[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016067411A1 - ターニング装置 - Google Patents

ターニング装置 Download PDF

Info

Publication number
WO2016067411A1
WO2016067411A1 PCT/JP2014/078911 JP2014078911W WO2016067411A1 WO 2016067411 A1 WO2016067411 A1 WO 2016067411A1 JP 2014078911 W JP2014078911 W JP 2014078911W WO 2016067411 A1 WO2016067411 A1 WO 2016067411A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
gear
rotor
turbine rotor
turning device
Prior art date
Application number
PCT/JP2014/078911
Other languages
English (en)
French (fr)
Inventor
広和 河島
雅隆 山田
マニュ アグルワル
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to JP2016556120A priority Critical patent/JP6222614B2/ja
Priority to EP14905109.6A priority patent/EP3168432B1/en
Priority to PCT/JP2014/078911 priority patent/WO2016067411A1/ja
Priority to CN201480080857.7A priority patent/CN106574517A/zh
Priority to US15/503,107 priority patent/US10487658B2/en
Publication of WO2016067411A1 publication Critical patent/WO2016067411A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/34Turning or inching gear
    • F01D25/36Turning or inching gear using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/04Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for reversible machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/20Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear
    • F16H3/34Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear with gears shiftable otherwise than only axially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/118Structural association with clutches, brakes, gears, pulleys or mechanical starters with starting devices
    • H02K7/1185Structural association with clutches, brakes, gears, pulleys or mechanical starters with starting devices with a mechanical one-way direction control, i.e. with means for reversing the direction of rotation of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2207/00Specific aspects not provided for in the other groups of this subclass relating to arrangements for handling mechanical energy
    • H02K2207/03Tubular motors, i.e. rotary motors mounted inside a tube, e.g. for blinds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a turning device that rotates a turbine rotor such as a steam turbine.
  • the turbine rotor If the turbine rotor is left in a state where the turbine rotor is not rotated at a high temperature while the operation of the steam turbine or the like is stopped, thermal strain generated in the turbine rotor due to a temperature difference generated in the turbine casing as the temperature of the steam or gas inside the turbine decreases, The turbine rotor may bend due to its own weight. Therefore, in order to avoid the bending of the turbine rotor used in a steam turbine or the like, turning is performed to rotate the turbine rotor at a low speed for a predetermined time when the operation of the steam turbine or the like is stopped and before the steam turbine is started. There is a need. In order to perform such turning, a turning device that rotates a turbine rotor by the power of an electric motor is widely used.
  • the pinion gear is removed to protect the turning device.
  • a mechanism is provided.
  • the turbine rotor may reversely rotate due to the backflow of the compressor process gas during turning of the steam turbine or the like. In such a case, the pinion gear cannot be removed, an excessive load is applied to the turning device, and the turning device may be damaged.
  • the one-way clutch receives the reverse rotation torque of the turbine rotor in order to prevent (restrain) the reverse rotation of the turbine rotor by the one-way clutch.
  • the one-way clutch prevents the turbine rotor from rotating in the reverse direction, a larger load is applied than during the normal rotation. For this reason, the one-way clutch may be damaged by a load at the time of reverse rotation, and the frequency of replacement and repair of the one-way clutch and the turning device may increase.
  • the present invention provides a turning device that can prevent the turning device from receiving an excessive load during the reverse rotation of the turbine rotor and can reduce the replacement and repair frequency of the turning device.
  • the turning device includes an electric motor, a first position where the rotation of the output shaft of the electric motor can be transmitted to the rotor, and the rotation of the output shaft cannot be transmitted to the rotor.
  • a moving gear configured to move to a second position, a moving mechanism that moves the moving gear between the first position and the second position, and a torque that detects torque of the output shaft of the electric motor
  • a control unit that controls the moving mechanism to move the moving gear from the first position to the second position based on the torque detected by the torque detecting unit.
  • the control device can determine that the rotor is going to rotate backward by detecting a change in torque.
  • the control device can detect the reverse rotation sign of the rotor and control the moving gear to move to the second position before the rotor starts reverse rotation. For this reason, when the rotor actually starts reverse rotation, the movement gear has completed the movement to the second position.
  • the turning device can be prevented from receiving an excessive load due to the reverse rotation of the rotor.
  • the position of the moving gear can be automatically changed by the control device controlling the moving mechanism based on the torque detected by the torque detector.
  • a work load such as an operator monitoring the state of the rotor and operating the turning device.
  • the reverse rotation of the rotor cannot be detected due to an operator's oversight or the like, and the risk that the turning device receives an excessive load due to the reverse rotation of the rotor can be reduced.
  • the control device moves the moving gear.
  • the moving mechanism is controlled so as to move from the first position to the second position.
  • the control device can determine that the rotor is likely to rotate backward by detecting that the amount of displacement of torque per unit time exceeds a certain value.
  • the control device can detect the reverse rotation sign of the rotor and control the moving gear to move to the second position before the rotor starts reverse rotation. For this reason, when the rotor actually starts reverse rotation, the movement gear has completed the movement to the second position. Therefore, the turning device can be prevented from receiving an excessive load due to the reverse rotation of the rotor. Further, since the control device is configured to automatically control these operations, it is possible to reduce a work load such as monitoring the state of the rotor by the operator.
  • the control device when the torque detected by the torque detector exceeds a certain value, moves the moving gear from the first position to the first position.
  • the moving mechanism is controlled to move to the second position.
  • the control device can determine that the rotor is likely to rotate backward by detecting that the torque exceeds a certain value.
  • the control device can detect the reverse rotation sign of the rotor and control the moving gear to move to the second position before the rotor starts reverse rotation. For this reason, when the rotor actually starts reverse rotation, the movement gear has completed the movement to the second position. Therefore, the turning device can be prevented from receiving an excessive load due to the reverse rotation of the rotor. Further, since the control device is configured to automatically control these operations, it is possible to reduce a work load such as monitoring the state of the rotor by the operator.
  • control device further includes a rotational speed measuring unit that measures the rotational speed of the output shaft.
  • the moving mechanism is controlled to move the moving gear from the first position to the second position based on the number of rotations measured by the unit.
  • the turning device According to the turning device according to the present invention, it is possible to suppress the turning device from receiving an excessive load during the reverse rotation of the turbine rotor, and to reduce the replacement and repair frequency of the turning device.
