WO2016088738A1 - 車両用空気調和装置 - Google Patents
車両用空気調和装置 Download PDFInfo
- Publication number
- WO2016088738A1 WO2016088738A1 PCT/JP2015/083695 JP2015083695W WO2016088738A1 WO 2016088738 A1 WO2016088738 A1 WO 2016088738A1 JP 2015083695 W JP2015083695 W JP 2015083695W WO 2016088738 A1 WO2016088738 A1 WO 2016088738A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode
- refrigerant
- air
- heating
- dehumidifying
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00507—Details, e.g. mounting arrangements, desaeration devices
- B60H1/00585—Means for monitoring, testing or servicing the air-conditioning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00271—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
- B60H1/00278—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00885—Controlling the flow of heating or cooling liquid, e.g. valves or pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00907—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00921—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00978—Control systems or circuits characterised by failure of detection or safety means; Diagnostic methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
- B60H1/3213—Control means therefor for increasing the efficiency in a vehicle heat pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H2001/00957—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H2001/2246—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3236—Cooling devices information from a variable is obtained
- B60H2001/3239—Cooling devices information from a variable is obtained related to flow
- B60H2001/3242—Cooling devices information from a variable is obtained related to flow of a refrigerant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3269—Cooling devices output of a control signal
- B60H2001/3285—Cooling devices output of a control signal related to an expansion unit
Definitions
- the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
- an electric compressor that compresses and discharges the refrigerant
- a radiator that is provided on the vehicle interior side and radiates the refrigerant
- a heat absorber evaporator
- the refrigerant discharged from the compressor is Heating mode in which heat is dissipated and the heat dissipated in the radiator is absorbed in the outdoor heat exchanger
- dehumidification mode in which the refrigerant discharged from the compressor is dissipated in the radiator and the refrigerant dissipated in the radiator is absorbed in the heat absorber
- the present invention has been made to solve the conventional technical problems, and continues air conditioning in the passenger compartment even when a failure occurs in the solenoid valve for switching the refrigerant flow in each operation mode.
- An object of the present invention is to provide a vehicle air conditioner that can be used.
- the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
- a heat sink a heat absorber for absorbing the heat of the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle room for radiating or absorbing heat, and a refrigerant circuit
- a plurality of solenoid valves for switching the refrigerant flow, auxiliary heating means for heating the air supplied from the air flow passage into the vehicle interior, control means for controlling the compressor, the electromagnetic valve, and the auxiliary heating means
- the control means controls the solenoid valve and switches the flow of the refrigerant so that the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is decompressed, and the outdoor heat exchanger
- dehumidification mode in which the refrigerant discharged from the compressor dissipates heat with a radiator, depressurizes the dissipated refrigerant, and absorbs heat with a heat absorber, and refrigerant discharged from the compressor into the outdoor heat exchanger
- failure detection means has a failure detection means for detecting a valve failure, and the failure detection means detects that the solenoid valve has failed in each operation mode, select an air conditioning mode at the time of failure that can realize air conditioning in the vehicle interior according to the operation mode. It is characterized by continuing air conditioning in the passenger compartment.
- the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is decompressed, and then the heat absorber and the outdoor heat exchange.
- control means switches the refrigerant flow to another operation mode capable of dehumidifying the passenger compartment and sets the air conditioning mode at the time of failure. It is characterized by.
- the control means detects that the electromagnetic valve has failed in the dehumidifying and heating mode
- the refrigerant flow is switched to an operation mode in which the passenger compartment can be further cooled.
- the air conditioning mode at the time of failure is performed in which heating is performed by auxiliary heating means as necessary.
- a vehicle air conditioner comprising: a heating electromagnetic valve that is energized and opened in the heating mode and the dehumidifying heating mode according to the second or third aspect of the invention; When it is detected that the heating solenoid valve has failed, the refrigerant flow is switched to the dehumidifying and cooling mode, and when the heat radiation by the radiator is insufficient, the failure air conditioning mode is performed in which heating is performed by the auxiliary heating means. To do.
- a vehicle air conditioner includes the dehumidifying solenoid valve that is connected in parallel to the outdoor heat exchanger and opened when energized in the dehumidifying heating mode.
- the control means detects that the electromagnetic valve for dehumidification has failed in the dehumidifying heating mode, it switches the refrigerant flow to the dehumidifying and cooling mode, and when the heat radiation by the radiator is insufficient, heating by the auxiliary heating means is performed.
- An air conditioning mode is executed.
- the vehicle air conditioner according to a sixth aspect of the present invention is the dehumidifying mode according to the second to fifth aspects of the present invention, wherein the refrigerant discharged from the compressor is radiated by a radiator and the radiated refrigerant is decompressed.
- the solenoid valve When it is detected that the solenoid valve has failed, the refrigerant flow is switched to the dehumidifying and cooling mode, and when the heat radiation by the radiator is insufficient, the failure air conditioning mode in which heating is performed by the auxiliary heating means is executed.
- a vehicle air conditioner comprises the evaporation pressure adjusting valve connected to the refrigerant outlet side of the heat absorber and opened and closed in the dehumidifying heating mode in the second to sixth aspects of the invention, and includes a failure detection means. Detects the failure of the evaporative pressure control valve, and if the control means detects that the evaporative pressure control valve has failed in the dehumidifying and heating mode, it switches the refrigerant flow to the dehumidifying and cooling mode, and the heat dissipation by the radiator is insufficient. When performing, a failure air conditioning mode in which heating is performed by auxiliary heating means is performed.
- An air conditioner for a vehicle includes an air mix damper for adjusting a ratio of the air in the air flow passage that has passed through the heat absorber in each of the above inventions, and an outdoor heat exchanger. And an outdoor expansion valve that squeezes down and reduces the inflowing refrigerant, and the dehumidifying mode radiates the refrigerant discharged from the compressor with a radiator, depressurizes the radiated refrigerant, and then the heat absorber and the outdoor heat exchanger.
- the control means controls the temperature of the heat absorber by the valve opening degree of the outdoor expansion valve, and controls the temperature of the air passing through the radiator by the rotation speed of the compressor.
- the failure detection means also detects a failure of the outdoor expansion valve, and when the control means detects that the outdoor expansion valve has failed in the dehumidifying heating mode, the failure detection means uses the compressor without switching the refrigerant flow. To control the temperature of the heat sink, and executes the failure-time air conditioning mode to control the temperature of the air blown into the passenger compartment by the air mixing damper and the auxiliary heating means.
- An air conditioner for a vehicle includes an air mix damper for adjusting a ratio of the air in the air flow passage that has passed through the heat absorber in each of the above-described inventions, and an outdoor heat exchanger.
- An outdoor expansion valve that squeezes down the refrigerant flowing in and depressurizes, and the dehumidification mode radiates the refrigerant discharged from the compressor with a radiator and an outdoor heat exchanger, depressurizes the radiated refrigerant, and then the heat absorber
- the control means controls the temperature of the air that has passed through the radiator according to the valve opening degree of the outdoor expansion valve, and the failure detection means also detects a failure of the outdoor expansion valve.
- the control means blows out into the vehicle compartment by the air mix damper and the auxiliary heating means without switching the refrigerant flow. And executes the failure-time air conditioning mode to control the temperature of the air.
- a vehicle air conditioner includes the heating electromagnetic valve that is energized and opened in the heating mode in each of the above-described inventions, and the control means has a failure in the heating electromagnetic valve in the heating mode. Is detected, the operation of the compressor is stopped and the air conditioning mode at the time of failure in which heating by the auxiliary heating means is performed is performed.
- the vehicle air conditioner according to an eleventh aspect of the present invention is connected to the outdoor expansion valve for reducing and reducing the pressure of the refrigerant flowing into the outdoor heat exchanger in each of the above inventions, and to the refrigerant outlet side of the heat absorber, and is opened and closed in a dehumidifying heating mode.
- the failure detection means detects a failure of the outdoor expansion valve and the evaporation pressure adjustment valve, and the control means controls the electromagnetic valve, the outdoor expansion valve, and the evaporation pressure adjustment in each operation mode. Even when a failure of any of the valves is detected, if the vehicle interior air conditioning can be realized in the operation mode, the failure air conditioning mode that continues the operation mode is executed without switching the refrigerant flow. It is characterized by that.
- a vehicle air conditioner is connected to the outdoor expansion valve that squeezes and depressurizes the refrigerant flowing into the outdoor heat exchanger in each of the above inventions, and to the refrigerant outlet side of the heat absorber and opens and closes in a dehumidifying heating mode.
- the failure detection means detects failure of the electromagnetic valve, the outdoor expansion valve, and the evaporation pressure adjustment valve electrically or depending on the temperature and / or pressure conditions of the refrigerant circuit. It is characterized by doing.
- a vehicle air conditioner includes the heat medium-air heat exchanger, the electric heater, and the circulation means in each of the above inventions, and heats the heat medium heated by the electric heater by the circulation means.
- a heat medium circulation circuit that circulates in the medium-air heat exchanger is provided, and auxiliary heating means is configured by the heat medium-air heat exchanger.
- the vehicle air conditioner according to any one of the first to twelfth aspects, wherein the auxiliary heating means is constituted by an electric heater that heats air supplied from the air flow passage into the vehicle interior. To do.
- a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage.
- a heat absorber that cools the air that is absorbed into the vehicle interior from the air flow passage, an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb heat, and a refrigerant flow in the refrigerant circuit
- the control means includes a predetermined failure air-conditioning mode and a solenoid valve failure.
- the vehicle interior is selected by selecting the failure air-conditioning mode that can realize air-conditioning in the vehicle interior according to the operation mode. Since the air conditioning of the refrigerant circuit is continued, the failure of the solenoid valve of the refrigerant circuit is detected electrically or as the temperature or pressure of the refrigerant circuit as in the invention of claim 12 and is currently being executed. Driving mode Even in a situation where the vehicle cannot continue, the air conditioning of the vehicle interior is continued in the air conditioning mode at the time of failure that can realize the air conditioning of the vehicle interior according to the operation mode, thereby preventing or suppressing inconvenience that the comfort in the vehicle interior is impaired. Will be able to.
- the dehumidifying heating in which the refrigerant discharged from the compressor is dissipated by the radiator, the decompressed refrigerant is decompressed, and the heat is absorbed by the heat absorber and the outdoor heat exchanger.
- the control means includes a dehumidifying and cooling mode in which the mode and the refrigerant discharged from the compressor are radiated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
- the refrigerant flow is switched to another operation mode in which the vehicle interior can be dehumidified to switch to the air conditioning mode during failure, thereby dehumidifying the vehicle interior.
- the control means switches the refrigerant flow to an operation mode in which the passenger compartment can be further cooled, and auxiliary heating is performed as necessary.
- the control means switches the refrigerant flow to the dehumidifying cooling mode, If the air conditioning mode at the time of failure that heats by the auxiliary heating means is executed when the heat radiation is insufficient, the comfort of the passenger compartment can be improved while avoiding the inconvenience of damaging the compressor due to the failure of the heating solenoid valve. Dehumidification and temperature control can be continued stably.
- the control means Switch the refrigerant flow to the dehumidifying and cooling mode, and if the heat radiation by the radiator is insufficient, execute the failure air conditioning mode in which heating is performed by the auxiliary heating means. It will be possible to continue stably.
- the dehumidifying mode as in the invention of claim 6 includes an internal cycle mode in which the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is decompressed, and the heat absorber absorbs heat.
- the control means switches the refrigerant flow to the dehumidifying and cooling mode.
- the failure detecting means detects the evaporating pressure adjusting valve. If the controller detects the failure and switches the refrigerant flow to the dehumidifying and cooling mode, and if the heat release by the radiator is insufficient, the air conditioning mode at the time of failure that performs heating by the auxiliary heating means is executed. Thus, comfortable dehumidification and temperature control in the passenger compartment can be stably continued.
- the air mix damper for adjusting the ratio of the air in the air flow passage that has passed through the heat absorber to the heat radiator and the refrigerant flowing into the outdoor heat exchanger are reduced in pressure.
- a dehumidifying heating mode in which the refrigerant discharged from the compressor dissipates heat with a radiator, and after the decompressed refrigerant is decompressed, the dehumidifying heating mode absorbs heat with a heat absorber and an outdoor heat exchanger.
- the control means controls the temperature of the heat absorber by the valve opening degree of the outdoor expansion valve, and the outdoor expansion valve is controlled when the temperature of the air passing through the radiator is controlled by the rotational speed of the compressor. If a failure occurs, the temperature of the heat absorber cannot be controlled.
- the control means controls the temperature of the heat absorber by the compressor without switching the refrigerant flow, and the air mix damper If the failure air conditioning mode for controlling the temperature of the air blown into the vehicle interior by the auxiliary heating means is executed, both the temperature of the heat absorber and the temperature of the air blown into the vehicle interior are continuously controlled without any trouble, Comfortable air conditioning in the passenger compartment can be continued.
- the air mix damper for adjusting the ratio of the air in the air flow passage that has passed through the heat absorber to the heat radiator, and the refrigerant flowing into the outdoor heat exchanger are reduced in pressure.
- a dehumidifying cooling mode in which the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
- the outdoor expansion valve fails when the control means controls the temperature of the air that has passed through the radiator by the valve opening degree of the outdoor expansion valve, the temperature of the air blown into the vehicle interior is reduced. It becomes impossible to control.
- the control means is blown out into the vehicle compartment by the air mix damper and the auxiliary heating means without switching the refrigerant flow. If the failure air conditioning mode for controlling the air temperature is executed, the temperature of the air blown into the vehicle interior can be controlled without hindrance and the comfortable air conditioning in the vehicle interior can be continued.
