WO2016093340A1 - 電源装置、接合システム、及び、通電加工方法 - Google Patents
電源装置、接合システム、及び、通電加工方法 Download PDFInfo
- Publication number
- WO2016093340A1 WO2016093340A1 PCT/JP2015/084776 JP2015084776W WO2016093340A1 WO 2016093340 A1 WO2016093340 A1 WO 2016093340A1 JP 2015084776 W JP2015084776 W JP 2015084776W WO 2016093340 A1 WO2016093340 A1 WO 2016093340A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energization
- current
- semiconductor switch
- reverse conducting
- welding
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/0342—Observing magnetic fields related to the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/04—Flash butt welding
- B23K11/043—Flash butt welding characterised by the electric circuits used therewith
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
- B23K11/115—Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/16—Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/241—Electric supplies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/25—Monitoring devices
- B23K11/252—Monitoring devices using digital means
- B23K11/257—Monitoring devices using digital means the measured parameter being an electrical current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1423—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the flow carrying an electric current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4826—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
- H05B6/103—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the present invention relates to a power supply device, a joining system, and an energization processing method.
- This application claims priority based on Japanese Patent Application No. 2014-252141 filed in Japan on December 12, 2014 and Japanese Patent Application No. 2014-252151 filed in Japan on December 12, 2014 These contents are incorporated herein by reference.
- resistance spot welding is often used when assembling various vehicles such as automobiles, ships, and other general machines. Resistance spot welding occurs in a spot portion by energizing a welding electrode while pressing the welding electrode against the front side and the back side of the overlapping portion (spot portion) of a plurality of metal plates whose plate surfaces are overlapped with each other. This is a method of joining a plurality of metal plates by melting and solidifying spot portions by Joule heat.
- a single-phase alternating current at a commercial frequency or a discharge current from a capacitor is applied to a welding electrode via a current transformer.
- a direct current is applied by rectifying the current passing through the current transformer.
- the current flowing in the spot portion is a low frequency current or a direct current
- the current concentrates at the center of the spot portion (contact portion between the electrode and the metal plate), and the current flows almost uniformly. Therefore, in consideration of the heat outflow around the spot portion (the current-carrying portion), the temperature distribution in the current-carrying portion of the metal plate has the highest temperature at the center of the current-carrying region, and the temperature is lower as the position is farther from this current-carrying region. Distribution.
- Patent Document 1 discloses a technique for controlling the material of the weld metal by controlling the current value and controlling the temperature history of the weld metal.
- Patent Document 2 discloses that power supplied from a low-frequency power source with a frequency of 50 Hz and power supplied from a high-frequency power source with a frequency of 30 kHz to control the heat generation distribution in the current-carrying part of the metal plate. It is disclosed that the tempering region is controlled by applying simultaneously to a sheet of steel plates.
- Patent Document 3 and Patent Document 7 disclose a magnetic energy recovery switch (hereinafter referred to as MERS).
- spatter molten metal
- Patent Document 4 discloses a technique for increasing the pressure when the pressure of the weld metal rod on the metal plate is lower than the reference pressure.
- Patent Document 5 discloses a resistance spot obtained by averaging a signal output from a pressure detector when the welding electrode and the pressure detector are not in contact with each other.
- a technique for controlling the applied pressure by subtracting the compensation value from a signal output from a pressure detector during welding is disclosed.
- Patent Document 6 discloses a technique for synchronizing the applied pressure and the welding current during resistance spot welding.
- spot welded joint the mechanical properties of a joint (hereinafter referred to as “spot welded joint”) formed by spot welding by superimposing steel sheets are measured by applying a tensile load in the direction of shearing the steel sheet (TSS: Tension). Shear Strength) and cross tension force (CTS: Cross Tension Strength) measured by applying a tensile load in the direction of peeling the steel sheet.
- TSS Tension
- CTS Cross Tension Strength
- the CTS of the welded joint increases with an increase in the strength of the steel plate, so that a problem related to the joint strength hardly occurs.
- a high-strength steel sheet having a tensile strength of 750 MPa or more even if the tensile strength of the steel sheet increases, the CTS does not increase or conversely decreases.
- the stress concentration on the welded portion is increased due to a decrease in deformability, and the welded portion is baked to reduce the toughness of the welded portion, so that the CTS is lowered.
- the improvement of CTS is calculated
- Patent Document 8 discloses a high-frequency spot welder in which a welding transformer is attached to a welding gun and power is supplied to a spot welding point through a coaxial conductor.
- This high-frequency spot welder is provided with a frequency converter, and changes the frequency as necessary to improve the welded portion by heat treatment to improve the strength.
- the nugget diameter is not enlarged only by heat treatment, there is a limit to the improvement of CTS.
- Patent Document 9 discloses a metal material welding method in which spot welding is performed using high-frequency power, and a heat treatment is performed on the spot-welded region.
- the nugget diameter does not increase, so there is a limit to the improvement of CTS.
- the power of the second frequency higher than the first frequency is applied to the weld formed by applying the power of the first frequency, and the joint end region of the weld is formed.
- a welding method for heating the vicinity of the outer periphery is applied.
- the nugget diameter does not increase, so there is a limit to the improvement of CTS.
- Patent Document 10 discloses a method of refining the structure of a welded portion by applying mechanical vibration to a welded part when the welded part is shifted from a molten state to a solidified structure in a spot welding method. .
- this method there is a problem that propagation of mechanical vibration to the melted portion is small, the structure of the welded portion is not miniaturized as expected, and the effect of improving CTS is small.
- Non-Patent Document 1 discloses a spot welding method using a spot welding electrode having a smooth concave depression at the center of one electrode tip. According to this spot welding method, a nugget having a diameter equal to or larger than the minimum guaranteed nugget diameter can be stably formed. However, due to the presence of the depression provided in the spot welding electrode, the welding operation becomes unstable when there is a slight shift or inclination of the axis of the welding machine, so that it is difficult to apply to actual production.
- Patent Document 11 discloses a spot welding electrode capable of forming a nugget having a large diameter. However, the presence of a cylindrical hollow portion at the tip of the electrode makes welding unstable when there is a slight shift or inclination in the axis of the welding machine, making it difficult to apply to actual production. Patent Document 11 does not disclose CTS.
- Patent Document 1 is intended for single-phase alternating current and direct current at a conventional commercial frequency, and can only control conventional effective values as current control.
- Patent Document 2 requires two power sources, a low frequency power source and a high frequency power source. Therefore, since control of two power supplies is needed, control becomes complicated and there exists a possibility that an apparatus may enlarge.
- the appropriate heat distribution in the welded part of the metal plate is a single spot welding according to the welding conditions (size, material, thickness, temperature change etc. of the welded part) and required characteristics (welded metal structure, joint strength). It will change in a very short time, such as within 1 second required to apply.
- MERS of the said patent document 3 and the said patent document 7 utilizes the structure of the current switch which regenerates snubber energy, it is examined about performing frequency control of a large current within a short energization heating time. It has not been.
- the response (the time required from when the applied pressure is detected to when the pressure is applied with the changed applied pressure) is delayed. . Therefore, it is not easy to reliably suppress sputtering. Therefore, it is required to suppress the occurrence of spatter when performing resistance spot welding.
- a power supply apparatus is a power supply apparatus that supplies an output current to an energization processing apparatus that energizes a workpiece, and includes a first power supply; and a current supplied from the first power supply.
- a magnetic energy regenerative switch that receives and converts the output current into a first energization frequency and a second energization frequency in which the energization frequencies of the output current are different from each other within one energization processing time by the energization processing device
- the energization frequency is set so that the control unit includes different first energization frequency and second energization frequency within one energization processing time. Change.
- the energization frequency of the output current to be applied is set so that the energization processing device performs appropriate machining conditions (for example, current distribution conditions and heat distribution conditions of the welded portion) according to the material and shape of the workpiece. Can be controlled. And since the structure which switches an energization frequency with a magnetic energy regeneration switch is employ
- the one energization processing time may be 1 second or less.
- the energization frequency can be controlled even within a short time of 1 second or less, it can be suitably applied to, for example, resistance spot welding.
- the energization frequency during the energization machining includes an inductance on the energization machining device side viewed from an output end of the magnetic energy regeneration switch, and the magnetic It may be below the resonance frequency determined by the capacitance of the capacitor of the energy regenerative switch.
- soft switching can be realized by setting the energization frequency to the resonance frequency or lower.
- the magnetic energy regenerative switch includes a first reverse conducting semiconductor switch and a first power switch.
- the four reverse conducting semiconductor switches and the second reverse conducting semiconductor switch and the third reverse conducting semiconductor are arranged in series in the first path so that the conducting directions at the time of switch-off are opposite to each other.
- the switches are arranged in series in the second path with the conduction directions at the time of switch-off being opposite to each other, and the first reverse-conduction type semiconductor switch and the third reverse-conduction type semiconductor switch are switched off
- a bridge circuit having the same conduction direction at the time, and a region between the first reverse conduction type semiconductor switch and the fourth reverse conduction type semiconductor switch in the region of the first path, Second path area
- a capacitor connected between a region between the second reverse conducting semiconductor switch and the third reverse conducting semiconductor switch, the first power supply, and the energization processing.
- the control unit is arranged between the first reverse conducting semiconductor switch and the third reverse conducting semiconductor switch, the second reverse conducting semiconductor switch, and the fourth reverse conducting switch.
- the energization frequency is controlled within the one energization processing time, or the first reverse conduction type ON time and OFF of at least one of the semiconductor switch and the third reverse conducting semiconductor switch, the second reverse conducting semiconductor switch, and the fourth reverse conducting semiconductor switch
- the current supplied from between the first power source and a current value of the energizing frequency and the output current is controlled respectively in said single current processing time.
- a joining system includes the power supply device according to any one of (1) to (4) above; the output current output from the power supply device; A joining device that is the energization processing device for joining the plurality of materials to be energized by energizing the contact region between the materials to be energized and heating the contact region by energization.
- a joining device that is the energization processing device for joining the plurality of materials to be energized by energizing the contact region between the materials to be energized and heating the contact region by energization.
- the joining device is arranged to face the first electrode; the first electrode; A second electrode sandwiching the plurality of materials to be energized between the first electrode, the plurality of materials to be energized, and the second electrode, by the output current output from the power supply device A plurality of coils through which the generated magnetic flux passes; and the control unit changes the energization frequency of the output current output from the power supply device according to the electromotive force generated in the plurality of coils by the magnetic flux.
- the magnetic energy regenerative switch is controlled so that In the case of (6) above, the state of the output current flowing through the material to be energized during energization processing can be grasped as a change in electromotive force generated in the coil. Therefore, based on this change in electromotive force, the control unit can feedback control the operation of the magnetic energy regenerative switch so that the output current applied to the material to be energized is appropriate. If a single coil is arranged, the current value flowing through the electrode can be detected and control based on the current value is possible. However, using multiple coils can extract information on the current distribution, so it is highly accurate. Control becomes possible.
- the plurality of coils may be disposed between the first electrode and the second electrode with respect to at least one of the first electrode and the second electrode. You may arrange
- changes in electromotive force generated in the coil can be captured at a plurality of locations around at least one of the first electrode and the second electrode, the output flowing in the energized material It is possible to grasp the current state change in more detail.
- the following configuration may be adopted: at least one of the electromotive forces generated by the plurality of coils is set in advance by the control unit. If it is determined that the output current is out of the range, the magnetic energy regeneration switch is controlled so that the output current is increased or decreased by a value corresponding to the amount of deviation from the preset range. In the case described in (8) above, the electromotive force generated by a plurality of coils is compared with a preset range, and the output current is controlled by a value corresponding to the amount of deviation from the preset range. Can do.
- the plurality of coils face each other via the first electrode and the second electrode, and are wound around the plurality of materials to be energized.
- a configuration may be adopted.
- a change in electromotive force generated by a plurality of coils wound around the plurality of materials to be energized is opposed to each other via the first electrode and the second electrode. Therefore, the state change of the output current flowing through the material to be energized can be grasped in more detail.
- the joining device may include a pressure adjusting unit that increases or decreases a clamping force for clamping the plurality of energized materials. Good.
- a pressure adjusting unit that increases or decreases a clamping force for clamping the plurality of energized materials. Good.
- An energization processing method includes a preparation step of preparing an energization machining condition according to a workpiece; and a single energization machining time of the workpiece according to the energization machining condition An energization process in which an output current having a first energization frequency is applied to the workpiece, and an output current having a second energization frequency different from the first energization frequency is applied to the workpiece. And a process.
- energization is performed so as to include different first energization frequencies and second energization frequencies in accordance with the energization machining conditions within one energization machining time. Change the frequency.
- energization processing is performed under an appropriate processing condition (for example, a current distribution condition or a heat distribution condition of the welded portion) according to the material or shape of the workpiece.
- the energization processing step may be configured to change the output current according to a change in electromotive force based on a magnetic flux generated by the output current applied to the workpiece. You may have the process to increase / decrease.
- the state of the output current flowing through the workpiece can be grasped as a change in electromotive force based on the magnetic flux. Therefore, appropriate feedback control can be performed based on the change in electromotive force so that the output current applied to the workpiece is appropriate.
- the energization processing step includes a step of forming a contact region by sandwiching a plurality of energized materials that are the workpieces; A step of energizing and heating the region with the output current; and a step of increasing or decreasing the clamping force applied to the plurality of materials to be energized.
- the clamping force by increasing the clamping force as necessary, the outer diameter of the melted portion in the contact region can be increased, so that the fusion area between the materials to be energized can be increased.
- the energization processing device can be made to perform energization processing under an appropriate processing condition in accordance with the material and shape of the work material. (For example, in the case of resistance spot welding, it is possible to improve the joint strength at the welded portion).
- the energization processing apparatus can be made to perform energization processing under an appropriate processing condition according to the material and shape of the workpiece, the characteristics of the workpiece (for example, resistance spot welding can be used). For example, the joint strength at the welded portion can be improved.
- the joining apparatus can perform joining by the joining condition suitable according to the material and shape of the to-be-energized material to join, between to-be-energized materials It is possible to improve the joint strength and the like in the joining region.
- the electromotive force generated by a plurality of coils is compared with a preset range, and the output current is controlled by a value corresponding to the amount of deviation from the preset range. Therefore, finer feedback control can be performed. Therefore, it is possible to more effectively prevent the occurrence of spatter in the material to be energized and further improve the joint quality.
- the energization processing can be performed under an appropriate energization processing condition according to the material and shape of the workpiece, characteristics of the workpiece (for example, resistance If it is spot welding, it becomes possible to improve the joint strength etc. in a welding part.
- Embodiments of the power supply device, the joining system, and the energization processing method of the present invention will be described below.
- MERS magnetic energy recovery switch
- a current frequency (energization frequency) applied to a workpiece (conductive material, energized material) is energized.
- a power supply device that can be controlled within one energization processing time by the device is adopted.
- energization heating is performed in which a large current flows in a short time.
- short-time energization heating means that energization processing time (one energization heating time) is energization of, for example, 1 second or less, preferably 0.5 seconds or less (that is, 1 second).
- one energization process (one energization heating) is the same process by stopping energization after starting the target process (heating process) by energizing the conductive material. The process until the process (heat treatment) is completed.
- this one-time energization process (energization heating) the energization starts the process (heating process), temporarily stops energization for the purpose of cooling / solidifying the welded part, and the like again.
- the energization process (energization heating) is resumed by energizing the welding, and then the machining process (heating process) is terminated by stopping energization to the welded portion. That is, one energization process (one energization heating) includes a case where a temporary energization stop is performed once or a plurality of times between the initial energization start and the final energization end. In resistance spot welding, one resistance spot welding is performed within this one energization heating time.
- the large current refers to a current having an effective value of, for example, 1 kA or more, preferably 3 kA or more.
- FIG. 1 is a diagram illustrating an example of a configuration of a resistance spot welding system 1 according to the first embodiment.
- the resistance spot welding system 1 is an example of a joining system, and includes an AC power source 100 (first power source), a rectifier 200, a DC reactor 300, a MERS 400, a control unit 500, an AC inductance 600, and a current transformer 700.
- a resistance spot welder 800 electric current processing apparatus.
- a power supply device is configured by using the AC power supply 100, the rectifier 200, the DC reactor 300, the MERS 400, the control unit 500, the AC inductance 600, and the current transformer 700. .
- This power supply device supplies an output current to a resistance spot welder 800 that energizes a workpiece.
- the MERS 400 receives a current supplied from the AC power supply 100 and converts this current into an output current supplied to the resistance spot welder 800.
- the connection relationship on the input side of the MERS 400 is as follows.
- the input terminal of rectifier 200 and AC power supply 100 are connected to each other.
- One of the output ends of the rectifier 200 and one end of the DC reactor 300 are connected to each other.
- the other one of the output terminals of the rectifier 200 and the DC terminal c of the MERS 400 are connected to each other.
- the other end of DC reactor 300 and DC terminal b of MERS 400 are connected to each other.
- the connection relationship on the output side of the MERS 400 is as follows.
- the AC terminal d of the MERS 400 and one end of the AC inductance 600 are connected to each other.
- the other end of the AC inductance 600 and one of the input ends of the current transformer 700 are connected to each other.
- the AC terminal a of the MERS 400 and the other input terminal of the current transformer 700 are connected to each other.
- One of the output ends of the current transformer 700 and the welding electrode E1 (first electrode) are connected to each other, and the other one is connected to the welding electrode E2 (second electrode).
- the AC power supply 100 is an example of an original power supply, and outputs AC power.
- AC power supply 100 may be a single-phase AC power supply or a three-phase AC power supply.
- the rectifier 200 rectifies the AC power output from the AC power supply 100 to generate DC power.
- AC power supply 100 is a single-phase AC power supply
- rectifier 200 includes a single-phase rectifier circuit.
- AC power supply 100 is a three-phase AC power supply
- rectifier 200 includes a three-phase rectifier circuit.
- the DC reactor 300 smoothes the DC power output from the rectifier 200.
- the MERS 400 is an example of MERS, and outputs DC power input from the rectifier 200 via the DC reactor 300 as AC power.
- the control unit 500 controls the operation of the MERS 400. Details of the operation of the MERS 400 will be described later.
- the current transformer 700 converts the alternating current output from the MERS 400 via the alternating current inductance 600 into a large current according to the turn ratio of the current transformer 700 and outputs the large current to the welding electrodes E1 and E2 of the resistance spot welder 800. To do.
- a large current is supplied to the resistance spot welder 800 using the current transformer 700 will be described as an example.
- the current transformer 700 is not necessarily used. For example, if each element constituting the MERS 400 is configured to withstand the above-described large current, the current transformer 700 need not be used.
