[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016095109A1 - 增强下行物理控制信道发送处理方法和设备 - Google Patents

增强下行物理控制信道发送处理方法和设备 Download PDF

Info

Publication number
WO2016095109A1
WO2016095109A1 PCT/CN2014/093974 CN2014093974W WO2016095109A1 WO 2016095109 A1 WO2016095109 A1 WO 2016095109A1 CN 2014093974 W CN2014093974 W CN 2014093974W WO 2016095109 A1 WO2016095109 A1 WO 2016095109A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
processing
dcis
dci
mapping
Prior art date
Application number
PCT/CN2014/093974
Other languages
English (en)
French (fr)
Inventor
郑中亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480083862.3A priority Critical patent/CN107005303B/zh
Priority to PCT/CN2014/093974 priority patent/WO2016095109A1/zh
Publication of WO2016095109A1 publication Critical patent/WO2016095109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an enhanced physical downlink control channel (English: Enhanced Physical Downlink Control Channel, EPDCCH) transmission processing method and device.
  • an enhanced physical downlink control channel English: Enhanced Physical Downlink Control Channel, EPDCCH
  • EPDCCH is a downlink physical control channel newly defined in Release 11 (English: Release 11, LTE for short), which is used to transmit downlink control information. (English: Downlink Control Information, referred to as: DCI).
  • the EPDCCH transmission process is as shown in FIG. 1 , and each DCI independently completes Cyclic Redundancy Check (CRC) addition, CRC masking, coding, rate matching, and Scrambling, modulation, power control (power control), layer mapping and precoding, subcarrier mapping processing, and then EPDCCH and other downlink channels along with the symbol for inverse fast Fourier transform (English: Inverse Fast Fourier Transformation, abbreviation :IFFT) Time-frequency conversion processing.
  • CRC Cyclic Redundancy Check
  • the transmission time interval (English: Transmission Time Interval, TTI for short) includes two time slots (English: slot), for example, each time slot includes 7 symbols, and each resource block in each symbol ( English: Resource Block (abbreviation: RB) includes 12 resource elements (English: Resource Element, abbreviated as RE).
  • Each symbol is numbered according to 0-11, so the subcarrier mapping process in DCI
  • Each DCI is mapped to multiple symbols in one TTI, and the same DCI is mapped to the REs with the same number in each symbol, so that EPDCCHs with multiple DCIs are mapped on each symbol.
  • the layer mapping and precoding of all the DCIs in one TTI are required to start the IFFT processing on the first symbol in the TTI, which results in a high processing delay requirement of the EPDCCH.
  • the embodiments of the present invention provide an EPDCCH transmission processing method and device, which are used to solve the technical problem that the processing delay of the EPDCCH in the prior art is tight.
  • an embodiment of the present invention provides a network device, including: a memory and a processor, where the memory stores a code of an EPDCCH transmission processing method, where the processor is configured to invoke the code to perform the following operations:
  • mapping the first DCI to the RE of the first symbol in the TTI where the N is greater than Or an integer equal to 1, transmitting the N DCIs in the TTI, the first symbol is any one of the TTIs, and the first DCI includes at least one of the N DCIs;
  • Performing, in the current symbol time, a first process on the RE of the first symbol where the first process includes: scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and inverse fast Fourier transform a process other than the second process in the IFFT process, the first symbol being any symbol after the current symbol, and the second process is to map the first DCI to the first symbol
  • the processor is configured to map the first DCI to the RE of the first symbol in the TTI, including: the processor is specifically configured to: in the current symbol And acquiring a part of data of the first DCI to be mapped to the RE of the first symbol; and mapping the acquired part of the data of the first DCI to the RE of the first symbol.
  • the first symbol is a next symbol of the current symbol.
  • the processor is configured to perform, after performing rate matching processing on the N downlink control signals DCI, and performing layer mapping and precoding processing on the N DCIs,
  • the first DCI is mapped to the RE of the first symbol in the TTI
  • the processor is specifically configured to perform layer mapping and pre-processing on the N DCIs after performing rate matching processing on the N DCIs.
  • the N DCIs are mapped onto the RE of the TTI.
  • the processor is configured to perform N DCI Mapping the first DCI to the RE of the first symbol in the TTI after performing the rate matching process and performing layer mapping and precoding processing on the N DCIs, including: the processor is specifically used, in the pair After the N DCIs perform rate matching processing and perform scrambling processing on the N DCIs, mapping the first DCI to the RE of the first symbol;
  • the processor is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processor is specifically configured to: in the time of the current symbol, the first symbol
  • the RE performs scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the processor is used to perform N DCI Mapping the first DCI to the RE of the first symbol in the TTI after performing the rate matching process and performing layer mapping and precoding processing on the N DCIs, including: the processor is specifically used, in the pair After the N DCIs are subjected to the scrambling process and before the N DCIs are modulated, the first DCI is mapped to the RE of the first symbol;
  • the processor is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processor is specifically configured to: in the time of the current symbol, the first symbol
  • the RE performs modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the processor is used to perform N DCI Mapping the first DCI to the RE of the first symbol in the TTI after performing the rate matching process and performing layer mapping and precoding processing on the N DCIs, including: the processor is specifically used, in the pair After the N DCIs are modulated, and before the N DCIs are subjected to the power control process, the first DCI is mapped to the RE of the first symbol;
  • the processor is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processor is specifically configured to: in the time of the current symbol, the first symbol
  • the RE performs power control processing, layer mapping and precoding processing, and IFFT processing.
  • the processor is configured to perform N DCI Mapping the first DCI to the RE of the first symbol in the TTI, after the performing the rate matching process, and performing the layer mapping and the precoding processing on the N DCIs, including: the processor is specifically configured to: Mapping the first DCI to the RE of the first symbol after performing power control processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs;
  • the processor is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processor is specifically configured to: in the time of the current symbol, the first symbol
  • the RE performs layer mapping and precoding processing, and IFFT processing.
  • an embodiment of the present invention provides a network device, including:
  • a mapping unit configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs, where
  • the N is an integer greater than or equal to 1.
  • the NTIs are transmitted in the TTI, the first symbol is any one of the TTIs, and the first DCI includes the N DCIs. at least one;
  • a processing unit configured to perform a first process on the RE of the first symbol in a time of a current symbol, where the first process includes: a scrambling process, a modulation process, a power control process, a layer mapping, and a precoding process, a process other than the second process in the inverse fast Fourier transform IFFT process, the first symbol being any symbol after the current symbol, and the second process is to map the first DCI to Processing performed after the rate matching process on the RE of the first symbol.
  • the mapping unit is configured to map the first DCI to the RE of the first symbol in the TTI, where the mapping unit is specifically configured to be used in the current And acquiring a part of data of the first DCI to be mapped to the RE of the first symbol; and mapping the acquired part of the data of the first DCI to the RE of the first symbol.
  • the first symbol is a next symbol of the current symbol.
  • the mapping unit is configured to perform, after performing rate matching processing on the N downlink control signals DCI, and performing layer mapping and precoding processing on the N DCIs, Mapping the first DCI to the RE of the first symbol in the TTI, the mapping unit is specifically configured to perform layer mapping on the N DCIs after performing rate matching processing on the N DCIs Before the precoding process, the N DCIs are mapped onto the RE of the TTI.
  • the mapping unit is configured to perform, after performing rate matching processing on the N DCIs, and performing layer mapping and precoding processing on the N DCIs,
  • the mapping of the first DCI to the RE of the first symbol in the TTI includes: the mapping unit is specifically configured to: after performing rate matching processing on the N DCIs, and before performing scrambling processing on the N DCIs Mapping the first DCI to the RE of the first symbol;
