WO2016076432A1 - アウターソール、及びシューズ - Google Patents
アウターソール、及びシューズ Download PDFInfo
- Publication number
- WO2016076432A1 WO2016076432A1 PCT/JP2015/082042 JP2015082042W WO2016076432A1 WO 2016076432 A1 WO2016076432 A1 WO 2016076432A1 JP 2015082042 W JP2015082042 W JP 2015082042W WO 2016076432 A1 WO2016076432 A1 WO 2016076432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastomer
- outer sole
- free energy
- shoe
- examples
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/12—Soles with several layers of different materials
- A43B13/122—Soles with several layers of different materials characterised by the outsole or external layer
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/22—Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/02—Football boots or shoes, i.e. for soccer, football or rugby
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/06—Running shoes; Track shoes
Definitions
- the present invention relates to an outer sole of a shoe and a shoe including the same.
- Various shoes such as sports shoes have a shoe body and an outer sole provided on the lower surface of the shoe body.
- a shoe is required to have a grip on a road surface.
- grip property refers to the property of being difficult to slip.
- road surface means a surface on which a person wearing shoes walks or runs, and is a general term for a road surface such as a sidewalk, a floor surface in a building such as a gymnasium, and an unpaved ground. is there.
- outer soles with improved grip properties are outer soles containing a polymer material having a relatively high glass transition temperature, outer soles containing short fibers, and the like (Patent Document 1).
- the grip performance of the outer sole is still not sufficient.
- the liquid is interposed between the wet road surface and the surface of the outer sole, the grip performance of the outer sole with respect to the wet road surface is insufficient.
- the surface of the said outer sole points out the surface of the side which contact
- a liquid is water, oil, etc. which exist on a road surface.
- An object of the present invention is to provide an outer sole excellent in grip properties and a shoe using the same.
- the outer sole of the present invention contains a thermoplastic elastomer and has a surface free energy of 12 mJ / m 2 or more.
- a preferable outer sole of the present invention has an arithmetic average roughness Ra of 1000 ⁇ m or less.
- the thermoplastic elastomer contains at least one selected from chlorinated polyethylene elastomer, chlorosulfonated polyethylene elastomer, styrene elastomer, olefin elastomer, polyamide elastomer and urethane elastomer.
- the thermoplastic elastomer contains at least one of a chlorinated polyethylene elastomer and a chlorosulfonated polyethylene elastomer.
- a shoe is provided.
- the shoe of the present invention includes any one of the above outer soles.
- the outer sole of the present invention is excellent in grip properties, and particularly excellent in grip properties on wet road surfaces. Such a shoe having an outer sole is not easily slipped when walking on a wet road surface as well as a dry road surface.
- FIG. 2 is an enlarged cross-sectional view taken along the line II-II in FIG.
- the graph which shows the measurement result of the static friction coefficient of the outer sole of Examples 1 thru
- Reference table (A) showing test results necessary to explain preliminary findings. Same reference table (B).
- Reference drawing (C) showing a friction test conducted in preliminary knowledge.
- Reference diagram (G) showing the test results necessary to explain the preliminary findings.
- the outer sole of the present invention is formed from a composition containing a thermoplastic elastomer and has a surface free energy of 12 mJ / m 2 or more.
- a shoe including an outer sole including such a thermoplastic elastomer and having a surface free energy of 12 mJ / m 2 or more has excellent grip properties, and particularly excellent grip properties for wet road surfaces.
- a liquid is interposed between the surface of the outer sole and the road surface, and the liquid is interposed as a thin film between the surface and the road surface. The interposition of the liquid film prevents direct contact between the surface of the outer sole and the road surface, so that the shoes become slippery.
- a film made of a liquid interposed between the surface of the outer sole and the road surface is referred to as a “liquid film”.
- the present inventor has inferred that the outer sole capable of suppressing the formation of the liquid film is likely to be in direct contact with the road surface, and the grip performance with respect to the wet road surface is improved.
- the outer sole including the thermoplastic elastomer and having a surface free energy of 12 mJ / m 2 or more the liquid interposed between the surface of the outer sole and the road surface is spontaneously generated between the surface of the outer sole and the road surface. We found that it was discharged.
- Such an outer sole having a surface free energy of 12 mJ / m 2 or more is excellent in grip performance because it is easily in direct contact with the road surface, and particularly excellent in grip performance on a wet road surface.
- the present invention is based on preliminary findings made by the present inventors. Hereinafter, this knowledge will be described first.
- the present inventor conducted a friction test using floor materials and lubricants having different surface free energies on the same rubber material in order to examine the influence of surface free energy on the friction between the rubber material and the floor material.
- “Rubber material” in this [Preliminary knowledge] column corresponds to the outer sole of the present specification
- floor material corresponds to the road surface of the present specification
- “lubricant” refers to the present specification.
- flooring materials five types of polytetrafluoroethylene (PTFE), polypropylene (PP), marble, polymethylmethacrylate (PMMA), and polyethylenephthalate (PET) were prepared.
- the reference table (A) in FIG. 5 shows the arithmetic average roughness Ra (surface roughness) and the root mean square roughness Rq of the rubber material and each flooring.
- the synthetic roughness ⁇ was derived from the equation (1).
- Rq R and Rq S indicate the mean square roughness of the rubber material and the floor material, respectively.
- the arithmetic average roughness Ra was measured with an atomic force microscope (environment control unit E-sweep manufactured by Hitachi High-Tech Science Co., Ltd.), and SI-DF20 manufactured by Hitachi High-Tech Science was used as the cantilever. From the reference table (A), it was determined that the synthetic roughness ⁇ was sufficiently close regardless of the flooring material, and the arithmetic average roughness Ra (surface roughness) did not have a great influence on the effect in the friction test.
- As the lubricant water, a mixture of water and ethanol (ethanol concentration 10, 30, 90 vol%) was used.
- the static friction coefficient was calculated based on the frictional force at the time of sliding, and the dynamic friction coefficient was calculated based on the average value of the frictional force when the frictional force was linearly moved for 1.5 seconds to 2.0 seconds where the frictional force was a constant value. Note that no stick-slip was observed regardless of the flooring and lubricant conditions.
- the number of sampling was 3 times, and the average value was used as an experimental value.
- the sampling frequency was 1 kHz. This experiment was performed in an atmosphere with a temperature of 22.9 ° C. to 24.0 ° C. and a relative humidity of 56% to 60%.
- the reference table (D) in FIG. 8 shows the surface free energy of rubber materials, flooring materials, and lubricants.
- the surface free energy of the rubber material and flooring was calculated by Kaelble-Uy theory based on the contact angle 10 seconds after dropping 1.0 ⁇ L of ion-exchanged water and diiodomethane (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.). .
- the contact angle was measured with a contact angle meter (DM-510Hi manufactured by Kyowa Interface Science Co., Ltd.).
- the surface free energy of water and diiodomethane is a literature value (DH Kaelble, The Journal of Adhesion, 2, 2 (1970) 66.), and the surface free energy of the lubricant is a literature value (J.R. Dann, Journal of Colloid and Interface Science, 32, 2 (1970) 302.) was used.
- the expansion coefficient S is a parameter representing the progress of the wetting of the lubricant in the triple boundary line where the rubber material, the floor material and the lubricant are in contact with each other, as shown in the reference diagram (E) of FIG. Calculated.
- ⁇ SL , ⁇ RL and ⁇ RS indicate interfacial free energy between the floor material and the lubricant, between the rubber material and the lubricant, and between the rubber material and the floor material, respectively.
- the interface free energy was derived from equation (3) based on Kaelble-Uy theory. In the triple boundary line of the rubber material, the flooring material, and the lubricant, it can be determined that when the expansion coefficient S is negative, the formation of the liquid film is suppressed, and when it is positive, the formation is easily promoted.
- ⁇ i and ⁇ j indicate the surface free energy of the substance i and the substance j, respectively, and ⁇ ij indicates the interface free energy between the substances ij.
- the adhering work W corresponds to the work required for peeling the rubber material and the floor material in contact with each other as shown in the reference diagram (F) of FIG. 10, and is calculated by the equation (4).
- ⁇ S and ⁇ R indicate the surface free energy of the floor material and the rubber material, respectively.
- the interfaces between solids, solid surfaces and liquid surfaces are each thermodynamically unstable compared to bulk. For this reason, by calculating the adhesion work W, it is possible to grasp the work required for the separation of the rubber material and the floor material.
- the relationship between the surface free energy of the lubricant and the static friction coefficient and dynamic friction coefficient of the rubber material is shown in the reference diagram (G) of FIG.
- the static friction coefficient and the dynamic friction coefficient are referred to as “static / dynamic friction coefficient”.
- the static and dynamic friction coefficients of rubber materials tended to increase with increasing surface free energy of the lubricant. Further, it was confirmed that the static / dynamic friction coefficient of the rubber material showed an increasing tendency in the order of PTFE, marble, PMMA, PP, and PET under the condition where the surface free energy of the lubricant was 51.3 mJ / m 2 or more. .
- the static / dynamic friction coefficient changes under the influence of the interface free energy, and in all lubricants, when the interface free energy between the rubber material and the flooring material is about 8 mJ / m 2 , the rubber material It can be confirmed that the static and dynamic coefficient of friction shows the maximum value.
- the expansion coefficient S is an index representing the ease of spreading of the lubricant with respect to the counterpart material. In the triple boundary line where the rubber material, the floor material, and the lubricant are in contact, it is a measure of the ease of the lubricant progressing to the interface between the rubber material and the floor material.
- the expansion coefficient S is negative, the formation of the liquid film is If it is suppressed and positive, it can be determined that its formation is likely to be promoted.