- the resistance spot welder 800 includes metal plates M1 and M2 from the front side and the back side of the overlapping portion of the plurality of metal plates M1 and M2 whose plate surfaces are overlapped with each other, that is, from the A direction and the B direction in FIG. By energizing the contact areas at desired positions of the metal plates M1 and M2 while pressurizing the welding electrodes E1 and E2 so as to sandwich M2, the contact areas are joined by Joule heat generated in the contact areas.
- a well-known thing can be utilized.
- Various materials that can be applied to resistance spot welding can be employed as the material, plate thickness, and number of metal plates M1 and M2 to be subjected to resistance spot welding.
- the energization processing apparatus is the resistance spot welder 800 will be described as an example.
- MERS 400 includes a bridge circuit and a capacitor C.
- the bridge circuit is composed of four reverse conducting semiconductor switches U, V, X, and Y arranged in two paths.
- the capacitor C is disposed between the two paths of the bridge circuit.
- the bridge circuit includes a first path that is a path reaching the AC terminal d from the AC terminal a via the DC terminal b, and an AC terminal d from the AC terminal a via the DC terminal c. And a second route that is a route that reaches In the first path, a reverse conducting semiconductor switch V (fourth reverse conducting semiconductor switch) is disposed between the AC terminal d and the DC terminal b, and the reverse is provided between the DC terminal b and the AC terminal a.
- a conductive semiconductor switch U (first reverse conductive semiconductor switch) is disposed.
- a reverse conducting semiconductor switch Y (third reverse conducting semiconductor switch) is arranged between the AC terminal d and the DC terminal c, and the reverse is provided between the DC terminal c and the AC terminal a.
- a conductive semiconductor switch X (second reverse conductive semiconductor switch) is disposed.
- the capacitor C is disposed between the DC terminal b and the DC terminal c.
- Each of the reverse conducting semiconductor switches U, V, X, and Y conducts current only in one direction when the switch is off when no ON signal is input to the gate terminals G U , G V , G X , and G Y.
- the on signal is input to the gate terminals G U , G V , G X , and G Y , the current is conducted in both directions. That is, the reverse conducting semiconductor switches U, V, X, and Y conduct current in one direction between the emitter terminal and the collector terminal when the switch is off, but current in both directions between the emitter terminal and the collector terminal when the switch is on. Is made conductive.
- Each reverse conducting semiconductor switch U, V, X, and Y is arranged so that the polarity of the switch is as follows.
- the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch X connected in parallel between the AC terminal a and the AC terminal d have switch polarities opposite to each other.
- the reverse conducting semiconductor switch V and the reverse conducting semiconductor switch Y connected in parallel between the AC terminal a and the AC terminal d also have switch polarities in opposite directions.
- the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch V connected in series between the AC terminal a and the AC terminal d have switch polarities in opposite directions.
- the reverse conducting semiconductor switch X and the reverse conducting semiconductor switch Y connected in series between the AC terminal a and the AC terminal d also have switch polarities in opposite directions.
- the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch Y have a forward switch polarity.
- the reverse conducting semiconductor switch V and the reverse conducting semiconductor switch X also have forward switch polarity.
- the switch polarity of the reverse conducting semiconductor switches U and Y and the switch polarity of the reverse conducting semiconductor switches V and X are in opposite directions.
- the switch polarity shown in FIG. 1 may be reversed between the reverse conducting semiconductor switches U and Y and the reverse conducting semiconductor switches V and X.
- the reverse conducting semiconductor switches U, V, X, and Y Various configurations are possible for the reverse conducting semiconductor switches U, V, X, and Y.
- the semiconductor switches S U , S V , S X , and S Y and the diode D U It is assumed to be configured by parallel connection with D V , D X , and D Y. That is, each of the reverse conducting semiconductor switches U, V, X, and Y includes one of the diodes D U , D V , D X , and D Y and the semiconductor switch S U connected in parallel to the diode. , S V , S X , and S Y.
- the gate terminals G U , G V , G X , and G Y of the semiconductor switches S U , S V , S X , and S Y are connected to the control unit 500, respectively.
- Each of the gate terminals G U , G V , G X , and G Y is an on signal (gate) that turns on the semiconductor switches S U , S V , S X , and S Y as a control signal from the control unit 500 to the MERS 400. Signal) input. While the on signal is input, the semiconductor switches S U , S V , S X , and S Y are in the on state, and conduct current in both directions.
- the reverse conducting semiconductor switch included in the MERS 400 is not limited to the reverse conducting semiconductor switches U, V, X, and Y. That is, the reverse conduction type semiconductor switch may be configured to exhibit the above-described operation.
- the reverse conduction type semiconductor switch may be a power MOS FET, a reverse conduction type GTO thyristor, etc. There may be.
- the switch polarity of the reverse conducting semiconductor switches U, V, X, and Y will be described as follows using the diodes D U , D V , D X , and D Y. That is, the forward direction (the direction of conduction when switched off) is the conduction direction of each diode D U , D V , D X , and D Y , and the reverse direction (the direction of not conducting when switched off) is the respective diode D U. , D V , D X , and D Y are non-conducting directions.
- the conduction directions of the diodes connected in parallel (D U and D X or D V and D Y ) are opposite to each other between the AC terminal a and the AC terminal d, and are connected in series.
- the conduction directions of the diodes are also opposite to each other between the AC terminal a and the AC terminal d. Further, between the AC terminal a and the AC terminal d, the conduction direction of the diode D U and D Y are mutually a forward conduction direction similarly diode D V and D X also mutually in the forward direction . Therefore, between the AC terminal a and the AC terminal d, the conduction directions of the diodes D U and D Y and the diodes D V and D X X are opposite to each other.
- the reverse conducting semiconductor switches U, V, X, and Y are arranged so that the forward direction is as follows. That is, if the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch Y are a first pair and the reverse conducting semiconductor switch V and the reverse conducting semiconductor switch X are a second pair, the reverse conducting of the first pair is performed.
- Type semiconductor switch U and reverse conduction type semiconductor switch Y are arranged so that the forward direction is the same direction, and the second pair of reverse conduction type semiconductor switch V and reverse conduction type semiconductor switch X have the same forward direction. It is arranged to become.
- the first pair and the second pair are arranged so that the forward directions are opposite to each other. Therefore, the reverse conducting semiconductor switches (U and Y or V and X) arranged on the diagonal line in the bridge circuit are arranged so that the forward directions are the same.
- MERS400 when one reverse conduction type semiconductor switch is turned on among two reverse conduction type semiconductor switches arranged on the diagonal line of the bridge circuit, the other reverse conduction type semiconductor switch is also turned on. Similarly, when one reverse conducting semiconductor switch of two reverse conducting semiconductor switches arranged on the diagonal line of the bridge circuit is turned off, the other reverse conducting semiconductor switch is also turned off. For example, when the reverse conducting semiconductor switch U is turned on, the reverse conducting semiconductor switch Y is also turned on, and when the reverse conducting semiconductor switch U is turned off, the reverse conducting semiconductor switch Y is also turned off. The same applies to the reverse conducting semiconductor switches V and X.
- the two reverse conducting semiconductor switches arranged on the other diagonal are off.
- the reverse conducting semiconductor switches U and Y are on, the reverse conducting semiconductor switches V and X are off.
- FIG. 2 is a diagram illustrating an example of a switching pattern and an energization pattern (a portion of the energization pattern corresponding to the switching pattern) in the first embodiment.
- FIG. 2 shows an ON signal (gate signal) input to the gate terminals G U , G V , G X , and G Y , a voltage V C across the capacitor C , and an output current I of the MERS 400.
- An example of the relationship between L and time is shown.
- the switching pattern in this embodiment is input to “UY gate (gate terminals G U and G Y )” and “VX gate (gate terminals G V and G X )” shown in FIG.
- the gate signal is turned on and off.
- the energization pattern is a pattern of “output current I L of MERS 400” shown in FIG. 2 and is a pattern in one energization heating time (one pulse energization).
- the U-Y gate representing the ON signal is input to the gate terminal G U and G Y (gate signal).
- the VX gate represents an ON signal (gate signal) input to the gate terminals G V and G X.
- the reverse conducting semiconductor switches U and Y are turned on during the period when the waveform of the UY gate is rising, and the reverse conducting is performed during the period when the waveform of the UY gate is falling.
- the type semiconductor switches U and Y are turned off.
- the reverse conducting semiconductor switches V and X are turned on during the period when the waveform of the VX gate rises, and during the period when the waveform of the VX gate falls.
- the reverse conducting semiconductor switches V and X are turned off.
- the ON signal (gate signal) is input to the gate terminal G U and G Y, that reverse conducting semiconductor switches U and Y are turned on, "U-Y gate is turned” optionally Called.
- the ON signal to the gate terminal G U and G Y (gate signal) is input, that reverse conducting semiconductor switches U and Y are turned off, referred to as “U-Y gate is turned off” if desired .
- ON signals (gate signals) are input to the gate terminals G V and G X and the reverse conducting semiconductor switches V and X are turned on, this is referred to as “VX gate is turned on” as necessary.
- the ON signals (gate signals) are not input to the gate terminals G V and G X and the reverse conducting semiconductor switches V and X are turned off, the VX gate is turned off as necessary.
- the operation shown in FIG. 2 will be described below.
- ⁇ Operation shown in FIG. 2> The switching pattern in the example shown in FIG. 2 turns on and off the two reverse conducting semiconductor switches (U and Y or V and X) arranged on one of the diagonal lines in the bridge circuit once. In this pattern, the two reverse conducting semiconductor switches (V and X or U and Y) arranged on the other diagonal line are turned on and off once.
- the ON / OFF cycle of each reverse conducting semiconductor switch U, V, X, and Y is defined as T 1 , T 2 , T 3 , T 1 , T 2. Change repeatedly in the order.
- the ON / OFF cycle (T 1 , T 2 , and T 3 ) of the reverse conducting semiconductor switches U, V, X, and Y once is the cycle of the output current I L of the MERS 400.
- the reverse conducting semiconductor switches U, V, X, and the frequency of one of the on and off of Y corresponds to the frequency (current frequency) of the output current I L of MERS400. This also applies to the examples shown in FIGS.
- the resonance frequency based on the inductance when viewing the load side (resistance spot welder 800 side, energization processing device side) from the output end of MERS 400 and the capacitance (capacitance) of capacitor C.
- the following frequencies are adopted.
- the output current I L of the MERS 400 is in the order of the capacitor C, the reverse conducting semiconductor switch U, the current transformer 700, and the reverse conducting semiconductor switch Y. Flowing the route. Therefore, the output current I L of MERS 400 increases from 0 (from 0 (zero) to a positive value), and the voltage V C across capacitor C decreases. When the discharge of the capacitor C is completed, the output current I L of the MERS 400 shows a positive maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the output current I L of MERS400 increases from 0 (zero) to a negative value, and the voltage V C across the capacitor C decreases.
- the output current I L of the MERS 400 shows a negative maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the frequency f 1 is the resonance frequency. Therefore, the controller 500 turns on the UY gate and turns off the VX gate when the voltage V C across the capacitor C becomes 0 (zero) as described above. With the above operations (1a) and (2a), the operation of the cycle T 1 (one cycle) is completed. Subsequently, when the operation (1a) and the operation (2a) are alternately performed twice, the operation in the period t 1 is completed. As described above, since the voltage V C across the capacitor C becomes 0 (zero) at the timing when the UY gate and the VX gate are turned on / off, soft switching is realized.
- the output current I L of the MERS 400 is in the order of the capacitor C, the reverse conducting semiconductor switch U, the current transformer 700, and the reverse conducting semiconductor switch Y. Flowing the route. Therefore, the output current I L of MERS 400 increases from 0 (from 0 (zero) to a positive value), and the voltage V C across capacitor C decreases. When the discharge of the capacitor C is completed, the output current I L of the MERS 400 shows the maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the control unit 500 does not turn off the UY gate, The UY gate remains on and the VX gate remains off. Therefore, the output current I L of the MERS 400 is in the order of the reverse conduction type semiconductor switch Y, the diode D X , and the current transformer 700, the order of the diode D V , the reverse conduction type semiconductor switch U, and the current transformer 700. Flow in parallel to the path and return.
- the output current I L of the MERS 400 decreases according to a time constant determined from the resistance and inductance of the load (approaching 0 (zero)).
- the output current I L of MERS400 increases from 0 (zero) to a negative value, and the voltage V C across the capacitor C decreases.
- the output current I L of the MERS 400 shows a negative maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the control unit 500 Since the frequency f 2 is lower than the resonance frequency f 1 , even when the discharge of the capacitor C is completed, the control unit 500 does not turn off the VX gate, and the VX gate remains on. Yes, the UY gate remains off. Therefore, the output current I L of MERS400 is reverse conducting semiconductor switches V, the forward path current transformer 700, and diodes D U, reverse conducting semiconductor switches X, diode D Y, and the order of the current transformer 700 It flows in parallel to the path of and flows back. The output current I L of the MERS 400 decreases according to a time constant determined from the resistance and inductance of the load (approaching 0 (zero)).
- the controller 500 turns off the VX gate and turns on the UY gate when a reciprocal time twice as long as the frequency f 2 (half the time of the period T 2 ) elapses. At this time, since the voltage V C across the capacitor C is 0 (zero), soft switching is realized. With the above operations (1b) and (2b), the operation of the cycle T 2 (one cycle) is completed. Subsequently, when the operation (1b) and the operation (2b) are alternately performed twice, the operation in the period t 2 is completed.
- the output current I L of the MERS 400 is in the order of the capacitor C, the reverse conducting semiconductor switch U, the current transformer 700, and the reverse conducting semiconductor switch Y. Flowing the route. Therefore, the output current I L of MERS 400 increases from 0 (from 0 (zero) to a positive value), and the voltage V C across capacitor C decreases. When the discharge of the capacitor C is completed, the output current I L of the MERS 400 shows the maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the control unit 500 does not turn off the UY gate, The UY gate remains on and the VX gate remains off. Therefore, the output current I L of the MERS 400 is in the order of the reverse conduction type semiconductor switch Y, the diode D X , and the current transformer 700, the order of the diode D V , the reverse conduction type semiconductor switch U, and the current transformer 700. Flow in parallel to the path and return.
- the output current I L of the MERS 400 decreases according to a time constant determined from the resistance and inductance of the load (approaching 0 (zero)).
- the output current I L of the MERS 400 decreases (approaches 0 (zero)), and the voltage V C across the capacitor C increases.
- the output current I L of the MERS 400 becomes 0 (zero), and the voltage V C across the capacitor C shows the maximum value.
- the output current I L of MERS400 increases from 0 (zero) to a negative value, and the voltage V C across the capacitor C decreases.
- the output current I L of the MERS 400 shows a negative maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the control unit 500 does not turn off the VX gate, and the VX gate remains on. Yes, the UY gate remains off. Therefore, the output current I L of MERS400 is reverse conducting semiconductor switches V, the forward path current transformer 700, and diodes D U, reverse conducting semiconductor switches X, diode D Y, and the order of the current transformer 700 It flows in parallel to the path of and flows back.
- the output current I L of the MERS 400 decreases according to a time constant determined from the resistance and inductance of the load (approaching 0 (zero)).
- the controller 500 turns off the VX gate and turns on the UY gate when the reciprocal time twice as long as the frequency f 3 (half the time of the period T 3 ) elapses. At this time, since the voltage V C across the capacitor C is 0 (zero), soft switching is realized. With the above operations (1c) and (2c), the operation of the cycle T 3 (one cycle) is completed. Subsequently, operation of the (1c), the operation of the (2c) is carried out twice alternately, the operation period t 3 is completed.
- the operations of the above-described periods t 1 , t 2 , and t 3 are executed at least once.
- the operations in the periods t 1 , t 2 , and t 3 are performed twice or more, the operations in the periods t 1 , t 2 , and t 3 are repeatedly executed in this order.
- the gate terminal G U and G Y (U-Y gates) is on
- the gate terminal G V and G X (V-X gate) is turned off
- the gate terminal G U and G Y (U Control is performed so that the gate terminals G V and G X (V ⁇ X gate) are turned on when the ⁇ Y gate is off. In this way, it is possible to energize by soft switching at a frequency equal to or lower than the resonance frequency f 1 .
- the energization frequency (1 / T 1 , 1 / T 2 , 1 / T 3 ) of the pulse train is changed to the resonance frequency f. If the frequency is 1 or less (or less), the energization frequency can be changed within one short energization heating time (within one pulse energization).
- the energization pattern for decreasing the energization frequency with the passage of time is formed is described as an example.
- the control unit 500 allows the first energization frequency and the first energization frequency of the output current to be different from each other within one energization heating time (within the energization machining time) by the resistance spot welder 800 (the energization machining apparatus).
- the MERS 400 can be controlled to include two energization frequencies.
- the control unit 500 allows the effective value of the output current to be mutually within one energization heating time (within the energization processing time) by the resistance spot welder 800 (the energization processing apparatus).
- MERS 400 can be controlled to include different first and second effective values.
- FIGS. 3 and 4> 3 and 4 are diagrams showing other examples of the switching pattern in the first embodiment.
- FIG. 3 shows the relationship between the ON signal (gate signal) input to the gate terminals G U , G V , G X , and G Y and time.
- the switching pattern in the example shown in FIG. 3 is that the reverse conducting semiconductor switches U and Y are turned on and off, and the reverse conducting semiconductor switches V and X are alternately turned on and off once, as shown in FIG. This is a pattern that is continuously repeated in the order of the indicated cycle T 3 , cycle T 2 , and cycle T 1 .
- the ON time and the off time of the reverse conducting semiconductor switches U, V, X, and Y are changed. It may be changed.
- the operation of the MERS 400 in the switching pattern shown in FIG. 3 is, for example, in the ⁇ operation shown in FIG. 2>, repeating (1a) and (2a), repeating (1b) and (2b), and ( The repetition of 1c) and (2c) is omitted, and the order of operations is set to (1c), (2c), (1b), (2b), (1a), and (2a). Therefore, detailed description thereof is omitted here.
- the on-time of the reverse conducting semiconductor switches V and X (the off time of the reverse conducting semiconductor switches U and Y) in the same period T 3 , T 2 , T 1 ,
- the ON times of the reverse conducting semiconductor switches U and Y (the OFF times of the reverse conducting semiconductor switches V and X) may be different.
- the ON time of the reverse conducting semiconductor switches V and X (the OFF time of the reverse conducting semiconductor switches U and Y) and the ON time of the reverse conducting semiconductor switches U and Y (of the reverse conducting semiconductor switches V and X). Any one of (off time) may be made constant.