  • the turning device 30 is, for example, a device for rotating the turbine rotor 11 of a steam turbine (not shown) at a low speed.
  • a wheel gear 12 that is integrally attached to the outer periphery of the turbine rotor 11, and a rotational speed measuring device 13 (a rotational speed measuring unit) that measures the rotational speed of the turbine rotor 11.
  • a rotational speed measuring device 13 a rotational speed measuring unit
  • the turning device 30 includes a casing 31, a power unit 40, and a power transmission unit 50.
  • the turning device 30 is disposed at one end of the turbine rotor 11.
  • the horizontal direction in FIG. 1 is referred to as the width direction
  • the vertical direction is referred to as the vertical direction
  • the axial direction of the turbine rotor 11 is referred to as the axial direction.
  • the power unit 40 includes an electric motor 41, an output shaft 43 that transmits the rotational driving force of the electric motor 41, a speed reducer 42 that reduces the rotational driving force transmitted from the output shaft 43 at a predetermined speed ratio (reduction ratio), and an electric motor And a torque detector 44 (torque detector) that is provided between 41 and the speed reducer 42 and detects the torque of the motor.
  • the power unit 40 is disposed on the upper surface of the casing 31.
  • the power transmission unit 50 includes an output gear 51, a connection gear 52, and a moving gear 53.
  • the power transmission unit 50 is disposed inside the casing 31.
  • a belt (not shown) is wound around the output gear 51 from the speed reducer 42, and thereby rotational driving force is transmitted.
  • the connecting gear 52 is disposed below the output gear 51 so as to mesh with the output gear 51. When the output gear 51 is rotated by the rotational driving force from the power unit 40, the connecting gear 52 is also rotated.
  • the moving gear 53 is disposed below the connecting gear 52 so as to mesh with the connecting gear 52.
  • the moving gear 53 rotates as the connecting gear 52 rotates.
  • the moving gear 53 is disengaged from the wheel gear 12 and the first position P ⁇ b> 1 (position indicated by the broken line) meshed with the wheel gear 12 by a moving mechanism 60 described later. It is configured to be movable between a second position P2 (a position indicated by a solid line) separated from the gear 12 radially outward.
  • the moving gear 53 is located at the first position P ⁇ b> 1, the moving gear 53 meshes with the wheel gear 12 of the turbine rotor 11, and rotates the wheel gear 12 by the rotational driving force transmitted from the power unit 40.
  • the turning device 30 rotates the turbine rotor 11 by rotating the wheel gear 12. Further, when the moving gear 53 is located at the second position P2, since the meshing with the wheel gear 12 of the turbine rotor 11 is released, the rotational driving force transmitted from the power unit 40 is transmitted to the wheel gear 12. do not do.
  • the moving mechanism 60 includes a control device 61, an air cylinder 62, a lever 64, a moving rod 66, and a bracket 67 as shown in FIG.
  • control device 61 monitors the rotational state of the turbine rotor 11 based on the rotational speed of the turbine rotor 11 measured by the rotational speed measuring device 13 and the torque of the electric motor 41 detected by the torque detector 44. To do.
  • the control device 61 controls the air cylinder 62 according to the rotational state of the turbine rotor 11.
  • the air cylinder 62 is a power source for moving the moving gear 53 between the first position P1 and the second position P2 under the control of the control device 61.
  • the air cylinder 62 is provided on the outer surface on one side in the width direction of the casing 31.
  • the air cylinder 62 includes a piston rod 62a that extends so as to be slidable in the vertical direction, and an air cylinder case 62b that houses the piston rod 62a.
  • the upper end portion of the piston rod 62a extends to a position above the upper surface of the casing 31, and is connected to the first end 64a side of the lever 64 extending in the width direction.
  • a slit through which the lever 64 is inserted is formed on the side surface in the width direction of the air cylinder case 62b.
  • the second end 64b of the lever 64 is supported by a support part 65 provided on the upper surface of the casing 31 so as to be tiltable. Therefore, when the piston rod 62a of the air cylinder 62 slides in the vertical direction, the first end of the lever 64 connected to the piston rod 62a with the second end 64b of the lever 64 supported by the support portion 65 as a fulcrum. 64a moves up and down.
  • the moving rod 66 extends in the vertical direction, and the upper end 66a is between the position where the lever 64 and the piston rod 62a are connected at a position above the upper surface of the casing 31, and the second end 64b of the lever 64. It is connected so that it can tilt. Further, the lower end 66 b side of the moving rod 66 is inserted into the casing 31. The moving rod 66 moves up and down in conjunction with the lever 64 tilting as the piston rod 62a of the air cylinder slides.
  • the bracket 67 is a plate-like member formed in a substantially L shape.
  • a first end 67a of the bracket 67 is connected to a lower end 66b of the moving rod 66 so as to be tiltable.
  • the second end 67 b of the bracket 67 is connected to the central axis of the moving gear 53, and the intermediate portion 67 c is connected to the central axis of the connecting gear 52.
  • a mechanical stopper 68 for restricting the tilt of the lever 64 in the vertical direction is provided on the inner wall of the air cylinder case 62b.
  • the mechanical stopper 68 includes a first mechanical stopper 68a that restricts the upward tilting of the lever 64 and a second mechanical stopper 68b that restricts the downward tilting.
  • the first mechanical stopper 68a is provided at a position corresponding to the first position P1 of the moving gear 53
  • the second mechanical stopper 68b is provided at a position corresponding to the second position P2 of the moving gear 53.
  • the turning device 30 is activated and the electric motor 41 is driven. While the turning device is in operation, the control device 61 determines the rotation speed of the turbine rotor 11 measured by the rotation speed measuring device 13 and the torque of the electric motor 41 detected by the torque detector 44 as a predetermined value. Acquired at every interval.
  • the rotational driving force of the electric motor 41 is transmitted to the speed reducer 42 through the output shaft 43, and the rotational speed is reduced at a predetermined speed ratio (speed reduction ratio) in the speed reducer 42.
  • the power unit 40 outputs the rotational driving force to the output gear 51 of the power transmission unit 50 in a state where the torque is increased to the predetermined value Tr1.
  • the output gear 51 starts rotating by the rotational driving force transmitted from the speed reducer 42 and rotates the connecting gear 52 that meshes with the output gear 51.
  • the moving gear 53 that meshes with the connecting gear 52 also starts to rotate.
  • the moving gear 53 is located at the first position P1 shown in FIG. That is, it meshes with the wheel gear 12 of the turbine rotor 11. For this reason, when the moving gear 53 rotates, the turbine rotor 11 starts rotating together with the wheel gear 12.
  • a so-called starting torque is generated in which the torque temporarily rises and immediately falls to the vicinity of the predetermined value Tr1.
  • the control device 61 shifts from the turning start state (A) to the turning state (B section in FIG. 3) when the torque is constant (until t1 in FIG. 3) and maintains the predetermined value Tr1.
  • the increase in torque immediately after the turning device 30 is started is determined to be the starting torque, and erroneous detection of reverse rotation of the turbine rotor 11 is suppressed.
  • the determination of the transition to the turning state (B) may be made by giving an instruction to the control device 61 by the operation of the operator when the torque is lowered from the starting torque to the predetermined value Tr1.