- the relationship between the ethanol concentration of the lubricant and the expansion coefficient is shown in the reference diagram (J) of FIG. It can be seen that in all flooring materials, the expansion coefficient increased as the ethanol concentration increased.
- the formation state of the liquid film changes depending on whether the expansion coefficient is positive or negative, the formation of the liquid film is suppressed when the expansion coefficient is negative, and the formation of the liquid film is promoted when the expansion coefficient is positive.
- the present inventor has found that when the surface free energy increases, the work required for separation of the contact interface between the surface of the outer sole and the road surface increases, so that the static / dynamic friction coefficient with respect to the road surface of the outer sole increases. The knowledge that it increases is obtained. Further, when the surface free energy increases, the removal of the liquid film between the surface of the outer sole and the road surface is thermodynamically promoted, so that the outer sole is easily brought into direct contact with the road surface, and the outer sole is relatively free from the road surface. ⁇ The knowledge that the dynamic friction coefficient increases was obtained.
- the outer sole using a composition having a relatively large surface free energy, not only a wet road surface but also an outer sole having a large coefficient of static and dynamic friction with respect to a wet road surface, that is, a grip property to the road surface. Can provide an excellent outer sole.
- the outer sole of the present invention is formed from a composition containing a thermoplastic elastomer and has a surface free energy of 12 mJ / m 2 or more.
- the surface free energy of the outer sole is at 15 mJ / m 2 or more, more preferably 20 mJ / m 2 or more, further preferably 25 mJ / m 2 or more, particularly preferably 30 mJ / m 2 or more It is.
- the surface free energy of the outer sole is preferably as high as possible, and the upper limit is not particularly limited. But the realistic upper limit of the outer sole formed from the composition containing a thermoplastic elastomer is 73 mJ / m ⁇ 2 > or less, for example.
- the surface free energy of the outer sole can be obtained according to the Kaelble-Uy theory, similarly to the above [preliminary findings]. Specifically, the surface free energy is obtained by dropping 1 ⁇ L of ion exchange water and 1 ⁇ L of diiodomethane on the surface of the outer sole to be measured, and measuring the contact angle of each droplet 10 seconds later. .
- the surface free energy of the outer sole is obtained by solving simultaneous equations of the following formulas (x1) and (x2) based on those contact angles and substituting the solutions ⁇ d and ⁇ p into the formula (y). be able to.
- diiodomethane a first grade reagent manufactured by Wako Pure Chemical Industries, Ltd. can be used, and as a contact angle measuring device, a contact angle meter (DM-510Hi manufactured by Kyowa Interface Science Co., Ltd.) can be used.
- ⁇ d , ⁇ p and ⁇ total represent the dispersion component, the polar component and the sum of these in the surface free energy, respectively
- ⁇ H2O and ⁇ CH3I are The surface free energies of water and diiodomethane, ⁇ H2O and ⁇ CH3I respectively represent the contact angles of water and diiodomethane.
- the surface free energy of water and diiodomethane is a literature value (DH Kaelble, The Journal of Adhesion, 2, 2 (1970) 66.).
- the arithmetic average roughness Ra which is the surface roughness of the outer sole of the present invention is not particularly limited, but is preferably 1000 ⁇ m or less, more preferably 5 to 100 ⁇ m, and further preferably 5 to 20 ⁇ m.
- the outer sole having such an arithmetic average roughness Ra has an increased coefficient of static and dynamic friction with respect to the road surface, and is particularly excellent in grip properties.
- the arithmetic average roughness Ra is the arithmetic average roughness of the surface of the outer sole (the surface in contact with the road surface), and is measured according to JIS B0601-2001. Examples of a method for obtaining an outer sole having such arithmetic average roughness Ra include (1) foaming the composition and (2) forming fine irregularities on the surface.
- the composition may contain a component other than the thermoplastic elastomer on the condition that the composition contains a thermoplastic elastomer and has a surface free energy of 12 mJ / m 2 or more.
- components other than thermoplastic elastomers include polymers other than thermoplastic elastomers; various additives such as foaming agents, reinforcing agents, and crosslinking agents; and the like.
- the “thermoplastic elastomer” refers to an elastomer having a property of softening and showing fluidity when heat is applied and returning to a rubber-like elastic body when cooled.
- thermoplastic elastomer is not particularly limited, and is chlorinated polyethylene elastomer, chlorosulfonated polyethylene elastomer, polyester elastomer, polyamide elastomer, polystyrene elastomer, olefin elastomer, polyvinyl chloride elastomer, urethane elastomer. , Vinyl chloride elastomer, acrylic elastomer, vinyl acetate elastomer and the like. You may use these individually by 1 type or in combination of 2 or more types.
- At least one selected from chlorinated polyethylene elastomer, chlorosulfonated polyethylene elastomer, styrene elastomer, olefin elastomer, polyamide elastomer and urethane elastomer is used as the thermoplastic elastomer.
- Examples of this preferred use include (1) a chlorinated polyethylene elastomer alone, (2) a chlorosulfonated polyethylene elastomer alone, (3) a chlorinated polyethylene elastomer and an olefin elastomer.
- styrene elastomer alone, (5) Use a polyamide elastomer alone, (6) Use at least a styrene elastomer and a polyamide elastomer, (7) Styrene elastomer And at least a urethane elastomer, (8) at least a styrene elastomer and an olefin elastomer, (9) a styrene elastomer, an olefin elastomer, a polyamide elastomer and / or a urethane elastomer.
- chlorinated polyethylene elastomers chlorosulfonated polyethylene elastomers, styrene elastomers, olefin elastomers, polyamide elastomers and urethane elastomers are collectively referred to as “first elastomers”, and thermoplastic elastomers other than the first elastomers. Are collectively referred to as “second elastomer”.
- thermoplastic elastomer (a) at least one selected from the first elastomer, (b) at least one selected from the second elastomer, or (c) at least one selected from the first elastomer; At least one selected from the second elastomer is used. Since an outer sole having a surface free energy of 12 mJ / m 2 or more can be easily obtained, at least a first elastomer is preferably used as the thermoplastic elastomer. Furthermore, it is more preferable to use at least one of a chlorinated polyethylene elastomer and a chlorosulfonated polyethylene elastomer among the first elastomers.
- the chlorinated polyethylene elastomer is a polymer in which part or all of hydrogen in polyethylene is replaced with chlorine.
- a part of hydrogen of polyethylene may be substituted with a substituent other than the chloro group on the condition that it has a chloro group.
- the chlorinated polyethylene-based elastomer can be obtained, for example, by chlorinating polyethylene powder or particles in an aqueous suspension or chlorinating polyethylene dissolved in an organic solvent.
- the chlorine content of the chlorinated polyethylene elastomer is, for example, 20 mass% to 50 mass%, preferably 25 mass% to 45 mass%, based on the total amount of chlorinated polyethylene.
- the chlorinated polyethylene elastomer is preferably amorphous.
- Examples of the chlorinated polyethylene elastomer include a homopolymer of chlorinated ethylene and a copolymer of chlorinated ethylene and an ⁇ -olefin (preferably an ⁇ -olefin having 12 or less carbon atoms).
- the amount of ⁇ -olefin is preferably more than 0 and not more than 10% by mass in the total amount of chlorinated polyethylene, but is not limited thereto.
- the density of the chlorinated polyethylene elastomer is not particularly limited, but is, for example, 1.07 to 1.21 g / cm 3 .
- the molecular weight of the chlorinated polyethylene elastomer is not particularly limited, but is, for example, 50,000 to 700,000.
- the chlorinated polyethylene elastomer may be cross-linked or may not be cross-linked.
- Commercial products may be used as the chlorinated polyethylene elastomer.
- the brand name "Eraslen” by Showa Denko KK etc. are mentioned, for example.
- the copolymer in this specification may be any of a random copolymer, a block copolymer, or a graft copolymer.
- the chlorosulfonated polyethylene elastomer is a polymer in which a part of hydrogen of polyethylene is substituted with a chlorosulfonyl group.
- a part of hydrogen of polyethylene may be substituted with a substituent other than the chlorosulfonyl group on condition that it has a chlorosulfonyl group.
- the chlorosulfonated polyethylene-based elastomer can be obtained, for example, by chlorosulfonating polyethylene using chlorine and sulfurous acid gas.
- the chlorine content of the chlorosulfonated polyethylene elastomer is, for example, 20% by mass to 50% by mass, preferably 30% by mass to 40% by mass, based on the total amount of chlorosulfonated polyethylene.
- the chlorosulfonated polyethylene elastomer is preferably non-crystalline.
- chlorosulfonated polyethylene elastomer examples include a homopolymer of ethylene chlorosulfonated, and a copolymer of chlorosulfonated ethylene and an ⁇ -olefin (preferably an ⁇ -olefin having 12 or less carbon atoms). It is done.
- the amount of ⁇ -olefin is preferably more than 0 and not more than 10% by mass in the total amount of chlorosulfonated polyethylene, but is not limited thereto.
- the density of the chlorosulfonated polyethylene elastomer is not particularly limited, but is, for example, 1.10 to 1.40 g / cm 3 .
- chlorosulfonated polyethylene elastomer may be crosslinked or may not be crosslinked.
- a commercially available product may be used as the chlorosulfonated polyethylene elastomer. Examples of the commercially available product include trade name “TOSO-CSM TS-530” manufactured by Tosoh Corporation and trade name “Hypalon” manufactured by DuPont.
- the polyester elastomer is a polymer containing an ester component.
- the polyester elastomer may be composed of an ester homopolymer.
- the polyester elastomer is a copolymer having a polyester or a derivative thereof as a hard segment in a molecule and a polyether or polyester having a low glass transition temperature (Tg) as a soft segment.