- the ON time of the reverse conducting semiconductor switches V and X (the OFF time of the reverse conducting semiconductor switches U and Y) and the ON time of the reverse conducting semiconductor switches U and Y (the OFF of the reverse conducting semiconductor switches V and X). It is the same for FIG. 2 that either time may be constant.
- On-time of the reverse conducting semiconductor switches V and X (off-time of the reverse conducting semiconductor switches U and Y) and on-time of the reverse conducting semiconductor switches U and Y (the reverse conducting semiconductor switch V and
- the operation (2a) and the operation (1c) can be realized in the ⁇ operation shown in FIG. Description is omitted.
- On-time (off time) of two reverse conducting semiconductor switches (U and Y or V and X) arranged on a diagonal line, and two reverse conducting semiconductor switches (V) arranged on the other diagonal line And X or U and Y) may be different from the on time (off time).
- the operation of the MERS 400 in the switching pattern shown in FIG. 4 is realized by repeatedly performing the operations (1c) and (2b) in ⁇ the operation shown in FIG. 2>, and therefore detailed description thereof is omitted here. To do.
- FIG. 4 for example, in FIG.
- the on-time of two reverse conducting semiconductor switches (U and Y or V and X) arranged on one diagonal line (Off time) may be different from the on time (off time) of two reverse conducting semiconductor switches (V and X or U and Y) arranged on the other diagonal line.
- the switching pattern is not limited to the examples shown in FIGS.
- the reverse conducting semiconductor switches U, V, X, and Y are turned on and off three times, and then the reverse conducting semiconductor switches U, V, X, and Y are turned on.
- the reverse conducting semiconductor switches U, V, X, and Y are turned on and off three times each, and then the reverse conducting semiconductor switches U, V, X, and Y
- the on-time and off-time of the reverse conducting semiconductor switches U, V, X, and Y are changed while turning on and off three times each.
- the number of times the above-described reverse conducting semiconductor switches U, V, X, and Y are turned on and off (three times) can be any number of two or more.
- FIG. 3 shows an example of a switching pattern in which the number of times the above-described reverse conducting semiconductor switches U, V, X, and Y are turned on and off (three times) is set to one in each cycle.
- one of the two reverse conducting semiconductor switches (U and Y or V and X) arranged on the diagonal line is turned on and off once and the other two reverse conducting semiconductor switches (V and X, Alternatively, U and Y) may be repeatedly turned on and off alternately. If it does in this way, at least any one of ON time and OFF time in at least any one of two reverse conduction type semiconductor switches (U and Y or V and X) arranged on a diagonal will be changed.
- any switching pattern can be used as long as it is a switching pattern in which at least one of the ON time in one cycle (reciprocal time of the energization frequency) is performed in a period during which one resistance spot welding is performed.
- the ON time in one cycle reciprocal time of the energization frequency
- two reverse conducting semiconductor switches (U and Y or V and X are arranged on a diagonal line so as to be in the order of period T 1 , period T 2 , and period T 3. ) ON time and OFF time are changed.
- ON time and OFF time are changed.
- the ON time in one cycle (time of (T 3 + T 2 ) / 2) of one of the two reverse conducting semiconductor switches U and Y arranged on the diagonal line is expressed as T 3. / 2 with respect to the, and the other of the two reverse conducting semiconductors switches V and X, the on-time in one cycle ((T 3 + T 2) / 2 of the time) T 2/2.
- one of the two reverse conducting semiconductor switches (U and Y or V and X) disposed on the diagonal line is turned on and off once, and the other two reverse conducting semiconductors.
- the switch (V and X, or U and Y) was turned on and off once and alternately.
- a plurality of on / off operations of one two reverse conducting semiconductor switches (U and Y or V and X) arranged on a diagonal line and the other two reverse conducting semiconductor switches (V and X, Alternatively, U and Y) may be repeatedly turned on and off alternately.
- ⁇ Setting the energization pattern> Appropriate energization patterns according to welding conditions determined by one or more predetermined factors affecting the quality of welded joints formed by resistance spot welding are identified and identified, for example, through simulation experiments
- the energization pattern is stored in the control unit 500.
- the energization pattern is specified for each of the plurality of welding conditions, and the energization pattern for each of the plurality of welding conditions is stored in the control unit 500.
- the factor include the material of the metal plate, the size, material, thickness, and temperature change of the welded portion.
- FIG. 5 is a diagram illustrating an example of the energization pattern in the first embodiment.
- FIG. 5 shows an example of an energization pattern when the energization frequency is changed within a short energization heating time (within one pulse energization).
- the energization frequency can be arbitrarily set as long as the frequency is equal to or lower than the resonance frequency f 1 . Therefore, if a circuit configuration having a resonance frequency corresponding to the maximum required energization frequency is used, energization at an arbitrary energization frequency is possible.
- the control unit 500 selects and reads out an energization pattern corresponding to the welding condition from a plurality of energization patterns.
- the controller 500 determines a switching pattern based on the read energization pattern during one energization heating (resistance spot welding), and according to the determined switching pattern, the reverse conducting semiconductor switches U, V, An ON signal (gate signal) is output for X and Y.
- the controller 500 controls the reverse conducting semiconductor switches U, V, X, and Y according to such a switching pattern by applying an energization pattern (one energization heating time (one pulse energization)) for resistance spot welding. Repeat until finished.
- the reverse conduction type semiconductor switches U, V, X, and Y are controlled to be turned on and off in accordance with the energization pattern, so that within one short energization heating time (one pulse).
- the frequency (energization frequency) of the output current I L of the MERS 400 is controlled.
- the output current I L output from the MERS 400 controlled in this way is output to the welding electrodes E1 and E2 via the current transformer 700.
- the energization which controlled the energization frequency and the energization current independently within one short energization heating time (within 1 pulse energization) was carried out. It becomes possible. Thereby, for example, according to the material and shape of the metal plates M1 and M2, the material properties after energization can be controlled in a short time including the energization region. Therefore, it becomes possible to control the current distribution of the welded portion, and thus the heat distribution, and the joint strength can be improved. If the power supply device of this embodiment is used for resistance spot welding, the characteristics, shape, hardness distribution, etc. of the weld metal can be controlled, and the joint strength can be improved.
- the case where the power supply device capable of supplying a large current in a short time is applied to a resistance spot welder (when the energization heating device is the resistance spot welder 800) has been described as an example.
- a power supply device for heating and joining the conductive material without melting the conductive material within a short time of energization heating is realized with a power supply device having the same configuration as that of the present embodiment described above. It is also possible.
- a power supply device for heating one or more conductor materials such as a current-carrying heating device for a steel material, for example, without joining a plurality of conductor materials is also configured similarly to the above-described embodiment. It is possible to realize this with a power supply device.
- the processing of the control unit 500 in the first embodiment of the present invention described above can be realized by a computer executing a program.
- a computer-readable recording medium in which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
- the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
- FIG. 6 is a diagram illustrating an example of a configuration of a resistance spot welding system 1A according to the second embodiment.
- the resistance spot welding system 1A includes an AC power source 110, a rectifier 210, a DC reactor 310, a MERS 410, a control unit 510, an AC inductance 610, a current transformer 710, a resistance spot welder 810, and a voltage detection unit. 910 and coils C1 to C4. 7A and 7B, the coil C4 is hidden behind the upper welding electrode E1 and is not visible. Further, for convenience of description, illustration of a part of the coils C1 and C3 is omitted, and illustration of drawn portions of the coils C1 to C3 is omitted.
- connection relationship on the input side of the MERS 410 is as follows.
- the input terminal of rectifier 210 and AC power supply 110 are connected to each other.
- One output terminal of the rectifier 210 and one end of the DC reactor 310 are connected to each other.
- the other output terminal of the rectifier 210 and the DC terminal c of the MERS 410 are connected to each other.
- the other end of DC reactor 310 and DC terminal b of MERS 410 are connected to each other.
- the connection relationship on the output side of the MERS 410 is as follows.
- the AC terminal d of the MERS 410 and one end of the AC inductance 610 are connected to each other.
- the other end of the AC inductance 610 and one of the input ends of the current transformer 710 are connected to each other.
- the AC terminal a of the MERS 410 and the other input terminal of the current transformer 710 are connected to each other.
- One of the output ends of the current transformer 710 and the upper welding electrode E10 are connected to each other, and the other one and the lower welding electrode E20 are connected to each other.
- the AC power supply 110 outputs AC power.
- AC power supply 110 may be a single-phase AC power supply or a three-phase AC power supply.
- the rectifier 210 rectifies the AC power output from the AC power supply 110 into DC power.
- the rectifier 210 includes a single-phase rectifier circuit.
- rectifier 210 includes a three-phase rectifier circuit.
- the DC reactor 310 smoothes the DC power that has passed through the rectifier 210.
- the MERS 410 is an example of a magnetic energy regenerative bidirectional current switch, and outputs DC power input from the rectifier 210 via the DC reactor 310 as AC power as will be described later. Details of the operation of the MERS 410 will be described later.
- the current transformer 710 converts the alternating current output from the MERS 410 through the alternating current inductance 610 into a large current according to the turns ratio (of the current transformer 710), and converts the upper welding electrode E10 of the resistance spot welder 810 and Output to the lower welding electrode E20. If a large current is not required, the current transformer 710 may be omitted.
- the resistance spot welder 810 includes metal plates M10 and M2 from the front side and the back side of the overlapping portion of the plurality of metal plates M1 and M2 whose plate surfaces are overlapped with each other, that is, from the A direction and the B direction in FIG.
- Energization is performed while pressurizing the upper welding electrode E10, which is an example of the upper welding electrode, and the lower welding electrode E20, which is an example of the lower welding electrode, so as to sandwich M20. And these metal plates M10 and M20 are joined by the Joule heat which generate
- the resistance spot welder 810 a known one can be used.
- the material, plate thickness, and number of the metal plates M10 and M20 to be subjected to resistance spot welding various materials that can be applied with resistance spot welding can be adopted.
- the coils C1 to C4 detect a magnetic flux (magnetic field) generated by a welding current flowing through the upper welding electrode E10, the metal plate M10, the metal plate M20, and the lower welding electrode E20.
- a welding current is simply referred to as a welding current as necessary.
- the magnitude of the welding current is an effective value. However, you may prescribe
- FIG. 7A and 7B are diagrams showing an example of the arrangement of the coils C1 to C4 in the second embodiment.
- the metal plate M10, the upper welding electrode E10, and the coils C1 to C4 are viewed along the normal direction of the metal plate M10 from the side where the upper welding electrode E10 is disposed.
- FIG. 7B is a view of the metal plate M10, the metal plate M20, the upper welding electrode E10, the lower welding electrode E20, and the coils C1 to C4 as viewed along the arrow line A in FIG. 7A.
- the coil C4 is hidden behind the upper welding electrode E1.
- the coils C1 to C4 are first to fourth along the circumferential direction of the side circumferential surface of the upper welding electrode E10 (in the direction of the solid double arrow line shown in FIG. 7A), respectively, in a state where the magnetic flux generated by the welding current penetrates.
- Positions 202 to 205 positions obtained by dividing the side circumferential surface of the upper welding electrode E10 into four equal parts along the axis 201). That is, the coils C1 to C4 are arranged at different positions on the periphery of the central axis that is coaxial with the welding electrode E10 and the welding electrode E20 with respect to the welding electrode E10. Specifically, in the example shown in FIGS. 7A and 7B, the coils C1 to C4 are all the same.
- the coils C1 to C4 are arranged at positions that have a four-fold symmetry with respect to the axis 201 of the upper welding electrode E1.
- the coils C1 to C4 are arranged such that the direction of the axis of the coils C1 to C4 (the axis passing through the center of the coil surface of the coils C1 to C4) (the direction of the broken double arrow line) is centered on the axis 201 of the upper welding electrode E10. Is arranged at a position that coincides with the direction of the tangent of the circle.
- the coils C1 to C4 are preferably arranged as close as possible to the upper welding electrode E10 and the metal plate M10 as long as they do not interfere with resistance spot welding.
- the coils C1 to C4 are not necessarily provided as long as the relatively lower region of the coils C1 to C4 is positioned to the side of the upper welding electrode E10 that is being pressurized and energized. May not be located on the side of the upper welding electrode E10 that is being pressurized and energized. That is, it suffices that at least a part of the regions of the coils C1 to C4 be disposed so as to be located on the side of the upper welding electrode E10 that is being pressurized and energized.
- FIG. 7B shows a state in which the coil winding start and winding end portions are drawn out only for the coils C1 and C3.
- the coil winding start and winding end portions are drawn out.
- 7A and 7B show an example in which the number of turns of each of the coils C1 to C4 is “1”. However, the number of turns of each of the coils C1 to C4 may be “2” or more. As described above, since the coils C1 to C4 are the same here, the number of turns of the coils C1 to C4 is the same.
- the voltage detection unit 910 causes the induced electromotive force generated in each of the coils C1 to C4 to be generated for each of the coils C1 to C4 when a magnetic flux (magnetic field) generated by the welding current passes through each of the coils C1 to C4. Detect individually.
- the voltage detection unit 910 is electrically connected to the winding start and winding end portions of the coils C1 to C4.
- the control unit 510 inputs the induced electromotive force of each of the coils C1 to C4 detected by the voltage detection unit 910, and controls the operation of the MERS 410.
- the hardware of the control unit 510 is realized by using, for example, an information processing apparatus including a CPU, a ROM, a RAM, an HDD, and various interfaces, and dedicated hardware.
- Control unit 510 has, as its function, magnetic flux amount distribution deriving unit 511, welding current distribution deriving unit 512, determination unit 513, and circuit control unit 514. An example of the function of each unit will be described below.
- the magnetic flux amount distribution deriving unit 511 derives the magnetic flux amount ⁇ in each of the coils C1 to C4 from the induced electromotive force of each of the coils C1 to C4 detected by the voltage detecting unit 910 and the number of turns of each of the coils C1 to C4. To do.
- the welding current distribution deriving unit 512 determines the welding current (each coil C1 to C4 in a region corresponding to each coil C1 to C4 in the upper welding electrode E10 from the amount of magnetic flux ⁇ in each coil C1 to C4, for example, as follows.
- the welding current based on the amount of magnetic flux ⁇ at) is derived. That is, the welding current distribution deriving unit 512 derives the magnetic flux density B from the magnetic flux amount ⁇ in each of the coils C1 to C4, derives the magnetic field H from the magnetic flux density B and the air permeability ⁇ air, and According to the law, the welding current in the region corresponding to each of the coils C1 to C4 of the upper welding electrode E10 is derived. In the following description, the welding current in the region corresponding to each of the coils C1 to C4 in the region of the upper welding electrode E10 is referred to as the welding current in the region corresponding to each of the coils C1 to C4 as necessary.
- FIGS. 8A and 8B are diagrams conceptually showing an example of the relationship between the welding currents in the regions corresponding to the coils C1 to C4 in the second embodiment.
- FIG. 8A shows an example of the relationship between the welding currents in the regions corresponding to the coils C1 to C4 when it is not necessary to reduce the magnitude of the welding current below the current value.
- FIG. 8B shows an example of the relationship between the welding currents in the regions corresponding to the coils C1 to C4 when it is necessary to reduce the magnitude of the welding current below the current value.
- points 301a and 301b indicate the welding current in the region corresponding to the coil C1.
- Points 302a and 302b indicate the welding current in the region corresponding to the coil C2.
- Points 303a and 303b indicate the welding current corresponding to the coil C3.
- Points 304a and 304b indicate the welding current in the region corresponding to the coil C4.
- a target welding current I s is the target value of the welding current at the time of spot welding of the metal plate M1 and M2.
- the upper limit welding current I u is the upper limit value of the welding current in the region corresponding to each of the coils C1 to C4.
- the lower limit welding current I d is the lower limit value of the welding current in the region corresponding to each of the coils C1 to C4. For example, when spatter is generated or when signs of spatter are observed, the value of the magnitude of the welding current in the region corresponding to each of the coils C1 to C4 is examined in advance. From the magnitude of the investigated welding current, the upper limit welding current I u and the lower limit welding current I d can be determined.
- the determination unit 513 determines whether or not it is necessary to reduce the magnitude of the welding current from the current value based on the magnitude of the welding current derived from the welding current distribution deriving unit 512 in the region corresponding to each of the coils C1 to C4. Determine whether. For example, the determination unit 513 determines whether or not at least one of the magnitudes of the welding current in the region corresponding to the coils C1 to C4 is out of the range ⁇ I determined by the upper limit welding current I u and the lower limit welding current I d. To do.
- the determination unit 513 determines whether at least one of the magnitudes of the welding currents in the region corresponding to the coils C1 to C4 exceeds the upper limit welding current I u. May be.
- Circuit control unit 514 at the timing of starting the energization of the metal plate M10 and M20, controls the MERS410 at the operating frequency in accordance with the target welding current I s. Thereafter, when the determination unit 513 determines that at least one of the magnitudes of the welding currents corresponding to the coils C1 to C4 is out of the range ⁇ I determined by the upper limit welding current I u and the lower limit welding current I d , The circuit control unit 514 controls the operation of the MERS 410 so that the magnitude of the welding current is smaller than the current value by a value corresponding to the amount of deviation from the range ⁇ I.
- the circuit control unit 514 specifies a welding current having the largest absolute value of the deviation amount from the upper limit welding current I u or the lower limit welding current I d among the two or more welding currents.
- the circuit control unit 514 increases the operating frequency of the MERS 410 so that the current welding current is reduced by a value corresponding to the absolute value of the specified welding current deviation.
- the welding current of the region corresponding to the coil C1 (point 301b), determined welding current corresponding to the coil C3 (point 303b), but by the upper welding current I u and the lower limit welding current I d Out of range ⁇ I.
- the absolute value of the defocus amount from the upper welding current I u of the welding current of the region corresponding to the coil C1 (point 301b) (e.g., absolute value of the upper limit welding current I u is subtracted from the welding current corresponding to the coil C1) who is the absolute value of the defocus amount from the lower welding current I d of the welding current corresponding to the coil C3 (point 303b) (e.g., lower welding current I d was subtracted values from the welding current of the region corresponding to the coil C3 Larger than the absolute value).
- the circuit control unit 514 by a value corresponding to the absolute value of the defocus amount from the upper welding current I u of the welding current of the region corresponding to the coil C1 (point 301b), the magnitude of the current welding current is reduced As such, the operating frequency of MERS 410 is increased.
- the circuit control unit 514 continues to control the operation of MERS410 operating frequency in accordance with the target welding current I s.