  • the processing unit is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processing unit is configured to: in the time of the current symbol, the first The symbol RE is subjected to scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the mapping unit is used to After the DCI performs the rate matching process, and performs the layer mapping and the precoding process on the N DCIs, mapping the first DCI to the RE of the first symbol in the TTI, including: the mapping unit is specifically used to After performing the scrambling process on the N DCIs and performing modulation processing on the N DCIs, mapping the first DCI to the REs of the first symbol;
  • the processing unit is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processing unit is configured to: in the time of the current symbol, the first The RE of the symbol performs modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the mapping unit is used to After the DCI performs the rate matching process, and performs the layer mapping and the precoding process on the N DCIs, mapping the first DCI to the RE of the first symbol in the TTI, including: the mapping unit is specifically used to After performing modulation processing on the N DCIs and performing power control processing on the N DCIs, mapping the first DCI to the RE of the first symbol;
  • the processing unit is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processing unit is configured to: in the time of the current symbol, the first The RE of the symbol performs power control processing, layer mapping and precoding processing, and IFFT processing.
  • the mapping unit is used to After the DCI performs rate matching processing and performs layer mapping and precoding processing on the N DCIs, Mapping the first DCI to the RE of the first symbol in the TTI, the mapping unit is specifically configured to perform layer mapping on the N DCIs after performing power control processing on the N DCIs Mapping the first DCI to the RE of the first symbol before the precoding process;
  • the processing unit is configured to perform a first process on the RE of the first symbol in a time of the current symbol, where the processing unit is configured to: in the time of the current symbol, the first The RE of the symbol performs layer mapping and precoding processing, and IFFT processing.
  • an embodiment of the present invention provides an EPDCCH transmission processing method, including:
  • mapping the first DCI to the RE of the first symbol in the TTI where the N is greater than Or an integer equal to 1, transmitting the N DCIs in the TTI, the first symbol is any one of the TTIs, and the first DCI includes at least one of the N DCIs;
  • Performing, in the current symbol time, a first process on the RE of the first symbol where the first process includes: scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and inverse fast Fourier transform a process other than the second process in the IFFT process, the first symbol being any symbol after the current symbol, and the second process is to map the first DCI to the first symbol
  • mapping the first DCI to the RE of the first symbol in the TTI includes:
  • the first symbol is a next symbol of the current symbol.
  • mapping the first DCI to The RE of the first symbol in the TTI includes:
  • mapping the N DCIs to REs of the TTIs After performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs, mapping the N DCIs to REs of the TTIs.
  • the first DCI mapping is performed after performing rate matching processing on the N DCIs and before performing layer mapping and precoding processing on the N DCIs.
  • To the RE of the first symbol in the TTI including:
  • the RE of the first symbol is subjected to scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing in the time of the current symbol.
  • mapping the first DCI to the RE of the first symbol in the TTI includes:
  • the RE of the first symbol is subjected to modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • mapping the first DCI to the RE of the first symbol in the TTI includes:
  • the RE of the first symbol is subjected to power control processing, layer mapping and precoding processing, and IFFT processing.
  • mapping the first DCI to the RE of the first symbol in the TTI includes:
  • the EPDCCH transmission processing method and device provided by the embodiment of the present invention map the first DCI to the first after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs.
  • the first processing of the RE of the first symbol is performed as follows, so that the layer mapping of the N DCIs in the TTI does not need to be completed before the IFFT processing is performed on the RE of each symbol.
  • the ITR of each symbol in this TTI can be IFFT processed, which solves the technical problem of delay in EPDCCH processing delay.
  • FIG. 1 is a schematic diagram of an EPDCCH transmission process in the prior art
  • Embodiment 1 of a network device according to the present invention is a schematic structural diagram of Embodiment 1 of a network device according to the present invention.
  • Embodiment 2 of a network device according to the present invention is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • FIG. 5 is a schematic diagram of a first implementation manner of an EPDCCH transmission processing method according to the present invention.
  • FIG. 6 is a schematic diagram of a second implementation manner of an EPDCCH transmission processing method according to the present invention.
  • FIG. 7 is a schematic diagram of a third implementation manner of an EPDCCH transmission processing method according to the present invention.
  • FIG. 8 is a schematic diagram of a fourth implementation manner of an EPDCCH transmission processing method according to the present invention.
  • FIG. 9 is a flowchart of Embodiment 2 of an EPDCCH transmission processing method according to the present invention.
  • FIG. 10 is a flowchart of Embodiment 3 of an EPDCCH transmission processing method according to the present invention.
  • FIG. 11 is a schematic diagram of an RE in a TTI according to an embodiment of the present invention.
  • the network device provided by the present invention may be, for example, an evolved base station (English: Evolved NodeB, eNB for short) in the LTE system, and the present invention is not limited thereto.
  • an evolved base station English: Evolved NodeB, eNB for short
  • eNB evolved NodeB
  • the network device in this embodiment may include: a memory 11 and a processor 12, where the memory 11 is configured to store and perform terminal working mode setting.
  • the code of the method; the memory 11 may include a non-volatile memory.
  • the processor 12 may be a central processing unit (English: Central Processing Unit, CPU for short), or an application specific integrated circuit (ASIC), or configured to implement the embodiments of the present invention.
  • One or more integrated circuits may be a central processing unit (English: Central Processing Unit, CPU for short), or an application specific integrated circuit (ASIC), or configured to implement the embodiments of the present invention.
  • ASIC application specific integrated circuit
  • the processor 12 is configured to invoke the code, and perform the following operations: mapping the first DCI to the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs On the RE of the first symbol, where N is an integer greater than or equal to 1, the N DCIs are transmitted in the TTI, and the first symbol is any one of the TTIs, the first
  • the DCI includes at least one of the N DCIs; performing, in a time of the current symbol, a first process on the RE of the first symbol, where the first process includes: a scrambling process, a modulation process, a power control process, Layer mapping and precoding processing, processing in addition to the second processing in the inverse fast Fourier transform IFFT processing, the first symbol is any symbol after the current symbol, and the second processing is in the Processing performed after the rate matching process before the first DCI is mapped to the RE of the first symbol.
  • the processor 12 is configured to map the first DCI to the RE of the first symbol in the TTI, where the processor 12 is specifically configured to: during the time of the current symbol, acquire, to be mapped to the first a portion of the first DCI data on a symbolized RE; and mapping the acquired portion of the first DCI data to the RE of the first symbol.
  • the first symbol is a next symbol of the current symbol.
  • the processor 12 is configured to map the first DCI to after performing rate matching processing on the N downlink control signals DCI and performing layer mapping and precoding processing on the N DCIs.
  • the processor 12 On the RE of the first symbol in the TTI, the processor 12 is specifically configured to: after performing rate matching processing on the N DCIs, and performing layer mapping and precoding processing on the N DCIs, The N DCIs are mapped to the RE of the TTI.
  • the processor 12 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs.
  • the processor 12 is specifically configured to map the first DCI to the first symbol after performing rate matching processing on the N DCIs and performing scrambling processing on the N DCIs.
  • the processor 12 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processor 12 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the processor 12 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs.
  • the processor 12 is specifically configured to map the first DCI to the first symbol after performing the scrambling process on the N DCIs and before performing modulation processing on the N DCIs.
  • the processor 12 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processor 12 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the processor 12 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs.
  • the processor 12 is specifically configured to map the first DCI to the RE of the first symbol after performing modulation processing on the N DCIs and performing power control processing on the N DCIs. ;