  • the torque has a predetermined value Tr1
  • the rotational speed of the turbine rotor 11 has a predetermined value N1. That is, the amount of torque displacement per unit time is almost zero.
  • the torque rises from a predetermined value Tr1. That is, the amount of torque displacement per unit time increases.
  • the control device 61 determines that a sign of reverse rotation of the turbine rotor 11 has been detected. Thereby, the control device 61 determines that the turning state (B) has shifted to the reverse rotation sign state (section C in FIG. 3).
  • the control device 61 controls the air cylinder 62 to move the piston rod 62a downward as shown in FIG.
  • the lever 64 tilts downward with the second end 64b as a fulcrum, and pushes down the moving rod 66.
  • the moving rod 66 moves downward to push down the first end 67a of the bracket 67.
  • the bracket 67 pushes up the second end 67b toward the radially outer side of the wheel gear 12 by the amount that the first end 67a is pushed down by the moving rod 66 with the intermediate portion 67c as a fulcrum.
  • the moving gear 53 connected to the second end 67b of the bracket 67 also moves in the radial direction of the wheel gear 12 from the first position P1 (position indicated by the broken line in FIG. 2) where the moving gear 53 is engaged with the wheel gear 12. It moves to the second position P2 (the position indicated by the solid line in FIG. 2) on the outer side.
  • the meshing between the moving gear 53 and the wheel gear 12 is released.
  • the reverse rotation of the turbine rotor 11 starts from the reverse rotation sign state (C). Transition to the state (D section in FIG. 3).
  • the moving gear 53 remains engaged with the wheel gear 12, as shown in FIG. 3, the torque exceeds the upper limit value Tr2, and the rotational speed of the turbine rotor 11 changes from zero to a negative value. That is, the turbine rotor 11 starts reverse rotation. For this reason, an excessive load in the reverse rotation direction is applied to the moving gear 53 by the turbine rotor 11, and the moving gear 53 may be damaged.
  • the turning device 30 of the present embodiment is configured such that the diameter of the wheel gear 12 from the first position P1 at which the moving gear 53 meshes with the wheel gear 12 based on the torque of the electric motor 41 detected by the torque detector 44. It is configured to move to a second position P2 that is on the outer side in the direction and does not mesh with the wheel gear 12. Thereby, before the turbine rotor 11 reversely rotates, it is possible to prevent the moving gear 53 from being damaged due to an excessive load due to the reverse rotation of the turbine rotor 11.
  • the moving gear 53 is configured to automatically move based on the torque, the operator can monitor the state of the turbine rotor 11 and reduce the work load such as operating the turning device 30. Can do. Further, even when the reverse rotation sign state (C) of the turbine rotor 11 cannot be detected due to an operator's oversight or the like, the possibility that the turning device 30 receives an excessive load due to the reverse rotation of the turbine rotor 11 is reduced. Can do. Thereby, the effect which suppresses damage to the moving gear 53 etc. which mesh with the wheel gear of the turbine rotor 11 can be acquired, and replacement
  • the control device 61 when the torque of the electric motor 41 detected by the torque detector 44 is maintained for a certain period of time, the control device 61 is in the turning state (B). It is judged that. Thereby, the malfunctioning of the moving mechanism 60 by the torque rise (starting torque) immediately after starting of the turning apparatus 30 can be suppressed. Further, since the control device 61 automatically detects that it is in the turning state (B), it is possible to reduce a work load such as monitoring the state of the turbine rotor 11 by the operator.
  • the control device 61 when the torque displacement amount per unit time exceeds the specified amount ⁇ 1 in the turning state (B), the control device 61 enters the reverse rotation sign state (C). Judge that it has migrated. Accordingly, it is possible to automatically detect the possibility of reverse rotation of the turbine rotor 11, and it is possible to reduce a work burden such as an operator monitoring the state of the turbine rotor 11. Moreover, since the sign can be detected before the turbine rotor 11 actually starts reverse rotation, the possibility that the turning device 30 receives an excessive load due to the reverse rotation of the turbine rotor 11 may be reduced. it can. Thereby, the effect which suppresses damage to the moving gear 53 etc. which mesh with the wheel gear of the turbine rotor 11 can be acquired, and replacement
  • the control device 61 determines that the turning state (B) is in effect when the predetermined value Tr1 is maintained while the torque of the electric motor 41 detected by the torque detector 44 is constant.
  • the configuration has been described. Further, the configuration has been described in which the control device 61 determines that the state has shifted to the reverse rotation sign state (C) when the torque displacement amount per unit time exceeds the specified amount ⁇ 1 in the turning state (B).
  • the present invention is not limited to this configuration. Since the starting torque has a very large torque displacement amount per unit time, the control device 61 may determine that the starting torque is the starting torque when the torque displacement amount per unit time exceeds the specified amount ⁇ 2.
  • control device 61 may determine that the state has shifted to the reverse rotation sign state (C) when the displacement amount per unit time is in the range of the specified amount ⁇ 1 or more and the specified amount ⁇ 2 or less. Also with this configuration, it is possible to obtain the same effect as in the above-described embodiment.
  • control device 61 may determine that the state has shifted to the reverse rotation sign state (C) when the torque detected by the torque detector 44 exceeds the upper limit value Tr2 in the turning state (B). Also with this configuration, it is possible to obtain the same effect as in the above-described embodiment.
  • control device 61 turns from the turning start state (A) when the rotation speed of the turbine rotor 11 reaches the predetermined value N1 and a certain time (for example, the period from t2 to t3 in FIG. 3) has elapsed. It may be determined that the state has shifted to the middle state (B). Alternatively, when the rotational speed reaches the predetermined value N1, the control device 61 may be instructed by the operator's operation, and it may be determined that the state has shifted to the turning state (B). Also with this configuration, it is possible to obtain the same effect as in the above-described embodiment.
  • control device 61 may determine that the state has shifted to the reverse rotation sign state (C) when the rotational speed of the turbine rotor 11 falls below the predetermined value N1 in the turning state (B). Also with this configuration, it is possible to obtain the same effect as in the above-described embodiment. Furthermore, the control device 61 combines the determination based on the rotation speed of the turbine rotor 11 described above and the determination based on the torque or the torque displacement amount per unit time, and has the state shifted to the reverse rotation sign state (C)? Judgment may be made.
  • control device 61 detects a change (decrease) in the rotational speed of the turbine rotor 11, it can be determined that the forward rotation of the turbine rotor 11 is stagnant and the turbine rotor 11 is likely to rotate backward. Thereby, the malfunction which the control apparatus 61 moves the movement gear 53 by the change of the torque by factors other than reverse rotation of the turbine rotor 11 can be suppressed.
  • the turning device it is possible to suppress the turning device from receiving an excessive load during the reverse rotation of the turbine rotor, and to reduce the replacement and repair frequency of the turning device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Turbines (AREA)
  • Gear Transmission (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