- FIGS. 9A and 9B are diagrams illustrating an example of a waveform of a welding current in the second embodiment.
- FIG. 9A shows an example of the waveform of the welding current before the operating frequency of MERS 410 is changed.
- FIG. 9B shows an example of the waveform of the welding current after changing the operating frequency of MERS410.
- 9A shows a case where the operating frequency (that is, the frequency of the welding current) of the MERS 410 is 1 kHz
- FIG. 9B shows a case where the operating frequency of the MERS 410 (that is, the frequency of the welding current) is 1.7 kHz.
- the peak value of the welding current is reduced from about 12 kA to about 10.5 kA.
- the MERS 410 is an example of a magnetic energy regenerative bidirectional current switch, and includes a bridge circuit and a capacitor C.
- the bridge circuit is composed of four reverse conducting semiconductor switches U, V, X, and Y arranged in two paths.
- the capacitor C is disposed between the two paths of the bridge circuit.
- the bridge circuit includes a first path that is a path reaching the AC terminal d from the AC terminal a via the DC terminal b, and an AC terminal d from the AC terminal a via the DC terminal c. And a second route that is a route that reaches In the first path, a reverse conducting semiconductor switch V (fourth reverse conducting semiconductor switch) is disposed between the AC terminal d and the DC terminal b, and the reverse is provided between the DC terminal b and the AC terminal a.
- a conductive semiconductor switch U (first reverse conductive semiconductor switch) is disposed.
- a reverse conducting semiconductor switch Y (third reverse conducting semiconductor switch) is arranged between the AC terminal d and the DC terminal c, and the reverse is provided between the DC terminal c and the AC terminal a.
- a conductive semiconductor switch X (second reverse conductive semiconductor switch) is disposed.
- the capacitor C is disposed between the DC terminal b and the DC terminal c.
- Each of the reverse conducting semiconductor switches U, V, X, and Y conducts current only in one direction when the switch is off when no ON signal is input to the gate terminals G U , G V , G X , and G Y.
- the on signal is input to the gate terminals G U , G V , G X , and G Y , the current is conducted in both directions. That is, the reverse conducting semiconductor switches U, V, X, and Y conduct current in one direction between the emitter terminal and the collector terminal when the switch is off, but current in both directions between the emitter terminal and the collector terminal when the switch is on. Is made conductive.
- the reverse conducting semiconductor switches U, V, X, and Y are arranged so that the polarity of the switches is as follows. Between the AC terminal a and the AC terminal d, the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch X connected in parallel have switch polarities in opposite directions. Similarly, the reverse conducting semiconductor switch V and the reverse conducting semiconductor switch Y connected in parallel between the AC terminal a and the AC terminal d also have switch polarities in opposite directions. Further, between the AC terminal a and the AC terminal d, the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch V connected in series have switch polarities in opposite directions.
- the reverse conducting semiconductor switch X and the reverse conducting semiconductor switch Y connected in series between the AC terminal a and the AC terminal d also have switch polarities in opposite directions. Therefore, the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch Y have a forward switch polarity, and the reverse conducting semiconductor switch V and the reverse conducting semiconductor switch X also have a forward switch polarity. The Further, the switch polarity of the reverse conducting semiconductor switches U and Y and the switch polarity of the reverse conducting semiconductor switches V and X are opposite to each other.
- the switch polarity shown in FIG. 6 may be reversed between the reverse conducting semiconductor switches U and Y and the reverse conducting semiconductor switches V and X.
- the reverse conducting semiconductor switches U, V, X, and Y Various configurations are possible for the reverse conducting semiconductor switches U, V, X, and Y.
- the semiconductor switches S U , S V , S X , and S Y and the diode D U It is assumed to be configured by parallel connection with D V , D X , and D Y. That is, each of the reverse conducting semiconductor switches U, V, X, and Y includes one of the diodes D U , D V , D X , and D Y and the semiconductor switch S U connected in parallel to the diode. , S V , S X , and S Y.
- the gate terminals G U , G V , G X , and G Y of the semiconductor switches S U , S V , S X , and S Y are connected to the control unit 510, respectively.
- the gate terminals G U , G V , G X , and G Y are ON signals (gate signals) that turn on the semiconductor switches S U , S V , S X , and S Y as control signals from the control unit 510 to the MERS 410.
- Receive input While the on signal is input, the semiconductor switches S U , S V , S X , and S Y are in the on state, and conduct current in both directions.
- the semiconductor switches S U , S V , S X , and S Y are turned off and do not conduct current in either direction.
- the semiconductor switch S U, S V, S X , and the time S Y off, the semiconductor switch S U, S V, S X , and S Y to the diode connected in parallel D U, D V, D X , and conducting direction of D Y alone, current is conducted.
- the reverse conducting semiconductor switches included in the MERS 410 are not limited to the reverse conducting semiconductor switches U, V, X, and Y. That is, the reverse conduction type semiconductor switch may be configured to exhibit the above-described operation, and may be, for example, a power MOS FET, a reverse conduction type GTO thyristor, or the like, and a parallel connection of a semiconductor switch such as an IGBT and a diode. There may be.
- the switch polarity of the reverse conducting semiconductor switches U, V, X, and Y will be described as follows using the diodes D U , D V , D X , and D Y. That is, the forward direction (the direction of conduction when switched off) is the conduction direction of each diode D U , D V , D X , and D Y , and the reverse direction (the direction of not conducting when switched off) is the respective diode D U. , D V , D X , and D Y are non-conducting directions.
- the conduction directions of the diodes connected in parallel are opposite to each other, and the diodes connected in series (D U and D V , or , D X and D Y ) are also opposite to each other. Further, the conduction direction of the diode D U and D Y are mutually a forward conduction direction similarly diode D V and D X is also a forward mutually. Therefore, the conduction directions of the diodes D U and D Y and the diodes D V and D X are opposite to each other.
- the reverse conducting semiconductor switches U, V, X, and Y are arranged so that the forward direction is as follows. That is, if the reverse conducting semiconductor switch U and the reverse conducting semiconductor switch Y are the first pair and the reverse conducting semiconductor switch V and the reverse conducting semiconductor switch X are the second pair, the reverse conducting of the first pair is performed.
- Type semiconductor switch U and reverse conduction type semiconductor switch Y are arranged so that the forward direction is the same direction, and the second pair of reverse conduction type semiconductor switch V and reverse conduction type semiconductor switch X have the same forward direction. It is arranged to become.
- the first pair and the second pair are arranged so that the forward directions are opposite to each other. Therefore, the reverse conducting semiconductor switches (U and Y or V and X) arranged on the diagonal line in the bridge circuit are arranged so that the forward directions are the same.
- MERS410 when one reverse conduction type semiconductor switch of two reverse conduction type semiconductor switches arranged on the diagonal line of the bridge circuit is turned on, the other reverse conduction type semiconductor switch is also turned on. Similarly, when one reverse conducting semiconductor switch of two reverse conducting semiconductor switches arranged on the diagonal line of the bridge circuit is turned off, the other reverse conducting semiconductor switch is also turned off. For example, when the reverse conducting semiconductor switch U is turned on, the reverse conducting semiconductor switch Y is also turned on, and when the reverse conducting semiconductor switch U is turned off, the reverse conducting semiconductor switch Y is also turned off. The same applies to the reverse conducting semiconductor switches V and X.
- the frequency and waveform of the welding current can be variously changed by controlling on / off of the reverse conducting semiconductor switch (U and Y, or V and X).
- FIG. 9A and FIG. An example of the operation of the MERS 410 for obtaining the welding current waveform shown in 9B will be described.
- the switching pattern in the example shown in FIGS. 9A and 9B is such that only two reverse conducting semiconductor switches U and Y arranged on one of the diagonal lines in the bridge circuit are turned on and off, and on the other diagonal line. Is a pattern in which the two reverse conducting semiconductor switches V and X arranged in (1) are not turned on (leave off).
- FIG. 10 is a diagram illustrating an example of the operation of MERS 410 when obtaining the welding current shown in FIGS. 9A and 9B.
- the U-Y gate representing the ON signal is input to the gate terminal G U and G Y (gate signal).
- the VX gate represents an ON signal (gate signal) input to the gate terminals G V and G X.
- the gate terminal G U and G Y ON signal (gate signal) is input, "U-Y gate is turned” as needed to turn on the reverse conducting semiconductor switches U and Y and Called.
- U-Y gate is turned off
- if desired is not the ON signal to the gate terminal G U and G Y (gate signal) is input, that reverse conducting semiconductor switches U and Y are turned off, referred to as “U-Y gate is turned off” if desired .
- ON signals (gate signals) are input to the gate terminals G V and G X and the reverse conducting semiconductor switches V and X are turned on, this is referred to as “VX gate is turned on” as necessary.
- the ON signals (gate signals) are not input to the gate terminals G V and G X and the reverse conducting semiconductor switches V and X are turned off, the VX gate is turned off as necessary. .
- the output current I L of the MERS 410 is in the order of the capacitor C, the reverse conducting semiconductor switch U, the current transformer 710, and the reverse conducting semiconductor switch Y. Flowing. Therefore, the output current I L of MERS 410 increases from 0 (zero), and the voltage V C across the capacitor C decreases. When the discharge of the capacitor C is completed, the output current I L of the MERS 410 shows a positive maximum value, and the voltage V C across the capacitor C becomes the minimum value (0 (zero)).
- the control unit 510 Since the operating frequency f 1 of the MERS 410 is lower than the resonance frequency, even when the discharge of the capacitor C is completed, the control unit 510 does not turn off the UY gate, and the UY gate remains on. It is. Therefore, the output current I L of MERS410 is reverse conducting semiconductor switch U, the forward path current transformer 710, and diodes D V, reverse conducting semiconductor switch Y, the diode D X, and the order of the current transformer 710 It flows in parallel to the path of and returns. The output current I L of the MERS 410 decreases (approaches 0 (zero)) according to a time constant determined from the resistance and inductance of the load.
- Control unit 510 turns on the U-Y gate when a reciprocal time twice as long as operating frequency f 1 of MERS 410 (a time that is 1/2 the period T 1 ) has elapsed. At this time, since the output current I L of the MERS 410 is 0 (zero), soft switching is realized. With the operations (1) and (2), the operation of the cycle T 1 (one cycle) is completed. By repeating such an operation, the waveform of the welding current shown in FIGS. 9A and 9B can be obtained.
- FIG. 11 is a flowchart showing the flow of the electrical machining process of the resistance spot welding system 1A in the second embodiment.
- the operating frequency of MERS 410 is controlled based on the welding current in the region corresponding to each of coils C1 to C4.
- the metal plates M10 and M20 overlapped with each other are set between the upper welding electrode E10 and the lower welding electrode E20 of the resistance spot welder 810, and the metal plates M10 and M20 are set by the upper welding electrode E10 and the lower welding electrode E20.
- the energization process is started while pressurizing so as to sandwich (step S101).
- the circuit control unit 514, the operating frequency of the MERS410 is controlled to be f 0.
- the voltage detection unit 910 measures the induced electromotive force e i (i is an integer of 1 to 4) generated in each of the coils C1 to C4 when the magnetic flux generated by the welding current passes through each of the coils C1 to C4. (Step S103).
- the magnetic flux amount distribution deriving unit 511 for example, based on the following (Equation 1), the induced electromotive force of each of the coils C1 to C4 detected by the voltage detection unit 910 and the number of turns of each of the coils C1 to C4 Then, the magnetic flux amount ⁇ i in each of the coils C1 to C4 is derived (step S105).
- n i is the number of turns of the coil.
- e i ⁇ n i ⁇ d ⁇ i / dt (Formula 1)
- the welding current distribution deriving unit 512 uses the magnetic flux amount ⁇ i in each of the coils C1 to C4 derived by the magnetic flux amount distribution deriving unit 511 based on the following (Equation 2), for example, in the upper welding electrode E10.
- a welding current I i (i is an integer of 1 to 4) (welding current based on the magnetic flux amount ⁇ i in each of the coils C1 to C4) in a region corresponding to each of the coils C1 to C4 is derived (step S107).
- dl is a minute length
- ⁇ is a magnetic permeability
- S i is an area of the coils C1 to C4.
- I i ⁇ i ⁇ dl / ( ⁇ ⁇ S i ) (Formula 2)
- the determination unit 513 determines that the welding current I i in the region corresponding to each of the coils C1 to C4 derived by the welding current distribution deriving unit 512 has a predetermined upper limit welding current I u and lower limit welding current. It is determined whether it is included in the range ⁇ I between I d (step S109).
- step S111 when the determination unit 513 determines that the magnitude of the welding current I i is included in the predetermined range ⁇ I, the circuit control unit 514 energizes without changing the operating frequency f 0 of the MERS 410. The process is continued (step S111).
- the circuit control unit 514 changes the operating frequency of the MERS 410 (step S113). By increasing the operating frequency of the MERS 410, the magnitude of the welding current is decreased from the current value (step S115). For example, the circuit control unit 514 controls the operation of the MERS 410 so that the magnitude of the welding current is smaller than the current value by a value corresponding to the amount of deviation from the range ⁇ I.
- the circuit control unit 514 sets a value obtained by multiplying the frequency f 0 by a coefficient k set in advance according to the amount of deviation from the range ⁇ I as the changed operating frequency (kf 0 ), and the operating frequency of the MERS 410 Is controlled to be kf 0 .
- the circuit control unit 514 determines whether or not a preset energization processing time (set time) has elapsed since the start of energization (step S117). When it is determined that the set time has elapsed, the circuit control unit 514 stops the operation of the MERS 410, ends the energization process (step S119), and ends the process of this flowchart. On the other hand, if the circuit control unit 514 determines that the set time has not elapsed, the circuit control unit 514 returns to step S103 again and continues the process of this flowchart.
- set time a preset energization processing time
- FIG. 12 is a flowchart showing the flow of another energization processing of the resistance spot welding system 1A in the second embodiment.
- the operating frequency of MERS 410 is controlled based on the electromotive force of each coil C1 to C4.
- the metal plates M10 and M20 that are overlapped with each other are set between the upper welding electrode E10 and the lower welding electrode E20 of the resistance spot welding machine 810, and the metal plates M10 and M20 are attached by the upper welding electrode E10 and the lower welding electrode E20.
- the energization process is started while pressing so as to be sandwiched (step S201).
- the circuit control unit 514, the operating frequency of the MERS410 is controlled to be f 0.
- the voltage detection unit 910 measures the induced electromotive force e i generated in each of the coils C1 to C4 when the magnetic flux generated by the welding current passes through each of the coils C1 to C4 (step S203).
- the determination unit 513 the magnitude of the induced electromotive force e i of each coil C1 ⁇ C4 as measured by the voltage detection unit 910, whether or not it exceeds the upper limit electromotive force e u May be determined.
- the circuit control unit 514 does not change the operating frequency f 0 of the MERS 410.
- the energization process is continued (step S207).
- the circuit control unit 514 changes the operating frequency of the MERS 410 (step S209).
- the magnitude of the welding current is decreased from the current value (step S211).
- the circuit control unit 514 controls the operation of the MERS 410 such that the magnitude of the welding current is smaller than the current value by a value corresponding to the amount of deviation from the range ⁇ e.
- the circuit control unit 514 sets a value obtained by multiplying the frequency f 0 by a coefficient k set in advance according to the amount of deviation from the range ⁇ e as the changed operating frequency (kf 0 ), and the operating frequency of the MERS 410 Is controlled to be kf 0 .
- the circuit control unit 514 determines whether or not a preset energization processing time (set time) has elapsed since the start of energization (step S213). When it is determined that the set time has elapsed, the circuit control unit 514 stops the operation of the MERS 410, ends the energization process (step S215), and ends the process of this flowchart. On the other hand, when the circuit control unit 514 determines that the set time has not elapsed, the circuit control unit 514 returns to step S ⁇ b> 203 again and continues the processing of this flowchart.
- set time a preset energization processing time
- FIG. 13 is a flowchart showing the flow of another energization process of the resistance spot welding system 1A in the second embodiment.
- the operating frequency of the MERS 410 is controlled based on the magnetic flux passing through the coils C1 to C4.
- the metal plates M10 and M20 that are overlapped with each other are set between the upper welding electrode E10 and the lower welding electrode E20 of the resistance spot welding machine 810, and the metal plates M10 and M20 are attached by the upper welding electrode E10 and the lower welding electrode E20.
- the energization process is started while pressing so as to be sandwiched (step S301).
- the circuit control unit 514, the operating frequency of the MERS410 is controlled to be f 0.
- the voltage detection unit 910 measures the induced electromotive force e i generated in each of the coils C1 to C4 when the magnetic flux generated by the welding current passes through each of the coils C1 to C4 (step S303).
- the magnetic flux amount distribution deriving unit 511 for example, based on the following (Equation 3), the induced electromotive force of each of the coils C1 to C4 detected by the voltage detection unit 910 and the number of turns of each of the coils C1 to C4 Then, the magnetic flux amount ⁇ i in each of the coils C1 to C4 is derived (step S305).
- n i is the number of turns of the coil.
- e i ⁇ n i ⁇ d ⁇ i / dt (Formula 3)
- the determination unit 513 determines that the magnitude of the magnetic flux amount ⁇ i in each of the coils C1 to C4 derived by the magnetic flux amount distribution deriving unit 511 is a predetermined upper limit magnetic flux amount ⁇ u and lower limit magnetic flux amount ⁇ d . It is determined whether or not it is included in the range ⁇ (step S307). For example, when sputtering occurs or when signs of occurrence of sputtering are observed, the value of the magnitude of the magnetic flux amount ⁇ i in each of the coils C1 to C4 is investigated in advance and investigated. From the magnitude of the magnetic flux amount, the upper limit magnetic flux amount ⁇ u and the lower limit magnetic flux amount ⁇ d can be determined.
- step S309 when the determination unit 513 determines that the magnitude of the magnetic flux amount ⁇ i is included in the predetermined range ⁇ , the circuit control unit 514 energizes without changing the operating frequency f 0 of the MERS 410. The process is continued (step S309).
- the circuit control unit 514 changes the operating frequency of the MERS 410 (step S311). By increasing the operating frequency of the MERS 410, the magnitude of the welding current is decreased from the current value (step S313). For example, the circuit control unit 514 controls the operation of the MERS 410 so that the magnitude of the welding current is smaller than the current value by a value corresponding to the amount of deviation from the range ⁇ .
- the circuit control unit 514 sets a value obtained by multiplying the frequency f 0 by a coefficient k set in advance according to the amount of deviation from the range ⁇ as the changed operating frequency (kf 0 ), and the operating frequency of the MERS 410 Is controlled to be kf 0 .