- the heating solenoid valve which is energized and opened in the heating mode as in the invention of claim 10 fails in the heating mode, there is a risk that the refrigerant circuit is not established.
- the control means stops the operation of the compressor and executes the failure air conditioning mode in which the heating by the auxiliary heating means is performed, the compressor may be damaged due to the failure of the heating solenoid valve.
- heating of the vehicle interior can be continued by the auxiliary heating means.
- the control means may execute the failure air conditioning mode that continues the operation mode without switching the refrigerant flow.
- the heat medium-air heat exchanger, the electric heater, and the circulation means as in the invention of claim 13 are provided, and the heat medium heated by the electric heater is circulated to the heat medium-air heat exchanger by the circulation means.
- an auxiliary heating means is configured by a heat medium-air heat exchanger and an electrically safe vehicle interior heating can be realized.
- the auxiliary heating means may be an electric heater for heating the air supplied from the air flow passage to the vehicle interior as in the invention of claim 14.
- the auxiliary heating means can be configured with a relatively simple structure.
- FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is a figure explaining the state of the opening / closing and energization state of an electromagnetic valve and an evaporation pressure regulating valve, and the state of an outdoor expansion valve in each operation mode of the vehicle air conditioner of FIG. It is a figure explaining an example of the method of the electrical failure detection in this invention. It is a figure explaining the other example of the method of the electrical failure detection in this invention. It is a figure explaining another example of the method of the electrical failure detection in this invention. It is a figure explaining operation
- FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
- a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
- EV electric vehicle
- the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further performs each of dehumidification heating, internal cycle, dehumidification cooling, and cooling.
- the operation mode is selectively executed.
- the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
- the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve (electronic expansion valve) that squeezes and expands the refrigerant during heating, and functions as a radiator during cooling and between the refrigerant and the outside air to function as an evaporator during heating.
- an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe
- Endothermic device 9 and endothermic device 9 Is connected to the medium outlet and the evaporation pressure adjusting valve 11 for adjusting the evaporation pressure in the heat sink 9, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
- the outdoor heat exchanger 7 is provided with an outdoor blower 15.
- the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
- the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (cooling electromagnetic solenoid) that is opened during cooling.
- the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
- the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
- the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the upstream side of the evaporation pressure regulating valve 11 located on the outlet side of the heat absorber 9, and is internally A heat exchanger 19 is configured. Thereby, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that leaves the heat absorber 9 and goes to the evaporation pressure adjusting valve 11.
- the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is connected to the evaporating pressure adjusting valve 11 via an electromagnetic valve (heating electromagnetic valve) 21 opened during heating.
- the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. That is, the heating solenoid valve 21 is positioned between the outlet of the outdoor heat exchanger 7 (in heating, dehumidifying heating, and internal cycle mode) and the inlet of the accumulator 12.
- the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe 13F is connected via an electromagnetic valve (dehumidifying electromagnetic valve) 22 that is opened during dehumidification.
- the refrigerant pipe 13B on the downstream side of the check valve 18 is connected in communication. That is, the dehumidifying electromagnetic valve 22 is connected in parallel to the outdoor heat exchanger 7 (and the outdoor expansion valve 6 and the like). Note that the pipe between the outdoor expansion valve 6 and the outdoor heat exchanger 7 is 13I.
- the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
- an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
- reference numeral 23 denotes a heat medium circulation circuit provided in the vehicle air conditioner 1 of the embodiment.
- the heat medium circulation circuit 23 includes a circulation pump 30 that constitutes a circulation means, a heat medium heating electric heater 35, and an air flow passage 3 on the upstream side of the radiator 4 with respect to the air flow in the air flow passage 3.
- a heat medium-air heat exchanger 40 (auxiliary heating means in the present invention) provided in the inside is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A.
- the heat medium circulated in the heat medium circuit 23 for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
- the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 serves as a so-called heater core and contributes to heating of the passenger compartment.
- an air mix damper 28 is provided in the air flow path 3 on the air upstream side of the heat medium-air heat exchanger 40 to adjust the degree of flow of the inside air and the outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
- reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
- ECU controller
- an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
- An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, and the vehicle interior
- the inside air humidity sensor 38 that detects the humidity of the air in the vehicle
- the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
- the blowout temperature sensor 41 that detects the temperature of the air blown from the blowout port 29 into the vehicle interior.
- a radiator pressure sensor 47 for detecting the refrigerant pressure Pci of the radiator 4 pressure in the radiator 4 or immediately after leaving the radiator 4
- Vehicle speed sensor 52 set temperature and driving mode Air conditioning (air conditioner) operation unit 53 for setting the mode switching, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the temperature of the outdoor heat exchanger 7 itself) )
- Air conditioning (air conditioner) operation unit 53 for setting the mode switching
- the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the temperature of the outdoor heat exchanger 7 itself)
- the outdoor heat exchanger temperature sensor 54 and the outdoor heat exchanger 7 for detecting the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after the refrigerant is discharged from the outdoor heat exchanger 7).
- Each output of the exchanger pressure sensor 56 is connected.
- the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35. And a temperature TH of the heating medium-air heat exchanger 40 (the temperature of the air that has passed through the heating medium-air heat exchanger 40). Or the output of the heat medium-air heat exchanger temperature sensor 55 for detecting the temperature of the heat medium-air heat exchanger 40 itself).
- the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the blowout outlet damper 31, and the outdoor expansion valve 6.
- the expansion valve of the indoor expansion valve 8, the electromagnetic valve 22 (for dehumidification), the electromagnetic valve 17 (for cooling), the electromagnetic valve 21 (for heating), the circulation pump 30, and the heating medium heating electric heater 35 and the evaporation pressure adjusting valve 11 are connected.
- the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
- reference numeral 61 denotes a display provided in the air-conditioning operation section 53, which constitutes a display means for various information relating to operation and operation, and constitutes an alarm means for displaying information such as a disconnection / sticking failure described later. .
- each of the electromagnetic valves 17, 21, and 22 described above has a coil, and the coil is energized to control opening and closing.
- the cooling electromagnetic valve 17 is operated when the coil is energized.
- NO normally open type
- NC normally closed type
- the compressor 2 discharge side
- the radiator 4 the outdoor expansion valve 6 (fully open)
- the outdoor heat exchanger 7 the electromagnetic valve 17 (for cooling)
- the evaporating pressure adjusting valve 11 is opened when not energized, and closes when energized. Since the low-permissible refrigerant flows even when energized, the flow path is enlarged when deenergized. It becomes.
- the evaporation pressure adjusting valve 11 is energized and closed when the temperature of the heat absorber 9 is lowered by the controller 32, and is de-energized when the temperature rises.
- the controller 32 has operation modes of a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, which are switched and executed.
- the dehumidifying heating mode, the internal cycle mode, and the dehumidifying cooling mode are all included in the dehumidifying mode in the present invention, and the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, and the cooling mode are all in the vehicle interior.
- This is an operation mode in which dehumidification is possible.
- the controller 32 has a plurality of types of failure air conditioning modes as will be described later.
- the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. .
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
- the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
- the operation and action of the heat medium circulation circuit 23 will be described later.
- the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
- the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
- the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the heat medium-air heat exchanger 40 and the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
- the controller 32 controls the rotational speed of the compressor 2 based on the high-pressure side pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47, and the temperature of the air passing through the radiator 4 (heated by the radiator 4). And the opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 detected by the radiator temperature sensor 46 and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47. Is controlled by a small diameter (valve opening: small), and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
- heating solenoid valve 21 and dehumidifying solenoid valve 22 are normally closed when de-energized. This is a closed type solenoid valve. Accordingly, when the vehicle air conditioner 1 is stopped in this heating mode, the electromagnetic valve 21 is closed, so that the refrigerant from the outdoor heat exchanger 7 via the refrigerant pipes 13A, 13D, and 13C to the accumulator 12 and Oil movement will be blocked.
- the dehumidifying electromagnetic valve 22 is not opened. In this heating mode, a large pressure difference is generated before and after the electromagnetic valve 22, but since the electromagnetic valve 22 is closed, no noise is generated when it is opened.
- the controller 32 energizes the electromagnetic valve 22 for dehumidification in the heating mode state to open the electromagnetic valve 22.
- a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
- the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
- the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjusting valve 11, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
- the controller 32 controls the number of revolutions of the compressor 2 based on the high-pressure side pressure (discharge refrigerant pressure of the compressor 2, radiator pressure) of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47, and dissipates heat.
- the valve opening degree of the outdoor expansion valve 6 is reduced based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Control by aperture (valve opening: small).
- the controller 32 controls the temperature of the heat absorber 9 based on the valve opening degree of the outdoor expansion valve 6 and controls the temperature of the air passing through the radiator 4 based on the number of rotations of the compressor 2. Further, based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, the controller 32 opens (non-energized) / closes (energizes) the evaporating pressure adjusting valve 11 to freeze the temperature of the heat absorber 9 too low. Prevent inconvenience.
- the refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
- the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 11 (opened when de-energized), and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
- the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high-pressure side pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure side pressure.
- the controller 32 opens the electromagnetic valve 17 by de-energizing the cooling electromagnetic valve 17, and de-energizes the heating electromagnetic valve 21.
- the solenoid valve 21 is closed.
- the electromagnetic valve 22 for dehumidification is de-energized and the electromagnetic valve 22 is closed.
- the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. .
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
- the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
- the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 controlled by a large diameter (valve opening: large).
- the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant exiting the outdoor heat exchanger 7 sequentially flows into the receiver dryer section 14 and the supercooling section 16 from the refrigerant pipe 13A through the cooling electromagnetic valve 17. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
- the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and the evaporating pressure adjustment valve 11 (open when not energized), reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13C. .
- the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
- the controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and the valve opening degree of the outdoor expansion valve 6 based on the high-pressure side pressure of the refrigerant circuit R described above. And the temperature of the air passing through the radiator 4 is controlled by controlling the refrigerant pressure of the radiator 4.
- the controller 32 fully opens the outdoor expansion valve 6 (the valve opening is the upper limit of control) in the dehumidifying and cooling mode. Further, the air mix damper 28 is in a state where air is not passed through the heat medium-air heat exchanger 40 and the radiator 4. However, it may be allowed to ventilate somewhat. That is, in this cooling mode, all the electromagnetic valves 17, 21, 22 and the evaporation pressure adjusting valve 11 are not energized.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the outdoor expansion valve 6 as it is and flows into the outdoor heat exchanger 7, where it is cooled by running or outside air ventilated by the outdoor blower 15. And condensate. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
- the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and the evaporating pressure adjustment valve 11 (open when not energized), reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13C. .
- the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 without passing through the radiator 4 (it may be allowed to pass a little), so that the vehicle interior is cooled. It will be.
- the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
- the controller 32 selects one of the above operation modes based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. In addition, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions.
- the circulation pump 30 of the heat medium circulation circuit 23 When the circulation pump 30 of the heat medium circulation circuit 23 is operated and the heat medium heating electric heater 35 is energized, as described above, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is the heat medium. -Since it is circulated through the air heat exchanger 40, the air flowing into the radiator 4 in the air flow path 3 is heated. As a result, when the heating capacity that can be generated by the radiator 4 is insufficient with respect to the required heating capacity, the insufficient heating capacity is supplemented by the heat medium circulation circuit 23.
- FIGS. 4 to 6 8-1) Electrical Fault Detection Method An example of the fault detection method according to FIGS. 4 to 6 is shown.
- DV indicates the solenoid valves 17, 21, 22, the evaporation pressure regulating valve 11, and the outdoor expansion valve 6,
- SW is a switch that the controller 32 opens and closes
- RS is a resistor. These are connected in series between the DC power supply (12V) and the ground, and the controller 32 monitors the terminal voltage of the resistor RS.
- the controller 32 first displays an alarm indicating that a failure has occurred in the display 61 of the air-conditioning operation unit 53, and prompts the user for prompt repair.
- any one of the above-described failure air-conditioning modes is selected and executed from among the plurality of types of failure air-conditioning modes described below. .
- FIG. 7 shows a case where the coil of heating electromagnetic valve 21 is disconnected in the dehumidifying heating mode described above. If the coil of the heating solenoid valve 21 is disconnected while the dehumidifying and heating mode is being executed, all the refrigerant flows to the heat absorber 9 side, so the temperature of the heat absorber 9 decreases. Further, since the solenoid valve 21 is not opened, the refrigerant is accumulated in the outdoor heat exchanger 7, so that the suction refrigerant pressure of the compressor 2 is reduced and the compressor 2 is damaged due to a vacuum operation state. Will come.
- the controller 32 detects that the coil of the heating solenoid valve 21 is broken while performing the dehumidifying heating mode, all the solenoid valves 17, 21, 22, and the evaporation pressure adjusting valves are detected. 11 is opened as de-energized, and the flow is switched to the refrigerant flow in the above-described dehumidifying and cooling mode (operation mode in which cooling is possible from the dehumidifying heating mode) in which the outdoor expansion valve 6 is controlled with a large diameter.
- the heating medium heating electric heater 35 of the heating medium circulation circuit 23 is not provided as described above. Heating by the heat medium-air heat exchanger 40 by energizing and generating heat and operating the circulation pump 30, and the air conditioning at the time of failure that complements the insufficient heating capacity by the heat medium circulation circuit 23 Run the mode.
- the refrigerant flow is switched to a dehumidifying and cooling mode that can be further cooled, and heating is performed by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 32 as necessary. It is possible to eliminate the temperature drop in the room and realize comfortable air conditioning. In particular, damage to the compressor 21 due to the disconnection of the heating solenoid valve 21 can also be avoided.