- polyester-based elastomers include aromatic crystalline polyesters such as polyethylene terephthalate and polybutylene terephthalate as hard segments, polyethers as soft segments, and aromatics as hard segments. Examples thereof include polyester / polyester type using crystalline polyester and aliphatic polyester as a soft segment.
- the polyamide elastomer is a polymer containing a polyamide component.
- the polyamide-based elastomer may be composed of an amide homopolymer, or may be composed of a copolymer of a polyamide component and other components.
- Examples of the copolymer include a copolymer having an aliphatic or aromatic polyamide or a derivative thereof as a hard segment in a molecule and a component such as polyester or polyether as a soft segment.
- Examples of the aliphatic or aromatic polyamide include nylon 6, nylon 64, nylon 66, nylon 610, nylon 612, nylon 46, nylon 9, nylon 11, nylon 12, N-alkoxymethyl-modified nylon, hexamethylenediamine- Examples thereof include an isophthalic acid condensation polymer, a metaxyloyldiamine-adipic acid condensation polymer, and the like.
- the polystyrene elastomer is a polymer containing a styrene component.
- the polystyrene elastomer may be composed of a styrene homopolymer.
- the polystyrene-based elastomer is a copolymer having polystyrene or a derivative thereof as a hard segment in a molecule and butadiene or the like as a soft segment.
- the proportion of the hard segment in the polystyrene-based elastomer is not particularly limited, but if it is too small, the hard segment is difficult to agglomerate, and if it is too large, the flexibility and elasticity may be reduced. From such a viewpoint, the proportion of the hard segment in the polystyrene-based elastomer is preferably 10 to 65% by mass and more preferably 20 to 40% by mass in the total amount of the elastomer.
- the polystyrene elastomer is not particularly limited.
- styrene-butadiene block copolymer abbreviation SBR
- SEB hydrogenated styrene-butadiene block copolymer
- SBS styrene-butadiene-styrene block copolymer
- Styrene-butadiene-butylene-styrene block copolymer SBBS
- SEBS styrene-ethylene-butadiene-styrene block copolymer
- SIR styrene-isoprene block copolymer
- SEP styrene-isoprene-styrene block copolymer
- SIS styrene-ethylene-propylene-styrene block copolymer
- SEPS styrene-ethylene-ethylene-propylene-styrene block copolymer Body
- the olefin-based elastomer is a polymer obtained by imparting rubber elasticity to polyethylene and / or polypropylene.
- Typical examples of olefin elastomers include polypropylene elastomers and ⁇ -olefin elastomers.
- the polypropylene-based elastomer includes a polypropylene component, and preferably includes a copolymer of propylene and ethylene.
- the polypropylene elastomer may be composed of a propylene homopolymer, or may be composed of a copolymer of a polypropylene component and other components. Examples of the polypropylene elastomer include a polypropylene homopolymer and a propylene-ethylene random copolymer.
- the ⁇ -olefin-based elastomer is a copolymer of polyethylene and / or polypropylene and an ⁇ -olefin.
- the ⁇ -olefin is not particularly limited, but is preferably an ⁇ -olefin having 4 to 20 carbon atoms. These may be used alone or in combination of two or more.
- Examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, isobutene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene and 2-methyl-1- Examples include pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, and the like. -Hexene, 1-octene.
- ⁇ -olefin elastomer examples include ethylene-1-butene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, propylene-1-hexene copolymer, and ethylene-1. -Octene copolymer, propylene-1-octene copolymer and the like. These may be used alone or in combination of two or more.
- Commercially available ⁇ -olefin elastomers may be used. As said commercial item, the brand name "Tuffmer" by Mitsui Chemicals, Inc. is mentioned, for example.
- the urethane elastomer is a polymer containing a urethane component.
- the urethane-based elastomer may be composed of a urethane homopolymer, or may be composed of a copolymer of a polyurethane component and other components.
- the urethane elastomer is a copolymer having polyurethane or a derivative thereof as a hard segment in a molecule and a component such as polyether or polyester as a soft segment.
- Examples of the urethane elastomer include polyether-containing polyurethane and polyester-containing polyurethane.
- vinyl chloride elastomer examples include, for example, an elastomer using polyvinyl chloride having a high degree of polymerization, partially crosslinked polyvinyl chloride, and the crosslinked portion functions as a hard segment and the linear portion functions as a soft segment.
- An elastomer etc. are mentioned.
- the acrylic elastomer is an acrylic polymer containing one or more acrylic monomers.
- the first elastomer (b) the second elastomer, or (c) the first elastomer and the second elastomer can be used as the thermoplastic elastomer.
- the second elastomer is other than six types of chlorinated polyethylene elastomer, chlorosulfonated polyethylene elastomer, styrene elastomer, olefin elastomer, polyamide elastomer and urethane elastomer.
- the thermoplastic elastomer is appropriately selected.
- thermoplastic elastomer consists of a 1st elastomer and a 2nd elastomer
- those compounding ratios are not specifically limited. Since the surface free energy can be easily adjusted to 12 mJ / m 2 or more, the first elastomer: second elastomer (mass ratio) is preferably 100: 0 to 60:40, and more preferably 85:15 to 65:35.
- first elastomer: second elastomer 100: 0 is a case where the thermoplastic elastomer is composed only of the first elastomer, it does not correspond to the case where the thermoplastic elastomer includes the first elastomer and the second elastomer.
- first elastomer: second elastomer (mass ratio) 100: 0 to 60:40.
- Examples of the polymer other than the thermoplastic elastomer include rubber.
- the rubber is not particularly limited.
- synthetic rubber such as butadiene rubber (BR), isoprene rubber (IR), chloroprene (CR); natural rubber (NR); styrene butadiene rubber (SBR), acrylonitrile butadiene rubber ( Copolymer rubbers such as NBR) and butyl rubber (IIR); and the like.
- the rubbers can be used alone or in combination of two or more.
- the blending amount is not particularly limited on the condition that the surface free energy of the outer sole is 12 mJ / m 2 or more.
- the polymer other than the thermoplastic elastomer is more than 0 and not more than 500 parts by mass, preferably more than 0 and not more than 400 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
- the foam is usually produced by a chemical foaming method, an appropriate foaming agent is used.
- the foaming agent is blended when the outer sole of the present invention is used as a foam.
- the foaming agent is blended when the composition is foamed by the chemical foaming method, the foam is formed without blending the foaming agent when the composition is foamed by the physical foaming method. It is also possible to do.
- foaming agent examples include sodium bicarbonate, ammonium bicarbonate, sodium carbonate, ammonium carbonate, azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DNPT), azobisisobutyronitrile, barium azodicarboxylate, and p, p′-oxybisbenzenesulfonylhydrazine (OBSH).
- ADCA azodicarbonamide
- DNPT dinitrosopentamethylenetetramine
- OBSH azobisisobutyronitrile
- OBSH p, p′-oxybisbenzenesulfonylhydrazine
- foaming adjuvant examples of the foaming aid include zinc oxide, urea, urea derivatives and the like.
- the compounding quantity of the said foaming agent is not specifically limited, It designs suitably.
- the blending amount of the foaming agent is, for example, 0.5 to 5 parts by mass with
- the reinforcing agent is not particularly limited, and conventionally known reinforcing agents can be used.
- the reinforcing agent include silica, carbon black, activated calcium carbonate, and ultrafine magnesium silicate. It is preferable to use hydrous silica (white carbon) as the reinforcing agent because an outer sole having a relatively small density and high mechanical strength and high wear resistance can be obtained even with low foaming.
- the compounding amount of the reinforcing agent is not particularly limited and is appropriately designed. The amount of the reinforcing agent is, for example, 10 parts by mass to 40 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
- the crosslinking agent is not particularly limited, and conventionally known crosslinking agents can be used.
- the crosslinking agent include sulfur-containing compounds and organic peroxides.
- the sulfur-containing compound include sulfur, sulfur halide, di-2-benzothiazolyl disulfide, N-oxydiethylene-2-benzothiazolylsulfenamide, and the like.
- the organic peroxide include dicumyl peroxide, 2,5-dimethyl-2.5-di (t-butylperoxy) hexane, 1,1-di (t-butylperoxy) cyclohexane and the like.
- thermoplastic elastomer By blending a cross-linking agent, the thermoplastic elastomer is cross-linked and an outer sole having excellent elasticity can be formed. But it is also possible to form the outer sole of this invention using the composition which does not contain a crosslinking agent. Further, in order to promote the crosslinking of the thermoplastic elastomer, a crosslinking accelerator may be blended in addition to the crosslinking agent.
- the amount of the cross-linking agent is not particularly limited and is appropriately designed.
- the amount of the crosslinking agent to be added is, for example, 0.1 to 5 parts by mass, preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
- the composition forming the outer sole of the present invention includes a heat stabilizer, a light stabilizer, an antioxidant, an ultraviolet absorber, a colorant, a plasticizer, an antistatic agent, a thickener, a process oil, stearic acid, and the like. Other additives may be included.
- the composition is formed into the shape of a shoe sole. Specifically, a composition in which a predetermined amount of the thermoplastic elastomer, a polymer other than the thermoplastic elastomer as necessary, and various additives such as a crosslinking agent are mixed is prepared. The composition is kneaded using a mixing roll, a pressure kneader, an extruder or the like while being heated to 70 ° C. to 150 ° C. An outer sole can be obtained by filling a sufficiently kneaded composition in a press mold and molding it by pressing for a predetermined time while heating at 150 ° C. to 200 ° C., for example.
- the outer sole can be obtained by introducing the sufficiently kneaded composition into an injection molding machine and injection molding.
- the primary molded product obtained by heating and pressurizing the composition can be used as the outer sole as it is.
- a processed product obtained by further secondary processing the primary molded product may be used as the outer sole of the present invention.