- the circuit control unit 514 determines whether or not a preset energization processing time (set time) has elapsed from the start of energization (step S315). When it is determined that the set time has elapsed, the circuit control unit 514 stops the operation of the MERS 410 and ends the energization process (step S317), and ends the process of this flowchart. On the other hand, if the circuit control unit 514 determines that the set time has not elapsed, the circuit control unit 514 returns to the above step S303 again and continues the processing of this flowchart.
- set time a preset energization processing time
- FIG. 14 is a flowchart showing the flow of another energization processing of the resistance spot welding system 1A in the second embodiment.
- the operating frequency of MERS 410 is controlled based on the maximum value of the difference in electromotive force between coils C1 to C4.
- the metal plates M10 and M20 that are overlapped with each other are set between the upper welding electrode E10 and the lower welding electrode E20 of the resistance spot welding machine 810, and the metal plates M10 and M20 are attached by the upper welding electrode E10 and the lower welding electrode E20.
- the energization process is started while pressing so as to be sandwiched (step S401).
- the circuit control unit 514, the operating frequency of the MERS410 is controlled to be f 0.
- the voltage detection unit 910 measures the induced electromotive force e i generated in each of the coils C1 to C4 when the magnetic flux generated by the welding current passes through each of the coils C1 to C4 (step S403).
- step S405 the determination unit 513, among the four induced electromotive force e i of each coil C1 ⁇ C4 as measured by the voltage detection unit 910, a maximum value e sigma of the voltage difference between the two induced electromotive force e i measurement or Calculation is performed (step S405).
- the determination unit 513 determines whether or not the maximum value e ⁇ of the voltage difference exceeds a predetermined upper limit voltage difference threshold e ⁇ c (step S407). For example, when spatter is generated or when signs of spatter are observed, the value of the magnitude of the voltage difference between the induced electromotive forces e i of the coils C1 to C4 is examined in advance.
- the voltage difference threshold e ⁇ c can be determined based on the magnitude of the induced electromotive force investigated.
- the circuit control unit 514 changes the operating frequency f 0 of the MERS 410.
- the energization process is continued (step S409).
- the circuit control unit 514 changes the operating frequency of the MERS 410 (step S411). .
- the magnitude of the welding current is decreased from the current value (step S413).
- the circuit control unit 514 operates the MERS 410 so that the magnitude of the welding current is smaller than the current value by a value corresponding to the magnitude of the maximum value e ⁇ of the voltage difference and the voltage difference threshold value e ⁇ c. Control.
- the circuit control unit 514 sets a value obtained by multiplying the frequency f 0 by a coefficient k set in advance according to the magnitude of the maximum value e ⁇ of the voltage difference and the voltage difference threshold value e ⁇ c and the difference to the changed operating frequency ( kf 0 ) and control so that the operating frequency of MERS 410 is kf 0 .
- the circuit control unit 514 determines whether or not a preset energization processing time (set time) has elapsed since the start of energization (step S415). When it is determined that the set time has elapsed, the circuit control unit 514 stops the operation of the MERS 410, ends the energization process (step S417), and ends the process of this flowchart. On the other hand, if the circuit control unit 514 determines that the set time has not elapsed, the circuit control unit 514 returns to step S ⁇ b> 403 again and continues the processing of this flowchart.
- set time a preset energization processing time
- the plurality of coils C1 to C4 are arranged so as to have an interval in the direction in which the upper welding electrode E10 is circulated.
- the welding current in the region corresponding to each of the coils C1 to C4 is derived from the magnetic flux amount ⁇ derived from the induced electromotive force of the coils C1 to C4.
- each of the coils C1 to C4 is the same and has a four-fold symmetry with respect to the axis 201 of the upper welding electrode E10 has been described as an example.
- two or more (preferably three or more) coils are circulated around the upper welding electrode E10 in a state where the magnetic flux generated by the welding current passes through the side of the upper welding electrode E10. This is not necessarily the case as long as it is arranged so as to have an interval along the line.
- the number of coils may not be four, at least one of the size, orientation, and number of turns of each coil may be different, and each coil is rotationally symmetric about the axis 201 of the upper welding electrode E10. It does not have to be a relationship.
- a correction coefficient for multiplying the induced electromotive force of the coils C1 to C4 can be set for each of the coils C1 to C4 according to the size, position and orientation of the coil surface of the coil. For example, when the size of the coil is different, resistance spot welding is performed under the same conditions except for the size of the coil, using the reference size coil and the actually used coil. The electromotive force is measured, and the ratio of the measured induced electromotive force of the coil can be used as the correction coefficient. Even when the direction of the coil is different or the rotational symmetry is not achieved, the correction coefficient can be determined similarly to the case where the size of the coil is different.
- the coils C1 to C4 are arranged with respect to the upper welding electrode E10
- the coils C1 to C4 may be arranged with respect to the lower welding electrode E20. Even if the coil arranged with respect to the upper welding electrode E10 and the coil arranged with respect to the lower welding electrode E20 have the same number of coils, size, orientation, and number of turns, they are the same. At least one of may be different. Further, the coils arranged with respect to the lower welding electrode E20 may not have a rotationally symmetric relationship about the axis of the lower welding electrode E20. Further, instead of the coils C1 to C4, the magnetic field generated by the welding current may be measured using another local measurement device such as a Hall element.
- a welding current in a region corresponding to each of the coils C1 to C4 is derived, and it is determined whether at least one of the derived welding current magnitudes is out of the range ⁇ I.
- the relationship between the deviation of the magnetic flux amount ⁇ from the preset range and the change amount (reduction amount) of the welding current magnitude is set in advance for each of the coils C1 to C4. deep.
- a change amount of the welding current is determined from the relationship set for the coil indicating the amount of magnetic flux ⁇ not within a preset range, and the operating frequency of the MERS 410 is changed according to the determined change amount.
- the operating frequency of the MERS 410 can be changed based on the induced electromotive force generated in each of the coils C1 to C4 or the maximum value of the difference in induced electromotive force generated in each of the coils C1 to C4.
- MERS410 the case where the magnitude of the welding current is changed using the MERS 410 has been described as an example.
- Use of MERS410 is preferable because soft switching can be realized as described above, response speed can be increased, and various waveforms can be generated.
- a known inverter circuit that can change the current by changing the frequency may be used.
- a single-phase AC power supply circuit can also be used if phase control using a thyristor is performed.
- a DC power supply circuit can be used. This is because if the distribution of the welding current occurs inside the upper welding electrode E1, the amount of magnetic flux passing through each of the coils C1 to C4 changes with time even for a direct current, as described above.
- FIG. 15A and 15B are diagrams illustrating an example of the arrangement of the coils C5 and C6.
- FIG. 15A is a diagram in which the metal plate M10, the upper welding electrode E10, the coil C5, and the coil C6 are viewed along the normal direction of the metal plate M10 from the side where the upper welding electrode E10 is disposed. is there.
- FIG. 15B is a view of the metal plate M10, the metal plate M20, the upper welding electrode E10, the lower welding electrode E20, the coil C5, and the coil C6 as viewed along the arrow D in FIG. 15A.
- the coil C6 is hidden behind the coil C5 and the upper welding electrode E1.
- the coils C5 and C6 have fifth and sixth positions 206 and 207 (upper side) along the circumferential direction of the side peripheral surfaces of the upper welding electrode E10 and the lower welding electrode E20, respectively, in a state where the magnetic flux generated by the welding current penetrates.
- the circumferential surfaces of the welding electrode E10 and the lower welding electrode E20 are circulated around the metal plates M1 and M2 with a distance from the metal plates M10 and M2 (positions obtained by dividing the circumferential surfaces of the welding electrode E10 and the lower welding electrode E20 into two along the axis 201) Wound).
- the coils C5 and C6 are the same. Further, as shown in FIG.
- the coils C5 and C6 have a two-fold symmetric relationship about the axis 201 of the upper welding electrode E10 (this axis 201 also coincides with the axis of the lower welding electrode E20). Placed in position.
- the coils C5 and C6 are arranged as close to the upper welding electrode E10 and the lower welding electrode E20 as possible.
- the number of turns of the coils C5 and C6 may not be “1” as shown in FIGS. 15A and 15B but may be “2” or more. . Further, at least one of the number, size, direction, and number of windings of the coils may be different, and each coil may not be in a rotationally symmetric position. However, at least two coils are arranged at positions facing each other via the upper welding electrode E10 and the lower welding electrode E20. If the coils are arranged at positions facing each other via the upper welding electrode E10 and the lower welding electrode E20, the coil is made to be orthogonal to each of the coils C5 and C6 in addition to or instead of the coils C5 and C6. A coil may be wound around (winding) the plates M1 and M2.
- the processing performed by the control unit 510 can be realized by a computer executing a program.
- a computer-readable recording medium in which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
- the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
- the resistance spot welding system 1B according to the fourth embodiment is different in that the resistance spot welding machine 800 includes a pressure adjusting unit 900. For this reason, about the structure etc., the figure and related description which were demonstrated in the said 1st Embodiment are used, the same code
- the resistance spot welding system and the resistance spot welding method according to the present embodiment apply pressure to the contact region between the metal plate and the metal plate during energization of the high-frequency current to the stacked metal plates, and gradually apply this pressure until the energization ends. It is characterized by increasing.
- the spot welded joint of the present embodiment is a spot welded joint formed by the resistance spot welding method of the present embodiment, characterized in that a molten solidified structure is formed in the outer peripheral portion of the contact region between the metal plate and the metal plate.
- FIG. 16 is a diagram illustrating an example of the configuration of the resistance spot welding system according to the fourth embodiment.
- the pressure adjusting unit 900 increases or decreases the clamping force by which the welding electrodes E1 and E2 sandwich the plurality of metal plates M1 and M2 whose plate surfaces are overlapped with each other.
- the pressure adjusting unit 900 increases or decreases the clamping force with which the welding electrodes E1 and E2 clamp the metal plates M1 and M2 from the A direction and the B direction in FIG.
- FIG. 17A shows an energization pattern in the fourth embodiment. Moreover, FIG. 17B shows the cooperation of the pattern of the pressurization or electrode pressing amount with respect to the metal plates M1 and M2 of the welding electrodes E1 and E2.
- the clamping force for clamping the metal plates M1 and M2 is gradually increased from the pressurization start time t 0, and at the time t 1 (> t 0 ), the high frequency of the current value (effective value) I for the welding electrodes E1 and E2
- the energization is started, and energization is continued until t 2 (> t 1 ) (see FIG. 17A).
- the clamping force for clamping the metal plates M1 and M2 that is, the pressure for pressurizing the contact area of the superposed metal plates M1 and M2 is determined from P 0 ′ at time t 1. Gradually increase to P 1 . After the end of energization (t 2 ), the pressure P 1 is maintained until t 3 (> t 2 ), and after the solidification of the melted portion of the metal plates M1 and M2 is completed, the spot welding is finished.
- the pattern of the pressure or electrode pressing amount from P 0 ′ to P 1 between t 1 and t 2 is indicated by a dotted line, but the pressure pattern during this time is not limited to a straight line.
- An upward convex curve or a downward convex curve may be used, and the pressing force may be increased stepwise.
- the current concentrates on the outer periphery of the contact area between the metal plates, so in the process of increasing the contact diameter between the metal plates, the outer periphery of the contact area generates heat and melts to expand the melted part. To do.
- the enlargement of the melted portion that is, the enlargement of the outer diameter of the melted portion brings about an improvement in CTS.
- the relationship between the behavior of the melting part and the improvement of CTS will be described later.
- FIG. 18A shows another energization pattern in the present embodiment.
- FIG. 18B shows a pressurizing pattern that is linked with the energization pattern shown in FIG. 18A. Is basically the same as the linkage shown in FIGS. 17A and 17B, overlapping the pressed metal plate M1 and M2 at a pressure P 2, and holds it until t 1 of the start of energization.
- FIG. 18B the pressure pattern from P 2 to P 3 between t 1 and t 2 is indicated by a dotted line, but the pressure pattern during this time is not limited to a straight line.
- An upward convex curve or a downward convex curve may be used, and the pressing force may be increased stepwise.
- FIG. 17A, FIG. 17B, FIG. 18A, and in FIG. 18B pressure treatment from t 0 to t 1 is carried out in order to contact the metal plate M1 and M2 with each other. Further, pressure treatment from t 2 to t 3 is performed in order to cool the metal plate M1 and M2, which are welded under pressure.
- FIG. 17A, FIG. 17B, FIG. 18A, and FIG. 18 show the case where the frequency of the high-frequency current flowing through the metal plates M1 and M2 is constant, the frequency of the high-frequency current is the outer circumference of the contact area of the metal plate during energization. You may change considering the calorific value in a part.
- the change of the frequency of the high-frequency current that flows through the metal plates M ⁇ b> 1 and M ⁇ b> 2 is performed by controlling the MERS 400 using the control unit 500. By changing the frequency of the high-frequency current, it is possible to adjust characteristics such as the range of the melting region and the heat generation distribution.
- the frequency of the high-frequency current that flows through the metal plates M1 and M2 is not particularly limited, but is preferably 15 kHz or more, which can efficiently concentrate current due to the skin effect, and is preferably 100 kHz or less in order not to increase the power capacity.
- the pressure for pressurizing the contact region of the overlapped metal plates M1 and M2 is not particularly limited. In consideration of the strength, thickness, member shape, and the like of the metal plates M1 and M2, the portions to be welded are set as appropriate.
- 20A to 20D schematically show a process in which the melted portion (black portion) formed in the outer peripheral portion of the contact region of the metal plates M1 and M2 expands. This is a phenomenon that occurs from time t 1 to t 2 or t 3 shown in FIGS. 17A, 17B, 18A, and 18B.
- 20A shows the melted part 2 (black part) in the initial stage of energization
- FIGS. 20B and 20C show the melted parts 2a and 2b (black part) in the middle of expansion of the melted part (black part)
- FIG. The expanded molten part shows the solidified structure 3 (black part) finally solidified.
- the overlapped metal plates M1 and M2 are sandwiched between the welding electrodes E1 and E2 to form a contact region 1c, and a high-frequency current is applied to the contact region 1c.
- a high-frequency current is applied to the contact region 1c, the end portion of the contact region 1c generates heat due to the skin effect of the current, the end portion melts, and a molten portion 2 is generated on the outer peripheral portion of the contact region 1c.
- the outer diameter of the melting part 2 is expanded as shown in FIG. A melted portion 2a having an enlarged outer diameter is formed on the outer peripheral portion of the region 1c.
- the melting part 2 when energizing while increasing the pressure applied to the contact region 1c, the melting part 2 not only expands the outer diameter, but also reduces the inner diameter due to heat transfer to the inside, as shown in FIG.
- the fusion area with the metal plates M1 and M2 increases.
- the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- Example 1 Spot welding was performed under the welding conditions shown in Table 2 using the combination of the steel plates shown in Table 1 and the cooperation between the energization pattern and the pressurization pattern shown in FIGS. 18A and 18B. While measuring the outer diameter of the nugget formed in the outer peripheral part of the contact area of a steel plate by this spot welding, TSS and CTS were measured.
- As the spot welding electrode a Cu—Cr alloy, an R-type electrode having an electrode tip diameter of 8 mm and an electrode tip curvature radius of 40 mm was used.
- t 0 in FIGS. 17A, 17B, 18A, and 18B is set to 0 (s). The results are also shown in Table 2.
- MERS is used as the power supply device.
- Use of MERS is preferable because soft switching can be realized as described above, response speed can be increased, and various waveforms can be generated.
- MERS it is not always necessary to use MERS. For example, it replaces with MERS and you may use the well-known power supply device which can energize a resistance spot welder.
- this embodiment it is possible to provide a spot welded joint having a markedly improved cross tensile force (CTS). Therefore, this embodiment has high applicability in industries that use spot welding as an assembly means, for example, the automobile industry.
- CTS cross tensile force
- the spot welding method according to the present embodiment is a spot welding method for stacked steel plates, in which the stacked steel plates are pressurized using an electrode having a convex tip, and then a high-frequency current is applied. During energization, the contact area between the steel plates is pressurized, and the applied pressure is gradually increased until the end of energization. After the energization is completed, the applied pressure is set to zero.
- the frequency of the high-frequency current is 15 kHz or more and 100 kHz or less.