- the refrigerant flow may be switched to the above-described internal cycle mode at the time of such a failure, but by switching to the dehumidifying and cooling mode as in the embodiment, comfortable dehumidification and temperature control in the passenger compartment can be continued more stably. Will be able to.
- FIG. 8 shows a case where the coil of the dehumidifying electromagnetic valve 22 is disconnected in the dehumidifying heating mode. If the coil of the dehumidifying solenoid valve 22 is disconnected while the dehumidifying heating mode is being executed, the refrigerant does not flow to the heat absorber 9 side, so that the vehicle interior cannot be dehumidified and the vehicle window glass becomes cloudy. There is a fear.
- the controller 32 detects that the coil of the dehumidifying solenoid valve 22 is broken while performing the dehumidifying heating mode, all the solenoid valves 17, 21, 22 and evaporation pressure are similarly detected.
- the regulating valve 11 is opened with no power supply, and the flow is switched to the refrigerant flow in the dehumidifying and cooling mode (operation mode in which cooling is possible from the dehumidifying and heating mode) in which the outdoor expansion valve 6 is controlled with a large diameter.
- the heating capacity (heat radiation) that can be generated by the radiator 4 is insufficient with respect to the required heating capacity, so that the heat medium heating electric heater 35 of the heat medium circulation circuit 23 is provided as described above.
- FIG. 9 shows a case where the coil of the dehumidifying electromagnetic valve 22 is disconnected in the internal cycle mode described above.
- the circuit is interrupted, and the refrigerant circuit R is not established. Therefore, the discharge refrigerant pressure and the suction refrigerant pressure of the compressor 2 become abnormal values, and there is a risk of serious damage to the compressor 2.
- the controller 32 detects that the coil of the electromagnetic valve 22 for dehumidification is broken when the internal cycle mode is being executed, all the electromagnetic valves 17, 21, 22 and the evaporation pressure adjustment are detected.
- the valve 11 is opened in a non-energized state and switched to a refrigerant flow in a dehumidifying and cooling mode (an operation mode in which cooling is possible from the internal cycle mode) in which the outdoor expansion valve 6 is controlled with a large diameter.
- the heating capacity (heat radiation) that can be generated by the radiator 4 is insufficient for the required heating capacity. Therefore, as described above, the heating medium heating electric heater of the heating medium circulation circuit 23 A failure in which heating by the heat medium-air heat exchanger 40 is performed by energizing 35 to generate heat and the circulation pump 30 is operated, and the heating capacity of the heat medium circulation circuit 23 compensates for the insufficient heating capacity. Execute air conditioning mode. Thereby, comfortable dehumidification and temperature control in the passenger compartment can be stably continued while avoiding the disadvantage that the compressor 2 is damaged due to the failure of the electromagnetic valve 22 for dehumidification.
- FIG. 10 shows a case where the coil of the evaporation pressure adjusting valve 11 is disconnected in the dehumidifying and heating mode. If the coil of the evaporation pressure regulating valve 11 is disconnected while the dehumidifying and heating mode is being executed, the coil cannot be closed even if the temperature of the heat absorber 9 is lowered. Therefore, the temperature of the heat absorber 9 is lowered and frozen. There is a risk that
- the controller 32 detects that the coil of the evaporating pressure adjusting valve 11 is broken while performing the dehumidifying heating mode, all the electromagnetic valves 17, 21, 22 and evaporating pressure adjusting are similarly detected.
- the valve 11 is opened in a non-energized state and switched to the refrigerant flow in the dehumidifying and cooling mode (operation mode in which cooling is possible from the dehumidifying and heating mode) in which the outdoor expansion valve 6 is controlled with a large diameter.
- the heating capacity (heat radiation) that can be generated by the radiator 4 is insufficient for the required heating capacity, so that the heating medium heating electric heater of the heating medium circulation circuit 23 as described above.
- Execute air conditioning mode thus, comfortable dehumidification and temperature control in the passenger compartment can be stably continued while avoiding freezing of the heat absorber 9.
- FIG. 11 shows a case where the coil of the outdoor expansion valve 6 is disconnected in the dehumidifying and heating mode.
- the controller 32 controls the temperature of the heat absorber 9 based on the valve opening degree of the outdoor expansion valve 6. Therefore, when the dehumidifying and heating mode is being executed, the coil of the outdoor expansion valve 6 is used. Is disconnected, the controller 32 cannot control the temperature of the heat absorber 9.
- the controller 32 detects that the coil of the outdoor expansion valve 6 is broken when the dehumidifying / heating mode is being executed, all of the solenoid valves 17, 21, 22, and the evaporation pressure adjusting valves 11 are detected.
- the rotation speed of the compressor 2 is controlled based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 without switching the refrigerant flow. That is, the temperature of the heat absorber 9 is controlled by the compressor 2.
- the controller 32 determines the temperature Tci of the radiator 4 (the radiator 4 based on the temperature Tci of the radiator 4 detected by the radiator temperature sensor 46).
- the air mix damper 28 increases the amount of air blown into the vehicle interior without passing through the heat medium-air heat exchanger 40 and the radiator 4.
- the heat medium heating electric heater 35 of the heat medium circulation circuit 23 is energized to generate heat, and the circulation pump 30 is operated, whereby the heat medium-air heat exchanger 40 Heating is executed, and a failure air conditioning mode is performed in which the heating medium circulation circuit 23 supplements the heating capacity for the heat radiation of the radiator 4 that is insufficient.
- the temperature of the air blown into the passenger compartment is controlled by the heating by the heat medium-air heat exchanger 40 of the air mix damper 28 and the heat medium circulation circuit 23 while controlling the temperature of the heat absorber 9 by the compressor 2. Since the control is performed, both the temperature of the heat absorber 9 and the temperature of the air blown into the passenger compartment can be controlled without any trouble, and comfortable air conditioning in the passenger compartment can be continued.
- FIG. 12 shows a case where the coil of the outdoor expansion valve 6 is disconnected in the dehumidifying and cooling mode.
- the controller 32 controls the temperature of the air that has passed through the radiator 4 by the valve opening degree of the outdoor expansion valve 6. If the coil 6 is disconnected, the controller 32 cannot control the temperature of the air passing through the radiator 4.
- the controller 32 detects that the coil of the outdoor expansion valve 6 is broken during the dehumidifying and cooling mode, all of the solenoid valves 17, 21, 22 and the evaporation pressure adjusting valve 11 are detected.
- the temperature Tci of the radiator 4 temperature of the air passing through the radiator 4
- the heating medium heating electric heater 35 of the heating medium circulation circuit 23 is energized to generate heat, and the circulation pump 30 is operated to perform heating by the heating medium-air heat exchanger 40 and the heat radiation of the radiator 4 is reduced.
- the heating medium circulation circuit 23 supplements the insufficient heating capacity.
- the air mix damper 28 increases the amount of air blown into the vehicle interior without passing through the heat medium-air heat exchanger 40 and the radiator 4, Execute the air conditioning mode at the time of failure that lowers the temperature of the blown air.
- the heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 and the air temperature blown into the vehicle interior by the air mix damper 28 are optimally controlled, the air temperature blown into the vehicle interior is controlled. It will be possible to continue control without any trouble and to continue comfortable air conditioning in the passenger compartment.
- FIG. 13 shows a case where the coil of heating electromagnetic valve 21 is disconnected in the heating mode described above.
- the cooling solenoid valve 17 and the dehumidifying solenoid valve 22 are closed. Therefore, when the heating mode is executed, the coil of the heating solenoid valve 21 is disconnected and closed. If this happens, the circuit is interrupted and the refrigerant circuit R is not established. Further, the suction refrigerant pressure of the compressor 2 becomes abnormal, and there is a risk of serious damage to the compressor 2.
- the heat absorber 9 freezes in any case because the refrigerant flows through the heat absorber 9.
- the controller 32 detects that the coil of the heating solenoid valve 21 is broken during the heating mode, it stops the operation of the compressor 2. However, the indoor blower 27 is operated. Then, the heat medium heating electric heater 35 of the heat medium circulation circuit 23 is energized to generate heat according to the required heating capacity, and the circulation pump 30 is operated, whereby the heat medium-air heat exchanger 40 causes the air flow path to flow. The failure air conditioning mode is performed to heat the air inside. Thus, heating of the vehicle interior can be continued by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 while avoiding the inconvenience of damaging the compressor 2 due to disconnection of the heating solenoid valve 21. become able to.
- FIG. 14 shows a case where the coil of the outdoor expansion valve 6 is disconnected in the heating mode described above.
- the degree of subcooling of the refrigerant at the outlet of the radiator 4 is controlled by the valve opening degree of the outdoor expansion valve 6 as described above. Therefore, when this heating mode is executed, the outdoor expansion valve 6 If the coil is disconnected, the degree of supercooling of the refrigerant at the outlet of the radiator 4 cannot be controlled.
- the supercooling degree of the refrigerant at the outlet of the radiator 4 cannot be controlled to an optimum value and the heating efficiency is lowered, the heating of the vehicle interior is feasible.
- the heat absorber 9 freezes because the refrigerant flows into the heat absorber 9 in any case even when switching to another operation mode. All the solenoid valves 17, 21, 22 and the evaporation pressure regulating valve 11 are kept in the heating mode, and the operation in the heating mode is continued without switching the refrigerant flow.
- FIG. 15 shows the case where the coil of the solenoid valve 17 for cooling is disconnected in the heating mode.
- the cooling electromagnetic valve 17 is closed as described above, if the coil of the cooling electromagnetic valve 17 is disconnected while the heating mode is being executed, the electromagnetic valve 17 opens. .
- FIG. 16 shows the case where the coil of the solenoid valve 17 for cooling is disconnected in the dehumidifying and heating mode. Even in this dehumidifying and heating mode, the cooling electromagnetic valve 17 is closed as described above. Therefore, when the coil of the cooling electromagnetic valve 17 is disconnected while the dehumidifying and heating mode is being executed, the electromagnetic valve 17 is opened. End up.
- the controller 32 switches all refrigerant valves 17, 21, 22 and the evaporation pressure regulating valve 11 to the dehumidifying heating mode and switches the refrigerant flow. Continue operation in dehumidifying and heating mode.
- FIG. 17 shows the temperature and pressure states of each part of the refrigerant circuit R.
- Nc is the rotational speed of the compressor 2
- PCO is the target radiator pressure (target radiator 4 pressure)
- TCO is the target radiator temperature (target radiator 4 temperature)
- Td is the discharge.
- 11A is the open / close state of the evaporation pressure regulating valve 11 (upper is closed, lower is open)
- TH is the heat detected by the heat medium-air heat exchanger temperature sensor 55.
- Tci is the temperature of air that has passed through the radiator 4 detected by the radiator temperature sensor 46
- Tciav is the average temperature
- Pd is the temperature of the compressor 2 that is detected by the discharge pressure sensor 42.
- the discharge refrigerant pressure, Pci is the radiator pressure detected by the radiator pressure sensor 47
- ECCV is the valve opening (number of pulses) of the outdoor expansion valve 6
- TXO is the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54.
- Refrigerant evaporating temperature T Is the heat absorber temperature detected by the heat absorber temperature sensor 48
- SC is the supercooling degree of the refrigerant in the radiator 4
- SCO is the target value (target supercooling degree)
- Ts is the compressor 2 detected by the suction temperature sensor 60.
- the suction refrigerant temperature, Ps is the suction refrigerant pressure of the compressor 2 detected by the suction pressure sensor 44.
- the outdoor heat exchanger 7 and the heat absorber 9 function as an evaporator, but the heating electromagnetic valve 21 is stuck and closed for some reason as shown in FIG.
- the refrigerant circuit R is in a state close to a closed circuit, so that the suction refrigerant pressure Ps of the compressor 2 is reduced and a vacuum operation state is established.
- the radiator pressure Pci cannot be increased. And there is no situation of such a refrigerant circuit other than the case where the solenoid valve 21 for heating adheres in dehumidification heating mode.
- the heating medium heating electric heater 35 of the heating medium circulation circuit 23 is not provided as described above. Heating by the heat medium-air heat exchanger 40 by energizing and generating heat and operating the circulation pump 30, and the air conditioning at the time of failure that complements the insufficient heating capacity by the heat medium circulation circuit 23 Run the mode.
- the refrigerant flow is switched to a dehumidifying and cooling mode that can be further cooled, and heating is performed by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 32 as necessary. It is possible to eliminate the temperature drop in the room and realize comfortable air conditioning. In particular, damage to the compressor 21 due to the heating solenoid valve 21 being fixed can be avoided.
- the heat medium circulation circuit 23 is adopted as the auxiliary heating means.
- the auxiliary heating means is constituted by a normal electric heater (for example, PTC heater) 62. Also good.
- FIG. 19 shows a configuration example corresponding to FIG. 1 in that case. In this figure, the heat medium circulation circuit 23 of FIG. 1 is replaced with an electric heater 62 in this case.
- the air supplied to the passenger compartment may be heated by the electric heater 62. According to such a configuration, there is an advantage that the structure is simplified as compared with the case where the heat medium circulation circuit 23 is used. .
- the solenoid valve 21 and the solenoid valve 17 are configured as separate solenoid valves, but may be configured as an integrated three-way valve. In that case, it is set as the three-way valve by which the side which goes to the receiver dryer part 14 in a non-energized state is open
- the present invention is applied to the vehicle air conditioner 1 that performs switching between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, and the cooling mode.
