第2開口を含み、
前記透光部材は、前記第1開口内に位置する第1透光部材と、前記第2開口内に位置する第2透光部材と、を含み、
前記発光手段の光軸は前記第1透光部材を介して前記筐体の外部に延在し、
前記光検出手段の光軸は前記第2透光部材を介して前記筐体の外部に延在し、
前記仕切部材の先端部は、前記筐体のうち前記第1透光部材と前記第2透光部材の間に位置する部分に接している測定装置。 The measuring apparatus according to claim 1,
The opening includes a first opening and a second opening,
The translucent member includes a first translucent member located in the first opening and a second translucent member located in the second opening,
The optical axis of the light emitting means extends outside the housing via the first light transmissive member,
The optical axis of the light detection means extends outside the housing via the second light transmissive member,
The tip of the partition member is a measuring device in contact with a portion of the housing located between the first light transmissive member and the second light transmissive member. - 請求項1~3のいずれか一項に記載の測定装置において、
前記測定装置は、前記透光部材を生体の皮膚に押し当てた状態で使用され、
前記第1波長は近赤外域の波長であり、
さらに、
前記光検出手段が検出した前記第1波長の光の強度に基づいて、前記皮膚に含まれる糖分の量を算出する算出手段を備える測定装置。 The measuring apparatus according to any one of claims 1 to 3,
The measuring device is used in a state where the translucent member is pressed against the skin of a living body,
The first wavelength is a wavelength in the near infrared region,
further,
A measuring device comprising a calculating means for calculating the amount of sugar contained in the skin based on the intensity of light of the first wavelength detected by the light detecting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016531180A JPWO2016002363A1 (en) | 2014-07-03 | 2015-05-15 | measuring device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-138027 | 2014-07-03 | ||
JP2014138027 | 2014-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002363A1 true WO2016002363A1 (en) | 2016-01-07 |
Family
ID=55018918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064072 WO2016002363A1 (en) | 2014-07-03 | 2015-05-15 | Measuring device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016002363A1 (en) |
WO (1) | WO2016002363A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008154873A (en) * | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | Optical measuring instrument |
WO2014054488A1 (en) * | 2012-10-01 | 2014-04-10 | 国立大学法人香川大学 | Spectral characteristic measurement device |
-
2015
- 2015-05-15 WO PCT/JP2015/064072 patent/WO2016002363A1/en active Application Filing
- 2015-05-15 JP JP2016531180A patent/JPWO2016002363A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008154873A (en) * | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | Optical measuring instrument |
WO2014054488A1 (en) * | 2012-10-01 | 2014-04-10 | 国立大学法人香川大学 | Spectral characteristic measurement device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016002363A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10799128B2 (en) | Optical vital signs sensor | |
JP5031894B2 (en) | Self-luminous sensor device | |
US20070060819A1 (en) | Skin optical characterization device | |
US10088363B2 (en) | Biometric sensor and biometric analysis system including the same | |
US9329124B2 (en) | Scattered light measurement apparatus | |
JP6630738B2 (en) | Biological function detection sensor | |
EP1616524A4 (en) | Optical element for measuring biological information and biological information measuring instrument using it | |
JP2019013410A (en) | Detection device and biological information measurement device | |
JP2009106373A (en) | Sensing apparatus for biological surface tissue | |
WO2016002356A1 (en) | Measurement device | |
WO2016002363A1 (en) | Measuring device | |
JP5332713B2 (en) | Optical sensor and measurement system | |
WO2016092885A1 (en) | Measurement probe and living body optical measurement system | |
JPWO2006051778A1 (en) | Biological information measuring optical element and biological information measuring apparatus using the same | |
JP6705593B2 (en) | measuring device | |
JP2013053919A (en) | Haze value measuring apparatus and haze value measuring method | |
WO2007056971A3 (en) | Device for determining physiological variables | |
US11331011B2 (en) | System for the transcutaneous determining of blood alcohol concentration | |
US20240315612A1 (en) | Measuring device | |
JP7009429B2 (en) | Blood oxygen saturation measuring device | |
US20200163601A1 (en) | Optoelectronic sensor | |
JP2016174766A (en) | Non-contact biological information sensor | |
WO2015019392A1 (en) | Information detector and information measurement device, and information detection method | |
JP2000136997A (en) | Optical measuring device | |
JP2017018483A (en) | Medical probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815613 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016531180 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815613 Country of ref document: EP Kind code of ref document: A1 |