- the power supply device it is possible to cause the energization machining apparatus to perform energization machining under an appropriate machining condition in accordance with the material and shape of the work material. If it is spot welding, it becomes possible to improve the joint strength etc. in a welding part.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Resistance Welding (AREA)
- Inverter Devices (AREA)
- Generation Of Surge Voltage And Current (AREA)
- Control Of Voltage And Current In General (AREA)
Abstract
Description
本願は、2014年12月12日に日本国に出願された特願2014-252141号と、2014年12月12日に日本国に出願された特願2014-252151号とに基づき優先権を主張し、これらの内容をここに援用する。
例えば、特許文献1には、電流値を制御して溶接部金属の温度履歴を制御することで、溶接金属の材質を制御する技術が開示されている。
また、特許文献2には、金属板の通電部における発熱分布を制御するために、周波数が50Hzの低周波電源から提供される電力と、周波数が30kHzの高周波電源から提供される電力とを2枚の鋼板に対して同時に印加することで、焼きもどし領域を制御することが開示されている。
また、特許文献3及び特許文献7には、磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch。以降、MERSと称する)が開示されている。
また、前記加圧力を制御する技術として、特許文献5には、溶接電極と圧力検出器とが非接触のときに圧力検出器が出力する信号を平均化することにより補償値を求め、抵抗スポット溶接の際に圧力検出器が出力する信号から前記補償値を減算することで、加圧力を制御する技術が開示されている。
また、特許文献6には、抵抗スポット溶接中に、加圧力と溶接電流とを同期させる技術が開示されている。
したがって、導体材料に対して短時間に大電流の通電加熱を行う際の電流制御性を従来の電源に比べて向上させて加熱部の特性を向上させることが求められている。
また、上記特許文献3及び上記特許文献7に記載のMERSは、スナバーエネルギーを回生する電流スイッチの構成を利用しているものの、短い通電加熱時間内に大電流の周波数制御を行うことについては検討されていない。
したがって、抵抗スポット溶接を行う際に、スパッタの発生を抑制することが求められている。
したがって、安定的にかつ確実にナゲット径を拡大することで、ナゲットの外周部の長さを確実に長くしてCTSを高めることが求められている。
本発明は、上記事情に鑑みてなされたものであって、被加工材に対して通電加工を行う際の電流の制御性を従来に比べて向上させることで、被加工材の特性を向上させることを可能とする電源装置と、この電源装置を用いた接合システムと、通電加工方法と、の提供を目的とする。
(1)本発明の一態様に係る電源装置は、被加工材を通電加工する通電加工装置に出力電流を供給する電源装置であって、第1電源と;前記第1電源から供給される電流を受けて前記出力電流に変換する磁気エネルギー回生スイッチと;前記通電加工装置による一回の通電加工時間内に、前記出力電流の通電周波数が相互に異なる第1の通電周波数及び第2の通電周波数を含むように前記磁気エネルギー回生スイッチを制御する制御部と;を備える。
上記(1)に記載の態様に係る電源装置によれば、一回の通電加工時間内に、制御部が、相互に異なる第1の通電周波数及び第2の通電周波数を含むように通電周波数を変化させる。その結果、被加工材の材質や形状に応じた適切な加工条件(例えば、溶接部の電流分布条件、熱分布条件など)を通電加工装置に行わせるように、付与する出力電流の通電周波数を制御することができる。しかも、磁気エネルギー回生スイッチにより通電周波数を切り替える構成を採用しているので、短時間における出力電流の制御性を従来よりも向上させることができる。
上記(2)に記載の場合、1秒以下という短時間内でも通電周波数を制御することができるので、例えば抵抗スポット溶接に好適に適用することができる。
上記(3)に記載の場合、通電周波数を共振周波数以下にすることにより、ソフトスイッチングを実現することができる。
上記(4)に記載の場合、磁気エネルギー回生スイッチにより通電周波数の切り替え、及び通電電流の制御を独立に可能とする構成を採用しているので、短時間における出力電流の制御性を従来よりも向上させることができる。
上記(5)に記載の態様に係る接合システムによれば、出力電流の周波数制御が可能な電源装置を接合装置と組み合わせることで、従来では実現不可能であった、一回の通電加工時間内における通電周波数変化の制御を実現させることができる。
上記(6)に記載の場合、通電加工中の被通電材に流れる出力電流の状態を、コイルで発生する起電力の変化として把握することができる。よって、この起電力の変化に基づいて、被通電材に与える出力電流が適正となるように、制御部が磁気エネルギー回生スイッチの動作をフィードバック制御することができる。単一のコイルを配置すれば、電極を流れる電流値は検出できて、電流値に基づいた制御は可能であるが、複数のコイルを用いるほうが電流の分布に関する情報を抽出できるため、高精度な制御が可能になる。
上記(7)に記載の場合、第1電極と第2電極との少なくとも一方の周囲における複数箇所において、コイルで発生する起電力の変化を捉えることができるので、被通電材に流れている出力電流の状態変化をより詳細に把握することができる。
上記(8)に記載の場合、複数のコイルで発生する起電力を予め設定された範囲と比較して、この予め設定された範囲からの外れ量に応じた値だけて出力電流を制御することができる。
上記(9)に記載の場合、前記第1電極及び前記第2電極を介して相互に対向し、前記複数の被通電材に巻回されている複数のコイルで発生する起電力の変化を捉えることができるので、被通電材に流れている出力電流の状態変化をより詳細に把握することができる。
上記(10)に記載の場合、圧力調節部によって挟持力を増すことにより、接触領域における溶融部の外径寸法が拡大するので、被通電材同士の融着面積を増大させることができる。
上記(11)に記載の態様に係る通電加工方法によれば、一回の通電加工時間内に、通電加工条件に従って、相互に異なる第1の通電周波数及び第2の通電周波数を含むように通電周波数を変化させる。その結果、被加工材の材質や形状に応じた適切な加工条件(例えば、溶接部の電流分布条件、熱分布条件など)での通電加工が行われる。
上記(12)に記載の場合、被加工材に流れる出力電流の状態を、磁束に基づく起電力の変化として把握することができる。よって、この起電力の変化に基づいて、被加工材に与える出力電流が適正となるように、適切なフィードバック制御を行うことができる。
上記(13)に記載の場合、必要に応じて挟持力を増すことにより、接触領域における溶融部の外径寸法を拡大できるので、被通電材同士の融着面積を増大させることができる。
[第1実施形態]
本実施形態では、磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch。以降、MERSと称する)を用いることで、被加工材(導電材料、被通電材)に与える電流の周波数(通電周波数)を、通電加工装置による一回の通電加工時間内で制御することが可能な電源装置を採用している。
図1は、第1実施形態における抵抗スポット溶接システム1の構成の一例を示す図である。
抵抗スポット溶接システム1は、接合システムの一例であり、交流電源100(第1電源)と、整流器200と、直流リアクトル300と、MERS400と、制御部500と、交流インダクタンス600と、変流器700と、抵抗スポット溶接機800(通電加工装置)と、を有する。本実施形態では、交流電源100と、整流器200と、直流リアクトル300と、MERS400と、制御部500と、交流インダクタンス600と、変流器700と、を用いることにより、電源装置が構成されている。この電源装置は、被加工材を通電加工する抵抗スポット溶接機800に対して出力電流を供給する。
整流器200の入力端と、交流電源100とが相互に接続される。整流器200の出力端の一つと、直流リアクトル300の一端とが相互に接続される。整流器200の出力端の他の一つと、MERS400の直流端子cとが相互に接続される。直流リアクトル300の他端と、MERS400の直流端子bとが相互に接続される。
MERS400の交流端子dと、交流インダクタンス600の一端とが相互に接続される。交流インダクタンス600の他端と、変流器700の入力端の一つとが相互に接続される。MERS400の交流端子aと、変流器700の入力端の他の一つとが相互に接続される。変流器700の出力端の一つと溶接電極E1(第1電極)とが相互に接続され、他の一つと溶接電極E2(第2電極)とが相互に接続される。
整流器200は、交流電源100から出力される交流電力を整流して直流電力にする。交流電源100が単相交流電源である場合、整流器200は単相整流回路を備える。一方、交流電源100が三相交流電源である場合、整流器200は三相整流回路を備える。
直流リアクトル300は、整流器200から出力された直流電力を平滑化する。
MERS400は、MERSの一例であり、整流器200から直流リアクトル300を介して入力された直流電力を交流電力として出力する。
制御部500は、MERS400の動作を制御する。
MERS400の動作の詳細については後述する。
抵抗スポット溶接機800は、板面が相互に重ね合わせられた複数枚の金属板M1及びM2の重ね合わせ部の表側及び裏側から、すなわち、図1のA方向及びB方向から、金属板M1及びM2を挟み込むように、溶接電極E1及びE2を加圧しながら、金属板M1及びM2の所望位置の接触領域を通電することにより、前記接触領域に発生するジュール熱によって、同接触領域を接合する。抵抗スポット溶接機800については、公知のものを利用することができる。抵抗スポット溶接の対象となる金属板M1及びM2の材質、板厚、及び枚数としては、抵抗スポット溶接に適用することが可能な種々のものを採用することができる。このように本実施形態では、通電加工装置が抵抗スポット溶接機800である場合を例に挙げて説明する。
次に、MERS400の構成の一例を説明する。
図1に示すように、MERS400は、ブリッジ回路と、コンデンサCとを含む。ブリッジ回路は、2つの経路にそれぞれ2つずつ配置された4つの逆導通型半導体スイッチU、V、X、及びYによって構成される。コンデンサCは、ブリッジ回路の2つの経路の間に配置される。
第1の経路には、交流端子dと直流端子bとの間に逆導通型半導体スイッチV(第4の逆導通型半導体スイッチ)が配置され、直流端子bと交流端子aとの間に逆導通型半導体スイッチU(第1の逆導通型半導体スイッチ)が配置される。
第2の経路には、交流端子dと直流端子cとの間に逆導通型半導体スイッチY(第3の逆導通型半導体スイッチ)が配置され、直流端子cと交流端子aとの間に逆導通型半導体スイッチX(第2の逆導通型半導体スイッチ)が配置される。コンデンサCは、直流端子bと直流端子cとの間に配置される。
以下の説明では、「各逆導通型半導体スイッチU、V、X、及びYがスイッチオフ時に電流を流す方向」を、必要に応じて「順方向」と称し、スイッチオフ時に電流を流さない方向を、必要に応じて「逆方向」と称する。また、以下の説明では、「順方向及び逆方向の、回路に対する接続方向」を、必要に応じて「スイッチ極性」と称する。
よって、逆導通型半導体スイッチUと逆導通型半導体スイッチYは、順方向のスイッチ極性を有する。逆導通型半導体スイッチVと逆導通型半導体スイッチXも、順方向のスイッチ極性を有す。また、逆導通型半導体スイッチU及びYのスイッチ極性と、逆導通型半導体スイッチV及びXのスイッチ極性は、逆方向となる。
また、逆導通型半導体スイッチU、V、X、及びYには、様々な構成が考えられるが、本実施形態では、半導体スイッチSU、SV、SX、及びSYとダイオードDU、DV、DX、及びDYとの並列接続によって構成されるものとする。すわなち、逆導通型半導体スイッチU、V、X、及びYのそれぞれは、ダイオードDU、DV、DX、及びDYの1つと、このダイオードに並列に接続された半導体スイッチSU、SV、SX、及びSYの1つとを有する。
MERS400では、ブリッジ回路の対角線上に配置された2つの逆導通型半導体スイッチのうち、一方の逆導通型半導体スイッチがオンすると他方の逆導通型半導体スイッチもオンする。同様に、ブリッジ回路の対角線上に配置された2つの逆導通型半導体スイッチの一方の逆導通型半導体スイッチがオフすると他方の逆導通型半導体スイッチもオフする。例えば、逆導通型半導体スイッチUがオンすると逆導通型半導体スイッチYもオンし、逆導通型半導体スイッチUがオフすると逆導通型半導体スイッチYもオフする。これらのことは、逆導通型半導体スイッチV及びXについても同じである。
また、ゲート端子GV及びGXにオン信号(ゲート信号)が入力され、逆導通型半導体スイッチV及びXがオンすることを、必要に応じて「V-Xゲートがオンする」と称する。一方、ゲート端子GV及びGXにオン信号(ゲート信号)が入力されず、逆導通型半導体スイッチV及びXがオフすることを、必要に応じて「V-Xゲートがオフする」と称する。
<図2に示す動作>
図2に示す例におけるスイッチングパターンは、ブリッジ回路における対角線のうち、一方の対角線上に配置された2つの逆導通型半導体スイッチ(U及びY、又は、V及びX)のオン及びオフを1回行った後、他方の対角線上に配置された2つの逆導通型半導体スイッチ(V及びX、又は、U及びY)のオン及びオフを1回行うパターンである。
また、同一の周期T1、T2、及びT3における、一方の対角線上に配置された2つの逆導通型半導体スイッチ(U及びY、又は、V及びX)のオン時間及びオフ時間と、他方の対角線上に配置された2つの逆導通型半導体スイッチ(V及びX、又は、U及びY)のオン時間及びオフ時間は、同じである。
[周波数f1(=共振周波数)の期間t1]
(1a)U-Yゲート:オン、V-Xゲート:オフ
V-Xゲートがオフし、U-Yゲートがオンすると、MERS400の出力電流ILは、変流器700、逆導通型半導体スイッチU、コンデンサC、及び逆導通型半導体スイッチYの順の経路を流れ、コンデンサCが充電される。したがって、MERS400の出力電流ILは減少し(0(ゼロ)に近づき)、コンデンサCの両端の電圧VCは上昇する。コンデンサCの充電が完了すると、MERS400の出力電流ILは0(ゼロ)になると共に、コンデンサCの両端の電圧VCは最大値を示す。
周波数f1は前記共振周波数である。したがって、制御部500は、以上のようにコンデンサCの両端の電圧VCが0(ゼロ)になった時点で、U-Yゲートをオフすると共にV-Xゲートをオンする。そうすると、MERS400の出力電流ILは、変流器700、逆導通型半導体スイッチV、コンデンサC、及び逆導通型半導体スイッチXの順の経路を流れ、コンデンサCが充電される。したがって、MERS400の出力電流ILは減少し(0(ゼロ)に近づき)、コンデンサCの両端の電圧VCは上昇する。コンデンサCの充電が完了すると、MERS400の出力電流ILは0(ゼロ)になると共に、コンデンサCの両端の電圧VCは最大値を示す。
以上のように、U-Yゲート及びV-Xゲートをオン・オフするタイミングでコンデンサCの両端の電圧VCは0(ゼロ)になるので、ソフトスイッチングが実現される。
(1b)U-Yゲート:オン、V-Xゲート:オフ
V-Xゲートがオフし、U-Yゲートがオンすると、MERS400の出力電流ILは、変流器700、逆導通型半導体スイッチU、コンデンサC、及び逆導通型半導体スイッチYの順の経路を流れ、コンデンサCが充電される。したがって、MERS400の出力電流ILは減少し(0(ゼロ)に近づき)、コンデンサCの両端の電圧VCは上昇する。コンデンサCの充電が完了すると、MERS400の出力電流ILは0(ゼロ)になると共に、コンデンサCの両端の電圧VCは最大値を示す。
制御部500は、周波数f2の2倍の逆数の時間(周期T2の1/2倍の時間)が経過すると、U-Yゲートをオフすると共にV-Xゲートをオンする。このとき、コンデンサCの両端の電圧VCは0(ゼロ)であるから、ソフトスイッチングが実現される。
U-Yゲートがオフされると共にV-Xゲートがオンされると、MERS400の出力電流ILは、変流器700、逆導通型半導体スイッチV、コンデンサC、及び逆導通型半導体スイッチXの順の経路を流れ、コンデンサCが充電される。したがって、MERS400の出力電流ILは減少し(0(ゼロ)に近づき)、コンデンサCの両端の電圧VCは上昇する。コンデンサCの充電が完了すると、MERS400の出力電流ILは0(ゼロ)になると共に、コンデンサCの両端の電圧VCは最大値を示す。
以上の前記(1b)及び前記(2b)の動作で、周期T2(1周期)の動作が終了する。続けて、前記(1b)の動作、前記(2b)の動作が交互に2回行われると、期間t2の動作が終了する。
期間t3では、MERS400の出力電流ILが還流する時間が、期間t2よりも長くなる。
(1c)U-Yゲート:オン、V-Xゲート:オフ
V-Xゲートがオフし、U-Yゲートがオンすると、MERS400の出力電流ILは、変流器700、逆導通型半導体スイッチU、コンデンサC、及び逆導通型半導体スイッチYの順の経路を流れ、コンデンサCが充電される。したがって、MERS400の出力電流ILは減少し(0(ゼロ)に近づき)、コンデンサCの両端の電圧VCは上昇する。コンデンサCの充電が完了すると、MERS400の出力電流ILは0(ゼロ)になると共に、コンデンサCの両端の電圧VCは最大値を示す。
制御部500は、周波数f3の2倍の逆数の時間(周期T3の1/2倍の時間)が経過すると、U-Yゲートをオフすると共にV-Xゲートをオンする。このとき、コンデンサCの両端の電圧VCは0(ゼロ)であるから、ソフトスイッチングが実現される。
U-Yゲートがオフされると共にV-Xゲートがオンされると、そうすると、MERS400の出力電流ILは、変流器700、逆導通型半導体スイッチV、コンデンサC、及び逆導通型半導体スイッチXの順の経路を流れ、コンデンサCが充電される。したがって、MERS400の出力電流ILは減少し(0(ゼロ)に近づき)、コンデンサCの両端の電圧VCは上昇する。コンデンサCの充電が完了すると、MERS400の出力電流ILは0(ゼロ)になると共に、コンデンサCの両端の電圧VCは最大値を示す。
以上の前記(1c)及び前記(2c)の動作で、周期T3(1周期)の動作が終了する。続けて、前記(1c)の動作、前記(2c)の動作が交互に2回行われると、期間t3の動作が終了する。
以上により、制御部500は、抵抗スポット溶接機800(通電加工装置)による一回の通電加熱時間内(通電加工時間内)に、出力電流の通電周波数が相互に異なる第1の通電周波数及び第2の通電周波数を含むようにMERS400を制御することができる。また、制御部500は、上記の通電周波数の制御に加えて、抵抗スポット溶接機800(通電加工装置)による一回の通電加熱時間内(通電加工時間内)に、出力電流の実効値が相互に異なる第1の実効値及び第2の実効値を含むようにMERS400を制御することができる。
図3及び図4は、第1実施形態におけるスイッチングパターンのその他の例を示す図である。具体的に言うと、図3は、ゲート端子GU、GV、GX、及びGYに入力されるオン信号(ゲート信号)と、時間との関係を示す。
図3に示す例におけるスイッチングパターンは、逆導通型半導体スイッチU及びYのオン及びオフ、並びに、逆導通型半導体スイッチV及びXのオン及びオフを交互に1回ずつ行うことを、図2に示した周期T3、周期T2、及び周期T1の順で連続的に繰り返し行うパターンである。
図3に示すスイッチングパターンにおけるMERS400の動作は、例えば、<図2に示す動作>において、前記(1a)及び前記(2a)の繰り返し、前記(1b)及び前記(2b)の繰り返し、並びに前記(1c)及び前記(2c)の繰り返しを省略すると共に、動作の順番を、前記(1c)、前記(2c)、前記(1b)、前記(2b)、前記(1a)、前記(2a)にすることにより実現できるので、ここでは、その詳細な説明を省略する。
また、逆導通型半導体スイッチV及びXのオン時間(逆導通型半導体スイッチU及びYのオフ時間)と、逆導通型半導体スイッチU及びYのオン時間(逆導通型半導体スイッチV及びXのオフ時間)との何れか一方を一定にしてもよいことは、図2についても同じである。同一の周期における、逆導通型半導体スイッチV及びXのオン時間(逆導通型半導体スイッチU及びYのオフ時間)と、逆導通型半導体スイッチU及びYのオン時間(逆導通型半導体スイッチV及びXのオフ時間)とを異ならせる動作は、例えば、<図2に示す動作>において、前記(2a)の動作と前記(1c)の動作を行うことにより実現できるので、ここでは、その詳細な説明を省略する。
図4に示すスイッチングパターンにおけるMERS400の動作は、<図2に示す動作>における前記(1c)及び前記(2b)の動作を繰り返し行うことにより実現されるので、ここでは、その詳細な説明を省略する。
図4に示す例の更なる変形例として、例えば、図2及び図3において、一方の対角線上に配置された2つの逆導通型半導体スイッチ(U及びY、又は、V及びX)のオン時間(オフ時間)と、他方の対角線上に配置された2つの逆導通型半導体スイッチ(V及びX、又は、U及びY)のオン時間(オフ時間)とを異ならせてもよい。
例えば、図2に示す例では、逆導通型半導体スイッチU、V、X、及びYのオン及びオフを3回ずつ行ったのちに、逆導通型半導体スイッチU、V、X、及びYのオン時間及びオフ時間を変更した上で、逆導通型半導体スイッチU、V、X、及びYのオン及びオフを3回ずつ行い、さらにその後に、逆導通型半導体スイッチU、V、X、及びYのオン及びオフを3回ずつとしたまま逆導通型半導体スイッチU、V、X、及びYのオン時間及びオフ時間を変更する。