 このターニング装置(30)は、電動機(41)と、該電動機(41)の出力軸(43)の回転をロータ(11)に伝達可能とする第一位置(P1)、及び、該出力軸(43)の回転を前記ロータ(11)に伝達不能とする第二位置(P2)に移動するように構成されている移動ギア(53)と、前記移動ギア(53)を前記第一位置(P1)及び第二位置(P2)との間で移動させる移動機構(60)と、前記電動機(41)の出力軸(43)のトルクを検出するトルク検出部(44)と、前記トルク検出部(44)が検出する前記トルクに基づいて、前記移動ギア(53)を前記第一位置(P1)から前記第二位置(P2)に移動させるように前記移動機構(60)を制御する制御装置(61)とを備える。

Description

ターニング装置
 本発明は、蒸気タービン等のタービンロータを回転させるターニング装置に関する。
 蒸気タービン等の運転停止中に、高温のままタービンロータを回転させない状態で放置すると、タービン内部の蒸気またはガスの温度低下に伴ってタービン車室内で生じる温度差によりタービンロータに生じる熱歪や、タービンロータの自重によってタービンロータに曲がりが発生する場合がある。そこで、蒸気タービン等に用いられるタービンロータに曲がりが生じるのを回避するために、蒸気タービン等の運転停止時および蒸気タービン起動前には、タービンロータを所定時間、低速度で回転させるターニングを行なう必要がある。このようなターニングを行なうために電動機の動力によってタービンロータを回転させるターニング装置が広く用いられている。
 このようなターニング装置において、タービンロータが正回転を始めたときに、ターニング装置に過大な負荷が掛かり、ターニング装置が破損することがある事を防ぐために、ピニオンギアを脱させてターニング装置を保護する機構を設けている。一方、蒸気タービン等のターニング中に、圧縮機プロセスガスの逆流等が発生することにより、タービンロータが逆回転することがある。このような場合においては、ピニオンギアが脱出来ず、ターニング装置に過大な負荷が掛かり、ターニング装置が破損することがある。
 ターニング装置の破損を避けるために、例えば特許文献1では、タービンロータの回転速度がターニング装置の回転速度を超えた場合、自動的にターニング装置がタービンロータから離脱するためのワンウェイクラッチと、ターニング装置の逆回転を防止(拘束)するためのワンウェイクラッチ(逆回転防止装置)とが設けられている。
特開2012-177328号公報
 しかしながら、上記のようなターニング装置では、ワンウェイクラッチによりタービンロータの逆回転を防止(拘束)するために、ワンウェイクラッチがタービンロータの逆回転トルクを受け止めることとなる。ワンウェイクラッチは、タービンロータの逆回転を防止する際には、正回転時よりも大きな負荷が掛かる。このため、逆回転時の負荷によってワンウェイクラッチが破損するなどして、ワンウェイクラッチや、ターニング装置の交換や補修の頻度が高くなる可能性がある。
 本発明は、タービンロータの逆回転時にターニング装置が過大な負荷を受けることを抑制し、ターニング装置の交換および補修頻度を低減することができるターニング装置を提供する。
 上記課題を解決するため、本発明は以下の手段を採用している。
 本発明の第一の態様によれば、ターニング装置は、電動機と、該電動機の出力軸の回転をロータに伝達可能とする第一位置、及び、該出力軸の回転を前記ロータに伝達不能とする第二位置に移動するように構成されている移動ギアと、前記移動ギアを前記第一位置及び第二位置との間で移動させる移動機構と、前記電動機の出力軸のトルクを検出するトルク検出部と、前記トルク検出部が検出する前記トルクに基づいて、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する制御装置とを備える。
 圧縮機のプロセスガスの逆流等によってロータが正回転から逆回転に遷移しようとする力が生じると、まず、ロータの正回転が停滞する。このとき、ターニング装置は、継続してロータを正回転させようとするため、ロータの正回転が停滞した分、電動機の出力軸のトルクが増加する。上記構成によれば、制御装置は、トルクの変化を検知することにより、ロータが逆回転しようとしていると判断することができる。これにより、制御装置は、ロータが逆回転を開始する前に、ロータの逆回転兆候を検知して、移動ギアを第二位置へ移動するように制御することができる。このため、実際にロータが逆回転を開始するときには、移動ギアは第二位置への移動を完了している。従って、ターニング装置がロータの逆回転による過大な負荷を受けることを回避することができる。
 また、トルク検出部が検出したトルクに基づいて制御装置が移動機構を制御することにより、移動ギアの位置を自動的に変更することができる。これにより、操作者がロータの状態を監視し、ターニング装置の操作を行う等の作業負担を削減することができる。また、操作者の見落とし等によってロータの逆回転を検知できず、ターニング装置がロータの逆回転による過大な負荷を受けるリスクを低減することができる。
 本発明の第二の態様によれば、第一の態様において、前記制御装置は、前記トルク検出部が検出した前記トルクの単位時間当たりの変位量が一定の値を超えた場合、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する。
 圧縮機のプロセスガスの逆流等によってロータの正回転が停滞すると、電動機の出力軸のトルクが変化(増加)する。さらに、ロータが正回転から逆回転に遷移しようとする力が強くなると、トルクの単位時間当たりの変位量も大きくなる。上記構成によれば、制御装置は、トルクの単位時間当たりの変位量が一定の値を超えたことを検知することにより、ロータが逆回転しそうであると判断することができる。これにより、制御装置は、ロータが逆回転を開始する前に、ロータの逆回転兆候を検知して、移動ギアを第二位置へ移動するように制御することができる。このため、実際にロータが逆回転を開始するときには、移動ギアは第二位置への移動を完了している。従って、ターニング装置がロータの逆回転による過大な負荷を受けることを回避することができる。また、制御装置が自動的にこれらの動作を制御するように構成されているため、操作者がロータの状態を監視する等の作業負担を削減することができる。
 本発明の第三の態様によれば、第一の態様において、前記制御装置は、前記トルク検出部が検出した前記トルクが一定の値を超えた場合、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する。
 圧縮機のプロセスガスの逆流等によってロータの正回転が停滞すると、電動機の出力軸のトルクが変化(増加)する。さらに、ロータが正回転から逆回転に遷移しようとする力が強くなると、トルクも大きくなる。上記構成によれば、制御装置は、トルクが一定の値を超えたことを検知することにより、ロータが逆回転しそうであると判断することができる。これにより、制御装置は、ロータが逆回転を開始する前に、ロータの逆回転兆候を検知して、移動ギアを第二位置へ移動するように制御することができる。このため、実際にロータが逆回転を開始するときには、移動ギアは第二位置への移動を完了している。従って、ターニング装置がロータの逆回転による過大な負荷を受けることを回避することができる。また、制御装置が自動的にこれらの動作を制御するように構成されているため、操作者がロータの状態を監視する等の作業負担を削減することができる。
 本発明の第四の態様によれば、第一から第三の何れか一の態様において、前記出力軸の回転数を計測する回転数計測部をさらに備え、前記制御装置は、前記回転数計測部が計測する前記回転数に基づいて、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する。
 このような構成によれば、制御装置がロータの回転数の変化(減少)を検知することによっても、ロータの正回転が停滞し、ロータが逆回転しそうであると判断することができる。これにより、ロータの逆回転以外の要因によるトルクの変化によって、制御装置が移動ギアを移動させる誤動作を抑制することができる。
 本発明に係るターニング装置によれば、タービンロータの逆回転時にターニング装置が過大な負荷を受けることを抑制し、ターニング装置の交換および補修頻度を低減することができる。
本発明の一実施形態に係るターニング装置の断面図である。 本発明の一実施形態に係るターニング装置の断面図である。 ターニング装置を起動してからの経過時間ごとのトルクおよびタービンロータの回転数の変化を表したグラフである。
 (ターニング装置の構造)
 以下、本発明の実施形態に係るターニング装置30について図1および図2を参照して説明する。
