WO2016063502A1 - 知識管理装置、知識管理方法、及び、プログラムの記録媒体 - Google Patents
知識管理装置、知識管理方法、及び、プログラムの記録媒体 Download PDFInfo
- Publication number
- WO2016063502A1 WO2016063502A1 PCT/JP2015/005212 JP2015005212W WO2016063502A1 WO 2016063502 A1 WO2016063502 A1 WO 2016063502A1 JP 2015005212 W JP2015005212 W JP 2015005212W WO 2016063502 A1 WO2016063502 A1 WO 2016063502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- factor
- countermeasure
- list
- value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
Definitions
- the present invention relates to a knowledge management device, a knowledge management method, and a program recording medium, in particular, a knowledge management device, a knowledge management method, and a program for supporting factor analysis when a goal cannot be achieved in research and development.
- This relates to a recording medium.
- Patent Document 1 discloses an information processing apparatus that objectively evaluates the degree of difficulty in achieving a goal and the degree of insufficient examination. This device outputs work guidelines according to the balance of the evaluation values together with the degree of difficulty in achieving each goal and the degree of insufficient examination.
- the present invention aims to provide a knowledge management device, a knowledge management method, and a program for solving the above-described problems.
- the knowledge management apparatus stores plan information storage means for storing a node value target that is a value of the node in association with the node, and a factor for changing the node value of the node in association with the node.
- a cause-and-effect relationship storage means, and a factor specifying means for acquiring a node value record of a node and outputting a factor associated with the node if the record does not achieve the target associated with the node; Prepare.
- a knowledge management method stores a node value target that is a value of the node in association with a node, stores a factor that changes the node value of the node in association with a node, and If the record of the value is acquired and the record does not achieve the target associated with the node, the factor associated with the node is output.
- a recording medium stores, in a computer, processing for storing a node value target that is a value of the node in association with the node, and a factor for changing the node value of the node in association with the node. Records a program that executes a process and a process of outputting a factor associated with the node if the result of the node value of the node is acquired and the result does not achieve the target associated with the node .
- the knowledge management device makes it easy for the user to analyze the cause when the goal cannot be achieved in the performance of research and development and business.
- FIG. 1 is a block diagram showing the configuration of the knowledge management apparatus 101 according to the first embodiment.
- FIG. 2 is a diagram illustrating the structure of the plan information 200.
- FIG. 3 shows an example of the data structure of the causal relationship information 300 stored in the causal relationship storage unit 140.
- FIG. 4 is a diagram illustrating a hardware configuration of a computer apparatus 700 that implements the knowledge management apparatus 101.
- FIG. 5 is a diagram illustrating the operation of the factor specifying unit 150.
- FIG. 6 is a block diagram illustrating a configuration of the knowledge management device 500 according to the second embodiment.
- FIG. 7 shows an example of the countermeasure information 600 stored in the countermeasure storage unit 510.
- FIG. 8 is a block diagram illustrating a configuration of the knowledge management device 550 according to the third embodiment.
- FIG. 9 shows an example of the plan information 200 given to the knowledge management device 500.
- FIG. 10 shows a partial expression example of the plan information (target) 910 on the computer device 700.
- FIG. 11 shows the difference information 930.
- FIG. 12 shows a partial expression example on the computer device 700 of the difference information 930.
- FIG. 13 shows the main difference information 940 obtained from the difference information 930 by the main difference specifying process.
- FIG. 14 shows a partial expression example of the main difference information 940 on the computer device 700.
- FIG. 15 shows a format example of the causal relationship information 300 stored in the causal relationship storage unit 140.
- FIG. 16 shows a partial expression example of the countermeasure information 600 on the computer device 700.
- FIG. 17 shows an arrangement index of a specific data example.
- FIG. 18 is a block diagram illustrating a configuration of a knowledge management apparatus 801 according to the fourth embodiment.
- FIG. 1 is a block diagram showing a configuration of a knowledge management apparatus 101 according to the first embodiment of the present invention.
- the knowledge management device 101 includes a target input unit 110, a result input unit 120, a plan information storage unit 130, a causal relationship storage unit 140, and a factor identification unit 150.
- the target input unit 110, the result input unit 120, and the factor specifying unit 150 are configured by logic circuits.
- the plan information storage unit 130 and the causal relationship storage unit 140 are configured by a storage device such as a semiconductor storage device or a disk storage device.
- the target input unit 110, the result input unit 120, or the factor specifying unit 150 may be realized by a program stored in the storage unit 702 of the computer device 700 illustrated in FIG. 4 and executed by the CPU 701 (Central Processing Unit). good.
- the target input unit 110 and the actual result input unit 120 read structured target data and actual result data (collectively, collectively referred to as plan information 200) from the outside.
- the read plan information 200 is input to the plan information storage unit 130 and the factor specifying unit 150.
- the plan information storage unit 130 stores the input plan information 200 so that the plan information 200 can be referred to from the outside, for example, as meta information of each design and development product.
- the causal relationship storage unit 140 stores the causal relationship information 300 representing the relationship between environmental factors and each node of the structure of the plan information 200 (referred to as a causal relationship) as a many-to-many relationship.
- the factor identifying unit 150 acquires the plan information 200 obtained from the target input unit 110, the result input unit 120, and the plan information storage unit 130, and the causal relationship information 300 obtained from the causal relationship storage unit 140. Then, the factor identifying unit 150 identifies a factor that causes a gap between the target and the performance with reference to the causal relationship information 300.
- FIG. 2 is a diagram illustrating an example of the structure of the plan information 200.
- the plan information 200 is a directed graph with a label represented by an information node 201 and an information link 202 that is a link between the information nodes 201.
- Specific data of the plan information 200 is expressed as an information node 201 on the graph.
- the information link 202 expresses an inclusion relationship or dependency relationship between data expressed by the information node 201.
- Each information node 201 can have one or more attributes.
- the attribute is, for example, a node label 203 indicating the content of data represented by the information node 201 such as “investment recovery plan”.
- the node label is, for example, an identifier such as a character string or a URI (UniformifierResource ⁇ ⁇ ⁇ Identifier) in which a data structure is separately defined.
- Another attribute of the information node 201 is, for example, a node value 204 that is a numerical value indicating a specific amount of money such as “2 million yen”, time, man-hour, and ratio.
- the node value is also called an attribute value.
- the plan information storage unit 130 stores plan information 200 representing a target and plan information 200 representing an actual result.
- the plan information 200 includes, for example, an information node 201 representing an investment recovery plan, a target domain, a partner, and a value under a root node representing a goal.
- the plan information 200 is referred to from, for example, a specific design / development product, and functions as metadata indicating a strategic goal or a strategy result for the design / development product.
- FIG. 3 shows an example of the data structure of the causal relationship information 300 stored in the causal relationship storage unit 140.
- the causal relationship information 300 includes one or more causal relationship nodes 301.
- the example of the causal relationship information 300 in FIG. 3 includes six causal relationship nodes 301 of X1 to X6.
- the causality node 301 has one or more plan information node links 302.
- the plan information node link 302 is link information for one information node 201 of the plan information 200 (indicated by a broken line in FIG. 3).
- the causal relationship node 301 has one or more factor links 304.
- the factor link 304 is link information to the factor node 303 that represents a factor that affects the attribute of the information node 201 linked by the plan information node link 302.
- the causal relationship information 300 may be expressed using a plurality of causal relationship nodes 301.
- the causality node 301 In addition to the positive influence (when a factor occurs or increases, the attribute value of the plan information 200 increases), the causality node 301 has a negative effect (when the factor occurs or increases, the attribute of the plan information 200). The value may decrease).
- the causal relationship node 301 may have an attribute for distinguishing a positive influence from a negative influence.
- the causal relationship node 301 in FIG. 3 is an example having a positive influence, and “+” described in the causal relation node 301 represents a positive influence.
- the causal node 301 named X1 has a plan information node link 302 with respect to the information node 201 of the node label 203 of “use unit price” of the plan information 200. Furthermore, this causal relationship node 301 has a factor link 304 to a factor node 303 having a factor of “price index”. The causal relationship node 301 has an attribute of “positive influence”. That is, the causal relationship node 301 named X1 indicates that the factor of the price index has a positive influence on the information node 201 having the attribute of the usage unit price.
- the knowledge management apparatus 101 When there is a causal relationship node 301 having a plan information node link 302 for a lower level information node 201, the knowledge management apparatus 101 is also affected by the same factor in the upper level information node 201 of the information node 201. You may judge. Details will be described later (step S4 in FIG. 5).
- FIG. 4 is a diagram illustrating a hardware configuration of the computer apparatus 700 that implements the knowledge management apparatus 101.
- the computer device 700 includes a CPU 701, a storage unit 702, a storage device 703, an input unit 704, an output unit 705, and a communication unit 706.
- the computer device 700 may include a recording medium 707 (or storage medium) supplied from outside and read / written by the storage device 703.
- the recording medium 707 is a non-temporary recording medium that is a non-volatile recording medium that stores information non-temporarily.
- the recording medium 707 may be a temporary recording medium that temporarily stores information.
- the CPU 701 controls the overall operation of the computer apparatus 700 by operating an operating system (not shown). For example, the CPU 701 reads the program and data from the recording medium 707 mounted on the storage device 703 and writes the read program and data to the storage unit 702.
- the program causes the computer device 700 to execute an operation of a flowchart described later.
- the CPU 701 executes various processes as the target input unit 110, the result input unit 120, or the factor specifying unit 150 shown in FIG. 1 according to the read program and based on the read data.
- the CPU 701 may download the program and its data to the storage unit 702 from an external device (not shown) connected to a communication network (not shown).