- the present invention is not limited to this, and the present invention is also effective in a case where only one or a combination of the two is performed as the dehumidifying mode.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】各運転モードで冷媒の流れを切り換えるための電磁弁に故障が生じた場合にも、車室内の空調を継続することが可能な車両用空気調和装置を提供する。 【解決手段】車両用空気調和装置1の各運転モードを切り換えるための冷房用の電磁弁17、暖房用の電磁弁21、除湿用の電磁弁22を備える。コントローラは暖房モードと除湿モードと冷房モードの各運転モードを切り換えて実行する。コントローラは所定の故障時空調モードと、電磁弁の故障を検出する故障検出手段を有する。各運転モードにおいて電磁弁が故障したことを故障検出手段が検出した場合、当該運転モードによる車室内空調を実現可能な故障時空調モードを選択して車室内の空調を継続する。
Description
本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。
近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード等の各運転モードを切り換えて実行するものが開発されている。
そして、複数の電磁弁を用い、各電磁弁のコイルを通電、又は、非通電とすることによって開/閉状態をそれぞれの運転モードにおいて切り換えることにより、各運転モードにおける冷媒の流れを制御するものであった(例えば、特許文献1参照)。
しかしながら、何れかの電磁弁のコイルに断線や固着等の故障が生じた場合、冷媒の流れを制御することができなくなる。係る電磁弁の故障はコントローラで検出可能であるため、従来ではコントローラが係る故障を検出した場合、空気調和装置は運転不能状態となっていた。
本発明は、係る従来の技術的課題を解決するために成されたものであり、各運転モードで冷媒の流れを切り換えるための電磁弁に故障が生じた場合にも、車室内の空調を継続することが可能な車両用空気調和装置を提供することを目的とする。
本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、冷媒回路の冷媒の流れを切り換えるための複数の電磁弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱手段と、圧縮機、電磁弁、及び、補助加熱手段を制御する制御手段とを備え、この制御手段により電磁弁を制御し、冷媒の流れを切り換えることによって、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードのうちの何れかの運転モードを実行するものであって、制御手段は、所定の故障時空調モードと、電磁弁の故障を検出する故障検出手段を有し、各運転モードにおいて電磁弁が故障したことを故障検出手段が検出した場合、当該運転モードによる車室内空調を実現可能な故障時空調モードを選択して車室内の空調を継続することを特徴とする。
請求項2の発明の車両用空気調和装置は、上記発明において除湿モードは、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードとを含み、制御手段は、除湿暖房モード又は除湿冷房モードにおいて電磁弁が故障したことを検出した場合、車室内の除湿が可能な他の運転モードに冷媒の流れを切り換えて故障時空調モードとすることを特徴とする。
請求項3の発明の車両用空気調和装置は、上記発明において制御手段は、除湿暖房モードにおいて電磁弁が故障したことを検出した場合、車室内をより冷房可能な運転モードに冷媒の流れを切り換え、必要に応じて補助加熱手段による加熱を行う故障時空調モードを実行することを特徴とする。
請求項4の発明の車両用空気調和装置は、請求項2又は請求項3の発明において暖房モードと除湿暖房モードで通電されて開く暖房用の電磁弁を備え、制御手段は、除湿暖房モードにおいて暖房用の電磁弁が故障したことを検出した場合、除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行することを特徴とする。
請求項5の発明の車両用空気調和装置は、請求項2乃至請求項4の発明において室外熱交換器に対して並列に接続され、除湿暖房モードで通電されて開く除湿用の電磁弁を備え、制御手段は、除湿暖房モードにおいて除湿用の電磁弁が故障したことを検出した場合、除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行することを特徴とする。
請求項6の発明の車両用空気調和装置は、請求項2乃至請求項5の発明において除湿モードは、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器で吸熱させる内部サイクルモードを含み、室外熱交換器に対して並列に接続され、内部サイクルモードで通電されて開く除湿用の電磁弁を備え、制御手段は、内部サイクルモードにおいて除湿用の電磁弁が故障したことを検出した場合、除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行することを特徴とする。
請求項7の発明の車両用空気調和装置は、請求項2乃至請求項6の発明において吸熱器の冷媒出口側に接続され、除湿暖房モードで開閉される蒸発圧力調整弁を備え、故障検出手段は、蒸発圧力調整弁の故障も検出すると共に、制御手段は、除湿暖房モードにおいて蒸発圧力調整弁が故障したことを検出した場合、除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行することを特徴とする。
請求項8の発明の車両用空気調和装置は、上記各発明において吸熱器を通過した空気流通路内の空気を放熱器に通風する割合を調整するためのエアミックスダンパと、室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁とを備え、除湿モードは、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードを含み、この除湿暖房モードにおいては、制御手段は室外膨張弁の弁開度により吸熱器の温度を制御し、圧縮機の回転数により放熱器を経た空気温度を制御すると共に、故障検出手段は、室外膨張弁の故障も検出し、制御手段は、除湿暖房モードにおいて室外膨張弁が故障したことを検出した場合、冷媒の流れを切り換えること無く、圧縮機により吸熱器の温度を制御し、エアミックスダンパと補助加熱手段により車室内に吹き出される空気温度を制御する故障時空調モードを実行することを特徴とする。
請求項9の発明の車両用空気調和装置は、上記各発明において吸熱器を通過した空気流通路内の空気を放熱器に通風する割合を調整するためのエアミックスダンパと、室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁とを備え、除湿モードは、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードを含み、この除湿冷房モードにおいては、制御手段は室外膨張弁の弁開度により放熱器を経た空気温度を制御すると共に、故障検出手段は、室外膨張弁の故障も検出し、制御手段は、除湿冷房モードにおいて室外膨張弁が故障したことを検出した場合、冷媒の流れを切り換えること無く、エアミックスダンパと補助加熱手段により車室内に吹き出される空気温度を制御する故障時空調モードを実行することを特徴とする。
請求項10の発明の車両用空気調和装置は、上記各発明において暖房モードで通電されて開放される暖房用の電磁弁を備え、制御手段は、暖房モードにおいて暖房用の電磁弁が故障したことを検出した場合、圧縮機の運転を停止して補助加熱手段による加熱を行う故障時空調モードを実行することを特徴とする。
請求項11の発明の車両用空気調和装置は、上記各発明において室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁と、吸熱器の冷媒出口側に接続され、除湿暖房モードで開閉される蒸発圧力調整弁とを備え、故障検出手段は、室外膨張弁と蒸発圧力調整弁の故障も検出すると共に、制御手段は、各運転モードにおいて電磁弁、室外膨張弁、及び、蒸発圧力調整弁のうちの何れかの故障を検出した場合にも、当該運転モードで車室内空調を実現可能であるとき、冷媒の流れを切り換えること無く、当該運転モードを継続する故障時空調モードを実行することを特徴とする。
請求項12の発明の車両用空気調和装置は、上記各発明において室外熱交換器に流入する冷媒を絞って減圧する室外膨張弁と、吸熱器の冷媒出口側に接続され、除湿暖房モードで開閉される蒸発圧力調整弁とを備え、故障検出手段は、電気的に、又は、冷媒回路の温度及び/又は圧力の状況により、電磁弁、室外膨張弁、及び、蒸発圧力調整弁の故障を検出することを特徴とする。
請求項13の発明の車両用空気調和装置は、上記各発明において熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環する熱媒体循環回路を備え、熱媒体-空気熱交換器により補助加熱手段を構成したことを特徴とする。
請求項14の発明の車両用空気調和装置は、請求項1乃至請求項12の発明において、空気流通路から車室内に供給する空気を加熱する電気ヒータにより補助加熱手段を構成したことを特徴とする。
本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と
、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、冷媒回路の冷媒の流れを切り換えるための複数の電磁弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱手段と、圧縮機、電磁弁、及び、補助加熱手段を制御する制御手段とを備え、この制御手段により電磁弁を制御し、冷媒の流れを切り換えることによって、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードのうちの何れかの運転モードを実行する車両用空気調和装置において、制御手段が、所定の故障時空調モードと、電磁弁の故障を検出する故障検出手段を有し、各運転モードにおいて電磁弁が故障したことを故障検出手段が検出した場合、当該運転モードによる車室内空調を実現可能な故障時空調モードを選択して車室内の空調を継続するようにしたので、冷媒回路の電磁弁が故障したことを請求項12の発明の如く電気的に、又は、冷媒回路の温度や圧力の状況で検出し、現在実行している運転モードを継続できない状況に陥った場合にも、当該運転モードによる車室内空調を実現可能な故障時空調モードで車室内の空調を継続し、車室内の快適性が損なわれる不都合を防止若しくは抑制することができるようになる。
、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、冷媒回路の冷媒の流れを切り換えるための複数の電磁弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱手段と、圧縮機、電磁弁、及び、補助加熱手段を制御する制御手段とを備え、この制御手段により電磁弁を制御し、冷媒の流れを切り換えることによって、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードのうちの何れかの運転モードを実行する車両用空気調和装置において、制御手段が、所定の故障時空調モードと、電磁弁の故障を検出する故障検出手段を有し、各運転モードにおいて電磁弁が故障したことを故障検出手段が検出した場合、当該運転モードによる車室内空調を実現可能な故障時空調モードを選択して車室内の空調を継続するようにしたので、冷媒回路の電磁弁が故障したことを請求項12の発明の如く電気的に、又は、冷媒回路の温度や圧力の状況で検出し、現在実行している運転モードを継続できない状況に陥った場合にも、当該運転モードによる車室内空調を実現可能な故障時空調モードで車室内の空調を継続し、車室内の快適性が損なわれる不都合を防止若しくは抑制することができるようになる。
例えば、請求項2の発明の如く除湿モードに、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードを含むとき、制御手段が、除湿暖房モード又は除湿冷房モードにおいて電磁弁が故障したことを検出した場合、車室内の除湿が可能な他の運転モードに冷媒の流れを切り換えて故障時空調モードとすることで、車室内の除湿を担保し、車両の窓ガラスに曇りが発生する等の不都合を未然に回避して安全な走行を確保することが可能となる。
この場合、請求項3の発明の如く除湿暖房モードにおいて電磁弁が故障したことを検出したとき、制御手段が車室内をより冷房可能な運転モードに冷媒の流れを切り換え、必要に応じて補助加熱手段による加熱を行う故障時空調モードを実行することにより、車室内の除湿を担保しながら、車室内の温度低下も解消して快適な空調を実現することが可能となる。
例えば、請求項4の発明の如く暖房モードと除湿暖房モードで通電されて開く暖房用の電磁弁が故障したことを検出した場合、制御手段が除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行するようにすれば、暖房用の電磁弁の故障によって圧縮機に損傷を来す不都合を回避しながら、車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
また、例えば請求項5の発明の如く室外熱交換器に対して並列に接続され、除湿暖房モードで通電されて開く除湿用の電磁弁が故障したことを除湿暖房モードにおいて検出した場合、制御手段が除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行するようにすれば、同様に車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
また、例えば請求項6の発明の如く除湿モードに、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器で吸熱させる内部サイクルモードを含むとき、室外熱交換器に対して並列に接続され、内部サイクルモードで通電されて開く除湿用の電磁弁が故障したことを内部サイクルモードにおいて検出した場合、制御手段が除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行するようにすれば、同様に除湿用の電磁弁の故障によって圧縮機に損傷を来す不都合を回避しながら、車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
また、例えば請求項7の発明の如く吸熱器の冷媒出口側に接続され、除湿暖房モードで開閉される蒸発圧力調整弁が除湿暖房モードにおいて故障した場合、故障検出手段がこの蒸発圧力調整弁の故障も検出して、制御手段が除湿冷房モードに冷媒の流れを切り換え、放熱器による放熱が不足するときには補助加熱手段による加熱を行う故障時空調モードを実行するようにすれば、吸熱器の凍結を回避しながら、車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
また、請求項8の発明の如く、吸熱器を通過した空気流通路内の空気を放熱器に通風する割合を調整するためのエアミックスダンパと、室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁とを備え、除湿モードが、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードを含み、この除湿暖房モードにおいては、制御手段が室外膨張弁の弁開度により吸熱器の温度を制御し、圧縮機の回転数により放熱器を経た空気温度を制御するときに室外膨張弁が故障した場合は、吸熱器の温度を制御することができなくなる。
係る場合は、故障検出手段が除湿暖房モードにおいて室外膨張弁が故障したことを検出したときに、制御手段が冷媒の流れを切り換えること無く、圧縮機により吸熱器の温度を制御し、エアミックスダンパと補助加熱手段により車室内に吹き出される空気温度を制御する故障時空調モードを実行するようにすれば、吸熱器の温度と車室内に吹き出される空気温度の双方を引き続き支障無く制御し、車室内の快適な空調を継続することができるようになる。
また、請求項9の発明の如く、吸熱器を通過した空気流通路内の空気を放熱器に通風する割合を調整するためのエアミックスダンパと、室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁とを備え、除湿モードが、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードを含み、この除湿冷房モードにおいては、制御手段が室外膨張弁の弁開度により放熱器を経た空気温度を制御するときに室外膨張弁が故障した場合は、車室内に吹き出される空気温度を制御することができなくなる。
係る場合は、故障検出手段が除湿冷房モードにおいて室外膨張弁が故障したことを検出したときに、制御手段が冷媒の流れを切り換えること無く、エアミックスダンパと補助加熱手段により車室内に吹き出される空気温度を制御する故障時空調モードを実行するようにすれば、引き続き車室内に吹き出される空気温度を支障無く制御し、車室内の快適な空調を継続することができるようになる。