- the outer sole may be composed of a foam obtained by foaming the composition, or may be composed of a non-foamed body that does not foam the composition.
- the outer sole having the above-described arithmetic average roughness Ra can be easily obtained by foaming the composition.
- the outer sole of the present invention is preferably made of a foam from the viewpoint that the arithmetic average roughness is large and the cushioning property is excellent.
- the expansion ratio is not particularly limited, but is, for example, 1.05 times to 1.4 times, and preferably 1.05 times to 1.2 times.
- the density of the outer sole is not particularly limited, but is preferably 0.6 g / cm 3 or less, more preferably 0.55 g / cm 3 or less, and even more preferably 0.5 g from the viewpoint of weight reduction. / Cm 3 or less. Further, the lower limit of the density of the outer sole is preferably as small as possible, but generally, the density of the outer sole is 0.2 g / cm 3 or more, preferably 0.3 g / cm 3 or more. . The density is measured according to JIS Z 8807.
- the outer sole of the present invention is used, for example, as an outer sole of a shoe and is provided on the lower surface of the shoe body.
- the outer sole of the present invention is provided on the entire lower surface of the shoe body. Moreover, you may provide the said outer sole in a part of lower surface of a shoe main body.
- the outer sole of the present invention can be used as a reinforcing member such as a shank member of a shoe, for example.
- the shank member is a bottom member disposed on the arch portion.
- the outer sole is formed in an arbitrary shape.
- the outer sole is formed in a substantially plate shape or a substantially convex shape (for example, a truncated cone shape such as a spike).
- the lower surface of the outer sole may be smooth, but is usually formed in any suitable uneven shape.
- the lower surface of the outer sole is a surface opposite to the surface (the upper surface of the outer sole) attached to the lower surface of the shoe body.
- the outer sole is fixedly attached to the shoe body by, for example, an adhesive.
- the adhesive is not particularly limited, and includes conventionally known solvent-type adhesives, emulsion-type adhesives, laser adhesives, heat-sensitive adhesives, and the like.
- the solvent-type adhesive is an adhesive in which a binder resin is dissolved or dispersed in an organic solvent
- the emulsion-type adhesive is an adhesive in which a binder resin is dispersed in water.
- the laser adhesive is an adhesive that exhibits adhesiveness when irradiated with laser light.
- the heat-sensitive adhesive is an adhesive that exhibits adhesiveness when heated.
- the shoe 1a includes a shoe body 2a, a midsole 3a provided on the lower surface of the shoe body 2a, and an outer sole 5a disposed on the lower surface of the midsole 3a.
- the midsole 3a is formed in substantially the same shape as the lower surface shape of the shoe body 2a
- the outer sole 5a is formed in substantially the same shape as the lower surface shape of the midsole 3a.
- the outer sole 5a is formed in a substantially plate shape. As shown in FIG. 2, desired irregularities are formed on the lower surface of the plate-like outer sole 5a. However, the lower surface of the outer sole 5a may be formed in a smooth shape (not shown).
- the upper surface of the midsole 3a is bonded to the lower surface of the shoe body 2a using an adhesive, and the upper surface of the outer sole 5a is bonded to the lower surface of the midsole 3a using an adhesive (the adhesive is illustrated). Not) When the shoe 1a is used, the lower surface of the outer sole 5a is in contact with the ground.
- the outer sole of the present invention is used as the outer sole 5a of the shoe 1a.
- the outer sole of the present invention is used as the midsole 3a of the shoe 1a.
- the outer sole of the present invention is used as the midsole 3a and the outer sole 5a of the shoe 1a.
- FIG. 3 shows a second embodiment of the shoe of the present invention.
- the shoe 1b is disposed at the rear of the lower surface of the shoe body 2b, the midsole 3b provided on the lower surface of the shoe body 2b, the first outer sole 51b disposed in front of the lower surface of the midsole 3b, and the midsole 3b.
- a second outer sole 52b is formed in substantially the same shape as the bottom surface of the shoe body 2b, and the first outer sole 51b and the second outer sole 52b are each formed in a shape smaller than the bottom surface of the midsole 3b.
- the upper surface of the midsole 3b is bonded to the lower surface of the shoe body 2b using an adhesive, and the upper surfaces of the first and second outer soles 51b and 52b are bonded to the lower surface of the midsole 3b using an adhesive, respectively. (Adhesive is not shown).
- the lower surfaces of the first and second outer soles 51b and 52b can be in contact with the ground, and a part of the lower surface of the midsole 3b can be in contact with the ground.
- the outer sole of the present invention is used as the first outer sole 51b and / or the second outer sole 52b of the shoe 1b.
- each thickness of the midsole 3a and 3b is not particularly limited. In order to impart appropriate cushioning properties to the shoe, each thickness of the midsole 3a and 3b is, for example, 2 mm or more, and preferably 2 mm to 10 mm.
- the thicknesses of the outer sole 5a, the first outer sole 51b, and the second outer sole 52b are not particularly limited. In order to impart appropriate cushioning properties to the shoes, each thickness of the outer sole 5a, the first outer sole 51b, and the second outer sole 52b is, for example, 2 mm or more, and preferably 2 mm to 20 mm.
- the shoe of the present invention is not limited to a structure in which the shoe body protects almost the entire instep, but a structure in which the shoe body protects a part of the instep (for example, sandals) )
- the use of the shoe of the present invention is not particularly limited.
- the shoes of the present invention are used for, for example, various ball shoes such as soccer shoes and rugby shoes; running shoes such as jogging shoes and marathon shoes; athletic shoes; general athletic shoes; walking shoes; be able to.
- the outer sole of this invention is excellent in the grip property with respect to a road surface.
- the outer sole of the present invention is excellent in gripping properties even on wet road surfaces, and is particularly excellent in gripping properties even on smooth and wet road surfaces.
- the shoe of the present invention having such an outer sole is suitable as a ball game shoe, a running shoe, an athletics shoe or a walking shoe.
- ⁇ -olefin elastomer trade name “Tuffmer DF810” manufactured by Mitsui Chemicals, Inc.
- Styrene elastomer (1) trade name “Septon V9461” manufactured by Kuraray Co., Ltd. Styrene-ethylene-ethylene-propylene-styrene block copolymer (abbreviated as SEEPS).
- Styrene elastomer (2) trade name “M1913” manufactured by Asahi Kasei Chemicals Corporation. A styrene-ethylene-butadiene-styrene block copolymer modified with maleic acid (abbreviated as MA-modified SEBS).
- Polyamide elastomer (1) Trade name “1010C1” manufactured by DSM. Nylon 6 homopolymer.
- Polyamide elastomer (2) Trade name “3010SR” manufactured by DSM. Nylon 66 homopolymer.
- Urethane elastomer Trade name “ET195” manufactured by BASF. A copolymer in which the hard segment is polyurethane and the soft segment is polyester.
- Polypropylene elastomer Trade name “E-105-GM” manufactured by Prime Polymer Co., Ltd.
- Isoprene rubber trade name “IR2200” manufactured by Nippon Zeon Co., Ltd.
- Oil (2) Process oil. Brand name “DOZ” manufactured by Shin Nippon Rika Co., Ltd.
- Oil (3) Process oil.
- Crosslinking agent (1) Dicumyl peroxide.
- Cross-linking agent (2) 2,5-dimethyl-2.5-di (t-butylperoxy) hexane.
- Crosslinking agent (3) sulfur.
- Crosslinking aid (1) triallyl isocyanurate.
- Crosslinking aid (2) trimethylolpropane trimethacrylate.
- Crosslinking aid (3) Trade name “Noxeller” manufactured by Ouchi Shinsei Chemical Co., Ltd.
- Foaming agent azodicarbonamide. Ebina Kasei Kogyo Co., Ltd. trade name “Vini Hall AC # 3C-K2”.
- Foaming aid Zinc oxide.
- Silica Trade name “VN3” manufactured by Degussa Japan.
- Silane coupling agent Trade name “Si-69” manufactured by Degussa Japan.
- Stearic acid Trade name “Stearic acid 50S” manufactured by Shin Nippon Rika Co., Ltd.
- Zinc oxide trade name “activated zinc white No. 2” manufactured by Honjo Chemical Co., Ltd.
- Example 1 Each material shown in the above [Usage material] was blended in the ratio shown in Table 1.
- the composition composed of each of these materials is kneaded using a pressure kneader and a mixing roll, filled in a press mold having a length of 150 mm, a width of 150 mm, and a thickness of 5.5 mm, and heated to 160 ° C., By pressurizing at a hydraulic pressure of 130 to 150 kgf / cm 2 for 20 minutes, a rectangular parallelepiped foam having a length of about 170 mm, a width of about 170 mm, and a thickness of about 10 mm (foaming ratio was about 1.1 times) was produced.
- Examples 2 to 5 and Comparative Example 1 A composition was prepared in the same manner as in Example 1 except that each material was blended at the ratio shown in Table 1, and a foam was produced using the composition.
- Example 6 to 12 Each material shown in the above [Usage material] was blended in the ratio shown in Table 2.
- the composition composed of each of these materials was dynamically cross-linked by supplying it to a twin screw extruder and kneading while heating to 230 ° C. to 270 ° C.
- the kneaded product is supplied to an injection molding machine and injected into a molding die while being heated to 230 ° C. to 270 ° C. to obtain a rectangular parallelepiped non-foam having a length of about 110 mm, a width of about 50 mm and a thickness of about 2 mm.
- Example 13 Each material shown in the above [Usage material] was blended in the ratio shown in Table 3. A composition made of each of these materials is kneaded using a pressure kneader and a mixing roll, filled in a press mold having a length of 125 mm, a width of 215 mm, and a thickness of 2 mm, and heated to 160 ° C. with a hydraulic pressure of 130. By applying pressure at ⁇ 150 kgf / cm 2 for 5 minutes, a rectangular non-foamed body having a length of about 125 mm, a width of about 215 mm, and a thickness of about 2 mm was produced.