  • the processor 12 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processor 12 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs power control processing, layer mapping and precoding processing, and IFFT processing.
  • the processor 12 is configured to map the first DCI to the first one in the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs.
  • the processor 12 is specifically configured to map the first DCI to the N DCI after performing the power control processing on the N DCI and performing layer mapping and precoding processing on the N DCIs.
  • the RE of the first symbol On the RE of the first symbol;
  • the processor 12 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processor 12 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs layer mapping and precoding processing, and IFFT processing.
  • the network device of this embodiment may be used to implement the technical solution of the following method embodiments of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the network device in this embodiment may include: a mapping unit 21 and a processing unit 22, where the mapping unit 21 is configured to perform N downlinks.
  • the control signal DCI performs the rate matching process and performs layer mapping and precoding processing on the N DCIs
  • the first DCI is mapped to the resource element RE of the first symbol in the transmission time interval TTI, where N is an integer greater than or equal to 1.
  • the NTIs are transmitted in the TTI, the first symbol is any one of the TTIs, and the first DCI includes at least one of the N DCIs.
  • the processing unit 22 is configured to perform a first process on the RE of the first symbol in a time of a current symbol, where the first process includes: a scrambling process, a modulation process, a power control process, a layer mapping, and a precoding Processing, inverse fast Fourier transform IFFT processing, except for the second processing, the first symbol is any symbol after the current symbol, and the second processing is in the first DCI Mapping to the RE of the first symbol , The process performed after rate matching process.
  • the mapping unit 21 is configured to map the first DCI to the RE of the first symbol in the TTI, where the mapping unit 21 is specifically configured to: during the time of the current symbol, acquire a to-be-mapped to the a portion of the first DCI data on a symbolized RE; and mapping the acquired portion of the first DCI data to the RE of the first symbol.
  • the first symbol is a next symbol of the current symbol.
  • the mapping unit 21 is configured to map the first DCI to the first one of the TTIs after performing rate matching processing on the N downlink control signals DCI and performing layer mapping and precoding processing on the N DCIs.
  • the mapping unit 21 is specifically configured to map the N DCIs after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs. Up to the RE of the TTI.
  • the mapping unit 21 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and before performing layer mapping and precoding processing on the N DCIs.
  • the mapping unit 21 is specifically configured to map the first DCI to the first symbol after performing rate matching processing on the N DCIs and performing scrambling processing on the N DCIs.
  • the processing unit 22 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processing unit 22 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the mapping unit 21 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and before performing layer mapping and precoding processing on the N DCIs.
  • the mapping unit 21 is specifically configured to map the first DCI to the first symbol after performing the scrambling process on the N DCIs and before performing modulation processing on the N DCIs.
  • the processing unit 22 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processing unit 22 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • the mapping unit 21 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and before performing layer mapping and precoding processing on the N DCIs.
  • the mapping unit 21 is specifically configured to map the first DCI to the RE of the first symbol after performing modulation processing on the N DCIs and performing power control processing on the N DCIs. ;
  • the processing unit 22 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processing unit 22 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs power control processing, layer mapping and precoding processing, and IFFT processing.
  • the mapping unit 21 is configured to map the first DCI to the RE of the first symbol in the TTI after performing rate matching processing on the N DCIs and before performing layer mapping and precoding processing on the N DCIs.
  • the mapping unit 21 is specifically configured to: before performing the power control processing on the N DCIs, and before performing layer mapping and precoding processing on the N DCIs, mapping the first DCI to the first Symbol of RE;
  • the processing unit 22 is configured to perform the first processing on the RE of the first symbol in the time of the current symbol, including: the processing unit 22 is specifically configured to: during the time of the current symbol, the first symbol
  • the RE performs layer mapping and precoding processing, and IFFT processing.
  • the network device of this embodiment may be used to implement the technical solution of the following method embodiments of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • Embodiment 1 of an EPDCCH transmission processing method is a network device, and the method in this embodiment may include:
  • S101 Before performing rate matching processing on the N DCIs, and performing layer mapping and precoding processing on the N DCIs, mapping the first DCI to the RE of the first symbol in the TTI, where the N For an integer greater than or equal to 1, the N DCIs are transmitted in the TTI, the first symbol is any one of the TTIs, and the first DCI includes at least one of the N DCIs.
  • S102 Perform a first process on the RE of the first symbol in a time of a current symbol, where the first process includes: a scrambling process, a modulation process, a power control process, a layer mapping, and a precoding process, and an IFFT process. a process other than the second process, the first symbol being any symbol after the current symbol, and the second processing being before mapping the first DCI to the RE of the first symbol, The processing performed after the rate matching process.
  • N DCIs are transmitted in the TTI, that is, the N DCIs are transmitted in the same TTI, and after the rate matching processing is performed on the N DCIs, layer mapping and precoding are performed on the N DCIs.
  • mapping the first DCI to the RE of the first symbol in the TTI transmitting the N DCIs the process may also be referred to as subcarrier mapping, where the first DCI is an RE that needs to be mapped to the first symbol.
  • the first symbol is any one of the 14 symbols of the TTI.
  • At least one DCI of the N DCIs is called a first DCI; after mapping the first DCI to the RE of the first symbol, performing a first process on the RE of the first symbol at a current time, that is, a time of the current symbol, where the first processing includes : scrambling processing, modulation processing, power control processing, layer mapping, and precoding processing, and IFFT processing, before the rate matching processing, before the mapping of the first DCI to the RE of the first symbol Processing other than the processing performed, the first symbol being after the current symbol Any of the symbols, for example, the first symbol is the next symbol of the current symbol, or the first symbol is the next two symbols of the current symbol, etc.; the second processing is in the sub Processing performed after the carrier mapping process and after the rate matching process.
  • the specific process of mapping the first DCI to the RE of the first symbol in the TTI may be: storing the first DCI on the RE that needs to be mapped to the first symbol into the memory of the network device. The corresponding position of a symbol RE.
  • Mapping a DCI to the RE of the first symbol in the TTI includes: mapping the first DCI to after performing rate matching processing on the N DCIs and performing scrambling processing on the N DCIs On the RE of the first symbol, the first processing of the RE of the first symbol in the time of the current symbol, including: the RE of the first symbol in the time of the current symbol Perform scrambling processing, modulation processing, power control processing, layer mapping and precoding processing, and IFFT processing.
  • mapping the first DCI to the RE of the first symbol in the TTI After performing CRC addition processing, CRC masking processing, encoding processing, and rate matching processing on the N DCIs, mapping the first DCI to the RE of the first symbol in the TTI, then mapping the first DCI
  • the processing performed after the rate matching processing to the RE of the first symbol in the TTI is none, and therefore, the first processing includes: scrambling processing, modulation processing, power control processing, layer mapping, and precoding processing, IFFT Processing; thus, when the RE of the first symbol needs to be processed (ie, the time of the current symbol), the RE of the first symbol is subjected to scrambling processing, modulation processing, power control processing, layer mapping, and precoding processing. , IFFT processing.
  • the process of this implementation may be as shown in FIG. 5.
  • the IFFT processing is not shown in FIG. 5.
  • the subcarrier mapping processing shown in FIG. 5 indicates that the first DCI is mapped to the RE of the first symbol.