尚、請求項10の発明の如く暖房モードで通電されて開放される暖房用の電磁弁が暖房モードにおいて故障した場合、冷媒回路が成立しなくなる危険性がある。係る場合は、制御手段が圧縮機の運転を停止して補助加熱手段による加熱を行う故障時空調モードを実行するようにすれば、暖房用の電磁弁の故障によって圧縮機に損傷を来す不都合を回避しながら、補助加熱手段により車室内の暖房を継続することができるようになる。
また、請求項11の発明の発明の如く各運転モードにおいて故障検出手段が電磁弁、室外膨張弁、及び、蒸発圧力調整弁のうちの何れかの故障を検出した場合にも、当該運転モードで車室内空調を実現可能であるときは、制御手段が冷媒の流れを切り換えること無く、当該運転モードを継続する故障時空調モードを実行すればよい。
これらにおいて請求項13の発明の如く熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環する熱媒体循環回路を設け、熱媒体-空気熱交換器により補助加熱手段を構成すれば、電気的に安全な車室内暖房を実現することができるようになる。
但し、補助加熱手段は、請求項14の発明の如く空気流通路から車室内に供給する空気を加熱する電気ヒータであってもよい。それにより、比較的簡単な構造で補助加熱手段を構成することができる。
以下、本発明の実施の形態について、図面に基づき詳細に説明する。
図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や内部サイクル、除湿冷房、冷房の各運転モードを選択的に実行するものである。
尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を絞って減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を絞って減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9の冷媒出口側に接続されて当該吸熱器9における蒸発圧力を調整する蒸発圧力調整弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(冷房用の電磁弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発圧力調整弁11の上流側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発圧力調整弁11に向かう低温の冷媒により冷却(過冷却)される構成とされている。
また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(暖房用の電磁弁)21を介して蒸発圧力調整弁11の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。即ち、暖房用の電磁弁21は室外熱交換器7の出口(暖房、除湿暖房、内部サイクルモードのとき)とアキュムレータ12の入口の間に位置することになる。
更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(除湿用の電磁弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。即ち、この除湿用の電磁弁22は室外熱交換器7(及び室外膨張弁6等)に対して並列に接続されたかたちとなる。尚、室外膨張弁6と室外熱交換器7との間の配管は13Iとする。
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
また、図1において23は実施例の車両用空気調和装置1に設けられた熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ35と、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられた熱媒体-空気熱交換器40(本発明における補助加熱手段)とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等が採用される。
そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると、この熱媒体加熱電気ヒータ35により加熱された熱媒体が熱媒体-空気熱交換器40に循環されるよう構成されている。即ち、この熱媒体循環回路23の熱媒体-空気熱交換器40が所謂ヒータコアとなり、車室内の暖房に寄与する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上することができるようになる。
また、熱媒体-空気熱交換器40の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ60と、放熱器4の温度Tci(実施例では放熱器4を経た空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力Pci(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度Te(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ35の温度(熱媒体加熱電気ヒータ35で加熱された直後の熱媒体の温度、又は、熱媒体加熱電気ヒータ35に内蔵された図示しない電気ヒータ自体の温度)を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体-空気熱交換器40の温度TH(熱媒体-空気熱交換器40を経た空気の温度、又は、熱媒体-空気熱交換器40自体の温度)を検出する熱媒体-空気熱交換器温度センサ55の各出力も接続されている。
一方、コントローラ32の出力には、圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口ダンパ31と、室外膨張弁6、室内膨張弁8の各膨張弁と、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)の各電磁弁と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発圧力調整弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。尚、図中61はこの空調操作部53に設けられたディスプレイであり、操作や運転に関する各種情報の表示手段となる他、後述する断線/固着の故障等の情報を表示する警報手段を構成する。
ここで、前述した各電磁弁17、21、22は何れもコイルを有して当該コイルに通電されて開閉が制御されるものであるが、冷房用の電磁弁17は、コイルへの通電時に閉じ、非通電時に開放する所謂ノーマルオープン型(NO)の電磁弁であり、前述した暖房用の電磁弁21と除湿用の電磁弁22は、通電時に開放し、非通電時に閉じる所謂ノーマルクローズ型(NC)の電磁弁である。
これにより、後に詳述する如く電源が断たれた状態では、圧縮機2(吐出側)-放熱器4-室外膨張弁6(全開)-室外熱交換器7-電磁弁17(冷房用)-レシーバドライヤ部14-過冷却部16-逆止弁18-内部熱交換器19-室内膨張弁8-吸熱器9-内部熱交換器19-蒸発圧力調整弁11-アキュムレータ12-圧縮機2(吸込側)と連通する環状の冷媒回路(後述する冷房モード)が構成されることになる。
また、蒸発圧力調整弁11は非通電時に開放され、通電時に閉じる動作を行うものであり、通電時にも少許冷媒は流れるように構成されているため、非通電時にはこの流路が拡大されるかたちとなる。そして、この蒸発圧力調整弁11は、コントローラ32により吸熱器9の温度が低下したときに通電されて閉じ、上昇したときは非通電とされるものである。
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。実施例では、コントローラ32は暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを有し、それらを切り換えて実行する。ここで、除湿暖房モード、内部サイクルモード及び除湿冷房モードは、何れも本発明における除湿モードに含まれるものであり、除湿暖房モード、内部サイクルモード、除湿冷房モード及び冷房モードは何れも車室内の除湿が可能な運転モードである。尚、コントローラ32はこれら運転モードの他に、後述するような複数種類の故障時空調モードを有している。
先ず、各電磁弁17、21、22の開閉状態を説明する図3を参照しながら、各運転モードにおける冷媒の流れについて説明する。
(1)暖房モードの冷媒の流れ
コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は暖房用の電磁弁21に通電して当該電磁弁21を開放し、冷房用の電磁弁17に通電して当該電磁弁17を閉じる。また、除湿用の電磁弁22を非通電として当該電磁弁22を閉じる。
コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は暖房用の電磁弁21に通電して当該電磁弁21を開放し、冷房用の電磁弁17に通電して当該電磁弁17を閉じる。また、除湿用の電磁弁22を非通電として当該電磁弁22を閉じる。
そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体-空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。尚、熱媒体循環回路23の動作及び作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。熱媒体-空気熱交換器40や放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧側圧力に基づいて圧縮機2の回転数を制御し、放熱器4を経た空気の温度(放熱器4で加熱された空気の温度)を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を小口径(弁開度:小)で制御し、放熱器4の出口における冷媒の過冷却度を制御する。
(1-1)暖房用の電磁弁21と除湿用の電磁弁22がNCであることの効果
ここで、前述した如く暖房用の電磁弁21と除湿用の電磁弁22は非通電時に閉じるノーマルクローズ型の電磁弁である。従って、この暖房モードにおいて車両用空気調和装置1が停止された場合、電磁弁21は閉じることになるので、冷媒配管13A、13D、13Cを経由した室外熱交換器7からアキュムレータ12への冷媒及びオイルの移動は阻止されることになる。
ここで、前述した如く暖房用の電磁弁21と除湿用の電磁弁22は非通電時に閉じるノーマルクローズ型の電磁弁である。従って、この暖房モードにおいて車両用空気調和装置1が停止された場合、電磁弁21は閉じることになるので、冷媒配管13A、13D、13Cを経由した室外熱交換器7からアキュムレータ12への冷媒及びオイルの移動は阻止されることになる。
また、暖房モードにおいて車両用空気調和装置1が停止されても、除湿用の電磁弁22が開放されることはない。この暖房モードでは、電磁弁22の前後に大きい圧力差が発生しているが、電磁弁22は閉じているので、開放された場合に発生する騒音も生じないことになる。
(2)除湿暖房モードの冷媒の流れ
次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において除湿用の電磁弁22に通電して当該電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において除湿用の電磁弁22に通電して当該電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19、蒸発圧力調整弁11を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧側圧力(圧縮機2の吐出冷媒圧力、放熱器圧力)に基づいて圧縮機2の回転数を制御し、放熱器4を経た空気の温度(放熱器4で加熱された空気の温度)を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を小口径(弁開度:小)で制御する。
即ち、この除湿暖房モードではコントローラ32は、室外膨張弁6の弁開度により吸熱器9の温度を制御し、圧縮機2の回転数により放熱器4を経た空気温度を制御する。また、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づき、蒸発圧力調整弁11を開(非通電)/閉(通電)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
(3)内部サイクルモードの冷媒の流れ
次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、暖房用の電磁弁21を非通電として当該電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は除湿用の電磁弁22を経て冷媒配管13Fに全て流れるようになる。
次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、暖房用の電磁弁21を非通電として当該電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は除湿用の電磁弁22を経て冷媒配管13Fに全て流れるようになる。
そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19、蒸発圧力調整弁11(非通電で開)を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧側圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧側圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
(4)除湿冷房モードの冷媒の流れ
次に、除湿冷房モードでは、コントローラ32は冷房用の電磁弁17を非通電として当該電磁弁17を開放し、暖房用の電磁弁21を非通電として当該電磁弁21を閉じる。また、除湿用の電磁弁22を非通電として当該電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体-空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
次に、除湿冷房モードでは、コントローラ32は冷房用の電磁弁17を非通電として当該電磁弁17を開放し、暖房用の電磁弁21を非通電として当該電磁弁21を閉じる。また、除湿用の電磁弁22を非通電として当該電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体-空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、大口径(弁開度:大)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから冷房用の電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19、蒸発圧力調整弁11(非通電で開)を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧側圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力を制御することで、当該放熱器4を経た空気の温度を制御する。
(5)冷房モードの冷媒の流れ
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の全開(弁開度を制御上限)とする。また、エアミックスダンパ28は熱媒体-空気熱交換器40及び放熱器4に空気が通風されない状態とする。但し、多少通風するようにしても差し支えない。即ち、この冷房モードでは、全ての電磁弁17、21、22、蒸発圧力調整弁11が非通電とされる。
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の全開(弁開度を制御上限)とする。また、エアミックスダンパ28は熱媒体-空気熱交換器40及び放熱器4に空気が通風されない状態とする。但し、多少通風するようにしても差し支えない。即ち、この冷房モードでは、全ての電磁弁17、21、22、蒸発圧力調整弁11が非通電とされる。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒は室外膨張弁6をそのまま通過して室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
吸熱器9で蒸発した冷媒は内部熱交換器19、蒸発圧力調整弁11(非通電で開)を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので(多少通過しても差し支えない)、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。
(6)運転モードの切り換え
コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
(7)熱媒体循環回路による補助加熱
また、コントローラ32は、前記暖房モードや後述する電磁弁等の故障発生時において放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を実行する。
また、コントローラ32は、前記暖房モードや後述する電磁弁等の故障発生時において放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を実行する。