- Example 14 and Example 15 Each material shown in the above [Usage material] was blended in the ratio shown in Table 3. A composition made of each of these materials is kneaded using a pressure kneader and a mixing roll, filled in a press mold having a length of 125 mm, a width of 215 mm, and a thickness of 2 mm, and heated to 160 ° C. with a hydraulic pressure of 130. By applying pressure at ⁇ 150 kgf / cm 2 for 30 minutes, a rectangular parallelepiped non-foamed material having a length of about 125 mm, a width of about 215 mm, and a thickness of about 2 mm was produced.
- Arithmetic mean roughness Ra of each example and comparative example The arithmetic average roughness Ra of the foamed material or non-foamed material (corresponding to the outer sole) produced in each example and comparative example was measured in accordance with JIS B0601-2001. Specifically, surface roughness (arithmetic average roughness) was measured using a one-shot 3D measurement macroscope VR-3000 manufactured by Keyence Corporation. The results are shown in Tables 1 to 3.
- Table 2 shows that the outer soles of Examples 6 to 12 have a high coefficient of static and dynamic friction with respect to the road surface.
- Examples 8, 10 and 12 which do not contain a polypropylene-based elastomer have a significantly higher dynamic friction coefficient than Examples 6, 7, 9 and 11 which contain a polyolefin-based elastomer.
- Examples 7 to 12 including a polyamide-based elastomer or a urethane-based elastomer have a higher static friction coefficient than Example 6 that does not include them.
- the outer sole of the present invention can be used as a constituent member of shoes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
一般に、シューズには、路面に対するグリップ性が求められる。本明細書において、「グリップ性」は、滑り難い性質をいう。また、本明細書において、「路面」は、シューズを履いた人が歩行又は走る面をいい、歩道などの道路の表面、体育館などの建築物内の床面、未舗装の地面などの総称である。路面に接する部材であるアウターソールのグリップ性を向上させることによって、より滑り難いシューズが得られ得る。
グリップ性を向上させたアウターソールとして、従来、ガラス転移温度が比較的高い高分子材料を配合したアウターソールや、短繊維を配合したアウターソールなどが知られている(特許文献1)。
しかしながら、アウターソールのグリップ性は、未だ十分なものとは言えない。特に、濡れた路面とアウターソールの表面との間には、液体が介在するため、アウターソールの濡れた路面に対するグリップ性は、不十分である。なお、前記アウターソールの表面は、路面に接する側の面を指す。また、本明細書において、液体は、路面上に存在する水、油などである。
本発明の好ましいアウターソールは、前記熱可塑性エラストマーが、塩素化ポリエチレン系エラストマー、クロロスルホン化ポリエチレン系エラストマー、スチレン系エラストマー、オレフィン系エラストマー、ポリアミド系エラストマー及びウレタン系エラストマーから選ばれる少なくとも1種を含む。
本発明の好ましいアウターソールは、前記熱可塑性エラストマーが、塩素化ポリエチレン系エラストマー及びクロロスルホン化ポリエチレン系エラストマーの少なくとも一方を含む。
本発明のシューズは、上記いずれかのアウターソールを備える。
かかるアウターソールを備えるシューズは、乾いた路面のみならず、濡れた路面上を歩行する際に滑り難い。
本発明のアウターソールは、熱可塑性エラストマーを含む組成物から形成されており、12mJ/m2以上の表面自由エネルギーを有する。
かかる熱可塑性エラストマーを含み且つ表面自由エネルギーが12mJ/m2以上であるアウターソールを備えるシューズは、グリップ性に優れており、特に、濡れた路面に対するグリップ性に優れている。
一般に、濡れた路面上をシューズで歩行すると、アウターソールの表面と路面との間に液体が介在し、その液体が前記表面と路面の間に薄い膜となって介在する。前記液体からなる膜の介在によって、アウターソールの表面と路面の直接的な接触が妨げられるので、シューズが滑り易くなる。以下、アウターソールの表面と路面との間に介在する液体からなる膜を「液膜」という。本発明者は、この液膜の形成を抑制できるアウターソールが、路面に直接接触し易くなり、濡れた路面に対するグリップ性が向上すると推察した。そして、熱可塑性エラストマーを含み且つ表面自由エネルギーが12mJ/m2以上のアウターソールによれば、アウターソールの表面と路面との間に介在する液体が自発的にアウターソールの表面と路面の間から排出されることを見出した。かかる表面自由エネルギーが12mJ/m2以上のアウターソールは、路面に直接的に接触し易いのでグリップ性に優れており、特に、濡れた路面に対するグリップ性に優れている。本発明は、本発明者が行った予備的な知見に基づいている。以下、この知見について、まず説明する。
本発明者は、ゴム材料と床材との摩擦における表面自由エネルギーの影響を検討するため、同一ゴム材料に対し、表面自由エネルギーが異なる床材及び潤滑剤を用いた摩擦試験を行った。この[予備的な知見]の欄における「ゴム材料」は、本明細書のアウターソールに対応し、「床材」は、本明細書の路面に対応し、「潤滑剤」は、本明細書の液体に対応する。
床材として、Polytetrafluoroethylene(PTFE)、Polypropylene(PP)、大理石、Polymethylmethacrylate(PMMA)、Polyethyleneterephthalate (PET)の5種類を準備した。図5の参考表(A)に、ゴム材料及び各床材の算術平均粗さRa(表面粗さ)及び二乗平均粗さRqを示す。合成粗さσは、式(1)より導出した。
潤滑剤は、水、水とエタノールの混合物(エタノール濃度10、30、90 vol%)を使用した。図6の参考表(B)に各潤滑剤の粘度を示す。水はアドバンテック製REP343RBにて精製したイオン交換水を、エタノールは和光純薬(株)製1級試薬を使用した。前記各潤滑剤の粘度は、文献値(化学便覧 基礎編(改訂2版)、P.574(1975)丸善出版)を用いた。
一方、付着仕事Wは、図10の参考図(F)に示すように接触するゴム材料と床材を剥離する場合に必要な仕事に相当し、式(4)により算出される。ここで、γS及びγRは、それぞれ床材とゴム材料の表面自由エネルギーを示す。一般的に、固体間の界面、固体表面及び液体表面は、それぞれバルクと比較し熱力学的に不安定である。このため、付着仕事Wを算出することによって、ゴム材料と床材の剥離に要する仕事の把握が可能となる。
床材の表面自由エネルギーとゴム材料の静・動摩擦係数の関係を図12の参考図(H)に示す。ゴム材料の静・動摩擦係数は、床材の表面自由エネルギーの影響を受け変化することが確認できるが、床材の表面自由エネルギーとゴム材料の静・動摩擦係数の間に相関関係は認められなかった。
ゴム材料と床材間の界面自由エネルギーγRSとゴム材料の静・動摩擦係数の関係を図13の参考図(I)に示す。同図によれば、静・動摩擦係数は、界面自由エネルギーの影響を受け変化し、すべての潤滑剤において、ゴム材料と床材間の界面自由エネルギーが約8mJ/m2のときに、ゴム材料の静・動摩擦係数が最大値を示すことが確認できる。
拡張係数とゴム材料の静・動摩擦係数の関係を図15の参考図(K)に示す。床材が同一の場合においては、拡張係数の増大に伴い、ゴム材料の静・動摩擦係数は共に減少傾向を示す。特に、拡張係数がゼロ近傍では、ゴム材料の静・動摩擦係数が大きく減少したことが確認できる。上述したように液膜の形成状態は、拡張係数の正負によって変化し、拡張係数が負の場合に液膜の形成が抑制され、拡張係数が正の場合に液膜の形成が促進されることが考えられる。このことから、拡張係数がゼロ近傍では、潤滑状態が変化したため、ゴム材料の静・動摩擦係数が急激に変化したと推察される。また、図15の参考図(K)より、拡張係数が等しい場合において、床材の変化により、静・動摩擦係数が異なる値を示すことが確認できる。この結果より、ゴム材料の静・動摩擦係数は、拡張係数及び床材条件の影響を受けて変化することがわかる。
次に、本発明のアウターソールについて、具体的に説明する。
なお、本明細書において、「XXX~YYY」という表記は、「XXX以上YYY以下」を意味する。
好ましくは、前記アウターソールの表面自由エネルギーは、15mJ/m2以上であり、より好ましくは20mJ/m2以上であり、さらに好ましくは25mJ/m2以上であり、特に好ましくは30mJ/m2以上である。前記アウターソールの表面自由エネルギーは、高いほど好ましく、その上限は特に限定されない。もっとも、熱可塑性エラストマーを含む組成物から形成されるアウターソールの現実的な上限は、例えば、73mJ/m2以下である。
具体的には、表面自由エネルギーは、測定対象のアウターソールの表面に、1μLのイオン交換水と、1μLのジヨードメタンとをそれぞれ滴下した後、その10秒後にそれぞれの液滴の接触角を測定する。それらの接触角を元に、下記式(x1)及び(x2)の連立方程式を解き、その解γd及びγpを、式(y)に代入することによって、アウターソールの表面自由エネルギーを求めることができる。
なお、ジヨードメタンは、和光純薬(株)製の1級試薬を用いることができ、接触角の測定装置は、接触角計(協和界面科学(株)製DM-510Hi)を用いることができる。
このような算術平均粗さRaを有するアウターソールを得る方法としては、(1)組成物を発泡させる、(2)表面に微細な凹凸を形成する、などの方法が挙げられる。