- the storage unit 702 stores the program and data.
- the storage unit 702 may store plan information 200 and causal relationship information 300, for example.
- the storage unit 702 may be included in some of the target input unit 110, the result input unit 120, the plan information storage unit 130, the causal relationship storage unit 140, and the factor identification unit 150.
- the storage device 703 is, for example, an optical disk, a flexible disk, a magnetic optical disk, an external hard disk device, a semiconductor memory device, and the like, and includes a recording medium 707.
- the storage device 703 or the recording medium 707 stores the program in a computer-readable manner.
- the storage device 703 may store the plan information 200 and the causal relationship information 300, for example.
- the storage device 703 may be included as part of the target input unit 110, the result input unit 120, the plan information storage unit 130, the causal relationship storage unit 140, and the factor identification unit 150.
- the input unit 704 receives an operation input by an operator and an input of information from the outside.
- Devices used for the input operation are, for example, a mouse, a keyboard, a built-in key button, and a touch panel.
- the input unit 704 may be included as part of the target input unit 110, the result input unit 120, the plan information storage unit 130, the causal relationship storage unit 140, and the factor identification unit 150.
- the output unit 705 is realized by a display device, for example.
- the output unit 705 is used, for example, for an input request to the operator by GUI (Graphical User Interface), output presentation to the operator, and the like.
- the output unit 705 may be included as a part of the target input unit 110, the result input unit 120, the plan information storage unit 130, the causal relationship storage unit 140, and the factor identification unit 150.
- the communication unit 706 implements an interface with an external system.
- the communication unit 706 may be included as a part of the target input unit 110, the result input unit 120, the plan information storage unit 130, the causal relationship storage unit 140, and the factor identification unit 150.
- each element of the knowledge management apparatus 101 shown in FIG. 1 may be realized by the computer apparatus 700 having a hardware configuration shown in FIG.
- the means for realizing each unit included in the computer apparatus 700 is not limited to the above. That is, the computer device 700 may be realized by one physically coupled device, or may be realized by a plurality of these devices by connecting two or more physically separated devices in a wired or wireless manner. Good.
- the CPU 701 may read and execute the program code stored in the recording medium 707. Alternatively, the CPU 701 may store the code of the program stored in the recording medium 707 in the storage unit 702, the storage device 703, or both.
- the present embodiment includes an embodiment of a recording medium 707 that stores the program (software) executed by the CPU 701 of the computer apparatus 700 temporarily or non-temporarily.
- a storage medium that stores information non-temporarily is also referred to as a non-volatile storage medium.
- the factor identifying unit 150 first performs difference calculation (step S1) on the input of the two plan information 200 of the target and the actual value, and creates a difference graph.
- the target and the actual result of the plan information 200 are an enumerated data set including at least data of a set of ⁇ information node 201, predicate, object> as elements.
- This data is at least classified into link information and attribute value information.
- the former is a structure of ⁇ information node 201, a predicate indicating a link relation, an object indicating information node 201>
- the latter is a structure of ⁇ information node 201, a predicate indicating attribute value, an object indicating node value 204>. It has. However, the order may be changed.
- the link information is, for example, ⁇ N1, hasLink, N2>
- the attribute value information is ⁇ N3, hasValue, 600>.
- the factor identification unit 150 estimates the correspondence between the target and actual information nodes 201 based on this structure, and calculates the difference between the attribute values of the corresponding nodes. It is assumed that the result data includes ⁇ n, a predicate indicating that the object is an attribute value, b1>, and the target data includes ⁇ n, a predicate indicating that the object is an attribute value, and b2>. .
- “n” is the information node 201, and b1 and b2 are node values (attribute values).
- the factor specifying unit 150 calculates b1-b2, and includes difference information ⁇ n, a predicate indicating that the object is an attribute value, and b1-b2> in the difference graph.
- the factor identifying unit 150 can use, for example, maximum likelihood estimation or Bayesian estimation as an estimation method of the correspondence relationship of the information node 201.
- specification part 150 does not need to estimate the correspondence of the information node 201.
- the difference graph has the same structure as the plan information 200 or a subset structure thereof.
- the factor specifying unit 150 performs a rounding process (Step S2) on the value of each node (hereinafter referred to as a difference node) of the calculated difference graph to obtain a rounded difference graph.
- the rounding process removes non-strategic differences by rounding differences within a given error range.
- the factor identifying unit 150 may not perform this process.
- the factor specifying unit 150 extracts a set of difference nodes having a large difference, that is, a set of main difference nodes, from the rounded difference graph or the difference graph.
- the factor specifying unit 150 may perform absolute evaluation of the difference, or may perform relative evaluation with respect to the target value or the actual value.
- the factor specifying unit 150 may extract a specified number of difference nodes in descending order of difference.
- the factor specifying unit 150 expands the causal relationship when the causal relationship information 300 stored in the causal relationship storage unit 140 is minimized.
- each element included in the causal relationship information 300 is ⁇ causal relationship identifier, factor, attribute indicating positive or negative influence, node of difference graph>.
- the factor specifying unit 150 has link information ⁇ node c, attribute d, node b> in the difference graph for the data ⁇ identifier x, factor a, +, node b> of the causal relationship node 301.
- data ⁇ identifier x, factor a, +, node c> of the causality node 301 is generated.
- the node c is an upper node of the node b.
- the factor identifying unit 150 associates the factor a with the upper node c of the node b. Since the upper node c depends on the lower node b, it is affected by the same factor a as the lower node b. The factor identifying unit 150 reflects this in the causal relationship information 300 by performing this process.
- the factor specifying unit 150 can skip this causal relationship structure development process (step S4).
- the factor specifying unit 150 extracts factors that affect the main difference node from the expanded causal relationship set.
- the main difference information 940 includes ⁇ identifier i, a predicate indicating that the object is a name, information node name> and ⁇ identifier i, a predicate indicating that the object is a value, a difference value>, or Or any one of them.
- the causal relationship information 300 includes ⁇ identifier x, factor a, +, node i> as the causal relationship node 301, the factor specifying unit 150 extracts the factor a.
- the factor identifying unit 150 may be output instead of a.
- the knowledge management apparatus 101 makes it easy for the user to analyze the cause when the goal cannot be achieved in the performance of research and development, business, or the like.
- the first reason is that the causal relationship storage unit 140 stores the causal relationship information 300.
- the causal relationship information 300 associates the node value 204 of the node included in the plan information 200 with the factor that affects the node value 204.
- the second reason is that the factor identifying unit 150 identifies a factor that affects the node value 204 in which the difference between the target and the actual result occurs in the plan information 200 with reference to the causal relationship information 300. is there.
- FIG. 6 is a block diagram showing the configuration of the knowledge management device 500 according to the second embodiment of the present invention.
- the knowledge management device 500 according to the present embodiment includes a countermeasure storage unit 510 and a countermeasure derivation unit 520 in addition to the configuration of the knowledge management device 101 according to the first embodiment.
- Components similar to those of the knowledge management apparatus 101 of the first embodiment function in the same manner as the knowledge management apparatus 101 of the first embodiment. That is, for example, the factor specifying unit 150 included in the part extracts and outputs a set of factors that generate a difference between the target and the actual result of the plan information 200.
- the countermeasure storage unit 510 stores information on countermeasures to be taken against the factors (hereinafter referred to as countermeasure information 600, details will be described later).
- the measure deriving unit 520 receives the set of factors output from the factor specifying unit 150 and the measure information 600, extracts effective measures for the set of factors output by the factor specifying unit 150, and outputs them.
- the countermeasure derivation unit 520 is composed of a logic circuit.
- the countermeasure storage unit 510 includes a storage device such as a semiconductor storage device or a disk storage device.
- the countermeasure derivation unit 520 may be realized by a program stored in the storage unit 702 of the computer device 700 and executed by the CPU 701.
- FIG. 7 shows an example of the countermeasure information 600 stored in the countermeasure storage unit 510.
- the countermeasure information 600 is information having a structure in which a factor node 610 representing a factor and a countermeasure node 620 representing a countermeasure are associated in many-to-many relationship with the factor / countermeasure relation information 611.
- the countermeasure information 600 may include a hierarchical countermeasure description. In this case, the relationship between the comprehensive countermeasure A of the upper layer and the specific countermeasure B of the lower layer is represented by an inter-measure link 630 between the countermeasure node 620 of the countermeasure A and the countermeasure node 620 of the countermeasure B.
- the measure information 600 is more formally defined as, for example, the following expressions (1) to (4). This structure or property may be extended and used.
- V r is a set of factors
- V c is a set of countermeasures.
- E rc xy is a binary relationship indicating that the countermeasure x directly covers the factor y
- E c xy is a binary relationship indicating that the countermeasure x directly covers the countermeasure y.
- E ci xy is a binary relationship indicating that the countermeasure x covers the countermeasure y
- E rci xy is a binary relationship indicating the relationship where the countermeasure x covers the factor y.
- z in Formula (3) and Formula (4) means the element of Vc which satisfies the conditions described after the comma, respectively. [Description of operation] Each part generally operates as follows.
- the measure deriving unit 520 uses the measure information 600 stored in the measure storing unit 510 to derive a set of measures covering the elements included in the set of factors that is the output of the factor specifying unit 150. This derivation means obtaining x satisfying E rci x y for all factors ⁇ y ⁇ V r in the above definition.
- the countermeasure derivation unit 520 performs this derivation using, for example, a transposed index or a greedy method with multiple paths.
- the countermeasure deriving unit 520 may use a greedy method that improves memory efficiency and disk efficiency.
- the countermeasure derivation unit 520 operates as follows when the greedy method using a typical transposed index is used.