熱媒体循環回路23の循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されると、前述したように熱媒体加熱電気ヒータ35により加熱された熱媒体(高温の熱媒体)が熱媒体-空気熱交換器40に循環されるので、空気流通路3の放熱器4に流入する空気を加熱することになる。これにより、要求される暖房能力に対して放熱器4が発生可能な暖房能力が不足する場合に、この不足する分の暖房能力を熱媒体循環回路23にて補完することになる。
(8)電磁弁17、21、22や蒸発圧力調整弁11、室外膨張弁6に故障が発生した場合の制御(故障時空調モード)
次に、冷媒回路Rを構成する各電磁弁17、21、22、蒸発圧力調整弁11、室外膨張弁6において、コイルが断線や固着等の故障が発生した場合のコントローラ32の動作について説明する。先ず、コントローラ32は各電磁弁17、21、22、蒸発圧力調整弁11、室外膨張弁6に故障(コイルの断線や短絡)が生じているか否かを電気的に常時監視している。
次に、冷媒回路Rを構成する各電磁弁17、21、22、蒸発圧力調整弁11、室外膨張弁6において、コイルが断線や固着等の故障が発生した場合のコントローラ32の動作について説明する。先ず、コントローラ32は各電磁弁17、21、22、蒸発圧力調整弁11、室外膨張弁6に故障(コイルの断線や短絡)が生じているか否かを電気的に常時監視している。
(8-1)電気的な故障検出の方法
図4~図6に係る故障検出の方法の例を示す。各図中でDVで示すのは電磁弁17、21、22や蒸発圧力調整弁11、室外膨張弁6である弁であり、SWはコントローラ32が開閉するスイッチ、RSは抵抗である。これらは直流電源(12V)と接地間に直列に接続され、コントローラ32は抵抗RSの端子電圧を監視している。
図4~図6に係る故障検出の方法の例を示す。各図中でDVで示すのは電磁弁17、21、22や蒸発圧力調整弁11、室外膨張弁6である弁であり、SWはコントローラ32が開閉するスイッチ、RSは抵抗である。これらは直流電源(12V)と接地間に直列に接続され、コントローラ32は抵抗RSの端子電圧を監視している。
図4に示すような正常時には、コントローラ32がスイッチSWを閉じたときに弁DVの動作電流で抵抗RSの端子に現れる端子電圧が検知される。また、スイッチSWを開いたときは電源電圧(12V)が検知されることになる。ここで、図5に示すように弁DVのコイルがショートした場合は、スイッチSWを閉じたときに電源電圧(12V)が検知されるので、コントローラ32は係るショートの発生を検出することができる。但し、スイッチSWを開いたときは検知できない(この場合は、所定のタイミングでスイッチSWを短く閉じて故障を検出すればよい)。一方、図6に示すように弁DVのコイルが断線した場合は、スイッチSWを閉じたときに接地電位(GND)が検知され、スイッチSWを開いたときは浮いた状態となるので、コントローラ32は弁DVのコイルの断線を検出することができる。そして、これらの機能がコントローラ32の故障検出手段となるものである。
そして、電磁弁17、21、22、蒸発圧力調整弁11、室外膨張弁6のうちの何れかのコイルが断線していることを検知した場合(後述する如く固着したことを検知した場合も含む)、コントローラ32は先ず空調操作部53のディスプレイ61に係る故障が発生した旨の警報表示を行い、使用者に速やかなる修理を促す。次に、現在実行している運転モード、又は、選択された運転モードに応じて、前述した複数種類の故障時空調モードのうちから下記の如く何れかの故障時空調モードを選択して実行する。
(8-2)除湿暖房モードにおいて暖房用の電磁弁21が断線した場合の動作
図7は前述した除湿暖房モードにおいて暖房用の電磁弁21のコイルが断線した場合を示している。除湿暖房モードを実行しているときに、暖房用の電磁弁21のコイルが断線すると、吸熱器9側に全ての冷媒が流れるようになるため、吸熱器9の温度が下がっていく。また、電磁弁21が開かないことで冷媒は室外熱交換器7内に溜まっていくことになるため、圧縮機2の吸込冷媒圧力が低下し、真空運転の状態となって圧縮機2に損傷を来すことになる。
図7は前述した除湿暖房モードにおいて暖房用の電磁弁21のコイルが断線した場合を示している。除湿暖房モードを実行しているときに、暖房用の電磁弁21のコイルが断線すると、吸熱器9側に全ての冷媒が流れるようになるため、吸熱器9の温度が下がっていく。また、電磁弁21が開かないことで冷媒は室外熱交換器7内に溜まっていくことになるため、圧縮機2の吸込冷媒圧力が低下し、真空運転の状態となって圧縮機2に損傷を来すことになる。
そこで、コントローラ32は除湿暖房モードを実行しているときに、暖房用の電磁弁21のコイルが断線故障したことを検出した場合、全ての電磁弁17、21、22、及び、蒸発圧力調整弁11を非通電として開き、室外膨張弁6を大口径で制御する前述した除湿冷房モード(除湿暖房モードより冷房可能な運転モード)の冷媒の流れに切り換える。
更に、この除湿冷房モードの流れでは要求される暖房能力に対して放熱器4が発生可能な暖房能力(放熱)が不足するので、前述した如く熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、この不足する分の暖房能力を熱媒体循環回路23にて補完する故障時空調モードを実行する。
このような故障時空調モードを実行することで、車室内の除湿を担保し、車両の窓ガラスに曇りが発生する等の不都合を未然に回避して安全な走行を確保することが可能となる。また、より冷房可能な除湿冷房モードに冷媒の流れを切り換え、必要に応じて熱媒体循環回路32の熱媒体-空気熱交換器40による加熱を行うので、車室内の除湿を担保しながら、車室内の温度低下も解消して快適な空調を実現することが可能となる。特に、暖房用の電磁弁21が断線したことによる圧縮機21の損傷を回避することもできる。ここで、係る故障時に前述した内部サイクルモードに冷媒の流れを切り換えてもよいが、実施例のように除湿冷房モードに切り換えることで、車室内の快適な除湿と温度制御をより安定的に継続することができるようになる。
(8-3)除湿暖房モードにおいて除湿用の電磁弁22が断線した場合の動作
次に、図8は除湿暖房モードにおいて除湿用の電磁弁22のコイルが断線した場合を示している。除湿暖房モードを実行しているときに、除湿用の電磁弁22のコイルが断線すると、吸熱器9側に冷媒が流れなくなるため、車室内の除湿ができなくなり、車両の窓ガラスが曇ってしまう恐れがある。
次に、図8は除湿暖房モードにおいて除湿用の電磁弁22のコイルが断線した場合を示している。除湿暖房モードを実行しているときに、除湿用の電磁弁22のコイルが断線すると、吸熱器9側に冷媒が流れなくなるため、車室内の除湿ができなくなり、車両の窓ガラスが曇ってしまう恐れがある。
そこで、コントローラ32は除湿暖房モードを実行しているときに、除湿用の電磁弁22のコイルが断線故障したことを検出した場合、同様に全ての電磁弁17、21、22、及び、蒸発圧力調整弁11を非通電として開き、室外膨張弁6を大口径で制御する除湿冷房モード(除湿暖房モードより冷房可能な運転モード)の冷媒の流れに切り換える。
同様にこの除湿冷房モードの流れでは要求される暖房能力に対して放熱器4が発生可能な暖房能力(放熱)が不足するので、前述した如く熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、この不足する分の暖房能力を熱媒体循環回路23にて補完する故障時空調モードを実行する。これにより、同様に車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
(8-4)内部サイクルモードにおいて除湿用の電磁弁22が断線した場合の動作
次に、図9は前述した内部サイクルモードにおいて除湿用の電磁弁22のコイルが断線した場合を示している。内部サイクルモードを実行しているときに、除湿用の電磁弁22のコイルが断線すると、回路が遮断されてしまうため、冷媒回路Rが成立しなくなる。そのため、圧縮機2の吐出冷媒圧力及び吸込冷媒圧力が異常な値となり、圧縮機2に深刻な損傷を与える危険性が生じる。
次に、図9は前述した内部サイクルモードにおいて除湿用の電磁弁22のコイルが断線した場合を示している。内部サイクルモードを実行しているときに、除湿用の電磁弁22のコイルが断線すると、回路が遮断されてしまうため、冷媒回路Rが成立しなくなる。そのため、圧縮機2の吐出冷媒圧力及び吸込冷媒圧力が異常な値となり、圧縮機2に深刻な損傷を与える危険性が生じる。
そこで、コントローラ32は内部サイクルモードを実行しているときに、除湿用の電磁弁22のコイルが断線故障したことを検出した場合も、全ての電磁弁17、21、22、及び、蒸発圧力調整弁11を非通電として開き、室外膨張弁6を大口径で制御する除湿冷房モード(内部サイクルモードより冷房可能な運転モード)の冷媒の流れに切り換える。
そして、同様にこの除湿冷房モードの流れでは要求される暖房能力に対して放熱器4が発生可能な暖房能力(放熱)が不足するので、前述した如く熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、この不足する分の暖房能力を熱媒体循環回路23にて補完する故障時空調モードを実行する。これにより、除湿用の電磁弁22の故障によって圧縮機2に損傷を来す不都合を回避しながら、車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
(8-5)除湿暖房モードにおいて蒸発圧力調整弁11が断線した場合の動作
次に、図10は除湿暖房モードにおいて蒸発圧力調整弁11のコイルが断線した場合を示している。除湿暖房モードを実行しているときに、蒸発圧力調整弁11のコイルが断線すると、吸熱器9の温度が低下しても閉じることができなくなるため、吸熱器9の温度が低下して凍結してしまう危険性がある。
次に、図10は除湿暖房モードにおいて蒸発圧力調整弁11のコイルが断線した場合を示している。除湿暖房モードを実行しているときに、蒸発圧力調整弁11のコイルが断線すると、吸熱器9の温度が低下しても閉じることができなくなるため、吸熱器9の温度が低下して凍結してしまう危険性がある。
そこで、コントローラ32は除湿暖房モードを実行しているときに、蒸発圧力調整弁11のコイルが断線故障したことを検出した場合、同様に全ての電磁弁17、21、22、及び、蒸発圧力調整弁11を非通電として開き、室外膨張弁6を大口径で制御する除湿冷房モード(除湿暖房モードより冷房可能な運転モード)の冷媒の流れに切り換える。
また、同様にこの除湿冷房モードの流れでは要求される暖房能力に対して放熱器4が発生可能な暖房能力(放熱)が不足するので、前述した如く熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、この不足する分の暖房能力を熱媒体循環回路23にて補完する故障時空調モードを実行する。これにより、吸熱器9の凍結を回避しながら、車室内の快適な除湿と温度制御を安定的に継続することができるようになる。
(8-6)除湿暖房モードにおいて室外膨張弁6が断線した場合の動作
次に、図11は除湿暖房モードにおいて室外膨張弁6のコイルが断線した場合を示している。前述した如く除湿暖房モードでは、コントローラ32が室外膨張弁6の弁開度により吸熱器9の温度を制御しているため、この除湿暖房モードを実行しているときに、室外膨張弁6のコイルが断線してしまうと、コントローラ32は吸熱器9の温度を制御することができなくなる。
次に、図11は除湿暖房モードにおいて室外膨張弁6のコイルが断線した場合を示している。前述した如く除湿暖房モードでは、コントローラ32が室外膨張弁6の弁開度により吸熱器9の温度を制御しているため、この除湿暖房モードを実行しているときに、室外膨張弁6のコイルが断線してしまうと、コントローラ32は吸熱器9の温度を制御することができなくなる。
そこで、コントローラ32は除湿暖房モードを実行しているときに、室外膨張弁6のコイルが断線故障したことを検出した場合、全ての電磁弁17、21、22、及び、蒸発圧力調整弁11の状態はそのままとし、冷媒の流れを切り換えること無く、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。即ち、圧縮機2により吸熱器9の温度を制御する状態とする。
この場合、放熱器4を経た空気の温度は成り行きとなるので、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度Tciに基づき、この放熱器4の温度Tci(放熱器4を経た空気の温度)が高い場合、エアミックスダンパ28により熱媒体-空気熱交換器40及び放熱器4を通過せずに車室内に吹き出される空気量を増加させる。逆に、放熱器4の温度Tciが低い場合、熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、放熱器4の放熱が不足する分の暖房能力を熱媒体循環回路23にて補完する故障時空調モードを実行する。
このように、圧縮機2で吸熱器9の温度を制御しながら、車室内に吹き出される空気の温度はエアミックスダンパ28と熱媒体循環回路23の熱媒体-空気熱交換器40による加熱で制御するので、吸熱器9の温度と車室内に吹き出される空気温度の双方を引き続き支障無く制御し、車室内の快適な空調を継続することができるようになる。
(8-7)除湿冷房モードにおいて室外膨張弁6が断線した場合の動作
次に、図12は除湿冷房モードにおいて室外膨張弁6のコイルが断線した場合を示している。前述した如く除湿冷房モードでは、コントローラ32が室外膨張弁6の弁開度により放熱器4を経た空気の温度を制御しているため、この除湿冷房モードを実行しているときに、室外膨張弁6のコイルが断線してしまうと、コントローラ32は放熱器4を経た空気温度を制御することができなくなる。
次に、図12は除湿冷房モードにおいて室外膨張弁6のコイルが断線した場合を示している。前述した如く除湿冷房モードでは、コントローラ32が室外膨張弁6の弁開度により放熱器4を経た空気の温度を制御しているため、この除湿冷房モードを実行しているときに、室外膨張弁6のコイルが断線してしまうと、コントローラ32は放熱器4を経た空気温度を制御することができなくなる。
そこで、コントローラ32は除湿冷房モードを実行しているときに、室外膨張弁6のコイルが断線故障したことを検出した場合、全ての電磁弁17、21、22、及び、蒸発圧力調整弁11の状態はそのままとし、冷媒の流れを切り換えること無く、放熱器温度センサ46が検出する放熱器4の温度Tciに基づき、この放熱器4の温度Tci(放熱器4を経た空気の温度)が低い場合、熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、放熱器4の放熱が不足する分の暖房能力を熱媒体循環回路23にて補完する。逆に、放熱器4の温度Tciが高い場合、エアミックスダンパ28により熱媒体-空気熱交換器40及び放熱器4を通過せずに車室内に吹き出される空気量を増加させ、車室内に吹き出される空気温度を下げる故障時空調モードを実行する。
このように、熱媒体循環回路23の熱媒体-空気熱交換器40による加熱とエアミックスダンパ28によって車室内に吹き出される空気温度を最適に制御するので、車室内に吹き出される空気温度を引き続き支障無く制御し、車室内の快適な空調を継続することができるようになる。
(8-8)暖房モードにおいて暖房用の電磁弁21が断線した場合の動作
次に、図13は前述した暖房モードにおいて暖房用の電磁弁21のコイルが断線した場合を示している。前述した如く暖房モードでは、冷房用の電磁弁17及び除湿用の電磁弁22が閉じているため、この暖房モードを実行しているときに、暖房用の電磁弁21のコイルが断線して閉じてしまうと、回路が遮断されて冷媒回路Rが成立しなくなる。また、圧縮機2の吸込冷媒圧力が異常となり、圧縮機2に深刻な損傷を来す危険性がある。しかしながら、他の運転モードに切り換えても、何れの場合も吸熱器9に冷媒が流れるため吸熱器9が凍結してしまう問題がある。
次に、図13は前述した暖房モードにおいて暖房用の電磁弁21のコイルが断線した場合を示している。前述した如く暖房モードでは、冷房用の電磁弁17及び除湿用の電磁弁22が閉じているため、この暖房モードを実行しているときに、暖房用の電磁弁21のコイルが断線して閉じてしまうと、回路が遮断されて冷媒回路Rが成立しなくなる。また、圧縮機2の吸込冷媒圧力が異常となり、圧縮機2に深刻な損傷を来す危険性がある。しかしながら、他の運転モードに切り換えても、何れの場合も吸熱器9に冷媒が流れるため吸熱器9が凍結してしまう問題がある。
そこで、コントローラ32は暖房モードを実行しているときに、暖房用の電磁弁21のコイルが断線故障したことを検出した場合、圧縮機2の運転を停止する。但し、室内送風機27は運転する。そして、要求される暖房能力に応じて熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40によって空気流通路内の空気の加熱を行う故障時空調モードを実行する。これにより、暖房用の電磁弁21の断線によって圧縮機2に損傷を来す不都合を回避しながら、熱媒体循環回路23の熱媒体-空気熱交換器40により車室内の暖房を継続することができるようになる。
(8-9)暖房モードにおいて室外膨張弁6が断線した場合の動作
次に、図14は前述した暖房モードにおいて室外膨張弁6のコイルが断線した場合を示している。この暖房モードでは、前述した如く室外膨張弁6の弁開度により放熱器4の出口における冷媒の過冷却度を制御しているため、この暖房モードを実行しているときに、室外膨張弁6のコイルが断線すると、放熱器4の出口における冷媒の過冷却度を制御することができなくなる。