  • the first Mapping the DCI to the RE of the first symbol in the TTI includes: mapping the first DCI to the to-be after performing the scrambling process on the N DCIs and performing modulation processing on the N DCIs The first symbol of the RE;
  • Performing the first processing on the RE of the first symbol in the time of the current symbol including: performing modulation processing, power control processing, and layer on the RE of the first symbol in the time of the current symbol Mapping and precoding processing, IFFT processing.
  • the first processing includes: modulation processing, power control processing, layer mapping, and precoding processing, and IFFT processing; thus, when the arrival reaches the first symbol
  • the RE is processed (that is, the time of the current symbol)
  • the RE of the first symbol is subjected to modulation processing, power control processing, layer mapping, precoding processing, and IFFT processing.
  • the process of this implementation may be as shown in FIG. 6.
  • the IFFT processing is not shown in FIG. 6.
  • the subcarrier mapping processing shown in FIG. 6 indicates that the first DCI is mapped to the RE of the first symbol.
  • the first Mapping the DCI to the RE of the first symbol in the TTI includes: mapping the first DCI to the TTI after performing modulation processing on the N DCIs and performing power control processing on the N DCIs a symbol of RE;
  • Performing the first processing on the RE of the first symbol in the time of the current symbol including: performing power control processing, layer mapping, and pre-processing on the RE of the first symbol in the time of the current symbol Encoding processing, IFFT processing.
  • the first process includes: power control processing, layer mapping, and Precoding processing, IFFT processing; thus, when the RE of the first symbol needs to be processed (ie, the time of the current symbol), the RE of the first symbol is subjected to power control processing, layer mapping and precoding processing, and IFFT deal with.
  • the process of this implementation may be as shown in FIG. 7.
  • the IFFT processing is not shown in FIG. 7, and the subcarrier mapping processing shown in FIG. 7 indicates that the first DCI is mapped to the RE of the first symbol.
  • the first Mapping the DCI to the RE of the first symbol in the TTI includes: mapping the first DCI to the N DCI after performing the power control processing and performing layer mapping and precoding processing on the N DCIs On the RE of the first symbol in the TTI;
  • the first processing of the RE of the first symbol including: performing layer mapping and precoding processing on the RE of the first symbol, IFFT in a time of the current symbol deal with.
  • the first process includes: layer mapping and precoding processing, IFFT processing; thus, when the RE that needs to process the first symbol is reached (ie, the time of the current symbol), the first symbol is The RE performs layer mapping and precoding processing, and IFFT processing.
  • the process of this implementation may be as shown in FIG. 8.
  • the IFFT processing is not shown in FIG. 8.
  • the subcarrier mapping processing shown in FIG. 8 indicates that the first DCI is mapped to the RE of the first symbol.
  • mapping the first DCI to the RE of the first symbol performs the first processing as described above, so that the TTI of the N DCIs in the TTI does not need to be completed before the IFFT processing of the RE of each symbol can be performed on the TTI.
  • the RE of each symbol in the IFFT processing performs the technical problem of delay in EPDCCH processing delay.
  • FIG. 9 is a flowchart of Embodiment 2 of the EPDCCH transmission processing method of the present invention.
  • the execution entity of this embodiment is a network device, and the method in this embodiment may include:
  • the N is an integer greater than or equal to 1.
  • the NTIs are transmitted in the TTI, the first symbol is any one of the TTIs, and the first DCI includes the N DCIs. At least one of them.
  • S201 and S202 are used to complete mapping the first DCI to the RE of the first symbol; respectively, processing is performed on each symbol in the TTI, and one of the symbols in the TTI is as follows.
  • the number hereinafter referred to as the first symbol
  • the other symbols of the TTI are processed in accordance with the processing of the symbol.
  • all processing before the transmission of the RE of the first symbol is completed before the time of the first symbol, and therefore, among the N DCIs, which are determined during the current symbol time.
  • the DCI needs to be mapped to the RE of the first symbol, where all DCIs mapped to the RE of the first symbol are referred to as the first DCI; since one DCI is mapped onto the symbol of the TTI, it is mapped into the symbol of the TTI On each symbol of the symbol is a part of the data of the DCI, so it is also necessary to obtain which data in the first DCI needs to be mapped to the RE of the first symbol. Then, the acquired part of the data of the first DCI is mapped to the RE of the first symbol.
  • the first processing is performed on the RE of the first symbol in the current symbol.
  • the specific implementation process refer to the method embodiment of the present invention. The related description in S102 will not be described here.
  • the first symbol is the next symbol of the current symbol; and the RE of the first symbol of the TTI is in the time of the last symbol of the last TTI of the TTI.
  • the first symbol is the next two symbols of the current symbol; and the first one of the TTI is in the time of the second to last symbol of the last TTI of the TTI.
  • the RE of the symbol performs the above S201-S203; then, in the time of the last symbol of the last TTI of the TTI, the above S201-S203 is performed on the RE of the second symbol of the TTI; and then, the first one of the TTI In the time of the symbol, the above S201-S203 is performed on the RE of the third symbol of the TTI; and so on, in the time of the twelfth symbol of the TTI, the above S201 is performed on the RE of the fourteenth symbol of the TTI.
  • the M is an integer greater than or equal to 1, and less than or equal to 13.
  • determining the RE to be mapped to the first symbol in the current symbol time Part of the first DCI data, and the obtained part of the first DCI data is mapped to the RE of the first symbol, and then the first symbol RE is first performed as described above. Processing, such that before performing IFFT processing on the RE of each symbol, the IFFT processing can be performed on each symbol in the TTI after the layer mapping and precoding processing of the N DCIs in the TTI are not completed, and the EPDCCH processing is solved. Technical problems with tight schedules.
  • FIG. 10 is a flowchart of Embodiment 3 of an EPDCCH transmission processing method according to the present invention.
  • the execution entity of this embodiment is a network device, and the method in this embodiment may include:
  • mapping the N DCIs to REs of the TTI After performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs, mapping the N DCIs to REs of the TTI.
  • the N DCIs are transmitted on the same TTI, and after the rate matching processing is performed on the N DCIs, and the layer mapping and precoding processing are performed on the N DCIs, the N TTIs are performed on the TTIs.
  • Subcarrier mapping of the DCI that is, mapping the N DCIs to the REs of the symbols of the TTI.
  • This execution step performs subcarrier mapping in units of DCI, that is, mapping one DCI to the corresponding symbol of the TTI.
  • the next DCI is mapped to the corresponding RE in the symbol of the TTI, and so on, until the Nth DCI is mapped to the corresponding RE in the symbol of the TTI, thereby completing mapping the first DCI to
  • the first symbol is any one of the TTIs, and the first DCI includes at least one of the N DCIs.
  • the DCI data is divided into nine parts of data, and the first part of the DCI data is mapped to the No. 0 RE of the first symbol of the TTI. The second part of the DCI data is mapped to the No.
  • the third part of the DCI data is mapped to the No. 0 RE of the third symbol
  • the fourth part of the DCI data is mapped to the fifth.
  • the fifth part of the DCI data will be mapped to the No. 0 RE of the sixth symbol
  • the sixth part of the DCI data will be mapped to the No. 0 RE of the eighth symbol
  • the seventh of the DCI Part of the data will be mapped to the 0th RE of the 10th symbol
  • the eighth part of the DCI will be mapped to
  • the No. 0 RE of the eleventh symbol and the ninth part of the DCI data are mapped to the No. 0 RE of the twelfth symbol.
  • mapping the N DCIs to the REs of the TTI after performing rate matching processing on the N DCIs and performing layer mapping and precoding processing on the N DCIs, mapping the N DCIs to the REs of the TTI, and then Performing a first process on the RE of the first symbol in a time of the current symbol; thus, before performing IFFT processing on the RE of each symbol, layer mapping and precoding processing of N DCIs in the TTI need not be completed. After that, IFFT processing can be performed on each symbol in this TTI, and the technical problem of delay in EPDCCH processing delay is solved.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (English: Read-Only Memory, ROM for short), random access memory (English: Random Access Memory, RAM), disk or A variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种增强下行物理控制信道发送处理方法和设备,此方法包括:在对N个DCI进行速率匹配处理之后、且对N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,其中,N≥l,TTI中传输N个DCI,第一符号为TTI中的任一符号,第一DCI包括N个DCI中的至少一个;在当前符号的时间内,对该第一符号的RE进行第一处理,第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理中除第二处理之外的处理,第一符号为当前符号之后的该ΤΉ中的任一符号,第二处理为在将第一DCI映射至第一符号的RE上之前、速率匹配处理之后进行的处理,解决了EPDCCH处理时延紧张的技术问题。