しかしながら、各周期において、上記の逆導通型半導体スイッチU、V、X、及びYのオン及びオフを行う回数(3回)を2回以上の任意の回数にすることができる。各周期において、上記の逆導通型半導体スイッチU、V、X、及びYのオン及びオフを行う回数(3回)を1回にするスイッチングパターンが図3に示す例である。
前者について、図2に示す例では、周期T1、周期T2、周期T3の順になるように、対角線上に配置された2つの逆導通型半導体スイッチ(U及びY、又は、V及びX)のオン時間及びオフ時間を変更している。後者について、図4に示す例では、対角線上に配置された一方の2つの逆導通型半導体スイッチU及びYの、1サイクル((T3+T2)/2の時間)におけるオン時間をT3/2にするのに対し、他方の2つの逆導通型半導 体スイッチV及びXの、1サイクル((T3+T2)/2の時間)におけるオン時間をT2/2にしている。
また、対角線上に配置された一方の2つの逆導通型半導体スイッチ(U及びY、又は、V及びX)と他方の2つの逆導通型半導体スイッチ(V及びX、又は、U及びY)の連続的に行うオン及びオフの回数を異ならせるようにしてもよい。ただし、このようにする場合であっても、一回の短時間の通電加熱時間内(1パルス通電内)に通電周波数が変更されるようにする。
抵抗スポット溶接を行うことにより形成される溶接継手の品質に影響を与える所定の1つ又は複数の因子により定まる溶接条件に応じた適切な通電パターンを、例えば模擬実験を行って特定し、特定した通電パターンを制御部500に記憶する。このようにして通電パターンを特定することを複数の溶接条件のそれぞれについて行い、複数の溶接条件のそれぞれについての通電パターンを制御部500に記憶する。前記因子としては、例えば、金属板の材質、溶接部の大きさ、材質、厚み、温度変化等が挙げられる。
図5は、一回の短時間の通電加熱時間内(1パルス通電内)に、通電周波数を変更する場合の通電パターンの一例を示す。図5に示す通電パターンでは、共振周波数f1以下の周波数であれば通電周波数は任意に設定できる。したがって、必要とする最大の通電周波数に対応した共振周波数を有する回路構成を用いれば、任意の通電周波数での通電が可能となる。
次に、本発明の第2実施形態について説明する。抵抗スポット溶接においてスパッタが発生する場合には、上側溶接電極、金属板(ワーク)及び下側溶接電極の間のインピーダンスが変化することから、このインピーダンスの変化を直接検出することができれば、スパッタの発生をより確実に抑制することができる。このインピーダンスの変化は、溶接電流(上側溶接電極、金属板(ワーク)及び下側溶接電極に流れる電流)の変化となって現れる。
また、スパッタが発生する際には、上側溶接電極や下側溶接電極における溶接電流の分布が大きく変化するから、この溶接電流の分布を検出することにより、スパッタの発生を抑制することができる。
以上のような、本発明者らが見出した着想の下、以下に説明する本発明の第2実施形態では、上側溶接電極及び下側溶接電極の少なくとも何れか一方の側方の複数の領域において、溶接電流が流れることにより発生する磁束量を検出し、検出した磁束量に応じて、溶接電流を制御する。
抵抗スポット溶接システム1Aは、交流電源110と、整流器210と、直流リアクトル310と、MERS410と、制御部510と、交流インダクタンス610と、変流器710と、抵抗スポット溶接機810と、電圧検出部910と、コイルC1~C4と、を有する。
なお、図7A及び図7Bにおいて、コイルC4は、上側溶接電極E1に隠れて見えていない。また、表記の都合上、コイルC1及びC3の一部の領域の図示を省略するとともに、コイルC1~C3の引き出し部分の図示を省略している。
整流器210の入力端と、交流電源110とが相互に接続される。整流器210の出力端の一つと、直流リアクトル310の一端とが相互に接続される。整流器210の出力端の他の一つと、MERS410の直流端子cとが相互に接続される。直流リアクトル310の他端と、MERS410の直流端子bとが相互に接続される。
MERS410の交流端子dと、交流インダクタンス610の一端が相互に接続される。交流インダクタンス610の他端と、変流器710の入力端の一つとが相互に接続される。MERS410の交流端子aと、変流器710の入力端の他の一つとが相互に接続される。変流器710の出力端の一つと上側溶接電極E10とが相互に接続され、他の一つと下側溶接電極E20とが相互に接続される。
整流器210は、交流電源110から出力される交流電力を整流して直流電力にする。交流電源110が単相交流電源である場合、整流器210は単相整流回路を備える。一方、交流電源110が三相交流電源である場合、整流器210は三相整流回路を備える。
直流リアクトル310は、整流器210を通った直流電力を平滑化する。
MERS410は、磁気エネルギー回生双方向電流スイッチの一例であり、整流器210から直流リアクトル310を介して入力した直流電力を後述するようにして交流電力として出力する。
MERS410の動作の詳細については後述する。
抵抗スポット溶接機810は、板面が相互に重ね合わせられた複数枚の金属板M1及びM2の重ね合わせ部の表側及び裏側から、すなわち、図6のA方向及びB方向から、金属板M10及びM20を挟み込むように、上側溶接電極の一例である上側溶接電極E10及び下側溶接電極の一例である下側溶接電極E20を加圧しながら通電する。そして、この通電により金属板M10及びM20に発生するジュール熱によって、これら金属板M10及びM20間を接合する。抵抗スポット溶接機810については、公知のものを利用することができる。抵抗スポット溶接の対象となる金属板M10及びM20の材質、板厚、及び枚数としては、抵抗スポット溶接を適用することが可能な種々のものを採用することができる。
具体的に言うと、図7Aは、金属板M10、上側溶接電極E10、及びコイルC1~C4を、上側溶接電極E10が配置されている側から、金属板M10の法線方向に沿って見た図である。図7Bは、金属板M10、金属板M20、上側溶接電極E10、下側溶接電極E20、及びコイルC1~C4を、図7Aの矢印線Aに沿って見た図である。図7Bにおいては、コイルC4は、上側溶接電極E1に隠れて見えていない。
具体的に言うと、図7A及び図7Bに示す例では、コイルC1~C4は、全て同一のものである。また、図7Aに示すように、コイルC1~C4は、上側溶接電極E1の軸201を軸とする4回対称の関係となる位置に配置される。また、コイルC1~C4は、コイルC1~C4の軸(コイルC1~C4のコイル面の中心を通る軸)の方向(破線の両矢印線の方向)が、上側溶接電極E10の軸201を中心とする円の接線の方向に一致する位置に配置される。ここで、コイルC1~C4は、抵抗スポット溶接に支障をきたさない範囲で、上側溶接電極E10及び金属板M10に可及的に近い位置に配置されるのが好ましい。
磁束量分布導出部511は、電圧検出部910により検出された各コイルC1~C4の誘導起電力と、各コイルC1~C4の巻き数と、から、各コイルC1~C4における磁束量φを導出する。
すなわち、溶接電流分布導出部512は、各コイルC1~C4における磁束量φから磁束密度Bを導出し、磁束密度Bと空気の透磁率μairとから磁界Hを導出し、磁界Hからアンペールの法則により、上側溶接電極E10の各コイルC1~C4と対応する領域の溶接電流を導出する。以下の説明では、上側溶接電極E10の領域のうち、各コイルC1~C4に対応する領域の溶接電流を必要に応じて、各コイルC1~C4に対応する領域の溶接電流と称する。
例えば、判定部513は、コイルC1~C4に対応する領域の溶接電流の大きさの少なくとも1つが、上限溶接電流Iuと下限溶接電流Idとにより定まる範囲ΔIから外れているか否かを判定する。本実施形態では、このようにして、上側溶接電極E10の軸に垂直な領域(例えば、図7Aにおいて上側溶接電極E10を示す円形の領域)において溶接電流に(予め設定した範囲よりも大きな)分布が生じているか否かを判定する。下限溶接電流Idを用いずに、判定部513が、コイルC1~C4に対応する領域の溶接電流の大きさの少なくとも1つが、上限溶接電流Iuを超えているか否かを判定するようにしてもよい。
その後、判定部513により、コイルC1~C4に対応する溶接電流の大きさの少なくとも1つが、上限溶接電流Iuと下限溶接電流Idとにより定まる範囲ΔIから外れていると判定されると、回路制御部514は、この範囲ΔIからの外れ量に応じた値だけ、溶接電流の大きさが現在値よりも小さくなるように、MERS410の動作を制御する。
したがって、回路制御部514は、コイルC1に対応する領域の溶接電流(点301b)の上限溶接電流Iuからの外れ量の絶対値に応じた値だけ、現在の溶接電流の大きさが低減するよう、MERS410の動作周波数を高くする。
図9Aでは、MERS410の動作周波数(すなわち、溶接電流の周波数)が1kHzである場合を示し、図9Bでは、MERS410の動作周波数(すなわち、溶接電流の周波数)が1.7kHzである場合を示す。図9A及び図9Bに示すように、MERS410の動作周波数を1kHzから1.7kHzに変更することで、溶接電流の波高値が12kA弱から10.5kA程度まで減少する。
図6に示すように、MERS410は、磁気エネルギー回生双方向電流スイッチの一例であり、ブリッジ回路と、コンデンサCとを含む。
ブリッジ回路は、2つの経路にそれぞれ2つずつ配置された4つの逆導通型半導体スイッチU、V、X、及びYによって構成される。コンデンサCは、ブリッジ回路の2つの経路の間に配置される。
第1の経路には、交流端子dと直流端子bとの間に逆導通型半導体スイッチV(第4の逆導通型半導体スイッチ)が配置され、直流端子bと交流端子aとの間に逆導通型半導体スイッチU(第1の逆導通型半導体スイッチ)が配置される。
第2の経路には、交流端子dと直流端子cとの間に逆導通型半導体スイッチY(第3の逆導通型半導体スイッチ)が配置され、直流端子cと交流端子aとの間に逆導通型半導体スイッチX(第2の逆導通型半導体スイッチ)が配置される。コンデンサCは、直流端子bと直流端子cとの間に配置される。
このように、交流端子aと交流端子dとの間において、逆導通型半導体スイッチU及びXは並列に接続され、逆導通型半導体スイッチV及びYは並列に接続される。また、交流端子aと交流端子dとの間において、逆導通型半導体スイッチU及びVは直列に接続され、逆導通型半導体スイッチX及びYは直列に接続される。
以下の説明では、「各逆導通型半導体スイッチU、V、X、及びYがスイッチオフ時に電流を流す方向」を、必要に応じて「順方向」と称し、スイッチオフ時に電流を流さない方向を、必要に応じて「逆方向」と称する。また、以下の説明では、「順方向及び逆方向の、回路に対する接続方向」を、必要に応じて「スイッチ極性」と称する。
また、交流端子aと交流端子dとの間において、直列に接続された逆導通型半導体スイッチUと逆導通型半導体スイッチVは、互いに逆方向のスイッチ極性を有する。同様に、交流端子aと交流端子dとの間において、直列に接続された逆導通型半導体スイッチXと逆導通型半導体スイッチYも、互いに逆方向のスイッチ極性を有する。
よって、逆導通型半導体スイッチUと逆導通型半導体スイッチYは、互いに順方向のスイッチ極性を有し、逆導通型半導体スイッチVと逆導通型半導体スイッチXも、互いに順方向のスイッチ極性を有す。また、逆導通型半導体スイッチU及びYのスイッチ極性と、逆導通型半導体スイッチV及びXのスイッチ極性は、互いに逆方向となる。
また、逆導通型半導体スイッチU、V、X、及びYには、様々な構成が考えられるが、本実施形態では、半導体スイッチSU、SV、SX、及びSYとダイオードDU、DV、DX、及びDYとの並列接続によって構成されるものとする。すわなち、逆導通型半導体スイッチU、V、X、及びYのそれぞれは、ダイオードDU、DV、DX、及びDYの1つと、このダイオードに並列に接続された半導体スイッチSU、SV、SX、及びSYの1つとを有する。
第1のペアと第2のペアとは、順方向が相互に逆向きになるように配置される。したがって、ブリッジ回路で対角線上に配置された逆導通型半導体スイッチ(U及びY、又は、V及びX)は、各順方向が同方向になるように配置される。
MERS410では、ブリッジ回路の対角線上に配置された2つの逆導通型半導体スイッチのうち、一方の逆導通型半導体スイッチがオンすると他方の逆導通型半導体スイッチもオンする。同様に、ブリッジ回路の対角線上に配置された2つの逆導通型半導体スイッチの一方の逆導通型半導体スイッチがオフすると他方の逆導通型半導体スイッチもオフする。例えば、逆導通型半導体スイッチUがオンすると逆導通型半導体スイッチYもオンし、逆導通型半導体スイッチUがオフすると逆導通型半導体スイッチYもオフする。これらのことは、逆導通型半導体スイッチV及びXについても同じである。
MERS410では、逆導通型半導体スイッチ(U及びY、又は、V及びX)のオン及びオフの制御により、溶接電流の周波数や波形を様々に変更することができるが、ここでは、図9A及び図9Bに示した溶接電流の波形を得るためのMERS410の動作の一例を説明する。
本実施形態では、MERS410の動作周波数f1(=1/T1)が、MERS410の出力端から負荷側を見たときのインダクタンスと、コンデンサCのキャパシタンス(容量)とに基づく共振周波数よりも低くなるようにする。これにより、ソフトスイッチングを実現することができる。また、大容量の電圧源コンデンサを用いる必要がなくなるので、コンデンサCのキャパシタンスを小さくすることができる。
また、ゲート端子GV及びGXにオン信号(ゲート信号)が入力され、逆導通型半導体スイッチV及びXがオンすることを必要に応じて「V-Xゲートがオンする」と称する。一方、ゲート端子GV及びGXにオン信号(ゲート信号)が入力されず、逆導通型半導体スイッチV及びXがオフすることを、必要に応じて「V-Xゲートがオフする」と称する。
(1)U-Yゲート:オン、V-Xゲートオフ
U-Yゲートがオンするタイミングでは、その直前の期間では、V-XゲートもU-Yゲートもオフしているので、直流リアクトル310を介して入力した直流入力電流により、コンデンサCは充電されている。したがって、コンデンサCの両端の電圧VCは最大値を示す。
MERS410の動作周波数f1は前記共振周波数よりも低いので、コンデンサCの放電が完了しても、制御部510は、U-Yゲートをオフせず、U-Yゲートはオンされた状態のままである。したがって、MERS410の出力電流ILは、逆導通型半導体スイッチU、変流器710、及びダイオードDVの順の経路と、逆導通型半導体スイッチY、ダイオードDX、及び変流器710の順の経路に並列に流れ、還流する。このMERS410の出力電流ILは、負荷の抵抗とインダクタンスから定まる時定数に従って減少する(0(ゼロ)に近づく)。
制御部510は、MERS410の動作周波数f1の2倍の逆数の時間(周期T1の1/2倍の時間)が経過すると、U-Yゲートをオフする。このとき、コンデンサCの両端の電圧VCは0(ゼロ)であるから、ソフトスイッチングが実現される。
また、U-Yゲートをオフしたタイミングで、前述した還流が終了していないと(MERS410の出力電流ILが0(ゼロ)になっていないと)、MERS410の出力電流ILは、ダイオードDV、コンデンサC、及びダイオードDxの順の経路を流れ、コンデンサCを充電するので急速に減少して0(ゼロ)になる。
制御部510は、MERS410の動作周波数f1の2倍の逆数の時間(周期T1の1/2倍の時間)が経過すると、U-Yゲートをオンする。このとき、MERS410の出力電流ILは0(ゼロ)であるから、ソフトスイッチングが実現される。
前記(1)及び前記(2)の動作で、周期T1(1周期)の動作が終了する。このような動作を繰り返し行うことによって、図9A及び図9Bに示す溶接電流の波形が得られる。
ei=-ni・dφi/dt (式1)
Ii=∫φi・dl/(μ・Si) (式2)
ei=-ni・dφi/dt (式3)
次に、本発明の第3実施形態について説明する。上記第2実施形態では、金属板M10の上方(又は金属板M20の下方)にコイルC1~C4を配置する場合を例に挙げて説明した。これに対し、本実施形態では、金属板M10及びM20に2つのコイルを周回させる。このように本実施形態と上記第2実施形態とでは、コイルの数、構成、及び配置が主として異なる。したがって、本実施形態の説明において、上記第2実施形態と同一の部分については、図6~図14に付した符号と同一の符号を付す等して、詳細な説明を省略する。
具体的に図15Aは、金属板M10、上側溶接電極E10、コイルC5、及びコイルC6を、上側溶接電極E10が配置されている側から、金属板M10の法線方向に沿って見た図である。図15Bは、金属板M10、金属板M20、上側溶接電極E10、下側溶接電極E20、コイルC5、及びコイルC6を、図15Aの矢印線Dに沿って見た図である。図15Bにおいては、コイルC6は、コイルC5と上側溶接電極E1に隠れて見えていない。
具体的に言うと、図15A及び図15Bに示す例では、コイルC5及びC6は、同じものである。また、図15Aに示すように、コイルC5及びC6は、上側溶接電極E10の軸201(この軸201は下側溶接電極E20の軸ともの一致する)を軸とする2回対称の関係となる位置に配置される。ここで、コイルC5及びC6は、可及的に上側溶接電極E10及び下側溶接電極E20に近い位置に配置されるのが好ましい。
以上のようにしても、前述した第2実施形態と同様の効果を得ることができる。
また、本実施形態においても、第2実施形態で説明した種々の変形例を採用することができる。
次に、本発明の第4実施形態について説明する。上記の第1実施形態と比較して、第4実施形態に係る抵抗スポット溶接システム1Bは、抵抗スポット溶接機800が、圧力調節部900を備えている点が異なる。このため、構成などについては上記第1実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
(1)本実施形態に係るスポット溶接方法は、重ね合せた鋼板のスポット溶接方法において、先端が凸状の形状をした電極を用いて、重ね合せた鋼板を加圧し、次いで、高周波電流を通電し、通電中に、鋼板と鋼板の接触領域を加圧し、該加圧力を、通電終了まで徐々に高めていき、通電を終了した後、加圧力をゼロとする。
100,110:交流電源
200,210:整流器
300,310:直流リアクトル
400,410:MERS
500,510:制御部
511:磁束量分布導出部
512:溶接電流分布導出部
513:判定部
514:回路制御部
600,610:交流インダクタンス
700,710:変流器
800、810:抵抗スポット溶接機
900:圧力調節部
910:電圧検出部
C1~C6:コイル
E1,E2,E10,E20:溶接電極
M1,M2,M10,M20:金属板
1c:接触領域
2,2a,2b:溶融部
3:溶融凝固組織
Claims (13)
- 被加工材を通電加工する通電加工装置に出力電流を供給する電源装置であって、
第1電源と;
前記第1電源から供給される電流を受けて前記出力電流に変換する磁気エネルギー回生スイッチと;
前記通電加工装置による一回の通電加工時間内に、前記出力電流の通電周波数が相互に異なる第1の通電周波数及び第2の通電周波数を含むように前記磁気エネルギー回生スイッチを制御する制御部と;
を備えることを特徴とする電源装置。 - 前記一回の通電加工時間が1秒以下である、
ことを特徴とする請求項1に記載の電源装置。 - 前記通電加工中の前記通電周波数が、前記磁気エネルギー回生スイッチの出力端から見た前記通電加工装置側のインダクタンスと、前記磁気エネルギー回生スイッチが有するコンデンサのキャパシタンスとにより定まる共振周波数以下である、
ことを特徴とする請求項1または2に記載の電源装置。 - 前記磁気エネルギー回生スイッチが、
第1の逆導通型半導体スイッチと第4の逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして第1の経路に直列に配置されると共に、第2の逆導通型半導体スイッチと第3の逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして第2の経路に直列に配置されてかつ、前記第1の逆導通型半導体スイッチと前記第3の逆導通型半導体スイッチのスイッチオフ時の導通方向が互いに同じであるブリッジ回路と、
前記第1の経路の領域のうち、前記第1の逆導通型半導体スイッチと前記第4の逆導通型半導体スイッチとの間の領域と、前記第2の経路の領域のうち、前記第2の逆導通型半導体スイッチと前記第3の逆導通型半導体スイッチとの間の領域との間に接続されたコンデンサとを有し、なおかつ、
前記第1電源と、前記通電加工装置との間に配置され;
前記制御部が、
前記第1の逆導通型半導体スイッチおよび前記第3の逆導通型半導体スイッチと、前記第2の逆導通型半導体スイッチおよび前記第4の逆導通型半導体スイッチと、の少なくとも何れか一方のオン時間とオフ時間とを制御することにより、前記通電周波数を、前記一回の通電加工時間内に制御する、あるいは、
前記第1の逆導通型半導体スイッチおよび前記第3の逆導通型半導体スイッチと、前記第2の逆導通型半導体スイッチおよび前記第4の逆導通型半導体スイッチと、の少なくとも何れか一方の、オン時間とオフ時間と前記第1電源から供給される電流とを制御することにより、前記通電周波数と前記出力電流の電流値とを、前記一回の通電加工時間内にそれぞれ制御する;
ことを特徴とする請求項1から3のいずれか一項に記載の電源装置。 - 請求項1から4の何れか1項に記載の電源装置と;
前記電源装置から出力された前記出力電流を、前記被加工材である複数の被通電材間の接触領域に通電し、前記接触領域を通電加熱することで前記複数の被通電材間を接合する、前記通電加工装置である接合装置と;
を備えることを特徴とする接合システム。 - 前記接合装置が、
第1電極と;
前記第1電極と対向して配置され、前記第1電極との間に前記複数の被通電材を挟持する第2電極と;
前記第1電極と、前記複数の被通電材と、前記第2電極とを流れる、前記電源装置から出力された前記出力電流によって発生する磁束が貫く複数のコイルと;
を備え、
前記制御部が、前記電源装置から出力される前記出力電流の前記通電周波数を、前記磁束により前記複数のコイルで発生する起電力に応じて変化させるように、前記磁気エネルギー回生スイッチを制御する、
ことを特徴とする請求項5に記載の接合システム。 - 前記複数のコイルが、前記第1電極と前記第2電極とのうちの少なくとも何れか一方に対し、これら第1電極及び第2電極間と同軸をなす中心軸線の周囲上の互いに異なる位置に、配置されている、