次に、図14は前述した暖房モードにおいて室外膨張弁6のコイルが断線した場合を示している。この暖房モードでは、前述した如く室外膨張弁6の弁開度により放熱器4の出口における冷媒の過冷却度を制御しているため、この暖房モードを実行しているときに、室外膨張弁6のコイルが断線すると、放熱器4の出口における冷媒の過冷却度を制御することができなくなる。
即ち、放熱器4の出口における冷媒の過冷却度を最適な値に制御することができなくなって暖房効率が低下することになるが、車室内の暖房は実現可能である。また、他の機器に支障が生じるものでは無く、他の運転モードに切り換えても、何れの場合も吸熱器9に冷媒が流れるため吸熱器9が凍結してしまう問題があるので、コントローラ32は全ての電磁弁17、21、22、及び、蒸発圧力調整弁11の状態を暖房モードのままとし、冷媒の流れを切り換えること無く、暖房モードの運転を継続する。
(8-10)暖房モードにおいて冷房用の電磁弁17が断線した場合の動作
次に、図15は暖房モードにおいて冷房用の電磁弁17のコイルが断線した場合を示している。この暖房モードでは、前述した如く冷房用の電磁弁17は閉じているため、この暖房モードを実行しているときに、冷房用の電磁弁17のコイルが断線すると、電磁弁17が開いてしまう。
次に、図15は暖房モードにおいて冷房用の電磁弁17のコイルが断線した場合を示している。この暖房モードでは、前述した如く冷房用の電磁弁17は閉じているため、この暖房モードを実行しているときに、冷房用の電磁弁17のコイルが断線すると、電磁弁17が開いてしまう。
しかしながら、電磁弁17が開いても冷媒は極少量しかレシーバドライヤ部14方向に流れないので、冷媒の流れは実質的に変化せず、車室内の暖房は実現可能である。また、他の機器に支障が生じるものでは無く、他の運転モードに切り換えても、同様に何れの場合も吸熱器9に冷媒が流れるため吸熱器9が凍結してしまう問題があるので、コントローラ32は全ての電磁弁17、21、22、及び、蒸発圧力調整弁11の状態を暖房モードのままとし、冷媒の流れを切り換えること無く、暖房モードの運転を継続する。
(8-11)除湿暖房モードにおいて冷房用の電磁弁17が断線した場合の動作
次に、図16は除湿暖房モードにおいて冷房用の電磁弁17のコイルが断線した場合を示している。この除湿暖房モードでも、前述した如く冷房用の電磁弁17は閉じているため、この除湿暖房モードを実行しているときに、冷房用の電磁弁17のコイルが断線すると、電磁弁17が開いてしまう。
次に、図16は除湿暖房モードにおいて冷房用の電磁弁17のコイルが断線した場合を示している。この除湿暖房モードでも、前述した如く冷房用の電磁弁17は閉じているため、この除湿暖房モードを実行しているときに、冷房用の電磁弁17のコイルが断線すると、電磁弁17が開いてしまう。
しかしながら、この場合も冷媒は極少量しか電磁弁17からレシーバドライヤ部14方向には流れないので、冷媒の流れは実質的に変化せず、車室内の除湿暖房は実現可能である。また、他の機器に支障が生じるものでは無いので、コントローラ32は全ての電磁弁17、21、22、及び、蒸発圧力調整弁11の状態を除湿暖房モードのままとし、冷媒の流れを切り換えること無く、除湿暖房モードの運転を継続する。
(8-12)冷媒回路Rの異常に基づく故障検出の方法
次に、図17は冷媒回路Rの各部の温度及び圧力の状態を示している。この図において、Ncは圧縮機2の回転数、PCOは目標放熱器圧力(目標とする放熱器4の圧力)、TCOは目標放熱器温度(目標とする放熱器4の温度)、Tdは吐出温度センサ43が検出する圧縮機2の吐出冷媒温度、11Aは蒸発圧力調整弁11の開閉状態(上が閉、下が開)、THは熱媒体-空気熱交換器温度センサ55が検出する熱媒体-空気熱交換器40を経た空気の温度、Tciは放熱器温度センサ46が検出する放熱器4を経た空気温度、Tciavはその平均温度、Pdは吐出圧力センサ42が検出する圧縮機2の吐出冷媒圧力、Pciは放熱器圧力センサ47が検出する放熱器圧力、ECCVは室外膨張弁6の弁開度(パルス数)、TXOは室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度、Teは吸熱器温度センサ48が検出する吸熱器温度、SCは放熱器4における冷媒の過冷却度、SCOはその目標値(目標過冷却度)、Tsは吸込温度センサ60が検出する圧縮機2の吸込冷媒温度、Psは吸込圧力センサ44が検出する圧縮機2の吸込冷媒圧力である。
次に、図17は冷媒回路Rの各部の温度及び圧力の状態を示している。この図において、Ncは圧縮機2の回転数、PCOは目標放熱器圧力(目標とする放熱器4の圧力)、TCOは目標放熱器温度(目標とする放熱器4の温度)、Tdは吐出温度センサ43が検出する圧縮機2の吐出冷媒温度、11Aは蒸発圧力調整弁11の開閉状態(上が閉、下が開)、THは熱媒体-空気熱交換器温度センサ55が検出する熱媒体-空気熱交換器40を経た空気の温度、Tciは放熱器温度センサ46が検出する放熱器4を経た空気温度、Tciavはその平均温度、Pdは吐出圧力センサ42が検出する圧縮機2の吐出冷媒圧力、Pciは放熱器圧力センサ47が検出する放熱器圧力、ECCVは室外膨張弁6の弁開度(パルス数)、TXOは室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度、Teは吸熱器温度センサ48が検出する吸熱器温度、SCは放熱器4における冷媒の過冷却度、SCOはその目標値(目標過冷却度)、Tsは吸込温度センサ60が検出する圧縮機2の吸込冷媒温度、Psは吸込圧力センサ44が検出する圧縮機2の吸込冷媒圧力である。
前述した如く除湿冷房モードでは、室外熱交換器7及び吸熱器9が蒸発器として機能するが、図18の如く何らかの原因で暖房用の電磁弁21が固着して閉じたままとなってしまった場合(通電しても開かない)、冷媒回路Rは閉回路に近い状態になるため、圧縮機2の吸込冷媒圧力Psが低下し、真空運転の状態となる。また、冷媒は室外熱交換器7内に溜まっていくことになるため、放熱器圧力Pciが上がらなくなる。そして、このような冷媒回路の状況は、除湿暖房モードにおいて暖房用の電磁弁21が固着した場合以外に無い。
(8-13)除湿暖房モードにおいて暖房用の電磁弁21が固着した場合の動作
そこで、コントローラ32は除湿暖房モードを実行しているときに、係る冷媒回路Rの状況から暖房用の電磁弁21が固着しているものと判断した場合(この機能が故障検出手段となる)、図18に矢印で示すように全ての電磁弁17、21、22、及び、蒸発圧力調整弁11を非通電として開き、室外膨張弁6を大口径で制御する前述した除湿冷房モード(除湿暖房モードより冷房可能な運転モード)の冷媒の流れに切り換える。
そこで、コントローラ32は除湿暖房モードを実行しているときに、係る冷媒回路Rの状況から暖房用の電磁弁21が固着しているものと判断した場合(この機能が故障検出手段となる)、図18に矢印で示すように全ての電磁弁17、21、22、及び、蒸発圧力調整弁11を非通電として開き、室外膨張弁6を大口径で制御する前述した除湿冷房モード(除湿暖房モードより冷房可能な運転モード)の冷媒の流れに切り換える。
更に、この除湿冷房モードの流れでは要求される暖房能力に対して放熱器4が発生可能な暖房能力(放熱)が不足するので、前述した如く熱媒体循環回路23の熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体-空気熱交換器40による加熱を実行して、この不足する分の暖房能力を熱媒体循環回路23にて補完する故障時空調モードを実行する。
このような故障時空調モードを実行することで、車室内の除湿を担保し、車両の窓ガラスに曇りが発生する等の不都合を未然に回避して安全な走行を確保することが可能となる。また、より冷房可能な除湿冷房モードに冷媒の流れを切り換え、必要に応じて熱媒体循環回路32の熱媒体-空気熱交換器40による加熱を行うので、車室内の除湿を担保しながら、車室内の温度低下も解消して快適な空調を実現することが可能となる。特に、暖房用の電磁弁21が固着したことによる圧縮機21の損傷を回避することもできる。
(9)補助加熱手段の他の例
尚、前記実施例では補助加熱手段として熱媒体循環回路23を採用したが、通常の電気ヒータ(例えば、PTCヒータ)62にて補助加熱手段を構成してもよい。その場合の図1に対応する構成例が図19である。この図では図1の熱媒体循環回路23がこの場合の電気ヒータ62に置き換えられている。
尚、前記実施例では補助加熱手段として熱媒体循環回路23を採用したが、通常の電気ヒータ(例えば、PTCヒータ)62にて補助加熱手段を構成してもよい。その場合の図1に対応する構成例が図19である。この図では図1の熱媒体循環回路23がこの場合の電気ヒータ62に置き換えられている。
このように、車室内に供給する空気を電気ヒータ62で加熱するようにしてもよく、係る構成によれば、熱媒体循環回路23を用いる場合に比して構造が簡素化される利点がある。
また、上記各実施例では電磁弁21と電磁弁17を別々の電磁弁で構成したが、一体化された三方弁で構成してもよい。その場合には、非通電状態でレシーバドライヤ部14に向かう側が開放され、冷媒配管13Cに向かう側が閉じられる三方弁とする。
また、実施例では暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、請求項1の発明ではそれに限らず、それらの何れか若しくは二つの組み合わせのみを除湿モードとして行うものにも本発明は有効である。
更に、上記各実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
11 蒸発圧力調整弁
17、21、22 電磁弁
23 熱媒体循環回路
26 吸込切換ダンパ
27 室内送風機(ブロワファン)
28 エアミックスダンパ
30 循環ポンプ(循環手段)
32 コントローラ(制御手段)
35 熱媒体加熱電気ヒータ(電気ヒータ)
40 熱媒体-空気熱交換器(補助加熱手段)
62 電気ヒータ(補助加熱手段)
R 冷媒回路
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
11 蒸発圧力調整弁
17、21、22 電磁弁
23 熱媒体循環回路
26 吸込切換ダンパ
27 室内送風機(ブロワファン)
28 エアミックスダンパ
30 循環ポンプ(循環手段)
32 コントローラ(制御手段)
35 熱媒体加熱電気ヒータ(電気ヒータ)
40 熱媒体-空気熱交換器(補助加熱手段)
62 電気ヒータ(補助加熱手段)
R 冷媒回路
Claims (14)
- 冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、
冷媒回路の冷媒の流れを切り換えるための複数の電磁弁と、
前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱手段と、
前記圧縮機、前記電磁弁、及び、前記補助加熱手段を制御する制御手段とを備え、
該制御手段により前記電磁弁を制御し、冷媒の流れを切り換えることによって、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿モードと、
前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードのうちの何れかの運転モードを実行する車両用空気調和装置において、
前記制御手段は、所定の故障時空調モードと、前記電磁弁の故障を検出する故障検出手段を有し、前記各運転モードにおいて前記電磁弁が故障したことを前記故障検出手段が検出した場合、当該運転モードによる車室内空調を実現可能な前記故障時空調モードを選択して前記車室内の空調を継続することを特徴とする車両用空気調和装置。 - 前記除湿モードは、
前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器及び前記室外熱交換器にて吸熱させる除湿暖房モードと、
前記圧縮機から吐出された冷媒を前記放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードとを含み、
前記制御手段は、前記除湿暖房モード又は除湿冷房モードにおいて前記電磁弁が故障したことを検出した場合、前記車室内の除湿が可能な他の前記運転モードに冷媒の流れを切り換えて前記故障時空調モードとすることを特徴とする請求項1に記載の車両用空気調和装置。 - 前記制御手段は、前記除湿暖房モードにおいて前記電磁弁が故障したことを検出した場合、前記車室内をより冷房可能な前記運転モードに冷媒の流れを切り換え、必要に応じて前記補助加熱手段による加熱を行う前記故障時空調モードを実行することを特徴とする請求項2に記載の車両用空気調和装置。
- 前記暖房モードと前記除湿暖房モードで通電されて開く暖房用の前記電磁弁を備え、
前記制御手段は、前記除湿暖房モードにおいて前記暖房用の電磁弁が故障したことを検出した場合、前記除湿冷房モードに冷媒の流れを切り換え、前記放熱器による放熱が不足するときには前記補助加熱手段による加熱を行う前記故障時空調モードを実行することを特徴とする請求項2又は請求項3に記載の車両用空気調和装置。 - 前記室外熱交換器に対して並列に接続され、前記除湿暖房モードで通電されて開く除湿用の前記電磁弁を備え、
前記制御手段は、前記除湿暖房モードにおいて前記除湿用の電磁弁が故障したことを検出した場合、前記除湿冷房モードに冷媒の流れを切り換え、前記放熱器による放熱が不足するときには前記補助加熱手段による加熱を行う前記故障時空調モードを実行することを特徴とする請求項2乃至請求項4のうちの何れかに記載の車両用空気調和装置。 - 前記除湿モードは、
前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる内部サイクルモードを含み、
前記室外熱交換器に対して並列に接続され、前記内部サイクルモードで通電されて開く除湿用の前記電磁弁を備え、
前記制御手段は、前記内部サイクルモードにおいて前記除湿用の電磁弁が故障したことを検出した場合、前記除湿冷房モードに冷媒の流れを切り換え、前記放熱器による放熱が不足するときには前記補助加熱手段による加熱を行う前記故障時空調モードを実行することを特徴とする請求項2乃至請求項5のうちの何れかに記載の車両用空気調和装置。 - 前記吸熱器の冷媒出口側に接続され、前記除湿暖房モードで開閉される蒸発圧力調整弁を備え、
前記故障検出手段は、前記蒸発圧力調整弁の故障も検出すると共に、
前記制御手段は、前記除湿暖房モードにおいて前記蒸発圧力調整弁が故障したことを検出した場合、前記除湿冷房モードに冷媒の流れを切り換え、前記放熱器による放熱が不足するときには前記補助加熱手段による加熱を行う前記故障時空調モードを実行することを特徴とする請求項2乃至請求項6のうちの何れかに記載の車両用空気調和装置。 - 前記吸熱器を通過した前記空気流通路内の空気を前記放熱器に通風する割合を調整するためのエアミックスダンパと、
前記室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁とを備え、
前記除湿モードは、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器及び前記室外熱交換器にて吸熱させる除湿暖房モードを含み、該除湿暖房モードにおいては、前記制御手段は前記室外膨張弁の弁開度により前記吸熱器の温度を制御し、前記圧縮機の回転数により前記放熱器を経た空気温度を制御すると共に、
前記故障検出手段は、前記室外膨張弁の故障も検出し、
前記制御手段は、前記除湿暖房モードにおいて前記室外膨張弁が故障したことを検出した場合、冷媒の流れを切り換えること無く、前記圧縮機により前記吸熱器の温度を制御し、前記エアミックスダンパと前記補助加熱手段により前記車室内に吹き出される空気温度を制御する前記故障時空調モードを実行することを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両用空気調和装置。 - 前記吸熱器を通過した前記空気流通路内の空気を前記放熱器に通風する割合を調整するためのエアミックスダンパと、
前記室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁とを備え、
前記除湿モードは、前記圧縮機から吐出された冷媒を前記放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードを含み、該除湿冷房モードにおいては、前記制御手段は前記室外膨張弁の弁開度により前記放熱器を経た空気温度を制御すると共に、
前記故障検出手段は、前記室外膨張弁の故障も検出し、
前記制御手段は、前記除湿冷房モードにおいて前記室外膨張弁が故障したことを検出した場合、冷媒の流れを切り換えること無く、前記エアミックスダンパと前記補助加熱手段により前記車室内に吹き出される空気温度を制御する前記故障時空調モードを実行することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。 - 前記暖房モードで通電されて開放される暖房用の前記電磁弁を備え、
前記制御手段は、前記暖房モードにおいて前記暖房用の電磁弁が故障したことを検出した場合、前記圧縮機の運転を停止して前記補助加熱手段による加熱を行う前記故障時空調モードを実行することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。 - 前記室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁と、
前記吸熱器の冷媒出口側に接続され、前記除湿暖房モードで開閉される蒸発圧力調整弁とを備え、