Description

增强下行物理控制信道发送处理方法和设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种增强下行物理控制信道(英文:Enhanced Physical Downlink Control Channel,简称:EPDCCH)发送处理方法和设备。
背景技术
EPDCCH是通用移动通信技术的长期演进(英文:Long Term Evolution,简称:LTE)的版本11(英文:Release 11,简称:R11)新增定义的一种下行物理控制信道,用于发射下行控制信息(英文:Downlink Control Information,简称:DCI)。
现有技术中,EPDCCH的发送处理过程如图1所示,每个DCI均独立完成循环冗余码校验(英文:Cyclical Redundancy Check,简称:CRC)添加、CRC加掩、编码、速率匹配、加扰、调制、功控(功率控制)、层映射和预编码、子载波映射的处理,然后再将EPDCCH同下行其它信道一起按照符号进行反快速傅氏变换(英文:Inverse Fast Fourier Transformation,简称:IFFT)时频转换处理。其中,一个传输时间间隔(英文:Transmission Time Interval,简称:TTI)包括两个时隙(英文:slot),例如:每个时隙中包括7个符号,每个符号中的每个资源块(英文:Resource Block,简称:RB)包括12个资源单元(英文:Resource Element,简称:RE),每个符号均按照0-11对这12个RE进行编号,因此,在DCI的子载波映射过程中,每一个DCI会映射到1个TTI中的多个符号上,并且同一个DCI会映射到各符号中编号相同的RE上,从而每个符号上会映射有多个DCI的EPDCCH。
然而,现有技术中需要完成1个TTI中的所有DCI的层映射和预编码之后才能开始对这个TTI中的第1个符号进行IFFT处理,造成EPDCCH的处理时延要求较高。
发明内容
本发明实施例提供一种EPDCCH发送处理方法和设备,用于解决现有技术中EPDCCH的处理时延紧张的技术问题。
第一方面,本发明实施例提供一种网络设备,包括:存储器和处理器,所述存储器中存储有EPDCCH发送处理方法的代码,所述处理器用于调用所述代码执行如下操作:
在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;
在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
在第一方面的第一种可能的实现方式中,所述处理器用于将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;以及将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一符号为所述当前符号的下一个符号。
在第一方面的第三种可能的实现方式中,所述处理器用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任意一种,在第一方面的第四种可能的实现方式中,所述处理器用于在对N个DCI 进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任意一种,在第一方面的第六种可能的实现方式中,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任意一种,在第一方面的第七种可能的实现方式中,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于, 在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
第二方面,本发明实施例提供一种网络设备,包括:
映射单元,用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;
处理单元,用于在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
在第二方面的第一种可能的实现方式中,所述映射单元用于将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;以及将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第一符号为所述当前符号的下一个符号。
在第二方面的第三种可能的实现方式中,所述映射单元用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任意一 种,在第二方面的第四种可能的实现方式中,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任意一种,在第二方面的第五种可能的实现方式中,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任意一种,在第二方面的第六种可能的实现方式中,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任意一种,在第二方面的第七种可能的实现方式中,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前, 将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
第三方面,本发明实施例提供一种EPDCCH发送处理方法,包括:
在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;
在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
在第三方面的第一种可能的实现方式中,所述将第一DCI映射至TTI中的第一符号的RE上,包括:
在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;
将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第一符号为所述当前符号的下一个符号。
在第三方面的第三种可能的实现方式中,在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任意一 种,在第三方面的第四种可能的实现方式中,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任意一种,在第三方面的第五种可能的实现方式中,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任意一种,在第三方面的第六种可能的实现方式中,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任意一种,在第三方面的第七种可能的实现方式中,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
本发明实施例提供的EPDCCH发送处理方法和设备,在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上,然后再对该第一符号的RE进行如下所述的第一处理,这样在对每一个符号的RE进行IFFT处理之前,不需要完成该TTI中的N个DCI的层映射和预编码处理之后才能对这个TTI中的每个符号的RE进行IFFT处理,解决了EPDCCH处理时延紧张的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中EPDCCH发送处理的一种示意图;
图2为本发明网络设备实施例一的结构示意图;
图3为本发明网络设备实施例二的结构示意图;
图4为本发明EPDCCH发送处理方法实施例一的流程图;
图5为本发明EPDCCH发送处理方法的第一种实现方式示意图;
图6为本发明EPDCCH发送处理方法的第二种实现方式示意图;
图7为本发明EPDCCH发送处理方法的第三种实现方式示意图;
图8为本发明EPDCCH发送处理方法的第四种实现方式示意图;
图9为本发明EPDCCH发送处理方法实施例二的流程图;
图10为本发明EPDCCH发送处理方法实施例三的流程图;
图11为本发明实施例提供的TTI中的RE的一种示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的网络设备,例如可以LTE系统中的演进型基站(英文:Evolved NodeB,简称:eNB),本发明不以此为限。
图2为本发明网络设备实施例一的结构示意图,如图2所示,本实施例的网络设备可以包括:存储器11和处理器12,其中,其中,存储器11用于存储执行终端工作模式设置方法的代码;存储器11可以包括非易失性存储器(Non-volatile Memory)。处理器12可以是一个中央处理器(英文:Central Processing Unit,简称:CPU),或者是特定集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。处理器12用于调用所述代码,执行如下操作:在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
可选地,处理器12用于将第一DCI映射至TTI中的第一符号的RE上,包括:处理器12具体用于,在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;以及将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
可选地,所述第一符号为所述当前符号的下一个符号。
可选地,处理器12用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至 TTI中的第一符号的RE上,包括:处理器12具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
可选地,处理器12用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:处理器12具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
处理器12用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理器12具体用于,在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
可选地,处理器12用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:处理器12具体用于,在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
处理器12用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理器12具体用于,在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
可选地,处理器12用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:处理器12具体用于,在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
处理器12用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理器12具体用于,在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
可选地,处理器12用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第 一符号的RE上,包括:处理器12具体用于,在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
处理器12用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理器12具体用于,在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
本实施例的网络设备,可以用于执行本发明下述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图3为本发明网络设备实施例二的结构示意图,如图3所示,本实施例的网络设备可以包括:映射单元21和处理单元22,其中,映射单元21,用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至传输时间间隔TTI中的第一符号的资源元素RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;处理单元22,用于在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
可选地,映射单元21用于将第一DCI映射至TTI中的第一符号的RE上,包括:映射单元21具体用于,在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;以及将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
可选地,所述第一符号为所述当前符号的下一个符号。
可选地,映射单元21用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:映射单元21具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
可选地,映射单元21用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:映射单元21具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
处理单元22用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理单元22具体用于,在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