 ターニング装置30は、例えば、蒸気タービン(不図示)のタービンロータ11を低速で回転させるための装置である。
 本実施形態において、タービンロータ11の一端には、タービンロータ11の外周に一体的に取り付けられたホイールギア12と、タービンロータ11の回転数を計測する回転数計測器13(回転数計測部)とを備えている。
 図1に示すように、ターニング装置30は、ケーシング31と、動力部40と、動力伝達部50とを備えている。ターニング装置30は、タービンロータ11の一端に配置されている。
 本実施形態において、図1の左右方向を幅方向、上下方向を上下方向、タービンロータ11の軸方向を軸方向と称する。
 動力部40は、電動機41と、電動機41の回転駆動力を伝達する出力軸43と、出力軸43から伝達された回転駆動力を所定の速度比(減速比)で減じる減速機42と、電動機41と減速機42との間に設けられ電動機のトルクを検出するトルク検出器44(トルク検出部)とを備えている。本実施形態において、動力部40は、ケーシング31の上面に配置されている。
 動力伝達部50は、出力ギア51と、連結ギア52と、移動ギア53とを備えている。本実施形態において、動力伝達部50は、ケーシング31の内部に配置されている。
 出力ギア51は、減速機42から不図示のベルトが掛け渡されており、これにより回転駆動力が伝達される。
 連結ギア52は、出力ギア51の下方おいて出力ギア51と噛合するように配置されている。出力ギア51が動力部40からの回転駆動力により回転すると、連結ギア52もともに回転する。
 移動ギア53は、連結ギア52の下方において連結ギア52と噛合するように配置されている。移動ギア53は、連結ギア52の回転に伴って回転する。
 また、移動ギア53は、図2に示すように、後述の移動機構60により、ホイールギア12と噛合する第一位置P1(破線で示す位置)と、ホイールギア12との噛合が解除され、ホイールギア12から径方向外方に向かって離間した第二位置P2(実線で示す位置)との間で移動可能に構成されている。
 移動ギア53は、第一位置P1に位置するときは、タービンロータ11のホイールギア12と噛合し、動力部40から伝達された回転駆動力によりホイールギア12を回転させる。ターニング装置30は、ホイールギア12を回転させることにより、タービンロータ11を回転させる。また、移動ギア53は、第二位置P2に位置するときは、タービンロータ11のホイールギア12との噛合が解除されているため、動力部40から伝達された回転駆動力をホイールギア12に伝達しない。
 移動機構60は、図1に示すように、制御装置61と、エアシリンダ62と、レバー64と、移動ロッド66と、ブラケット67とを備える。
 制御装置61は、本実施形態において、回転数計測器13で計測されるタービンロータ11の回転数と、トルク検出器44が検出する電動機41のトルクとに基づき、タービンロータ11の回転状態を監視する。制御装置61は、タービンロータ11の回転状態に応じて、エアシリンダ62の制御を行う。
 エアシリンダ62は、制御装置61の制御に従い、移動ギア53を第一位置P1と第二位置P2との間で移動させるための動力源である。本実施形態において、エアシリンダ62はケーシング31の幅方向一方側の外側面に設けられている。
 エアシリンダ62は、上下方向にスライド可能に延在するピストンロッド62aと、ピストンロッド62aを格納するエアシリンダケース62bとを有する。ピストンロッド62aの上端部はケーシング31の上面よりも上方の位置まで延出しており、幅方向に延在するレバー64の第一端64a側に接続されている。また、エアシリンダケース62bの幅方向における側面には、レバー64が挿通されるスリットが上下方向に形成されている。
 レバー64の第二端64bは、ケーシング31の上面に設けられた支持部65によって傾動可能に支持されている。このため、エアシリンダ62のピストンロッド62aが上下方向にスライドすることにより、支持部65に支持されたレバー64の第二端64bを支点として、ピストンロッド62aに連結されたレバー64の第一端64aが上下方向に移動する。
 移動ロッド66は上下方向に延在し、上端66aはケーシング31の上面よりも上方の位置においてレバー64とピストンロッド62aとが連結している位置と、レバー64の第二端64bとの間に傾動可能に連結されている。また、移動ロッド66の下端66b側はケーシング31の内部に挿入されている。移動ロッド66は、レバー64がエアシリンダのピストンロッド62aのスライド移動に伴い傾動することにより、連動して上下方向に移動する。
 ブラケット67は、略L字状に形成された板状の部材である。ブラケット67の第一端67aは移動ロッド66の下端66bに傾動可能に連結されている。また、ブラケット67の第二端67bは移動ギア53の中心軸に連結されおり、中間部67cは連結ギア52の中心軸に連結されている。このため、ブラケット67は、移動ロッド66の上下方向への移動に伴い、中間部67cを支点として第一端67aは上下方向に、第二端67bはホイールギア12の径方向に移動する。具体的には、図2に示すように、移動ロッド66が下方向に移動すると、ブラケット67の中間部67cを支点として、ブラケット67の第一端67aは下方向に移動し、ブラケット67の第二端67bはホイールギア12の径方向外方側に向かって移動する。このとき、ブラケット67の第二端67bは移動ギア53の中心軸に連結されているため、移動ギア53もホイールギア12の径方向外方側(第二位置P2)に向かって移動する。また、移動ロッド66が上方向に移動すると、ブラケット67の中間部67cを支点として、ブラケット67の第一端67aは上方向に移動し、ブラケット67の第二端67bはホイールギア12の径方向内方側に向かって移動する。このとき、ブラケット67の第二端67bは移動ギア53の中心軸に連結されているため、移動ギア53もホイールギア12の径方向内方側(第一位置P1)に向かって移動する。
 本実施形態においては、移動ギア53がホイールギア12やケーシング31の内壁に衝突することを防ぐために、レバー64の上下方向における傾動を規制するメカストッパ68が、エアシリンダケース62bの内壁に設けられている。メカストッパ68は、レバー64の上方向への傾動を規制する第一メカストッパ68aと、下方向への傾動を規制する第二メカストッパ68bとを有する。第一メカストッパ68aは、移動ギア53の第一位置P1に対応する位置に設けられ、第二メカストッパ68bは、移動ギア53の第二位置P2に対応する位置に設けられている。
 (ターニング装置の動作)
 次に、ターニング装置30の動作について図1~3を参照して説明する。
 まず、ターニング開始状態(図3におけるAの区間)では、ターニング装置30を起動し、電動機41を駆動する。なお、ターニング装置が稼働している間、制御装置61は、回転数計測器13で計測されたタービンロータ11の回転数と、トルク検出器44で検出された電動機41のトルクとを、所定の間隔毎に取得している。
 電動機41の回転駆動力は、出力軸43を通じて減速機42に伝達され、減速機42において所定の速度比(減速比)で回転数が減じられる。このように、動力部40は、トルクを所定値Tr1まで上昇させた状態で、動力伝達部50の出力ギア51へ回転駆動力を出力する。
 出力ギア51は、減速機42から伝達された回転駆動力により回転を始め、出力ギア51と噛合する連結ギア52を回転させる。これにより、連結ギア52と噛合する移動ギア53も回転を始める。
 このとき、移動ギア53は図1に示す第一位置P1に位置している。つまり、タービンロータ11のホイールギア12と噛合している。このため、移動ギア53が回転することにより、ホイールギア12とともにタービンロータ11も回転を始める。
 ターニング装置30の起動直後は、図3に示すように、一時的にトルクが上昇し、すぐに所定値Tr1付近まで下降する、いわゆる起動トルクが生じる。本実施形態において、制御装置61は、トルクが一定の間(図3のt1まで)所定値Tr1を維持したときに、ターニング開始状態(A)からターニング中状態(図3におけるB区間)に移行したと判断する。これにより、ターニング装置30の起動直後におけるトルクの上昇を起動トルクであると判断し、タービンロータ11の逆回転の誤検出を抑制する。なお、ターニング中状態(B)への移行の判断は、トルクが起動トルクより所定値Tr1に下降したときに、操作者の操作によって制御装置61に指示を行うことによって判断してもよい。
 ターニング中状態(B)では、図3に示すように、トルクは所定値Tr1、タービンロータ11の回転数は所定値N1となる。つまり、単位時間当たりのトルク変位量はほぼゼロとなる。