前記故障検出手段は、前記室外膨張弁と前記蒸発圧力調整弁の故障も検出すると共に、
前記制御手段は、前記各運転モードにおいて前記電磁弁、前記室外膨張弁、及び、前記蒸発圧力調整弁のうちの何れかの故障を検出した場合にも、当該運転モードで車室内空調を実現可能であるとき、冷媒の流れを切り換えること無く、当該運転モードを継続する前記故障時空調モードを実行することを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。 - 前記室外熱交換器に流入する冷媒を絞って減圧させる室外膨張弁と、
前記吸熱器の冷媒出口側に接続され、前記除湿暖房モードで開閉される蒸発圧力調整弁とを備え、
前記故障検出手段は、電気的に、又は、前記冷媒回路の温度及び/又は圧力の状況により、前記電磁弁、前記室外膨張弁、及び、前記蒸発圧力調整弁の故障を検出することを特徴とする請求項1乃至請求項11のうちの何れかに記載の車両用空気調和装置。 - 熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、前記電気ヒータにより加熱された熱媒体を前記循環手段により前記熱媒体-空気熱交換器に循環する熱媒体循環回路を備え、前記熱媒体-空気熱交換器により前記補助加熱手段を構成したことを特徴とする請求項1乃至請求項12のうちの何れかに記載の車両用空気調和装置。
- 前記空気流通路から前記車室内に供給する空気を加熱する電気ヒータにより前記補助加熱手段を構成したことを特徴とする請求項1乃至請求項12のうちの何れかに記載の車両用空気調和装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580065383.3A CN107000544B (zh) | 2014-12-04 | 2015-12-01 | 车辆用空调装置 |
DE112015005449.9T DE112015005449T5 (de) | 2014-12-04 | 2015-12-01 | Fahrzeugklimaanlageneinrichtung |
US15/532,583 US10369864B2 (en) | 2014-12-04 | 2015-12-01 | Vehicle air conditioner device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014245739A JP6470026B2 (ja) | 2014-12-04 | 2014-12-04 | 車両用空気調和装置 |
JP2014-245739 | 2014-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088738A1 true WO2016088738A1 (ja) | 2016-06-09 |
Family
ID=56091680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/083695 WO2016088738A1 (ja) | 2014-12-04 | 2015-12-01 | 車両用空気調和装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10369864B2 (ja) |
JP (1) | JP6470026B2 (ja) |
CN (1) | CN107000544B (ja) |
DE (1) | DE112015005449T5 (ja) |
WO (1) | WO2016088738A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110061323A (zh) * | 2019-03-29 | 2019-07-26 | 华为技术有限公司 | 一种热管理装置、热管理系统及新能源汽车 |
JP2020139681A (ja) * | 2019-02-28 | 2020-09-03 | 株式会社デンソー | 冷凍サイクル装置、蒸発圧力調整弁 |
WO2021020164A1 (ja) * | 2019-07-29 | 2021-02-04 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6207958B2 (ja) * | 2013-10-07 | 2017-10-04 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6470026B2 (ja) * | 2014-12-04 | 2019-02-13 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6831209B2 (ja) * | 2016-10-27 | 2021-02-17 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2018122635A (ja) * | 2017-01-30 | 2018-08-09 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6884028B2 (ja) | 2017-04-26 | 2021-06-09 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
DE102017211256B4 (de) | 2017-07-03 | 2023-11-16 | Audi Ag | Kälteanlage für ein Fahrzeug mit einem einen Wärmeübertrager aufweisenden Kältemittelkreislauf |
JP2019018709A (ja) * | 2017-07-18 | 2019-02-07 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2019064325A (ja) * | 2017-09-28 | 2019-04-25 | 株式会社ヴァレオジャパン | 車両用空調装置 |
FR3075109B1 (fr) * | 2017-12-18 | 2019-11-29 | Renault S.A.S | Procede de fonctionnement d'un systeme de regulation thermique d'un vehicule automobile a propulsion electrique ou hybride |
JP6925288B2 (ja) * | 2018-01-30 | 2021-08-25 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
CN109323478B (zh) * | 2018-07-30 | 2024-06-07 | 浙江普林艾尔电器工业有限公司 | 一种制冷剂安全可靠回流的多终端制冷系统 |
CN111587338A (zh) | 2018-11-12 | 2020-08-25 | 太平洋工业株式会社 | 复合阀 |
JP2020079004A (ja) * | 2018-11-13 | 2020-05-28 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
CN111436206B (zh) | 2018-11-13 | 2021-12-28 | 太平洋工业株式会社 | 单向阀装置 |
JP2020082811A (ja) * | 2018-11-16 | 2020-06-04 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
US11413933B2 (en) * | 2019-04-25 | 2022-08-16 | Hyundai Motor Company | Thermal management system for electric vehicle |
JP7387322B2 (ja) * | 2019-07-29 | 2023-11-28 | サンデン株式会社 | 車両用空気調和装置 |
US11731490B2 (en) * | 2021-07-14 | 2023-08-22 | GM Global Technology Operations LLC | Refrigerant system diagnostics |
CN114992767B (zh) * | 2022-05-16 | 2023-05-09 | 珠海格力电器股份有限公司 | 一种电子膨胀阀控制方法、系统、用电设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292064A (ja) * | 2007-05-24 | 2008-12-04 | Toyota Industries Corp | 空気調和装置 |
JP2012158197A (ja) * | 2011-01-28 | 2012-08-23 | Mitsubishi Heavy Ind Ltd | ヒートポンプ式車両用空調装置およびその除霜方法 |
JP2012250708A (ja) * | 2012-09-19 | 2012-12-20 | Denso Corp | 車両用空調装置 |
JP2014058209A (ja) * | 2012-09-18 | 2014-04-03 | Denso Corp | 車両用空調装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3538845B2 (ja) * | 1991-04-26 | 2004-06-14 | 株式会社デンソー | 自動車用空調装置 |
EP0800940A3 (en) * | 1996-04-10 | 2001-06-06 | Denso Corporation | Vehicular air conditioning system for electric vehicles |
JP3736847B2 (ja) * | 2002-12-06 | 2006-01-18 | 松下電器産業株式会社 | 空調装置及び空調方法 |
JP2005299407A (ja) * | 2004-04-07 | 2005-10-27 | Toyota Motor Corp | 冷却システムおよびその制御方法並びに自動車 |
JP5494312B2 (ja) * | 2009-09-03 | 2014-05-14 | 株式会社デンソー | 車両用空調装置 |
US8788223B2 (en) | 2010-10-29 | 2014-07-22 | GM Global Technology Operations LLC | Comprehensive method of electrical fluid heating system fault detection and handling |
CN103328238B (zh) * | 2011-01-21 | 2015-11-25 | 三电有限公司 | 车辆用空气调节装置 |
JP6192434B2 (ja) * | 2013-08-23 | 2017-09-06 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP2014051283A (ja) | 2013-11-15 | 2014-03-20 | Denso Corp | 車両用空調装置、および、車両用空調装置用の電力管理システム |
JP2016060414A (ja) * | 2014-09-19 | 2016-04-25 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6470026B2 (ja) * | 2014-12-04 | 2019-02-13 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
-
2014
- 2014-12-04 JP JP2014245739A patent/JP6470026B2/ja active Active
-
2015
- 2015-12-01 WO PCT/JP2015/083695 patent/WO2016088738A1/ja active Application Filing
- 2015-12-01 US US15/532,583 patent/US10369864B2/en active Active
- 2015-12-01 DE DE112015005449.9T patent/DE112015005449T5/de active Pending
- 2015-12-01 CN CN201580065383.3A patent/CN107000544B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292064A (ja) * | 2007-05-24 | 2008-12-04 | Toyota Industries Corp | 空気調和装置 |
JP2012158197A (ja) * | 2011-01-28 | 2012-08-23 | Mitsubishi Heavy Ind Ltd | ヒートポンプ式車両用空調装置およびその除霜方法 |
JP2014058209A (ja) * | 2012-09-18 | 2014-04-03 | Denso Corp | 車両用空調装置 |
JP2012250708A (ja) * | 2012-09-19 | 2012-12-20 | Denso Corp | 車両用空調装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020139681A (ja) * | 2019-02-28 | 2020-09-03 | 株式会社デンソー | 冷凍サイクル装置、蒸発圧力調整弁 |
WO2020175546A1 (ja) * | 2019-02-28 | 2020-09-03 | 株式会社デンソー | 冷凍サイクル装置、蒸発圧力調整弁 |
JP6992777B2 (ja) | 2019-02-28 | 2022-01-13 | 株式会社デンソー | 冷凍サイクル装置、蒸発圧力調整弁 |
CN110061323A (zh) * | 2019-03-29 | 2019-07-26 | 华为技术有限公司 | 一种热管理装置、热管理系统及新能源汽车 |
WO2021020164A1 (ja) * | 2019-07-29 | 2021-02-04 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107000544B (zh) | 2019-12-24 |
CN107000544A (zh) | 2017-08-01 |
DE112015005449T5 (de) | 2017-08-17 |
US20170326943A1 (en) | 2017-11-16 |
JP2016107745A (ja) | 2016-06-20 |
JP6470026B2 (ja) | 2019-02-13 |
US10369864B2 (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6470026B2 (ja) | 車両用空気調和装置 | |
JP6884028B2 (ja) | 車両用空気調和装置 | |
JP6418787B2 (ja) | 車両用空気調和装置 | |
JP6418779B2 (ja) | 車両用空気調和装置 | |
WO2018159142A1 (ja) | 車両用空気調和装置 | |
JP6040099B2 (ja) | 車両用空気調和装置 | |
CN107614301B (zh) | 车辆用空调装置 | |
JP6590558B2 (ja) | 車両用空気調和装置 | |
JP6496958B2 (ja) | 車両用空気調和装置 | |
WO2017146268A1 (ja) | 車両用空気調和装置 | |
JP6963405B2 (ja) | 車両用空気調和装置 | |
WO2016043309A1 (ja) | 車両用空気調和装置 | |
JP6692659B2 (ja) | 車両用空気調和装置 | |
JP6571430B2 (ja) | 車両用空気調和装置 | |
WO2017146266A1 (ja) | 車両用空気調和装置 | |
WO2017146264A1 (ja) | 車両用空気調和装置 | |
JP6692678B2 (ja) | 車両用空気調和装置 | |
WO2018079121A1 (ja) | 車両用空気調和装置 | |
WO2017146267A1 (ja) | 車両用空気調和装置 | |
JP2018131023A (ja) | 圧力低下抑制装置 | |
WO2019017150A1 (ja) | 車両用空気調和装置 | |
WO2019031131A1 (ja) | 冷凍サイクル装置 | |
WO2019017151A1 (ja) | 車両用空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15866191 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15532583 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015005449 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15866191 Country of ref document: EP Kind code of ref document: A1 |