可选地,映射单元21用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:映射单元21具体用于,在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
处理单元22用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理单元22具体用于,在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
可选地,映射单元21用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:映射单元21具体用于,在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
处理单元22用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理单元22具体用于,在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
可选地,映射单元21用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:映射单元21具体用于,在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
处理单元22用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:处理单元22具体用于,在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
本实施例的网络设备,可以用于执行本发明下述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图4为本发明EPDCCH发送处理方法实施例一的流程图,如图4所示,本实施例的执行主体为网络设备,本实施例的方法可以包括:
S101、在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个。
S102、在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
本实施例中,该TTI中传输N个DCI,即该N个DCI在同一个TTI中进行传输,在对该N个DCI进行速率匹配处理之后,且对该N个DCI进行层映射和预编码处理之前,将第一DCI映射至传输该N个DCI的TTI中的第一符号的RE上,该过程也可称为子载波映射,其中,该第一DCI为需要映射至第一符号的RE上的DCI,该第一符号为该TTI的14个符号中的任一个符号,由于每个符号的RE上映射有这N个DCI中的至少一个DCI,该N个DCI中的至少一个DCI称为第一DCI;在将第一DCI映射至该第一符号的RE上之后,在当前时间,即该当前符号的时间内,对该第一符号的RE进行第一处理,该第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理中除在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理之外的处理,所述第一符号为所述当前符号之后的任一符号,例如:该第一符号为当前符号的下一个符号,或者,该第一符号为当前符号的下两个符号等等;所述第二处理为在所述子 载波映射处理之前、所述速率匹配处理之后进行的处理。
可选地,其中,将第一DCI映射至TTI中的第一符号的RE上的具体过程可以为,将需要映射至第一符号的RE上的第一DCI存储至网络设备的内存中该第一符号的RE的相应位置上。
可选地,在本发明实施例的第一种可行的实现方式中,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
具体地,在对该N个DCI进行CRC添加处理、CRC加掩处理、编码处理、速率匹配处理之后,将第一DCI映射至TTI中的第一符号的RE上,那么在将第一DCI映射至TTI中的第一符号的RE上之前、所述速率匹配处理之后进行的处理为无,因此,第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理;从而当到达需要对该第一符号的RE进行处理的时候(即当前符号的时间),对该第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。本实现方案的过程可以如图5所示,图5中未示出IFFT处理,图5所示的子载波映射处理表示将第一DCI映射至第一符号的RE上。
在本发明实施例的第二种可行的实现方式中,所述在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
具体地,在对该N个DCI进行在对该N个DCI进行CRC添加处理、CRC 加掩处理、编码处理、速率匹配处理、加扰处理之后,将所述第一DCI映射至所述第一符号的RE上,那么在将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理为加扰处理,因此,第一处理包括:调制处理、功控处理、层映射和预编码处理、IFFT处理;从而当到达需要对该第一符号的RE进行处理的时候(即当前符号的时间),对该第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。本实现方案的过程可以如图6所示,图6中未示出IFFT处理,图6所示的子载波映射处理表示将第一DCI映射至第一符号的RE上。
在本发明实施例的第三种可行的实现方式中,所述在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至TTI中的第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
具体地,在对该N个DCI进行在对该N个DCI进行CRC添加处理、CRC加掩处理、编码处理、速率匹配处理、加扰处理、调制处理之后,对该第一符号的子载波进行该第一DCI的子载波映射,那么在所述子载波映射处理之前、所述速率匹配处理之后进行的处理为加扰处理和调制处理,因此,第一处理包括:功控处理、层映射和预编码处理、IFFT处理;从而当到达需要对该第一符号的RE进行处理的时候(即当前符号的时间),对该第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。本实现方案的过程可以如图7所示,图7中未示出IFFT处理,图7所示的子载波映射处理表示将第一DCI映射至第一符号的RE上。
在本发明实施例的第四种可行的实现方式中,所述在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上;
所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
具体地,在在对该N个DCI进行在对该N个DCI进行CRC添加处理、CRC加掩处理、编码处理、速率匹配处理、加扰处理、调制处理、功控处理之后,将所述第一DCI映射至所述第一符号的RE上,那么在将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理为加扰处理、调制处理和功控处理,因此,第一处理包括:层映射和预编码处理、IFFT处理;从而当到达需要对该第一符号的RE进行处理的时候(即当前符号的时间),对该第一符号的RE进行层映射和预编码处理、IFFT处理。本实现方案的过程可以如图8所示,图8中未示出IFFT处理,图8所示的子载波映射处理表示将第一DCI映射至第一符号的RE上。
本实施例中,在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上,然后再对该第一符号的RE进行如上所述的第一处理,这样在对每一个符号的RE进行IFFT处理之前,不需要完成该TTI中的N个DCI的层映射和预编码处理之后才能对这个TTI中的每个符号的RE进行IFFT处理,解决了EPDCCH处理时延紧张的技术问题。
图9为本发明EPDCCH发送处理方法实施例二的流程图,如图9所示,本实施例的执行主体为网络设备,本实施例的方法可以包括:
S201、在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,在当前符号的时间内,获取待映射至所述第一符号的RE中的所述第一DCI的一部分数据。
其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个。
S202、将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
本实施例中,S201和S202用于完成将第一DCI映射至第一符号的RE上;以TTI中每个符号上为单位分别进行处理,下面以TTI中的其中一个符 号(下面称为第一符号)进行详细说明,TTI的其它各个符号参照该符号的处理方式进行处理。为了解决EPDCCH处理时延紧张的问题,在该第一符号的时间之前,就完成该第一符号的RE的发送前的所有处理,因此,在当前符号的时间内,从N个DCI中确定哪些DCI需要映射至该第一符号的RE上,此处将映射到该第一符号的RE上的所有DCI称为第一DCI;由于一个DCI映射至TTI的符号上,所以映射到TTI的符号中的每个符号上的是该DCI的其中一部分数据,所以还需要获取第一DCI中的哪些数据需要映射到该第一符号的RE上。然后再将获取的该第一DCI的一部分数据映射至该第一符号的RE上。
S203、在所述当前符号的时间内,对所述第一符号的RE进行第一处理。
本实施例中,在将第一DCI映射至第一符号的RE之后,在当前符号的时间内,还对该第一符号的RE进行第一处理,具体实现过程可以参见本发明方法实施例一S102中的相关记载,此处不再赘述。
在本发明实施例的第一种可行的实现方式中,第一符号为当前符号的下一个符号;在上述TTI的上一个TTI的最后一个符号的时间内,对本TTI的第一个符号的RE执行上述S201-S203,然后,在本TTI的第一个符号的时间内,对本TTI的第二个符号的RE执行上述S201-S203;以此类推,在本TTI的第十三个符号的时间内,对本TTI的第十四个符号的RE执行上述S201-S203。
在本发明实施例的第二种可行的实现方式中,第一符号为当前符号的下两个符号;在上述TTI的上一个TTI的倒数第二个符号的时间内,对本TTI的第一个符号的RE执行上述S201-S203;然后,在上述TTI的上一个TTI的最后一个符号的时间内,对本TTI的第二个符号的RE执行上述S201-S203;然后,在本TTI的第一个符号的时间内,对本TTI的第三个符号的RE执行上述S201-S203;以此类推,在本TTI的第十二个符号的时间内,对本TTI的第十四个符号的RE执行上述S201-S203;在本TTI的第十三个符号的时间内,对本TTI的下一个TTI的第一个符号的RE执行上述S201-S203,在本TTI的第十四个符号的时间内,对本TTI的下一个TTI的第二个符号的RE执行上述S201-S203。
当第一符号为当前符号的下三个符号,具体执行过程与上述实现方式类 似,此处不再赘述;当第一符号为当前符号的下四个符号,具体执行过程与上述实现方式类似,此处不再赘述;当第一符号为当前符号的下M个符号,具体执行过程与上述实现方式类似,此处不再赘述,所述M为大于或等于1、并且小于或等于13的整数。
本实施例中,在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,在当前符号的时间内,确定待映射至所述第一符号的RE中的所述第一DCI的一部分数据,并将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上,然后再对该第一符号的RE进行如上所述的第一处理,这样在对每一个符号的RE进行IFFT处理之前,不需要完成该TTI中的N个DCI的层映射和预编码处理之后才能对这个TTI中的每个符号进行IFFT处理,解决了EPDCCH处理时延紧张的技术问题。
图10为本发明EPDCCH发送处理方法实施例三的流程图,如图10所示,本实施例的执行主体为网络设备,本实施例的方法可以包括:
S301、在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至TTI的RE上。
本实施例中,N个DCI在同一个TTI上进行传输,在对该N个DCI进行速率匹配处理之后、且对该N个DCI进行层映射和预编码处理之前,对该TTI进行该N个DCI的子载波映射,即将该N个DCI映射至该TTI的各符号的RE上,这一执行步骤是以DCI为单位进行子载波映射,即,将一个DCI映射至该TTI的符号中相应的RE上,将下一个DCI映射至该TTI的符号中相应的RE上,以此类推,直至将第N个DCI映射至该TTI的符号中相应的RE上,从而完成了将第一DCI映射至该TTI的第一符号的RE上,该第一符号为该TTI中的任一符号,该第一DCI包括所述N个DCI中的至少一个。以N个DCI中的一个DCI为例进行说明,如图11所示,该DCI的数据会分成九部分数据,该DCI的第一部分数据会映射至该TTI的第1个符号的0号RE、该DCI的第二部分数据会映射至第2个符号的0号RE、该DCI的第三部分数据会映射至第3个符号的0号RE、该DCI的第四部分数据会映射至第5个符号的0号RE、该DCI的第五部分数据会映射至第6个符号的0号RE、该DCI的第六部分数据会映射至第8个符号的0号RE、该DCI的第七部分数据会映射至第10个符号的0号RE、该DCI的第八部分数据会映射至 第11个符号的0号RE、该DCI的第九部分数据会映射至第12个符号的0号RE上。
S302、在当前符号的时间内,对所述第一符号进行第一处理。
本实施例中,S302的具体实现过程可以参见本发明方法实施例一S102中的相关记载,此处不再赘述。
本实施例,通过在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上,然后在当前符号的时间内,对所述第一符号的RE进行第一处理;这样在对每一个符号的RE进行IFFT处理之前,不需要完成该TTI中的N个DCI的层映射和预编码处理之后才能对这个TTI中的每个符号进行IFFT处理,解决了EPDCCH处理时延紧张的技术问题。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (24)