- the countermeasure derivation unit 520 adds a new countermeasure to the set of countermeasures that are solution candidates, and calculates a set of covering factors.
- the countermeasure to be added needs to be a countermeasure corresponding to the factor newly added to the factor set.
- the measure deriving unit 520 first creates a list of measures (transposed index) that covers each factor. Using this list, the countermeasure derivation unit 520 adds a countermeasure that maximizes the number of factors newly added to the factor set to the set of candidate solutions.
- the countermeasure derivation unit 520 searches for a set Y x of factors y satisfying E rci x y for each countermeasure x ⁇ V c .
- the countermeasure derivation unit 520 outputs x as a countermeasure set.
- the countermeasure derivation unit 520 calculates a union by combining the set Y x for the countermeasure x and the set Y x ′ for the countermeasure x ′ different from the countermeasure x. At this time, the countermeasure derivation unit 520 selects x ′ so that the union Y x ⁇ Y x ′ is maximized, that is, the number of factors newly covered by Y x ′ is maximized. . If Y x ⁇ Y x ′ includes all the input factor sets, the countermeasure deriving unit 520 outputs a countermeasure set ⁇ x, x ′ ⁇ .
- the measure derivation unit 520 makes the same determination as above for the measure x ′′ that maximizes Y x ⁇ Y x ′ ⁇ Y x ′′. . Thereafter, the countermeasure deriving unit 520 adds the set of factors covered by the countermeasure as described above, and repeats the determination as to whether or not all the input factor sets are included. Finally, the countermeasure derivation unit 520 outputs a set of countermeasures covering all the factors. [Description of effects]
- the knowledge management device 500 according to the present embodiment makes it easy for the user to take measures against the cause when the goal cannot be achieved in the performance of research and development and business. The reason is that the countermeasure derivation unit 520 refers to the countermeasure information 600 and presents a countermeasure for the factor that the target cannot be achieved.
- the knowledge management apparatus 500 of the present embodiment can reduce the time required for disk input / output in deriving the countermeasure. The reason is that since the countermeasure derivation unit 520 uses an inverted index when deriving the countermeasure, it is not necessary to read the countermeasure information 600 read once.
- FIG. 8 is a block diagram showing the configuration of the knowledge management device 550 according to the third embodiment of the present invention.
- the knowledge management device 550 of the present embodiment includes a countermeasure storage unit 560 and a countermeasure derivation unit 570 in addition to the configuration of the knowledge management apparatus 101 of the first embodiment described above.
- Components similar to those of the knowledge management apparatus 101 of the first embodiment function in the same manner as the knowledge management apparatus 101 of the first embodiment. That is, for example, the factor specifying unit 150 included in the part extracts and outputs a set of factors that generate a difference between the target and the actual result of the plan information 200.
- the countermeasure storage unit 560 stores the countermeasure information 600 as in the second embodiment.
- the countermeasure information 600 of the present embodiment is extended to weighted data. That is, the countermeasure node 620 of the countermeasure information 600 is given a weight.
- the countermeasure deriving unit 570 receives the set of factors output from the factor identifying unit 150 and the countermeasure information 600 as in the second embodiment, and extracts effective measures for the set of factors output by the factor identifying unit 150. And output.
- the countermeasure deriving unit 570 is extended to process weighted data. For example, the countermeasure derivation unit 570 searches for countermeasures in descending order of countermeasures.
- the countermeasure derivation unit 570 is configured by a logic circuit.
- the countermeasure storage unit 560 includes a storage device such as a semiconductor storage device or a disk storage device.
- the countermeasure derivation unit 570 may be realized by a program stored in the storage unit 702 of the computer device 700 and executed by the CPU 701. [Description of operation]
- the countermeasure derivation unit 570 using the multi-pass method operates as follows.
- a set of factors input from the factor specifying unit 150 is Y.
- the countermeasure derivation unit 570 determines, for each countermeasure x ⁇ V c , the x that maximizes the common part Y ⁇ Y x with the set Y among the set Y x of the factors y satisfying E rci x y. Explore.
- the countermeasure derivation unit 570 outputs x as a solution.
- the countermeasure derivation unit 570 obtains a set Y x ′ of factors y satisfying E rci x ′ y for each countermeasure x′ ⁇ V c different from the countermeasure x, and obtains a common part Y ⁇ Y x ⁇ Y. Search for x ′ that maximizes x ′ .
- the countermeasure derivation unit 570 outputs ⁇ x, x ′ ⁇ as a solution.
- the countermeasure derivation unit 570 repeatedly applies the above procedure, sequentially adds countermeasures, and obtains a set of countermeasures covering all the set Y.
- the knowledge management device 550 of the present embodiment makes it easy for the user to take measures against the cause when the goal cannot be achieved in the performance of research and development and business. The reason is that the countermeasure derivation unit 570 refers to the countermeasure information 600 and presents a countermeasure for the factor that the target cannot be achieved.
- the knowledge management device 550 makes it easy for the user to prioritize appropriate, for example, effective measures.
- the reason is that the countermeasure derivation unit 570 searches for the countermeasure in consideration of the weight assigned to the countermeasure.
- the knowledge management device 550 of the present embodiment can reduce the memory capacity used in deriving the countermeasure.
- the reason is that the countermeasure deriving unit 570 does not create an inverted index because it uses the multi-pass method.
- the knowledge management device 550 of this embodiment improves the input / output efficiency of the physical disk in deriving the countermeasure.
- the reason is that the countermeasure deriving unit 570 uses the multi-pass method and therefore does not use random access for scanning the physical disk.
- FIG. 18 is a block diagram illustrating a configuration of a knowledge management apparatus 801 according to the fourth embodiment.
- the knowledge management device 801 includes a plan information storage unit 830, a causal relationship storage unit 840, and a factor identification unit 850.
- the plan information storage unit 830 stores a node value target that is a value of the node in association with the node.
- the causal relationship storage unit 840 stores a factor that changes the node value of the node in association with the node.
- the factor specifying unit 850 acquires the node value result of the node, and outputs the factor associated with the node when the result does not achieve the target associated with the node.
- the knowledge management device 801 makes it easy for the user to analyze the cause when the goal cannot be achieved in the performance of research and development and business.
- the reason is that the factor identifying unit 850 identifies the factor that affects the node where the difference between the plan target and the actual performance occurs with reference to the causal relationship storage unit 840.
- FIG. 9 shows a specific example of the plan information 200 given to the knowledge management device 500.
- the given plan information 200 is plan information (target) 910 including a target and plan information (actual) 920 including an actual value.
- FIG. 10 shows a partial expression example of the plan information (target) 910 on the computer device 700.
- the plan information (target) 910 includes information nodes 201 N1 to N4.
- the node N1 indicates that the attribute value is OR-Node, and the target value is either monthly sales of the node N2 or on-demand sales of the node N3.
- the node N3 indicates that on-demand sales are obtained by the operand and operator defined by the node N4, and the target value is 600.
- FIG. 9 shows that the plan information (actual result) 920 also has the same structure as the plan information (target) 910. However, for example, the on-demand sales node value 204 (actual value) of the node N3 indicates 240.
- the factor specifying unit 150 performs the processing from S1 to S5 for these inputs. First, the factor identifying unit 150 obtains difference information 930 by difference calculation (step S1).
- FIG. 11 shows the difference information 930.
- the difference information 930 has the same structure as the plan information (target) 910 and the plan information (actual result) 920.
- the node value 204 of the difference information 930 is a difference between the node values 204 of the corresponding information nodes 201 of the plan information (target) 910 and the plan information (actual result) 920.
- the node value 204 of on-demand sales of the node N3 is ⁇ 360, which is the difference between 600 and 240 described above. The same can be said for the node values 204 of other nodes of the difference information 930.
- FIG. 12 shows a partial expression example on the computer device 700 of the difference information 930.
- the factor specifying unit 150 performs, for example, an integer difference rounding process (step S2). However, this process does not affect the result in this embodiment. Therefore, the output of this process remains as shown in FIGS.
- the factor identifying unit 150 performs a main difference identifying process (step S3).
- the factor specifying unit 150 selects, for example, three that have a large ratio of the difference to the target value.
- FIG. 13 shows the main difference information 940 obtained from the difference information 930 by this main difference specifying process.
- the difference information 930 indicates that the difference in on-demand sales at the node N3 is 60% different from the target. Similarly, the difference information 930 indicates that the number of uses of the node N6 is 60%, the use frequency of the node N9 is 50%, and the number of customers of the node N8 is 20%.
- the factor specifying unit 150 includes 60% of the on-demand sales of the node N3, 60% of the usage count of the node N6, and 50% of the usage frequency of the node N9 in the main difference information 940.
- FIG. 14 shows a partial expression example of the main difference information 940 on the computer device 700. This main difference information 940 becomes the input of the main cause-effect relationship specifying process (step S5).
- the causal relationship storage unit 140 stores the causal relationship information 300 of FIG.
- FIG. 15 shows a format example of the causal relationship information 300 stored in the causal relationship storage unit 140.
- the factor identifying unit 150 executes the causal relationship structure development process (step S4), the factor (for example, importance) associated with the lower node (for example, usage frequency) is changed to the upper node ( For example, the number of uses and sales on demand). This means that a new record is added to the table of FIG.
- the main difference information 940 shown in FIG. 13 and the causal relationship information 300 output in the causal relationship structure development process (step S4) are input to the main cause-and-effect relationship specifying process (step S5).
- N3, N6, and N9 are the main differences, and these plan information names are on-demand sales, usage count, and usage frequency, respectively.
- the factor specifying unit 150 searches the causal relationship information 300 for these plan information names.
- the factor specifying unit 150 obtains convenience, recognition, price index, and importance as factors that have a positive impact on on-demand sales.