 しかしながら、圧縮機のプロセスガスの逆流等により、タービンロータ11を逆回転させる方向に力が生じると、タービンロータ11が正回転しにくくなる場合がある。この場合、図3に示すように、トルクは所定値Tr1より上昇する。つまり、単位時間当たりのトルク変位量が上昇する。
 制御装置61は単位時間当たりのトルク変位量が規定量α1を超えたことを検知すると、タービンロータ11の逆回転兆候を検知したと判断する。これにより、制御装置61は、ターニング中状態(B)から逆回転兆候状態(図3におけるC区間)に移行したと判断する。
 逆回転兆候状態(C)では、図3に示すように、トルクは所定値Tr1よりも上昇し、タービンロータ11の回転数は所定値N1よりも下降する。
 この状態において、制御装置61は、エアシリンダ62を制御して、図2に示すようにピストンロッド62aを下方向へ移動させる。これにより、レバー64が第二端64bを支点として下方向へ傾動し、移動ロッド66を押し下げる。移動ロッド66は下方向へ移動して、ブラケット67の第一端67aを押し下げる。ブラケット67は、中間部67cを支点として、第一端67aが移動ロッド66により押し下げられた分、第二端67bをホイールギア12の径方向外方側へ向かって押し上げる。これにより、ブラケット67の第二端67bに連結されている移動ギア53も、ホイールギア12と噛合する位置である第一位置P1(図2の破線で示す位置)から、ホイールギア12の径方向外方側である第二位置P2(図2の実線で示す位置)へ移動する。これにより、移動ギア53とホイールギア12との噛合が解除される。
 圧縮機のプロセスガスの逆流等によりタービンロータ11が逆回転する方向への力が大きく、タービンロータ11の正回転が維持できなくなると、逆回転兆候状態(C)から、タービンロータ11の逆回転状態(図3におけるD区間)に移行する。ここで、移動ギア53がホイールギア12と噛合した状態のままであると、図3に示すように、トルクは上限値Tr2を超え、タービンロータ11の回転数はゼロからマイナスの値となる。つまり、タービンロータ11が逆回転を開始する。このため、移動ギア53にはタービンロータ11によって逆回転方向への過大な負荷がかかり、移動ギア53が破損する可能性がある。また、このような負荷は、移動ギア53からターニング装置30全体へ伝達され、ターニング装置30が破損する可能性がある。
 しかしながら、本実施形態においては、タービンロータ11の逆回転状態(D)に移行する以前に、逆回転兆候状態(C)の段階で、移動ギア53とホイールギア12との噛合を解除するように動作する。このため、タービンロータ11の逆回転を開始しても、ターニング装置30に過大な負荷がかかることを避けることができる。
 次に、本実施形態におけるターニング装置30の効果を説明する。
 上述のように、本実施形態のターニング装置30は、トルク検出器44により検出された電動機41のトルクに基づいて、移動ギア53をホイールギア12と噛合する第一位置P1からホイールギア12の径方向外方側であって、ホイールギア12と噛合しない第二位置P2に移動させるように構成されている。これにより、タービンロータ11が逆回転する前に、タービンロータ11の逆回転による過大な負荷を受けて移動ギア53の破損等が生じることを抑制することができる。また、トルクに基づいて自動的に移動ギア53を移動させるように構成されているため、操作者がタービンロータ11の状態を監視し、ターニング装置30の操作を行う等の作業負担を削減することができる。また、操作者の見落とし等によってタービンロータ11の逆回転兆候状態(C)を検知できなかった場合においても、ターニング装置30がタービンロータ11の逆回転による過大な負荷を受ける可能性を低減することができる。これにより、タービンロータ11のホイールギアと噛合する移動ギア53等の破損を抑える効果を得ることができ、ターニング装置30の交換および補修頻度を低減させることができる。
 上述のように、本実施形態のターニング装置30において、トルク検出器44により検出された電動機41のトルクが一定の間、所定値Tr1を維持したときに、制御装置61はターニング中状態(B)であると判断する。これにより、ターニング装置30の起動直後のトルク上昇(起動トルク)による移動機構60の誤動作を抑えることができる。また、制御装置61が自動的にターニング中状態(B)であることを検知するため、操作者がタービンロータ11の状態を監視する等の作業負担を削減することができる。
 上述のように、本実施形態のターニング装置30において、ターニング中状態(B)において単位時間当たりのトルク変位量が規定量α1を超えた場合に、制御装置61は逆回転兆候状態(C)に移行したと判断する。これにより、タービンロータ11の逆回転の可能性を自動的に検知することが可能となり、操作者がタービンロータ11の状態を監視する等の作業負担を削減することができる。また、実際にタービンロータ11が逆回転を開始する前にその兆候を検知することが可能であるため、ターニング装置30がタービンロータ11の逆回転により過大な負荷を受ける可能性を低減させることができる。これにより、タービンロータ11のホイールギアと噛合する移動ギア53等の破損を抑える効果を得ることができ、ターニング装置30の交換および補修頻度を低減させることができる。
 以上、本発明の実施形態について詳細に説明したが、本発明の技術的思想を逸脱しない限り、これらに限定されることはなく、多少の設計変更等も可能である。
 例えば、上述の実施形態においては、トルク検出器44により検出された電動機41のトルクが一定の間、所定値Tr1を維持したときに、ターニング中状態(B)であると制御装置61が判断する構成について説明した。また、ターニング中状態(B)において単位時間当たりのトルク変位量が規定量α1を超えた場合に、逆回転兆候状態(C)に移行したと制御装置61が判断する構成について説明した。しかしながら、この構成に限られることはない。
 起動トルクは単位時間当たりトルク変位量が非常に大きいため、制御装置61は、単位時間当たりのトルク変位量が規定量α2を超えるときは起動トルクであると判断してもよい。つまり、制御装置61は、単位時間当たりの変位量が、規定量α1以上、規定量α2以下の範囲となった場合、逆回転兆候状態(C)に移行したと判断してもよい。この構成によっても、上述の実施形態と同様の効果を得ることが可能となる。
 また、制御装置61は、ターニング中状態(B)において、トルク検出器44が検出したトルクが上限値Tr2を超えた場合に、逆回転兆候状態(C)に移行したと判断してもよい。この構成によっても、上述の実施形態と同様の効果を得ることが可能となる。
 また、制御装置61は、タービンロータ11の回転数が所定値N1に到達して一定時間(例えば、図3におけるt2からt3までの期間)を経過したときに、ターニング開始状態(A)からターニング中状態(B)に移行したと判断してもよい。或いは、回転数が所定値N1に到達したときに、操作者の操作によって制御装置61に指示を行い、ターニング中状態(B)に移行したと判断してもよい。この構成によっても、上述の実施形態と同様の効果を得ることが可能となる。
 また、制御装置61は、ターニング中状態(B)においてタービンロータ11の回転数が所定値N1よりも下降した場合に、逆回転兆候状態(C)に移行したと判断してもよい。この構成によっても、上述の実施形態と同様の効果を得ることが可能となる。
 さらに、制御装置61は、上記において説明したタービンロータ11の回転数に基づく判断と、トルクまたは単位時間当たりのトルク変位量に基づく判断とを組み合わせて、逆回転兆候状態(C)に移行したかどうかの判断をしてもよい。制御装置61がタービンロータ11の回転数の変化(減少)を検知することによっても、タービンロータ11の正回転が停滞し、タービンロータ11が逆回転しそうであると判断することができる。これにより、タービンロータ11の逆回転以外の要因によるトルクの変化によって、制御装置61が移動ギア53を移動させる誤動作を抑制することができる。
 上述のターニング装置によれば、タービンロータの逆回転時にターニング装置が過大な負荷を受けることを抑制し、ターニング装置の交換および補修頻度を低減することができる。
 11 タービンロータ(ロータ)
 12 ホイールギア
 13 回転数計測器(回転数計測部)
 30 ターニング装置
 31 ケーシング
 40 動力部
 41 電動機
 42 減速機
 43 出力軸
 44 トルク検出器(トルク検出部)
 50 動力伝達部
 51 出力ギア
 52 連結ギア
 53 移動ギア
 60 移動機構
 61 制御装置
 62 エアシリンダ
 62a ピストンロッド
 62b エアシリンダケース
 64 レバー
 65 支持部
 66 移動ロッド
 67 ブラケット
 68 メカストッパ
 68a 第一メカストッパ(メカストッパ)
 68b 第二メカストッパ(メカストッパ)