  1. 一种网络设备,其特征在于,包括:存储器和处理器,所述存储器中存储有增强下行物理控制信道EPDCCH发送处理方法的代码,所述处理器用于调用所述代码执行如下操作:
    在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至传输时间间隔TTI中的第一符号的资源元素RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;
    在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
  2. 根据权利要求1所述的网络设备,其特征在于,所述处理器用于将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;以及将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
  3. 根据权利要求2所述的网络设备,其特征在于,所述第一符号为所述当前符号的下一个符号。
  4. 根据权利要求1所述的网络设备,其特征在于,所述处理器用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
  5. 根据权利要求1-4任意一项所述的网络设备,其特征在于,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括: 所述处理器具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
    所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
  6. 根据权利要求1-4任意一项所述的网络设备,其特征在于,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
    所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
  7. 根据权利要求1-4任意一项所述的网络设备,其特征在于,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
    所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
  8. 根据权利要求1-4任意一项所述的网络设备,其特征在于,所述处理器用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述处理器具体用于,在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
    所述处理器用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理器具体用于,在所述当前符号的时间内,对所述第一 符号的RE进行层映射和预编码处理、IFFT处理。
  9. 一种网络设备,其特征在于,包括:
    映射单元,用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至传输时间间隔TTI中的第一符号的资源元素RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;
    处理单元,用于在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
  10. 根据权利要求9所述的网络设备,其特征在于,所述映射单元用于将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;以及将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
  11. 根据权利要求10所述的网络设备,其特征在于,所述第一符号为所述当前符号的下一个符号。
  12. 根据权利要求9所述的网络设备,其特征在于,所述映射单元用于在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
  13. 根据权利要求9-12任意一项所述的网络设备,其特征在于,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号 的RE上;
    所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
  14. 根据权利要求9-12任意一项所述的网络设备,其特征在于,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
    所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
  15. 根据权利要求9-12任意一项所述的网络设备,其特征在于,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
    所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
  16. 根据权利要求9-12任意一项所述的网络设备,其特征在于,所述映射单元用于在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:所述映射单元具体用于,在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
    所述处理单元用于在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:所述处理单元具体用于,在所述当前符号的时间内,对所述 第一符号的RE进行层映射和预编码处理、IFFT处理。
  17. 一种增强下行物理控制信道EPDCCH发送处理方法,其特征在于,包括:
    在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至传输时间间隔TTI中的第一符号的资源元素RE上,其中,所述N为大于或等于1的整数,所述TTI中传输所述N个DCI,所述第一符号为所述TTI中的任一符号,所述第一DCI包括所述N个DCI中的至少一个;
    在当前符号的时间内,对所述第一符号的RE进行第一处理,所述第一处理包括:加扰处理、调制处理、功控处理、层映射和预编码处理、反快速傅氏转换IFFT处理中除第二处理之外的处理,所述第一符号为所述当前符号之后的任一符号,所述第二处理为在所述将所述第一DCI映射至所述第一符号的RE上之前、所述速率匹配处理之后进行的处理。
  18. 根据权利要求17所述的方法,其特征在于,所述将第一DCI映射至TTI中的第一符号的RE上,包括:
    在所述当前符号的时间内,获取待映射至所述第一符号的RE上的所述第一DCI的一部分数据;
    将获取的所述第一DCI的一部分数据映射至所述第一符号的RE上。
  19. 根据权利要求18所述的方法,其特征在于,所述第一符号为所述当前符号的下一个符号。
  20. 根据权利要求17所述的方法,其特征在于,在对N个下行控制信号DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
    在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将所述N个DCI映射至所述TTI的RE上。
  21. 根据权利要求17-20任意一项所述的方法,其特征在于,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
    在对所述N个DCI进行速率匹配处理之后、且对所述N个DCI进行加扰处理之前,将所述第一DCI映射至所述第一符号的RE上;
    所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
    在所述当前符号的时间内,对所述第一符号的RE进行加扰处理、调制处理、功控处理、层映射和预编码处理、IFFT处理。
  22. 根据权利要求17-20任意一项所述的方法,其特征在于,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
    在对所述N个DCI进行加扰处理之后、且对所述N个DCI进行调制处理之前,将所述第一DCI映射至所述第一符号的RE上;
    所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
    在所述当前符号的时间内,对所述第一符号的RE进行调制处理、功控处理、层映射和预编码处理、IFFT处理。
  23. 根据权利要求17-20任意一项所述的方法,其特征在于,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
    在对所述N个DCI进行调制处理之后、且对所述N个DCI进行功控处理之前,将第一DCI映射至所述第一符号的RE上;
    所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
    在所述当前符号的时间内,对所述第一符号的RE进行功控处理、层映射和预编码处理、IFFT处理。
  24. 根据权利要求17-20任意一项所述的方法,其特征在于,所述在对N个DCI进行速率匹配处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至TTI中的第一符号的RE上,包括:
    在对所述N个DCI进行功控处理之后、且对所述N个DCI进行层映射和预编码处理之前,将第一DCI映射至所述第一符号的RE上;
    所述在当前符号的时间内,对所述第一符号的RE进行第一处理,包括:
    在所述当前符号的时间内,对所述第一符号的RE进行层映射和预编码处理、IFFT处理。
PCT/CN2014/093974 2014-12-16 2014-12-16 增强下行物理控制信道发送处理方法和设备 WO2016095109A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480083862.3A CN107005303B (zh) 2014-12-16 2014-12-16 增强下行物理控制信道发送处理方法和设备
PCT/CN2014/093974 WO2016095109A1 (zh) 2014-12-16 2014-12-16 增强下行物理控制信道发送处理方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093974 WO2016095109A1 (zh) 2014-12-16 2014-12-16 增强下行物理控制信道发送处理方法和设备