- the factor identifying unit 150 obtains convenience, importance, and recognition as factors that have a positive effect on the number of uses.
- the factor identifying unit 150 obtains convenience and importance as factors that have a positive influence on the usage frequency.
- the factor specifying unit 150 outputs ⁇ price index, importance, convenience, awareness ⁇ as a set of factors.
- the factor specifying unit 150 may output this subset in consideration of the importance of the factor, the number of times of selection, and the like.
- the factor specifying unit 150 outputs ⁇ convenience, importance, price index ⁇ .
- the countermeasure storage unit 510 stores countermeasure information 600 shown in FIG. FIG. 16 shows a partial expression example of the countermeasure information 600 on the computer device 700.
- the countermeasure deriving unit 520 uses the countermeasure information 600 to derive a countermeasure covering the set of factors output by the factor identifying unit 150 in the main factor-effect relationship identifying process (step S5).
- the measure deriving unit 520 calculates as follows. First, the countermeasure derivation unit 520 calculates a transposed index. That is, the measure deriving unit 520 obtains all measures covering each factor from all factors covered by each measure (may be limited to the factors input from the factor specifying unit 150).
- a set of measures covering convenience is ⁇ premium strategy, integration with other company's products, multi-functionality, cooperative operation with other company's products, functional enhancement ⁇ .
- a set of measures covering the importance is ⁇ advertisement, cross-advertisement, exclusion strategy, integration with other products of the company ⁇ .
- the set of measures covering the price index is ⁇ changing the structure of usage fees, step-by-step pricing, provision of low-priced versions, premium strategy, integration with other products ⁇ .
- the countermeasure deriving unit 520 sequentially searches the factors covered by each of these countermeasures, and obtains the transposed index, that is, the column data of the table shown in FIG.
- the countermeasure derivation unit 520 selects integration with other products of the company, which is the countermeasure that maximizes the covering. This countermeasure and integration with other products of the company cover all three factors ⁇ convenience, importance, price index ⁇ output by the factor specifying unit 150. Therefore, the countermeasure derivation unit 520 outputs integration with other products of the company as a countermeasure.
- the output of the factor identification unit 150 is ⁇ recognition, convenience, importance ⁇ .
- the countermeasure deriving unit 520 first selects integration with other products of the company after calculating the inverted index of FIG. Next, the countermeasure deriving unit 520 selects one of the countermeasures ⁇ advertisement, cross advertisement ⁇ covering the degree of recognition that is not yet covered. Since the set of countermeasures covers all the input factors at this point, the countermeasure derivation unit 520 may select ⁇ integrate and promote with other products of the company ⁇ or ⁇ integrate with other products of the company and cross-advertisement ⁇ . Output one of the countermeasure sets.
- the present invention can be applied to uses such as judging progress in planning and supporting decision making of measures to be taken.
- the present invention can also be applied to uses such as proposing a goal to be set for a product similar to a managed product.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Entrepreneurship & Innovation (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因を分析することを容易にする。 知識管理装置は、ノードに関連付けて当該ノードの値であるノード値の目標を記憶する計画情報保管手段と、ノードに関連付けて当該ノードのノード値を変化させる要因を記憶する因果関係保管手段と、ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する要因特定手段と、を備える。
Description
本発明は、知識管理装置、知識管理方法、及び、プログラムの記録媒体、特に、研究開発等において、目標を達成できなかった場合の要因分析を支援する知識管理装置、知識管理方法、及び、プログラムの記録媒体に関する。
研究開発、事業等の遂行において、その推進者は、投資と回収等について目標を立て、その達成を目指す。しかし、多くの場合、研究開発、事業等は計画通り進まず、目標を達成できない。そのような場合、目標を達成できない要因を分析することが必要となる。
特許文献1は、目標の達成難易度および検討不十分度を客観的に評価する情報処理装置を開示する。この装置は、各目標の達成難易度および検討不十分度とともに、それらの評価値のバランスに応じた作業指針を出力する。
研究開発、事業等が計画通り進まない要因は、目標の達成難度、検討不十分に限られない。研究開発、事業等の内容、取り巻く環境などに応じて種々の要因が存在する。特許文献1が開示する装置は、そのような種々の要因の分析には利用できない。
本願発明は、上述の課題を解決するための知識管理装置、知識管理方法、及び、プログラムを提供することを目的とする。
本発明の一実施形態の知識管理装置は、ノードに関連付けて当該ノードの値であるノード値の目標を記憶する計画情報保管手段と、ノードに関連付けて当該ノードのノード値を変化させる要因を記憶する因果関係保管手段と、ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する要因特定手段と、を備える。
本発明の一実施形態の知識管理方法は、ノードに関連付けて当該ノードの値であるノード値の目標を記憶し、ノードに関連付けて当該ノードのノード値を変化させる要因を記憶し、ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する。
本発明の一実施形態の記録媒体は、コンピュータに、ノードに関連付けて当該ノードの値であるノード値の目標を記憶する処理と、ノードに関連付けて当該ノードのノード値を変化させる要因を記憶する処理と、ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する処理と、を実行させるプログラムを記録する。
本発明にかかる知識管理装置は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因を分析することを容易にする。
<第1の実施の形態>
[構成の説明]
次に、発明を実施するための形態について図面を参照して詳細に説明する。
[構成の説明]
次に、発明を実施するための形態について図面を参照して詳細に説明する。
図1は、本発明の第1の実施形態に係る知識管理装置101の構成を示すブロック図である。知識管理装置101は、目標入力部110、実績入力部120、計画情報保管部130、因果関係保管部140、および、要因特定部150を含む。
目標入力部110、実績入力部120、および、要因特定部150は、論理回路で構成される。計画情報保管部130、および、因果関係保管部140は、半導体記憶装置、ディスク記憶装置等の記憶装置で構成される。目標入力部110、実績入力部120、または、要因特定部150は、図4に示すコンピュータ装置700の記憶部702に格納されて、CPU701(Central Processing Unit)により実行されるプログラムで実現されても良い。
各部はそれぞれ概略つぎのように動作する。
目標入力部110および実績入力部120は、それぞれ構造化された目標データおよび実績データ(これらを併せて計画情報200と総称する)を外部から読み込む。読み込まれた計画情報200は計画情報保管部130および要因特定部150に入力される。
計画情報保管部130は、入力された計画情報200を保管し、例えば各設計開発成果物のメタ情報として、計画情報200を外部から参照できるようにする。因果関係保管部140は、環境要因と、計画情報200の構造の各ノードとの関係(因果関係と呼称する)を多対多の関係として表した因果関係情報300を保管する。