ことを特徴とする請求項6に記載の接合システム。 - 前記制御部が、前記複数のコイルで発生する起電力の少なくとも1つが、予め設定された範囲から外れていると判定すると、前記予め設定された範囲からの外れ量に応じた値だけ、前記出力電流が増減するように前記磁気エネルギー回生スイッチを制御する、
ことを特徴とする請求項6または7に記載の接合システム。 - 前記複数のコイルが、前記第1電極及び前記第2電極を介して相互に対向し、前記複数の被通電材に巻回されている、
ことを特徴とする請求項6記載の接合システム。 - 前記接合装置が、前記複数の被通電材間を挟持する挟持力を増減させる圧力調節部を備える、
ことを特徴とする請求項5から9の何れか一項に記載の接合システム。 - 被加工材に応じた通電加工条件を用意する準備工程と;
前記通電加工条件に応じて、前記被加工材の一回の通電加工時間内に、第1の通電周波数を有する出力電流を前記被加工材に付与し、さらに、前記第1の通電周波数と異なる第2の通電周波数を有する出力電流を前記被加工材に付与する通電加工工程と;
を有することを特徴とする通電加工方法。 - 前記通電加工工程が、前記被加工材に付与される前記出力電流により発生する磁束に基づく起電力の変化に応じて、前記出力電流を増減させる工程を有する、
ことを特徴とする請求項11に記載の通電加工方法。 - 前記通電加工工程が、
前記被加工材である複数の被通電材を挟持して接触領域を形成する工程と;
前記接触領域に前記出力電流を通電して通電加熱する工程と;
前記複数の被通電材に付与する挟持力を増減させる工程と;
を有する、
ことを特徴とする請求項11または12に記載の通電加工方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2017007399A MX2017007399A (es) | 2014-12-12 | 2015-12-11 | Dispositivo de fuente de alimentacion, sistema de union y metodo de procesamiento conductor. |
ES15866633T ES2783283T3 (es) | 2014-12-12 | 2015-12-11 | Dispositivo de fuente de alimentación, sistema de unión y método de procesamiento por conducción |
CN201580066513.5A CN107148736B (zh) | 2014-12-12 | 2015-12-11 | 电源装置、接合系统及通电加工方法 |
CA2969815A CA2969815C (en) | 2014-12-12 | 2015-12-11 | Power supply device, joining system, and electric processing method |
EP15866633.9A EP3232557B1 (en) | 2014-12-12 | 2015-12-11 | Power-source device, joining system, and conductive processing method |
US15/533,423 US10603743B2 (en) | 2014-12-12 | 2015-12-11 | Power supply device, joining system, and electric processing method |
KR1020177016476A KR102010163B1 (ko) | 2014-12-12 | 2015-12-11 | 전원 장치, 접합 시스템 및 통전 가공 방법 |
JP2016563746A JP6460121B2 (ja) | 2014-12-12 | 2015-12-11 | 電源装置、接合システム、及び、通電加工方法 |
BR112017012031A BR112017012031A2 (pt) | 2014-12-12 | 2015-12-11 | dispositivo de fonte de alimentação, sistema de união e método de processamento condutor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252141 | 2014-12-12 | ||
JP2014-252151 | 2014-12-12 | ||
JP2014252151 | 2014-12-12 | ||
JP2014-252141 | 2014-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016093340A1 true WO2016093340A1 (ja) | 2016-06-16 |
Family
ID=56107517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/084776 WO2016093340A1 (ja) | 2014-12-12 | 2015-12-11 | 電源装置、接合システム、及び、通電加工方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10603743B2 (ja) |
EP (1) | EP3232557B1 (ja) |
JP (1) | JP6460121B2 (ja) |
KR (1) | KR102010163B1 (ja) |
CN (1) | CN107148736B (ja) |
BR (1) | BR112017012031A2 (ja) |
CA (1) | CA2969815C (ja) |
ES (1) | ES2783283T3 (ja) |
MX (1) | MX2017007399A (ja) |
WO (1) | WO2016093340A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106941744A (zh) * | 2017-02-14 | 2017-07-11 | 矽诚科技股份有限公司 | 具有发光信号载于电力线的发光二极管系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108015401B (zh) * | 2016-11-04 | 2020-06-23 | 宝山钢铁股份有限公司 | 具有良好接头性能的镀锌高强钢电阻点焊方法 |
JP6849174B1 (ja) * | 2020-02-06 | 2021-03-24 | 株式会社オリジン | 接合装置及び接合済部材の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10314956A (ja) * | 1997-05-14 | 1998-12-02 | Matsushita Electric Ind Co Ltd | 抵抗溶接部の品質評価方法および装置 |
JP2003080372A (ja) * | 2001-09-07 | 2003-03-18 | Miyachi Technos Corp | 被覆線用接合装置 |
JP2004358500A (ja) * | 2003-06-04 | 2004-12-24 | Daihatsu Motor Co Ltd | スポット溶接方法およびスポット溶接装置 |
WO2010023709A1 (ja) * | 2008-08-26 | 2010-03-04 | 株式会社MERSTech | 溶接機用電源装置および溶接機 |
JP2012045569A (ja) * | 2010-08-26 | 2012-03-08 | Nippon Avionics Co Ltd | 抵抗溶接方法および抵抗溶接装置 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5043236A (ja) | 1973-08-24 | 1975-04-18 | ||
JPS60255287A (ja) | 1984-05-31 | 1985-12-16 | Mitsubishi Electric Corp | 高周波スポツト溶接機 |
JPS634982A (ja) | 1986-06-26 | 1988-01-09 | Sony Corp | プリンタ |
JPH0681673B2 (ja) * | 1989-10-31 | 1994-10-19 | オリジン電気株式会社 | コンデンサ蓄勢式インバータ制御型溶接機 |
US5115113A (en) * | 1990-09-24 | 1992-05-19 | General Motors Corporation | Spot welding method and apparatus having weld electrode lock-up |
JP3180530B2 (ja) | 1993-09-29 | 2001-06-25 | トヨタ自動車株式会社 | スポット溶接の散り発生抑制制御方法 |
JP2721952B2 (ja) | 1993-11-25 | 1998-03-04 | 株式会社電元社製作所 | スポット溶接機の制御方法 |
JPH09206941A (ja) | 1996-01-29 | 1997-08-12 | Kobe Steel Ltd | 炭酸ガスシールドパルスアーク溶接方法 |
JP3634982B2 (ja) | 1999-06-11 | 2005-03-30 | 財団法人理工学振興会 | スナバーエネルギーを回生する電流順逆両方向スイッチ |
JP2001044756A (ja) | 1999-07-27 | 2001-02-16 | Seiko Epson Corp | 発振器、発振器の制御方法及び計時装置 |
JP2001159841A (ja) * | 1999-12-01 | 2001-06-12 | Canon Inc | 現像カートリッジ及びプロセスカートリッジ及び電子写真画像形成装置 |
JP2002001545A (ja) * | 2000-06-19 | 2002-01-08 | Miyachi Technos Corp | 抵抗溶接電源装置 |
US20020166843A1 (en) * | 2001-05-14 | 2002-11-14 | Pei-Chung Wang | Method for electrical resistance welding thin metal sheets together for automotive vehicle structures |
JP3959302B2 (ja) | 2002-05-10 | 2007-08-15 | 本田技研工業株式会社 | スポット溶接システムおよびその制御方法 |
JP4406733B2 (ja) * | 2006-10-05 | 2010-02-03 | 国立大学法人東京工業大学 | インバータ電源装置 |
DE112008003369T5 (de) | 2007-12-11 | 2010-12-30 | Tokyo Institute Of Technology | Sanftschaltender Stromwandler |
DE112008003921T5 (de) * | 2008-06-27 | 2011-06-30 | Merstech Inc. | PM-Motorantriebsstromversorgungsvorrichtung |
JP5305195B2 (ja) | 2008-09-30 | 2013-10-02 | 高周波熱錬株式会社 | 金属材の溶接方法 |
WO2010038779A1 (ja) | 2008-09-30 | 2010-04-08 | 高周波熱錬株式会社 | 金属材の溶接装置及び金属材の溶接方法 |
US8847522B2 (en) | 2008-11-14 | 2014-09-30 | Denso Corporation | Reluctance motor with improved stator structure |
JP2010131666A (ja) | 2008-12-08 | 2010-06-17 | Kanto Auto Works Ltd | スポット溶接用電極 |
US9498840B2 (en) | 2009-07-31 | 2016-11-22 | Neturen Co., Ltd. | Welding structural part and welding method of the same |
ES2743306T3 (es) | 2009-08-31 | 2020-02-18 | Nippon Steel Corp | Unión soldada por puntos y método de soldadura por puntos |
PL2515609T3 (pl) | 2009-12-14 | 2018-07-31 | Nippon Steel & Sumitomo Metal Corporation | Urządzenie sterujące dla indukcyjnego urządzenia grzewczego oraz sposób sterowania układem do nagrzewania indukcyjnego oraz indukcyjnym urządzeniem grzewczym |
JP5494065B2 (ja) | 2010-03-17 | 2014-05-14 | 新日鐵住金株式会社 | スポット溶接方法及びスポット溶接継手 |
-
2015
- 2015-12-11 ES ES15866633T patent/ES2783283T3/es active Active
- 2015-12-11 BR BR112017012031A patent/BR112017012031A2/pt not_active Application Discontinuation
- 2015-12-11 MX MX2017007399A patent/MX2017007399A/es active IP Right Grant
- 2015-12-11 KR KR1020177016476A patent/KR102010163B1/ko active IP Right Grant
- 2015-12-11 US US15/533,423 patent/US10603743B2/en not_active Expired - Fee Related
- 2015-12-11 JP JP2016563746A patent/JP6460121B2/ja active Active
- 2015-12-11 WO PCT/JP2015/084776 patent/WO2016093340A1/ja active Application Filing
- 2015-12-11 EP EP15866633.9A patent/EP3232557B1/en active Active
- 2015-12-11 CA CA2969815A patent/CA2969815C/en not_active Expired - Fee Related
- 2015-12-11 CN CN201580066513.5A patent/CN107148736B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10314956A (ja) * | 1997-05-14 | 1998-12-02 | Matsushita Electric Ind Co Ltd | 抵抗溶接部の品質評価方法および装置 |
JP2003080372A (ja) * | 2001-09-07 | 2003-03-18 | Miyachi Technos Corp | 被覆線用接合装置 |
JP2004358500A (ja) * | 2003-06-04 | 2004-12-24 | Daihatsu Motor Co Ltd | スポット溶接方法およびスポット溶接装置 |
WO2010023709A1 (ja) * | 2008-08-26 | 2010-03-04 | 株式会社MERSTech | 溶接機用電源装置および溶接機 |
JP2012045569A (ja) * | 2010-08-26 | 2012-03-08 | Nippon Avionics Co Ltd | 抵抗溶接方法および抵抗溶接装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3232557A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106941744A (zh) * | 2017-02-14 | 2017-07-11 | 矽诚科技股份有限公司 | 具有发光信号载于电力线的发光二极管系统 |
Also Published As
Publication number | Publication date |
---|---|
KR102010163B1 (ko) | 2019-08-12 |
KR20170084295A (ko) | 2017-07-19 |
ES2783283T3 (es) | 2020-09-17 |
CN107148736A (zh) | 2017-09-08 |
EP3232557A4 (en) | 2018-09-12 |
CA2969815C (en) | 2020-07-21 |
JPWO2016093340A1 (ja) | 2017-11-02 |
EP3232557A1 (en) | 2017-10-18 |
US20170348798A1 (en) | 2017-12-07 |
MX2017007399A (es) | 2017-10-20 |
JP6460121B2 (ja) | 2019-01-30 |
EP3232557B1 (en) | 2020-02-26 |
BR112017012031A2 (pt) | 2017-12-26 |
CA2969815A1 (en) | 2016-06-16 |
US10603743B2 (en) | 2020-03-31 |
CN107148736B (zh) | 2019-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427074B2 (ja) | 抵抗溶接方法及びその装置 | |
KR102005687B1 (ko) | 스폿 용접 방법 | |
JP5793495B2 (ja) | 直流マイクロパルスを用いた抵抗スポット溶接方法及びシステム | |
JP6460121B2 (ja) | 電源装置、接合システム、及び、通電加工方法 | |
JP2013501628A5 (ja) | ||
JP2011104628A (ja) | 抵抗溶接方法、抵抗溶接部材、抵抗溶接機とその制御装置、抵抗溶接機の制御方法とその制御プログラムおよび抵抗溶接の評価方法とその評価プログラム | |
JPWO2014208747A1 (ja) | 溶接構造部材及び溶接方法 | |
JP5904288B2 (ja) | インダイレクトスポット溶接装置 | |
CN109483033A (zh) | 电阻焊接方法和电阻焊接装置 | |
Li et al. | Energy consumption in AC and MFDC resistance spot welding | |
JP6519510B2 (ja) | スポット溶接物の製造方法およびそのための製造装置 | |
WO2018192038A1 (zh) | 一种直接接触式交流梯形波铝电阻焊工艺方法 | |
KR102415951B1 (ko) | 저항 스폿 용접 방법 및 용접 부재의 제조 방법 | |
JPS5817712B2 (ja) | フラツシユ溶接方法 | |
JP6493093B2 (ja) | 抵抗スポット溶接用電源装置 | |
US20180304397A1 (en) | Direct-contact type alternating current trapezoidal wave aluminum resistance welding process method | |
JP2006231379A (ja) | マルチスポット溶接装置 | |
KR102415945B1 (ko) | 저항 스폿 용접 방법 및 용접 부재의 제조 방법 | |
Moarrefzadeh | Study of heat affected zone (HAZ) in resistance welding process | |
CN102950373B (zh) | 用于铝合金工件的电阻点焊的焊接方法 | |
JP2024000009A (ja) | 抵抗溶接システム、及び抵抗溶接継手の製造方法 | |
JP2020163415A (ja) | アルミニウム合金材の接合方法、及びアルミニウム合金材の接合体 | |
Dave et al. | AC/DC Arc & Spot Three In One Welding Machine | |
CN118720375A (zh) | 用于制造焊接结构的方法及焊接装置 | |
JPS6234476B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15866633 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2969815 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15533423 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/007399 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2016563746 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015866633 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177016476 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017012031 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017012031 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170607 |