Publications (1)

Publication Number Publication Date
WO2016095109A1 true WO2016095109A1 (zh) 2016-06-23

Family

ID=56125573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093974 WO2016095109A1 (zh) 2014-12-16 2014-12-16 增强下行物理控制信道发送处理方法和设备

Country Status (2)

Country Link
CN (1) CN107005303B (zh)
WO (1) WO2016095109A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220371A1 (en) * 2019-05-01 2020-11-05 Qualcomm Incorporated Layer-based channel state information (csi) omission for compressed type-2 csi feedback
WO2024102040A1 (en) * 2022-11-08 2024-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Physical layer processing for wireless communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052978A2 (en) * 2009-10-28 2011-05-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting downlink control signaling
CN102883368A (zh) * 2011-07-13 2013-01-16 夏普株式会社 物理下行控制信道的分配方法和设备
US20130286980A1 (en) * 2012-03-16 2013-10-31 Mediatek, Inc. Physical Structure and Reference Signal Utilization of Enhanced Physical Downlink Control Channel for OFDM/OFDMA Systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398122B2 (en) * 2011-07-27 2016-07-19 Lg Electronics Inc. Sequence mapping method and apparatus in wireless communication system
US9769806B2 (en) * 2012-01-17 2017-09-19 Texas Instruments Incorporated Resource configuration for EPDCCH
ES2760478T3 (es) * 2012-10-30 2020-05-14 Huawei Tech Co Ltd Método para procesar un canal de control de enlace descendente físico mejorado y equipo de usuario

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052978A2 (en) * 2009-10-28 2011-05-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting downlink control signaling
CN102883368A (zh) * 2011-07-13 2013-01-16 夏普株式会社 物理下行控制信道的分配方法和设备
US20130286980A1 (en) * 2012-03-16 2013-10-31 Mediatek, Inc. Physical Structure and Reference Signal Utilization of Enhanced Physical Downlink Control Channel for OFDM/OFDMA Systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220371A1 (en) * 2019-05-01 2020-11-05 Qualcomm Incorporated Layer-based channel state information (csi) omission for compressed type-2 csi feedback
WO2024102040A1 (en) * 2022-11-08 2024-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Physical layer processing for wireless communication

Also Published As

Publication number Publication date
CN107005303B (zh) 2019-06-18
CN107005303A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
TWI566556B (zh) 用於共同控制頻道之調變及編碼方案發信之方法、系統及裝置
WO2016165575A1 (zh) 一种实现码块分割的方法及装置
JP2018512774A (ja) アップリンクデータ伝送の方法および装置
JP2020511814A (ja) 参照信号送信方法及び送信機器
KR102056746B1 (ko) 지시 정보를 전송하는 방법 및 장치
US9942006B2 (en) Method and device for determining interleaver
WO2016101107A1 (zh) 传输指示信息的方法和装置
US11515988B2 (en) Method and device for determining initial positions of downlink data channel
WO2015196726A1 (zh) 数据处理装置及方法、bbu、rru、计算机存储介质
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
US11652588B2 (en) Aperiodic ZP CSI-RS resource set determination and configuration methods and devices, storage medium, user equipment, and network end
CN111567074B (zh) 一种信道传输方法及装置
WO2014012423A1 (zh) 数据传输方法和装置
WO2016095109A1 (zh) 增强下行物理控制信道发送处理方法和设备
WO2018228497A1 (zh) 一种指示方法、处理方法及装置
WO2018228496A1 (zh) 一种指示方法、处理方法及装置
US12010694B2 (en) Data sending and receiving method, device, system, terminal, base station, and storage medium
CN110875815B (zh) 资源映射方法及装置
WO2015039626A1 (zh) 一种发送和接收数据的方法、系统及设备
WO2016074194A1 (zh) 一种数据传输方法、设备及系统
US11218248B2 (en) Channel encoding method and device
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
CN114900899B (zh) Pdcch资源分配方法、装置、电子设备及存储介质
WO2017107712A1 (zh) 信息的发送方法及装置
WO2017211285A1 (zh) 信息发送方法及装置、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908144

Country of ref document: EP

Kind code of ref document: A1