要因特定部150は、目標入力部110、実績入力部120、および、計画情報保管部130から得られる計画情報200と、因果関係保管部140から得られる因果関係情報300を取得する。そして、要因特定部150は、目標と実績のギャップを発生させる要因を、因果関係情報300を参照して特定する。
図2は、計画情報200の構造の例を示す図である。計画情報200は、情報ノード201、および、情報ノード201間のリンクである情報リンク202で表現されるラベル付き有向グラフである。計画情報200の具体的データは、グラフ上の情報ノード201として表現される。情報リンク202は、情報ノード201が表現するデータ間の包含関係、あるいは、依存関係を表現する。
各情報ノード201は、1以上の属性を持つことができる。属性は、例えば、「投資回収計画」といった当該情報ノード201が表現するデータの内容を示すノードラベル203である。ノードラベルは、例えば、文字列、あるいは、別途データ構造が定義されるURI(Uniform Resource Identifier)のような識別子である。情報ノード201の他の属性は、例えば、「200万円」といった具体的な金額や時間、工数、割合を示す数値であるノード値204である。ノード値は、属性値とも呼ばれる。
計画情報保管部130は、目標を表す計画情報200と、実績を表す計画情報200の2つを格納する。図2が示すように、計画情報200は、例えば、目標を表すルートノード配下に、投資回収計画、ターゲットドメイン、パートナー、および、価値を表す情報ノード201を含む。
計画情報200は、例えば、特定の設計開発成果物から参照されて、当該設計開発成果物に対する戦略目標あるいは戦略実績を示すメタデータとして機能する。
図3は、因果関係保管部140に保管される因果関係情報300のデータ構造の例を示す。因果関係情報300は、1以上の因果関係ノード301を含む。図3の因果関係情報300の例は、X1乃至X6の6つの因果関係ノード301を包含している。
因果関係ノード301は、1以上の計画情報ノードリンク302を持つ。計画情報ノードリンク302は、計画情報200(図3において破線で示す)の1つの情報ノード201に対するリンク情報である。さらに、因果関係ノード301は、1以上の要因リンク304を持つ。要因リンク304は、計画情報ノードリンク302でリンクされた情報ノード201の属性に影響を与える要因を表す要因ノード303へのリンク情報である。
ただし、ある因果関係ノード301が、複数の情報ノード201の属性に対する計画情報ノードリンク302を持つとき、因果関係情報300は、これらを複数の因果関係ノード301を用いて表されてもよい。
また、因果関係ノード301は、正の影響(要因が発生あるいは増加したとき、計画情報200の属性値が増加する)の他、負の影響(要因が発生あるいは増加したとき、計画情報200の属性値が減少する)を表現してもよい。因果関係ノード301は、正の影響と負の影響を区別するための属性を有していても良い。図3の因果関係ノード301は正の影響を持つ例であり、因果関係ノード301内に記載された「+」は、正の影響を表現している。
図3において、例えば、X1と名付けられた因果関係ノード301は、計画情報200の「利用単価」というノードラベル203の情報ノード201に対して計画情報ノードリンク302を有する。さらに、この因果関係ノード301は、「物価指数」という要因を持つ要因ノード303に対して要因リンク304を有する。また、この因果関係ノード301は、「正の影響」という属性を持つ。すなわち、X1と名付けられた因果関係ノード301は、物価指数という要因が、利用単価という属性を持つ情報ノード201に、正の影響を持つことを示す。
知識管理装置101は、下位レベルの情報ノード201に対して計画情報ノードリンク302を有する因果関係ノード301が存在するとき、当該情報ノード201の上位レベルの情報ノード201も、同じ要因の影響を受けると判断しても良い。詳細は、後述する(図5のステップS4)。
次に、知識管理装置101が、コンピュータ装置700と、そのうえで稼働するプログラムで構成した場合の、ハードウェア構成について説明する。
図4は、知識管理装置101を実現するコンピュータ装置700のハードウェア構成を示す図である。コンピュータ装置700は、CPU701、記憶部702、記憶装置703、入力部704、出力部705及び通信部706を含む。
さらに、コンピュータ装置700は、外部から供給され、記憶装置703で読み書きされる記録媒体707(または記憶媒体)を含んで良い。例えば、記録媒体707は、情報を非一時的に記憶する不揮発性記録媒体である、非一時的記録媒体である。また、記録媒体707は、情報を一時的に記憶する一時的記録媒体であってもよい。
CPU701は、オペレーティングシステム(不図示)を動作させて、コンピュータ装置700の全体の動作を制御する。例えば、CPU701は、記憶装置703に装着された記録媒体707から、そのプログラムやデータを読み込み、読み込んだそのプログラムやそのデータを記憶部702に書き込む。
ここで、プログラムは、例えば、後述のフローチャートの動作をコンピュータ装置700に実行させる。そして、CPU701は、その読み込んだプログラムに従って、またその読み込んだデータに基づいて、図1に示す目標入力部110、実績入力部120、または、要因特定部150として各種の処理を実行する。
尚、CPU701は、通信網(不図示)に接続される外部の装置(不図示)から、記憶部702にそのプログラムやそのデータをダウンロードしてもよい。
記憶部702は、そのプログラムやそのデータを記憶する。記憶部702は、例えば計画情報200、および、因果関係情報300を記憶しても良い。記憶部702は、目標入力部110、実績入力部120、計画情報保管部130、因果関係保管部140、要因特定部150の一部に含まれても良い。
記憶装置703は、例えば、光ディスクや、フレキシブルディスク、磁気光ディスク、外付けハードディスク装置、半導体メモリ装置などであって、記録媒体707を含む。記憶装置703、または、記録媒体707は、そのプログラムをコンピュータ読み取り可能に記憶する。記憶装置703は、例えば、計画情報200、および、因果関係情報300を記憶して良い。記憶装置703は、目標入力部110、実績入力部120、計画情報保管部130、因果関係保管部140、要因特定部150の一部として含まれても良い。
入力部704は、オペレータによる操作の入力や外部からの情報の入力を受け付ける。入力操作に用いられるデバイスは、例えば、マウスや、キーボード、内蔵のキーボタン及びタッチパネルなどである。入力部704は、目標入力部110、実績入力部120、計画情報保管部130、因果関係保管部140、要因特定部150の一部として含まれても良い。
出力部705は、例えばディスプレイ装置で実現される。出力部705は、例えばGUI(Graphical User Interface)によるオペレータへの入力要求や、オペレータに対する出力提示などのために用いられる。出力部705は、目標入力部110、実績入力部120、計画情報保管部130、因果関係保管部140、要因特定部150の一部として含まれても良い。
通信部706は、外部システムとのインタフェースを実現する。通信部706は、目標入力部110、実績入力部120、計画情報保管部130、因果関係保管部140、要因特定部150の一部として含まれても良い。
以上説明したように、図1に示す知識管理装置101の各要素は、図4に示すハードウェア構成のコンピュータ装置700によって実現されても良い。但し、コンピュータ装置700が備える各部の実現手段は、上記に限定されない。すなわち、コンピュータ装置700は、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線または無線で接続し、これら複数の装置により実現されてもよい。
尚、上述のプログラムのコードを記録した記録媒体707が、コンピュータ装置700に供給される場合、CPU701は、記録媒体707に格納されたそのプログラムのコードを読み出して実行してもよい。あるいは、CPU701は、記録媒体707に格納されたそのプログラムのコードを、記憶部702、記憶装置703またはその両方に格納してもよい。
すなわち、本実施形態は、コンピュータ装置700のCPU701が実行するそのプログラム(ソフトウェア)を、一時的にまたは非一時的に、記憶する記録媒体707の実施形態を含む。尚、情報を非一時的に記憶する記憶媒体は、不揮発性記憶媒体とも呼ばれる。
[動作の説明]
次に、本実施の形態の知識管理装置101の動作について図を参照して詳細に説明する。図5は、要因特定部150の動作を示す図である。
[動作の説明]
次に、本実施の形態の知識管理装置101の動作について図を参照して詳細に説明する。図5は、要因特定部150の動作を示す図である。
要因特定部150は、まず、目標および実績値の2つの計画情報200の入力に対し差分計算(ステップS1)を実施し、差分グラフを作成する。
計画情報200の目標、および、実績は、ともに図2に示したグラフ構造を持つ。計画情報200の目標、および、実績は、少なくとも<情報ノード201、述語、目的語>の組のデータを要素とする列挙データ集合である。このデータは、最低限、リンク情報と属性値情報に分類される。前者は、<情報ノード201、リンク関係を示す述語、情報ノード201を示す目的語>、後者は、<情報ノード201、属性値であることを示す述語、ノード値204を示す目的語>の構造をもつ。ただし、順番は入れ換わってもよい。たとえば、目標データの一例として、後述の<具体的なデータ例を用いた説明>で使用する図10に示す構造がある。図10の場合、リンク情報は、たとえば、<N1、hasLink、N2>で、属性値情報は<N3、hasValue、600>である。
要因特定部150は、この構造を基に、目標と実績の情報ノード201の対応関係を推定し、対応するノードが持つ属性値の差分を計算する。実績データに<n、目的語が属性値であることを示す述語、b1>が、目標データに<n、目的語が属性値であることを示す述語、b2>が、それぞれ含まれていたとする。ここで、「n」は、情報ノード201であり、b1、b2は、ノード値(属性値)であるものとする。このとき、要因特定部150は、b1-b2を計算し、差分情報<n、目的語が属性値であることを示す述語、b1―b2>を差分グラフに含める。
要因特定部150は、情報ノード201の対応関係の推定方法として、例えば、最尤推定やベイズ推定などを用いることが可能である。なお、計画情報200の目標、および、実績が同一構造のグラフである場合、要因特定部150は、情報ノード201の対応関係の推定をする必要は無い。この場合、差分グラフは、計画情報200と同一構造、または、そのサブセット構造を持つ。
次に、要因特定部150は、計算された差分グラフの各ノード(以降、差分ノードと呼ぶ)の値に対して丸め処理(ステップS2)を実施し、丸め差分グラフを求める。丸め処理は、与えられた誤差範囲内の差分を丸めることによって、戦略上本質的でない差異を除去する。ただし、要因特定部150は、本処理を実施しなくても良い。
そして、主要差分特定処理(ステップS3)で、要因特定部150は、丸め差分グラフあるいは差分グラフから、大きな差をもつ差分ノードの集合、すなわち主要差分ノードの集合を抽出する。要因特定部150は、この主要差分特定処理で、差分を絶対評価してもよいし、目標値あるいは実績値に対する相対評価を行なっても良い。また、要因特定部150は、差分の大きい順に、指定した個数の差分ノードを抽出してもよい。
ステップS1の後、因果関係構造展開処理(ステップS4)で、要因特定部150は、因果関係保管部140に保管された因果関係情報300が最小化されていた場合、因果関係を展開する。因果関係情報300が包含する各要素の構造は、<因果関係識別子、要因、正または負の影響を示す属性、差分グラフのノード>である。具体的には、要因特定部150は、因果関係ノード301のデータ<識別子x、 要因a、 +、 ノードb>に対して、差分グラフにリンク情報<ノードc、属性d、ノードb>があるとき、因果関係ノード301のデータ<識別子x、要因a、+、ノードc>を生成する。ここで、ノードcは、ノードbの上位ノードである。
ステップS1の後、因果関係構造展開処理(ステップS4)で、要因特定部150は、因果関係保管部140に保管された因果関係情報300が最小化されていた場合、因果関係を展開する。因果関係情報300が包含する各要素の構造は、<因果関係識別子、要因、正または負の影響を示す属性、差分グラフのノード>である。具体的には、要因特定部150は、因果関係ノード301のデータ<識別子x、 要因a、 +、 ノードb>に対して、差分グラフにリンク情報<ノードc、属性d、ノードb>があるとき、因果関係ノード301のデータ<識別子x、要因a、+、ノードc>を生成する。ここで、ノードcは、ノードbの上位ノードである。