ここで、本明細書において、「熱可塑性エラストマー」は、熱を加えると軟化して流動性を示し、冷却するとゴム状弾性体に戻る性質を有するエラストマーをいう。
塩素化ポリエチレン系エラストマーは、市販品を用いてもよい。前記市販品としては、例えば、昭和電工(株)製の商品名「エラスレン」などが挙げられる。
なお、本明細書における共重合体は、ランダム共重合体、ブロック共重合体、又は、グラフト共重合体の何れでもよい。
クロロスルホン化ポリエチレン系エラストマーは、市販品を用いてもよい。前記市販品としては、例えば、東ソー(株)製の商品名「TOSO-CSM TS-530」、デュポン社製の商品名「ハイパロン」などが挙げられる。
ポリスチレン系エラストマーにおけるハードセグメントの占める割合は、特に限定されないが、それが余りに小さいと、ハードセグメントが凝集し難くなり、それが余りに大きいと、柔軟性及び弾力性が低下するおそれがある。かかる観点から、ポリスチレン系エラストマーにおけるハードセグメントの占める割合は、エラストマー全量中、10~65質量%が好ましく、20~40質量%がより好ましい。
オレフィン系エラストマーとしては、代表的には、ポリプロピレン系エラストマー、α-オレフィン系エラストマーが挙げられる。
前記ポリプロピレン系エラストマーは、ポリプロピレン成分を含み、好ましくは、プロピレンとエチレンの共重合体を含む。ポリプロピレン系エラストマーは、プロピレン単独重合体から構成されていてもよく、或いは、ポリプロピレン成分と他の成分の共重合体から構成されていてもよい。ポリプロピレン系エラストマーとしては、例えば、ポリプロピレン単独重合体、プロピレン-エチレンランダム共重合体などが挙げられる。
前記α-オレフィン系エラストマーとしては、例えば、エチレン-1-ブテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、プロピレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、プロピレン-1-オクテン共重合体などが挙げられる。これらは、1種単独で、又は2種以上併用してもよい。
α-オレフィン系エラストマーは、市販品を用いてもよい。前記市販品としては、例えば、三井化学(株)製の商品名「タフマー」などが挙げられる。
ウレタン系エラストマーとしては、例えば、ポリエーテル含有ポリウレタン、ポリエステル含有ポリウレタンなどが挙げられる。
前記アクリル系エラストマーは、1種または2種以上のアクリル系モノマーを含むアクリル系重合体である。
前記ゴムとしては、特に限定されず、例えば、ブタジエンゴム(BR)、イソプレンゴム(IR)、クロロプレン(CR)などの合成ゴム;天然ゴム(NR);スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)などの共重合体ゴム;などが挙げられる。前記ゴムは、それぞれ1種単独で、又は2種以上を併用できる。
前記発泡剤は、本発明のアウターソールを発泡体とする場合に配合される。もっとも、発泡剤は、前記組成物を化学的発泡法によって発泡させる場合に配合されるものなので、前記組成物を物理的発泡法で発泡させる場合には、発泡剤を配合しないで発泡体を形成することも可能である。
前記発泡剤としては、例えば、重炭酸ナトリウム、重炭酸アンモニウム、炭酸ナトリウム、炭酸アンモニウム、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DNPT)、アゾビスイソブチロニトリル、アゾジカルボン酸バリウム、p,p’-オキシビスベンゼンスルホニルヒドラジン(OBSH)などが挙げられる。
また、発泡を促進するため、発泡剤と共に発泡助剤を用いてもよい。発泡助剤としては、酸化亜鉛、尿素、尿素誘導体などが挙げられる。
前記発泡剤の配合量は、特に限定されず、適宜設計される。前記発泡剤の配合量は、熱可塑性エラストマー100質量部に対して、例えば、0.5質量部~5質量部である。
補強剤としては、例えば、シリカ、カーボンブラック、活性化炭酸カルシウム、超微粒子珪酸マグネシウムなどが挙げられる。
低発泡でも比較的密度が小さく且つ高い機械的強度及び高い耐摩耗性を有するアウターソールを得ることができることから、補強剤としては含水シリカ(ホワイトカーボン)を用いることが好ましい。
補強剤の配合量は、特に限定されず、適宜設計される。前記補強剤の配合量は、熱可塑性エラストマー100質量部に対して、例えば、10質量部~40質量部である。
架橋剤としては、例えば、硫黄を含む化合物、有機過酸化物などが挙げられる。前記硫黄を含む化合物としては、硫黄、ハロゲン化硫黄、ジ-2-ベンゾチアゾリルジスルフィド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドなどが挙げられる。有機過酸化物としては、ジクミルパーオキサイド、2,5-ジメチル-2.5-ジ(t-ブチルペルオキシ)ヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサンなどが挙げられる。架橋剤を配合することにより、熱可塑性エラストマーが架橋され、弾性に優れたアウターソールを形成できる。もっとも、架橋剤を含まない組成物を用いて、本発明のアウターソールを形成することも可能である。
さらに、熱可塑性エラストマーの架橋を促進するため、架橋剤に加えて、架橋促進剤をも配合してもよい。
前記架橋剤の量は、特に限定されず、適宜設計される。前記架橋剤の配合量は、熱可塑性エラストマー100質量部に対して、例えば、0.1質量部~5質量部であり、好ましくは0.3質量部~3質量部である。
なお、本発明のアウターソールを形成する組成物は、熱安定剤、光安定剤、抗酸化剤、紫外線吸収剤、着色剤、可塑剤、耐電防止剤、増粘剤、プロセスオイル、ステアリン酸などの他の添加剤を含んでいてもよい。
上記組成物を、靴裏の形状に成形する。
具体的には、前記熱可塑性エラストマー、並びに、必要に応じて熱可塑性エラストマー以外のポリマー、さらに、架橋剤などの各種の添加剤を所定量混合した組成物を調製する。この組成物を70℃~150℃に加熱しながら、ミキシングロール、加圧式ニーダー、押出機などを用いて混練する。
十分に混練した組成物を、プレス金型内に充填し、例えば、150℃~200℃に加熱しながら所定時間加圧して成形することにより、アウターソールを得ることができる。また、前記十分に混練した組成物を、射出成形機に導入し、射出成形することにより、アウターソールを得ることもできる。
なお、アウターソール形状に適合したプレス金型を用いた場合には、組成物を加熱加圧して得られた一次成形品をそのまま、アウターソールとして用いることができる。また、前記組成物を加熱加圧して一次成形品を得た後、その一次成形品をさらに二次加工した加工品を、本発明のアウターソールとしてもよい。
組成物を発泡させる場合、その発泡倍率は、特に限定されないが、例えば、1.05倍~1.4倍であり、好ましくは、1.05倍~1.2倍である。
また、アウターソールの密度は、特に限定されないが、軽量化の観点から、好ましくは0.6g/cm3以下であり、より好ましくは0.55g/cm3以下であり、さらに好ましくは0.5g/cm3以下である。また、アウターソールの密度の下限は、出来るだけ小さいことが好ましいが、一般的には、アウターソールの密度は、0.2g/cm3以上であり、好ましくは0.3g/cm3以上である。前記密度は、JIS Z 8807に準拠して測定される。
本発明のアウターソールは、例えば、シューズのアウターソールとして使用され、シューズ本体の下面に設けられる。
本発明のアウターソールは、シューズ本体の下面の全体的に設けられる。また、前記アウターソールを、シューズ本体の下面の一部分に設けてもよい。
また、本発明のアウターソールは、例えば、シューズのシャンク部材のような補強部材として用いることも可能である。前記シャンク部材は、土踏まず部分に配置される底部材である。
前記アウターソールは、例えば、接着剤により、シューズ本体に固定的に取り付けられる。
接着剤としては、特に限定されず、従来公知の溶剤型接着剤、エマルジョン型接着剤、レーザー接着剤、感熱接着剤などが挙げられる。前記溶剤型接着剤は、有機溶剤中にバインダー樹脂を溶解又は分散させた接着剤であり、前記エマルジョン型接着剤は、水中にバインダー樹脂を分散させた接着剤である。レーザー接着剤は、レーザー光の照射によって接着性を発現する接着剤である。感熱接着剤は、加熱することによって接着性を発現する接着剤である。
図1及び図2は、本発明のシューズの第1の実施形態を示す。
このシューズ1aは、シューズ本体2aと、シューズ本体2aの下面に設けられたミッドソール3aと、ミッドソール3aの下面に配置されたアウターソール5aと、を備えている。ミッドソール3aは、シューズ本体2aの下面形状とほぼ同じ形状に形成され、アウターソール5aは、ミッドソール3aの下面形状とほぼ同じ形状に形成されている。アウターソール5aは、ほぼ板状に形成されている。その板状のアウターソール5aの下面には、図2に示すように、所望の凹凸が形成されている。もっとも、アウターソール5aの下面が平滑状に形成されていてもよい(図示せず)。
このシューズ1bは、シューズ本体2bと、シューズ本体2bの下面に設けられたミッドソール3bと、ミッドソール3bの下面前方に配置された第1アウターソール51bと、ミッドソール3bの下面後方に配置された第2アウターソール52bと、を備えている。ミッドソール3bは、シューズ本体2bの下面形状とほぼ同じ形状に形成され、第1アウターソール51b及び第2アウターソール52bは、それぞれミッドソール3bの下面形状よりも小さな形状に形成されている。
前記シューズ1bの第1アウターソール51b及び/又は第2アウターソール52bとして、本発明のアウターソールが用いられる。
上記アウターソール5a、第1アウターソール51b及び第2アウターソール52bの各厚みは、特に限定されない。適切なクッション性をシューズに付与するために、アウターソール5a、第1アウターソール51b及び第2アウターソール52bの各厚みは、例えば、2mm以上であり、好ましくは2mm~20mmである。
なお、本発明のシューズは、図示したように、シューズ本体が足の甲のほぼ全体を保護する構造に限られず、シューズ本体が足の甲の一部を保護するような構造(例えば、サンダルなど)でもよい。
本発明のアウターソールは、路面に対するグリップ性に優れている。本発明のアウターソールは、濡れた路面に対してもグリップ性に優れており、特に、平滑な路面であって濡れた路面に対してもグリップ性に優れている。
かかるアウターソールを備える本発明のシューズは、球技用シューズ、ランニング用シューズ、陸上競技用シューズ又はウォーキング用シューズとして好適である。
ただし、表1乃至表3の組成の欄において、各材料の数値の単位は、質量部である。
塩素化ポリエチレン系エラストマー:昭和電工(株)製の商品名「エラスレン 301A」。塩素含有量=約30質量%。
α-オレフィン系エラストマー:三井化学(株)製の商品名「タフマー DF810」。エチレンと1-ブテンとの共重合体。
スチレン系エラストマー(1):(株)クラレ製の商品名「セプトン V9461」。スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(略称SEEPS)。
スチレン系エラストマー(2):旭化成ケミカルズ(株)製の商品名「M1913」。マレイン酸で変性されたスチレン-エチレン-ブタジエン-スチレンブロック共重合体(略称MA変性SEBS)。
ポリアミド系エラストマー(1):DSM社製の商品名「1010C1」。ナイロン6の単独重合体。
ポリアミド系エラストマー(2):DSM社製の商品名「3010SR」。ナイロン66の単独重合体。
ウレタン系エラストマー:BASF社製の商品名「ET195」。ハードセグメントがポリウレタンで、ソフトセグメントがポリエステルである共重合体。
クロロスルホン化ポリエチレン系エラストマー:東ソー(株)製の商品名「TS-530」。塩素含有量=約35質量%。
ポリプロピレン系エラストマー:(株)プライムポリマー製の商品名「E-105-GM」。
イソプレンゴム:日本ゼオン(株)製の商品名「IR2200」。
オイル(1):プロセスオイル。出光興産(株)製の商品名「PW90」。
オイル(2):プロセスオイル。新日本理化(株)製の商品名「DOZ」。
オイル(3):プロセスオイル。JX日鉱日石エネルギー(株)製の商品名「P200」。
架橋剤(1):ジクミルパーオキサイド。日本油脂(株)製の商品名「パークミルD」。
架橋剤(2):2,5-ジメチル-2.5-ジ(t-ブチルペルオキシ)ヘキサン。日本油脂(株)製の商品名「パーヘキサ25B-40」。
架橋剤(3):硫黄。細井化学工業(株)の商品名「硫黄#200」。
架橋助剤(1):トリアリルイソシアヌレート。日本化成(株)製の商品名「TAIC M-60」。
架橋助剤(2):トリメチロールプロパントリメタクリレート。Sartomer社製の商品名「SR350」。
架橋助剤(3):大内新興化学工業(株)製の商品名「ノクセラー」。
発泡剤:アゾジカルボンアミド。永和化成工業(株)製の商品名「ビニホール AC#3C-K2」。
発泡助剤:酸化亜鉛。本荘ケミカル(株)製の商品名「活性亜鉛華No.2」。
シリカ:デグサジャパン社製の商品名「VN3」。
シランカップリング剤:デグサジャパン社製の商品名「Si-69」。
ステアリン酸:新日本理化(株)製の商品名「ステアリン酸50S」。
酸化亜鉛:本荘ケミカル(株)製の商品名「活性亜鉛華No.2」。
表1に示す割合で、上記[使用材料]で示す各材料を配合した。これらの各材料からなる組成物を、加圧ニーダー、ミキシングロールを用いて混練し、これを縦150mm、横150mm、厚み5.5mmのプレス金型内に充填し、160℃に加熱しながら、油圧130~150kgf/cm2で20分間加圧することにより、縦約170mm、横約170mm、厚み約10mmの直方体状の発泡体(発泡倍率は、約1.1倍)を作製した。
表1に示す割合で、各材料を配合したこと以外は、上記実施例1と同様にして、組成物を調製し、その組成物を用いて発泡体を作製した。
表2に示す割合で、上記[使用材料]で示す各材料を配合した。これらの各材料からなる組成物を、2軸押出機に供給して230℃~270℃に加熱しながら混練することによって、動的架橋した。次に、その混練物を射出成形機に供給し、230℃~270℃に加熱しながら成形型に射出することにより、縦約110mm、横約50mm、厚み約2mmの直方体状の非発泡体を作製した。
表3に示す割合で、上記[使用材料]で示す各材料を配合した。これらの各材料からなる組成物を、加圧ニーダー、ミキシングロールを用いて混練し、これを縦125mm、横215mm、厚み2mmのプレス金型内に充填し、160℃に加熱しながら、油圧130~150kgf/cm2で5分間加圧することにより、縦約125mm、横約215mm、厚み約2mmの直方体状の非発泡体を作製した。
表3に示す割合で、上記[使用材料]で示す各材料を配合した。これらの各材料からなる組成物を、加圧ニーダー、ミキシングロールを用いて混練し、これを縦125mm、横215mm、厚み2mmのプレス金型内に充填し、160℃に加熱しながら、油圧130~150kgf/cm2で30分間加圧することにより、縦約125mm、横約215mm、厚み約2mmの直方体状の非発泡体を作製した。
表3に示す割合で、上記[使用材料]で示す各材料を配合した。これらの各材料からなる組成物を、加圧ニーダー、ミキシングロールを用いて混練し、それを縦125mm、横215mm、厚み2mmのプレス金型内に充填し、160℃に加熱しながら、油圧130~150kgf/cm2で20分間加圧することにより、縦約125mm、横約215mm、厚み2mmの直方体状の非発泡体を作製した。
測定対象のアウターソールの表面に、1μLのイオン交換水を滴下した後、その10秒後にその液滴の接触角を測定した。同様に、アウターソールの表面に、1μLのジヨードメタンとを滴下した後、その10秒後にその液滴の接触角を測定した。それらの接触角を、上記式(x1)及び(x2)に代入し、式(x1)及び(x2)の連立方程式を解き、その解γd及びγpを、式(y)に代入することによって、アウターソールの表面自由エネルギーを求めた。
ジヨードメタンは、和光純薬(株)製の1級試薬を用い、接触角の測定装置は、接触角計(協和界面科学(株)製DM-510Hi)を用いた。また、式(x1)及び(x2)のγH2O及びγCH3I(水及びジヨードメタンの表面自由エネルギー)は、D.H.Kaelble,The Journal of Adhesion,2,2 (1970) 66.に記載された値を引用した。
各実施例及び比較例で作製した発泡体又は非発泡体(アウターソールに相当する)の算術平均粗さRaは、JIS B0601-2001に準拠して測定した。具体的には、(株)キーエンス製ワンショット3D測定マクロスコープVR-3000を用いて表面粗さ(算術平均粗さ)を測定した。その結果を表1乃至表3に示す。
各実施例及び比較例で作製した発泡体又は非発泡体(アウターソールに相当する)の静・動摩擦係数は、JIS T8101に準拠して測定した。
具体的には、アウターソールを有さない安全靴の靴底に、実施例及び比較例で作製した発泡体又は非発泡体を固定し、水で濡れたステンレス上において、垂直荷重500N、すべり速度0.22m/秒の条件で滑りを与えた際の静・動摩擦係数を測定した。その結果を表1乃至表3に示す。
なお、実施例1乃至5及び比較例1の静摩擦係数及び動摩擦係数の結果については、表だけでなく、図4にグラフで示している。
表1及び図4から、実施例1乃至5のアウターソールは、比較例1に比して、路面に対する静・動摩擦係数が高いことが判る。特に、塩素化ポリエチレン系エラストマーの含有量を大きくすることにより、静摩擦係数が顕著に増加することが判る。なお、摩擦係数の数値が高いほど滑りにくいと評価できる。
シューズの使用環境下では、アウターソールの静摩擦係数は、動作開始時の路面に対する摩擦に対応しており、その動摩擦係数は、動作停止時の路面に対する摩擦に対応している。前記動作開始時は、例えば、シューズを履いた者が走り又は歩き始めた時などが該当し、前記動作停止時は、例えば、シューズを履いた者が走っている途中でその向きを変える動作をした時などが該当する。
比較例2については、表面自由エネルギーが19.0mJ/m2であったが、熱可塑性エラストマーを含まないため、その静・動摩擦係数は低かった。
2a,2b シューズ本体
3a,3b ミッドソール
5a,51b,52b アウターソール
Claims (5)
- 熱可塑性エラストマーを含み、且つ表面自由エネルギーが12mJ/m2以上である、アウターソール。
- 算術平均粗さRaが1000μm以下である、請求項1に記載のアウターソール。
- 前記熱可塑性エラストマーが、塩素化ポリエチレン系エラストマー、クロロスルホン化ポリエチレン系エラストマー、スチレン系エラストマー、オレフィン系エラストマー、ポリアミド系エラストマー及びウレタン系エラストマーから選ばれる少なくとも1種を含む、請求項1または2に記載のアウターソール。
- 前記熱可塑性エラストマーが、塩素化ポリエチレン系エラストマー及びクロロスルホン化ポリエチレン系エラストマーの少なくとも一方を含む、請求項1または2に記載のアウターソール。
- 請求項1乃至4のいずれか一項に記載のアウターソールを備えるシューズ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/526,557 US20170318901A1 (en) | 2014-11-14 | 2015-11-03 | Outer sole and shoe |
JP2016559126A JP6454723B2 (ja) | 2014-11-14 | 2015-11-13 | アウターソール、シューズ、及びアウターソールの製造方法 |
EP15859126.3A EP3248495B1 (en) | 2014-11-14 | 2015-11-13 | Outer sole and shoes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014232084 | 2014-11-14 | ||
JP2014-232084 | 2014-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076432A1 true WO2016076432A1 (ja) | 2016-05-19 |
Family
ID=55954507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082042 WO2016076432A1 (ja) | 2014-11-14 | 2015-11-13 | アウターソール、及びシューズ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170318901A1 (ja) |
EP (1) | EP3248495B1 (ja) |
JP (1) | JP6454723B2 (ja) |
WO (1) | WO2016076432A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019031661A (ja) * | 2017-07-21 | 2019-02-28 | ティエスアールシー・コーポレイションTSRC Corporation | 発泡体を調製する組成物、発泡体、およびその発泡体を用いた靴 |
KR20190079151A (ko) * | 2017-12-27 | 2019-07-05 | 웰바이오텍 주식회사 | 자유변형도를 갖는 신발 아웃솔 |
WO2019150492A1 (ja) * | 2018-01-31 | 2019-08-08 | 株式会社アシックス | 靴底用部材及び靴 |
WO2020178987A1 (ja) | 2019-03-05 | 2020-09-10 | 株式会社アシックス | 装着品又はスポーツ用品用の防滑部材、装着品及びスポーツ用品 |
WO2021131034A1 (ja) * | 2019-12-27 | 2021-07-01 | 株式会社アシックス | シューズ用部材およびシューズ |
WO2022085180A1 (ja) | 2020-10-23 | 2022-04-28 | 株式会社アシックス | 装着品又はスポーツ用品用の防滑部材、装着品及びスポーツ用品 |
US11697721B2 (en) | 2018-01-31 | 2023-07-11 | Asics Corporation | Method for producing resin molded article and shoe sole member |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6307667B2 (ja) * | 2015-09-18 | 2018-04-04 | 株式会社アシックス | 靴底用部材、及び、靴 |
US20180255869A1 (en) * | 2017-03-09 | 2018-09-13 | Columbia Insurance Company | Outsole and Method of Making the Same |
CN210611192U (zh) * | 2019-04-03 | 2020-05-26 | 霍尼韦尔国际公司 | 具有阻力元件的鞋类外底 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101203A (ja) * | 1985-10-26 | 1987-05-11 | 株式会社アサヒコーポレーション | ミクロ発泡構造の靴底を有する靴の製造法 |
JP2008260889A (ja) * | 2007-04-13 | 2008-10-30 | Bridgestone Corp | 発泡ゴム、並びにそれを具えたタイヤ及び靴 |
JP2009067378A (ja) * | 2007-08-22 | 2009-04-02 | Bridgestone Corp | 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型 |
WO2013108378A1 (ja) * | 2012-01-18 | 2013-07-25 | 株式会社アシックス | 発泡ソール、及びシューズ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4197381A (en) * | 1976-10-22 | 1980-04-08 | Alia Dominic A | Preparation of vulcanizable compositions by extruder mixing |
CN1037077A (zh) * | 1988-04-30 | 1989-11-15 | 上海皮革橡胶厂 | 发泡橡塑成型底及其制造方法 |
JP2546767Y2 (ja) * | 1991-07-31 | 1997-09-03 | 月星化成株式会社 | 子供用雨靴 |
JP2006175141A (ja) * | 2004-12-24 | 2006-07-06 | Sri Sports Ltd | アウトソール及びこれを備えた靴 |
US20090313855A1 (en) * | 2006-02-07 | 2009-12-24 | Simon Jeremy Skirrow | Self cleaning outsoles for shoes |
WO2008079784A2 (en) * | 2006-12-21 | 2008-07-03 | Dow Global Technologies Inc. | Functionalized olefin polymers, compositions and articles prepared therefrom, and methods for making the same |
US8653191B2 (en) * | 2007-07-27 | 2014-02-18 | Dow Global Technologies Llc | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US20090049717A1 (en) * | 2007-08-22 | 2009-02-26 | Bridgestone Corporation | Pneumatic tire, shoe, tire chain, and pneumatic tire vulcanization-mold |
-
2015
- 2015-11-03 US US15/526,557 patent/US20170318901A1/en not_active Abandoned
- 2015-11-13 WO PCT/JP2015/082042 patent/WO2016076432A1/ja active Application Filing
- 2015-11-13 EP EP15859126.3A patent/EP3248495B1/en active Active
- 2015-11-13 JP JP2016559126A patent/JP6454723B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101203A (ja) * | 1985-10-26 | 1987-05-11 | 株式会社アサヒコーポレーション | ミクロ発泡構造の靴底を有する靴の製造法 |
JP2008260889A (ja) * | 2007-04-13 | 2008-10-30 | Bridgestone Corp | 発泡ゴム、並びにそれを具えたタイヤ及び靴 |
JP2009067378A (ja) * | 2007-08-22 | 2009-04-02 | Bridgestone Corp | 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型 |
WO2013108378A1 (ja) * | 2012-01-18 | 2013-07-25 | 株式会社アシックス | 発泡ソール、及びシューズ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3248495A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019031661A (ja) * | 2017-07-21 | 2019-02-28 | ティエスアールシー・コーポレイションTSRC Corporation | 発泡体を調製する組成物、発泡体、およびその発泡体を用いた靴 |
US11939456B2 (en) | 2017-07-21 | 2024-03-26 | Tsrc Corporation | Composition for preparing a foam, foam, and shoe employing the same |
KR20190079151A (ko) * | 2017-12-27 | 2019-07-05 | 웰바이오텍 주식회사 | 자유변형도를 갖는 신발 아웃솔 |
KR102018333B1 (ko) * | 2017-12-27 | 2019-09-04 | 웰바이오텍 주식회사 | 자유변형도를 갖는 신발 아웃솔 |
WO2019150492A1 (ja) * | 2018-01-31 | 2019-08-08 | 株式会社アシックス | 靴底用部材及び靴 |
CN111669985A (zh) * | 2018-01-31 | 2020-09-15 | 株式会社爱世克私 | 鞋底用构件和鞋 |
JPWO2019150492A1 (ja) * | 2018-01-31 | 2020-11-19 | 株式会社アシックス | 靴底用部材及び靴 |
CN111669985B (zh) * | 2018-01-31 | 2022-01-11 | 株式会社爱世克私 | 鞋底用构件和鞋 |
US11697721B2 (en) | 2018-01-31 | 2023-07-11 | Asics Corporation | Method for producing resin molded article and shoe sole member |
WO2020178987A1 (ja) | 2019-03-05 | 2020-09-10 | 株式会社アシックス | 装着品又はスポーツ用品用の防滑部材、装着品及びスポーツ用品 |
WO2021131034A1 (ja) * | 2019-12-27 | 2021-07-01 | 株式会社アシックス | シューズ用部材およびシューズ |
WO2022085180A1 (ja) | 2020-10-23 | 2022-04-28 | 株式会社アシックス | 装着品又はスポーツ用品用の防滑部材、装着品及びスポーツ用品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016076432A1 (ja) | 2017-08-03 |
US20170318901A1 (en) | 2017-11-09 |
EP3248495A1 (en) | 2017-11-29 |
EP3248495A4 (en) | 2017-11-29 |
EP3248495B1 (en) | 2022-06-15 |
JP6454723B2 (ja) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6454723B2 (ja) | アウターソール、シューズ、及びアウターソールの製造方法 | |
JP5749358B2 (ja) | 発泡ソール、及びシューズ | |
WO2013179455A1 (ja) | 発泡成形品、発泡ソール、及びシューズ | |
JP5565313B2 (ja) | 靴底用発泡体ゴム組成物及びアウトソール | |
WO2008083451A1 (en) | Polymer composition, microporous rubber-like foamed vulcanizate, and microporous rubber-like foamed shoe sole | |
WO2020178987A1 (ja) | 装着品又はスポーツ用品用の防滑部材、装着品及びスポーツ用品 | |
WO2002014423A1 (fr) | Composition polymere | |
JP2002053700A (ja) | ゴム組成物及びそのゴム組成物を使用した靴底、並びに、靴 | |
JP7009734B2 (ja) | 耐滑性履物底及びその製造方法 | |
JP6279822B1 (ja) | アウトソール、及びシューズ | |
KR101156575B1 (ko) | 신발겉창용 조성물 및 이를 이용하여 제조된 신발겉창 | |
JP7039651B2 (ja) | 靴底用ゴム発泡体 | |
KR102109437B1 (ko) | 난슬립 아웃솔의 제조방법 | |
JP2004329518A (ja) | 靴底及び靴 | |
JP2005279237A (ja) | アウトソール及び靴 | |
JP2005058646A (ja) | 靴底及び靴 | |
JP7407301B2 (ja) | 装着品又はスポーツ用品用の防滑部材、装着品及びスポーツ用品 | |
JP2008194187A (ja) | 靴のアウトソール | |
KR101512168B1 (ko) | 고무 밑창용 조성물 | |
EL-Abden et al. | Friction and wear of epoxy flooring filled by recycled polymers | |
Wang | Effects of Running Shoes with Abrasion Resistant Rubber Sole on the Exercise Capacity of the Human Body. | |
CN118973427A (zh) | 鞋底用部件和鞋 | |
KR20210039211A (ko) | 난슬립 방탄부재 내답판이 내장된 안전화 밑창 | |
KR20240045646A (ko) | 탄소섬유가 접목되어 내마모성이 향상된 아웃솔 및 그 제조방법 | |
JP2002282006A (ja) | アウトソール及びこれを備えた靴 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859126 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2016559126 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15526557 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015859126 Country of ref document: EP |