Claims (4)

  1.  電動機と、
     該電動機の出力軸の回転をロータに伝達可能とする第一位置、及び、該出力軸の回転を前記ロータに伝達不能とする第二位置に移動するように構成されている移動ギアと、
     前記移動ギアを前記第一位置及び第二位置との間で移動させる移動機構と、
     前記電動機の出力軸のトルクを検出するトルク検出部と、
     前記トルク検出部が検出する前記トルクに基づいて、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する制御装置と、
     を備えるターニング装置。
  2.  前記制御装置は、
     前記トルク検出部が検出した前記トルクの単位時間当たりの変位量が一定の値を超えた場合、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する、
     請求項1に記載のターニング装置。
  3.  前記制御装置は、
     前記トルク検出部が検出した前記トルクが一定の値を超えた場合、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する、
     請求項1に記載のターニング装置。
  4.  前記出力軸の回転数を計測する回転数計測部をさらに備え、
     前記制御装置は、前記回転数計測部が計測する前記回転数に基づいて、前記移動ギアを前記第一位置から前記第二位置に移動させるように前記移動機構を制御する、
     請求項1から3のいずれか1項に記載のターニング装置。
PCT/JP2014/078911 2014-10-30 2014-10-30 ターニング装置 WO2016067411A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016556120A JP6222614B2 (ja) 2014-10-30 2014-10-30 ターニング装置
EP14905109.6A EP3168432B1 (en) 2014-10-30 2014-10-30 Turning device
PCT/JP2014/078911 WO2016067411A1 (ja) 2014-10-30 2014-10-30 ターニング装置
CN201480080857.7A CN106574517A (zh) 2014-10-30 2014-10-30 盘车装置
US15/503,107 US10487658B2 (en) 2014-10-30 2014-10-30 Turning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078911 WO2016067411A1 (ja) 2014-10-30 2014-10-30 ターニング装置