すなわち、要因特定部150は、差分グラフのノードbに要因aが関連付けられていれば、ノードbの上位ノードcにも要因aを関連付ける。上位ノードcは、下位ノードbに依存するため、下位ノードbと同じ要因aの影響を受けるのである。要因特定部150は、本処理を行うことで、このことを因果関係情報300に反映する。
因果関係情報300が最小化されていない場合には、要因特定部150は、この因果関係構造展開処理(ステップS4)をスキップすることができる。
最後に、主要因果関係特定処理(ステップS5)では、要因特定部150は、展開された因果関係集合のうち、主要差分ノードに影響を与える要因を抽出する。
例えば、主要差分情報940が、<識別子i、目的語が名前であることを示す述語、情報ノード名>および<識別子i、目的語が値であることを示す述語、差分値>の両者、あるいは、何れか一方を含むとする。このとき、因果関係情報300が、因果関係ノード301として<識別子x、要因a、+、ノードi>を包含していれば、要因特定部150は、要因aを抽出する。
因果関係情報300が、因果関係ノード301として<識別子y、要因b、+、ノードi>を、<識別子x、 要因a、 +、 ノードb>と同時に包含するとき、要因特定部150は、要因aの代わりに要因bを出力してもよい。
[効果の説明]
知識管理装置101は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因を分析することを容易にする。
[効果の説明]
知識管理装置101は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因を分析することを容易にする。
その第1の理由は、因果関係保管部140が、因果関係情報300を格納するからである。因果関係情報300は、計画情報200に含まれるノードのノード値204とそこに影響する要因を関連づけている。
その第2の理由は、要因特定部150が、計画情報200において、目標と実績の差分が発生しているノード値204に影響を与える要因を、因果関係情報300を参照して特定するからである。
<第2の実施の形態>
[構成の説明]
次に、本発明の第2の実施形態について図面を参照して詳細に説明する。以下、本実施形態の説明が不明確にならない範囲で、前述の説明と重複する内容については説明を省略する。
[構成の説明]
次に、本発明の第2の実施形態について図面を参照して詳細に説明する。以下、本実施形態の説明が不明確にならない範囲で、前述の説明と重複する内容については説明を省略する。
図6は、本発明の第2の実施形態に係る知識管理装置500の構成を示すブロック図である。本実施の形態の知識管理装置500は、前述の第1の実施形態の知識管理装置101の構成に加え、対策保管部510、および、対策導出部520を含む。
第1の実施形態の知識管理装置101と同様の構成部分は、第1の実施形態の知識管理装置101と同様に機能する。すなわち当該部分に含まれる、例えば、要因特定部150は、計画情報200の目標と実績の差分を発生させる要因の集合を抽出して出力する。
対策保管部510は、要因に対しとるべき対策の情報(以下、対策情報600と呼称し、詳細は後述する)を保存する。対策導出部520は、要因特定部150が出力した要因の集合と対策情報600を入力とし、要因特定部150が出力した要因の集合に対して有効な対策を抽出して出力する。
対策導出部520は、論理回路で構成される。対策保管部510は、半導体記憶装置、ディスク記憶装置等の記憶装置で構成される。対策導出部520は、コンピュータ装置700の記憶部702に格納されて、CPU701により実行されるプログラムで実現されても良い。
図7は、対策保管部510に保存される対策情報600の例を示す。対策情報600は、要因を表す要因ノード610と対策を表す対策ノード620を、要因・対策関係情報611で多対多に関連付けた構造を持った情報である。対策情報600は、階層的な対策記述を包含していても良い。この場合、上位層の包括的な対策Aと下位層の具体的な対策Bの関係は、対策Aの対策ノード620と対策Bの対策ノード620間の対策間リンク630で表される。
対策情報600は、より形式的には、例えば以下の、式(1)乃至式(4)のように定義される。この構造あるいは性質は、拡張されて使用されても良い。
ここで、Vrは要因の集合、Vcは対策の集合である。また、Ercxyは対策xが要因yを直接被覆する関係を示す2項関係、Ecxyは対策xが対策yを直接被覆する関係を示す2項関係である。Ecixyは対策xが対策yを被覆する関係を示す2項関係、Ercixyは、対策xが要因yを被覆する関係を示す2項関係である。また、式(3)及び式(4)におけるzは、各々、カンマ以降に記載された条件を満足するVcの要素を意味する。
[動作の説明]
各部はそれぞれ概略つぎのように動作する。
[動作の説明]
各部はそれぞれ概略つぎのように動作する。
対策導出部520は、対策保管部510に保管された対策情報600を用いて、要因特定部150の出力である要因の集合に含まれる要素を被覆する対策の集合を導出する。この導出は、上述の定義において、全ての要因∀y∈Vrについて、Erci x y を充足するx を求めることを意味する。
この導出は、集合被覆問題として知られている。対策導出部520は、例えば、転置インデックスあるいは複数パスによる貪欲法を用いてこの導出を実行する。また、対策導出部520は、メモリ効率やディスク効率を改善した貪欲法などを用いてもよい。
対策導出部520は、典型的な転置インデックスを用いた貪欲法を使用したとき以下のように動作する。
対策導出部520は、解の候補となっている対策の集合に新たな対策を加え、被覆する要因の集合を計算する。ここで、加えるべき対策は、要因集合に新しく追加される要因に対応する対策である必要がある。
そのためには、対策導出部520は、まず各要因がカバーされる対策のリスト(転置インデックス)を作成する。このリストを用いて、対策導出部520は、新しく要因集合に追加される要因の数が最大となるような対策を、候補解の集合に加えていく。
対策導出部520は、最初に、各対策x∈Vcについて、Erci x yを充足する要因yの集合Yxを探索する。入力された要因の集合の要素を全て包含するYxが発見されれば、対策導出部520は、xを対策の集合として出力する。
発見されなければ、対策導出部520は、対策xについての集合Yxと対策xと異なる対策x’についての集合Yx’の組合せによる和集合を計算する。このとき、対策導出部520は、和集合Yx∪Yx’が最大となるように、すなわち、Yx’によって新たにカバーされる要因の数が最大となるように、x’を選択する。Yx∪Yx’がもし、入力された要因の集合を全て包含すれば、対策導出部520は、対策の集合{x、x’}を出力する。
Yx∪Yx’が要因の集合の要素を全て包含していなければ、対策導出部520は、Yx∪Yx’∪Yx”が最大となる対策x”について上記と同じ判定を行なう。以降、対策導出部520は、上記のように対策が被覆する要因の集合を加えて、入力された要因の集合を全て包含するかの判定を繰り返す。最終的に、対策導出部520は、要因を全て被覆する対策の集合を出力する。
[効果の説明]
本実施の形態の知識管理装置500は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因にたいして対策をとることを容易にする。その理由は、対策導出部520が、対策情報600を参照して、目標が達成できないその要因に対する対策を提示するからである。
[効果の説明]
本実施の形態の知識管理装置500は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因にたいして対策をとることを容易にする。その理由は、対策導出部520が、対策情報600を参照して、目標が達成できないその要因に対する対策を提示するからである。
さらに、本実施の形態の知識管理装置500は、対策の導出に当たり、ディスク入出力に要する時間を短縮することができる。その理由は、対策導出部520が、対策の導出に際して転置インデックスを使用する為、1度読み出した対策情報600を再度読み出す必要がないからである。
<第3の実施の形態>
[構成の説明]
次に、本発明の第3の実施の形態について図面を参照して詳細に説明する。
[構成の説明]
次に、本発明の第3の実施の形態について図面を参照して詳細に説明する。
図8は、本発明の第3の実施形態に係る知識管理装置550の構成を示すブロック図である。本実施の形態の知識管理装置550は、前述の第1の実施形態の知識管理装置101の構成に加え、対策保管部560、および、対策導出部570を含む。
第1の実施形態の知識管理装置101と同様の構成部分は、第1の実施形態の知識管理装置101と同様に機能する。すなわち当該部分に含まれる、例えば、要因特定部150は、計画情報200の目標と実績の差分を発生させる要因の集合を抽出して出力する。
対策保管部560は、第2の実施形態と同様に対策情報600を保存する。ただし、本実施の形態の対策情報600は、重み付きデータに拡張される。すなわち、対策情報600の対策ノード620には重みが付与されている。
対策導出部570は、第2の実施形態と同様に要因特定部150が出力した要因の集合と対策情報600を入力とし、要因特定部150が出力した要因の集合に対して有効な対策を抽出して出力する。ただし、対策導出部570は、重み付きデータを処理するように拡張される。対策導出部570は、例えば、対策の探索において、重みの大きな対策の順に探索する。
対策導出部570は、論理回路で構成される。対策保管部560は、半導体記憶装置、ディスク記憶装置等の記憶装置で構成される。対策導出部570は、コンピュータ装置700の記憶部702に格納されて、CPU701により実行されるプログラムで実現されても良い。
[動作の説明]
本実施の形態において、複数パス法を用いた対策導出部570は以下のように動作する。
[動作の説明]
本実施の形態において、複数パス法を用いた対策導出部570は以下のように動作する。
要因特定部150から入力された要因の集合をYとする。初期状態において、対策導出部570は、各対策x∈Vcについて、Erci x yを充足する要因yの集合Yxのうち、集合Yとの共通部分Y∩Yxが最大となるxを探索する。Y⊆Yx、すなわちY∩Yx=Yであるとき、対策導出部570は、xを解として出力する。
それ以外のとき、対策導出部570は、対策xと異なる各対策x’∈Vcについて、Erci x’ yを充足する要因yの集合Yx’を求め、共通部分Y∩Yx∩Yx’が最大となるようなx’を探索する。Y⊆Yx∪Yx’であるとき、対策導出部570は、{x、x’}を解として出力する。
それ以外のとき、対策導出部570は、以上の手順を繰り返し適用し、順次対策を追加し、集合Yを全て被覆する対策の集合を求める。
[効果の説明]
本実施の形態の知識管理装置550は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因に対して対策をとることを容易にする。その理由は、対策導出部570が、対策情報600を参照して、目標が達成できないその要因に対する対策を提示するからである。
[効果の説明]
本実施の形態の知識管理装置550は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因に対して対策をとることを容易にする。その理由は、対策導出部570が、対策情報600を参照して、目標が達成できないその要因に対する対策を提示するからである。
さらに、本実施の形態の知識管理装置550は、ユーザが適切な、例えば効果的な、対策を優先して実施することを容易にする。その理由は、対策導出部570が、対策に付与された重みを考慮して、対策を検索するからである。
さらに、本実施の形態の知識管理装置550は、対策の導出に当たり、使用するメモリ容量を小さくすることができる。その理由は、対策導出部570が、複数パス法を用いるため、転置インデックスを作成しないからである。
さらに、本実施の形態の知識管理装置550は、対策の導出に当たり、物理ディスクの入出力効率を向上させる。その理由は、対策導出部570が、複数パス法を用いるため、物理ディスクに対する走査にはランダムアクセスを使用しないからである。
<第4の実施の形態>
図18は、第4の実施形態に係る知識管理装置801の構成を示すブロック図である。知識管理装置801は、計画情報保管部830、因果関係保管部840、および、要因特定部850を含む。
図18は、第4の実施形態に係る知識管理装置801の構成を示すブロック図である。知識管理装置801は、計画情報保管部830、因果関係保管部840、および、要因特定部850を含む。
計画情報保管部830は、ノードに関連付けて当該ノードの値であるノード値の目標を記憶する。因果関係保管部840は、ノードに関連付けて当該ノードのノード値を変化させる要因を記憶する。要因特定部850は、ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する。
知識管理装置801は、研究開発、事業等の遂行において、目標が達成できない場合、ユーザがその要因を分析することを容易にする。
その理由は、要因特定部850が、計画の目標と実績の差分が発生しているノードに影響を与える要因を、因果関係保管部840を参照して特定するからである。
<具体的なデータ例を用いた説明>
次に、具体的なデータ例を用いて本発明にかかる装置の動作を説明する。以下の説明は、図6に示す知識管理装置500を例とした説明である。
次に、具体的なデータ例を用いて本発明にかかる装置の動作を説明する。以下の説明は、図6に示す知識管理装置500を例とした説明である。
図9は、知識管理装置500に与えられる計画情報200の具体例を示す。与えられる計画情報200は、目標を含む計画情報(目標)910と実績値を含む計画情報(実績)920である。図10は、計画情報(目標)910の部分的なコンピュータ装置700上の表現例を示す。
図9及び図10によれば、計画情報(目標)910は、N1乃至N4という情報ノード201を包含する。ノードN1は、属性値がOR-Nodeであり、目標値がノードN2の月間売上またはノードN3のオンデマンド売り上げの何れかであることを示している。ノードN3は、オンデマンド売り上げが、ノードN4が定義するオペランドと演算子で得られること、目標値が600であることを示している。
図9は、計画情報(実績)920も、計画情報(目標)910と同じ構造を持つことを示している。ただし、例えば、ノードN3のオンデマンド売り上げのノード値204(実績値)は、240であることを示している。
図5によれば、これらの入力に対して、要因特定部150は、S1からS5の処理を実施する。まず、要因特定部150は、差分計算(ステップS1)により差分情報930を得る。
図11は差分情報930を示す。図11から明らかなように、差分情報930は、計画情報(目標)910および計画情報(実績)920と同じ構造を持つ。差分情報930のノード値204は、計画情報(目標)910と計画情報(実績)920の対応する情報ノード201のノード値204の差分となっている。例えば、ノードN3のオンデマンド売り上げのノード値204は、上述の600と240の差分で-360となっている。差分情報930の他のノードのノード値204についても、同様のことが言える。図12は、差分情報930のコンピュータ装置700上の部分的な表現例を示す。
次に、要因特定部150は、例えば、整数化の差分丸め処理(ステップS2)を実施する。但し、この処理は、この実施例では結果に影響しない。したがって、この処理の出力は、図11及び図12に示すままである。
その後、要因特定部150は、主要差分特定処理(ステップS3)を実施する。要因特定部150は、本ステップで、例えば、差分の目標値に対する比率が大きなものを3つ選択する。
図13は、この主要差分特定処理により、差分情報930から得られた主要差分情報940を示す。差分情報930は、ノードN3のオンデマンド売上の差分が目標に対して60%の差を生じたことを示している。同様に、差分情報930は、ノードN6の利用回数が60%、ノードN9の利用頻度が50%、ノードN8の顧客数が20%の差を生じたことを示している。
この結果、要因特定部150は、ノードN3のオンデマンド売上の60%、ノードN6の利用回数の60%、そしてノードN9の利用頻度の50%を、主要差分情報940に含める。図14は、この主要差分情報940のコンピュータ装置700上での部分的な表現例を示す。この主要差分情報940が、主要因果関係特定処理(ステップS5)の入力となる。
また、因果関係保管部140は、図3の因果関係情報300を保管していたとする。図15は、因果関係保管部140が格納している因果関係情報300の形式例を示す。ここで、要因特定部150が因果関係構造展開処理(ステップS4)を実行すると、下位ノード(例えば、利用頻度)に関連付けられていた要因(例えば、重要度)が、当該下位ノードの上位ノード(例えば、利用回数、オンデマンド売り上げ)にも関連付けられる。これは、図15の表に新たなレコードが追加されることを意味する。
主要因果関係特定処理(ステップS5)には前述のとおり、図13に示す主要差分情報940と、因果関係構造展開処理(ステップS4)で出力された因果関係情報300が入力される。図14によると、N3、N6、N9が主要差分であり、これらの計画情報名はそれぞれオンデマンド売上、利用回数および利用頻度である。要因特定部150は、これらの計画情報名を因果関係情報300から検索する。
この結果、要因特定部150は、オンデマンド売上に正の影響を与える要因として、利便性、認知度、物価指数および重要度を得る。また、要因特定部150は、利用回数に正の影響を与える要因として、利便性と重要度、そして認知度を得る。そして要因特定部150は、利用頻度に正の影響を与える要因として利便性と重要度を得る。
そのため、要因特定部150は、要因の集合として{物価指数、重要度、利便性、認知度}を出力する。要因特定部150は、要因の重要性、選択された回数などを考慮して、この部分集合を出力しても良い。ここでは、要因特定部150は、{利便性、重要度、物価指数}を出力したとする。
対策保管部510は、図7に示す対策情報600を保存しているとする。図16は、対策情報600のコンピュータ装置700上の部分的な表現例を示す。
対策導出部520は、対策情報600を用いて、要因特定部150が主要因果関係特定処理(ステップS5)で出力した要因の集合を被覆する対策を導出する。
具体的に対策導出部520は、以下のように計算する。まず、対策導出部520は、転置インデックスを計算する。すなわち、対策導出部520は、各対策が被覆する全要因(要因特定部150から入力された要因に限定してもよい)から、各要因を被覆する全対策を求める。
この処理は、図16に示される表の行データから図17に示す表の列データを求める計算に等しい。利便性を被覆する対策の集合は、{プレミアム化戦略、自社他製品との統合、多機能化、他社製品との協調動作、機能強化}である。重要度を被覆する対策の集合は、{宣伝を行なう、クロス宣伝、排他戦略、自社他製品との統合}である。物価指数を被覆する対策の集合は、{利用料の構造を変化させる、段階的料金設定、廉価版提供、プレミアム化戦略、自社他製品との統合}である。対策導出部520は、これらの各対策が被覆する要因を順次探索して、転置インデックス、すなわち、図17に示す表の列データを求める。
これらのうち、対策導出部520は、被覆が最大となる対策である、自社他製品との統合を選ぶ。この対策、自社他製品との統合は、要因特定部150が出力した{利便性、重要度、物価指数}の3つの要因全てを被覆する。したがって、対策導出部520は、自社他製品との統合、を対策として出力する。
なお、要因特定部150の出力が、{認知度、利便性、重要度}だとする。この場合、対策導出部520は、図17の転置インデックスを計算後、自社他製品との統合を最初に選択する。次に、対策導出部520は、まだ被覆されていない要因である認知度を被覆する対策{宣伝を行なう、クロス宣伝}のいずれかを選択する。この時点で対策の集合が、入力された全要因を被覆するため、対策導出部520は、{自社他製品との統合、宣伝を行なう}か、{自社他製品との統合、クロス宣伝}のいずれかの対策集合を出力する。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。なお、図面中の矢印の向きは、一例を示すものであり、ブロック間の信号の向きを限定するものではない。
本発明は、計画上の進捗状況を判断し、取るべき対策の意思決定を支援するといった用途に適用できる。また、本発明は、管理している成果物に類似する成果物について、立てるべき目標を提案するといった用途にも適用可能である。
この出願は、2014年10月23日に出願された日本出願特願2014-216362を基礎とする優先権を主張し、その開示の全てをここに取り込む。
101、500、550、801 知識管理装置
110 目標入力部
120 実績入力部
130、830 計画情報保管部
140、840 因果関係保管部
150、850 要因特定部
200 計画情報
201 情報ノード
202 情報リンク
203 ノードラベル
204 ノード値
300 因果関係情報
301 因果関係ノード
302 計画情報ノードリンク
303 要因ノード
304 要因リンク
510、560 対策保管部
520、570 対策導出部
600 対策情報
610 要因ノード
611 要因・対策関係情報
620 対策ノード
630 対策間リンク
700 コンピュータ装置
701 CPU
702 記憶部
703 記憶装置
704 入力部
705 出力部
706 通信部
707 記録媒体
910 計画情報(目標)
920 計画情報(実績)
930 差分情報
940 主要差分情報
110 目標入力部
120 実績入力部
130、830 計画情報保管部
140、840 因果関係保管部
150、850 要因特定部
200 計画情報
201 情報ノード
202 情報リンク
203 ノードラベル
204 ノード値
300 因果関係情報
301 因果関係ノード
302 計画情報ノードリンク
303 要因ノード
304 要因リンク
510、560 対策保管部
520、570 対策導出部
600 対策情報
610 要因ノード
611 要因・対策関係情報
620 対策ノード
630 対策間リンク
700 コンピュータ装置
701 CPU
702 記憶部
703 記憶装置
704 入力部
705 出力部
706 通信部
707 記録媒体
910 計画情報(目標)
920 計画情報(実績)
930 差分情報
940 主要差分情報
Claims (10)
- ノードに関連付けて当該ノードの値であるノード値の目標を記憶する計画情報保管手段と、
ノードに関連付けて当該ノードのノード値を変化させる要因を記憶する因果関係保管手段と、
ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する要因特定手段と、を備える知識管理装置。 - 前記計画情報保管手段は、a)ノード値が他のノード(以降、影響ノードと呼ぶ)のノード値の影響を受けるノードと、b)当該影響ノードとを、関連付けるリンクを有するグラフを格納し、
前記要因特定手段は、ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、
当該ノードに関連付けられた影響ノードに関連付けられた要因を出力する、請求項1の知識管理装置。 - 要因と対策を関連付けて格納する対策保管手段と、
前記要因特定処理手段が出力した要因に関連付けられている対策を出力する対策導出手段と、をさらに備える、請求項1乃至2の何れか1項の知識管理装置。 - 前記対策導出手段は、a)対策のリストと、b)当該対策のリストに格納された対策に関連付けられた要因のリストとを、
前記要因のリストに追加される新たな要因の数が最大となるような対策を前記対策リストに追加することを、
前記要因リストに前記要因特定処理手段が出力したすべての要因が包含されるまで繰り返して
作成し、
作成された前記対策のリストに含まれる対策を出力する、請求項3の知識管理装置。 - 前記対策導出手段は、a)対策のリストと、b)当該対策のリストに格納された対策に関連付けられた要因のリストとを、
前記要因リストに前記要因特定処理手段が出力した要因集合、前記対策のリスト内の対策各々に関連付けられた要因集合との共通部が最大となるような対策を前記対策リストに追加することを、
前記要因リストに前記要因特定処理手段が出力したすべての要因が包含されるまで繰り返して
作成し、
作成された前記対策のリストに含まれる対策を出力する、請求項3の知識管理装置。 - ノードに関連付けて当該ノードの値であるノード値の目標を記憶し、
ノードに関連付けて当該ノードのノード値を変化させる要因を記憶し、
ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する知識管理方法。 - a)ノード値が他のノード(以降、影響ノードと呼ぶ)のノード値の影響を受けるノードと、b)当該影響ノードとを、関連付けるリンクを有するグラフを記憶し、
ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、
当該ノードに関連付けられた影響ノードに関連付けられた要因を出力する、請求項6の知識管理方法。 - 要因と対策を関連付けて記憶し、
さらに、出力した要因に関連付けられている対策を出力する請求項6乃至7の何れか1項の知識管理方法。 - a)対策のリストとb)当該対策のリストに格納された対策に関連付けられた要因のリストとを、前記要因のリストに追加される新たな要因の数が最大となるような対策を前記対策リストに追加することを、前記要因リストに出力したすべての要因が包含されるまで繰り返して作成し、作成された前記対策のリストに含まれる対策を出力する、請求項8の知識管理方法。
- コンピュータに、
ノードに関連付けて当該ノードの値であるノード値の目標を記憶する処理と、
ノードに関連付けて当該ノードのノード値を変化させる要因を記憶する処理と、
ノードのノード値の実績を取得して、実績が当該ノードに関連付けられた目標を達成していないと、当該ノードに関連付けられた要因を出力する処理と、を実行させるプログラムを記録する記憶媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016555076A JPWO2016063502A1 (ja) | 2014-10-23 | 2015-10-15 | 知識管理装置、知識管理方法、及び、プログラムの記録媒体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014216362 | 2014-10-23 | ||
JP2014-216362 | 2014-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063502A1 true WO2016063502A1 (ja) | 2016-04-28 |
Family
ID=55760562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005212 WO2016063502A1 (ja) | 2014-10-23 | 2015-10-15 | 知識管理装置、知識管理方法、及び、プログラムの記録媒体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016063502A1 (ja) |
WO (1) | WO2016063502A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017507402A (ja) * | 2014-07-18 | 2017-03-16 | ライラス、ディミトリスLYRAS, Dimitris | 企業にとって関連する情報を識別する、システム及び方法 |
JP2018014132A (ja) * | 2017-09-21 | 2018-01-25 | ライラス、ディミトリスLYRAS, Dimitris | 企業にとって関連する情報を識別する、システム及び方法 |
US10410156B2 (en) | 2010-05-07 | 2019-09-10 | Dimitris Lyras | System and method for identifying relevant information for an enterprise |
JP2021051430A (ja) * | 2019-09-24 | 2021-04-01 | 株式会社 日立産業制御ソリューションズ | 業務管理装置、業務管理方法及び業務管理プログラム |
JP2021117846A (ja) * | 2020-01-28 | 2021-08-10 | 株式会社東芝 | ソリューション選定支援装置、方法及びプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10124134A (ja) * | 1996-10-21 | 1998-05-15 | Osaka Gas Co Ltd | 診断システム |
JP2006268405A (ja) * | 2005-03-24 | 2006-10-05 | Hitachi Ltd | 顧客価値生成シナリオ作成支援装置、システムおよび方法 |
JP2007513416A (ja) * | 2003-11-26 | 2007-05-24 | インベンション・マシーン・コーポレーション | 問題定式化およびデータベースからの解決策取得の方法 |
-
2015
- 2015-10-15 WO PCT/JP2015/005212 patent/WO2016063502A1/ja active Application Filing
- 2015-10-15 JP JP2016555076A patent/JPWO2016063502A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10124134A (ja) * | 1996-10-21 | 1998-05-15 | Osaka Gas Co Ltd | 診断システム |
JP2007513416A (ja) * | 2003-11-26 | 2007-05-24 | インベンション・マシーン・コーポレーション | 問題定式化およびデータベースからの解決策取得の方法 |
JP2006268405A (ja) * | 2005-03-24 | 2006-10-05 | Hitachi Ltd | 顧客価値生成シナリオ作成支援装置、システムおよび方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10410156B2 (en) | 2010-05-07 | 2019-09-10 | Dimitris Lyras | System and method for identifying relevant information for an enterprise |
JP2017507402A (ja) * | 2014-07-18 | 2017-03-16 | ライラス、ディミトリスLYRAS, Dimitris | 企業にとって関連する情報を識別する、システム及び方法 |
JP2018014132A (ja) * | 2017-09-21 | 2018-01-25 | ライラス、ディミトリスLYRAS, Dimitris | 企業にとって関連する情報を識別する、システム及び方法 |
JP2021051430A (ja) * | 2019-09-24 | 2021-04-01 | 株式会社 日立産業制御ソリューションズ | 業務管理装置、業務管理方法及び業務管理プログラム |
JP2021117846A (ja) * | 2020-01-28 | 2021-08-10 | 株式会社東芝 | ソリューション選定支援装置、方法及びプログラム |
JP7237867B2 (ja) | 2020-01-28 | 2023-03-13 | 株式会社東芝 | ソリューション選定支援装置、方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016063502A1 (ja) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tax et al. | Discovering more precise process models from event logs by filtering out chaotic activities | |
Van Der Aalst | Process discovery from event data: Relating models and logs through abstractions | |
AU2019202867B2 (en) | Smart advisory for distributed and composite testing teams based on production data and analytics | |
US8370808B2 (en) | Apparatus and a method for generating a test case | |
Osakwe et al. | A multi-country study of bank reputation among customers in Africa: Key antecedents and consequences | |
CN103176973B (zh) | 用于生成数据库的测试工作负载的系统和方法 | |
van der Aalst | Distributed process discovery and conformance checking | |
WO2016063502A1 (ja) | 知識管理装置、知識管理方法、及び、プログラムの記録媒体 | |
US20180260313A1 (en) | Smart advisory for distributed and composite testing teams based on production data and analytics | |
Johannsen et al. | Wand and Weber’s decomposition model in the context of business process modeling | |
Lu et al. | A modified whale optimization algorithm for parameter estimation of software reliability growth models | |
WO2017203672A1 (ja) | アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置 | |
Radulescu et al. | A Hybrid Group Multi-Criteria Approach Based on SAW, TOPSIS, VIKOR, and COPRAS Methods for Complex IoT Selection Problems | |
Manzur et al. | xArchiMate: Enterprise Architecture simulation, experimentation and analysis | |
JP6285284B2 (ja) | 意見活用支援装置、及び意見活用支援方法 | |
Insfran et al. | Evaluating the usability of mashups applications | |
JP6120607B2 (ja) | 要件検出装置及び要件検出プログラム | |
US7562061B2 (en) | Context-based failure reporting for a constraint satisfaction problem | |
Halali et al. | Improving defect localization by classifying the affected asset using machine learning | |
Awad et al. | Towards resolving compliance violations in business process models | |
US12001977B2 (en) | Systems and methods for providing an interactive visualization of an enterprise IT environment | |
JP2014157598A (ja) | ソフトウェア資産管理装置、ソフトウェア資産管理方法、及びソフトウェア資産管理プログラム | |
JP2018028776A (ja) | ソフトウェア資産管理装置、ソフトウェア資産管理方法、および、ソフトウェア資産管理プログラム | |
Cui et al. | A PageRank-like measure for evaluating process flexibility | |
Bibyan et al. | Ranking of Multi-release Software Reliability Growth Model Using Weighted Distance-Based Approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15853521 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016555076 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15853521 Country of ref document: EP Kind code of ref document: A1 |