Publications (1)

Publication Number Publication Date
WO2016067411A1 true WO2016067411A1 (ja) 2016-05-06

Family

ID=55856795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078911 WO2016067411A1 (ja) 2014-10-30 2014-10-30 ターニング装置

Country Status (5)

Country Link
US (1) US10487658B2 (ja)
EP (1) EP3168432B1 (ja)
JP (1) JP6222614B2 (ja)
CN (1) CN106574517A (ja)
WO (1) WO2016067411A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3270510A4 (en) * 2015-03-24 2018-03-14 Mitsubishi Heavy Industries Compressor Corporation Turning apparatus and control method for turning apparatus
CN109322937A (zh) * 2018-11-21 2019-02-12 陕西渭河工模具有限公司 一种快捷离合器
CN110410255B (zh) * 2019-07-30 2021-03-16 重庆双奥机械制造有限公司 具有巡检功能的弹簧马达及巡检方法
CN110552851B (zh) * 2019-09-11 2021-08-27 太原重工股份有限公司 手动盘车装置
CN113738459B (zh) * 2020-05-29 2024-07-19 上海梅山钢铁股份有限公司 一种智能型盘车控制装置及控制方法
CN112356049A (zh) * 2020-12-18 2021-02-12 华南理工大学广州学院 一种传动结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320621A (ja) * 1999-05-14 2000-11-24 Mitsubishi Heavy Ind Ltd 回転動力発生装置の低速回転装置
JP2003293706A (ja) * 2002-04-01 2003-10-15 Mitsubishi Heavy Ind Ltd ターニング装置及びターニング装置の運転制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021719A (en) * 1960-07-21 1962-02-20 Westinghouse Electric Corp Rotor turning gear control apparatus
JPS53105615A (en) * 1977-02-28 1978-09-13 Toshiba Corp Turbine turning system
JPS6275328A (ja) * 1985-09-30 1987-04-07 Toshiba Corp トルクセンサ
US4905810A (en) 1988-04-29 1990-03-06 Bahrenburg Harry H Rotor shaft turning apparatus
JPH09256810A (ja) * 1996-03-19 1997-09-30 Mitsubishi Heavy Ind Ltd タービンロータ等のターニング装置
CN2739362Y (zh) * 2004-09-29 2005-11-09 上海汽轮机有限公司 变频调速器的汽动给水泵汽轮机高速盘车装置
US7309208B2 (en) * 2005-02-22 2007-12-18 General Electric Company Turning gear drive system
DE102009045159A1 (de) 2009-09-30 2011-03-31 Robert Bosch Gmbh Verfahren zum Überprüfen eines Einspurens eines Ritzels eines Startersystems
CN101787905B (zh) * 2010-04-12 2013-04-17 杭州汽轮机股份有限公司 电动盘车安全退出装置
JP5822486B2 (ja) 2011-02-25 2015-11-24 三菱重工コンプレッサ株式会社 ターニング装置
CN202280488U (zh) * 2011-09-30 2012-06-20 浙江杰特优动力机械有限公司 一种电动盘车机构
CN104081083B (zh) 2012-02-22 2017-05-24 三菱重工压缩机有限公司 回转装置以及旋转机械
CN202718719U (zh) * 2012-07-01 2013-02-06 浙江杰特优动力机械有限公司 汽轮机的电动盘车装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320621A (ja) * 1999-05-14 2000-11-24 Mitsubishi Heavy Ind Ltd 回転動力発生装置の低速回転装置
JP2003293706A (ja) * 2002-04-01 2003-10-15 Mitsubishi Heavy Ind Ltd ターニング装置及びターニング装置の運転制御方法

Also Published As

Publication number Publication date
US20170226858A1 (en) 2017-08-10
EP3168432A4 (en) 2017-08-02
JP6222614B2 (ja) 2017-11-01
JPWO2016067411A1 (ja) 2017-09-07
CN106574517A (zh) 2017-04-19
EP3168432A1 (en) 2017-05-17
EP3168432B1 (en) 2018-08-15
US10487658B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6222614B2 (ja) ターニング装置
ES2716997T3 (es) Sistemas de control de la orientación de turbina eólica
JP6254930B2 (ja) 歯車を把持するための歯車把持装置および方法
TW201431735A (zh) 自行車用控制裝置
JP6000527B2 (ja) 電動アクチュエータ、電動アクチュエータ動力切断方法、及び電動アクチュエータ動力切断装置
WO2012108375A1 (ja) 電動工具
JP5817683B2 (ja) ヒートポンプ給湯機
KR101925680B1 (ko) 터빈 제어 장치, 터빈, 및 터빈 축의 진동값 저감 방법
JP6222615B2 (ja) ターニング装置
JP2011102463A (ja) ハンマーグラブ制御システム
JP6087910B2 (ja) 適応制御を用いて板材からパネルを製造するためのシステム及び方法
JP4527793B2 (ja) モータ制御装置
JP5717545B2 (ja) オイルポンプのトルク測定方法及び流量測定方法
JP2010038181A (ja) クラッチ制御装置
JP6403028B2 (ja) ターニング装置及びターニング装置の制御方法
JP2010190153A (ja) ターニング装置
JP2011030826A (ja) 内視鏡装置
JP6246352B2 (ja) 同期クラッチ
JP2009079734A (ja) 電動パーキングブレーキ
KR102399619B1 (ko) 차량용 파킹기구 고장 진단방법
JP5601902B2 (ja) ジャーナル軸受
KR101586538B1 (ko) 세탁기의 구동 장치 및 구동 방법
JP6438513B2 (ja) 歯車を把持するための歯車把持装置および方法
WO2017138040A1 (ja) ターニング装置
JP5416015B2 (ja) 圧力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556120

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014905109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014905109

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE